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Stochastic Analysis and Regeneration of Rough Surfaces
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We investigate the Markov property of rough surfaces. Using stochastic analysis, we characterize the
complexity of the surface roughness by means of a Fokker-Planck or Langevin equation. The obtained
Langevin equation enables us to regenerate surfaces with similar statistical properties compared with
the observed morphology by atomic force microscopy.
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the previous attempts, to regenerate the surface, an evo-
lution equation for h�x; t� vs t has been evaluated. Here we

The method introduced by Friedrich and Peinke is a
general method, which explains the complexity of the
Studying the growth, formation, and morphology of
interfaces has been one of the recent interesting fields of
study because of its high technical and rich theoretical
advantages [1]. One of the main problems in this area is
the scaling behavior of the moments of height difference
�h � h�x1� � h�x2� and the evolution of the probability
density function (PDF) of �h, i.e., P��h;�x� in terms of
the length scale �x. Recently, Friedrich and Peinke have
been able to obtain a Fokker-Planck equation describing
the evolution of the probability distribution function in
terms of the length scale, by analyzing some stochastic
phenomena, such as a turbulent-free jet, etc. [2–4]. They
noticed that the conditional probability density of field
increments (velocity field, etc.) satisfies the Chapman-
Kolmogorov equation. Mathematically this is a necessary
condition for the fluctuating data to be a Markovian
process in the length scales [5].

In this Letter, using the method proposed by Friedrich
and Peinke, we measure the Kramers-Moyal (KM)
coefficients for the fluctuating fields �h and h�x� of
a deposited copper film. It is shown that the first and
second KM coefficients have well-defined values, while
the third and fourth order coefficients tend to zero.
Therefore, by addressing the implications dictated by
the theorem [5], a Fokker-Planck evolution operator has
been found. The Fokker-Planck equation for P��h;�x� is
used to give information on changing the shape of the
PDF as a function of the length scale �x. By using this
strategy, the information of the observed intermittency
of the height fluctuation is verified [6]. The first and
second KM coefficients for the fluctuations of h�x� en-
able us to write a Langevin equation for the evolu-
tion of height with respect to x. Using this equation,
we regenerate the surface with similar statistical prop-
erties, compared with the observed morphology by
atomic force microscopy. The regeneration of a surface
is known as the inverse method. There are other inverse
method approaches introduced in the literature [7]. In
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do this by an evolution equation for h�x� vs x, for a cer-
tain time.

For this purpose, a copper film was deposited on a
polished Si(100) substrate by the resistive evaporation
method in a high vacuum chamber. The pressure during
evaporation was 10�6 Torr. The thickness of the growing
films was measured in situ by a quartz crystal thickness
monitor. We performed all depositions at room tempera-
ture, with a deposition rate about 20–30 nm=min. The
substrate temperature was determined using a chromel/
alumel thermocouple mounted in close proximity of
samples. The surface topography of the films was inves-
tigated using Park Scientific Instruments model Auto-
probe CP. The images were collected in a constant force
mode and digitized into 256� 256 pixels with scanning
frequency of 0.6 Hz. The cantilever of 0:05 Nm�1 spring
constant with a commercial standard pyramidal Si3N4

tips was used. A variety of scans, each with size L, were
recorded at random locations on the Cu film surface.

It is a common procedure to characterize the complex-
ity of a rough surface by checking the scaling behavior of
the moments Cq � hjh�x1� � h�x2�jqi in terms of the
length scale �x � jx1 � x2j. We investigated the scaling
behavior of the qth moment Cq and observed that all of
the moments (up to q � 20) behave as jx1 � x2j

�q within
the scaling region 	10 to 150 nm. This shows that the
height fluctuations are intermittent or multifractal (see
[8,9] and references therein). The roughness exponent � is
related to the exponent �2 as � � �2=2 [1]. For the sta-
tionary samples with thickness 440 nm, the roughness
exponent � was found to be 0:83
 0:03. From the sto-
chastic point of view, one has to remark that multifrac-
tality is based on properties of the roughness on distinct
length scales. However, checking the scaling behavior
does not explain possible correlation between the rough-
ness measures on different scales. Also, it is noted that the
methods based on multifractality are limited to the sub-
class of rough surfaces which show scaling properties.
2003 The American Physical Society 226101-1
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surface roughness, with no scaling feature to be explicitly
required. Their method yields an estimation of an effec-
tive stochastic equation in the form of a Fokker-Planck
equation (also known as Kolmogorov equation). The con-
nection between the multifractality and Markovianity has
been discussed in [4].

A complete characterization of the statistical proper-
ties of the height fluctuation requires the evaluation of
joint PDFs PN��h1;�x1; . . . ; �hN;�xN�, for any arbi-
trarily N. If the process is a Markov process (a process
without memory), an important simplification arises. For
this type of process, the N-point joint PDF, PN , is gen-
erated by a product of the conditional probabilities
P��hi�1;�xi�1j�hi;�xi�, for i � 1; . . . ; N � 1. As a nec-
essary condition for being a Markov process, the
Chapman-Kolmogorov equation,

p��h2;�x2j�h1;�x1��
Z
d��h3�p��h2;�x2j�h3;�x3�

�p��h3;�x3j�h1;�x1�; (1)

should hold for any value of �x3, in the interval �x2 <
�x3 < �x1 [5]. We checked the validity of the Chapman-
Kolmogorov equation for different �h1 triplets by com-
paring the directly evaluated conditional probability dis-
tributions p��h2;�x2j�h1;�x1� with the ones calculated
according to the right-hand side of Eq. (1). In Fig. 1, the
two direct and integrated PDFs are superimposed for the
purpose of illustration. The bold and open symbols rep-
resent directly evaluated PDF and integrated PDF, re-
spectively. Assuming a statistical error of the square
root of the number of events of each bin, we find that
both PDFs are statistically identical (see also [10], an-
other interesting and carefully presented example of ap-
plication of the Chapman-Kolmogorov equation).

It is well known, the Chapman-Kolmogorov equation
yields an evolution equation for the change of the distri-
bution function p��h;�x� across the scales �x. The
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FIG. 1 (color online). Test of Chapman-Kolmogorov equation
for different values �h1 � �21 nm, �h1 � 0, and �h1 �
21 nm. The bold and open symbols represent directly evaluated
PDF and the integrated PDF, respectively. The length scales
�x1, �x2, and �x3 are 180, 320, and 260 nm, respectively.
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Chapman-Kolmogorov equation formulated in differen-
tial form yields a master equation, which can take the
form of a Fokker-Planck equation [5]:

d
dr

p��h; r� �
�
�

@
@�h

D�1���h; r�

�
@2

@�h2
D�2���h; r�

�
p��h; r�; (2)

where r :� �x. The drift and diffusion coefficients
D�1���h; r�, D�2���h; r� can be estimated directly from
the data and the moments M�k� of the conditional proba-
bility distributions:

D�k���h;r� �
1

k!
lim
�r!0

M�k�;

M�k� �
1

�r

Z
d�h0��h0 ��h�kp��h0; r��rj�h;r�:

(3)

The coefficients D�k���h; r� are known as Kramers-
Moyal coefficients. The drift and diffusion coefficients
D�1� and D�2� are displayed in Fig. 2. It turns out that the
drift term D�1� is a linear function of �h, whereas the
diffusion term D�2� is a function quadratic in �h. For
large values of �h, our estimation becomes poor and thus
uncertainty increases. From the analysis of the data set,
we obtain the following approximation:
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FIG. 2 (color online). Drift and diffusion coefficients D1��h�
and D2��h� are estimated from Eq. (3). The D1 and D2 present
the linear and quadratic behavior, respectively.
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D�1���h;�x� � �0:0055:2�h;

D�2���h;�x� � ��2:9� 10�4���h�2

� 0:015��x�0:45�=�x;

(4)

where �h is measured in units of the standard deviation
of �h at �x � 200 nm. According to Pawula’s theorem,
the Kramers-Moyal expansion stops after the second
term, provided that the fourth order coefficient
D�4���h;�x� vanishes [5]. The fourth order coefficient
D�4� in our analysis was found to be about D�4� ’
10�4D�2�. In this approximation, we can ignore the co-
efficients D�n� for n � 3. To perform a quantitative test of
the result with these coefficients, we solve the Fokker-
Planck equation for the PDF at scales �x � L with a
given distribution at sample size L [6,11]. Figure 3 shows
a comparison between the analysis of the atomic force
microscopy (AFM) image and the solutions of the ob-
tained Fokker-Planck equation for the copper surface for
the length scales �x � 200, 300, and 500 nm. The figure
shows that the solutions of our model fit the experimen-
tally determined PDFs with good precision. In the inte-
gral scale our measured PDF is nearly a Gaussian
distribution. In our approximation, the stochastic process
underlying the height fluctuation changes is a linear sto-
chastic process with multiplicative noise.

By the same procedure, we checked the Markovian
nature of the fluctuations of the height h � h�x� � �hh
and found the following expression for the D�1��h� and
D�2��h�:

D�1��h� � �0:01h;

D�2��h� � 0:088� 0:004h� 5:19� 10�5h2:
(5)
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FIG. 3 (color online). Probability densities of the height
difference �h � h�x��x� � h�x� for the length scales �x �
200, 300, and 500 nm (from top to bottom). The results obtains
from the data analysis of the AFM image (R) and numerical
integration of an effective Fokker-Planck equation (E), i.e.,
Eq. (2), respectively. The PDFs are shifted in vertical direc-
tions for convenience of presentation and �h are measured in
units of the standard deviation of �h at �x � 200 nm.
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The height field is measured in units of the standard
deviation of h. Analogous to Eq. (2), we can write a
Fokker-Planck equation for the PDF of h by replacing r
and �h with x and h, respectively. We note that this
Fokker-Planck equation is equivalent to the following
Langevin equation (using the Ito interpretation) [5]:

d
dx

h�x� � D�1��h� �
���������������
D�2��h�

q
f�x�: (6)

Here, f�x� is a random force, zero mean with Gaussian
statistics, � correlated in x, i.e., hf�x�f�x0�i � ��x� x0�.
Furthermore, with this last expression, it becomes clear
that we are able to separate the deterministic and the
noisy components of the surface height fluctuations in
terms of the coefficients D�1� and D�2�. Equation (6)
enables us to regenerate rough surfaces which are similar
to the original one (in the statistical sense). In Fig. 4, the
AFM and regenerated images are demonstrated. The
regenerated surface is very similar in statistical sense to
the original one. All regenerated patterns are statistically
similar. To ensure this fact, for instance, in Fig. 5 we have
plotted the second moment of the structure function C2

for the AFM and regenerated surfaces and their rough-
ness exponents were found 0:83
 0:03 and 0:83
 0:01,
respectively.
FIG. 4. AFM and regenerated surface images (from top
to bottom), where we have regenerated the rough surface
using the Langevin equation for dynamics of h�x�, as drift
term D�1��h� � �0:01h and as diffusion term D�2��h� �
0:088–0:004h� 5:19� 10�5h2.
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FIG. 5 (color online). Log-log plot of the second moment of
height difference vs l, for real sample and regenerated sample.
The roughness exponents for real and regenerated are 0:83

0:03 and 0:83
 0:01, respectively.
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There are a few comments on the regeneration of rough
surface that we would like to notify. When we are discus-
sing a Markov process, one should note that this is true
within an approximation. For instance, in random motion
of a particle inside a fluid, it is known that the collision of
the particle with the fluid molecules is not instantaneous,
and takes a certain duration. During the time that a
collision is taking place, the change of velocity is not
Markov, because the velocities in the collision time scale
have memory. Consequently, in the time series for the
velocities of the particle, if the time intervals are less
than the collision time scale, the process cannot be re-
garded as a Markov process. The minimum time interval
that the particle motion can be considered as a Markov
process is known as Markov time scale and the motion is
known as a Brownian motion. In the stochastic analysis
of the rough surface, we are dealing with the Markov
property of height fluctuations in spatial dimensions;
therefore, instead of a Markov time scale, here we will
have a Markov length scale lMarkov. Our analysis shows
that lMarkov ’ 160 nm, equivalent to eight pixels in our
AFM image [12]. The surface is regenerated by iterating
the Eq. (6), which gives us a series of data without
memory. To compare the regenerated surface with the
original one, we have to take the spatial interval in the
numerical discretization of Eq. (6), to be equal to one
pixel. However, here the Markov length is equal to eight
pixels. Therefore, we should relate the height field within
the Markov length. There are a number of methods to
correlate the generated data in this interval [12]. We do
this by means of scanning the surface with a tip, where its
size is about the Markov length [13]. The tip that we have
used has the form z � ax2 � by2. In this case the pa-
rameters a and b are 0.035.

In summary, we have shown that the probability den-
sity of height increments satisfy a Fokker-Planck equa-
tion which encodes the Markovian property of these
fluctuations in a necessary way. We are able to give the
expression of the Kramers-Moyal coefficients for the
226101-4
stochastic processes �h and h by using the polynomial
ansatz [14,15]. Also we could find the form of path
probability functional of the height increments in spatial
scale, which naturally encodes the scale dependence of
probability density. This gives a clear picture about the
intermittent nature in height fluctuations. The methods
enable us to regenerate many realizations of the rough
surface with similar statistical properties in favored
scales. As an application, large surface generation would
be possible by sampling the real surface with high reso-
lution (in the same resolution as nanoscope imaging, e.g.,
AFM images). This would be applicable in computer
simulation of the surface and interface processes, for
example, the diffusion of materials between rough sur-
faces, the effect of roughness on the friction, and so on.
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