
Solar Energy 144 (2017) 1–9
Contents lists available at ScienceDirect

Solar Energy

journal homepage: www.elsevier .com/locate /solener
Strong short-term non-linearity of solar irradiance fluctuations
http://dx.doi.org/10.1016/j.solener.2017.01.008
0038-092X/� 2017 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: Institute of Physics and ForWind, Carl von Ossietzky
University, 26111 Oldenburg, Germany.

E-mail address: mohammed.r.rahimi.tabar@uni-oldenburg.de (M. Reza Rahimi Tabar).
Ata Madanchi a, M. Absalan a, G. Lohmann b, M. Anvari c, M. Reza Rahimi Tabar a,c,⇑
aDepartment of Physics, Sharif University of Technology, Tehran 11155-9161, Iran
b Energy Meteorology Group, Institute of Physics, Carl von Ossietzky University, 26111 Oldenburg, Germany
c Institute of Physics and ForWind, Carl von Ossietzky University, 26111 Oldenburg, Germany

a r t i c l e i n f o a b s t r a c t
Article history:
Received 24 November 2016
Received in revised form 31 December 2016
Accepted 4 January 2017

Keywords:
Solar energy
Intermittency
Short-time scale nonlinearity
We investigate short-term non-linearity of solar irradiance fluctuations using the multifractal detrended
fluctuation analysis (MFDFA). The MFDFA shows that time series of solar irradiance have a long range cor-
relation function with a multifractal behavior. We apply this method to solar irradiance time series from
several regions around the world with resolutions of seconds and minutes. The obtained generalized
Hurst and Renyi exponents hðqÞ and sðqÞ suggest the non-linear and non-stationary essence of measured
irradiance time series. Also, we analyze shuffled, random phase, and rank-wised surrogated data to reveal
the nature of the multifractality and conclude that linear and non-linear correlations are the dominant
contributions to observed multifractal and non-linear behavior of solar irradiance.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The share of renewable wind and solar photovoltaic (PV) power
in electricity production has constantly increased and is expected
to grow further. For example, the European Union plans to
generate 20% of its required electrical energy from renewables
by 2020, and 60% by 2050 Schavan (2010). Recent studies on wind
and solar power systems have shown that they feature strong
fluctuations on different time scales, with the complexity of
weather causing short-time non-Gaussian statistics in the power
output of these renewable sources, see Anvari et al. (2016). These
fluctuations have been characterized by Kolmogorov-like power
spectra as well as q-exponential probability density functions,
Anvari et al. (2016) and Rahimi Tabar et al. (2014). They complicate
electrical grid operation and may endanger grid stability, Milan
et al. (2013). Understanding their stochastic properties is therefore
necessary for designing future power grids. It will also help to
control and reduce dynamic power grid instabilities caused by
renewable power production, Anvari et al. (2016) and Woyte
et al. (2007).

In complex time series, two-point long-range correlations are
usually characterized by scaling laws, where the scaling exponents
classify the underling processes. According to the Wiener-Khinchin
theorem, the two-point correlation function hxðt þ sÞ � xðtÞi is
directly related to the power spectrum by a Fourier transform.
The correlation function is the linear regression in the
ðxðt þ sÞ; xðtÞÞ plane, and it is therefore known as a linear quantity
in the characterization of a given time series. There is a possibility
that two completely different time series share a similar two-point
correlation structure, but with different higher order stochastic
properties. Therefore we need to analyze higher order (non-
linear) statistical properties to fully characterize a given complex
time series.

Let fxðtÞg be a given time series and consider its increment over
a certain time scale s, which is defined as DxðsÞ ¼ xðt þ sÞ � xðtÞ.
We denote Sðq; sÞ as the qth order absolute moment of xðtÞ:
Sðq; sÞ ¼ hjDxðsÞjqi: ð1Þ
The process is called scale invariant if the scaling behavior of the
absolute moment Sðq; sÞ (i.e. structure function) has a power law
behavior in a certain range of s, Friedrich et al. (2011). Let us call
nq the exponent of the power law, i.e

Sðq; sÞ ’ Cqsnq ð2Þ
where Cq is a prefactor. Sðq; sÞ is calledmonofractal (or linear) if nq is
a linear function of q, and multifractal (non-linear) if nq is non-linear
with respect to q. Multifractality has been introduced in the context
of fully developed turbulence in order to describe the spatial fluctu-
ations of the fluid velocity at very high Reynolds number, Peng et al.
(1994). Note that this formalism may not give correct results for
non-stationary time series that are affected by trends or cannot
be normalized.

The simplest type of multifractal analysis (to assess linearity
and non-linearity of a time series) is based on the partition
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function multifractal formalism, Feder (1988), Barabasi and Vicsek
(1991), Peitgen et al. (1992), and Bacry et al. (2001). An improved
multifractal formalism called the wavelet transform modulus
maxima (WTMM) method, Muzy et al. (1991) involves tracing
the maxima lines in the continuous wavelet transform over all
scales. The multifractal detrended fluctuation analysis (MF-DFA)
is a third method based on the identification of scaling of the qth
order moments depending on the signal length. Often experimen-
tal data are affected by non-stationarities (e.g. trends), which have
to be well distinguished from the intrinsic fluctuations of the
system in order to find the correct scaling behavior of the fluctua-
tions, Feder (1988), Barabasi and Vicsek (1991), Peitgen et al.
(1992), Bacry et al. (2001), and Muzy et al. (1991). Fractal and
multifractal analyses are widely used in social and natural
sciences, Mandelbrot (1983), for instance to characterize weather
conditions, Koscielny-Bunde et al. (1998), Ivanova and Ausloos
(1999), and Talkner and Weber (2000), cloud shapes, Ivanova
et al. (2000), geophysics, Malamud and Turcotte (1999), DNA
sequences, Peng et al. (1994), Ossadnik et al. (1994), and
Buldyrev et al. (1998), neuron spikes, Blesic et al. (1999) and
Bahar et al. (2001), medical, physiological, and astrophysical time
series, Kantelhardt (2011), as well as economic time series,
Mantegna and Stanley (2000) and Liu et al. (1999).

In this paper, we address the non-linear character of solar irra-
diance and clear-sky index time series (i.e. irradiance normalized
to clear-sky conditions) by means of the multifractal detrended
fluctuation analysis (MF-DFA) using data from several regions
around the world with temporal resolutions of seconds and min-
utes. We obtain the generalized Hurst and Renyi exponents hðqÞ
and sðqÞ and show that solar irradiance time series have strong
non-linear and non-stationary properties.

The paper is organized as follows. Section 2 describes and intro-
duces the solar irradiance datasets used throughout the analyses.
In Section 3, we provide a brief review of detrended fluctuation
analysis (DFA) and MF-DFA methods to study scaling and multi-
fractality of time series. MF-DFA results based on random-phase
(RP) and rank-wised (RW) surrogated data are also given in this
section. In Section 4, we present our results of analyzing data to
probe the multifractal behavior of solar irradiance and clear-sky
index and compare it to the MF-DFA results for shuffled and surro-
gated data sets. Section 5 contains the conclusions.
2. Description of solar irradiance data sets

Our analyses are based on large solar irradiance data sets from
several countries, as summarized in Table 1. The first data set has
been recorded in Hawaii using 17 horizontally oriented LI-COR LI-
200 pyranometers distributed across an area of about 750 � 750 m2

and operating at 1 Hz between March 2010 and March 2011,
Sengupta and Andreas (2010). We use both single-sensor data as
well as the average of all sensors.

Also, we derive minute-averages of the single-sensor 1 Hz mea-
surements, and use another three single-sensor data sets with the
temporal resolution of minutes. Two of these data sets originate
Table 1
Data description.

Dataset Data
points

Measurement
duration (days)

Frequency
(Hz)

Solar irradiance, Hawaii 14� 106 �365 1

Solar irradiance, Spain 1:3� 106 �1331 1/60

Solar irradiance, Sahara
(Algeria)

3:7� 106 �3740 1/60

Solar irradiance,
Germany

2:7� 105 �430 1/60
from the global Baseline Surface Radiation Network (BSRN) BSRN
(2016). They were collected in northern Spain between July 2009
and February 2013, and in Algeria (Sahara) between March 2000
and December 2013. The third minute-averaged set was recorded
on the roof of the University of Oldenburg, Germany, using small
(0:242� 0:556 m2) PV modules. It was presented in Beyer et al.
(1994), and we use single-panel measurements.

Additionally, we use estimated clear-sky irradiance Iclearsky, i.e.
global horizontal irradiance under a completely cloud-free atmo-
sphere, to detrend the measured irradiance I by deriving the
clear-sky index

k� ¼ I
Iclearsky

: ð3Þ

There are different clear-sky models available, Ineichen (2006) and
we use the one presented in Hammer et al. (1998) to estimate clear-
sky irradiance for all the above-mentioned locations. To ensure con-
servative results, we only use k� data associated with solar elevation
angles greater than 10o. The clear-sky index values are positive and
the maximum is around unity, except for short periods of over irra-
diance caused by cloud reflection, Yordanov et al. (2013).

As an example of the utilized data, Fig. 1(a) presents measured
solar irradiance by a single sensor in Hawaii, where night times are
removed. The corresponding clear-sky index time series is shown
in panel (b), and the beginning and end of a single day are indi-
cated by vertical lines.
3. Theory: methods of analysis

3.1. Description of methods

In this section, we review two standard methods, namely the
analysis of the correlation function and the MF-DFA to investigate
the fractal and multifractal properties of stochastic processes. Also,
we provide details to surrogate a given time series by random-
phase and rank-wised methods.
Fig. 1. (a) Measured solar irradiance of a single sensor for Hawaii and (b) its
corresponding clear sky index time series. Night times have been removed.
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3.2. Long and short range correlations

Suppose a time series xðtiÞ � xðiÞ for fi ¼ 1; . . . ;Ng, and define
the mean of x as

hxi ¼ 1
N

XN
i¼1

xi ð4Þ

and �xi as

�xi ¼ xi � hxi: ð5Þ
For stationary data, the correlation function CðsÞ is defined as

CðsÞ ¼ h�xi�xiþsi ¼ 1
N � s

XN�s

i¼1

�xi�xiþs: ð6Þ

If xðiÞ is uncorrelated, CðsÞwill be zero for s > 0. The short-range
correlations decline exponentially Kantelhardt (2011),

CðsÞ � exp � s
smax

� �
ð7Þ

with a specific decay time smax. For long-range correlations the
decay time smax increases with increasing of N, and CðsÞ follows a
power law

CðsÞ � s�c ð8Þ
with an exponent 0 < c < 1. The long-range correlation studied by
the well-known Hurst exponent H ¼ 1� c=2, Peng et al. (1994)
and Eke et al. (2002) and its power spectra can be characterized by

SðxÞ � x�b ð9Þ
with x denoting angular frequency and the power spectrum expo-
nent being b ¼ 2H � 1, Peng et al. (1994) and Eke et al. (2002) for
stationary data.

Non-detrending methods, like the use of correlation functions,
work well if the records are long and do not involve trends. But
if trends are present in the data, they might yield wrong results.
In practice, almost all experimental data are affected by some
non-stationarities (e.g. trends), which have to be well distin-
guished from the intrinsic fluctuations of the system in order to
find the correct scaling behavior of the fluctuations. Detrended
fluctuation analysis (DFA) is a well-established method for deter-
mining the scaling behavior of noisy data in the presence of trends
without knowing a trend’s origin and shape, Xu et al. (2005).

3.3. Detrended fluctuation analysis

The detrended fluctuation analysis (DFA) method can be used to
determine scaling properties and to detect long-range correlations
in non-stationary time series. The important steps of this method
(see e.g. Peng et al. (1994), Ossadnik et al. (1994), Taqqu et al.
(1995), Hu et al. (2001), Chen et al. (2002), and Kantelhardt et al.
(2002)) are summarized as follows:

The first step is to compute the integral over the original time
series xðiÞ, i.e.,

YðiÞ ¼
Xi

k¼1

xk � hxi ð10Þ

for i ¼ 0; . . . ;N. Then, the integrated time series is divided into Ns

non-overlapping segments with length of s (Ns ¼ ½N=s�, where N
denotes the length of the time series and ½. . .� represent the integer
part of N=s). It is obvious that the divided time series will be useless
for scales larger than s. In order to utilize the whole data set, the
process needs to be repeated from the other side of the time series,
and there will be 2Ns segments. Now, one can perform least square
polynomial fitting of any vth segment as Pv . Linear, quadratic, cubic
or higher order polynomials can be used in the fitting procedure
(conventionally called DFA1, DFA2, DFA3, . . .), Peng et al. (1994),
Ossadnik et al. (1994), and Bunde et al. (2000). So, for each of the
segments, YsðiÞ defined as

YsðiÞ ¼ YðiÞ � PvðiÞ: ð11Þ
Next, F2

s ðvÞ is calculated as the fluctuation of YsðiÞ as:

F2
s ðvÞ ¼ hY2

s ðiÞi ¼
1
s

Xs

i¼1

fYððv � 1Þsþ iÞ � PvðiÞg2 ð12Þ

for each of the segment v;v ¼ 1; . . . ;Ns. Now, FðsÞ, standard fluctu-
ation function, is obtained by averaging over 2Ns segments

F2ðsÞ ¼ 1
2Ns

X2Ns

v¼1

F2
s ðvÞ

( )1
2

� shð2Þ: ð13Þ

For stationary time series, hð2Þ is the well-known Hurst exponent H
(see, e.g. Feder (1988)).

3.4. Multifractal detrended fluctuation analysis

The generalized fluctuation function, FqðsÞ, is defined as

FqðsÞ ¼ 1
2Ns

X2Ns

v¼1

½F2
s ðvÞ�

q
2

( )1
q

ð14Þ

where q can take any non-zero real value that gives the same results
for q ¼ 2, like standard results of DFA. For ðq ¼ 0Þ, the fluctuation
function should be derived by a logarithmic averaging process,
because the normal averaging process in Eq. (14) causes the expo-
nent to diverge, Kantelhardt et al. (2002), and

F0ðsÞ ¼ exp
1

4Ns

XNs

v¼1

ln FsðvÞ
( )

: ð15Þ

FqðsÞ increases with increasing scale s according to the power law

FqðsÞ � shðqÞ; ð16Þ
where the function hðqÞ is called the generalized Hurst exponent
that depends on q, Peng et al. (1994), Ossadnik et al. (1994), and
Bunde et al. (2000).

For a given q, in the linear sections of ln FqðsÞ vs ln s, one can
estimate hðqÞ as its slope. As mentioned in the previous subsection,
for stationary processes H ¼ hðq ¼ 2Þ is the Hurst exponent, and for
non-stationary processes, one can show hðq ¼ 2Þ > 1:0, Eke et al.
(2002). In this case, the Hurst exponent can be calculated as
H ¼ hðq ¼ 2Þ � 1, Feder (1988), Bunde et al. (2000), and Ossadnik
et al. (1994). A scaling exponent H ¼ 0:5 indicates that the time
series are uncorrelated, while 0 < H < 0:5 implies short-term
anti-persistence and 0:5 < H < 1 implies long-term persistence,
Movahed et al. (2006). According to Eqs. (8) and (9), for non-
stationary time series, the correlation exponent and power
spectrum scaling are c ¼ �2H and b ¼ 2H þ 1, respectively,
Peng et al. (1994), Ossadnik et al. (1994), and Eke et al. (2002). In
addition, positive values of q result in large variance (i.e., large
deviations from the corresponding fit) F2

s ðvÞ in Eq. (12) that affects
the average FqðsÞ in Eq. (14). The function hðqÞ represents the
scaling behavior of the segments with large fluctuations for
positive values of q. For negative values of q, small variances of
F2
s ðvÞ in Eq. (12) will dominate the average FqðsÞ in Eq. (14) and

hðqÞ describes the scaling behavior of the segments with small
fluctuations, Kantelhardt et al. (2002).

There is a direct relationship between the generalized Hurst
exponent in the MF-DFA and the classical multifractal scaling
exponents sðqÞ (Renyi exponent), Kantelhardt et al. (2002)



4 A. Madanchi et al. / Solar Energy 144 (2017) 1–9
sðqÞ ¼ qhðqÞ � 1: ð17Þ
We remind that a monofractal time series with long-range cor-

relations is characterized by a single Hurst exponent and linear q-
dependence hðqÞ. However, a multifractal time series has several
Hurst exponents and a non-linear q-dependent hðqÞ. Additionally
multifractal dimensions DðqÞ are defined as

DðqÞ � sðqÞ
q� 1

¼ qhðqÞ � 1
q� 1

: ð18Þ

The Legendre transformation from sðqÞ to f ðaÞ is known as the
singularity spectrum, Feder (1988) and Peitgen et al. (1992) given
by

f ðaÞ ¼ qa� sðqÞ ð19Þ

a ¼ s0ðqÞ ð20Þ
where a is the singularity strength or Hölder exponent and
s0ðqÞ ¼ d

dq sðqÞ. By using Eq. (17), one finds

f ðaÞ ¼ q½a� hðqÞ� þ 1 ð21Þ

a ¼ hðqÞ þ qh0ðqÞ: ð22Þ
A time series is fractal for linear hðqÞ, and multifractal for nonlinear
hðqÞ. For multifractal time series, a spectrum of f ðaÞ exist, Movahed
et al. (2006).

3.5. Shuffled, rank-wised and random-phase surrogated data

There are two main indications for multifractality of a given
time series,

1. the existence of wide or fat-tailed probability density functions,
and

2. the existence of linear and non-linear correlations in the time
series.

To understand the origin of multifractality one can explore each
of these features separately, Manshour et al. (2015).

To destroy correlations, while maintaining the distribution’s
shape, a data set can be shuffled. To detect effects of fat-tailed
PDFs, while keeping linear correlation, we can change the distribu-
tion of a given time series to a Gaussian distribution by performing
the so called Random-Phase (RP) data surrogating. This is done
simply by calculating the Fourier transform of the time series
and multiplying it by random phases with a uniform distribution,
Schreiber and Schmitz (1996).

Another method which changes the PDF of a time series to a
Gaussian distribution is known as Rank-Wised (RW) surrogation,
which keeps linear and non-linear correlations, but removes non-
Gaussian distributional effects. In this method, the dependence
on the fat-tailed distribution is eliminated by first ranking the N
numbers in the original data, and then exchanging them rank wise
by a set of N numbers from a Gaussian distribution, Bogachev et al.
(2007).

4. Results

4.1. Results of MFDFA for solar irradiance

As mentioned in Section 1, solar irradiance time series are
highly non-stationary and fluctuate due to different weather con-
ditions in different time scales. By calculating FqðsÞ, we can inves-
tigate the non-stationary behavior of solar irradiance and evaluate
its scaling behavior during a day by means of a log-log plot of FqðsÞ
vs scale s. Fig. 2 shows the results of MFDFA1 for solar irradiance
measured in Hawaii with the sample rate of 1 Hz. We plotted the
results for FqðsÞ for irradiance data measured by single sensor
and averaged irradiance over an area of about 750� 750 m2 (mean
of all sensors). The analysis shows that there is a cross over time-
scale sc ’ 450 s = 7.5 min in the log-log plot, which divides the
plots into two regions with s > sc and s < sc. These kinds of regions
disclose that the dominant fluctuations exhibit different correla-
tion behaviors when varying the scale, Hu et al. (2001), Chen
et al. (2002), and Kantelhardt et al. (2001). We have performed
the same analysis on the clear-sky indices of single-sensor and
averaged data, and present FðsÞ versus s for q ¼ 2 in Fig. 3(a). For
time scales s < sc and s > sc , we find the generalized Hurst expo-
nents as h1ðq ¼ 2Þ ¼ 1:17	 0:01 and h2ðq ¼ 2Þ ¼ 0:93	 0:02 for
single-sensor data, and h1ðq ¼ 2Þ ¼ 1:49	 0:01 and
h2ðq ¼ 2Þ ¼ 1:03	 0:03 for averaged data, respectively, which
exhibit short-term persistence of time series. Therefore one can
conclude that solar irradiance and clear sky index have non-
stationary (hðq ¼ 2Þ > 1) characteristics for s < sc .

To study the nonlinearity of solar irradiance in short time scales,
i.e. s < sc , we restrict ourselves to the region with 90 < s < 450 s,
where FqðsÞ shows a clear power law behavior. For this time inter-
val, our investigations show a strong dependence of hðqÞ and sðqÞ
on q, which reveals the multifractal characteristic of solar irradi-
ance, see Fig. 3(b) and (c).

The dependence of hðqÞ on q leads to a non-linear relationship
between sðqÞ and q. A non-linear sðqÞ function means multiple
scaling (Evertsz and Mandelbrot,1992; Olsson and Niemczynow-
icz, 1996) that is in need of hierarchy multiscaling for represent-
ing the scaling property. Fig. 3(c) represents the nonlinearity of
sðqÞ, which can reflect the degree of multifractality. The slopes
of sðqÞ for irradiance and clear-sky index are measured and
presented in Table 2. The slope difference between segmented
fractions of the sðqÞ (positive and negative q) show the degree
of non-linearity. According to Fig. 3(c), the slope differences for
single-sensor and mean irradiance are 2:89 and 1:30, while they
amount to 1:91 and 0:93 for single-sensor and average clear-sky
index. Specifically, single-sensor irradiance and clear-sky index
indicate a higher degree of multifractality in their scaling property
than averaged irradiance and clear-sky index. As expected, aver-
aged time series feature smaller non-linearity in comparison to
the measured time series of single sensors. In Fig. 3(d), we present
the singularity spectrum (f ðaÞ vs. a) of single-sensor and averaged
irradiance and clear-sky index. The width of the singularity spec-
trum Da ¼ amax � amin and the range of hðqÞ can be used to quan-
tify the degree of multifractality Ashkenazy et al. (2003). We note
that low f ðaÞ values correspond to rare events (extreme values in
the distribution), whereas the highest value of f ðaÞ is the capacity
dimension, which is obtained by assuming a uniform distribution
in all the segments, Biswas et al. (2012). We find the widths of the
singularity spectrum to be 3:22	 0:21 and 1:56	 0:03 for single-
sensor and averaged irradiance, respectively. Therefore, we
conclude that the measured irradiance from the single sensor
has stronger non-linear properties than its averaged counterpart.
We summarize the obtained Da and Hurst exponents for scales
s > sc (h1ð2Þ) and s < sc (h2ð2Þ) in Table 3 for both solar irradiance
and clear-sky index.
4.2. Understanding the nature of multifractality

As mentioned in the methods section, by surrogating data using
shuffling, random phase and rank-wised methods, we can find out
which kind of multifractality exist in solar irradiance. To determine
the type of multifractality, one can compare the fluctuation func-
tion for the original time series, FqðsÞ, with the fluctuation function



Fig. 3. (a) Fluctuation function Fq¼2ðsÞ versus scale s, (b) multifractal scaling exponent hðqÞ versus q, (c) classical multifractal scaling exponent, sðqÞ versus q. The region with
q > 0 has a different slop than the region q < 0 for each data set. (d) Singularity spectrum f ðaÞ, which shows multifractal characteristics of different strengths for single-sensor
and mean irradiance and clear-sky index data by comparing the widths of a.

Fig. 2. Fq versus s (scale) for different values of q by multifractal detrended fluctuation analysis for single sensor data and the average of all sensors in the field.
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for the shuffled, random phase and rank-wise surrogated data, i.e.,

Fshuf
q ðsÞ; FRP�sur

q ðsÞ and FRW�sur
q ðsÞ, respectively. By considering their

ratio we have:
Table 2
Slope of the Renyi exponent sðqÞ for irradiance and clear-sky index data.

Data Slope

�6 < q < 0 0 < q < 6

Irradiance, single 3:99 1:11
Irradiance, averaged 2:63 1:33

Clear-sky index, single 1:99 1:08
Clear-sky index, averaged 2:28 1:35
FqðsÞ=Fshuf
q ðsÞ ¼ shðqÞ�hshuf ðqÞ ¼ shcorrðqÞ; ð23Þ

FqðsÞ=FRP�sur
q ðsÞ ¼ shðqÞ�hRP�surðqÞ ¼ shPDF�RPðqÞ ð24Þ

FqðsÞ=FRW�sur
q ðsÞ ¼ shðqÞ�hRW�surðqÞ ¼ shPDF�RWðqÞ: ð25Þ

Multifractality of a time series can be attributed to three causes.
The first is a broad probability density function (PDF) of the time
series, the second is a linear correlation inherit in the data, and
the third is the presence of mixed linear and non-linear correla-
tions. In Fig. 4, we present the results of these analyses for
single-sensor and averaged irradiance.



Table 3
Numerical results of MF-DFA for single-sensor and averaged irradiance and clear-sky index data.

Data h1ð2Þ (s < sc) h2ð2Þ(s > sc) sðq ¼ 2Þ Da

Irradiance, single 1:17	 0:01 0:93	 0:02 1:31	 0:02 3:22	 0:21
Irradiance, averaged 1:49	 0:01 1:03	 0:03 1:84	 0:02 1:56	 0:03

Clear-sky index, single 1:19	 0:01 0:94	 0:01 1:36	 0:01 1:17	 0:02
Clear-sky index, averaged 1:51	 0:01 1:03	 0:01 1:88	 0:01 1:18	 0:02
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The shuffled time series always has a fractal behavior with
hshufðqÞ ¼ 0:5. As shown in Fig. 4a and c, there are big differences
between the original hðqÞ and hshufðqÞ for single-sensor and aver-
aged irradiance measurements. This indicates that the correlation
(linear and non-linear) is the origin of multifractality. The multi-
fractal exponents of the rank-wised surrogated data are closest
to the original hðqÞ, while the random phase surrogated data lies
between the two cases. We can conclude that both linear and
non-linear correlations are responsible for the observed multifrac-
tality of solar irradiance time series. Table 4 shows the generalized
Hurst exponent and width of the singularity spectrum for the
Table 4
Generalized Hurst exponent,hðq ¼ 2Þ and Da for the irradiance data measured by a single

Single sensor hðq ¼ 2Þ Da

Original 1:17	 0:01 3:22
Random phase 1:18	 0:01 1:01
Rank-wised 1:21	 0:01 1:34
Shuffled 0:49þ 0:01 0:01

Fig. 4. (a) Multifractal exponents of irradiance time series measured by a single sensor,
well as results for the original data. (b) Singularity spectrum for single-sensor data, whe
irradiance time series and (d) its singularity spectrum.
original and the random phase and rank wised surrogated time
series. Tables 5 and 6 show the values of the Hurst exponent H,
the power spectrum exponent b and the autocorrelation exponent
c, for the irradiance data measured by a single sensor as well as
that averaged over all sensors in the field.

4.3. Multifractality of solar irradiance for different countries

We repeat our analysis presented in Section 4 for solar irradi-
ance measured in Algeria, Germany, Hawaii and Spain to investi-
gate the scaling and multifractal behaviors in different locations.
sensor and that averaged over all sensors in the field.

Averaged hðq ¼ 2Þ Da

Original 1:49	 0:01 1:56
Random phase 1:42	 0:01 0:99
Rank-wised 1:46	 0:01 1:03
Shuffled 0:49þ 0:02 0:01

calculated from random phase, rank-wised surrogated and shuffled time series, as
re the width of f ðaÞ is a measure of multifractality. (c) Hurst exponent for averaged



Table 5
The Hurst exponent H, spectrum exponent c and correlation exponent b, for data
measured by a single sensor.

Single sensor H c b

Original 0:17	 0:01 �0:34	 0:01 1:34	 0:01
Random phase 0:18	 0:01 �0:36	 0:01 1:36	 0:01
Rank-wised 0:21	 0:01 �0:42	 0:01 1:42	 0:01
Shuffled 0:51	 0:01 N:A. N:A.

Table 6
The Hurst exponent H, spectrum exponent c and correlation exponent b, for averaged
data in the field.

Averaged H c b

Original 0:49	 0:01 �0:98	 0:01 1:98	 0:01
Random phase 0:42	 0:01 �0:84	 0:01 1:84	 0:01
Rank-wised 0:46	 0:01 �0:92	 0:01 1:92	 0:01
Shuffled 0:49	 0:01 N:A. N:A.

Table 7
Slope of the mass exponent functions sðqÞ of solar irradiance data for different
countries and locations.

Data Slope

�10 < q < 0 0 < q < 10

Algeria 2:24 1:38
Hawaii 2:54 0:86
Spain 2:39 1:11

Germany 2:42 0:94
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The sample rate of the used data is 1/60 Hz and we use about
300 days from each data set. Fig. 5 shows the results of MF-DFA
for all data sets of these countries. The plot of FðsÞ versus s in
Fig. 5a indicates that the countries share two common crossover
time scales located at s1c 
 7 min and s2c 
 90 min. In Section 4.
A, we had also observed s1c 
 7 min for the analysis of 1 Hz data.
The multifractal characteristics of solar irradiance for time scales
s < s1c have been discussed in Section 4.1 (with resolutions of sec-
onds). In this section we restrict ourselves to time scales in the
interval s1c < s < s2c . As shown in Fig. 5(a), we find a non-
stationary behavior for this interval (i.e. h1 > 1), however with
Fig. 5. (a) Standard fluctuation functions versus scale demonstrate two crossover scales
multifractal scaling exponent sðqÞ. (d) Singularity spectrum f ðaÞ shows that measuremen
of the irradiance time series is strongest for Hawaii and decreases for Germany, Spain a
slight changes in the slope of FðsÞ (generalized Hurst exponent)
for different countries. In this respect, Germany exhibits the long-
est correlated irradiance fluctuations, followed by Algeria, Spain
and Hawaii.

In panels (b), (c), and (d) of Fig. 5, all data sets are shown to have
a strong multifractal nature as expressed by the q dependence of
hðqÞ and sðqÞ, as well as the singularity spectrum f ðaÞ. The slopes
of sðqÞ are summarized for the irradiance measured in different
countries and locations in Table 7. Accordingly, the degree of
non-linearity is quantified by the slope difference between seg-
mented fractions of sðqÞ. The slope difference for Algeria, Hawaii,
Spain and Germany are 0:86;1:68;1:28 and 1:48, respectively.
The obtained results indicate that the irradiance data measured
in Hawaii and Germany possess a higher degree of multifractality,
see Fig. 5(c). In Fig. 5(d), the widths of the singularity spectra are
1:05	 0:03;1:82	 0:03;1:42	 0:03 and 1:63	 0:05 for Algeria,
Hawaii, Spain and Germany, respectively. The data from Hawaii
consistently exhibits the strongest indications of multifractality,
followed by Germany, Spain, and Algeria.
, s1c and s2c in four countries. (b) Multifractal scaling exponent hðqÞ and (c) classical
ts in different countries demonstrate different multifractal strength. Multifractality
nd Algeria (in that order).



Table 8
Numerical results of the generalized Hurst exponent and singularity spectrum width,
Da.

Location hðq ¼ 2Þ Da

Algeria 1:61	 0:02 1:05	 0:03
Hawaii 1:21	 0:02 1:82	 0:03
Spain 1:40	 0:01 1:42	 0:03

Germany 1:23	 0:02 1:63	 0:05
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For the above mentioned reasons, we can conclude that non-
linear aspects of solar irradiance are dependent on the geographic
and weather conditions, see Table 8.

5. Conclusion

n this paper, we studied the multifractal behavior of solar irra-
diance using the MF-DFA method. By analyzing extensive experi-
mental data for solar irradiance from several regions around the
world with resolutions of seconds and minutes, we show that there
are two crossover time scales (7:5 min and 90 min) on the scaling
behavior of standard fluctuation functions versus scale. Analyzing
the shuffled, random phase and rank wised surrogated data sug-
gests that the multifractal nature of solar irradiance is due to the
linear and nonlinear correlations, while the width of the probabil-
ity density function does not play an important role. We find that
irradiance data from different countries and locations show non-
stationary fluctuations, with multifractality being strongest for
the measurements from Hawaii and weakest for those from Alge-
ria. The former location is well known for almost omnipresent
cumulus clouds Hinkelman (2013), while the latter is dominated
by desert-type conditions. The degree of multifractality can thus
be considered a direct consequence of the frequency with which
broken clouds occur. Our findings contribute to a better under-
standing of solar irradiance fluctuations. Reconstruction of multi-
fractal irradiance time series Muzy et al. (1991) and study the
power grid performance with multifractal feed-in are the next
steps of this work, where recently have been considered by some
researchers Mitra et al. (2016) and Schmietendorf et al. (2016).
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