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We report on a stochastic analysis of Earth’s vertical velocity time series by using methods originally

developed for complex hierarchical systems and, in particular, for turbulent flows. Analysis of the

fluctuations of the detrended increments of the series reveals a pronounced transition in their probability

density function from Gaussian to non-Gaussian. The transition occurs 5–10 hours prior to a moderate or

large earthquake, hence representing a new and reliable precursor for detecting such earthquakes.
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A grand challenge in geophysics is developing methods
for predicting when earthquakes may occur. Although
there are many known precursors, experience over the
past several decades indicates that reliable and quantitative
methods for analyzing seismic data are still lacking [1].
Several concepts and ideas have been advanced in order to
explain important aspects of such seismic time series and
what they imply for earthquakes [2–5]. There has also been
much interest in investigating the precursors to, and the
predictability of, extreme increments in the time series [6]
associated with disparate phenomena, ranging from earth-
quakes [7,8] to epileptic seizures [9] and stock market
crashes [10–12].

In this Letter, we provide compelling evidence for the
existence of a novel transition in the probability density
function (PDF) of the detrended increments of the sto-
chastic fluctuations of Earth’s vertical velocity Vz, col-
lected by broadband stations (resolution 100 Hz). Most
importantly, we demonstrate that there is a well-defined
transition from a Gaussian to a non-Gaussian PDF of the
detrended increments as an earthquake is approached.

We analyze in detail the data obtained from Spain’s and
California’s broadband networks for three earthquakes: the
May 21, 2003, M ¼ 7:1 event in Oran-Argel, detected in
Ibiza (Balearic Islands); the 2004, M ¼ 6:1 event in
Alhucemas, and the M ¼ 5:4 earthquake in California on
April 30, 2008. The results for other earthquakes are also
described briefly. Because of localization of elastic waves
in rock [13,14], we analyze the data from stations that are
at a distance d � 300 km from the epicenters. The distance
300 km is not universal and depends on the geology but is
of the correct order of magnitude.

The data are first detrended in order to remove the
possible trends in the time series xðtÞ � VzðtÞ. To do so,
xðtÞ is divided into semioverlapping subintervals ½1þ
sðk� 1Þ; sðkþ 1Þ� of length 2s and labeled by k � 1.
xðtÞ is then fitted to a third-order polynomial [15–17] to

detrend the original series in the corresponding time win-
dow. The detrended increments on scale s are defined by
ZsðtÞ ¼ x�ðtþ sÞ � x�ðtÞ, where t 2 ½1þ sðk� 1Þ; sk�,
with x�ðtÞ being the detrended series, i.e., the deviation
of xðtÞ from its fitted value.
We then develop a new approach, originally proposed

for fully developed turbulence [18–21], in order to describe
the cascading process that determines how the fluctuations
in the series evolve, as one passes from the coarse to the
fine scales. For a fixed t, the fluctuations at scales s and �s
are related through the cascading rule

Z�sðtÞ ¼ W�ZsðtÞ; 8 s; � > 0; (1)

where lnðW�Þ is a random variable. Iterating Eq. (1) forces
implicitly the random variableW� to follow a log infinitely
divisible law [22]. One of the simplest candidates for such
processes is [17] ZsðtÞ ¼ �sðtÞ exp½!sðtÞ�, where �s and
!sðtÞ are independent Gaussian variables with zero mean
and variances �2

� and �2
!. The PDF of ZsðtÞ has fat tails

that depend on the variance of !s and is expressed by [21]

PsðZsÞ ¼
Z

Fs

�
Zs

�

�
1

�
Gsðln�Þd ln�; (2)

where Fs and Gs are both Gaussian with zero mean and

variances �2
s and �2

s , respectively, e.g., Gsðln�Þ¼
1=ð ffiffiffiffiffiffiffi

2�
p

�sÞexpð�ln2�=2�2
sÞ. In this case, PsðZsÞ is ex-

pressed by Eq. (2) and converges to a Gaussian distribution
as �2

s ! 0. Although Eq. (2) is equivalent to that for a log-
normal cascade model for fully developed turbulence
[23,24], it also describes approximately the non-Gaussian
PDFs observed in such phenomena and systems as the
foreign exchange markets [17,24,25] and heartbeat interval
fluctuations [17,18] (see also [26–28]).
To carry out a quantitative analysis of the seismic times

series, we focus on the deviations of the detrended incre-
ments’ PDF from a Gaussian distribution and the depen-
dence of the correlations in the increments on the scale
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parameter s. Consider the time series for the M ¼ 7:1
event over two distinct time intervals: (i) data set (I)—
the background fluctuations far from the event’s time—and
(ii) data set (II)—close (<5 h) to the earthquake. To fit the
increments’ PDF to Eq. (2), we estimate the variance �2

sðsÞ,
using the least-squares method, with the error bars esti-
mated by the goodness of the fit method. Deviation of �2

sðsÞ
from zero is a possible indicator of non-Gaussian statistics.
As shown in Fig. 1, we find an accurate parametrization of
the PDFs by �2

sðsÞ for both data sets. Moreover, the PDF of
Zs for data set (I) becomes essentially Gaussian as s in-
creases to 800 ms, whereas it deviates from the Gaussian
distribution for data set (II). The time scale s ¼ 800 ms for
�2
s within a moving window was estimated by plotting �2

s

vs s for data set (I) and selecting s such that �s ! 0 (see
also below).

The scale dependence of �2
s is shown in Fig. 2. For data

set (I) of the M ¼ 7:1 earthquake, shown in Fig. 2(a), and
times 200 ms< s < 500 ms, we find �2

s / logs. For data

set (II), the logarithmic regime extends to 300 ms< s <
2000 ms. Figure 2(b) presents similar behavior for the
M ¼ 6:1 earthquake. Note that, for data set (II) of theM ¼
6:1 earthquake, there is a crossover time at which �2

s
changes from a � logðsÞ behavior to having a finite value
’ 0:3.
The importance of the results shown in Fig. 2 is that they

indicate that the increments’ PDFs for s > 2000 ms and
s > 1500 ms are almost Gaussian (�2

s ! 0) for the M ¼
7:1 and M ¼ 6:1 earthquakes [for data set (II)], respec-
tively. Transforming the time scales to length scales via the
velocity of the elastic waves in Earth, �5000 m= sec , the
corresponding length scales are about 10 and 7.5 km, for
the same earthquakes, respectively, implying that larger
earthquakes have larger characteristic length scales and
that for the M ¼ 6:1 event the active part in the fault is
smaller. As one moves down the cascade process from the
large to the small scales, one expects the statistics to
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FIG. 1 (color online). Continuous deformation of the incre-
ments’ PDFs for the M ¼ 7:1 earthquake for, from top to
bottom, s ¼ 200, 400, 600, and 800 ms and (a) far from and
(b) close to the earthquake. Solid curves are the PDFs based on
Eq. (2), while dashed curves are the Gaussian PDF.
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FIG. 2 (color online). Scale dependence of �2
s vs logs. (a) The

M ¼ 7:1 event, far from [data set (I)] and close to [data set (II)]
the earthquake. For data set (I) and s > 700 ms, �2

s ! 0, imply-
ing that the increments’ PDF is Gaussian, but, for data set (II), �2

s

deviates strongly from 0 for 700 ms< s < 1500 ms. (b) The
same as in (a), but for theM ¼ 6:1 event. When �s ! 0 the error
bars are about the same size as the symbols.
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increasingly deviate from Gaussianity, in order to arrive at
Eq. (2). Note that a non-Gaussian PDF with fat tails on
small scales indicates an increased probability of occur-
rence of short-time extreme seismic fluctuations.

From the point of view of the increments’ PDF, the non-
Gaussian noise with uncorrelated!s in the process ZsðtÞ ¼
�sðtÞ exp½!sðtÞ� and a multifractal formulation are indis-
tinguishable, because their one-point statistics at any given
scale may be identical. To gain a deeper understanding of
the non-Gaussian fluctuations, we explore the correlation
properties of !s, by using an alternative method for study-
ing the correlation functions of the local fluctuations [20].
We define the magnitude of local variance over a scale s by

�2
sðtÞ ¼ n�1

s

Pns=2
k¼�ns=2

Zsðtþ k�tÞ2 and �!sðiÞ ¼ 1
2 �

log�2
sðiÞ, respectively. Here �t is the sampling interval

and ns � s=�t. The magnitude of the correlation function
of �!s is then defined by

CðsÞð�Þ ¼ h½ �!sðtÞ � h �!si�½ �!sðtþ �Þ � h �!si�i; (3)

where h	i indicates a statistical average. Figure 3 shows the
results for the two data sets. The correlation function
decays sharply for data set (I)—far from the earth-
quakes—whereas it is of long-range type for set (II) close
to the earthquakes for which the PDF deviates from being
Gaussian even for s > 800 ms. Although one might argue
that the deviations might be due to an underlying Lévy
statistics, this possibility is ruled out due to the deduced
hierarchical structures that imply that the increments for
different scales are not independent; see Fig. 3.
The above analysis provides a new precursor for detect-

ing an impending earthquake. Awindow containing 1 h of
data is selected and moved with�t ¼ 15 min to determine
the temporal dependence of �2

s . Guided by Fig. 2, the local
temporal variations of �2

s for s ¼ 800 ms are investigated.
According to Fig. 2, for s ’ 800 ms, the difference be-
tween the values of �2 is large enough for the background
data and the data set near the earthquakes. Hence, such a
time scale may be used as the characteristic time for the
dynamics of the non-Gaussian indicator �2

s . Figures 4(a)
and 4(b) display well-pronounced, systematic increases in
�2
s as the earthquakes are approached. Taking into account

the estimated error of �2
s for the background fluctuations in

Fig. 4, we see that about 7 and 5 h before the earthquakes
values of �2

s are larger, by more than 2 standard deviations,
than those for the background.
Defining �s entails assuming a log-normal PDF for the

increments, which may induce errors in estimating �. An
unbiased quantity for estimating the deviation from a
Gaussian PDF is flatness, which needs no specific PDF
functional form. In Figs. 4(c) and 4(d), we present the
flatness of the time series in the same windows (see above)
for the time scale s ’ 800 ms. Consistent with �2

s , the flat-
ness also yields a clear alert for an impending earthquake.
Because of the localization of elastic waves in Earth

[13], stations that are far from an earthquake epicenter
cannot provide any clue to the occurrence of the earth-
quakes. We checked this for several earthquakes. Shown in
Fig. 5 are the results for the M ¼ 5:4 California earth-
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FIG. 3 (color online). The correlation function CðsÞð�Þ for the
data; bold symbols, data set (I) far from, and open symbols,
set (II) close to, the M ¼ 7:1 event.
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FIG. 4 (color online). The local tem-
poral dependence of �2

s and the flatness
for s ¼ 800 ms, over a one-hour period,
for the M ¼ 7:1 and M ¼ 6:1 events,
indicating a gradual, systematic increase
on approaching the earthquakes.
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quake, occurred at (40.837 N, 123.499 W). The station at a
distance d ’ 128 km from the epicenter does provide an
alert of about 3 h for the earthquake, whereas that at d ’
400 km does not.

We also analyzed several other earthquakes of various
magnitudes. As expected, for events with M � 5 the in-
crease in �2

s is not large, even if the data are collected in
stations as close as 100 km from the epicenters. When the
data for large earthquakes in Pakistan and Iran were ana-
lyzed, they exhibited the same types of trends as those
presented above. For example, for theM ¼ 7:6 earthquake
that occurred on August 10, 2005, in Pakistan, the transi-
tion in the value of �2

s occurred about 10 h before the event,
and, for the M ¼ 6:3 earthquake that occurred in northern
Iran on May 28, 2004, it happened about 4 h before the
earthquake.
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FIG. 5 (color online). (a) The data for the M ¼ 5:4 earthquake
in California. (b) and (c) show the local temporal dependence of
�2
s for s ¼ 500 ms, collected at stations with a distance d from

the epicenter. The station at d ¼ 128 km provides the alert,
whereas the other station does not.
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