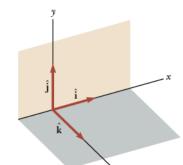
General Physics I Chapter 3

Sharif University of Technology Mehr 1401 (2022-2023)

M. Reza Rahimi Tabar

Chapter 3 Vectors

- Used to describe the position of a point in space
- Coordinate system (frame) consists of
 - a fixed reference point called the origin
 - specific axes with scales and labels
 - instructions on how to label a point relative to the origin and the axes



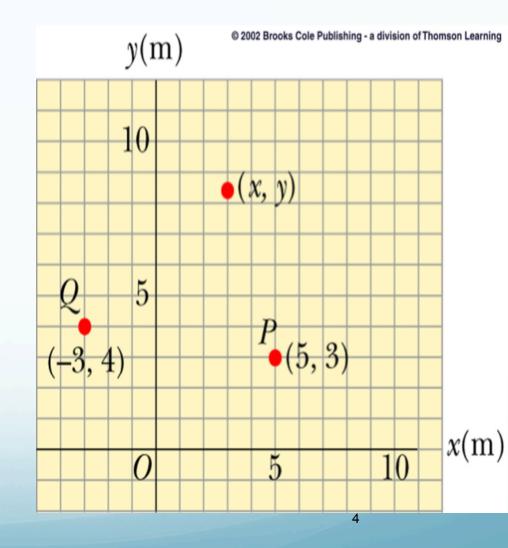
Types of Coordinate Systems (2D)

- Cartesian (1D, 2D, 3D,....)
- Plane polar (2D)
- Cylindrical coordinate (3D,..)
- Spherical coordinate (3D,..)
- etc,



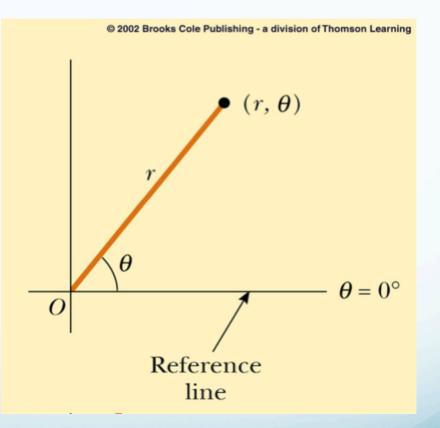
Cartesian coordinate system

- also called rectangular coordinate system
- x- and y- axes
- points are labeled (x,y)



Plane polar coordinate system

- origin and reference line are noted
- point is distance r from the origin in the direction of angle θ, from reference line
- points are labeled
 (r,θ)



Scalar and Vector Quantities

- Scalar quantities are completely described by magnitude only (temperature, length,...)
- Vector quantities need both magnitude (size) and direction to completely describe them (force, displacement, velocity,...)
 - Represented by an arrow, the length of the arrow is proportional to the magnitude of the vector
 - Head of the arrow represents the direction

Vector Notation

- When handwritten, use an arrow:
- When printed, will be in bold print: **A**
- When dealing with just the magnitude of a vector in print, an italic letter will be used: A

À

Properties of Vectors

- Equality of Two Vectors
 - Two vectors are **equal** if they have the same magnitude and the same direction
- Movement of vectors in a diagram
 - Any vector can be moved parallel to itself without being affected

More Properties of Vectors

- Negative Vectors
 - Two vectors are **negative** if they have the same magnitude but are 180° apart (opposite directions)

• **A** = -**B**

- Resultant Vector
 - The **resultant** vector is the sum of a given set of vectors

Adding Vectors

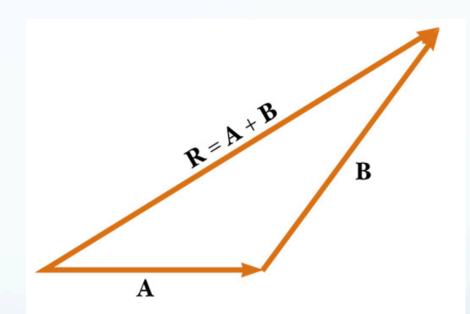
- When adding vectors, their directions must be taken into account
- Units must be the same
- Graphical Methods
 - Use scale drawings
- Algebraic Methods
 - More convenient

Adding Vectors Graphically (Triangle or Polygon Method)

- Choose a scale
- Draw the first vector with the appropriate length and in the direction specified, with respect to a coordinate system
- Draw the next vector with the appropriate length and in the direction specified, with respect to a coordinate system whose origin is the end of vector
 A and parallel to the coordinate system used for A

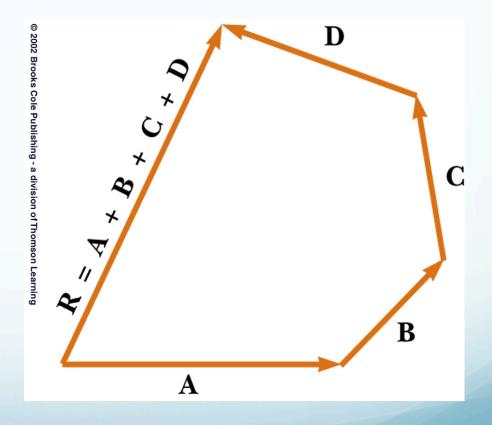
Graphically Adding Vectors

- Continue drawing the vectors "tip-to-tail"
- The resultant is drawn from the origin of **A** to the end of the last vector
- Measure the length of R and its angle
 - Use the scale factor to convert length to actual magnitude



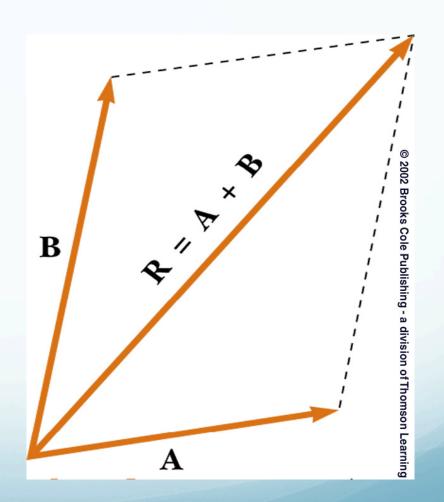
Graphically Adding Vectors

- When you have many vectors, just keep repeating the process until all are included
- The resultant is still drawn from the origin of the first vector to the end of the last vector



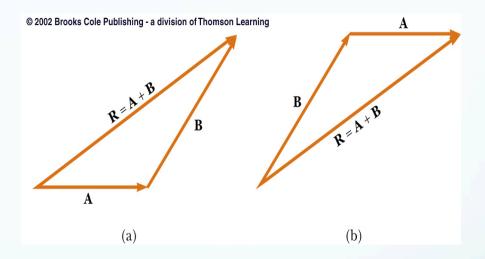
Alternative Graphical Method

- When you have only two vectors, you may use the Parallelogram Method
- All vectors, including the resultant, are drawn from a common origin
 - The remaining sides of the parallelogram are sketched to determine the diagonal, **R**



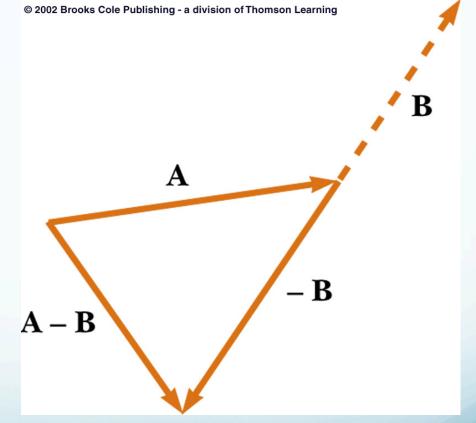
Notes about Vector Addition

- Vectors obey the Commutative Law of Addition
 - The order in which the vectors are added doesn't affect the result



Vector Subtraction

- Special case of vector addition
- If **A B**, then use **A**+(-**B**)
- Continue with standard vector addition procedure

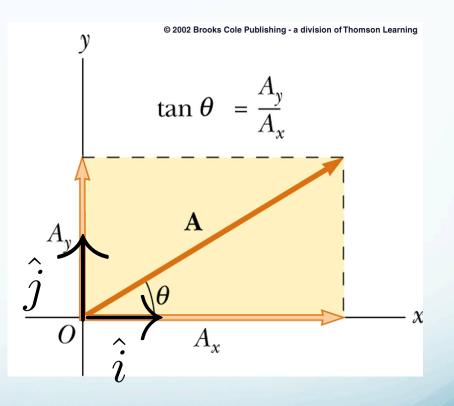


Multiplying or Dividing a Vector by a Scalar

- The result of the multiplication or division is a vector
- The magnitude of the vector is multiplied or divided by the scalar
- If the scalar is positive, the direction of the result is the same as of the original vector
- If the scalar is negative, the direction of the result is opposite that of the original vector

Components of a Vector

- A **component** is a part
- It is useful to use rectangular components
 - These are the projections of the vector along the xand y-axes



 $\sin\theta$

 $A\cos\theta$

Components of a Vector

 The x-component of a vector is the projection along the x-axis

$$A_x = A\cos\theta$$
 $\bar{A}_x = \bar{A}_x$

 The y-component of a vector is the projection along the y-axis

$$A_{y} = A\sin\theta \qquad \vec{A_{y}} = \hat{j}A_{y}$$



$$\vec{\mathbf{A}} = \vec{A}_x + \vec{A}_y$$

More About Components of a Vector

- The previous equations are valid only if θ is measured with respect to the x-axis
- The components can be positive or negative and will have the same units as the original vector
- The components are the legs of the right triangle whose hypotenuse is A

$$A = \sqrt{A_x^2 + A_y^2}$$
 and $\theta = \tan^{-1} \frac{A_y}{A_x}$

y = 2002 Brocks Cole Publishing - a division of Themson I
tan
$$\theta = \frac{A_y}{A_x}$$

 A_y
 θ
 O
 A_x

May still have to find θ with respect to the positive x-axis

Adding Vectors Algebraically

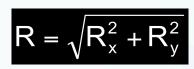
- Choose a coordinate system and sketch the vectors
- Find the x- and y-components of all the vectors
- Add all the x-components
 - This gives R_x:

$$R_x = \sum A_x$$

Adding Vectors Algebraically

- Add all the y-components • This gives R_y : $R_y = \sum A_y$
- Use the Pythagorean Theorem to find the magnitude of the Resultant:
- Use the inverse tangent function to find the direction of R:

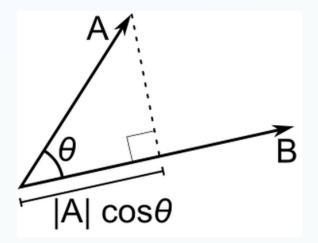
$$\theta = \tan^{-1} \frac{R_y}{R_x}$$



Products of Vectors

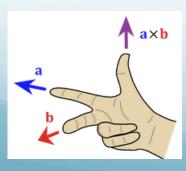
Inner product

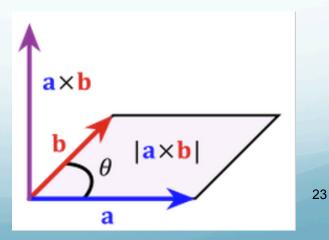
 $A \cdot B = |A| * |B| * \cos(\Theta)$



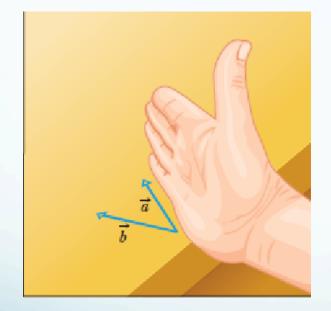
Cross product

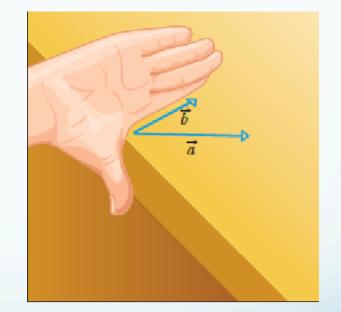
 $A = \|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta$





example





In terms of components

Definition

We define the *dot product* of two vectors

 $\mathbf{v} = a\mathbf{i} + b\mathbf{j}$ and $\mathbf{w} = c\mathbf{i} + d\mathbf{j}$

to be

 $\mathbf{v} \cdot \mathbf{w} = \mathrm{ac} + \mathrm{bd}$

Dot Product in R³

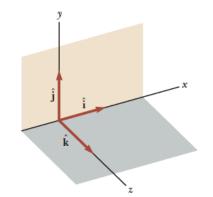
If

 $\mathbf{v} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ and $\mathbf{w} = d\mathbf{i} + e\mathbf{j} + f\mathbf{k}$

then

$$\mathbf{v} \cdot \mathbf{w} = \mathrm{ad} + \mathrm{be} + \mathrm{cf}$$

i.i = 1i.j = 0 \dots $i \times j = k$ $j \times k = i$ $i \times k = ?$



Definition

Let $\mathbf{u} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ and $\mathbf{v} = d\mathbf{i} + e\mathbf{j} + f\mathbf{k}$ be vectors then we define the *cross product* $\mathbf{v} \times \mathbf{w}$ by the determinant of the matrix:

$$\begin{pmatrix} b & c \\ e & f \end{pmatrix} \mathbf{i} - \begin{pmatrix} a & c \\ d & f \end{pmatrix} \mathbf{j} + \begin{pmatrix} a & b \\ d & e \end{pmatrix} \mathbf{k}$$

= (bf - ce) \mathbf{i} + (cd - af) \mathbf{j} + (ae - bd) \mathbf{k}

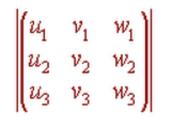
 $\mathbf{u} \mathbf{x} \mathbf{v} = -\mathbf{v} \mathbf{x} \mathbf{u}$

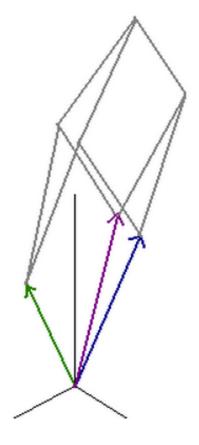
Triple product

To find the volume of the parallelepiped spanned by three vectors **u**, **v**, and **w**, we find the triple product:

Volume = $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$

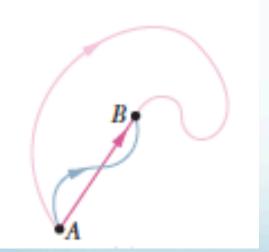
This can be found by computing the determinate of the three vectors:

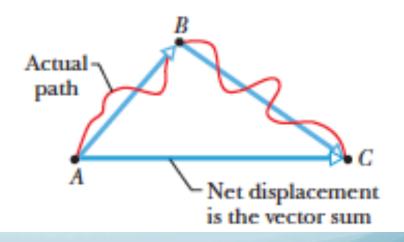




Examples:

• Displacement vector





Searching through a hedge maze

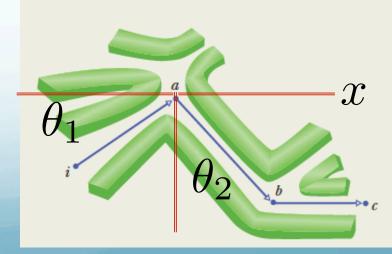
A hedge maze is a maze formed by tall rows of hedge. After entering, you search for the center point and then for the exit. Figure 3-16a shows the entrance to such a maze and the first two choices we make at the junctions we encounter in moving from point i to point c. We undergo three displacements as indicated in the overhead view of Fig. 3-16b:

$$d_1 = 6.00 \text{ m} \qquad \theta_1 = 40^{\circ}$$

$$d_2 = 8.00 \text{ m} \qquad \theta_2 = 30^{\circ}$$

$$d_3 = 5.00 \text{ m} \qquad \theta_3 = 0^{\circ},$$

where the last segment is parallel to the superimposed x axis. When we reach point c, what are the magnitude and angle of our net displacement \vec{d}_{net} from point *i*?



KEY IDEAS

(1) To find the net displacement \vec{d}_{net} , we need to sum the three individual displacement vectors:

$$\vec{d}_{\rm net} = \vec{d}_1 + \vec{d}_2 + \vec{d}_3.$$

(2) To do this, we first evaluate this sum for the x components alone,

$$d_{\text{net},x} = d_{1x} + d_{2x} + d_{3x}, \qquad (3-16)$$

and then the y components alone,

$$d_{\text{net},y} = d_{1y} + d_{2y} + d_{3y}.$$
 (3-17)

(3) Finally, we construct \vec{d}_{net} from its x and y components.

$$d_{1x} = (6.00 \text{ m}) \cos 40^\circ = 4.60 \text{ m}$$

 $d_{2x} = (8.00 \text{ m}) \cos (-60^\circ) = 4.00 \text{ m}$
 $d_{3x} = (5.00 \text{ m}) \cos 0^\circ = 5.00 \text{ m}.$

Equation 3-16 then gives us

$$d_{\text{net},x} = +4.60 \text{ m} + 4.00 \text{ m} + 5.00 \text{ m}$$

= 13.60 m.

Similarly, to evaluate Eq. 3-17, we apply the y part of Eq. 3-5 to each displacement:

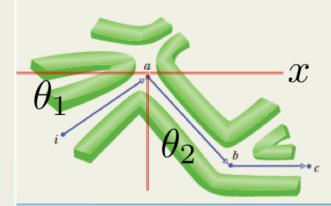
$$d_{1y} = (6.00 \text{ m}) \sin 40^\circ = 3.86 \text{ m}$$

 $d_{2y} = (8.00 \text{ m}) \sin (-60^\circ) = -6.93 \text{ m}$
 $d_{3y} = (5.00 \text{ m}) \sin 0^\circ = 0 \text{ m}.$

Equation 3-17 then gives us

$$d_{\text{net},y} = +3.86 \text{ m} - 6.93 \text{ m} + 0 \text{ m}$$

= -3.07 m.



the vector forms the hypotenuse. We find the magnitude and angle of \vec{d}_{net} with Eq. 3-6. The magnitude is

$$d_{\rm net} = \sqrt{d_{\rm net,x}^2 + d_{\rm net,y}^2}$$
(3-18)

$$=\sqrt{(13.60 \text{ m})^2 + (-3.07 \text{ m})^2} = 13.9 \text{ m}.$$
 (Answer)

To find the angle (measured from the positive direction of x), we take an inverse tangent:

$$\theta = \tan^{-1} \left(\frac{d_{\text{net},y}}{d_{\text{net},x}} \right)$$
(3-19)

$$= \tan^{-1}\left(\frac{-3.07 \text{ m}}{13.60 \text{ m}}\right) = -12.7^{\circ}.$$
 (Answer)

The angle is negative because it is measured clockwise from

Sample Problem 3.04 Adding vectors, unit-vector components

$$\vec{a} = (4.2 \text{ m})\hat{i} - (1.5 \text{ m})\hat{j},$$

 $\vec{b} = (-1.6 \text{ m})\hat{i} + (2.9 \text{ m})\hat{j},$
 $\vec{c} = (-3.7 \text{ m})\hat{j}.$

Sample Problem 3.04 Adding vectors, unit-vector components

$$\vec{a} = (4.2 \text{ m})\hat{i} - (1.5 \text{ m})\hat{j},$$

 $\vec{b} = (-1.6 \text{ m})\hat{i} + (2.9 \text{ m})\hat{j},$
 $\vec{c} = (-3.7 \text{ m})\hat{j}.$

$$r = \sqrt{(2.6 \text{ m})^2 + (-2.3 \text{ m})^2} \approx 3.5 \text{ m}$$
 (Answer)

and the angle (measured from the +x direction) is

$$\theta = \tan^{-1} \left(\frac{-2.3 \text{ m}}{2.6 \text{ m}} \right) = -41^{\circ}$$
, (Answer

Sample Problem 3.05 Angle between two vectors using dot products

What is the angle ϕ between $\vec{a} = 3.0\hat{i} - 4.0\hat{j}$ and $\vec{b} = -2.0\hat{i} + 3.0\hat{k}?$ The angle between the directions of two vectors is included in the definition of their scalar product (Eq. 3-20):

$$\vec{a} \cdot \vec{b} = ab \cos \phi. \tag{3-28}$$

Calculations: In Eq. 3-28, *a* is the magnitude of \vec{a} , or

$$a = \sqrt{3.0^2 + (-4.0)^2} = 5.00,$$
 (3-29)

and b is the magnitude of \vec{b} , or

$$b = \sqrt{(-2.0)^2 + 3.0^2} = 3.61.$$
 (3-30)

We can separately evaluate the left side of Eq. 3-28 by writing the vectors in unit-vector notation and using the distributive law:

$$\vec{a} \cdot \vec{b} = (3.0\hat{i} - 4.0\hat{j}) \cdot (-2.0\hat{i} + 3.0\hat{k})$$

= $(3.0\hat{i}) \cdot (-2.0\hat{i}) + (3.0\hat{i}) \cdot (3.0\hat{k})$
+ $(-4.0\hat{j}) \cdot (-2.0\hat{i}) + (-4.0\hat{j}) \cdot (3.0\hat{k})$

We next apply Eq. 3-20 to each term in this last expression. The angle between the unit vectors in the first term $(\hat{i} \text{ and } \hat{i})$ is 0° , and in the other terms it is 90°. We then have

$$\vec{a} \cdot \vec{b} = -(6.0)(1) + (9.0)(0) + (8.0)(0) - (12)(0)$$

= -6.0.

Substituting this result and the results of Eqs. 3-29 and 3-30 into Eq. 3-28 yields

$$-6.0 = (5.00)(3.61) \cos \phi,$$

so $\phi = \cos^{-1} \frac{-6.0}{(5.00)(3.61)} = 109^{\circ} \approx 110^{\circ}.$ (Answer)

Sample Problem 3.07 Cross product, unit-vector notation

If $\vec{a} = 3\hat{i} - 4\hat{j}$ and $\vec{b} = -2\hat{i} + 3\hat{k}$, what is $\vec{c} = \vec{a} \times \vec{b}$?

Calculations: Here we write

$$\vec{c} = (3\hat{i} - 4\hat{j}) \times (-2\hat{i} + 3\hat{k})$$

 $= 3\hat{i} \times (-2\hat{i}) + 3\hat{i} \times 3\hat{k} + (-4\hat{j}) \times (-2\hat{i})$
 $+ (-4\hat{j}) \times 3\hat{k}.$

$$\vec{c} = -6(0) + 9(-\hat{j}) + 8(-\hat{k}) - 12\hat{i}$$

= $-12\hat{i} - 9\hat{j} - 8\hat{k}$. (Answer)

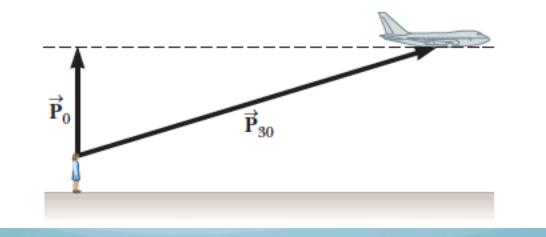
Additional problems

Vectors \vec{A} and \vec{B} have equal magnitudes of 5.00. The sum of \vec{A} and \vec{B} is the vector 6.00 \hat{j} . Determine the angle between \vec{A} and \vec{B} .

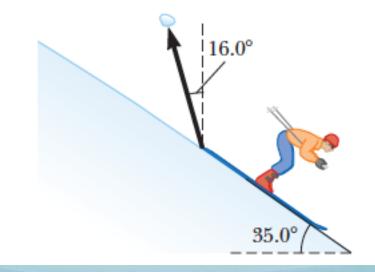
1

QC Review. The instantaneous position of an object is specified by its position vector leading from a fixed origin to the location of the object, modeled as a particle. Suppose for a certain object the position vector is a function of time given by $\vec{\mathbf{r}} = 4\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - 2t\hat{\mathbf{k}}$, where $\vec{\mathbf{r}}$ is in meters and *t* is in seconds. (a) Evaluate $d\vec{\mathbf{r}}/dt$. (b) What physical quantity does $d\vec{\mathbf{r}}/dt$ represent about the object?

Review. You are standing on the ground at the origin of a coordinate system. An airplane flies over you with constant velocity parallel to the *x* axis and at a fixed height of 7.60 × 10³ m. At time t = 0, the airplane is directly above you so that the vector leading from you to it is $\vec{P}_0 = 7.60 \times 10^3 \hat{j}$ m. At t = 30.0 s, the position vector leading from you to the airplane is $\vec{P}_{30} = (8.04 \times 10^3 \hat{i} + 7.60 \times 10^3 \hat{j})$ m as suggested in Figure P3.43. Determine the magnitude and orientation of the airplane's position vector at t = 45.0 s.



• 4 A snow-covered ski slope makes an angle of 35.0° with the horizontal. When a ski jumper plummets onto the hill, a parcel of splashed snow is thrown up to a maximum displacement of 1.50 m at 16.0° from the vertical in the uphill direction as shown in Figure P3.26. Find the components of its maximum displacement (a) parallel to the surface and (b) perpendicular to the surface.



78 What is the magnitude of $\vec{a} \times (\vec{b} \times \vec{a})$ if a = 3.90, b = 2.70, and the angle between the two vectors is 63.0° ?

73 Two vectors are given by $\vec{a} = 3.0\hat{i} + 5.0\hat{j}$ and $\vec{b} = 2.0\hat{i} + 4.0\hat{j}$. Find (a) $\vec{a} \times \vec{b}$, (b) $\vec{a} \cdot \vec{b}$, (c) $(\vec{a} + \vec{b}) \cdot \vec{b}$, and (d) the component of \vec{a} along the direction of \vec{b} .

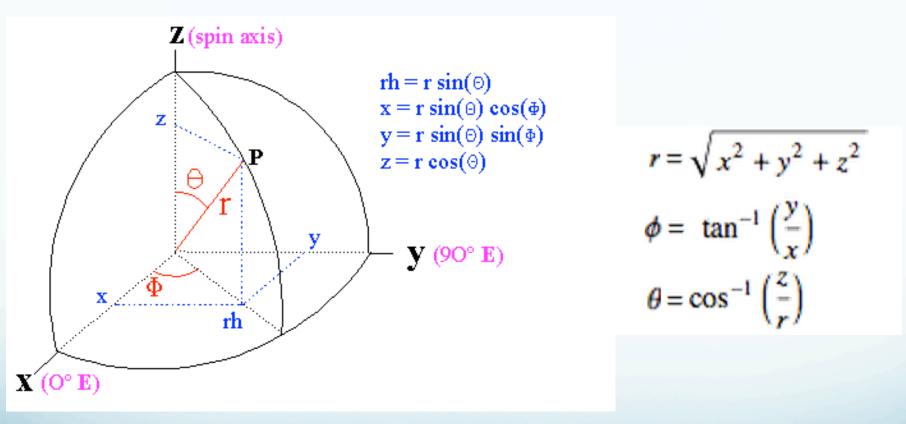
63 Here are three vectors in meters:

$$\vec{d}_1 = -3.0\hat{i} + 3.0\hat{j} + 2.0\hat{k}$$
$$\vec{d}_2 = -2.0\hat{i} - 4.0\hat{j} + 2.0\hat{k}$$
$$\vec{d}_3 = 2.0\hat{i} + 3.0\hat{j} + 1.0\hat{k}.$$

What results from (a) $\vec{d}_1 \cdot (\vec{d}_2 + \vec{d}_3)$, (b) $\vec{d}_1 \cdot (\vec{d}_2 \times \vec{d}_3)$, and (c) $\vec{d}_1 \times (\vec{d}_2 + \vec{d}_3)$?

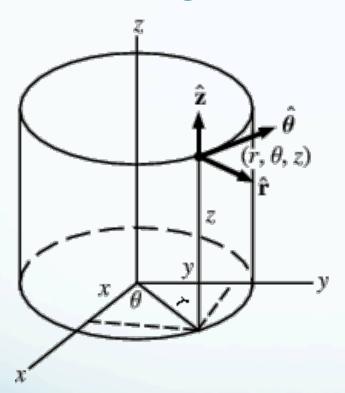
••44 **(a)** In the product $\vec{F} = q\vec{v} \times \vec{B}$, take q = 2, $\vec{v} = 2.0\hat{i} + 4.0\hat{j} + 6.0\hat{k}$ and $\vec{F} = 4.0\hat{i} - 20\hat{j} + 12\hat{k}$. What then is \vec{B} in unit-vector notation if $B_x = B_y$?

Spherical coordinates



where $r \in [0, \infty)$, $\phi \in [0, 2\pi)$, and $\theta \in [0, \pi]$

Cylindrical coordinate



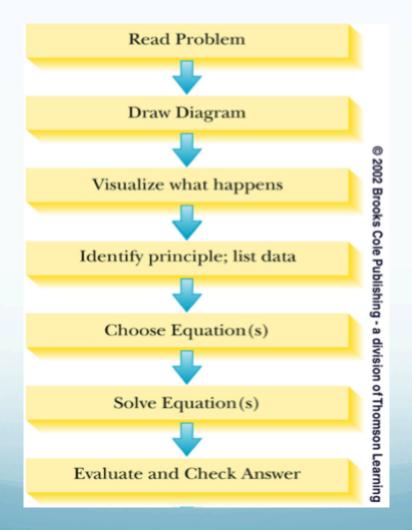
 $x = r \cos \theta$ $y = r \sin \theta$ z = z.

$$r = \sqrt{x^2 + y^2}$$
$$\theta = \tan^{-1}\left(\frac{y}{x}\right)$$

z = z

 $r \in [0, \infty), \theta \in [0, 2\pi), z \in (-\infty, \infty),$

Problem Solving Strategy



Problem Solving Strategy

- Read the problem
 - identify type of problem, principle involved
- Draw a diagram
 - include appropriate values and coordinate system
 - some types of problems require very specific types of diagrams

Problem Solving cont.

- Visualize the problem
- Identify information
 - identify the principle involved
 - list the data (given information)
 - indicate the unknown (what you are looking for)

Problem Solving, cont.

- Choose equation(s)
 - based on the principle, choose an equation or set of equations to apply to the problem
 - solve for the unknown
- Solve the equation(s)
 - substitute the data into the equation
 - include units

Problem Solving, final

- Evaluate the answer
 - find the numerical result
 - determine the units of the result
- Check the answer
 - are the units correct for the quantity being found?
 - does the answer seem reasonable?
 - check order of magnitude
 - are signs appropriate and meaningful?