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Stochastic analysis of time series 
for the spatial positions of particles 
trapped in optical tweezers
S. M. Mousavi1, S. N. Seyed Reihani1, G. Anvari2, M. Anvari3, H. G. Alinezhad1 &  
M. Reza Rahimi Tabar1,3

We propose a nonlinear method for the analysis of the time series for the spatial position of a bead 
trapped in optical tweezers, which enables us to reconstruct its dynamical equation of motion. The 
main advantage of the method is that all the functions and parameters of the dynamics are determined 
directly (non-parametrically) from the measured series. It also allows us to determine, for the first time 
to our knowledge, the spatial-dependence of the diffusion coefficient of a bead in an optical trap, and 
to demonstrate that it is not in general constant. This is in contrast with the main assumption of the 
popularly-used power spectrum calibration method. The proposed method is validated via synthetic 
time series for the bead position with spatially-varying diffusion coefficients. Our detailed analysis of 
the measured time series reveals that the power spectrum analysis overestimates considerably the 
force constant.

Nanometer spatial resolution along with subpiconewton force resolution have turned optical tweezers (OTs) into 
valuable micromanipulation tools for biological and physical sciences1–3. The OTs are commonly used to exert or 
measure very accurately tiny forces4, 5. In a typical application, a micron-sized, mainly dielectric, sphere is used 
as a handle. The Hookean force experienced by the trapped bead allows for measuring unknown external forces, 
provided that the stiffness of the trapping force is determined prior to its use. This is typically done by a so-called 
calibration process. Several calibration methods have been presented6, among which the power spectrum (PS) 
method7 is the most utilized, due to its feasibility. The main idea behind the PS method is to analyze the time 
series for the spatial position of a trapped particle in the frequency domain, which endows the method with a 
rather unique ability. For example, mechanical or even coherent high frequency noises presented in the time 
series can be easily excluded by the calibration process. It is known that particles in relatively strong traps have 
power spectra that cannot be fitted properly with any Lorentzian function7.

Despite being very popular in the OT-based applications, we show in this report that SP-based calibration 
method is accurate only when the trapped bead is displaced by a few nanometers from the center of the trap. 
Considering that in the force spectroscopy applications of the OT the bead is typically displaced by hundreds 
of nanometers, use of the method for calibration might introduce considerable error in the measured forces. 
Here, we address this problem by introducing a stochastic method of analyzing the times series of the position 
of a trapped particle. The method is purely data driven and is based on the general properties of stochastic pro-
cesses. The main advantage of the method is that, the spatial dependence of all the functions and parameters of 
the model, such as the stiffness and the diffusion coefficients (as shown schematically in Fig. 1) for the bead’s 
displacements are determined simultaneously and non-parametrically (directly) from the measured time series. 
Due to its simplicity and robustness, the approach adapted here for the OT calibration has been widely applied to 
time series analysis of various complex systems8.

The power spectrum technique
We begin with the PS calibration method, which is basically a linear Langevin approach to the dynamics of the 
trapped bead. The idea of a Langevin model stems from the fact that the trapped particle dynamics is similar to a 
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Brownian motion. Thus, the motion of the bead’s center of mass in a Hookean trapping potential is described by 
a linear Langevin equation7,

γ γ+ − = Γ̈mx x f x k T t( ) 2 ( ) (1)B

where f(x) = −kx is the Hookean trapping force, and γ− x is the drag force exerted by the surrounding media with 
γ = 6πηa, η, and a being the drag coefficient, dynamic viscosity of the liquid, and the bead’s radius, respectively. 
Here, x(t) is the position of the particle at time t. kB, T, and the force Γ(t) are, respectively, the Boltzmann’s con-
stant, temperature, and a random Gaussian white noise (Dirac delta correlated) that represents Brownian forces 
due to collisions with the surrounding molecules with the following mean and correlation function,

δΓ = Γ Γ ′ = − ′ .t t t t t( ) ( ) ( ) ( ) (2)

At low Reynolds numbers, one can ignore the inertial term in Eq. (1) to obtain

γ γ+ = Γ .x kx k T t2 ( ) (3)B

It is interesting to note that x(t) in Eq. (3) represents a Markov process. This is due to the assumption that the 
random force Γ(t) is a memoryless process.

The Fourier transform of Eq. (3) results in a Lorentzian-type power spectrum,
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where p(f) = 〈|x(f)|2〉/L, with L and x(f) being the size of the measured data, and the Fourier transform of the time 
series x(t), respectively. In addition, fc = k/2πγ and DSI are the corner frequency and diffusion coefficient in the SI 
unit system, respectively. There are several corrections to this simplified Lorentzian power spectrum, including 
among others those for handling finite sampling frequency, aliasing, including various hydrodynamic effects7.

It should be noted that in a typical experiment the time series x(t) are recorded in a scale other than meters - 
in our case volts - which should then be converted to the length units. Therefore, fitting the power spectrum of 
the measured time series x(t) would provide both k and D in a non-SI unit. Assuming that the measured voltage 
and the real displacement of the bead in the trap are linearly related, one determines the conversion factor using

β =m Volt D m s D Volt s( / ) ( / )/ ( / ) (5)SI V
2 2

with DV being the diffusion coefficient in the non-SI scale7. Our previous works9 have shown that, for the bead 
size used in this research, the linear behavior holds for the displacement range considerably larger than the 
Brownian amplitude of the bead in the trap.

Figure 2 shows typical power spectra of a polystyrene bead with a diameter of ~1 μm, when trapped using 
laser powers of 128 mW and 539 mW, where we have included the hydrodynamic corrections using the cali-
bration program provided by ref. 7. Within 1σ confidence interval there is no difference between the hydrody-
namical corrected and uncorrected power spectra. The solid lines represent the fit to Eq. (4), which gives rise to 
corner frequencies (trap stiffnesses) of 558 ± 12.3 Hz (31.7 fN/nm) and 2216 ± 71 Hz (126 fN/nm), respectively. 
The non-SI diffusion coefficients in the aforementioned powers are read off, respectively, as DV = 8.8 volt2/s and 
DV = 129.9 volt2/s, implying conversion factors of β = 226 nm/volts and 59 nm/volts, respectively.

Figure 1. Diffusion of a particle trapped by optical tweezers. A schematic illustration of the position-dependent 
diffusion coefficient for a particle trapped by optical tweezers. The black kinky line is produced by connecting 
the positions of the bead falling into the trap. The colored circles with equal diameter are drawn at various 
radial distances from the center of the trap. The number of the data points inside each circle correlates with the 
diffusion coefficient. Thus, the larger the number of the data points, the lower is the diffusion coefficient. At 
the center (green circle) the particle possesses a small diffusion coefficient, whereas at larger radial distances 
(orange circle) it has higher diffusion coefficient.
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We note that it is assumed in the PS calibration method that, first, the restoring force is Hookean and, second, 
the diffusion coefficient of the bead is constant everywhere inside the optical trap. In what follows we present a 
nonlinear method, referred to as the Kramers-Moyal (KM) approach, for reconstructing the particle’s dynamical 
equation directly from its time series, which provides us with the spatial-dependence of the restoring force and 
the diffusion coefficient of a trapped particle.

The Kramers-Moyal approach
For a stochastic system exhibiting Markov properties, the workflow of the KM approach involves the following 
steps8:

•	 Evaluate Markov properties and estimate the Markov-Einstein time scale, and write down the KM expansion 
for the dynamics of the probability distribution function.

•	 Verify the Pawula theorem that states that the KM expansion of the (marginal and conditional) probability 
distribution can be truncated after the second (diffusive) term, provided that the fourth-order KM coefficient 
D(4)(x) vanishes.

•	 Compute the KM coefficients using the time series.
•	 Construct the Langevin equation with the computed drift function and diffusion coefficient.

Markov-Einstein time scale. First, we check whether the recorded dynamics of the trapped bead follows a 
Markov process. In practice, a given dynamical process, such as movement of a bead in an optical trap, may have 
a finite Markov-Einstein (ME) time scale τM - the minimum time interval over which the time series x(t) can be 
considered a Markov process8, 10–13. Thus, let us estimate τM for a given time series.

The fundamental quantities related to the Markov processes are the conditional probability density functions 
(PDF). The PDF p(x2, t2|x1, t1) is defined by, | =p x t x t( , , ) p x t x t

p x t2 2 1 1
( , ; , )

( , )
2 2 1 1

1 1
, where p(x2, t2;x1, t1) is the joint PDF 

describing the probability of finding simultaneously x1 at time t1, and x2 at time t2. An important simplification 
made for a Markov process is that, the conditional multivariate joint PDF is written in terms of the products of 
simple two-parameter conditional PDFs14 via
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This means that in the Markov process the ability to predict the value of xN will not be enhanced by knowing 
its values in the steps prior to the most recent one. To investigate whether the underlying time series is a Markov 
process, one should test Eq. (6). But, doing so in practice for large values of N is well beyond the current compu-
tational capabilities. For N = 3 (three points or events), however, the condition will be

=p x t x t x t p x t x t( , , ; , ) ( , , ) (7)3 3 2 2 1 1 3 3 2 2

which should hold for any value of t2 in the interval t1 < t2 < t3. A process is then Markovian if Eq. (7) is satisfied 
for a certain time separation t3 − t2, in which case we define the ME time scale by τM = t3 − t2. For simplicity, we 
let Δ = t2 − t1 = t3 − t2. Thus, to compute τM we use a fundamental theorem of probability according to which we 
write any three-point PDF in terms of the conditional probability functions,
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Figure 2. The power spectra of a trapped spherical polystyrene bead. Typical power spectra of a spherical 
polystyrene bead of diameter ~1 μm, trapped by using laser powers of 128 mW and 539 mW. The solid lines 
represent fits to Eq. (4), with one σ confidence intervals using the calibration program of ref. 7. The time series 
x(t) for the spatial positions were recorded with sampling rate of 22 kHz.
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Using the properties of Markov processes to substitute Eq. (8), we obtain

=p x t x t x t p x t x t p x t x t( , ; , ; , ) ( , , ) ( , ; , ) (9)Mar 3 3 2 2 1 1 3 3 2 2 2 2 1 1

Next, we introduce a χ2-test to estimate the ME time scale by ref. 8
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2  are the errors of p(x3, t3; x2, t2; x1, t1) and pMar(x3, t3; x2, t2; x1, t1), respectively. One then takes, 
t1 = 0 and t2 = t3/2 and plots the reduced χ2, χ χ=ν N/2 2 , where N is the number of degrees of freedom, as a func-
tion of the time scale Δ. The minimum value of χν

2 corresponds to the best estimate of the ME time scale Δ = τM. 
One can also use the Wilcoxon test to estimate the ME time scale for a given one-dimensional data set8.

The Kramers-Moyal expansion. For a Markov process, knowledge of P(x, t|x0, t0) and P(x0, t0) suffices for 
generating the entire statistics of the data set, encoded in the n–point PDF, which satisfies a master Equation14, 
and is put in the form of a KM expansion:
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The KM coefficients D(k)(x, t) are defined in terms of the conditional moments M(k)(x, t):
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Though for a general stochastic process all the KM coefficients could be nonzero, according to Pawula’s theo-
rem, the KM expansion could be truncated after the second term if the fourth-order coefficient D(4) vanishes or is 
very small14. In the present case, comparison of the KM coefficients for the normalized x(t) reveals that 
( −

D D/ ) 10(4) (2) 3, which justifies keeping only the first two KM coefficients. Therefore, the KM expansion 
reduces to a Fokker-Planck (FP) equation, i.e., Eq. 11 with D(k)(x, t) = 0 for k ≥ 3. We note that non-vanishing 
higher order KM coefficients D(k)(x, t) with k ≥ 3 have implication for the presence of jump events in the time 
series15.

The Kramers-Moyal coefficients. If stationarity is given, then the KM coefficients D(k)(x, t) are not explic-
itly time dependent. Therefore, the ensemble average in Eq. (13) can be estimated as conditional temporal average 
over the entire time series. To do so the state space of the process is discretized and the conditional average is cal-
culated for every x (with some binning) separately. Therefore, one determines the x-dependent KM coefficients. 
In the case that the fourth-order coefficient D(4)(x) vanishes, we need to estimate only D(1)(x) and D(2)(x), the drift 
function and diffusion coefficients.

The Langevin dynamics. We note that the Fokker-Planck equation is in turn equivalent to the following 
Langevin equation (using Itô’s interpretation of stochastic integrals)14:

Γ= +
d
dt

x t D x D x t( ) ( ) 2 ( ) ( ), (14)
(1) (2)

where Γ(t) is a random “force” with zero mean and Gaussian statistics, δ-correlated in time, i.e., 〈Γ(t)
Γ(t′)〉 = δ(t − t′). Furthermore, Eq. (14) separates the deterministic - the first term, the drift - and the stochastic - 
the second term, diffusion - components of x(t) in terms of D(1) and D(2), respectively. Note that D(1) and D(2) are 
in general position dependent, but in the case of linear dependence of the drift term and a constant diffusion term 
(linear theory) Eq. (14) reduces to Eq. (3) with

γ γ
= − = .D x k x D x k T( ) ( )

(15)
B(1) (2)

Reconstruction of stochastic processes with given drift and diffusion coefficients
We consider a Langevin process with D(1)(x) = −Qx and D(2)(x) = D0 in Eq. (14), with D0 = 50 and the force con-
stants, Q = 1000, 3000, and 5000. They are selected to be comparable with the experimental values. Synthetic time 
series were generated by numerical simulation of the corresponding dynamical equation using the Euler scheme8. 
Then, the KM coefficients D(1)(x) and D(2)(x) of the time series were estimated and plotted, respectively, in Fig. 
(3a,b) as functions of the position. The solid lines represent the values of Q and D0 as functions of x. Note that 
the estimated data points correctly follow the functions, hence confirming that our model can be safely used for 
a system with linear dynamics.
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For comparison, the synthetic time series were also analyzed using the PS method, with the resulting power 
spectra of two of the cases depicted in Fig. (4). The results are, respectively, Q = 1046 ± 36, 2950 ± 43, and 
5089 ± 58, and D0 = 50.6 ± 0.1, 50.4 ± 0.3, and 50.9 ± 0.5, which are also in very good agreement with the preset 
values, demonstrating that PS method can be correctly used for such linear systems.

Now, let us consider a Langevin process with a Hookean force, D(1)(x) = −Qx and a variable diffusion coeffi-
cient, such as D(2)(x) = D0 + bx2. Three sets of the parameters (Q, D0, b) were chosen to be (7100, 52, 1040), (4100, 
24, 506) and (1500, 2, 28), so selected to be comparable with the experimental values (see below). The resulting 
KM coefficients D(1)(x), and D(2)(x) are shown in Fig. (5a,b), respectively. The solid lines show the set functional-
ities. It is clear that the estimated values follow accurately the expected functions, confirming that the proposed 
method is able to capture important features of nonlinear systems.

Similar to the previous case, for comparison with our theory the synthetic time series were also analyzed using 
the PS method, Fig. (6), which yielded (8629 ± 13, 92.0 ± 1.9, NA), (4561 ± 9, 34.0 ± 1.4, NA) and (1564 ± 6, 
2.2 ± 0.1, NA), respectively.

Note that the PS method cannot provide an estimate of the coefficient b, as it assumes that the diffusion coef-
ficient is constant. In fact, the PS method estimates the diffusion coefficient to be very close to its average value. 
For comparison, both values are shown as small colored lines in Fig. (5b).

Results
Results of the Kramers-Moyal approach. Next, we present the results of KM method for the measured 
data at nine laser powers, from 73 mW to 539 mW. Once a bead is trapped, 10 × 3 seconds positional time series 

Figure 3. Reconstruction of a linear Langevin process. The KM-based estimated drift (a) and diffusion (b) 
terms for the synthetic time series with Q = 1000, 3000, and 5000, and D0 = 50. The solid lines in (a,b) show the 
considered values of Qs and D0. The analyzed time series consists of 107 data points with a sampling interval of 
Δt = 10−6. For Q = 5000 we averaged the results for the diffusion coefficients over 10 realisation of time series.
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Figure 4. The power spectra of a linear Langevin process. The power spectra of the synthetic time series by the 
Langevin equation with Q = 1000 and 5000 and constant diffusion coefficient. The solid lines represent fits to 
Eq. (4). The computed values were Q = 1046 ± 36, 5089 ± 58, and D0 = 50.6 ± 0.1, 50.9 ± 0.5, respectively.
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x(t) were recorded with sampling rate of 22 kHz (see section Methods). Two typical power spectra of the recorded 
data are shown in Fig. (2).

Let us first check whether the recorded time series represents a Markov process and, if so, determine their 
Markov-Einstein time scale τM. Figure 7 shows the n = Δ/dt (dt = 1/22000 s)-dependence of the χν

2 for a typical 
time series of a bead trapped at the laser power of 128 mW. The ME time scale τM for all the recorded time series 
was estimated to be about 5 to 70 data points (227–3181 μs). We found that the dynamics of the trapped particle 
at larger laser powers has a smaller ME time scale. The laser power dependence of ME time scale is plotted in the 
inset of Fig. 7 and τM scales with laser intensity I as ~I−0.9.

The drift function D(1)(x) and the diffusion coefficients D(2)(x) of the recorded time series were calculated 
using Eq.(12). The results are summarized in Fig. 8. For each laser power, the drift and diffusion functions were 
averaged over 10 ensembles. The error is large for larger x, as shown in, for instance, Fig. 8b.

As shown in Fig. (8a), the drift coefficients are linear functions of x, confirming the Hookean nature of the 
trapping force. The slope of the graphs are plotted against the laser power in the inset of the figure, which also 
indicates an almost linear dependence, a hallmark of an OT. All the time series were also analyzed using the PS 
method; the results are embedded in the inset of Fig. (8a). One can easily see that the stiffness estimated by the 
PS method deviates (overestimates) from that provided by the KM method, which is more pronounced for larger 
laser powers.

Figure (8b) presents the resulting diffusion coefficient D(2)(x) as a function of the position for various laser 
powers, indicating a nonlinear (fairly quadratic) behavior. For each case, the value of the diffusion coefficient 
estimated by the PS method, as well as the KM average values are shown by colored line next to the graphs. It 
can be seen that the estimates by the PS method are very close to those of the average values. Figure (8c) shows 

Figure 5. Reconstruction of a non-linear Langevin process. The KM-based estimated drift function (a) and 
diffusion coefficient (b) for the synthetic time series with D(1)(x) = −Qx and position-dependent diffusion 
coefficient, D(2)(x) = D0 + bx2. Cases (1), (2) and (3) represent the parameter sets (Q, D0, b) ≡ (7100, 52, 1040), 
(4100, 24, 506) and (1500, 2, 28), respectively. The diffusion coefficient estimated by PS method and the KM 
average value are shown as small horizontal colored lines in panel (b).
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Figure 6. The power spectra of a non-linear Langevin process. The power spectra of the synthetic time series by 
the Langevin equation with D(1)(x) = −Qx and position-dependent diffusion coefficient, D(2)(x) = D0 + bx2, with 
the parameter sets of (Q, D0, b) ≡ (1500, 2, 28) and (7100, 52, 1040), respectively. Solid lines represent the fit to 
Eq. (4), which yields (1564 ± 6, 2.2 ± 0.1, NA) and (8629 ± 13, 92.0 ± 1.9, NA), respectively.
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the same graphs presented in Fig. (8b) after converting the horizontal axis to the SI unit using Eq. (5) with DV 
being the intercept of the relevant graph (see below). Note that using DV provided by the PS method would intro-
duce considerable errors in β, and underestimate the real displacement. This artifact could affect any OT-based 
experiments that demands accurate displacement measurement. To ensure that the bead was likely to be in the 
nonlinear diffusion regime, we also calculated the PDF of the position, two extreme cases of which are included 
in Fig. (8c) as the black and grey graphs. They confirm that the bead has spent reasonable amounts of time at posi-
tions with larger diffusion coefficients. Furthermore, the graphs in Fig. (8b) were fitted to the quadratic function, 
D(2)(x, I) = a(I) + b(I)x2, with a and b as the free parameters (x has the unit of volt). The resulting values of a and b 
as functions of the laser power are summarized in Fig. (9a,b), respectively. It is evident that only at very low laser 
powers the parameter b would be negligible, in which case the parameters provided by the PS method would be 
valid. The conversion factors provided by the KM and PS methods as a function of laser power are presented in 
Fig. (9c). Once again, it is clear that there is discernible differences between the KM and PS results. The inset of 
the figure shows the relative error generated by the PS estimation, which always underestimates the conversion 
factor.

Table 1 summarizes all the results obtained by the KM and PS analyses. As the table indicates, the PS method 
always overestimates the stiffness and underestimates the conversion factor. It is worth mentioning that the esti-
mated force based on the PS calibration could, however, have smaller error compared to the measured stiffness or 
displacement, as the two errors can partially cancel out.

One might argue that the quadratic position-dependence of the diffusion coefficient D(2)(x) may arise from 
the finite sampling rates. In order to check that possibility, we note that considering the definition of Eq. (13) and 
holding terms up to the order of Δt2, the first and second conditional moments would have the following expres-
sion for M(1)(x, Δt) and M(2)(x, Δt)8, 16,

Figure 7. The Markov-Einstein time scale. Estimation of the Markov-Einstein time scale using a χ2 test, 
Eq.(10). The laser power dependence of the time scale is plotted in the inset that scales with the laser intensity I 
as ~I−0.9.

Figure 8. Disentangling stochastic characteristics of particles trapped in optical tweezers. Experimental 
results: The drift (a) and diffusion coefficients (b) for 5 laser powers. The drifts estimated by the PS method are 
embedded in the inset of (a). The small colored lines in (b) show the constant diffusion coefficients estimated 
by the PS method, as well as the average diffusion coefficients. (c) The graphs in (b) re-plotted after converting 
the position to the SI unite using Eq. (5) with DV being the intercept of the relevant graph. The gray and black 
graphs show the probability distribution in the presence of the bead as a function of the position for the lowest 
and highest laser powers.
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where the first terms yields the drift and diffusion coefficients in the limit Δt → 0. For finite Δt, however, the KM 
coefficients will be subject to some corrections, and the expansion will be meaningful if the term of the order of 
Δt is enough small. One possible way of avoiding the artifact of sampling interval in the estimation of the drift 
and diffusion coefficients is plotting M(1,2)(x, Δt)/Δt for fixed x versus Δt, and taking the limit Δt → 08. In Fig. 
(10), we plot M(2)(x = 0, Δt)/Δt in the limit of Δt → 0 for two laser powers, namely, 73 mW and 539 mW, which 
indicates finite values of the diffusion coefficients in that limit.

The physical picture behind the spatial dependence of the diffusion coefficient can be very complex. In gen-
eral, one may argue that the spatial dependence of the diffusion coefficient could be due to the changes in the 
quantities that parameterize the interaction of the bead with the surrounding medium and the electric field of the 

Figure 9. Intensity-dependence of the Diffusion coefficient. Intensity-dependence of the coefficients (a) a(I), 
(b) b(I), and (c) the conversion factor β, resulted from the KM and PS methods. The inset shows the relative 
error for the PS method as a function of laser power. The coefficient b(I) scales with intensity as I1.5 for large 
intensities.
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laser beam. One possible reason could be as follows. It is known that when a polystyrene sulphate sphere is dis-
persed in water, the ionic groups bonded to their surface dissociate, giving rise to a screened electrostatic interac-
tion. In this case, the bead will possess effective negative charge Z*, screened by the same amount of positive 
charges over the Debye-Huckel screening length17. In the static limit, the negatively-charged bead with its positive 
shell will have zero electric dipole. In the presence of temperature, however, a random force (which can be con-
sidered as a white noise in ME time scale) due to the environment (which is responsible for Brownian motion of 
the bead) will act on the bead and its positive shell. The random collisions play two roles: first, they exert a ran-
dom “push” on the bead and, second, they disturb the symmetry of the charge distribution around the bead, 
which induces a time-dependent contribution to the electric dipole moment of the bead with a random orienta-
tion. In our case (for the bead with radius of µ.R 0 5 m) Z* is about 5 × 103e C and . × −

P 7 5 10 26 C m (by 
considering that the charge separation is of order of 1 Å)17.

The radial force acting on the electric dipole in the presence of the laser electric field ( ~ EE xx ) is given by, 
= ∂

∂
Fx

P E
x

( )x x , which has a zero mean due to the rapid fluctuations of the electric field and random orientations  
of the total dipole moment Px. The random collisions due to the thermal fluctuations disturb the symmetry of the 
charge distribution around the bead, and induce a time-dependent electric dipole moment with a random orien-
tation. The presence of the electric field of the laser can further alter the produced dipole. In linear optics, the 
polarisation of the charge distribution depends on the strength of the applied electric field and can be described 
by, Px = P0x + χEx, where χ = ∂

∂
P
E

x

x
 is known as the linear optical susceptibility. For a Gaussian laser beam with 

beam waist of w0, the force will have a variance given by, χ= +( )F E P E( 2 )x
x
w x

2
2 0

2
0 0

22

0
4

. In order to account for 

this force one must add a force such as τ γF f t/ ( )x M
2  to the linear Langevin Equation, Eq. (14). This force 

can be accounted for by an extra diffusion coefficient, ~bx2 with χ γ= + .b P I I w1/2( 2 ) /(2 )x0
2 0 1

0
4 2 . We note that 

the polarisation P, induced by the charge separation and ME scale τM (as shown in Fig. 7) are intensity-dependent 
described by ~I and τ − .~ IM

0 9, respectively. One then finds that x-dependent part of D(2) scales as 
× − . .~I I I2 0 9 1 1, which has super-linear scaling. The observed value for the exponent is .1 5 for large intensities 

(Fig. 9b).

Laser power 
(mW) Dv (PS & KM) Volt2/s k (PS & KM) fN/nm β × 10−8 (PS & KM)

RelDif of 
β%

RelDif of 
K%

RelDif of 
Dv%

73 2.9 ± 0.1 & 1.8 ± 0.1 17.7 ± 0.5 & 11.3 ± 0.3 39.8 & 49.0 23 36 38

128 8.8 ± 0.2 & 5.5 ± 0.1 31.7 ± 0.7 & 19.4 ± 0.4 22.6 & 28.1 24 39 38

183 18.9 ± 0.2 & 10.9 ± 0.2 47.3 ± 1.2 & 28.9 ± 0.6 15.9 & 20.0 26 39 42

239 30.7 ± 0.3 & 17.0 ± 0.2 61.9 ± 2.0 & 37.4 ± 0.7 12.1 & 16.0 32 40 45

297 45.1 ± 0.5 & 24.1 ± 0.5 74.4 ± 1.2 & 45.0 ± 0.9 10.0 & 13.4 34 40 47

356 61.9 ± 1.2 & 31.7 ± 0.6 87.7 ± 2.2 & 52.0 ± 1.0 8.6 & 11.7 36 41 49

415 81.4 ± 1.3 & 41.7 ± 0.8 98.2 ± 2.5 & 58.2 ± 1.2 7.5 & 10.2 36 41 49

477 104.0 ± 1.3 & 51.7 ± 1.0 110.3 ± 1.7 & 64.1 ± 1.3 6.6 & 9.2 40 42 50

539 129.9 ± 4.1 & 63.0 ± 1.3 125.9 ± 4.2 & 72.1 ± 1.4 5.9 & 8.3 41 43 51

Table 1. Comparison of results from PS and KM methods.

Figure 10. Non-diverging behavior of diffusion coefficient. The limit Δt → 0 of M(2)(x = 0, Δt)/Δt (the 
diffusion coefficients) for two laser powers 73 mW and 539 mW. This indicates finite values of the diffusion 
coefficients in that limit (red curves).
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One might also argue that the rapid fluctuations in the intensity of the trapping laser could contribute to the 
measured diffusion coefficients in two ways: first, by inducing fluctuation in the measured trap stiffness and, sec-
ond, by contributing to the measured diffusion coefficients with a second-order correction in the position relative 
to the origin. In order to make sure that what we see is not an artifact induced by the fluctuation in the intensity 
of the laser power, the same procedure was applied to the normalised positional data (positional series divided 
by the total intensity), and the results indicate again similar position-dependent diffusion coefficients. Further, 
we measured the total intensity of the trapping laser, both directly at the exit of the laser source and at the QPD 
position when the trap is empty (Z-signal of the QPD). The histogram of the resulting data was perfectly Gaussian 
(with standard deviation of 1%) at the tuned power (data are not shown).

Summary
Linear techniques, such as the spectral and correlation analysis, can uncover only the linear structures of time 
series. We showed that the time series recorded from the movements of a bead in an optical trap contain non-
linear components and, therefore, one needs a nonlinear approach for their analysis. We used a nonlinear 
approach to stochastic analysis that enables us to determine the stochastic dynamic equation of a trapped par-
ticle. The approach is based on the estimations of the force constant and the diffusion coefficient based on the 
Kramers-Moyal conditional moments, providing us with position-dependence physical parameters. We discov-
ered that the diffusion coefficient depends almost quadratically on the position, in contrast with the assumption 
of the power spectrum method. Our detailed analysis of the measured time series reveals that the power spectrum 
analysis overestimates considerably the force constant and underestimates the conversion factor.

We believe that the present study has important implications for the OT-based applications, and in particular 
for single-molecule studies. For instance, by accurate estimation of the force constant, our proposed approach 
allows for reliable estimation of the forces and mechanical work associated with unfolding and refolding of 
biomolecules18–20.

Methods
Experimental setup. Our OT setup consists of a Nd:YAG laser (Coherent, λ = 1064 nm), focused using a 
water immersion objective (Olympus) in an optimal condition21, 22. A quadrant photodiode (Hamamatsu, S5980) 
is positioned at the Back-Focal-Plane (BFP) of the condenser, which allows for very accurate detection of the 
displacements of a trapped bead through the BFP detection scheme23. The voltages of the QPD were first ampli-
fied and then digitized using an A/D card (National Instruments). The polystyrene beads were purchased from 
Bangs Lab. with a mean diameter of ~1 μm. Once a bead is trapped, 10 × 3 seconds positional time series x(t) were 
recorded with sampling rate of 22 kHz. All the trapping experiments were conducted under the optimal condition 
with almost zero aberrations at a depth of ~10 μm, in order to be able to neglect the hydrodynamic effect of the 
chamber walls. The measurements were repeated at nine laser powers from 73 mW to 539 mW. Two typical power 
spectra of the recorded data are shown in Fig. (2).
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