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We investigate the statistical anisotropy and Gaussianity of temperature fluctuations of Cosmic Microwave
Background (CMB) radiation data from the Wilkinson Microwave Anisotropy Probe survey, using the Multifractal
Detrended Fluctuation Analysis, Rescaled Range, and Scaled Windowed Variance methods. Multifractal
Detrended Fluctuation Analysis shows that CMB fluctuations has a long-range correlation function with a
multifractal behavior. By comparing the shuffled and surrogate series of CMB data, we conclude that the
multifractality nature of the temperature fluctuation of CMB radiation is mainly due to the long-range correlations,
and the map is consistent with a Gaussian distribution.
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I. INTRODUCTION

The Wilkinson Microwave Anisotropy Probe (WMAP)
mission is designed to determine the geometry, matter content,
and evolution of the universe. It has shown that the universe is
geometrically flat, and dark energy at the present time has the
dominant contribution in the matter content of the universe and
causes the universe to have positive acceleration [1–4]. The
statistical properties of the Cosmic Microwave Background
(CMB) radiation data can be a unique tool to identify the
parameters of standard model of cosmology [5]. One of the
main aims of the statistical analysis of the CMB radiation
is to examine the early universe scenarios as the inflationary
cosmology. The Gaussianity of primordial fluctuations is a key
assumption of modern cosmology, motivated by inflationary
models [6–8].

Since the observed CMB sky is a single realization
of the map of the large-scale structures, the detection of
statistical isotropy violation or correlation patterns poses
a great observational challenge. In order to extract more
information from the rich source of information provided by
present (and future) CMB maps [9–11], it is important to
design as many independent statistical methods as possible
to study deviations from standard statistics, such as statistical
isotropy and possible correlations. Since statistical isotropy
can be violated in many different ways [12], various statistical
methods can come to different conclusions. Each method by
design is more sensitive to a special kind of statistical isotropy
violation [13–15]. Based on the bipolar power spectrum, it
has shown no strong evidence of statistical isotropy violation
[16–18], but analysis of the distribution of extrema in WMAP
sky maps has indicated non-Gaussianity and to some extent
violation of statistical isotropy [19]. In addition there are many
criteria that have been introduced to measure the statistical
isotropy of CMB radiation, such as quadratic maximum-
likelihood [20] and multipole vectors [21], and more recently
Naselsky et al. used symmetry of the CMB map to determine
statistical isotropy as well as non-Gaussianity [22].

The statistical properties of the primordial fluctuations
generated by the inflationary cosmology are closely related

to the CMB radiation anisotropy, and a measurement of
non-Gaussianity is a direct test of the inflation paradigm
(see Refs. [23,24] for more details). Many authors have
searched for non-Gaussian signatures in CMB data using
peak distributions [25,26], the genus curve [27,28], peak
correlations [29], global Minkowski functionals methods [30],
and the directional spherical wavelet [31,32]. The techniques
used for the detection of non-Gaussianity in hydrodynamic
turbulence were applied for CMB data [33,34]. Moreover the
Gaussianity of CMB radiation in different angular scales has
been tested [35–64]. Most of the previous works tested only
the consistency between the CMB data and simulated Gaussian
realizations, and so far they have found no significant evidence
for cosmological non-Gaussianity.

In this work we characterize the complex behavior of
CMB radiation through the computation of the fluctuation
parameters—scaling exponents—which quantifies the correla-
tion exponents and multifractality of the data. We use certain
fractal analysis approaches, such as Multifractal Detrended
Fluctuation Analysis (MFDFA), Rescaled Range Analysis
(RS), and Scaled Windowed Variance (SWV) to analyze
the data set. Using the new approaches, we will test the
statistical isotropy and Gaussianity of temperature fluctuations
at the last scattering surface. The MFDFA method shows that
CMB fluctuations have a long-range correlation function with
multifractal behavior. Comparing the MFDFA results of the
original temperature fluctuations to those for shuffled and
surrogate series, we conclude that the multifractality nature of
CMB radiation is mainly due to long-range correlations, and
the map is consistent with a Gaussian distribution. Applied
methods of MFDFA, RS, and SWV show that WMAP data
are a statistically isotropic data set. The value of the scaling
exponent (Hurst exponent) guarantees that there is no evidence
for violation of statistical isotropy in the CMB anisotropy map
considered here.

This paper is organized as follows: In Sec. II we briefly
describe the MFDFA method and show that the scaling
exponents determined via the MFDFA method are identical to
those obtained by the standard multifractal formalism based on
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partition functions. Also we briefly introduce the RS and SWV
methods. The fractal analysis of the temperature fluctuations
are presented in Sec. III. In Sec. IV, we compare the
multifractal behavior of the original data with that of shuffled
and surrogate series and show that the multifractality is mainly
due to the long-range correlations. In Sec. V we investigate the
statistical isotropy and Gaussianity of temperature fluctuations
using the MFDFA, RS, and SWV results. Section VI provides
discussion and presents the results.

II. FRACTAL ANALYSIS METHODS

In this section we review three standard methods: MFDFA,
RS, and SWV, to investigate the fractal properties of stochastic
processes.

A. Multifractal Detrended Fluctuation Analysis

The MFDFA methods are the modified version of De-
trended Fluctuation Analysis (DFA) to detect multifractal
properties of series. The DFA method introduced by Peng et al.
[65] has became a widely used technique for determination of
(mono)-fractal scaling properties and the detection of long-
range correlations in noisy nonstationary time series [65–69].
It has successfully been applied to diverse fields such as
DNA sequences [65,70], heart rate dynamics [71,72], neuron
spiking [73], human gait [74], long-time weather records [75],
cloud structure [76], geology [77], ethnology [78], economical
time series [79], solid-state physics [80], solar physics, and
plasma fluctuations [81].

The simplest type of the multifractal analysis is based
upon the standard partition function multifractal formalism,
which has been developed for the multifractal characterization
of normalized, isotropic (stationary) measurements [82–85].
Unfortunately, this standard formalism does not give correct
results for nonisotropic angular (nonstationary time) series
that are affected by trends or that cannot be normalized. Thus,
in the early 1990s an improved multifractal formalism was
developed, the wavelet transform modulus maxima (WTMM)
method [86], which is based on the wavelet analysis and
involves tracing the maxima lines in the continuous wavelet
transform over all scales. The other method, MFDFA, is based
on the identification of scaling of the qth-order moments
depending on the signal length and is a generalization of the
standard DFA using only the second moment, q = 2.

MFDFA does not require the modulus maxima procedure
in contrast to the WTMM method, and hence does not
require more effort in programming and computing than the
conventional DFA. On the other hand, often experimental
data are affected by nonisotropic (nonstationarities) -like
trends, which have to be well distinguished from the intrinsic
fluctuations of the system in order to find the correct scaling
behavior of the fluctuations. In addition very often we do not
know the reasons for underlying trends in collected data, and
even worse we do not know the scales of the underlying
trends; also, usually the available recorded data is small.
For the reliable detection of correlations, it is essential to
distinguish trends from the intrinsic fluctuations in the data.
Nondetrending methods work well if the records are long
and do not involve trends. But if trends are present in the

data, they might give wrong results. DFA is a well-established
method for determining the scaling behavior of noisy data
in the presence of trends without knowing their origin and
shape [65,70,71,87,88].

The MFDFA procedure consists of five steps. The first
three steps are essentially identical to the conventional DFA
procedure (see, e.g., Refs, [65–69]). In our case, which is
studying the temperature fluctuations of CMB radiation, we
take the temperature data with the size of N and follow the
steps as follows:

Step 1: Determine the “profile”:

Y (γs) ≡
s∑

i=1

[T (n̂i) − 〈T 〉] , s = 1, . . . ,N, (1)

where T (n̂i) is the temperature of CMB map, n̂i is the unit
vector pointing CMB radiation, and γs = arccos(n̂1. n̂s) is
the size of the segment of CMB radiation for which we
are calculating the series. Subtraction of the mean 〈T 〉 is
not compulsory, since it would be eliminated by the later
detrending in the third step.

Step 2: Divide the profile Y (γs) into Nγs
≡ int(N/s)

nonoverlapping segments of equal angular lengths γs .
Step 3: Calculate the local trend for each of the Nγs

segments
by fitting a polynomial function to Y (γs). The variance between
Y (γs) and the function of the best fit for each segment ν,
ν = 1, . . . ,Nγs

, is as follows:

F 2(γs,ν) ≡ 1

s

s∑
i=1

{Y [(ν − 1)γs + γi] − yν(γi)}2 . (2)

A linear, quadratic, cubic, or higher-order polynomial can
be used in the fitting procedure (conventionally called DFA1,
DFA2, DFA3, . . .) [65,67,68,72].

Step 4: Average over all segments to obtain the qth-order
fluctuation function, defined as

Fq(γs) ≡
⎧⎨
⎩ 1

Nγs

Nγs∑
ν=1

[F 2(γs,ν)]q/2

⎫⎬
⎭

1/q

, (3)

where, in general, the index variable q can take any real value
except zero. For q = 0, Eq. (3) becomes

F0(γs) = exp

⎡
⎣ 1

2Nγs

Nγs∑
ν=1

ln F 2(γs,ν)

⎤
⎦ . (4)

For q = 2, the standard DFA is retrieved. Generally we are
interested in how the generalized q-dependent fluctuation
functions, Fq(γs), depend on the angular scale γs for different
values of q. Hence, we must repeat steps 2, 3, and 4 for several
angular scales γs . It is apparent that Fq(γs) will increase with
the increasing of γs .

Step 5: Determine the scaling behavior of the fluctuation
functions by analyzing log-log plots of Fq(γs) versus γs for
each value of q. If the series T (n̂i) are long-range power-law
correlated, Fq(γs) increases, for large values of γs , as a power
law:

Fq(γs) ∼ γ h(q)
s . (5)
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In general, the exponent h(q) may depend on q. For isotropic
fluctuations, 0 < h(2) < 1.0, and h(2) is identical to the well-
known Hurst exponent [h(2) = H ] [65,66,82]. In the absence
of statistical isotropy the corresponding scaling exponent of
Fq(γs) is larger than unity h(2) > 1.0, and its relation to the
Hurst exponent is H = h(q = 2) − 1 [65,81,89]. Thus, one
can call the function h(q) the generalized Hurst exponent.

For monofractal fluctuations, h(q) is independent of q, since
the scaling behavior of the variances F 2(γs,ν) is identical for
all segments of ν, and the averaging procedure in Eq. (3)
will just give this identical scaling behavior for all values
of q. If we consider positive values of q, the segments ν

with large variance F 2(γs,ν) (i.e., large deviations from the
corresponding fit) will dominate the average Fq(γs). Thus,
for positive values of q, h(q) describes the scaling behavior
of the segments with large fluctuations. Usually the large
fluctuations are characterized by a smaller scaling exponent
h(q) for multifractal series [90]. On the contrary, for negative
values of q, the segments ν with small variance F 2(γs,ν) will
dominate the average Fq(γs). Hence, for negative values of q,
h(q) describes the scaling behavior of the segments with small
fluctuations [90].

1. Relation to standard multifractal analysis

For an isotropic series the multifractal scaling exponents
h(q) defined in Eq. (5) are directly related to the scaling
exponents τ (q) defined by the standard partition function-
based multifractal formalism as shown below. Suppose that
the data T (n̂i) of length N are an isotropic sequence. Then the
detrending procedure in step 3 of the MFDFA method is not
required, since no trend has to be eliminated. Thus, the DFA
can be replaced by the standard Fluctuation Analysis (FA) with
the definition of variance for each segment ν, ν = 1, . . . ,Nγs

as follows:

F 2
FA(γs,ν) ≡ [Y (νγs) − Y ((ν − 1)γs)]

2. (6)

Inserting this simplified definition into Eq. (3) and using
Eq. (5), we obtain⎧⎨

⎩ 1

Nγs

Nγs∑
ν=1

|Y (νγs) − Y ((ν − 1)γs)|q
⎫⎬
⎭

1/q

∼ γ h(q)
s . (7)

In order to relate also to the standard textbook box counting
formalism [82–85], we employ the definition of the profile in
Eq. (1). It is evident that the term Y (νγs) − Y [(ν − 1)γs] in
Eq. (7) is identical to the sum of the numbers T (n̂i) within
each segment ν of size γs . This sum is known as the box
probability pγs

(ν) in the standard multifractal formalism for
T (n̂i):

pγs
(ν) ≡

νs∑
i=(ν−1)s+1

T (ni) = Y (νγs) − Y [(ν − 1)γs]. (8)

The scaling exponent τ (q) is usually defined via the
partition function Zq(γs):

Zq(γs) ≡
Nγs∑
ν=1

|pγs
(ν)|q ∼ γ τ (q)

s , (9)

where q is a real parameter as in the MFDFA method, discussed
above. Using Eq. (8), we see that Eq. (9) is identical to Eq. (7),
and obtain analytically the relation between the two sets of
multifractal scaling exponents:

τ (q) = qh(q) − 1. (10)

Thus, we observe that h(q) defined in Eq. (5) for the
MFDFA is directly related to the classical multifractal scaling
exponents τ (q). Note that h(q) is different from the generalized
multifractal dimensions, defined as

D(q) ≡ τ (q)

q − 1
, (11)

which are used instead of τ (q) in some papers. While h(q) is
independent of q for a monofractal time series, D(q) depends
on q in this case. Another way to characterize a multifractal
series is the singularity spectrum f (α), which is related to τ (q)
via a Legendre transform [82,84]:

α = τ ′(q) and f (α) = qα − τ (q). (12)

Here α is the singularity strength or Hölder exponent, while
f (α) denotes the dimension of the subset of the series that is
characterized by α. Using Eq. (10), we can directly relate α

and f (α) to h(q):

α = h(q) + qh′(q) and f (α) = q[α − h(q)] + 1. (13)

A Hölder exponent denotes monofractality, while in the
multifractal case, the different parts of the structure are
characterized by different values of α, leading to the existence
of the spectrum f (α). The interval of Hölder spectrum for
a multifractal process, α ∈ [αmin,αmax], can be determined
by [91]

αmin = lim
q→+∞

∂τ (q)

∂q
, (14)

αmax = lim
q→−∞

∂τ (q)

∂q
(15)

B. Scaled Windowed Variance Analysis

Scaled Windowed Variance (SWV) analysis was developed
by Cannon et al. [89]. The profile of temperature Y (γs) is
divided into intervals of angular length scale γs . Then the
standard deviation is calculated within each interval using the
following relation:

SWV(γs) =
{

1

s

s∑
i=1

[Y (γi) − 〈Y (γs)〉]2

}1/2

. (16)

The average standard deviation of all angular intervals of
length γs is computed. This computation is repeated over all
possible interval lengths. The SWV is related to γs by a power
law:

SWV ∼ γ H
s . (17)

C. Rescaled Range Analysis

Hurst developed RS, a statistical method to analyze long
records of natural phenomena [89,92]. There are two factors
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used in this analysis: first, the range R, which is the difference
between the minimum and maximum “accumulated” values
or cumulative sum of X(t,τ ) of a typical natural phenomenon
at discrete time t over a time span τ , and second, the standard
deviation S, estimated from the observed values X(t,τ ). Hurst
found that the ratio RS is very well described for a large number
of natural phenomena by the following empirical relation:

RS ∼ τH , (18)

where τ and H are time span and Hurst exponent, respectively.
For temperature fluctuations on the last scattering surface, R

and S are defined as

R(γs) = Max[Y (γs)] − Min[Y (γs)], (19)

S(γs) =
{

1

s

s∑
i=1

[T (n̂i) − 〈T 〉]2

}1/2

, s = 1, . . . ,N, (20)

where Y (γs) is defined according to Eq. (1). The scaling
behavior of the fluctuation function is determined by analyzing
log-log plot of RS versus γs as

RS ∼ γ H
s . (21)

III. FRACTAL ANALYSIS OF COSMIC MICROWAVE
BACKGROUND RADIATION DATA

As mentioned in Sec. II, a spurious of correlations may
be detected in the absence of statistical isotropy, so direct
calculation of correlation functions, fractal dimensions etc.,
may not give reliable results [65,66,82,89,90]. The simplest
way to verify the statistical isotropy of the temperature
fluctuations on the last scattering surface is by measuring the
stability of the variance of the temperature in various sizes
of windows. Figure 1 shows the standard deviation of the
temperature verses the angular size γs of the window. Here we
have a saturation for the standard derivation in the large angular
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FIG. 1. (Color online) Behavior of standard deviation of tem-
perature fluctuations of CMB radiation as a function of angular
scale γs .
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FIG. 2. (Color online) The q dependence of the generalized Hurst
exponent h(q), the corresponding τ (q), and singularity spectrum f (α)
are shown in the upper to lower panels, respectively, for temperature
fluctuation series.

scale, which reflects the long-range correlation behavior of the
temperature fluctuations of CMB radiation [65,66,82,89,90].

We use the MFDFA1 method for analyzing the temperature
fluctuations in CMB radiation. Following the procedure for
MFDFA analysis as described in the last section we obtain
Fq(γs) as a function of angular scale γs . For each index of q the
generalized Hurst exponents, h(q) in Eq. (5) can be found by
analyzing log-log plots of Fq(γs) versus γs . Figure 2 shows the
Hurst exponent in terms of q for MFDFA1 analysis. Variation
of the Hurst exponent in terms of q shows the multifractal
behavior of temperature fluctuation of the CMB radiation.
Moreover we have different values of the slope of classical
multifractal scaling exponent τ (q) for q < 0 and q > 0, which
indicates that CMB radiation has a multifractal structure. For
positive and negative values of q, we obtain τ (q) with slopes
0.79 ± 0.03 and 1.00 ± 0.03, respectively, at a 1σ confidence
interval. According to the relation between the Hurst exponent
and MFDFA exponent, we obtain H = 0.94 ± 0.01 at a 1σ

confidence interval, which means that temperature fluctuation
is an isotropic process with long-range correlation [90]. The
variation of singularity spectrum f (α) [Eq. (12)] also is shown
in Fig. 2. The values of derived quantities from the MFDFA1
method are given in Table I.

We also use SWV analysis [89,92] to determine the Hurst
exponent for CMB radiation via Eq. (17). Figure 3 shows
log-log plot of SWV of CMB fluctuations as a function of
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TABLE I. The values of the Hurst, multifractal scaling, and
generalized multifractal exponents for q = 2.0 at a 1σ confidence
interval, for original, surrogate, and shuffled temperature fluctuation
series obtained by MFDFA1.

Data H τ D

CMB 0.94 ± 0.01 0.88 ± 0.02 0.88 ± 0.02
Surrogate 0.88 ± 0.01 0.76 ± 0.02 0.76 ± 0.02
Shuffled 0.500 ± 0.001 0.002 ± 0.002 0.002 ± 0.002

angular scale γs , which results in H = 0.95 ± 0.02 at a 68%
confidence interval. Finally we apply RS to determine the
Hurst exponent of CMB fluctuations. According to Fig. 4,
the value of the Hurst exponent obtained is 0.95 ± 0.02 at a
68% confidence interval, which is in agreement with the two
previous results.

IV. COMPARISON OF MULTIFRACTAL NATURE FOR
ORIGINAL, SHUFFLED, AND SURROGATE CMB DATA

In this section we are interested in determining the source
of multifractality and testing the Gaussianity of CMB data.
In general, two different types of multifractality in certain
data sets can be distinguished: (1) multifractality due to
a fatness of the probability density function (PDF) and
(2) multifractality due to different correlations in small- and
large-scale fluctuations. In the first case the multifractality
cannot be removed by shuffling the data set, while in the
second case data may have a PDF with finite moments;
e.g., a Gaussian distribution and the corresponding shuffled
series will exhibit monofractal scaling, since all long-range
correlations are destroyed by the shuffling procedure.

If we have both kinds of multifractality in data, the shuffled
series will show weaker multifractality than the original series.
The easiest way to distinguish the type of multifractality
is by analyzing the corresponding shuffled and surrogate
series. The shuffling of the data set destroys the long-range
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FIG. 3. (Color online) Behavior of SWV of CMB fluctuations as
a function of angular scale γs in log-log plot.
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FIG. 4. (Color online) The log-log plot of RS vs angular scale γs

for temperature fluctuation at the last scattering surface.

correlation; therefore if the multifractality belongs only to the
long-range correlation, we should find hshuf(q) = 0.5 [90]. The
multifractality nature due to the fatness of the PDF signals is
not affected by the shuffling procedure. On the other hand, to
determine the multifractality due to the broadness of PDF by
the surrogating method, the phase of discrete Fourier transform
(DFT) coefficients of CMB data is replaced with a set of
pseudo-independent uniform distribution within the range of
(−π,π ) [81,93]. The correlations in the surrogate series do
not change, while the probability function changes to the
Gaussian distribution. If multifractality in the data set is due
to a broadness of PDF, h(q) obtained by the surrogate method
will be independent of q. If both kinds of multifractality are
present in CMB data, the shuffled and surrogate series will
show weaker multifractality than the original one.

To check the nature of multifractality, we compare the
fluctuation function Fq(γs), for the CMB map with the result
of the corresponding shuffled F shuf

q (γs) and surrogate F sur
q (γs)

data. Differences between these two fluctuation functions
and the original one can indicate the presence of long-range
correlations or broadness of the probability density function
in the original data. These differences can be obtained by
the ratio Fq(γs)/F shuf

q (γs) and Fq(γs)/F sur
q (γs) as a function

of γs [90]. Since the anomalous scaling due to a broad
probability density affects Fq(γs) and F shuf

q (γs) in the same
way, only multifractality due to correlations will be observed
in Fq(γs)/F shuf

q (γs). The scaling behavior of these ratios is

Fq(γs)/F
shuf
q (γs) ∼ γ h(q)−hshuf (q)

s = γ hcorr(q)
s , (22)

Fq(γs)/F
sur
q (γs) ∼ γ h(q)−hsur(q)

s = γ hPDF(q)
s . (23)

If only fatness of the PDF is responsible for the multifractality,
one should find h(q) = hshuf(q) and hcorr(q) = 0. On the
other hand, deviations from hcorr(q) = 0 indicate the presence
of correlations, and q dependence of hcorr(q) indicates that
multifractality is due to the long-range correlation.

If the multifractal behavior of CMB is made by the
broadness of PDF and long-range correlation, both hshuf(q)
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FIG. 5. (Color online) Generalized Hurst exponent as a function
of q for original, surrogate, and shuffled CMB data.

and hsur(q) will depend on q. The q dependence of the
generalized exponent h(q) for original, surrogate, and shuf-
fled CMB data is shown in Fig. 5, which shows that the
multifractality nature of temperature fluctuation is almost
due to the long-range correlation. The absolute value of
hcorr(q) is larger than hPDF(q), which indicates that the
multifractality due to the fatness is much weaker than the
multifractality due to the correlation. The deviation of hsur(q)
and hshuf(q) from h(q) can be determined by using χ2 as
follows:

χ2

 =

N∑
i=1

[h(qi) − h
(qi)]2

σ (qi)2 + σ
(qi)2
, (24)

where the symbol “
” represents for “surrogate” or “shuffled”
series. The value of reduced chi-square χ2

ν
 = χ2

/N (N is the

number of degrees of freedom) for shuffled and surrogate time
series is 21 599 and 313, respectively.

The singularity spectrum f (α) of the surrogate series
is almost similar to the original temperature fluctuations,
while in the case of shuffled series we have a narrower
singularity spectrum of 
αshuf = α(qmin) − α(qmax) � 0.02
compared to that of surrogate 
αsur � 0.09 and original data

α � 0.12. The small value of 
αshuf compared to the two
other series shows that the multifractality in the shuffled CMB
map has almost been destroyed [94]. Figures 6 and 7 show
the MFDFA1 results for surrogate and shuffled temperature
fluctuation series. Comparing the MFDFA results of the data
set to those for shuffled and surrogate series, we conclude
that the multifractal nature of temperature fluctuations in
CMB data is almost due to the long-range correlations,

and the probability distribution function of CMB is almost
Gaussian (see also Sec. V). The values of the Hurst exponent
H , multifractal scaling τ (q = 2), and generalized multifractal
dimension D(q = 2) of the original, shuffled, and surrogate
data of CMB obtained with the MFDFA1 method are reported
in Table I.
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FIG. 6. (Color online) The q dependence of the generalized Hurst
exponent h(q), the corresponding τ (q), and singularity spectrum f (α)
are shown in the upper to lower panels, respectively, for surrogate
temperature fluctuation series.

V. STATISTICAL ISOTROPY AND GAUSSIANITY
OF CMB ANISOTROPY

In this section we examine the Gaussianity and statistical
isotropy of temperature fluctuations in CMB data through
MFDFA, RS, and SWV methods.

Standard models of inflationary cosmology predict a Gaus-
sian distribution of CMB temperature fluctuations. However,
along with standard inflationary models, there exist theories
such as inflationary scenarios with two or more scalar fields
that predict a non-Gaussian primordial fluctuations [95–101].
Another possibility of deviation from Gaussianity is the
manipulation of the CMB signals after the recombination
due to subsequent weak gravitational lensing [102,103] and
various foregrounds like dust emission, synchrotron radiation,
or unresolved point sources [104]. One should also take into
account the additional instrumental noise in the observational
data [105]. One of the advantages of Gaussian field is that
the two-point correlation function C(n̂, n̂′) ≡ 〈T (n̂)T (n̂′)〉 will
be sufficient to fully specify the statistical properties of the
field. In the case of non-Gaussianity, one must take the higher
moments of the field into account in order to fully describe
the whole statistics. So, studying the Gaussian nature of the
signals or detecting some distinctive non-Gaussianity is an
important issue to understand the statistical properties of CMB
radiation.

As we have seen in Sec. IV, the MFDFA1 results of
the shuffled series show almost constant h(q) � 0.5, which
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FIG. 7. (Color online) The q dependence of the generalized Hurst
exponent h(q), corresponding τ (q), and singularity spectrum f (α)
are shown in the upper to lower panels, respectively, for shuffled
temperature fluctuation series.

indicates that h(q) is independent of the q, or in other
words the shuffled series is a monofractal structure. This
means that the multifractality of the original data is due
to the long-range correlations, not due to a broadness of
PDF of temperature fluctuations (Fig. 5). Furthermore small
differences in the generalized Hurst exponent between the
original and surrogated data (Fig. 5) and similarity of the
singularity spectrum f (α) in those two series show that the
probability density function of temperature fluctuations has
good confidence with the Gaussian distribution, which is in
agreement with the recent results [16,17,33,34].

The second important question about the CMB data is its
statistical isotropy. One of the main motivations for anisotropy
of the universe comes from the global topology of the universe.
The idea of a multiconnected topology of the universe comes
back to Schwarzschild’s work [106] before Einstein’s first
seminal paper on cosmology [107]. If the universe is assumed
to be simply connected, the cosmological principle implies that
it should be globally isotropic to any observer. In the case of a
multiconnected universe, while the Einstein gravity still holds
in this space, the global structure of universe at large scales will
be more complicated. One of the most promising signatures
may be in the CMB radiation as the existence of large-scale
anisotropies with a repeating pattern [108]. In addition to
cosmological mechanisms, instrumental and environmental
effects in observations of CMB radiation can also easily

produce a spurious breakdown of statistical isotropy. Here we
examine the anisotropy of CMB radiation with the MFDFA
analysis.

The statistical isotropy means that the statistical properties
of CMB radiation (e.g., n-point correlations) are invariant
under Eulerian rotation. This means that the two-point cor-
relation function is a function of an angle between two
points:

C(n̂1,n̂2) = C(n̂1 · n̂2) ≡ C(γ ), (25)

where γ = arccos(n̂1 · n̂2) is the angle between n̂1 and n̂2.
It is then convenient to expand it in terms of Legendre
polynomials:

C(γ ) = 1

4π

∞∑
l=2

(2l + 1)ClPl(cos γ ), (26)

where Cl is the widely used angular power spectrum. The
summation over l starts from 2 because the l = 0 term is
the monopole where in the case of statistical isotropy the
monopole is constant, and it can be subtracted out. The dipole
l = 1 is due to the local motion of the observer with respect
to the last scattering surface and can be subtracted out as well.
In order to extract the statistical property of CMB radiation
we need an ensemble map from it to calculate the correlation
functions. In reality we have only one map from the CMB,
but if we assume the statistical isotropy ,we can calculate the
correlation functions moving in overall data. As we mentioned
in Sec. II, for a process with stationarity in time or an isotropic
process in space, the Hurst exponent is always less than unity
[65,89]. According to the MF-DAF1, SWV, and RS methods
we obtained the value of the Hurst exponent for WMAP data as
H = 0.94 ± 0.02 at a 1σ confidence interval. These analyses
with the Hurst exponent (0 < H < 1.0) show that there is
no evidence for violation of statistical isotropy of WMAP
data.

VI. CONCLUSION

In this work we used three methods to investigate the
statistical properties of WMAP data. Multifractal Detrended
Fluctuation Analysis, Rescaled Range Analysis, and Scaled
Windowed Variance methods show that the WMAP data
are a statistically isotropic data set. The value of the Hurst
exponent, H � 0.94, guarantees that there is no evidence
for violation of statistical isotropy in the CMB map. The
MFDFA method allows us to determine the multifractal
characterization of this map. The q dependence of generalized
Hurst h(q) and classical multifractal scaling τ (q) exponents
shows that the temperature fluctuations on the last scattering
surface have a multifractal behavior [33]. We obtained the
generalized multifractal dimension of CMB data, D � 0.88.
According to a small difference between the generalized
Hurst exponent and the singularity spectrum of the original
data set with the surrogate ones, H − Hsur = 0.06 ± 0.01 and

α − 
αsur = 0.03, we found that there is no crucial evidence
for non-Gaussianity of the CMB map. The compatibility of
the multifractal behavior of the temperature fluctuations of
CMB radiation with their Gaussian distribution has been also
explored recently [109]. Comparison of the generalized Hurst
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exponent of the original data with the shuffled and surrogate
series showed that the nature of the multifractality of CMB
is mainly due to the long-range correlation, rather than the
broadness of the probability density function.
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