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Chapter 5
Force and Motion-|

B ridgeman-Gimudon/rt Resource, NY

Isaac Newton

English physicist and mathematiclan
(1642-1727)

Isaac Newton was one of the most brilliant
sclentists In history. Before the age of 30, he
formulated the basic concapts and laws of
mechanics, discoverad the law of universal
gravitation, and Invented the mathematical
methods of calculus. As a conseguence of
his theorles, Newton was abie to expiain the
motions of the pianets, the abb and flow of
the tides, and many speclal features of the
motions of the Moon and the Earth. He also
Interpreted many fundamental obsarvations
concerning the nature of light. His contribu-
tions to physical theories dominated sclentific
thougnt for two centurles and remain Impor-
tant today.
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Chapter 5
Force and Motion-|

5.01-- |dentify that a force is a vector quantity and
thus has both magnitude and direction and also
components.

5.02-- Given two or more forces acting on the same
particle, add the forces as vectors to get the net force.

5.03-- Identify Newton’s first and second laws of
motion.




5.05-- Sketch a free-body diagram for an object,
showing the object as a particle and drawing the
forces acting on it as vectors with their tails anchored
on the particle.

5.06-- Apply the relationship (Newton’s second law)
between the net force on an object, the mass of the
object, and the acceleration produced by the net force.

- 5.07-- ldentify that only external forces on an object
ause the object to accelerate.




Usually think of a force as

a push or pull
Vector quantity
May be contact

or

field force

Forces

Contact forces

(a)

Field forces

(d)

(e)
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Fundamental Forces
Types

® Strong nuclear force
® Electromagnetic force
® Weak nuclear force

® Gravity

Characteristics
e All field forces
® |isted in order of decreasing strength




Newton s First Law (1)

If no force acts on a body, the body’s
velocity cannot change; that is, the body
cannot accelerate.




Newton s First Law (2)

Newton’s First Law: If no net force acts on a
body (), F=0 ), the body’s velocity cannot
change; that is, the body cannot accelerate.




Inertial Reference Frames

An inertial reference frame is one in which Newton’s
laws hold.

N

—_—
—

Noninertial frame #




Foucault's pendulum
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From Lec. 4

Xpy = Xpg T Xpgu-

d d d

ar (xpa) = ar (xpp) + ar (xa)-

— Qor
—
Via x{'B
M
T X x
xPA -Xpp +XpA

d d d
I (Vpa) = I (vpp) + ar (Vga)-




Newton’s First Law, cont.

External force

® any force that results from the interaction between the
object and its environment

Alternative statement of Newton’s 1st Law

® When there are no external forces acting on an object,
the acceleration of the object is zero.

® An inertial reference frame is one in which Newton's
laws hold.




Inertia and Mass

Inertia is the tendency of an object to continue
In its original motion

Mass Is a measure of the inertia, I1.e resistance
of an object to changes in its motion due to a

force

Recall: mass Is a scalar quantity

Units of mass

SI

kilograms (kg) my Q@

grams (9)




Inertia and Mass:

Runaway train




Newton s Second Law

The net force on a body Is equal to the
product of the body’s mass and its

acceleration.
EF = ma

® F and a are both vectors

Iso be applied three-dimensi




Newton s Second Law

Note: ZF represents the vector sum of all
external forces acting on the object.

We can always write it in terms of components:

Y F=ma,
fo:m&: 3 ZFyzmay
2 F=ma,_




Units of Force

S| unit of force is a Newton (N)

IN=19Tm
S
Units of force
Sl Newton (N=kg m/ s?)
CGS Dyne (dyne=g cm/s?)
US Customary | Pound (Ib=slug ft/s?)

=l 02 dyne—0225 Ib, JuG




Example

| EXAMPLE 4-2  ESTIMATE | Force to accelerate a fast car. Estimate the
net force needed to accelerate (a) a 1000-kg car at 3 g; (b) a 200-gram apple at
the same rate.

APPROACH We use Newton’s second law to find the net force needed for each
object; we are given the mass and the acceleration. This is an estimate (the 3 is
not said to be precise) so we round off to one significant figure.

SOLUTION (a) The car’s acceleration is a = 38 = 7(9.8 m/s?) ~ 5m/s’. We
use Newton’s second law to get the net force needed to achieve this acceleration:

SF = ma =~ (1000kg)(5m/s?*) = 5000 N.

(If you are used to British units, to get an idea of what a 5000-N force 1s, you can
divide by 4.45 N/Ib and get a force of about 1000 Ib.)

(b) For the apple, m = 200g = 0.2 kg, so
SF = ma ~ (02kg)(5m/s?) = 1N.




Example

EXAMPLE 4-3 | Force to stop a car. What average net force is required to
bring a 1500-kg car to rest from a speed of 100 km/h within a distance of 55 m?




Example

EXAMPLE 4-3 | Force to stop a car. What average net force is required to

bring a 1500-kg car to rest from a speed of 100 km/h within a distance of 55 m?

APPROACH We use Newton’s second law, X F = ma, to determine the force,
but first we need to calculate the acceleration a. We assume the acceleration is
constant so that we can use the kinematic equations, Egs. 2—-11, to calculate it.

vy =100 km/h v=0
a‘ FIGURE 4-6
- 1 éy— x(m)  Example 4-3.
x=0 x=55m

SOLUTION We assume the motion is along the +x axis (Fig. 4-6). We are
given the initial velocity v, = 100km/h = 27.8 m/s (Section 1-6), the final
velocity » = 0, and the distance traveled x — x; = 55 m. From Eq.2-11c, we
have

v = v+ 2a(x — xo),
SO )
v — v} 0 — (27.8m/s) .
a = 2 —x) 2(55m) = —=70m/s".

The net force required is then
SF = ma = (1500kg)(—=7.0m/s?) = —1.1 x 10*N,

or 11,000 N. The force must be exerted in the direction opposite to the initial
velocity, which is what the negative sign means.




Example

Here are examples of how to use Newton’s second law for a
puck when one or two forces act on it. Parts A, B, and C of
Fig. 5-3 show three situations in which one or two forces act
on a puck that moves over frictionless ice along an x axis, in
one-dimensional motion. The puck’s mass is m = 0.20 kg.
Forces F, and Fz are directed along the axis and have
magnitudes F; = 4.0N and F, = 2.0 N. Force F; is directed
at angle # = 30° and has magnitude F; = 1.0 N. In each situ-
ation, what is the acceleration of the puck?

The horizontal force
causes a horizontal
acceleration.

This is a free-body
diagram.

These forces compete.
Their net force causes

a horizontal acceleration.

This is a free-body
diagram.

Only the horizontal
component of Fy
competes with /.

This is a free-body
diagram.



Thesearetwo F2| Thisis the resulting

E X a I I I ‘ e of the three horizontal acceleration
horizontal force vector.

vectors.

Fgure 54 (a) An overhead view of two of three horizontal forces that act on a c

tin, resulting in acceleration @. F1is not shown. (b) An arrangement of vectors »
and —F; to find force F.

Here we find a missing force by using the acceleration. In
the overhead view of Fig. 5-4a, a 2.0 kg cookie tin is acceler-
ated at 3.0 m/s” in the direction shown by d, over a friction-
less horizontal surface. The acceleration is caused by three
horizontal forces, only two of which are shown: F, of magni-
tude 10 N and F. » of magnitude 20 N. What is the third force
F; in unit-vector notation and in magnitude-angle notation?




¥
Exal I Ip ‘ e Thesearetwo %2 | This is the resulting

of the three horizontal acceleration
horizontal force vector.
vectors.

(8)

We draw the product
of mass and acceleration
as a vector.
-F,
-F

—
ma

x

—

i

Then we can add the three
vectors to find the missing
third force vector.

Apure 54 (a) An overhead view of two of three horizontal forces that act on a cookie
tin, resulting in acceleration @. Fis not shown. (b) An arrangement of vectors ma, —F,

and F'z to find force )_3;

Here we find a missing force by using the acceleration. In
the overhead view of Fig. 5-4a, a 2.0 kg cookie tin is acceler-
ated at 3.0 m/s” in the direction shown by d, over a friction-
less horizontal surface. The acceleration is caused by three
horizontal forces, only two of which are shown: F, 1 of magni-
tude 10 N and F. » of magnitude 20 N. What is the third force
F ; In unit-vector notation and in magnitude-angle notation?



Thesearetwo %] Thisis the resulting
of the three horizontal acceleration
horizontal force vector.
vectors. =
500
X
wb
R
(a) (5

We draw the product
of mass and acceleration
as a vector.

R
5

—_
ma

x

—_

5

Then we can add the three
vectors to find the missing
third force vector.

Fgure 54 (a) An overhead view of two of three horizontal forces that act on a cookie
tin, resulting in acceleration @. F. 3is not shown. (b) An arrangement of vectors ma, —F’l,

and —fz to find force F';.

The net force F net ON the tin is the sum of the three forces
and is related to the acceleration @ via Newton’s second law

(Fyoe = ma ). Thus,

f|+f2+f3=m_a',

which gives us

— e — —
F3=ma_F1—F2.

(5-6)

(5-7)

x components: Along the x axis we have
Froo,=ma —F,—F,
= m(a cos 50°) — F cos(—150°) — F; cos 90°.
Then, substituting known data, we find
F;, = (2.0 kg)(3.0 m/s?) cos 50° — (10 N) cos(—150°)
— (20 N) cos %0°
=125N.
y components: Similarly, along the y axis we find
E,=ma,—-F,-F,
= m(asin 50°) — F; sin(—150°) — F; sin %0°
= (2.0 kg)(3.0 m/s?) sin 50° — (10 N) sin(—150°)
— (20 N) sin 90°
= —104N.
Vector: In unit-v£iior notation, We can wriic
Fy=F,i+ F,j = (125N)i — (104N)j
=~ (13N)i — (10 N)]. (Answer)
We can now use a vector-capable calculator to get the mag-

nitude and the angle of fg.Wecan also nse £g.35-6 to obtain
the magnitude and the angle (from the positive direction of

the x axis) as
E=\F%, +Fi,=16N
and 6= tan“% = —40°. (Answer)




5-2 Some Particular Forces

Gravitational Force

Mutual force of attraction between any
two objects

Expressed by Newton’s Law of
Universal Gravitation:

m2
2

m
F =G




Weight

The magnitude of the gravitational force acting
on an object of mass m near the Earth’s
surface Is called the weight w of the object

v 'w=mgis a special case of Newton’s Second
Law

g can also be found from the Law of Universal
Gravitation




Weight

Scale marked
in cither
weight or
mass units

In our situation, this becomes
W — F, = m(0)

or W=F,  (weight,withground asinertial frame).




More about weight

Weight is not an inherent property of an object
v’ mass is an inherent property

Weight depends upon location




The Normal Force

When a body presses against a
surface, the surface (even a seemingly
rigid one) deforms and pushes on the
body with a normal force F') that
IS perpendicular to the surface.

The normal force Normal force F, -
is the force on A A
the block from the

supporting table.

Block Fy Block

_
The gravitational _ The forces
force on the block VF, *1  balance.

is due to Earth's v
downward pull. (a) ()

<l




Friction (see next chapter)

Direction of
attempted
slide

Figure 5-8 A frictional force f opposes the
attempted slide of a body over a surface.

R



Tension

The forces at the two ends of
the cord are equal in magnitude.

(a) (&) (¢)




Newton s Third Law

When two bodies interact, the forces on the
bodies from each other are always equal in
magnitude and opposite in direction.




Example: Newton' s Third Law

Consider collision of
two spheres

F,», may be called the
action force and F,;
the reaction force

® Actually, either force
can be the action or the
reaction force

The action and
reaction forces act on

ifferent objects

Bujuiea uoswoy] Jo UoISIAIP B - Bulysiiqnd 2|09 s)ooig Z00Z ©

on desk by hand

FIGURE 4-8 If your hand pushes
against the edge of a desk (the force
vector is shown in red), the desk
pushes back against your hand (this
force vector is shown in a different

~  color, violet, to remind us that this

force acts on a different object).



Example

— -y

Fpe : Fep
B C
&) The force on B
due to C has the same
Cangloupe magnitude as the
% force on C due to B.
Cantaloupe C g
: A
> I}.-’m » These are
thi(d-law force

pairs.

—

(a) (¢)

These forces

just h -
jtl(‘l)sbe ?)P;Tae:ced F ¢y (gravitational force)

(2] (d)

Figure 5-11 (@) A cantaloupe lies on a table that stands on Earth. (b) The forces on
the cantaloupe are Fr and Fp. (c) The third-law force pair for the cantaloupe —Earth
interaction. (d) The third-law force pair for the cantaloupe—table interaction.

Fa(normal force from table) So are these




Example

FIGURE 4-9 An example of
Newton’s third law: when an ice
skater pushes against the wall, the
wall pushes back and this force
causes her to accelerate away.




Applying Newton' s Laws

Assumptions

v Objects behave as particles
can ignore rotational motion (for now)

v'Masses of strings or ropes are negligible

v’ Interested only in the forces acting on the
object




Free Body Diagram

Must identify all the forces acting on the
object of interest

Choose an appropriate coordinate system

If the free body diagram is incorrect, the
solution will likely be incorrect

DDDDDDDDD

A\ .
® | Elecmic blower
=




Example

Sliding
block §

Fricuonless
surface

Figure 5-12 shows a block § (the sliding block) with mass
M = 33 kg. The block is free to move along a horizontal
frictionless surface and connected, by a cord that wraps over
a frictionless pulley, to a second block H (the hanging
block), with mass m = 2.1 kg. The cord and pulley have neg-
ligible masses compared to the blocks (they are “massless™).
The hanging block H falls as the sliding block § accelerates
to the right. Find (a) the acceleration of block S, (b) the ac-
celeration of block H,and (c) the tension in the cord.

Hanging
block H




ML T m

(a) (b)

Figure 5-1 (a) A free-body diagram for block § of Fig. 5-12.
(b) A free-body diagram for block H of Fig. 5-12.

.= m
B M+mg'
Mm
T=——2¢.

M+mg

Putting in the numbers gives, for these two quantities,

. m . 2.1kg
T M+m® T 33kg+21ke Crineed
= 3.8 m/s? (Answer)
Mm _ (33kg)(2.1kg)

and T =

- 9.8 m/s?
M+m® 33kg+21kg o)

=13N. (Answer)



Example

Figure 5-15 (a) A box is pulled up a plane by a
cord. (b) The three forces acting on the

box: the cord’s force 7, the gravitational force
F,, and the normal force Fy. (¢)—(i) Finding
the force components along the plane and
perpendicular to it. In WileyPLUS, this figure
is available as an animation with voiceover.

The box accelerates.

Cord



Cord

The box accelerates. Cord's pull

Gravitational
force
(a) (8)
)
mgcos 6
mg
*
mgsin@
Foetx = ma,.
T — mgsin 6 = ma. (5-24)

Substituting data and solving for a, we find

a = 0.100 m/s.




Example

Sample Problem 5.05 Reading a force graph

Here is an example of where you must dig information out
of a graph, not just read off a number. In Fig. 5-16a, two
forces are applied to a 4.00 kg block on a frictionless floor,
but only force F is indicated. That force has a fixed magni-
tude but can be applied at an adjustable angle 6 to the posi-
tive direction of the x axis. Force F is horizontal and fixed in
both magnitude and angle. Figure 5-16b gives the horizontal
acceleration a, of the block for any given value of # from 0°

to 90°. What is the value of a, for # = 180°? When F, is horizontal,
the acceleration is

3.0 m/s2.

ay (m/s%)

- - ~— 0
S 0° 90°
' e . .
— When F; is vertical,

(b) L
the acceleration is

0.50 m/s2.



When F is horizontal,
the acceleration is
3.0 m/s2.

(1) The horizontal acceleration a, depends on the net hori-
zontal force F, ,,as given by Newton’s second law. (2) The
net horizontal force is the sum of the horizontal compo-
nents of forces F, and Fz

Calculations: The x component of 13 is F; because the vector
is horizontal. The x component of F, is F; cos 6. Using these
expressions and a mass m of 4.00 kg, we can write Newton’s

second law (F.m = ma) for motion along the x axis as
F, cos # + F, = 4.00a,. (5-25)

From this equation we see that when angle # = 90°, F, cos 6
is zero and F, = 4.00a,. From the graph we see that the

(&)

/ :
]
When F; is vertical,

the acceleration is
0.50 m/s2

Figure 5-16 (a) One of the two forces applied to a block is shown.
Its angle @ can be varied. (b) The block’s acceleration component
a, versus 6.

corresponding acceleration is 0.50 m/s>. Thus, F, = 2.00 N
and F must be in the positive direction of the x axis.

From Eq. 5-25, we find that when 6 = 0°,
F, cos 0° + 2.00 = 4.00a,. (5-26)

From the graph we see that the corresponding acceleration
is 3.0 m/s>. From Eq.5-26, we then find that F/; = 10 N.
Substituting F, = 10N, F;, = 2.00N, and 6 = 180° into

Eq.5-25leads to
a, = —2.00 m/s%.

(Answer)




or Fy=F, + ma. (5-27)
: ¥

> 4 L

(XA P X X
KXKH Pote%
Potels Poted
0.0. | 0.0.0‘ =
L 44 P \ F,
Letel o%% | I okl
B 030
Pote 2e¥e%
55 25054
*. 4 DO
D) O
't ‘.\ -'0202‘

.\—Passenger
These forces
Fy=m(g +a) (Answer)
- compete.
Y% Their net force

causes a vertical
(a) (b) acceleration.

Figure 5-17 (a) A passenger stands on a platform scale that indi-
cates either his weight or his apparent weight. (b) The free-body

diagram for the passenger, showing the normal force Fy on him
from the scale and the gravitational force F,. ‘

(a) Find a general solution for the scale reading, whatever
the vertical motion of the cab.




Example

This force causes the
. acceleration of the full
two-block system.

i’!ﬂl

(a)




Example

A car of mass m is on an icy driveway inclined
at an angle 6 as in Figure 5.11a.

(A) Find the acceleration of the car, assum-
ing the driveway is frictionless.

(B) Suppose the car is released from rest at the top of the incline and the distance from the car’s front bumper to the

bottom of the incline is d. How long does it take the front bumper to reach the bottom of the hill, and what is the car’s
speed as it arrives there?




(1) D) F, = mgsin 8 = ma,
(2) 21‘"’= n— mgcosf =0

(3) a,= gsinb

--------------------------------------------------------------------------------------------------------------------------------------

Analyze Defining the initial position of the front bumper = 3a,t
as x; = 0 and its final position as x, = d, and recognizing
that v,; = 0, apply Equation 2.16, x, = x; + vt + 3a,t?:

Solve for t: (4)t=\’§= \/ 2.d
a, gsinf

Use Equation 2.17, with »,; = 0, to find the final velocity v = 2ad

of the car: (5) vy = V2a.d= \2gdsin 6




Example

A ball of mass m; and a block of mass m,
are attached by a lightweight cord that
passes over a frictionless pulley of negligi-
ble mass as in Figure 5.15a. The block lies
on a frictionless incline of angle 6. Find
the magnitude of the acceleration of the
two objects and the tension in the cord.




(1) D F,=0
@) X F=T- mg=ma,= ma

(8) D, F, = mygsin @ — T= mya, = mya
(4)2F’,= n— mygcos =0

B) T=m(g+ a)

mygsin 6 — my(g + a) = mya

6) a= (m2 sin  — ml)g

m, + my

m,my(sin 6 + 1)

(7)T=( —— )g




Example

A)pHYsSics APPLIED
Accelerometer

FIGURE 4-25 Example 4-15.




@PHYSICS APPLIED

EXAMPLE 4-15 | Accelerometer. A small mass m hangs from a thin string

Accelerometer

FIGURE 4-25 Example 4-15.

and can swing like a pendulum. You attach it above the window of your car
as shown in Fig. 4-25a. When the car is at rest, the string hangs vertically.
What angle 6 does the string make (@) when the car accelerates at a constant
a = 1.20m/s%, and (b) when the car moves at constant velocity, » = 90 km/h?

APPROACH The free-body diagram of Fig. 4-25b shows the pendulum at some
angle @ relative to the vertical, and the forces on it: mg downward, and the
tension Fy in the cord (including its components). These forces do not add up
to zero if # # 0; and since we have an acceleration a, we expect 8 # 0.
SOLUTION (a) The acceleration @ = 1.20 m/s? is horizontal (= a,), and the only
horizontal force is the x component of Fy, F; sin @ (Fig. 4-25b). Then from Newton’s
second law,

ma = Fprsiné.
The vertical component of Newton’s second law gives, since a,, = 0,
0 = Frcos® — mg.

So
mg = Frcosé.
Dividing these two equations, we obtain
Frcos#@ mg g
or
2
tanf — 1.20 m/s2
9.80 m/s
= 0.122,
SO
6 = 7.0°

(b) The velocity is constant, so @ = 0 and tan# = 0. Hence the pendulum hangs
vertically (8 = 0°).




Example

CONCEPTUAL EXAMPLE 4-14 | The advantage of a pulley. A moveris
trying to lift a piano (slowly) up to a second-story apartment (Fig. 4-24). He is
using a rope looped over two pulleys as shown. What force must he exert on the
rope to slowly lift the piano’s 1600-N weight?

RESPONSE The magnitude of the tension force F; within the rope is the same
at any point along the rope if we assume we can ignore its mass. First notice the
forces acting on the lower pulley at the piano. The weight of the piano (= mg)
pulls down on the pulley. The tension in the rope, looped through this
pulley, pulls up rwice, once on each side of the pulley. Let us apply Newton’s
second law to the pulley—piano combination (of mass m), choosing the upward
direction as positive:

2Fr — mg = ma.

To move the piano with constant speed (set @ = 0 in this equation) thus requires
FIGURE 4-24 Example 4-14. a tension in the rope, and hence a pull on the rope, of Fr = mg/2. The piano
mover can exert a force equal to half the piano’s weight.

NOTE We say the pulley has given a mechanical advantage of 2, since without
the pulley the mover would have to exert twice the force.




Example

Elovator and countarwaight (Atwood machine). A sysiem

of two objects suspended over a pulley by a flexible cable, as shown in Fig, 4-23a,

is sometames referred Lo as an Atwood machiee. Consider the real-e appli-
cation of an elevator (my) and its counterweight (m). To minimze the work
doac by the molor to raise and lower the clevator safely, my; and me are made
similar in masx We keave the motor out of the system for this calculation, and
wsume that the cable's mass is negligible and that the mass of the pulley, as well
us any frcton, is small and ignoeable. These assumplions easure that the
tensioa Frin the cable has the same magnitude on both sides of e pulley. ot the
mass of the cousterweight be me = 1000kg. Assume the mass of the em
clevator = 850 kg, and #ts mass when carrying four passengers is sy, - ll.‘ﬂw
For the hatter case (my = 1150kg), cakulate (@) the acceleration of the
clevator and (5) the teasion i the cable.
APPROACH Agamn we have two objects, and we will sced to Newtoa's
second law to cach of them separately. Edm-hmfug:ydingoait
gravity downward and the cable tension pulling upward, Fr. Figures 423
McM&ﬁM&mfml&&m'&m)dfmlhm.

i clevator, being the beavier, accelerate downward,
whereas the counterweaght will accelerate upward. The magnitudes of thear
accederations will be equal (we assume the cable is masdess and doesn't stretch).
For the oo . acg-(lan:ix(om-/s’)-wmn. 0 Fr must be

than 9800 N (in order that m, will accelerate upward). For the clevator,
myp = (1150 kg){9.80 m/s) = 11,300N, which mest have greater magnitude
than Fr 5o that sy accelerates dowaward Thes our calculation mest give Fr
betweea 9800 N and 11300 N
SOLUTION (a) To find ;- as well as the acceleration a, we apply Newtoa's
second law, XF « sz, to cach objoct. We take upward as the positive y direc-
toa for both objects With this choice of axes, ac = @ becamse me accelerates
upward, and g; -~ —a because s, accelerates downward. Thas
Fr— myg = musy = —mya
Fr = mcp = mc8c = +mca.

We can sabtract the first equation from the secoad to pet

(my — mclg = (my + mca,
where a = now the only saksown. We sobve this for a:

my — mc 1150kp — 1000 kg
= T mcE ~ T150ks T W00EsE " 0070 - 063 m/¥.

The clevator (m ﬁmsdonnd(md&ewmwubl
a - 0070 - ]
(b) The teasion = the cable ¥ can be obtained from cither of the two
EF = ma equationsat the start of our solution, setting a = 0.070p - 068 m/s™
Fr = mgp — mga = myg - a)
- 1150kg (980 /s — 068m/s) - 10S00N,

Fr = mcp + mca = mp(p + a)
- 1000kg (980 m/s* + 063 m/s*) - 10,S00N,

which are coasistent. As predicted, our resalt bes between 9800 N and 11, 300N
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Example

EXAMPLE 4-9 | Adding force vectors. Calculate the sum of the two forces

exerted on the boat by workers A and B in Fig. 4-19a.

APPROACH We add force vectors like any other vectors as described in
Chapter 3. The first step is to choose an xy coordinate system (see Fig. 4-19a),
and then resolve vectors into their components.

SOLUTION The two force vectors are shown resolved into components in
Fig. 4-19b. We add the forces using the method of components. The compo-
nents of F are

Fpy = Fpcos450° = (40.0N)(0.707) = 283N,
Fpy = F,sind5.0° = (40.0N)(0.707) = 283N.
The components of Fy are
Fay = +Fzcos37.0° = +(30.0N)(0.799) = +24.0N,
Fgy = —Fgsin37.0° = —(30.0N)(0.602) = —18.1N.
Fgy is negative because it points along the negative y axis. The components of
the resultant force are (see Fig. 4-19¢)
Fpx = Fay + Fge, = 283N + 240N = 523N,
Fpy = Fay + Fgy = 283N — 181N = 102N.
To find the magnitude of the resultant force, we use the Pythagorean theorem,

= \/F& + Fh, = \/(523)* + (102°N = 533N.

The only remaining question is the angle 6 that the net force Fp makes with the
x axis. We use:

Fax 523N

and tan'(0.195) = 11.0°. The net force on the boat has magnitude 53.3 N and
acts at an 11.0° angle to the x axis.

FIGURE 4-19 Example 4-9: Two
force vectors act on a boat.
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EXAMPLE 4-9 | Adding force vectors. Calculate the sum of the two forces

exerted on the boat by workers A and B in Fig. 4-19a.

APPROACH We add force vectors like any other vectors as described in
Chapter 3. The first step is to choose an xy coordinate system (see Fig. 4-19a),
and then resolve vectors into their components.

SOLUTION The two force vectors are shown resolved into components in
Fig. 4-19b. We add the forces using the method of components. The compo-
nents of Fu are

Fo, = Fpcos450° = (400N)(0.707) = 283N,
Fy, = Fpsind50° = (40.0N)(0.707) = 283N.

The components of Fy are
Fye = +Fyc0s37.0° = +(300N)(0.79) = +24.0N,
Fay = —Fgsin37.0° = —(30.0N)(0.602) = —18.1N.

Fgy is negative because it points along the negative y axis. The components of
the resultant force are (see Fig. 4-19c¢)

For = Fay + Fgy = 283N + 240N = 523N,

Fpy = Fpy + Fgy = 283N - 181N = 102N.

To find the magnitude of the resultant force, we use the Pythagorean theorem,

Fp = \/Fh + Fiy = /(523" + (102N = 533N.

The only remaining question is the angle 8 that the net force F, makes with the
x axis. We use:

Fry 102N
tanf = Far _ 23N 0.195,
and tan'(0.195) = 11.0°. The net force on the boat has magnitude 53.3 N and

acts at an 11.0° angle to the x axis.

FIGURE 4-19 Example 4-9: Two
force vectors act on a boat.
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Example

l Example 5.4 ] A Traffic Light at Rest

A traffic light weighing 122 N hangs from a cable ted to
two other cables fastened to a support as in Figure 5.10a. T,
The upper cables make angles of 87.0° and 538.0° with N87.0°
the horizontal. These upper cables are not as strong as
the vertical cable and will break if the tension in them
exceeds 100 N. Does the traffic light remain hanging in
this situation, or will one of the cables break?

SOLUTION

Conceptualize Inspect the drawing in Figure 5.10a. Letus
assume the cables do not break and nothing is moving.

F, Y1,

Categorize If nothing is moving, no part of the system is o - 8
accelerating. We can now model the light as a particlein ~ Flgure5.10 (Example 5.4) (a) A traffic light suspended by

equilibrium on which the net force is zero. Similarly, the ~ ¢ables. (b) The forces acting on the wraffic light. (c) The free-body
net force on the knot (Fig. 5.10¢) is zero diagram for the knot where the three cables are joined.

--------------------------------------------------------------------------------------------------------------------------------------

Analyze We construct a diagram of the forces acting on the traffic light, shown in Figure 5.10b, and a free-body dia-
gram for the knot that holds the three cables together, shown in Figure 5.10c. This knot is a convenient object to choose
because all the forces of interest act along lines passing through the knot.

Apply Equation 5.8 for the traffic light in the ydirection: 2 FE=0-T,-F=0
T,=F,=122N




l 5.4 conzt. ]

Choose the coordinate axes as shown in Figure 5.10c Force x Component y Component
and resolve the forces acting on the knot into their -‘fl —T; cos 37.0° T; sin 37.0°
e T, T, cos 53.0° T, sin 53.0°

T, 0 192N
Apply the particle in equilibrium model to the knot: () S F.= —T, cos 37.0° + T, cos 53.0° = 0

(2) 3 F,= T sin 37.0° + T;sin 53.0° + (-122N) = 0

Equation (1) shows that the horizontal components of f, and '-l‘, must be equal in magnitude, and Equation (2)
showsmanmesumoﬁhe\erdczlmmponemdf,andf,mus:bahnce medmmwardfomef,,whidu is equal in
magnitude to the weight of the light.

- - . _ [ cos37.0%\
Solve Equation (1) for T, in terms of T;: 3 T= T'(cos 5&09) = 1L.33T,
Substitute this value for 7; into Equation (2): T sin 37.0° + (1.337))(sin 53.0°) — 122N =0
T,=734N

T; = 1387, = 974N
Both values are less than 100 N ( just barely for T;), so the cables will not break .

Finalize Let us finalize this problem by imagining a change in the system, as in the following What If?
EST23 suppose the ewo angles in Figure 5.10a are equal. What would be the relationship between 7; and 732

Answer We can argue from the symmetry of the problem that the two tensions 7, and 7, would be equal to each other.
Mathematically, if the equal angles are called 8, Equation (3) becomes

cos 8
n=(g) =

which also tells us that the tensions are equal. Without knowing the specific value of 8, we cannot find the values of T,
and 7;. The tensions will be equal to each other, however, regardless of the value of 6.




Example

[ Example 6.1 ] The Conical Pendulum

A small ball of mass m is suspended from a string of length L. The ball revolves with constant speed » in a horizontal
circle of radius r as shown in Figure 6.3. (Because the string sweeps out the surface of a cone, the system is known as a
conical pendulum.) Find an expression for 0.

v = +/Lgsin(f) tan()



0,

T sin 6




Joo P

SOLUTION

Conceptualize Imagine the motion of the ball in Figure 6.3a and convince your-
self that the string sweeps out a cone and that the ball moves in a horizontal
circle.
Categorize The ball in Figure 6.8 does not accelerate vertically. Therefore, we
model it as a particle in equilibrium in the vertical direction. It experiences a
centripetal acceleration in the horizoneal direction, so it is modeled as a particle
in uniform circular motion in this direction.
........................................................................................ Figlle 6.3 (Example 6.1) (a) A
Analyze Let 6 represent the angle between the string and thg‘ vertical. In the conical pendulum. The pach of the
diagram of forces acting on the ball in Figure 6.3b, the force T exerted by the  ball =2 horizonal cirde. (b) The
string on the ball is resolved into a vertical component T'cos 6 and a horizoneal ~ °r* 3ctng oa the ball
component T'sin 6 acting toward the center of the circular path.

Apply the particle in equilibrium model in the vertical 2 F,=Tcosé —mg=10
direction: _
(I) Tcosé=mg

2

Use Equation 6.1 from the particle in uniform circular (2) S E=Tsiné = ma,= L

motion model in the horizontal direction: .
2

Divide Equation (2) by Equation (1) and use =t

sin 8/cos @ = tan &: =

Solve for v=Vigané

Incorporate r = L sin @ from the geometry in Figure 6.3a: v= Vigsinétand

Finalize Notice that the speed is independent of the mass of the ball. Consider what happens when # goes to 90° so that
the string is horizontal. Because the tangent of 907 is infinite, the speed » is infinite, which tells us the string cannot pos-

sibly be horizontal. If it were, therewuldbenoverdczloomponemohheforcefmhalance:hegnvinﬁomlfo«teon
the ball. That is why we mentioned in regard to Figure 6.1 that the puck’s weight in the figure is supported by a friction-
less table.




Motion in Accelerated
Frames

[ Example 6.7 ] Fictitious Forces in Linear Motion

A small sphere of mass m hangs by a cord from the ceiling of a boxcar that is accelerating to the right as shown in Figure
6.12. Both the inertial observer on the ground in Figure 6.12a and the noninertial observer on the train in Figure 6.12b
agree that the cord makes an angle § with respect to the vertical. The noninertial observer claims that a force, which
we know to be fictitious, causes the observed deviation of the cord from the vertical. How is the magnitude of this force
related to the boxcar’s acceleration measured by the inertial observer in Figure 6.12a?

. . . . A noninertal observer riding in the car says that the net
':'c ;“"“l m ’"""i‘:‘""df’ "“::'th‘:a:“’. "::l’“’ force on the sphere is zero and that the deflection of the
g - A o cord from the vertical is due to a fictitious force Fy i

that balances the horizontal component of i)

Ineraal
observer

a Ficicou * m'?

e

3 b

Figure 6.12 (Example 6.7) A small sphere suspended from the ceiling of a boxcar accelerating to the right is deflected as shown.



Fictitious Force: Derivation

1 >
X=vyl + Eal‘ Eqg. of motion in fixed frame

m

1
Xo(t) = —a,t
o) =74y

X—=Xo(2)=vyt + %tz

m

looks like force in new frame,




Einstein's Equivalence
Principle

Things move the samewayin a
" gravity field as those in a reference
~. frame accelerating upward with the
: same magnitude.




Example: Accelerating
Reference Frames

e Fquivalent to “Fictitious” gravitational force

8 fictitious — —d frame

L
-



zero motion

The path of a light beam in three different types of reference

T

constant velocity

(o

’

acceleration

(o

frames moving with respect to the person oufsoe the elevator.
The light path shown is what the person ms/de the elevator sees.
Under large acceleration, the beam of light will curve downward,

It should also do that in a region of strong gravity,




Review & Summary

Newtonian Mechanics The velocity of an object can change
(the object can accelerate) when the object is acted on by one or
more forces (pushes or pulls) from other objects. Newionian me-
chanics relates accelerations and forces.

Force Forces are vector quantities Their magnitudes are de-
fined in terms of the acceleration they would give the standard
kilogram. A force that accelerates that standard body by exactly
1 m/s? is defined to have a magnitude of 1 N. The direction of a
force is the direction of the acceleration it causes. Forces are com-
bined according to the rules of vector algebra. The net force on a
body is the vector sum of all the forces acting on the body.

Newton's First Law If there i no net force on a body, the
body remains at rest if it is initially at rest or moves in a straight
line at constant speed if it is in motion.

Inertial Reference Frames Reference frames in which
Newtonian mechanics holds are called inertial reference frames or
tnertial frames Reference frames in which Newtonian mechanics
does not hold are called noninertial reference frames or noniner-
tial frames

Mass The mass of a body is the characteristic of that body that
relates the body’s acceleration to the net force causing the acceler-
ation. Masses are scalar quantities.

Newton's Second Law The net force F, on a body with
mass m is related to the body’s acceleration @ by

—a

F.. = ma, (5-1)

which may be written in the component versions

F‘.g - m: F" - m, m F-‘x - m:. (5‘2)
The second law indicates that in SI units
IN = 1kg-mis (5-3)

A free-body diagram is a stripped-down diagram in which only
one body is considered. That body s represented by either a sketch or
a dot. The external forces on the body are drawn, and a coordinate

system is superimposed, oriented so as to simplify the solution.

Some Particular Forces A gravitational force /. on a body
is a pull by another body. In most situations in this book, the other
body is Earth or some other astronomical body. For Earth, the
force is directed down toward the ground, which is assumed to be
an inertial frame. With that assumption, the magnitude of F_ is

F, - mg, (58)

where m is the body’s mass and g s the magnitude of the free-fall
acceleration.

The weight W of a body is the magnitude of the upward force
needed to balance the gravitational force on the body. A body’s
weight is related to the body’s mass by

W = mg. (5-12)

Alaﬂlmi‘jqistbeforceonabodyﬁ'omasurface
against which the body presses. The normal force is always perpen-
dicular to the surface.

A frictional force [ is the force on a body when the body
slides or attempts to slide along a surface. The force is always par-
allel to the surface and directed so as to oppose the sliding. On a
[rictionless surface, the frictional force s negligible.

When a cord is under temsion, each end of the cord pulls on a
body. The pull is directed along the cord, away from the point of at-
tachment to the body. For a massless cord (a cord with negligible
mass), the pulls at both ends of the cord have the same magnitude
T.even if the cord runs around a massiess, frictionless pulley (a pul-
ley with negligible mass and negligible friction on its axle to op-
pose its rotation).

Newton’s Third Law lf_‘afomei-’..cactsonbodyﬂdueto
body C.then there is a force Feg on body C due to body B:

Foc = —Fen




Example

*17 ssm  www In Fg. 5-36,
let the mass of the block be
8.5kg and the angle 6 be 30°.
Find (a) the tension in the cord
and (b) the normal force acting
on the block. (c) If the cord is
cut, find the magnitude of the re-
sulting acceleration of the block.

l'l'.
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Figure 5-36 Problem 17.




Example

«42 @ In earlier days, horses pulled barges down canals in the
manner shown in Fig. 5-42. Suppose the horse pulls on the rope
with a force of 7900 N at an angle of # = 18° to the direction of
motion of the barge, which is headed straight along the positive
direction of an x axis. The mass of the barge is 9500 kg, and the
magnitude of its acceleration is 0.12 m/s’>. What are the (a) magni-
tude and (b) direction (relative to positive x) of the force on the
barge from the water?

Figure 5-42 Problem 42.



Example

=)

*43 SSM In Fig. 5-43, a chain consisting of five
links, each of mass 0.100 kg, is lifted vertically
with constant acceleration of magnitude a = 2.50
m/s2. Find the magnitudes of (a) the force on link
1 from link 2, (b) the force on link 2 from link 3,
(c) the force on link 3 from link 4, and (d) the
force on link 4 from link 5. Then find the magni-
tudes of (e) the force F on the top link from the 1
person lifting the chain and (f) the net force accel-

erating each link. Figure 5-43
. Problem 43.

: e

—_—
8l

5
4
3
2




Example

«59 ssm A 10 kg monkey climbs
up a massless rope that runs over a
frictionless tree limb and back
down to a 15kg package on the
ground (Fig. 5-54). (a) What is the
magnitude of the least acceleration
the monkey must have if it is to lift
the package off the ground? If, after
the package has been lifted, the
monkey stops its climb and holds
onto the rope, what are the (b)
magnitude and (c) direction of the
monkey’s acceleration and (d) the

- . ?
tension in the rope’ Figure 5-54 Problem 59.




Example

«34 @ In Fig. 5-40, a crate of mass

m=100kg 1is pushed at con-
stant speed up a frictionless ramp

g = 30.0°) by a horizontal force
. What are the magnitudes of (a) F
and (b) the force on the crate from
the ramp?




Example

70 & Figure 6-53 shows a conical —
pendulum, in which the bob (the

small object at the lower end of the
cord) moves in a horizontal circle at

constant speed. (The cord sweeps
out a cone as the bob rotates.) The

|
|
|
|
|
|
|
:
bob has a mass of 0.040 kg, the :
|
|
|
|
|
|
|

\~~ Cord
string has length L =090 m and
negligible mass, and the bob follows |
a circular path of circumference L

0.94 m. What are (a) the tension in
the string and (b) the period of the
motion?

~
Bob

Figure 6-53 Problem 70.




Example

55. (ITI) A small block of mass m rests on the sloping side of a
triangular block of mass M which itself rests on a horizontal
table as shown in Fig. 4-47. Assuming all surfaces are
frictionless, determine the magnitude of the force F that
must be applied to M so that m remains in a [ixed position
relative to M (that
1s, m doesn’t move
on the incline).
[Hint: Take x and y
axes horizontal and
vertical.]

FIGURE 4-47
Problem 55.

F=(m+ M)gtan(0)




67.

Example

IE] What horizontal force
must be applied to a large
block of mass M shown in
Figure P5.67 so that the tan
blocks remain stationary rela-
tive to M? Assume all surfaces
and the pulley are frictionless.
Notice that the force exerted
by the string accelerates ms.

Figure P5.67



Example:

59. (III) Determine a formula for the magnitude of the force F
exerted on the large block (my) in Fig. 4-51 so that the
mass m, does not move relative to mg4. Ignore all friction.
Assume m, does not make contact with .

J

F

\
3
1] ]
5




P

mi + mo + m3)m29

(m? — m2)1/?



Example

«57 @ A puck of mass m = 1.50 kg slides in a circle of radius
r =20.0cm on a frictionless table while attached to a hanging
cylinder of mass M = 2.50 kg by means of a cord that extends
through a hole in the table (Fig. 6-43). What speed keeps the cylin-

der at rest?

o ™

./"

‘Q—'

Figure 6-43 Problem 57.




radius of curvature:




If the curve is given in Cartesian coordinates as y(x), then the radius of curvature is (assuming the curve is differentiable up to order 2):

L 1213/2
R= (l+y‘1{,) : where 3/=%, y' =

and | z| denotes the absolute value of z.

d:c2’

If the curve is given parametrically by functions x(f) and y(t), then the radius of curvature is

ds (22 + 7)%/2 . odx . dx . dy . d%

R: —_] = : h = —, = — —_ — = —,
dy Ty —yr | waete = TT awr Y ¥




Example

82 In Fg. 6-57, a stuntman drives
a car (without negative lift) over
the top of a hill, the cross section of
which can be approximated by a
circle of radius R = 250 m. What is
the greatest speed at which he can
drive without the car leaving the road at the top of the hill?

Figure 6-57 Problem 82.




