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What |s Physics?

How the complicated motion of a system of
objects, such as a car or a ballerina, can be
simplified If we determine a special point of the
system - the center of mass of that system
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Chapter 9

Center of Mass and Linear Momentum

9.01 Given the positions of several particles along an axis or a
plane, determine the location of their center of mass.

9.02 Locate the center of mass of an extended, symmetric object
by using the symmetry.

9.03 For a two-dimensional or three-dimensional extended object
with a uniform distribution of mass, determine the center of
mass by

(a) Mentally dividing the object into simple geometric
figures, each of which can be replaced by a particle at its center

he center of mass of those particles.




The Center of Mass

The center of mass of a system of particles is the
point that moves as though

all of the system's mass were concentrated there
and

all external forces were applied there.




Center of Mass

y
- XcMm

. -‘ e myx, + m2x2

J @ Xem = v
- xz

N-Particles in one dimension:

+ + 4 ...+ zmixi Emixi
mxX); T MgXg T MgXg MmpX, =3 _ 1

= mx;

m, + myg + mg + -+ m, _Zm-_ M M=
1
i

Xem =




1 1
Yem = ﬁz m;y; and zgy = EZ m;z;

. . A 1 P | N | -
?CM = xmi + yCMj + ka = ﬂz m,-x,-i + le m(y,j + ﬂz miz,-k

Fou =3 mi,




Example 1:

The Center of Mass of Three Particles

A system consists of three particles located as
shown in Figure 9.18. Find the center of mass
of the system. The masses of the particles are
m; = me = 1.0 kg and mg = 2.0 kg.

y (m)

Two

particles are located on the xaxis,
and a single particle is located on oM

the y axis as shown. The vector indi-

cates the location of the system’s 0 @ @ 3 x (m)
center of mass. 1 2

continued




Categorize We categorize this example as a substitution problem because we will be using the equations for the center
of mass developed in this section.

myx, + MoXy + MgX
Use the defining equations for Xem = LE m;xX; = =l 22 .
- M = my =F my =F mq
the coordinates of the center of
mass and notice that zgy = 0: ~ (1.0kg)(1.0m) + (1.0kg)(2.0m) + (2.0kg)(0) 8.0kg-m 075
- 10kg + 1.0kg + 20 kg " T40kg 0™
_ iz oy, = 01 T Moo T mg)s
yCM M . 1yl m] =L m2 + mS
(1.0kg)(0) + (1.0kg)(0) + (2.0kg)(2.0m) 4.0kg-m
o - =1.0m
40 kg 40 kg
Write the position vector of the Tom = Xeui + Youj = (0.75i + 1.0j) m

center of mass:




Solid Bodies

XeMm = Ail 2 X; Am,‘

1 1
Xey = lim — 2 x; Am; :WIJ x dm

Am—0 M i
— An extended object can be
considered to be a distribution
o i d d o l d of small elements of mass Am;.
You = 37| ydm and zgy =) zdm

1
?m=ﬁf?dm v




Example 2:

y
dm=Adx
- L / :i
— x
——— X
dx
The

geometry used to find the center
of mass of a uniform rod.

(A) Show that the center of mass of a rod of mass M and length L lies midway
between its ends, assuming the rod has a uniform mass per unit length.

(B) Suppose a rod is nonuniform such that its mass per unit length varies linearly with x according to the expression
A = ax, where a is a constant. Find the x coordinate of the center of mass as a fraction of L.
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Analyze The mass per unit length (this quantity is called the linear mass density) can be written as A = M/L for the uni-
form rod. If the rod is divided into elements of length dx, the mass of each element is dm = A dx.

: 1 I 1 I - A B AL
an expression for xqy: = — dm = — ax = — —| =——
B "o You = p | XAM =3 ) AT ol T oM
Substitute A = M/L: = -
M2M\ L ’
One can also use symmetry arguments to obtain the same result.
Analyze In this case, we replace dm in Equation 9.32 by A dx, where A = ax.
1 ( . 1 ("
Use Equation 9.32 to find an expression for xgy: Xey = M | X dm = XA dx = M I xax dx
0 0
L
LS
Sy
M J, 3M
Find the total mass of the rod: M= I dm = f Adx = I ax dx = >
0 0
. . . al? 2
Substitute M into the expression for xgy,: Xem = = 3L




Example 3:
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Example 4-1:

Assume the plate's
mass is concentrated
as a particle at the
plate's center of mass.




y y ! Here too, assume the
! mass is concentrated
i as a particle at the
Disk center of mass.
2R :
R x
I
* |
|
( bk/ :
Assume the plate's I
mass is concentrated | I
(@ as a particle at the :
plate's center of mass. | :
I ] Composite plate
| i C=S+P
Here too.
Yyc |
|
|
|
I
I
|
|
|
|
I
l Here are those
! three particles.
I
(d) : — x
comsg comg com
Disk panicch Plau: parucle

\C
0 X pr(2R)* — (—R) X pr(R )

LOM =

pm(2R)? — pm(R)?




Example 4-2

A uniform circular plate of radius 2R has a circular
hole of radius R cut out of
it. The center C' of the
smaller circle 1s a distance
0.80R from the center C of
the larger circle, Fig. 9-45.
What 1s the position of the
center of mass of the plate?

Ycom — 0
Teom = —0.27TR




Example 5:




Example 6:




Example /:

Center of mass of semi circular wire:




From the symmetry of the wire, we know that x_, = 0.

Consider an infinitesimal piece of the wire, with mass dm,
and coordinates (x.,y)=(rcosé.rsiné). If the length of

that piece of wire is d/#., then since the wire is uniform,

M
we have dm =—d /. And from the diagram and the

r
definition of radian angle measure, we have d/Z = rd6.
Thus dm = M rd@ = £d&. Now apply Eq. 9-13.
r T
1 1 % M r 2F
=— | ydm=—/\|rsmf—df=—|smbdlf =—
Yau M le M‘[ T JZ'{ T

2
Thus the coordinates of the center of mass are (xCM, yCM) = (O—r) ) ‘/




Example 8:

C) Center of Mass of a uniform semi circular plate:

dnui

Kooy =0 (By symmetry)
4R v

(1) G
31T




Derivation:

M

>
r dr

Here the element chosen is a thin wire (semi circular) of radius r.

2r
As derived earlier, the ¥ ., forthisis at — .

T
Now, dm = - )rdr
2
Zmrdr
ydm 1%2r 2mr
So, ¥ =|—=—| —x—dr
Fomt J‘m myn R?
4 [r3:|R
niEk. 3 .
_ 3R
3n
Dumb Question:

e
1) Whyis ¥ = ; here?
Ans: The mass dm Is a semi circular thin wire whose position is variable (y is not unigue),

2r

S0 we concentrate dm mass on the COM of this wire that is at y= ; .




Example 9:







Example 10: Center of
mass of hollow hemisphere

Keow =0 (by symmetry)

?

Ycom =




Center of Mass of hemispherical shell:
Kooy =0 (by symmetry)
R

Yoo = —
coM =

LA DA s
AR RO BT T

il BN

/

dm = (2nRcos B)RdO x ———
2nR
= cosBmdH
1
Yeom = —Iydm
m
17
= — IRsm BcosBmdb
my

ni2
= R/2 [ sin2 8.d8
0




Example 11;

Center of Mass of a hemisphere:
Keow =0 (by symmetry)

3R
Teow = g v

T
X

AT T, S
X T B I =




Derivation:

N
/)

dm = n{Rcos8)*Rd Bcosh
2 o3
—nR
3
v = Rsin B
1
m

1 ¢3m R cos’8 (Rsin 6)d8

T m 2nR>
3. L

= -R]cos 65in6 d6
2 0
3 1

=—R[t3dt
2 0
3R




Example 14-15:

Solid Cone or Pyramid of height &




For hollow cone,

Let (X.,Y.) are the coordinates of center of mass. Then,
Jydm Jxdm

Y= “fdm and Xc= fm

For symmetry consider the center of mass at X.=0.

For hollow cone,

dm=p dA
dA =2rray
v 2
y, = JrCrrdy) _ JrerR(-5)dy) = 14
[2rrdy [g2rR(1~%)dy 2 3

So, the center of mass of a hollow cone is at one-third of the height on the line joining from center of the base to
the vertex.

JTNARN




I For a solid cone,
Let (X.,Y.) are the coordinates of center of mass. Then,

fydm Jxdm
Vo=t ad Xe==

For symmetry consider the center of mass at X.=0.

Divide the cone in horizontal disks of mass then,
dm=pdV where, p is the density of material. (constant)
In this case,

B (P
av = §nr dV & where ris the radius of the cone at an arbitrary height dy.
radius of cone depends upon the height of the cone. So,
y=0 ; r=R (R is the base radius of the cone)
y=h; r=0.
Using point-slope form:

= _R
= hy+R

Now, the volume¢

dv = mr 2dy

So,

iy ihdrRa-E)%y) IR

JosT(R(1- ")) dy



Example 16:




9-2 NEWTON'S SECOND LAW FOR
A SYSTEM OF PARTICLES

Key Idea

@ The motion of the center of mass of any system of particles
Is governed by Newton’s second law for a system of parti-

cles, which is

F.=Md.,.

- —




9-2 Newton's Second law for a System of
Particles

The center of mass of a system of particles having
combined mass M moves like an equivalent
particle of mass M would move under the
Influence of the net external force on the system.

- dr 1 dr,

Velocity of the center of P Veu = - Mz m;

AL'IZ mi?i

mass of a system of particles dt i dt




dv 1 v, 1
Acceleration of the center of P XCM = —H - —2 m;—— = —2 m,-?l),-
mass of a system of particles dt M= a M=%




Sample Problem 9.03 Motion of the com of three particles

The three particles in Fig. 9-7a are initially at rest. Each
experiences an external force due to bodies outside the
three-particle system. The directions are indicated, and the
magnitudes are F; = 6.0N, F, = 12 N, and F; = 14 N. What
is the acceleration of the center of mass of the system, and in
what direction does it move?

= —
Q—I—Q 3 F2
4.0 kg 450
2
B 8.0 kg
1
0 x
- -2 1 2 3 4 5
=t
4.0 kg

-2 —
The com of the system - 5
will move as if all the (a)
mass were there and y
the net force acted there. 7 —

2 Fnet




Calculations: We can now apply Newton’s second law
(Fhet = ma) to the center of mass, writing

—

Foet = MA g (9-20)
or Fi+ F,+ F; = Ma

F, + F,+ F,
SO ooy = — Mz 3 (9-21)

Fi, + Fy, + F;,
acom,x - M

_ —60N+ (12N)cos45° + 14N _ 1.03 m/s2.
16 kg

Along the y axis, we have
_ Fy + Fy + F,
Acom,y = M
0+ (I12N)sin45° + 0
B 16 kg

From these components, we find that @, has the magnitude

Aeom = \/(at:om,Jnc)2 + (acom, y)2

= 1.16 m/s? = 1.2 m/s? (Answer)
and the angle (from the positive direction of the x axis)

= (0.530 m/s%.

Acom, y

6 = tan™! = 27°. (Answer)

Acom, x



9-3 Linear Momentum

The linear momentum of a particle or an object that can be modeled as a
particle of mass m moving with a velocity ¥ is defined to be the product of the
mass and velocity of the particle:




The Linear Momentum of a
System of Particles

P=P,+P,+Ps+ -+ Pn
=m1V1 +m2V2+m3V3+ °* oo +m,,V,,.

dr.
Velocity of the center of P Veu = o _ ;42 m;—— = %2 my,

mass of a system of particles dt

- — e
Total momentumofa P MV oy = E my,; = 2 P: = P
system of particles i i

F =M Vcom (linear momentum, system of particles), ‘/

The linear momentum of a system of particles is equal to the product of the total

mass M of the system and the velocity of the center of mass.




Force and Momentum
Conservation of Linear momentum

P=M Veom (linear momentum,system of particles),
dP dVCOID —
t =M dt = Ma com
- dP _
Foet = ——  (system of particles),




MV = Pue = constant  (when E_F)m =0)

P = constant (closed,isolated system). v
P),- = P)f (closed, isolated system).

total linear momentum\ _ [total linear momentum
at some initial time ¢ at some later time




9-4 Collision and Impulse

dp = F(1) dt.

Iy i _,
f dp = f F(t) dt.

~

K1)

J = f "F(t)dt (impulse defined). v
;




Impulse Vector

t
J = f ' F(t)dt (impulse defined).
L;




Average Impulse

The impulse in the collision

J=F. ave At. V is equal to the area under

the curve.

1)

The time-averaged net force
gives the same impulse toa

particle as does the time- | —t
varying force in (a). f' . ‘If
| t |
2F (a)
i The average force gives

the same area under the
curve.







Projectiles

J n n
Foo=—7=—"7 = ——— mAv.
Figure 9-10 A steady stream of projectiles, e At At P At
with identical linear momenta, collides
with a target, which is fixed in place. The
average force F,,, on the target is to the v Ay = Vp— v = 0—v=—v,

right and has a magnitude that depends on

the rate at which the projectiles collide

with the target or, equivalently, the rate at

which mass collides with the target. “ Av

I
<
|
-~
I
|
<
I
<
I
I
b
<




¥ 01

CHECKPOINT 5 The figure shows an overhead view of a ball bouncing
A from a vertical wall without any change in its speed. Consider the change Ap in the
ball’s linear momentum. (a) Is Ap, positive, negative, or zero? (b) Is Ap, positive, neg-
ative, or zero? (c) What is the direction of Ap?

Example:

In a particular crash test, a car of mass 1 500 kg collides with a wall as shown in Figure. The initial and
final velocities of the car are ?,— = —15.0i m/s and V’f = 2.60i m/s, respectively. If the collision lasts 0.150 s, find the
impulse caused by the collision and the average net force exerted on the car.

Before
~15.0 m/s 2
— 5
3
5

After

+2.60 m/s




pi = mv; = (1500 kg)(—15.0im/s) = —2.25 x 10'ikg - m/s

p; = mv,= (1500 kg)(2.60im/s) = 0.39 x 10'i kg - m/s

T=AB=p,— p:= 039 x 10'ikg - m/s — (—2.25 x 10*i kg - m/s)
= 264 x 10"i kg - m/s

| 964 X 10'i kg - m/s X
= kg - m/ = 1.76 X 10°i N

F). =
(2B At 0.150 s







Example:

Figure9.2 (Example 9.1) An
archer fires an arrow horizontally
to the right. Because he is standing
on frictonless ice, he will begin to
slide to the left across the ice.

Let us consider the situation proposed at the beginning of Section 9.1. A 60-kg
archer stands at rest on frictionless ice and fires a 0.50-kg arrow horizontally at
50 m/s (Fig. 9.2). With what velocity does the archer move across the ice after fir-

ing the arrow?




mVy+ meVy, =0

m 0.50 k : :
Vi = —— Vg = —(—g)(SOim/s) = —0.42im/s




Example:

Race car-wall collision. Figure 9-11a is an overhead view of
the path taken by a race car driver as his car collides with the
racetrack wall. Just before the collision, he is traveling at
speed v; = 70 m/s along a straight line at 30° from the wall.
Just after the collision, he is traveling at speed vy= 50 m/s
along a straight line at 10° from the wall. His mass m is 80 kg.

(a) What is the impulse J on the driver due to the collision?

Wall

Path
10°




The collision
y changes the y
momentum.

The impulse on the car
¥ is equal to the change
in the momentum.

—X

(a) () (c)




The collision The impulse on the car

y changes the 7 ¥ is equal to the change
Wall momenium. 30; B ‘ in the momentum.
30° Path - = _x N o -
/ 10° o0 E I
7y |4

(a) (5) (c)

x component: Along the x axis we have
Je = m(vg — viy)
= (80 kg)[(50 m/s) cos(—10°) — (70 m/s) cos 30°]
= —910 kg -m/s.

y component: Along the y axis,
J, = m(vg — vy)
= (80 kg)[(50 m/s) sin(—10°) — (70 m/s) sin 30°]
= —3495 kg-m/s = —3500 kg -m/s.




J = (—910i — 35007) kg-m/s,

J
=t -1 _y,
) an 7

X

J = \/12 + J2 = 3616 kg-m/s =~ 3600 kg-m/s.




(b) The collision lasts for 14 ms. What 1s the magnitude of
the average force on the driver during the collision?

Calculations: We have

P _J _ 36l6kg-m/s
™At 0.014s

= 2583 X 10° N = 2.6 X 10° N. (Answer)

Using F = ma with m = 80 kg, you can show that the magni-

tude of the driver’s average acceleration during the collision
is about 3.22 X 103 m/s? = 329g which is fatal.




9-5 Conservation of Linear
Momentum

a_d(m;’))_ﬁ
2 F= dt  dt

MV = Pue = constant  (when E_F)N =0)

P = constant (closed,isolated system). v

P),- = f’)f (closed, isolated system).

| /total linear momentum _ (total linear momentum
at some initial time ¢ at some later time 7 /)




Conservation of Linear
Momentum

If the component of the net external force
on a closed system Is zero along an axis,
then the component of the linear
momentum of the system along that axis
cannot change.




Example:
> —— e Vi

=~ — —_ = —
— \___ D
_— Hauler —
T I 0.20M 0.80M
x x

One-dimensional explosion: Figure 9-12a shows a space hauler
and cargo module, of total mass M, traveling along an x axis in
deep space. They have an initial velocity V; of magnitude 2100
km/h relative to the Sun. With a small explosion, the hauler
ejects the cargo module, of mass 0.20M (Fig. 9-12b). The hauler
then travels 500 km/h faster than the module along the x axis;
that 1s, the relative speed vy between the hauler and the mod-
ule 1s 500 km/h. What then is the velocity Vg of the hauler rela-
tive to the Sun?




The explosive separation can change the momentum
of the parts but not the momentum of the system.

T—— — — T —
R Vi Vs B VHS

\—:__—_-- Hauler =
T 0.20M 0.80M
b b

(a) (b)

Piz Mv,'.

- Pf = (020M)VMS + (O.SOM)Vys,




|
r
)
<
5
ﬁ
<
3

Vi

‘H * |' ‘H

auler

Cargo module

X X

velocity of velocity of velocity of
hauler relative | = | hauler relative | + | module relative |
to Sun to module to Sun

Vs = Viel T Vs
VMms = Vs — Vrel-

MVi = O.ZOM(VHS — vrel) + O.SOMVHs,

Vygs = V; + O.20v,el,
. vys=2100 km/h + (0.20)(500 km/h)

= 2200 km/h.
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9-6 Momentum and Kinetic
Energy in Collisions

Before the collision
Before the collision, the .

particles move separately. ‘L». _______
- - . m o
° Vii Voi ’ my
8
m my
3

After the collision
-
Y
vssin 6 |
After the collision, the '
particles continue to move 7 o cos O
- - 1/
separately with new velocities. ,/\?
——— <_ __________
~
> o ~ cos
Vi | Vs N kf: )
4_‘ |
J vy sing L8




Collisions

Elastic Collision, P and K are conserved

Inelastic Collision, K is not conserved

Completely Inelastic Collision, K is not v
conserved

In a completely inelastic

Here is the generic setup collision, the bodies

for an inelastic collision. stick together.
Body 1 Body 2 Vi
Vis Vo Before —t> Vo= 0
Before _b q o 7 X
0 Q X my m2
m m2 Projectile  Target

v, TS After

v
—
Afier N Y e Q90—
Q Q x my + my
ml ”32




Collisions iIn One Dimension

Completely inelastic collision

Before the collision, the
particles move separately.

" o ?'Q
m 12 2: —
a8

After the collision, the

m, + Mo V particles move together.




Example:

SOV JIRC BN Railroad cars collide: momentum conserved. A 10,000-kg
railroad car, A, traveling at a speed of 24.0 m/s strikes an identical car, B, at rest.

If the cars lock together as a result of the collision, what is their common speed
immediately after the collision? See Fig. 9-5.




Pinitial = P final -
SOLUTION The initial total momentum is
Piitial = MaA Uy + Mgl = MV,

because car B is at rest initially (vz = 0). The direction is to the right in the +x
direction. After the collision, the two cars become attached, so they will have the
same speed, call it 2’. Then the total momentum after the collision 1s

[— r
Pina = (my + mB)v :
We have assumed there are no external forces, so momentum is conserved:
Piitiat = Flinal
mavs = (my + mg)o'.

Solving for »', we obtain
. I 3 ( 10,000 kg
%A 7 110,000 kg + 10,000 kg

to the right. Their mutual speed after collision is half the initial speed of car A
because their masses are equal.

24.0 = 12.0
my + mp )( m/s) m/s,




Elastic Collision

Before the collision, the

particles move separately.
My T Moly; = MUy Molyy = 4‘&0
1 2 , 1 2 _ 1 2 , 1 2 " ™
oMUy, + oMoV~ — M1V + oMaVyf (3]

After the collision, the
particles continue to move
separately with new velocities.

— -
<9 =




my (0, — 01f2) - ”‘2(7’2/2 - v2i2)
1 sides of this equation gives
my(vy; — vyy) (0y; + vy) = Moy, — vg,) (Vg + V)
separate the terms containing m; and m, in Equation 9.1
my (vy; — Vi) = My(Vgr — Vy;)
final result, we divide Equation 9.18 by Equation 9.19 anc

vy; T Uy = v2f+ Vy; /

Uy — U9 — _(vlf_ ’”2/)




m, —m,

- - Vv = Vi:
Vy; Vo, 1f 1i
g T vy=0 S
—_— . X . —
my mo 2l : . 2m1
sz - my aF m, Vi

Special cases:
1. Equal masses 1f m; = m,, Eqs.9-67 and 9-68 reduce to

vip=0 and vy = vy;,

2. A massive target In Fig. 9-18, a massive target means that m, > m,. For
example, we might fire a golf ball at a stationary cannonball. Equations 9-67

and 9-68 then reduce to
2
Vip = Vi and Vo = ( T )vli- (9-69)

3. A massive projectile 'This is the opposite case; that is, m; = m,. This time, we
fire a cannonball at a stationary golf ball. Equations 9-67 and 9-68 reduce to

Vlf = WVq; and szz 2V1i° (9-70)




Example:

The ballistic pendulum was used to measure the speeds of
bullets before electronic timing devices were developed. The
version shown in Fig. 9-17 consists of a large block of wood of
mass M = 5.4 kg, hanging from two long cords. A bullet of
mass m = 9.5 g 1s fired into the block, coming quickly to rest.
The block + bullet then swing upward, their center of mass
rising a vertical distance A = 6.3 cm before the pendulum
comes momentarily to rest at the end of its arc. What is the
speed of the bullet just prior to the collision?




( total momentum ) B (total momentum)
before the collision after the collision/

(mechanical energy) B (mechanical energy)
- at top '

at bottom




m v
m+M

V =

s(m + M)V2 = (m + M)gh.

y =22 :;M \/2gh (9-61)
_ [ 0.0095kg + 54 kg ) =
= ( 0.0005 ke V(2)(9.8 m/s?)(0.063 m)

= 630 m/s. (Answer)



Example:

Velocity of the Center of Mass

The com of the two
D B . - bodies is between
P - M voom - (ml + mZ)V(X)m' them and moves at a

constant velocity.

-
i X
— - -
Vii Veom Vo;=0
. " =
Here is the m \

P n " Hereis th
= . . o - \ ere is the
ﬁlt ﬁZ&' [LELTINE B A \g\(_% stationary target.
\\
\I
\

Collision!

The com moves at the \
same velocity even after
the bodies stick together. @\"’
\
\

\
<l
It

a~d

AN\
AN




Example:

In Fig. 9-20a, block 1 approaches a line of two stationary
blocks with a velocity of v{; = 10 m/s. It collides with block 2,
which then collides with block 3, which has mass m; = 6.0 kg.
After the second collision, block 2 is again stationary and
block 3 has velocity v3r= 5.0 m/s (Fig. 9-20b). Assume that the
collisions are elastic. What are the masses of blocks 1 and 27?
What is the final velocity v;sof block 1?

v —_—

Iy g
(b) VIl I 7 777 7777777777777 X

Figure 9-20 Block 1 collides with stationary block 2, which then
collides with stationary block 3.




vli

W%//// LT LSS LT A 77777 X
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Figure 9-20 Block 1 collides with stationary block 2, which then
collides with stationary block 3.

my — My

Vor = Vi
f mn, + iy ’

where v,; 1s the velocity of block 2 just before the collision
and vy 1s the velocity just afterward. Substituting vy = 0
(block 2 stops) and then m; = 6.0 kg gives us

m, = my = 6.00 kg. (Answer)



o — 2m1 .
2f m, + m, 1is
2m,
50m/s = (10 m/s),
my + m,

my = m, = 3(6.0 kg) = 2.0 kg.

= —5.0 m/s.




Example: Newton Ball

http://www.youtube.com/watch?
v=JadO3RuOJGU&feature=related

@© Cengage Learning/Charles D. Winters
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Newton Ball




Example:

‘Two metal spheres, suspended by vertical cords, initially
just touch, as shown in Fig. 9-22. Sphere 1, with mass
m; = 30 g, is pulled to the left to height #, = 8.0 cm,
and then released from rest. After swinging down, it
undergoes an elastic collision with sphere 2, whose
mass m, = 75 g. What is the velocity v, of sphere 1 just
after the collision?




when sphere 1 is at height A,. Thus,

1 2 _
M vi; = myghy,

which we solve for the speed vy; of sphere 1 just before
the collision:

v = V2g¢hy = \(2)(9.8 m/s2)(0.080 m)
= 1252 m/s.

Step 2: Here we can make two assumptions in addition
to the assumption that the collision is elastic. First, we
can assume that the collision is one-dimensional because
the motions of the spheres are approximately horizontal
from just before the collision to just after it. Second,
because the collision is so brief, we can assume that the

two-sphere system is closed and isolated. This means that
the total linear momentum of the system is conserved.

Calculation: Thus, we can use Eq. 9-67 to find the veloc-
ity of sphere 1 just after the collision:

G i — My
1f m, e m, 1i
0.030 kg — 0.075 kg
0.030 kg + 0.075 kg

= —0.537 m/s =~ —0.54 m/s.

(1.252 m/s)
(Answer)

The minus sign tells us that sphere 1 moves to the left
just after the collision.




Example:

v,;=4.00i m/s 7')2;:—2.505 m/s Tr)lf=3.00§ m/s ?2f
—_— = — g
k k
w2 - ™
X
2 I
_ - |
b

A block of mass m; = 1.60 kg initially moving to the
right with a speed of 4.00 m/s on a frictionless, hori-
zontal track collides with a light spring attached to
a second block of mass m, = 2.10 kg initially moving
to the left with a speed of 2.50 m/s as shown in Fig-
ure 9.10a. The spring constant is 600 N/m.

~__ (A) Find the velocities of the two blocks after the

collision.




(2) v1; — v9; = — (Vg5 — V)

(3) myvy; — mvy; = —myvy + My,
2myoy; + (Mg — my)vy; = (my + my) Vo

2myvy; + (mg — my)vy;

v2f= m, Ir Mmo
2(1.60 kg)(4.00 m/s) + (2.10 kg — 1.60 kg)(—2.50 m/s)
vgf = = 3.12 m/S
1.60 kg + 2.10 kg
Uyp= Vgp— Uy; T 09;= 3.12m/s — 4.00 m/s + (—2.50m/s) = — 3.38 m/s

(B) Determine the velocity of block 2 during the collision, at the instant block 1 is moving to the right with a velocity of
+3.00 m/s as in Figure 9.10b.

—




Mvy; T Moty = MUy T Moty

myvy; + Mevy; — MUy

02f — m2

_ (1.60 kg)(4.00 m/s) + (2.10 kg)(—2.50 m/s) — (1.60 kg)(3.00 m/s)

oy 2.10 kg
= —1.74m/s

(C) Determine the distance the spring is compressed at that instant.




K+ U=K+U

1 2 , 1 2 _ 1 Sl 2 , 1
gmMm Yy =F 9MoV9; + 0 = §ml‘01f =F §mQ02f ar kaz

5(1.60 kg)(4.00 m/s)? + 3(2.10 kg)(2.50 m/s)? + 0
= $(1.60 kg)(3.00 m/s)? + $(2.10 kg)(1.74 m/s)? + $(600 N/m)x?

x= 0.173 m




9-8 Collisions in Two
Dimensions

MUy T Mol = MUy T Molgp, Before the collision

MUy + Molyy = MUy 5 T Moy

MyYy; = My, COS B + Mgty oS P

0 = myvsin 6 — myvy sin ¢

K" + KZ(' = Klf+ KZf'

with v,; = 0:

1 2 _1 2 .1 2
MV~ = MV, T gMaUyy




Example:

A proton collides elastically with another proton that is initially at rest. The incoming proton has an initial speed of
8.50 X 10° m/s and makes a glancing collision with the second proton as in Active Figure 9.11. (At close separations, the
protons exert a repulsive electrostatic force on each other.) After the collision, one proton moves off at an angle of 37.0°
to the original direction of motion and the second deflects at an angle of ¢ to the same axis. Find the final speeds of the

two protons and the angle &.




(1) vy cos ) + vy, cOs b = vy
(2) vysinf — vy sinp = 0
(3) 01f2 + ”2j2 =0y
Ugs COS p = 0y; — ¥y COS 0
Ugr SIN b = vy 8in 6
vy* cOS® ¢ + vy 7 sin? p =

i

(4) 0212 — 01,2 - 201,'01/ cos ) + ”1/2

”112 (= 20,0, cos 6 + vlf2) = v,

0,2 — 200, €08 0 + v, cos® O + v, 7 sin?

2

v




0y = vy;€0s = (3.50 X 10°m/s) cos 87.0° = 2.80 X 10° m/s

02f= \/vl,-g - vlf2 = \/(3.50 X 105 m/S)2 - (2.80 X 105 ﬂl/S)2
= 2.11 X 10°m/s

. _l(vnfsin 9) . _,[(2.80 X 10° m/s) sin 37.0°]
Sin - | — SIn 3
Vs (2.11 X 10° m/s)

—
N
~
<
Il

= b53.0°

Finalize Itis interesting that §# + ¢ = 90°. This result is not accidental. Whenever two objects of equal mass collide elasti-
cally in a glancing collision and one of them is initially at rest, their final velocities are perpendicular to each other.




9-9 Systems with Varying
Mass

/— System boundary




/— System boundary

M

—e>—
Rocket
(a) )
- System boundary Conserve Momentum.
— —— p. = Pf,
Y Mv=—dMU+ (M + dM)(v + dv),
Use Relative Speed.

velocity of rocket velocity of rocket velocity of products
. B : + . .
relative to frame relative to products relative to frame




/— System boundary
M

————

- . U=v+dv—vg,.

Va System boundary

s - Mv=—=dMU+ (M + dM)(v + dv),

— ——

(v+dv)=v, + U,

- —dM v,y = M dv.
dM dv
— = M—.
T dt
dd—]\t{ — —R Rv. = Ma (first rocket equation).
Thrust I = Ry,




M.

I .
VE— Vi = Vel In _Mf (second rocket equation)
dv dM
Thrust = T




Example:

Two firefighters must apply a total force of 600 N to steady a hose that is discharging water at the rate of 3 600 L/min.
Estimate the speed of the water as it exits the nozzle.




Example:

SCVILREY I Rocket propulsion. A fully fueled rocket has a mass of
21,000 kg, of which 15,000 kg is fuel. The burned fuel is spewed out the rear at a
rate of 190 kg/s with a speed of 2800 m/s relative to the rocket. If the rocket is

fired vertically upward (Fig. 9-35) calculate: (a) the thrust of the rocket; (b) the Viocket
net force on the rocket at blastoff, and just before burnout (when all the fuel has '
been used up); (¢) the rocket’s velocity as a function of time, and (d) its final AN
velocity at burnout. Ignore air resistance and assume the acceleration due to A Fy

gravity is constant at g = 9.80 m/s’.




SOLUTION (a) The thrust is:

dM
Fhust = Vel = (—2800m/s)(—190kg/s) = 5.3 X 10°N,

where we have taken upward as positive so v, i negative because it is down-
ward, and dM/dl is negative because the rocket’s mass is diminishing.

(b) Foyy = Mg = (2.1 X 10*kg)(9.80 m/s’) = 2.1 X 10° N initially, and at burnout
Foo = (6.0 X 107 kg)(9.80 m/s*) = 5.9 x 10" N. Hence, the net force on the rocket
at blastoff is

Foo = 53X 10°N = 2.1 X I°N = 32 X 10°N, [blastoff]
and just before burnout it is
Free = 53 X 10°N =59 X 10*°N = 47 x 10°N.  [burnout]

After burnout, of course, the net force is that of gravity, —5.9 % 10°N.
(c) From Eq. 9-19b we have

fc dﬁM
dv = A’;t dr + 'vrc|7’

where F. = —Mg. and M is the mass of the rocket and is a function of time.
Since vy is constant, we can integrate this casily:

Il t MdM
dv = —[ dt + vc[ —
Jv ()g el M, M

U -

M
M,

]

v(t) = v, — gt + v ln




where »(r) is the rocket’s velocity and M its mass at any time 7. Note that v is
negative (—2800m/s in our case) because it is opposite to the motion, and
that In (M/M,) is also negative because M, = M. Hence, the last term—which
represents the thrust—is positive and acts to increase the velocity.

(d) The time required to reach burnout is the time needed to use up all the fuel
(15,000 kg) at a rate of 190 kg/s: so at burnout,

10X 10'ke _
© 190kg/s >

If we take v, = 0, then using the result of part (¢):

6000 kg
21,000 kg

v = —(9.80m/s?)(79s) + (—2800m/s)(ln ) = 2700 m/s.




w17 @ In Fig. 9-45a, a 4.5 kg dog
stands on an 18 kg flatboat at dis-
tance D = 6.1 m from the shore. It
walks 2.4 m along the boat toward
shore and then stops. Assuming no
friction between the boat and the wa-

ter, find how far the dog is then from
the shore. (Hint: See Fig. 9-45b.)

Dog's displacement Zd

—_
—

Boat's displacement ?1’,,

()
Figure 9-45 Problem 17.




Example:

*22 Figure 9-47 gives an overhead
view of the path taken by a 0.165 kg
cue ball as it bounces from a rail of a
pool table. The ball’s initial speed is
2.00 m/s, and the angle 6, is 30.0°. The
bounce reverses the y component of
the ball’s velocity but does not alter
the x component. What are (a) angle
6, and (b) the change in the ball’s lin-
ear momentum in unit-vector nota-
tion? (The fact that the ball rolls is ir-
relevant to the problem.)

Figure 9-47 Problem 22.




Example:

«57 @ In Fig. 9-61,a ball of mass v,

m = 60 g is shot with speed v; = 22 m
m/s into the barrel of a spring gun of 7 7

mass M = 240 g initially at res.t ona Figure 9-61 Problem 57.
frictionless surface. The ball sticks in

the barrel at the point of maximum compression of the spring.
Assume that the increase in thermal energy due to friction be-
tween the ball and the barrel is negligible. (a) What is the speed of
the spring gun after the ball stops in the barrel? (b) What fraction
of the initial kinetic energy of the ball is stored in the spring?




Example:

*»»58 In Fig. 9-62, block 2 (mass 1.0
kg) is at rest on a frictionless surface
and touching the end of an un-

stretched spring of spring constant Figure 9-62 Problem 58.
200 N/m. The other end of the spring

is fixed to a wall. Block 1 (mass 2.0 kg), traveling at speed v; = 4.0
m/s, collides with block 2, and the two blocks stick together. When the
blocks momentarily stop, by what distance is the spring compressed?




Example:

*67 In Fg. 9-66, particle 1 of mass
my = 030 kg slides rightward along | = 9 I
an x axis on a frictionless floor with a

speed of 2.0 m/s. When it reaches x = i t— x (cm)
0, it undergoes a one-dimensional
elastic collision with stationary parti-
cle 2 of mass m, = 0.40 kg. When par-
ticle 2 then reaches a wall at x,, = 70 cm, it bounces from the wall
with no loss of speed. At what position on the x axis does particle 2
then collide with particle 1?

0 X,y

Figure 9-66 Problem 67.




Example:

74 Two 2.0 kg bodies, A and B, collide. The velocities before the
collision are v, = (15i + 30j) m/sand ¥ = (—10i + 5.0j) m/s. After
the collision, ¥4 = (—5.0i + 20j)m/s. What are (a) the final velocity
of B and (b) the change in the total kinetic energy (including sign)?




Example:

102 In Fig. 9-79, an 80 kg man is on a lad-
der hanging from a balloon that has a total
mass of 320 kg (including the basket passen-
ger). The balloon is initially stationary rela-
tive to the ground. If the man on the ladder
begins to climb at 2.5 m/s relative to the lad-
der, (a) in what direction and (b) at what
speed does the balloon move? (c) If the man

then stops climbing, what is the speed of the
balloon?

Figure 9-79
Problem 102.



Example:

123  Anunmanned space probe (of mass m and speed v relative to
the Sun) approaches the planet Jupiter (of mass M and speed V/; rel-
ative to the Sun) as shown in Fig. 9-84. The spacecraft rounds the
planet and departs in the opposite direction. What is its speed (in
kilometers per second), relative to the Sun, after this slingshot en-
counter, which can be analyzed as a collision? Assume v = 10.5 km/s
and V; = 13.0 km/s (the orbital speed of Jupiter). The mass of Jupiter
is very much greater than the mass of the spacecraft (M = m).

m
—i—w > S
—

vV

Figure 9-84 Problem 123.




Example:

«77 ssm In Fig. 9-70, two long barges are moving in the same
direction in still water, one with a speed of 10 km/h and the other
with a speed of 20 km/h. While they are passing each other, coal is
shoveled from the slower to the faster one at a rate of 1000 kg/min.
How much additional force must be provided by the driving en-
gines of (a) the faster barge and (b) the slower barge if neither is to
change speed? Assume that the shoveling is always perfectly side-
ways and that the frictional forces between the barges and the water
do not depend on the mass of the barges.

Figure 3-70 Problem 77.




Example:

34. The mass of the blue puck in

Figure P9.34 is 20.0% greater

than the mass of the green

puck. Before colliding, the

pucks approach each other with
momenta of equal magnitudes
and opposite directions, and the
green puck has an initial speed
of 10.0 m/s. Find the speeds the
pucks have after the collision if half the kinetic energy of
the system becomes internal energy during the collision.

P—— __-1\30.0°
30.0°%7 e

Figure P9.34




Example:

46. [ Figure P9.46a shows an overhead view of the initial
configuration of two pucks of mass m on frictionless ice.
The pucks are tied together with a string of length € and
negligible mass. At time ¢ = 0, a constant force of magni-
tude F begins to pull to the right on the center point of
the string. At time ¢, the moving pucks strike each other
and stick together. At this time, the force has moved
through a distance d, and the pucks have attained a speed
v (Fig. P9.46b). (a) What is v in terms of F, d, €, and m?
(b) How much of the energy transferred into the system by
work done by the force has been transformed to internal
energy?

_r?,,,

Figure P9.46




Example:

47. IEJ A particle is suspended from a post on top of a
cart by a light string of length L as shown in Figure P9.47a.
The cart and particle are initially moving to the right at
constant speed v;, with the string vertical. The cart sud-
denly comes to rest when it runs into and sticks to a bumper
as shown in Figure P9.47b. The suspended particle swings
through an angle 6. (a) Show that the original speed of the
cart can be computed from v; = V2gL(1 — cos#). (b) If
the bumper is still exerting a horizontal force on the cart
when the hanging particle is at its maximum angle forward
from the vertical, at what moment does the bumper stop
exerting a horizontal force?

b
Figure P9.47




Example:

52. A rocket has total mass M; = 360 kg, including M, = 330 kg
of fuel and oxidizer. In interstellar space, it starts from rest
at the position x = 0, turns on its engine at time ¢ = 0, and
puts out exhaust with relative speed v, = 1 500 m/s at the
constant rate k = 2.50 kg/s. The fuel will last for a burn
time of T, = Mf/k = 330 kg/(2.5 kg/s) = 132 s. (a) Show
that during the burn the velocity of the rocket as a func-
tion of time is given by

oi) = —v,ln(l - %)

(b) Make a graph of the velocity of the rocket as a function
of time for times running from 0 to 132 s. (c) Show that the
acceleration of the rocket is

all) =

M, — ki

(d) Graph the acceleration as a function of time. (e) Show
that the position of the rocket is

x(t) = v,(%— t) In (1 - %) + u,t

(f) Graph the position during the burn as a function of
time.




Example:

~

65. JEJ Review. A bullet of mass m s fired into a block of mass
M initially at rest at the edge of a frictionless table of height
h (Fig. P9.65). The bullet remains in the block, and after

m Z#
LD*/_\/

-

-
S8

X

Figure P9.65

impact the block lands a distance d from the bottom of the
table. Determine the initial speed of the bullet.




Example:

66. A small block of mass m; = 0.500 kg is released from rest at
the top of a frictionless, curve-shaped wedge of mass my =
3.00 kg, which sits on a frictionless, horizontal surface as
shown in Figure P9.66a. When the block leaves the wedge,
its velocity is measured to be 4.00 m/s to the right as shown
in Figure P9.66b. (a) What is the velocity of the wedge after
the block reaches the horizontal surface? (b) What 1s the
height % of the wedge?

my

b
Figure P9.66




Example:

73.| B4 A 5.00-g bullet mov- v;
ing with an initial speed _D>ﬁ M

of v; = 400 m/s is fired ——

into and passes through |

a 1.00-kg block as shown o d e l»
in Figure P9.73. The R
block, initially at rest on ém
a frictionless, horizon- ==

tal surface, 1s connected

to a spring with force Figure P9.73

constant 900 N/m. The
block moves d = 5.00 cm
to the right after impact before being brought to rest by
the spring. Find (a) the speed at which the bullet emerges
from the block and (b) the amount of initial kinetic energy
of the bullet that is converted into internal energy in the
bullet-block system during the collision.




Example:

78. Sand from a stationary hopper falls onto a moving
conveyor belt at the rate of 5.00 kg/s as shown in Figure
P9.78. The conveyor belt is supported by frictionless rollers
and moves at a constant speed of v = 0.750 m/s under the
action of a constant horizontal external force fex, supplied
by the motor that drives the belt. Find (a) the sand’s rate of
change of momentum in the horizontal direction, (b) the
force of friction exerted by the belt on the sand, (c) the
external force i"’ex,, (d) the work done by ?m in 1 s, and
(e) the kinetic energy acquired by the falling sand each
second due to the change in its horizontal motion. (f) Why
are the answers to parts (d) and (e) different?

Figure P9.78




Example:

79. [EJ Review. A chain of length L and total mass M is
released from rest with its lower end just touching the top
of a table as shown in Figure P9.79a. Find the force exerted
by the table on the chain after the chain has fallen through
a distance x as shown in Figure P9.79b. (Assume each link
comes to rest the instant it reaches the table.)

Figure P9.79




Example:

49. (I1) A measure of inelasticity in a head-on collision of two
objects is the coefficient of restitution, e, defined as
Vi — UB

e _—
U = Ua
where vy — vy is the relative velocity of the two objects after
the collision and vg — 24 is their relative velocity before it.
(a) Show that e =1 for a perfectly elastic collision, and
e = 0 for a completely inelastic collision. (b) A simple
method for measuring the coefficient of restitution for an
object colliding with a very hard surface like steel is to drop
the object onto a heavy steel plate, as shown in Fig. 9-41.
Determine a formula for ¢ in

terms of the original height A y @
|

and the maximum height A’ | .
reached after collision. : :
h 11
L
FIGURE 9-41 Problem 49. - H_.,
Measurement of coefficient v VAY V.

of restitution.




Example:

50. (IT) A pendulum consists of a mass M hanging at the bottom
end of a massless rod of length £,
which has a frictionless pivot at its S
top end. A mass m, moving as shown \
in Fig. 9-42 with velocity », impacts \
M and becomes embedded. What is \
the smallest value of v sufficient
to cause the pendulum (with
embedded mass m) to swing
clear over the top of its arc?

FIGURE 9-42
Problem 50.




Example:

94. Two blocks of mass m, and mpg, resting on a frictionless
table, are connected by a stretched spring and then released
(Fig. 9-51). (a) Is there a net external force on the system?
(b) Determine the ratio of their speeds. v5/vg. (¢) What
is the ratio of their kinetic energies? (d) Describe the
motion of the ¢M of this system. (¢) How would the pres-
ence of friction alter the above results?

mp mpg

FIGURE 9-51 Problem 94.




Example:

89. A gun fires a bullet vertically into a 1.40-kg block of wood
at rest on a thin horizontal sheet,
Fig. 9-50. If the bullet has a mass 1.40 kg

of 24.0 g and a speed of 310m/s, -

how high will the block rise into

the air after the bullet becomes 4o =310 m/s
embedded in it? |||

FIGURE 9-50 ﬂ
Problem 89.




Example:

99. Two balls, of masses m, = 45g and myg = 65g, are
suspended as shown in Fig. 9-52. The lighter ball is pulled
away to a 66” angle with the vertical and released.
(a) What 1s the velocity of the lighter ball before impact?
(b) What is the velocity
of each ball after the
clastic collision? (¢) What
will be the maximum

-

height of each ball
afte'r. the elastic ﬁ/ 30 em
collision? AN .
\\
\\\
\\‘~~ e
FIGURE 9-52 ~~A @

Problem 99. iy g



Example:

100. A block of mass m = 2.20kg slides down a 30.0° incline
which is 3.60 m high. At the bottom, it strikes a block of mass
M = 7.00kg which is at rest on a horizontal surface,
Fig. 9-53. (Assume a smooth transition at the bottom of the
incline.) If the collision is elastic, and friction can be ignored,
determine (a) the speeds of the two blocks after the collision,
and (b) how far back up the incline the smaller mass will go.




Example:

107. In a physics lab, a cube slides down a frictionless incline as
shown in Fig. 9-57 and
elastically strikes another
cube at the bottom that 1s
only one-half its mass. If
the incline is 35cm high
and the table 1s 95 cm off
the floor, where does each
cube land? [Hint: Both
leave the incline moving
horizontally.]

cm

FIGURE 9-57
Problem 107.




Example:

13. (II) A child in a boat throws a 5.70-kg package out horizontally
with a speed of 10.0 m/s, Fig. 9-37. Calculate the velocity of
the boat immediately after. assumine it was initially at rest.
The mass of
the child 1s
240kg and
that of the
boat is 35.0 kg.

FIGURE 9-37
Problem 13.




Example:

25. (II) A tennis ball of mass m = 0.060kg and speed
v = 25m/s strikes a wall at a 45° angle and rebounds with
the same speed at 45° (Fig. 9-38). What
is the impulse (magnitude and direction)

given to the ball? \

/&

FIGURE 9-38
Problem 25.




Take-Home:

Viene, Vim?




