
PHYSICAL REVIEW E 83, 026309 (2011)

Analysis of porosity distribution of large-scale porous media and their
reconstruction by Langevin equation

G. Reza Jafari,1 Muhammad Sahimi,2,* M. Reza Rasaei,3 and M. Reza Rahimi Tabar4,5

1Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839, Iran
2Mork Family Department of Chemical Engineering & Materials Science,University of Southern California, Los Angeles, California

90089-1211, USA
3Institute for Petroleum Engineering, The University of Tehran, Tehran 11365-4563, Iran

4Department of Physics, Sharif University of Technology, Tehran 11159, Iran
5Fachbereich Physik, Universität Osnabrück, Barbarastraße 7, D-49076 Osnabrück, Germany

(Received 9 September 2010; published 22 February 2011)

Several methods have been developed in the past for analyzing the porosity and other types of well logs for
large-scale porous media, such as oil reservoirs, as well as their permeability distributions. We developed a
method for analyzing the porosity logs φ(h) (where h is the depth) and similar data that are often nonstationary
stochastic series. In this method one first generates a new stationary series based on the original data, and
then analyzes the resulting series. It is shown that the series based on the successive increments of the log
y(h) = φ(h + δh) − φ(h) is a stationary and Markov process, characterized by a Markov length scale hM . The
coefficients of the Kramers-Moyal expansion for the conditional probability density function (PDF) P (y,h|y0,h0)
are then computed. The resulting PDFs satisfy a Fokker-Planck (FP) equation, which is equivalent to a Langevin
equation for y(h) that provides probabilistic predictions for the porosity logs. We also show that the Hurst
exponent H of the self-affine distributions, which have been used in the past to describe the porosity logs, is
directly linked to the drift and diffusion coefficients that we compute for the FP equation. Also computed are the
level-crossing probabilities that provide insight into identifying the high or low values of the porosity beyond the
depth interval in which the data have been measured.
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I. INTRODUCTION

Large-scale (LS) porous media are highly heterogeneous
at several distinct length scales, ranging from the pore to
the laboratory and field scales. Modeling the geology of LS
porous media is critical to understanding a wide variety of
important processes, such as increased production from oil,
gas, and geothermal reservoirs, and monitoring the spread
of industrial contaminants in groundwater flows. Predictive
models for such processes require accurate characterization
of the geology of LS porous media, and in particular the
distributions of their properties. Although characterization of
laboratory-scale porous media may be done with considerable
detail [1,2], characterization of LS porous media is plagued
by insufficient data. Complicating the problem is the fact that
such data fluctuate widely over the length scales in which they
have been measured, and they are often nonstationary.

Two important characteristics of LS porous media are
the spatial distributions of their porosity and permeability.
The porosity logs φ(h) (where h is the depth at which the
porosity φ has been estimated or measured) of LS porous
media are measured or estimated routinely along wells [3].
The permeability distributions (or logs) can be obtained either
by in situ nuclear magnetic resonance [4] or by coring and
laboratory measurements [2,3]. The focus of the present paper
is the analysis of the porosity logs, although the method that
we describe in the present paper is equally applicable to the
analysis of the permeability distributions and other types of
logs, such as the temperature, γ -ray, and resistivity logs, and
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other important characteristics of LS porous media, as well as
other stochastic series.

Large-scale porous media are typically anisotropic, with
the anisotropy being due to stratification and the existence of
a number of layers of contrasting properties. In addition, the
porosity logs and other characteristics of LS porous media
may contain extended correlations and have been modeled by
self-affine fractal distributions. In particular, the first concrete
evidence that the porosity logs in the directions perpendic-
ular and parallel to the strata may follow, respectively, the
statistics of a fractional Gaussian noise (FGN) and a fractional
Brownian motion (FBM) [5] was provided by Hewett [6]. The
semivariogram of a porosity log is defined by

γ (h) = 1
2 〈[φ(h) − φ(h + h′)]2〉, (1)

where the averaging is over all values of h′. The semivariogram
of a one-dimensional (1D) set of data that follow the statistics
of an FGN is given by [7]

γ (h) = γ0s
2H − γ1

2s2
[(h + s)2H − 2r2H + |h − s|2H ], (2)

where s is a smoothing parameter, γ0 and γ1 are two constants,
and H is the Hurst exponent. The spectral density of a 1D
FGN, the Fourier transform of its covariance, is then given by

S(ω) = 1

π
γ0H�(2H ) sin(πH )

1

ω2H−1
. (3)
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For frequencies ω � 1/s the spectral density of a FGN
becomes negative, which is unphysical. The corresponding
spectral density of a 1D FBM is given by

S(ω) = γ0H

�(1 − 2H ) cos(πH )

1

ω2H+1
. (4)

Note that H > 0.5 (<0.5) indicates positive (negative) corre-
lations in the data, with the extent of the correlations being
the thickness of the zone in which the data are collected,
while H = 0.5 implies that successive increments in the
data are random and follow Brownian motion. Extensive
studies [8–13] have provided evidence that the porosity logs
of LSPM often follow the statistics of a FGN or FBM.
Similarly, measurements on outcrop surfaces have provided
evidence [14–17] that, at least in some cases, the spectral
density of the permeabilities follows Eqs. (3) and (4). A more
recent study [18] presented evidence that the seismic wave
velocities and the elastic moduli of LS porous media may also
be approximately described by a FBM.

The problem of analyzing the porosity and similar well logs
is, however, still under study. The reason is threefold. (1) The
porosity logs and other characteristics of LS porous media
are usually nonstationary and represent widely fluctuating
stochastic series. Accurate analysis of such series is fraught
with difficulties. (2) Several studies have indicated that the
FGN or FBM does not always describe the porosity logs and
other types of data. For example, evidence was presented
[13,19,20] that indicated, at least in some cases, that the
porosities might follow a fractional Lévy motion, which
represents a generalization of the FBM. Moreover, even in
those cases in which the porosity logs can be represented by
the FGN and FBM, lumping together all the information that
the logs contain in a single exponent, the Hurst exponent H, is
not wise. (3) Even if one could analyze the data accurately, it
is not clear how one can gain information about those sectors
of the LS porous media for which no data are available.

In this paper we utilize a new method for analyzing the
porosity logs of LS porous media. The method has three
features: (1) It generates a stationary process y(h), given a
nonstationary porosity log φ(h). (2) It analyzes the statistical
properties of y(h) and characterizes it in terms of two new
quantities that have never been used in the analysis of the
porosity logs. (3) It constructs stochastic continuum equations
that not only reconstructy(h) [and, hence, φ(h)] but also
provide probabilistic predictions for the porosity logs over a
certain length scale that we identify later. As we show later, a
distinct advantage of the method is that, unlike the description
of porosity logs by self-affine distributions that requires the
logs to exhibit scaling properties, the approach described in
the present paper needs no scaling feature in the data.

The plan of this paper is as follows. In the next section we
briefly describe the data. Section III describes the construction
of the stationary series y(h), given a nonstationary porosity
log. In Sec. IV we describe the new method of analyzing the
stationary y(h) in terms of Markov processes. The construction
of the stochastic continuum equations for reconstruction of
the series y(h) [and, hence, φ(h)] is described in Sec. V. The
results are presented and discussed in Sec. VI. In Sec. VII we
derive a relation between the Hurst exponent H and some of
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FIG. 1. (Color online) The three porosity logs analyzed.

the properties that we compute in this paper. The last section
presents a summary of the results and their implications.

II. THE DATA

We analyze the fluctuations in three porosity logs, measured
along three wells in an oil reservoir in central Iran. The
reservoir is undersaturated with good quality (H2S-free) oil
and active wells, all producing from the Asmari formation,
with an average production rate of about 50 000 bbl/day. Its
recoverable oil is estimated to be more than 3 billion barrels.
Figure 1 presents the three porosity logs.

III. CONSTRUCTION OF THE STATIONARY SERIES

Given a porosity log φ(h), one may be able to con-
struct a stationary process y(h) by at least one of the two
following methods. (1) Construct the successive increments
y(h) = φ(h + δh) − φ(h), where δh is the distance between
two neighboring points. The best-known example of such
processes is the FBM with a power spectrum given by
Eq. (4). It is well known that the successive increments of
the FBM are stationary with their S(ω) given by Eq. (3).
Moreover, when H = 1/2, the increments are uncorrelated,
while for H = −1/2, φ(h) itself becomes white noise. (2) Let
Z(h) = ln φ(h). Then, one may construct a stationary series
x(h) by x(h) = Z(h + δh) − Z(h) = ln[φ(h + δh)/φ(h)], so
that x(h) represents the log returns [21].

It is not difficult to show that the porosity logs analyzed
here are not stationary by showing, for example, that their
variances, computed in a window, are not invariant if we
increase the window’s size or move it along the series. Hence,
we constructed the algebraic increments y(h) of the entire
well logs. It was then straightforward to show, using three
different methods, that the resulting series y(h) are stationary.
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(1) We computed the averages and variances of the three series
y(h) in moving windows of increasing sizes to check that
they are essentially invariant. (2) We computed the spectral
densities S(ω) of the three series y(h). The result, S(ω) ∝ ωβ

with β � 0, indicated the absence of long-range correlations
in y(h). (3) We also analyzed the three series y(h) using
the detrended fluctuation analysis [22] and the rescaled-range
method [23,24] to further check that the three series y(h) are
stationary. Both methods yielded β � 0 and, thus, the three
series y(h) are, at least to a good degree of approximation,
stationary.

Having established the stationarity of y(h), we analyzed
the new series based on the application of Markov processes
and development of a Langevin equation for the series. The
method is, however, general and applicable to a large class
of stochastic processes that represent various properties of
LS porous media.

IV. MARKOV ANALYSIS

Although long-range correlations are absent in y(h), short-
range correlations may exist. To analyze the data, we check
whether the three series y(h) represent a Markov process
(MP) [21,25,26]. If so, we estimate the Markov length scale
hM of the three series y(h), that is, the minimum length interval
over which y(h) may be represented by a MP. To characterize
the statistical properties of y(h), one must evaluate the joint
probability density function (PDF) Pn(y1,h1; . . . ; yn,hn) for
an arbitrary n, the number of the data points. If, however,
y(h) is a MP, the n-point joint PDF Pn is the product
of the conditional probabilities P (yi+1,hi+1|yi,hi), for i =
1, . . . ,n − 1. A necessary condition for the series y(h) to be a
MP is that the Chapman-Kolmogorov (CK) equation [27]

P (y2,h2|y1,h1) =
∫

dy3 P (y2,h2|y3,h3)P (y3,h3|y1,h1) (5)

should hold for any h3 in h1 < h3 < h2. Note that the opposite
is not necessarily true, namely, that if a stochastic process
satisfies the CK equation, it is not necessarily a MP [28]. To
check the validity of the CK equation for several values of y1,
we compare the directly evaluated P (y2,h2|y1,h1) with those
calculated according to the right side of Eq. (5).

To estimate hM , we used the least-squares method. If y(h)
is a MP, one has

P (y3,h3|y2,h2; y1,h1) = P (y3,h3|y2,h2). (6)

Thus, the PDF P (y3,h3; y2,h2; y1,h1) = P (y3,h3|y2,h2;
y1,h1)P (y2,h2; y1,h1) is compared with that obtained based on
the MP. Using the statistical properties of Markov processes,
we obtain

PM(y3,h3; y2,h2; y1,h1) = P (y3,h3|y2,h2)P (y2,h2; y1,h1).

(7)

It should be pointed out that the homogeneity of a stochastic
process is not necessary for using Eqs. (6) and (7). To check
whether y(h) is a MP, one must compute the three-point
joint PDF through Eq. (6) and compare the result with that
obtained through Eq. (7). Thus, one first determines the quality
of the fit by computing the least-squares fitting quantity χ2,
defined by

χ2 =
∫

dy3 dy2 dy1[P (y3,h3; y2,h2; y1,h1)

−PM(y3,h3; y2,h2; y1,h1)]2
/(

σ 2
3j + σ 2

M

)
, (8)

where σ 2
3j and σ 2

M are the variances of P (y3,h3; y2,h2; y1,h1)
and PM(y3,h3; y2,h2; y1,h1), respectively. To estimate the
Markov length scale hM , a likelihood statistical analysis was
utilized [29]. Because there is no a priori constraint, the
probability of the set of three-point joint PDFs is given by
[P (x) must be normalized]

P (h3 − h1) = �y3,y2,y1

1√
2π

(
σ 2

3j + σ 2
M

) exp

{
[P (y3,h3; y2,h2; y1,h1) − PM(y3,h3; y2,h2; y1,h1)]2

2
(
σ 2

3j + σ 2
M

)
}

. (9)

Evidently, when a set of the parameters χ2
ν = χ2/N is

minimum, with N being the degree of freedom, the probability
is maximum. This is shown in Fig. 2. The Markov length scale
hM corresponds to that value of (h3 − h1)min for which χ2

ν

is minimum. This yields hM = (h3 − h1)min � 0.25 m for the
three well logs. Therefore, the series y(h) = φ(h + δh) − φ(h)
is a Markov process. In the next section we construct a
continuum equation that governs y(h).

V. KRAMERS-MOYAL EXPANSION AND
THE LANGEVIN EQUATION

For a MP, knowledge of P (y2,h2|y1,h1) is sufficient for
generating the entire statistics of the series y(h), encoded in
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FIG. 2. (Color online) Relative likelihood function for hM and
for well 3.
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the n-point PDF that satisfies a master equation that, in turn,
is reformulated by a Kramers-Moyal (KM) expansion,

∂

∂h
P (y,h|y0,h0) =

∑
k

(−1)k
∂k

∂yk
[D(k)(y,h)P (y,h|y0,h0)].

(10)

The KM coefficients D(k)(y,h) are given by

D(k)(y,h) = 1

k!
lim

�t→0
M (k),

M (k) = 1

δh

∫
dy ′(y ′ − y)kP (y ′,h + δh|y,h). (11)

In a sense, Eq. (11) identifies the method as a moment-
generating function approach, as the coefficient D(k) is
computed based on the moments of the conditional PDF
P (y,h|y0,h0).

For a general stochastic process, all the KM coefficients
may be nonzero. However, provided that D(4) vanishes or is
small compared to the first two coefficients [27], truncation
of the KM expansion after the second term is meaningful in
the statistical sense. For the porosity data, we found D(4) �
10−2D(2), when y(h) is measured in units of its maximum
ymax. Thus, we truncate the KM expansion after the second
term, reducing it to a Fokker-Planck (FP) equation,

∂

∂h
P (y,h|y0,h0) =

[
− ∂

∂y
D(1)(y) + ∂2

∂y2
D(2)(y)

]
× P (y,h|y0,h0). (12)

According to the Ito calculus [27], the FP equation is equivalent
to a Langevin equation,

d

dh
y(h) = D(1)(y) +

√
D(2)(y) f (h), (13)

where f (h) is a random “force” with zero mean and Gaussian
statistics, δ correlated in h, that is, 〈f (h)f (h′)〉 = 2δ(h − h′).
Furthermore, Eq. (13) enables one to reconstruct a series for
y(h) that is similar to the original one in the statistical sense.

VI. RESULTS AND DISCUSSION

The porosity data described in Sec. II were used to construct
the series y(h) = φ(h + δh) − φ(h), and these were analyzed
by the procedure described earlier. In addition, we also
computed one additional important property of the data that
may be useful in practice, particularly for modeling of the LS
porous media. In what follows we describe and discuss the
results.

A. Reconstruction of the series via the Fokker-Planck and
Langevin equations

The drift and diffusion coefficients D(1) and D(2) were
estimated using the y(h) series for the successive increments
of the porosities. Since y(h) is stationary, then D(1)(y,h) =
D(1)(y) and D(2)(y,h) = D(2)(y). The analysis of the three
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FIG. 3. (Color online) The drift coefficient D(1) for the three wells.

series y(h) then indicated that the two coefficients are well
represented by the approximants

D(1)(y) =
⎧⎨
⎩

−1.090y (well 1),
−0.266y (well 2),
−0.549y (well 3)

(14)

and

D(2)(y) =
⎧⎨
⎩

0.003 − 0.003y + 0.716y2 (well 1),
0.149 − 1.280y + 0.086y2 (well 2),
0.079 − 0.202y + 0.248y2 (well 3).

(15)

The results are shown in Figs. 3 and 4.
Next, the precision of the reconstructed y(h) is evaluated

by computing the conditional PDF P (y2,h + δh|y1,h), which
is very sensitive to the numerical errors in D(1)(y) and D(2)(y).
The solution of the FP equation for small δh, which also
represents the left side of Eq. (12), is given by

P (y2,h + δh|y1,h) = 1

2
√

πD(2)(y2)δh

× exp

{−[y2 − y1 − D(1)(y2)�h]2

4D(2)(y2)δh

}
.

(16)

Equation (16) enables one to predict the probability of an
“observation” y2 at depth h + δh, if we know y1 at h. Figure 5
presents the directly computed conditional PDFs using the data
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FIG. 4. (Color online) The diffusion coefficient D(2) for the three
wells.
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FIG. 5. (Color online) Comparison of the directly evaluated PDFs
using the actual data and the PDFs obtained from Eq. (16). Values
for y1, from left to right, are −0.1, 0.0, and 0.1 [measured in units of
ymax(t)]. For better presentation, the PDFs have been shifted on the
horizontal axis.

for one of the wells (with similar results being obtained for the
other two wells and can be obtained by requesting them) and
those using Eq. (16), for three values of y1 with δh = hM =
0.25 m. To further check the accuracy of the reconstructed
y(h) and the conditional PDFs, we used the Kolmogorov-
Smirnov test to compare the cumulative distribution function
for the original and reconstructed y(h). We found that, for
all values of the stochastic variable, the maximum difference
between the two cumulative PDFs to be about 0.03. Although
the method provides probabilistic predictions, the Langevin
equation can produce many trajectories (realizations) of the
stochastic process with the same statistical properties. In Fig. 6
the original and reconstructed φ(h) for the three porosity logs
are shown. We show the trajectories that are very close to
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FIG. 6. (Color online) Comparison of the original data with the
reconstructed ones for the three wells.

the original data. Note that the reconstructed series y(h) are
stationary, whereas the reconstructed logs φ(h) are not, as
expected.

B. The level-crossing probability

Another important quantity is the frequency of level
crossings at a given level α [30,31] given by ν+

α = P (yi >

α,yi−1 < α), where ν+
α is the number of positive-difference

crossings of y(h), y(h) − ȳ = α, in the interval l. The quantity
l(α) = 1/ν+

α is the average depth interval that one should
“wait” for in order to observe y − ȳ = α again, which is used
to determine when (at what depth) a given value of the porosity
is obtained again. This is a particularly important property for
modeling LS porous media, because one would like to identify,
for example, the high- or low-porosity sectors of porous media
for which there are no data, using the available data for
other sectors. The knowledge is then utilized in constructing
stochastic models of LS porous media [1–3] by constraining
the values of the porosity and permeability.

The frequency ν+
α is given by [21]

ν+
α =

∫ α

−∞
dyi

∫ ∞

α

P (yi,yi−1)dyi−1

=
∫ α

−∞
dyi

∫ ∞

α

P (yi |yi−1)P (yi−1)dyi−1, (17)

where

P (yi−1 = y) =
[

C

D(2)(y)

]
exp

[∫ y

0
dy ′ D(1)(y ′)/D(2)(y ′)

]
,

(18)

and P (yi |yi−1) is given by Eq. (16) with δh = hM , where C

is a normalization constant. In Fig. 7 we present the computed
level-crossing frequency ν+(α) and l(α) over a depth interval
for the actual data set representing well 3. Similar results are
obtained for the other two wells and, hence, are not shown.

VII. RELATIONSHIP WITH SELF-AFFINE FRACTALS
AND MULITFRACTAL ANALYSIS

As described in Sec. I, self-affine fractal distributions
have been used for analyzing and describing the statistics
of the porosity logs, permeability distributions, and other
important properties of LS porous media [1–3]. Therefore,
it is of both fundamental and practical interest to establish
a relationship between the approach presented here and the
fractal distributions. To do so, one must consider the PDF for
y(h,�h) = φ(h + �h) − φ(h) across a length scale �h, in
order to link the multifractal exponents that characterize the
series to the drift and diffusion coefficients.

Thus, to establish the relationship between the two ap-
proaches, we begin with the FP equation for the probability
density function of y(h,�h), that is, the truncated form of
Eq.(10) [27,32,33], written for a scale �h,

−�h
∂

∂�h
P (y,�h) =

[
− ∂

∂y
D(1)(y,�h)

+ ∂2

∂y2
D(2)(y,�h)

]
P (y,�h). (19)
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FIG. 7. (Color online) Frequency of crossing ν+ (top) and the
average depth interval l for observing y(h) = α again.

The drift and diffusion coefficients are still determined by
Eq. (11), written for the scale �h and using y(h,�h).
According to Eqs. (14) and (15) the drift and diffusion
coefficients of the increment series are given by the general
forms (at least to a very good degree of approximation)

D(1)(y,�h) � D
(1)
0 − D

(1)
1 y, (20)

D(2)(y,�h) � D
(2)
0 − D

(2)
1 y + D

(2)
2 y2. (21)

Thus, using Eq. (19), we derive an equation for the structure
function Sq(�h) ≡ 〈|y|q〉 = 〈|φ(h + �h) − φ(h)|q〉, which is
as follows:

�h
∂

∂�h
〈|y|q〉 = q〈|y|q−1D(1)(y,�h)〉 + q(q − 1)

× 〈|y|q−2D(2)(y,�h)〉. (22)

If we now substitute Eqs. (20) and (21) into Eq. (22), we find
that

−�h
∂

∂�h
〈|y|q〉 = [

qD
(1)
1 − D

(2)
2 q(q − 1)

]〈|y|q〉
+O(〈|y|q−1〉). (23)

Equation (23) implies that if the structure function follows the
following power law:

Sq(�h) ∼ (�h)ξ (q), (24)
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FIG. 8. (Color online) The scaling exponents ξ (q) for the porosity
logs of the three wells.

then

ξ (q) = qD
(1)
1 − q(q − 1)D(2)

2 , (25)

which establishes a direct link between the scaling exponents
in a multifractal formulation and the drift and diffusion
coefficients that we compute.

We observe that D
(1)
1 = ξ (q = 1), implying that the drift

coefficient is linked through a simple relationship to the
exponent for the q = 1 moment of the structure function.
Moreover, since the Hurst exponent H defined by Eq. (2) is
given by 2H = ξ (q = 2), Eq. (25) yields H = D

(1)
1 − D

(2)
2 .

That is, the Hurst exponent in the fractal or multifractal
formulation is linked through a simple relationship to the drift
and diffusion coefficients in the Markov analysis. That the
Hurst exponent H in a fractal or multifractal formulation is
related to the drift and diffusion coefficients in the present
approach is not perhaps totally surprising because, as pointed
out earlier, the method that we describe in this paper is one
of a moment-generating function approach, which is closely
related to the structure function used in multifractal analysis.
Figure 8 presents the results for the scaling exponents ξ (q).

The coefficients D(1)(y,�h) and D(2)(y,�h) for the three
well logs remain to be determined. As already pointed out, the
two coefficients are not the same as those given by Eqs. (14)
and (15) that are for the successive increments of the porosities.
The drift and diffusion coefficients in Eqs. (23) and (25) are
for fluctuations of y(h) across scales �h. The procedure for
computing D(1)(y,�h) and D(2)(y,�h) is the same as before.
We obtain

D(1)(y,�h) �
⎧⎨
⎩

−0.61y (well 1),
−0.32y (well 2),
−0.43y (well 3)

(26)

and

D(2)(y,�h) �
⎧⎨
⎩

0.47y2 (well 1),
0.13y2 (well 2),
0.24y2 (well 3),

(27)

which, as expected, are similar to but not identical with those
given by Eqs. (14) and (15). Then, using Eqs. (25)–(27)
we obtain H = 0.14, 0.19, and 0.19 for wells 1, 2, and 3,
respectively, which are the same as those computed based on
the spectral density of the data.
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VIII. SUMMARY

The porosity logs and other important properties of large-
scale porous media often represent nonstationary series that
are very difficult to analyze. In this paper we analyzed
the porosity logs of one such porous media by a method
that is completely different from what has been used in
the past [1–3]. The method is based on (1) constructing a
stationary series based on the successive porosity increments,
(2) checking whether the new series follows the properties of
a Markov process, and (3), if so, analyzing the series based
on the Markov processes and the Kramers-Moyal expansion.
In many cases, such as the present study, the expansion
terminates after the second-order term, hence yielding a
Fokker-Planck equation, which is equivalent to a Langevin
equation. The Langevin equation enables us to reconstruct
the series and make probabilistic predictions for its “future”

beyond the depth interval in which the logs have been
measured.

Also computed was the level-crossing probability, which is
an important quantity for constructing models of large-scale
porous media, because it enables one to identify the areas with
potentially high or low values of the porosity (and permeability,
if such data are available).

Finally, in view of the past attempts to use the statistics of
self-affine fractal distributions to describe the porosity logs,
we established a direct link between such methods and the
Markov approach described and utilized in this paper. In
particular, the Hurst exponent H is directly related to the drift
and diffusion coefficients of Fokker-Planck (and, hence, the
Langevin) equation. The advantage of the present method over
a fractal or multifractal description of the data is that, while the
latter method requires that the data exhibit scaling, the former,
as was described in this paper, does not.

[1] P. M. Adler, Porous Media: Geometry and Transport
(Butterworth-Heinemann, Stoneham, MA, 1992); P. M. Adler
and J.-F. Thovert, Fractures and Fracture Networks (Kluwer,
Dordrecht, 1999).

[2] M. Sahimi, Rev. Mod. Phys. 65, 1393 (1993); Flow and
Transport in Porous Media and Fractured Rock, 2nd ed. (Wiley,
Berlin, 2011).

[3] J. L. Jensen, L. W. Lake, P. W. M. Corbett, and D. J. Goggin,
Statistics for Petroleum Engineers and Geoscientists, 2nd ed.
(Prentice Hall, Englewood Cliffs, NJ, 2000).

[4] R. W. Mair, G. P. Wong, D. Hoffmann, M. D. Hurlimann,
S. Patz, L. M. Schwartz, and R. L. Walsworth, Phys. Rev. Lett.
83, 3324 (1999).

[5] B. B. Mandelbrot and J. W. van Ness, SIAM Rev. 10, 422 (1968);
B. B. Mandelbrot and J. R. Wallis, Water Resour. Res. 5, 321
(1969); 5, 967 (1969); J. Feder, Fractals (Plenum, New York,
1988).

[6] T. A. Hewett, in Proceedings of the Society of Petroleum
Engineers Annual Meeting, SPE Paper 15386, New Orleans,
Louisiana (1986).

[7] J. Bruining, D. van Batenburg, L. W. Lake, and P. A. Yang, Math.
Geol. 29, 823 (1997).

[8] S. E. Crane and K. M. Tubman, in Proceedings of the Society
of Petroleum Engineers Annual Conference, SPE Paper 20606,
New Orleans, Louisiana (1990).

[9] M. Sahimi and Y. C. Yortsos, in Proceedings of the Society
of Petroleum Engineers Annual Conference, SPE Paper 20476,
New Orleans (1990).

[10] I. J. Taggart and H. A. Salisch, APEA J. 31, 377 (1991).
[11] Y. Aasum, M. G. Kelkar, and S. P. Gupta, SPE Formation Eval.

6, 11 (1991); P. Grindrod and M. D. Impey, Water Resour. Res.
29, 4077 (1993).

[12] H. H. Hardy, in Proceedings of the Society of Petroleum
Engineers Annual Conference, SPE Paper 23968, Houston,
Texas (1992).

[13] M. Sahimi, H. Rassamdana, and A. R. Mehrabi, in Fractal
Aspects of Material, edited by F. Family, P. Meakin, B. Sapoval,
and R. Wood, Mater. Res. Soc. Proc. Vol. 367, 203 (1995).

[14] G. J. Goggin, M. A. Chandler, G. Kocurek, and L. W. Lake, SPE
Formation Eval. 7, 7 (1992).

[15] F. J. Molz and G. K. Boman, Water Resour. Res. 29, 3769 (1993).

[16] A. J. Desbarats and S. Bachu, Water Resour. Res. 30, 673
(1994).

[17] S. P. Neuman, Geophys. Res. Lett. 21, 349 (1994).
[18] M. Sahimi and S. E. Tajer, Phys. Rev. E 71, 046301 (2005).
[19] S. Painter, Math. Geol. 27, 813 (1995); S. Painter, G. Beresford,

and L. Paterson, Geophysics 60, 1187 (1995).
[20] F. J. Molz, H. Rajaram, and S. Lu, Rev. Geophys. 42, RG1002

(2004).
[21] F. Ghasemi, J. Peinke, M. Sahimi, and M. R. Rahimi Tabar, Eur.

Phys. J. B 47, 411 (2005); F. Ghasemi, M. Sahimi, J. Peinke, and
M. R. Rahimi Tabar, J. Biol. Phys. 32, 117 (2006); F. Ghasemi,
M. Sahimi, J. Peinke, R. Friedrich, G. R. Jafari, and M. R. Rahimi
Tabar, Phys. Rev. E 75, 060102(R) (2007).

[22] C. K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley,
and A. L. Goldberger, Phys. Rev. E 49, 1685 (1994).

[23] A. R. Mehrabi, H. Rassamdana, and M. Sahimi, Phys. Rev. E
56, 712 (1997).

[24] M. S. Taqqu, V. Teverovsky, and W. Willinger, Fractals 3, 785
(1995).

[25] R. Friedrich and J. Peinke, Phys. Rev. Lett. 78, 863 (1997).
[26] G. R. Jafari, S. M. Fazeli, F. Ghasemi, S. M. Vaez Allaei, M. R.

Rahimi Tabar, A. Iraj Zad, and G. Kavei, Phys. Rev. Lett. 91,
226101 (2003).

[27] H. Risken, The Fokker-Planck Equation, 2nd ed. (Springer,
Berlin, 1989); R. Friedrich, J. Peinke, and M. R. Rahimi Tabar,
in Encyclopedia of Complexity and Systems Science, edited by
R. A. Meyers (Springer-Verlag, Berlin, 2009), p. 3574.

[28] W. Feller, Ann. Math. Stat. 30, 1252 (1959).
[29] R. Colistete, J. C. Fabris, S. V. B. Goncalves, and P. E. de Souza,

Int. J. Mod. Phys. D 13, 669 (2004).
[30] F. Shahbazi, S. Sobhanian, M. R. Rahimi Tabar, S. Khorram,

G. R. Frootan, and H. Zahed, J. Phys. A 36, 2517 (2003).
[31] A. Bahraminasab, M. S. Movahed, S. D. Nasiri, A. A. Masoudi,

and M. Sahimi, J. Stat. Phys. 124, 1471 (2006).
[32] G. R. Jafari, M. Sadegh Movahed, S. M. Fazeli, M. R. Rahimi

Tabar, and S. F. Masoudi, J. Stat. Mech. Theor. Exp. (2006)
P06008 .

[33] R. Friedrich, J. Peinke, and Ch. Renner, Phys. Rev. Lett. 84,
5224 (2000); Ch. Renner, J. Peinke, and R. Friedrich, J. Fluid
Mech. 433, 383 (2001); M. Waechter, F. Riess, Th. Schimmel,
U. Wendt, and J. Peinke, Eur. Phys. J. B 41, 259 (2004).

026309-7

http://dx.doi.org/10.1103/RevModPhys.65.1393
http://dx.doi.org/10.1103/PhysRevLett.83.3324
http://dx.doi.org/10.1103/PhysRevLett.83.3324
http://dx.doi.org/10.1137/1010093
http://dx.doi.org/10.1029/WR005i005p00967
http://dx.doi.org/10.1029/WR005i005p00967
http://dx.doi.org/10.1007/BF02768904
http://dx.doi.org/10.1007/BF02768904
http://dx.doi.org/10.2118/20257-PA
http://dx.doi.org/10.2118/20257-PA
http://dx.doi.org/10.1029/93WR01286
http://dx.doi.org/10.1029/93WR01286
http://dx.doi.org/10.2118/19586-PA
http://dx.doi.org/10.2118/19586-PA
http://dx.doi.org/10.1029/93WR01914
http://dx.doi.org/10.1029/93WR02980
http://dx.doi.org/10.1029/93WR02980
http://dx.doi.org/10.1029/94GL00308
http://dx.doi.org/10.1103/PhysRevE.71.046301
http://dx.doi.org/10.1007/BF02087097
http://dx.doi.org/10.1190/1.1443847
http://dx.doi.org/10.1029/2003RG000126
http://dx.doi.org/10.1029/2003RG000126
http://dx.doi.org/10.1140/epjb/e2005-00339-4
http://dx.doi.org/10.1140/epjb/e2005-00339-4
http://dx.doi.org/10.1007/s10867-006-9006-z
http://dx.doi.org/10.1103/PhysRevE.75.060102
http://dx.doi.org/10.1103/PhysRevE.49.1685
http://dx.doi.org/10.1103/PhysRevE.56.712
http://dx.doi.org/10.1103/PhysRevE.56.712
http://dx.doi.org/10.1142/S0218348X95000692
http://dx.doi.org/10.1142/S0218348X95000692
http://dx.doi.org/10.1103/PhysRevLett.78.863
http://dx.doi.org/10.1103/PhysRevLett.91.226101
http://dx.doi.org/10.1103/PhysRevLett.91.226101
http://dx.doi.org/10.1214/aoms/1177706110
http://dx.doi.org/10.1142/S0218271804004852
http://dx.doi.org/10.1088/0305-4470/36/10/311
http://dx.doi.org/10.1007/s10955-006-9179-7
http://dx.doi.org/10.1103/PhysRevLett.84.5224
http://dx.doi.org/10.1103/PhysRevLett.84.5224
http://dx.doi.org/10.1140/epjb/e2004-00317-4

