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PREFACE

The ever-increasing demand on engineers to lower production costs to with-
stand competition has prompted engineers to look for rigorous methods of de-
cision making, such as optimization methods, to design and produce products
both economically and efficiently. Optimization techniques, having reached a
degree of maturity over the past several years, are being used in a wide spec-
trum of industries, including aerospace, automotive, chemical, electrical, and
manufacturing industries. With rapidly advancing computer technology, com-
puters are becoming more powerful, and correspondingly, the size and the
complexity of the problems being solved using optimization techniques are
also increasing. Optimization methods, coupled with modern tools of com-
puter-aided design, are also being used to enhance the creative process of con-
ceptual and detailed design of engineering systems.

The purpose of this textbook is to present the techniques and applications
of engineering optimization in a simple manner. Essential proofs and expla-
nations of the various techniques are given in a simple manner without sacri-
ficing accuracy. New concepts are illustrated with the help of numerical ex-
amples. Although most engineering design problems can be solved using
nonlinear programming techniques, there are a variety of engineering appli-
cations for which other optimization methods, such as linear, geometric, dy-
namic, integer, and stochastic programming techniques, are most suitable. This
book presents the theory and applications of all optimization techniques in a
comprehensive manner. Some of the recently developed methods of optimi-
zation, such as genetic algorithms, simulated annealing, neural-network-based
methods, and fuzzy optimization, are also discussed in the book.

A large number of solved examples, review questions, problems, figures,
and references are included to enhance the presentation of the material. Al-



though emphasis is placed on engineering design problems, examples and
problems are taken from several fields of engineering to make the subject ap-
pealing to all branches of engineering.

This book can be used either at the junior/senior or first-year-graduate-level
optimum design or engineering optimization courses. At Purdue University, I
cover Chapters 1, 2, 3, 5, 6, and 7 and parts of Chapters 8, 10, 12, and 13 in
a dual-level course entitled Optimal Design: Theory with Practice. In this
course, a design project is also assigned to each student in which the student
identifies, formulates, and solves a practical engineering problem of his or her
interest by applying or modifying an optimization technique. This design proj-
ect gives the student a feeling for ways that optimization methods work in
practice. The book can also be used, with some supplementary material, for a
second course on engineering optimization or optimum design or structural
optimization. The relative simplicity with which the various topics are pre-
sented makes the book useful both to students and to practicing engineers for
purposes of self-study. The book also serves as reference source for different
engineering optimization applications. Although the emphasis of the book is
on engineering applications, it would also be useful to other areas, such as
operations research and economics. A knowledge of matrix theory and differ-
ential calculus is assumed on the part of the reader.

The book consists of thirteen chapters and two appendices. Chapter 1 pro-
vides an introduction to engineering optimization and optimum design and an
overview of optimization methods. The concepts of design space, constraint
surfaces, and contours of objective function are introduced here. In addition,
the formulation of various types of optimization problems is illustrated through
a variety of examples taken from various fields of engineering. Chapter 2 re-
views the essentials of differential calculus useful in finding the maxima and
minima of functions of several variables. The methods of constrained variation
and Lagrange multipliers are presented for solving problems with equality con-
straints. The Kuhn-Tucker conditions for inequality-constrained problems are
given along with a discussion of convex programming problems.

Chapters 3 and 4 deal with the solution of linear programming problems.
The characteristics of a general linear programming problem and the devel-
opment of the simplex method of solution are given in Chapter 3. Some ad-
vanced topics in linear programming, such as the revised simplex method,
duality theory, the decomposition principle, and postoptimality analysis, are
discussed in Chapter 4. The extension of linear programming to solve quad-
ratic programming problems is also considered in Chapter 4.

Chapters 5 through 7 deal with the solution of nonlinear programming prob-
lems. In Chapter 5, numerical methods of finding the optimum solution of a
function of a single variable are given. Chapter 6 deals with the methods of
unconstrained optimization. The algorithms for various zeroth-, first-, and sec-
ond-order techniques are discussed along with their computational aspects.
Chapter 7 is concerned with the solution of nonlinear optimization problems
in the presence of inequality and equality constraints. Both the direct and in-



direct methods of optimization are discussed. The methods presented in this
chapter can be treated as the most general techniques for the solution of any
optimization problem.

Chapter 8 presents the techniques of geometric programming. The solution
techniques for problems with mixed inequality constraints and complementary
geometric programming are also considered. In Chapter 9, computational pro-
cedures for solving discrete and continuous dynamic programming problems
are presented. The problem of dimensionality is also discussed. Chapter 10
introduces integer programming and gives several algorithms for solving in-
teger and discrete linear and nonlinear optimization problems. Chapter 11 re-
views the basic probability theory and presents techniques of stochastic linear,
nonlinear, geometric, and dynamic programming. The theory and applications
of calculus of variations, optimal control theory, multiple objective optimiza-
tion, optimality criteria methods, genetic algorithms, simulated annealing,
neural-network-based methods, and fuzzy system optimization are discussed
briefly in Chapter 12. The various approximation techniques used to speed up
the convergence of practical mechanical and structural optimization problems
are outlined in Chapter 13. Appendix A presents the definitions and properties
of convex and concave functions. Finally, a brief discussion of the computa-
tional aspects and some of the commercial optimization programs is given in
Appendix B.
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1
INTRODUCTION TO OPTIMIZATION

1.1 INTRODUCTION

Optimization is the act of obtaining the best result under given circumstances.
In design, construction, and maintenance of any engineering system, engineers
have to take many technological and managerial decisions at several stages.
The ultimate goal of all such decisions is either to minimize the effort required
or to maximize the desired benefit. Since the effort required or the benefit
desired in any practical situation can be expressed as a function of certain
decision variables, optimization can be defined as the process of finding the
conditions that give the maximum or minimum value of a function. It can be
seen from Fig. 1.1 that if a point JC* corresponds to the minimum value of
function/(JC), the same point also corresponds to the maximum value of the
negative of the function, —f(x). Thus, without loss of generality, optimization
can be taken to mean minimization since the maximum of a function can be
found by seeking the minimum of the negative of the same function. There is
no single method available for solving all optimization problems efficiently.
Hence a number of optimization methods have been developed for solving
different types of optimization problems.

The optimum seeking methods are also known as mathematical program-
ming techniques and are generally studied as a part of operations research.
Operations research is a branch of mathematics concerned with the application
of scientific methods and techniques to decision making problems and with
establishing the best or optimal solutions. Table 1.1 lists various mathematical
programming techniques together with other well-defined areas of operations
research. The classification given in Table 1.1 is not unique; it is given mainly
for convenience.



Figure 1.1 Minimum of/(jc) is same as maximum of —f(x).

Mathematical programming techniques are useful in finding the minimum
of a function of several variables under a prescribed set of constraints. Sto-
chastic process techniques can be used to analyze problems described by a set
of random variables having known probability distributions. Statistical meth-
ods enable one to analyze the experimental data and build empirical models to

TABLE 1.1 Methods of Operations Research

Mathematical Programming
Techniques

Calculus methods
Calculus of variations
Nonlinear programming
Geometric programming
Quadratic programming
Linear programming
Dynamic programming
Integer programming
Stochastic programming
Separable programming
Multiobjective programming
Network methods: CPM and

PERT
Game theory
Simulated annealing
Genetic algorithms
Neural networks

Stochastic Process
Techniques

Statistical decision theory
Markov processes
Queueing theory
Renewal theory
Simulation methods
Reliability theory

Statistical Methods

Regression analysis
Cluster analysis, pattern

recognition
Design of experiments
Discriminate analysis

(factor analysis)

re*, Minimum of f(x)

x*, Maximum of - f(x)



obtain the most accurate representation of the physical situation. This book
deals with the theory and application of mathematical programming techniques
suitable for the solution of engineering design problems.

1.2 HISTORICAL DEVELOPMENT

The existence of optimization methods can be traced to the days of Newton,
Lagrange, and Cauchy. The development of differential calculus methods of
optimization was possible because of the contributions of Newton and Leibnitz
to calculus. The foundations of calculus of variations, which deals with the
minimization of functionals, were laid by Bernoulli, Euler, Lagrange, and
Weirstrass. The method of optimization for constrained problems, which in-
volves the addition of unknown multipliers, became known by the name of its
inventor, Lagrange. Cauchy made the first application of the steepest descent
method to solve unconstrained minimization problems. Despite these early
contributions, very little progress was made until the middle of the twentieth
century, when high-speed digital computers made implementation of the op-
timization procedures possible and stimulated further research on new meth-
ods. Spectacular advances followed, producing a massive literature on opti-
mization techniques. This advancement also resulted in the emergence of
several well-defined new areas in optimization theory.

It is interesting to note that the major developments in the area of numerical
methods of unconstrained optimization have been made in the United Kingdom
only in the 1960s. The development of the simplex method by Dantzig in 1947
for linear programming problems and the annunciation of the principle of op-
timality in 1957 by Bellman for dynamic programming problems paved the
way for development of the methods of constrained optimization. Work by
Kuhn and Tucker in 1951 on the necessary and sufficiency conditions for the
optimal solution of programming problems laid the foundations for a great deal
of later research in nonlinear programming. The contributions of Zoutendijk
and Rosen to nonlinear programming during the early 1960s have been very
significant. Although no single technique has been found to be universally
applicable for nonlinear programming problems, work of Carroll and Fiacco
and McCormick allowed many difficult problems to be solved by using the
well-known techniques of unconstrained optimization. Geometric program-
ming was developed in the 1960s by Duffin, Zener, and Peterson. Gomory did
pioneering work in integer programming, one of the most exciting and rapidly
developing areas of optimization. The reason for this is that most real-world
applications fall under this category of problems. Dantzig and Charnes and
Cooper developed stochastic programming techniques and solved problems by
assuming design parameters to be independent and normally distributed.

The desire to optimize more than one objective or goal while satisfying the
physical limitations led to the development of multiobjective programming
methods. Goal programming is a well-known technique for solving specific



types of multiobjective optimization problems. The goal programming was
originally proposed for linear problems by Charnes and Cooper in 1961. The
foundations of game theory were laid by von Neumann in 1928 and since then
the technique has been applied to solve several mathematical economics and
military problems. Only during the last few years has game theory been applied
to solve engineering design problems.

Simulated annealing, genetic algorithms, and neural network methods rep-
resent a new class of mathematical programming techniques that have come
into prominence during the last decade. Simulated annealing is analogous to
the physical process of annealing of solids. The genetic algorithms are search
techniques based on the mechanics of natural selection and natural genetics.
Neural network methods are based on solving the problem using the efficient
computing power of the network of interconnected "neuron" processors.

1.3 ENGINEERING APPLICATIONS OF OPTIMIZATION

Optimization, in its broadest sense, can be applied to solve any engineering
problem. To indicate the wide scope of the subject, some typical applications
from different engineering disciplines are given below.

1. Design of aircraft and aerospace structures for minimum weight
2. Finding the optimal trajectories of space vehicles
3. Design of civil engineering structures such as frames, foundations,

bridges, towers, chimneys, and dams for minimum cost
4. Minimum-weight design of structures for earthquake, wind, and other

types of random loading
5. Design of water resources systems for maximum benefit
6. Optimal plastic design of structures
7. Optimum design of linkages, cams, gears, machine tools, and other

mechanical components
8. Selection of machining conditions in metal-cutting processes for mini-

mum production cost
9. Design of material handling equipment such as conveyors, trucks, and

cranes for minimum cost
10. Design of pumps, turbines, and heat transfer equipment for maximum

efficiency
11. Optimum design of electrical machinery such as motors, generators,

and transformers
12. Optimum design of electrical networks
13. Shortest route taken by a salesperson visiting various cities during one

tour
14. Optimal production planning, controlling, and scheduling



15. Analysis of statistical data and building empirical models from exper-
imental results to obtain the most accurate representation of the physical
phenomenon

16. Optimum design of chemical processing equipment and plants
17. Design of optimum pipeline networks for process industries
18. Selection of a site for an industry
19. Planning of maintenance and replacement of equipment to reduce op-

erating costs
20. Inventory control
21. Allocation of resources or services among several activities to maxi-

mize the benefit
22. Controlling the waiting and idle times and queueing in production lines

to reduce the costs
23. Planning the best strategy to obtain maximum profit in the presence of

a competitor
24. Optimum design of control systems

1.4 STATEMENT OF AN OPTIMIZATION PROBLEM

An optimization or a mathematical programming problem can be stated as fol-
lows.

( - )
Find X = \ } > which minimizes /(X)

U J

subject to the constraints

gj(X) < 0, J = 1,2,. . .,m ( 1 1}

Ij(X) = 0, J = 1,2,. . .,/>

where X is an n-dimensional vector called the design vector, /(X) is termed
the objective Junction, and gj (X) and Ij (X) are known as inequality and equal-
ity constraints, respectively. The number of variables n and the number of
constraints m and/or/? need not be related in any way. The problem stated in
Eq. (1.1) is called a constrained optimization problem.^ Some optimization

1In the mathematical programming literature, the equality constraints Z7(X) = 0 , j = 1,2,. . .,p
are often neglected, for simplicity, in the statement of a constrained optimization problem, al-
though several methods are available for handling problems with equality constraints.



problems do not involve any constraints and can be stated as:

("X1-)

Find X = < X} > which minimizes/(X) (1.2)

Such problems are called unconstrained optimization problems.

1.4.1 Design Vector

Any engineering system or component is defined by a set of quantities some
of which are viewed as variables during the design process. In general, certain
quantities are usually fixed at the outset and these are called preassigned pa-
rameters. All the other quantities are treated as variables in the design process
and are called design or decision variables xh i = 1,2,. . .,n. The design vari-

ables are collectively represented as a design vector X = \ } >. As an ex-

U J
ample, consider the design of the gear pair shown in Fig. 1.2, characterized
by its face width b, number of teeth Tx and T2, center distance d, pressure
angle \[/, tooth profile, and material. If center distance d, pressure angle xj/,
tooth profile, and material of the gears are fixed in advance, these quantities
can be called preassigned parameters. The remaining quantities can be collec-

tively represented by a design vector X = < X2 ) = < T1 >. If there are no

W W
restrictions on the choice of b, Tx, and T2, any set of three numbers will con-
stitute a design for the gear pair. If an n-dimensional Cartesian space with each
coordinate axis representing a design variablext (i = 1,2,. . .,n) is considered,
the space is called the design variable space or simply, design space. Each
point in the rc-dimensional design space is called a design point and represents
either a possible or an impossible solution to the design problem. In the case

of the design of a gear pair, the design point < 20 >, for example, represents

I 4 0 J

r , o )
a possible solution, whereas the design point < — 20 > represents an impos-

L 40.5J



Figure 1.2 Gear pair in mesh.

sible solution since it is not possible to have either a negative value or a frac-
tional value for the number of teeth.

1.4.2 Design Constraints

In many practical problems, the design variables cannot be chosen arbitrarily;
rather, they have to satisfy certain specified functional and other requirements.
The restrictions that must be satisfied to produce an acceptable design are col-
lectively called design constraints. Constraints that represent limitations on the
behavior or performance of the system are termed behavior or functional con-
straints. Constraints that represent physical limitations on design variables such
as availability, fabricability, and transportability are known as geometric or
side constraints. For example, for the gear pair shown in Fig. 1.2, the face
width b cannot be taken smaller than a certain value, due to strength require-
ments. Similarly, the ratio of the numbers of teeth, TxIT2, is dictated by the
speeds of the input and output shafts, Nx and Af2. Since these constraints depend
on the performance of the gear pair, they are called behavior constraints. The
values of Tx and T2 cannot be any real numbers but can only be integers.
Further, there can be upper and lower bounds on T1 and T2 due to manufac-
turing limitations. Since these constraints depend on the physical limitations,
they are called side constraints.

d

b

N2

N1

Ti

T2



1.4.3 Constraint Surface

For illustration, consider an optimization problem with only inequality con-
straints gj (X) < 0. The set of values of X that satisfy the equation gj (X) =
0 forms a hypersurface in the design space and is called a constraint surface.
Note that this is an (n-l)-dimensional subspace, where n is the number of
design variables. The constraint surface divides the design space into two re-
gions: one in which gj (X) < 0 and the other in which gj (X) > 0. Thus the
points lying on the hypersurface will satisfy the constraint gj (X) critically,
whereas the points lying in the region where gj (X) > 0 are infeasible or un-
acceptable, and the points lying in the region where gj (X) < 0 are feasible or
acceptable. The collection of all the constraint surfaces gy (X) = 0, j =
1,2,. . .,m, which separates the acceptable region is called the composite con-
straint surface.

Figure 1.3 shows a hypothetical two-dimensional design space where the
infeasible region is indicated by hatched lines. A design point that lies on one
or more than one constraint surface is called a bound point, and the associated
constraint is called an active constraint. Design points that do not lie on any
constraint surface are known as free points. Depending on whether a particular
design point belongs to the acceptable or unacceptable region, it can be iden-

Figure 1.3 Constraint surfaces in a hypothetical two-dimensional design space.

Behaviour constraint g- =0

Side constraint^ = 0

Infeasible region

Behavior
constraint

Free
unacceptable
point

Feasible region

Free point Behavior
constraint

Bound acceptable
point

Side constraint # = 0

Bound unacceptable point

X2

*1



tified as one of the following four types:

1. Free and acceptable point
2. Free and unacceptable point
3. Bound and acceptable point
4. Bound and unacceptable point

All four types of points are shown in Fig. 1.3.

1.4.4 Objective Function

The conventional design procedures aim at finding an acceptable or adequate
design which merely satisfies the functional and other requirements of the
problem. In general, there will be more than one acceptable design, and the
purpose of optimization is to choose the best one of the many acceptable de-
signs available. Thus a criterion has to be chosen for comparing the different
alternative acceptable designs and for selecting the best one. The criterion with
respect to which the design is optimized, when expressed as a function of the
design variables, is known as the criterion or merit or objective function. The
choice of objective function is governed by the nature of problem. The objec-
tive function for minimization is generally taken as weight in aircraft and aero-
space structural design problems. In civil engineering structural designs, the
objective is usually taken as the minimization of cost. The maximization of
mechanical efficiency is the obvious choice of an objective in mechanical en-
gineering systems design. Thus the choice of the objective function appears to
be straightforward in most design problems. However, there may be cases
where the optimization with respect to a particular criterion may lead to results
that may not be satisfactory with respect to another criterion. For example, in
mechanical design, a gearbox transmitting the maximum power may not have
the minimum weight. Similarly, in structural design, the minimum-weight de-
sign may not correspond to minimum stress design, and the minimum stress
design, again, may not correspond to maximum frequency design. Thus the
selection of the objective function can be one of the most important decisions
in the whole optimum design process.

In some situations, there may be more than one criterion to be satisfied
simultaneously. For example, a gear pair may have to be designed for mini-
mum weight and maximum efficiency while transmitting a specified horse-
power. An optimization problem involving multiple objective functions is
known as a multiobjective programming problem. With multiple objectives
there arises a possibility of conflict, and one simple way to handle the problem
is to construct an overall objective function as a linear combination of the
conflicting multiple objective functions. Thus if Z1 (X) and/2(X) denote two
objective functions, construct a new (overall) objective function for optimi-
zation as

/(X) = a,/,(X) + a2/2(X) (1.3)



where ax and a2 are constants whose values indicate the relative importance
of one objective function relative to the other.

1.4.5 Objective Function Surfaces

The locus of all points satisfying /(X) = c = constant forms a hypersurface
in the design space, and for each value of c there corresponds a different mem-
ber of a family of surfaces. These surfaces, called objective function surfaces,
are shown in a hypothetical two-dimensional design space in Fig. 1.4.

Once the objective function surfaces are drawn along with the constraint
surfaces, the optimum point can be determined without much difficulty. But
the main problem is that as the number of design variables exceeds two or
three, the constraint and objective function surfaces become complex even for
visualization and the problem has to be solved purely as a mathematical prob-
lem. The following example illustrates the graphical optimization procedure.

Figure 1.4 Contours of the objective function.

uptimumjDoint



Example IA Design a uniform column of tubular section (Fig. 1.5) to carry
a compressive load P = 2500 kgf for minimum cost. The column is made up
of a material that has a yield stress (a )̂ of 500 kgf/cm2, modulus of elasticity
(E) of 0.85 X 106 kgf/cm2, and density (p) of 0.0025 kgf/cm3. The length of
the column is 250 cm. The stress induced in the column should be less than
the buckling stress as well as the yield stress. The mean diameter of the column
is restricted to lie between 2 and 14 cm, and columns with thicknesses outside
the range 0.2 to 0.8 cm are not available in the market. The cost of the column
includes material and construction costs and can be taken as 5W + 2d, where
W is the weight in kilograms force and d is the mean diameter of the column
in centimeters.

SOLUTION The design variables are the mean diameter (d) and tube thick-
ness (t):

- a - t t

The objective function to be minimized is given by

/(X) = 5W + Id = 5p/x dt + Id = 9.82X1X2 + 2Jc1 (E2)

Section A-A

Figure 1.5 Tubular column under compression.
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The behavior constraints can be expressed as

stress induced < yield stress
stress induced < buckling stress

The induced stress is given by

• , , p 2 5 0 °
induced stress = O1 = — - = (E3)

TT dt TTXiX2

The buckling stress for a pin-connected column is given by

, „ . Euler buckling load Tr2EI 1
buckling stress = ob = = —~ (E4)

cross-sectional area / TT at

where

/ = second moment of area of the cross section of the column

= ^ ( 4 + dj)(do + Cl1)(Cl0 - Cl1) = ^Kd + tf + (d- t)2]

• [(d + t) + (d~ t)][(d + t ) - ( d - 0 ]

= I dt(d2 + t2) = I X1X2(X
2 + xl) (E5)

Thus the behavior constraints can be restated as

2500
S1(X) = 500 < 0 (E6)

TTXxX2

2500 7T2(0.85 X IQ6X^ + xl)
g2(X) = flff.m2 ^ 0 (E7)

TTX1X2 8(250)

The side constraints are given by

2 < d < 14
0.2 < t < 0.8

which can be expressed in standard form as

g3(X) = -X1 + 2.0 < 0 (E8)



S 4 ( X ) =xx- 1 4 . 0 < 0 ( E 9 )

g5(X) = -X2 + 0.2 < 0 (E10)

S6(X) = X2 - 0.8 < 0 (E11)

Since there are only two design variables, the problem can be solved graphi-
cally as shown below.

First, the constraint surfaces are to be plotted in a two-dimensional design
space where the two axes represent the two design variables Jc1 and X2. To plot
the first constraint surface, we have

S1(X) = ^ - - 500 < 0
TTJC1JC2

that is,

JC1Jc2 > 1.593

Thus the curve JC1JC2 = 1.593 represents the constraint surface Si(X) = 0. This
curve can be plotted by finding several points on the curve. The points on the
curve can be found by giving a series of values to JC1 and finding the corre-
sponding values of Jc2 that satisfy the relation JC1Jc2 = 1.593:

jc, 2.0 4.0 6.0 8.0 10.0 12.0 14.0

Jc2 0.7965 0.3983 0.2655 0.1990 0.1593 0.1328 0.1140

These points are plotted and a curve P1 Q1 passing through all these points is
drawn as shown in Fig. 1.6, and the infeasible region, represented by g\(X)
> 0 OrJc1JC2 < 1.593, is shown by hatched lines.f Similarly, the second con-
straint g2(X) < 0 can be expressed as xxx2(x

2\ H-Jc2) > 47.3 and the points
lying on the constraint surface g2(X) = 0 can be obtained as follows:

IfOrJc1JC2(X? + JC|) = 47.3]:

jc, 2 4 6 8 10 12 14

jc2 2.41 0.716 0.219 0.0926 0.0473 0.0274 0.0172

These points are plotted as curve P2Q2, the feasible region is identified, and
the infeasible region is shown by hatched lines as shown in Fig. 1.6. The
plotting of side constraints is very simple since they represent straight lines.
After plotting all the six constraints, the feasible region can be seen to be given
by the bounded area ABCDEA.

trThe infeasible region can be identified by testing whether the origin lies in the feasible or in-
feasible region.



Figure 1.6 Graphical optimization of Example 1.1.

Next, the contours of the objective function are to be plotted before finding
the optimum point. For this, we plot the curves given by

/ (X) = 9.82X,JC2 + Ixx = c = constant

for a series of values of c. By giving different values to c, the contours of /
can be plotted with the help of the following points.

Optimum point
(5.44, 0.293)

ABCDEA = Feasible region

Buckling constraint
g2M = 0

Yield constraint
g,(x) = O

A E

?7Pl

C D

Ql

Q2



For 9.82X1Jc2 4- 2X1 = 50.0:

X2 0 . 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

jc, 16.77 12.62 10.10 8.44 7.24 6.33 5.64 5.07

For 9.82X,JC2 + 2X1 = 40.0:

jc2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Jc1 13.40 10.10 8.08 6.75 5.79 5.06 4.51 4.05

For 9.82X1X2 H- 2xj = 31.58 (passing through the corner point C):

X2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

JC, 10.57 7.96 6.38 5.33 4.57 4.00 3.56 3.20

F o r 9.82X1X2 + 2X1 = 2 6 . 5 3 (pass ing th rough the corner point B):

X2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

x, 8.88 6.69 5.36 4.48 3.84 3.36 2.99 2.69

For 9.82X1X2 = 2X1 = 20.0:

X2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

X1 6.70 5.05 4.04 3.38 2.90 2.53 2.26 2.02

These contours are shown in Fig. 1.6 and it can be seen that the objective
function cannot be reduced below a value of 26.53 (corresponding to point B)
without violating some of the constraints. Thus the optimum solution is given
by point B with d* = x* = 5.44 cm and t* = X2 = 0.293 cm with/min =
26.53.

1.5 CLASSIFICATION OF OPTIMIZATION PROBLEMS

Optimization problems can be classified in several ways, as described below.

1.5.1 Classification Based on the Existence of Constraints

As indicated earlier, any optimization problem can be classified as constrained
or unconstrained, depending on whether or not constraints exist in the problem.

1.5.2 Classification Based on the Nature of the Design Variables

Based on the nature of design variables encountered, optimization problems
can be classified into two broad categories. In the first category, the problem



is to find values to a set of design parameters that make some prescribed func-
tion of these parameters minimum subject to certain constraints. For example,
the problem of minimum-weight design of a prismatic beam shown in Fig.
1.7a subject to a limitation on the maximum deflection can be stated as fol-
lows.

Find X = , which minimizes

W (1.4)
/ (X) = plbd

subject to the constraints

Stip(X) < <5max

b > 0

d > 0

where p is the density and 5tip is the tip deflection of the beam. Such problems
are called parameter or static optimization problems. In the second category
of problems, the objective is to find a set of design parameters, which are all
continuous functions of some other parameter, that minimizes an objective
function subject to a set of constraints. If the cross-sectional dimensions of the
rectangular beam are allowed to vary along its length as shown in Fig. 1.7ft,
the optimization problem can be stated as:

Find X(r) = ) J / \ ( which minimizes

/[X(O] = P f b(t)d(t)dt (1.5)
Jo

Figure 1.7 Cantilever beam under concentrated load.



subject to the constraints

StJp[X(O] ^ Smax, 0 < t < /
6(0 > 0, 0 < t < /
rf(0 ^ 0, 0 < t < /

Here the design variables are functions of the length parameter t. This type of
problem, where each design variable is a function of one or more parameters,
is known as a trajectory or dynamic optimization problem [1.40].

1.5.3 Classification Based on the Physical Structure of the Problem

Depending on the physical structure of the problem, optimization problems
can be classified as optimal control and nonoptimal control problems.

Optimal Control Problem. An optimal control (OC) problem is a mathemati-
cal programming problem involving a number of stages, where each stage
evolves from the preceding stage in a prescribed manner. It is usually described
by two types of variables: the control (design) and the state variables. The
control variables define the system and govern the evolution of the system
from one stage to the next, and the state variables describe the behavior or
status of the system in any stage. The problem is to find a set of control or
design variables such that the total objective function (also known as the per-
formance index, PI) over all the stages is minimized subject to a set of con-
straints on the control and state variables. An OC problem can be stated as
follows [1.40]:

Find X which minimizes/(X) = S fi(xhy^) (1.6)
/ = i

subject to the constraints

qi(xi9yd + yt = yi + i, i = 1,2,. . .,/

gj(xj) < 0, J= 1,2,. . . , /

hk(yk) < 0, * = 1,2,. . .,/

where xt is the ith control variable, yt the ith state variable, a n d / the contri-
bution of the ith stage to the total objective function; gj9 hk, and qt are functions
of Xj, yk and xt and yh respectively, and / is the total number of stages. The
control and state variables Jc1 and yt can be vectors in some cases. The following
example serves to illustrate the nature of an optimal control problem.

Example 1.2 A rocket is designed to travel a distance of 12s in a vertically
upward direction [1.32]. The thrust of the rocket can be changed only at the



discrete points located at distances of 0, s, 2s, 3s, . . . , 11s. If the maximum
thrust that can be developed at point / either in the positive or negative direction
is restricted to a value of F1-, formulate the problem of minimizing the total
time of travel under the following assumptions:

1. The rocket travels against the gravitational force.
2. The mass of the rocket reduces in proportion to the distance traveled.
3. The air resistance is proportional to the velocity of the rocket.

SOLUTION Let points (or control points) on the path at which the thrusts of
the rocket are changed be numbered as 1,2, 3, . . . , 1 3 (Fig. 1.8). Denoting

Control
points

Distance from
starting pointFigure 1.8 Control points in the path of the rocket.



Xj as the thrust, V1 the velocity, at the acceleration, and YYi1 the mass of the
rocket at point /, Newton's second law of motion can be applied as

net force on the rocket = mass X acceleration

This can be written as

thrust — gravitational force — air resistance = mass X acceleration

or

xt - mg - kxvt = Yn1Q1 (E1)

where the mass Yn1 can be expressed as

YYl1 = YYl1-X ~ k2S (E2)

and kx and k2 are constants. Equation (Ej) can be used to express the acceler-
ation, ah as

*i kxvt
0/ = g (E3)

YYIi mi

If tt denotes the time taken by the rocket to travel from point i to point / H- 1,
the distance traveled between the points / and / + 1 can be expressed as

s = vfi + \aii\

or

1 9 (X; k\V\

from which t{ can be determined as

. 2 , ^ (Xi k\Vi\

h = : (E5)
*i _ _k[Vi

YYl1 YYl1

Of the two values given by Eq. (E5), the positive value has to be chosen for
th The velocity of the rocket at point i + 1, V1+ u can be expressed in terms
of Vi as (by assuming the acceleration between points i and /H- 1 to be constant



for simplicity)

V1 + x = V1 + afi (E6)

The substitution of Eqs. (E3) and (E5) into Eq. (E6) leads to

*,+ 1 = L? + * ( * - , - ^ ) (E7)
S \mi mi )

From an analysis of the problem, the control variables can be identified as the
thrusts X1 and the state variables as the velocities, V1. Since the rocket starts at
point 1 and stops at point 13,

V1 = v 13 = 0 (E8)

Thus the problem can be stated as an OC problem as

Find X = < . which minimizes

f \ / T "\
. 2 , o (Xi k*Vi\

/(X) = 2 ^ = 2 7 — '

^ \m,- m,- / y

subject to

m, + i = m, — ̂ 2
5 ' ' = 1>2,. • .,12

^+i=>? + 2 , (^-^-^) , / = 1,2 12

|JC,-| < F / ? i = 1,2,. . .,12

vx = ^ , 3 = 0

1.5.4 Classification Based on the Nature of the Equations Involved

Another important classification of optimization problems is based on the na-
ture of expressions for the objective function and the constraints. According



to this classification, optimization problems can be classified as linear, nonlin-
ear, geometric, and quadratic programming problems. This classification is
extremely useful from the computational point of view since there are many
special methods available for the efficient solution of a particular class of prob-
lems. Thus the first task of a designer would be to investigate the class of
problem encountered. This will, in many cases, dictate the types of solution
procedures to be adopted in solving the problem.

Nonlinear Programming Problem. If any of the functions among the objec-
tive and constraint functions in Eq. (1.1) is nonlinear, the problem is called a
nonlinear programming (NLP) problem. This is the most general program-
ming problem and all other problems can be considered as special cases of the
NLP problem.

Example 1.3 The step-cone pulley shown in Fig. 1.9 is to be designed for
transmitting a power of at least 0.75 hp. The speed of the input shaft is 350
rpm and the output speed requirements are 750, 450, 250, and 150 rpm for a
fixed center distance of a between the input and output shafts. The tension on
the tight side of the belt is to be kept more than twice that on the slack side.
The thickness of the belt is t and the coefficient of friction between the belt

Figure 1.9 Step-cone pulley.



and the pulleys is /JL. Formulate the problem of finding the width and diameters
of the steps for minimum weight.

SOLUTION The design vector can be taken as

d2 ,

X = d3 ' •

d4 '

where dt is the diameter of the rth step on the output pulley and w is the width
of the belt and the steps. The objective function is the weight of the step-cone
pulley system:

/(X) = pw j (d2 + d\ + d\ + d\ + d[2 + d'i + d'-i2 + d?)

+4+(i)>4 + (I)1 »
where p is the density of the pulleys and d\ is the diameter of the /th step on
the input pulley.

To have the belt equally tight on each pair of opposite steps, the total length
of the belt must be kept constant for all the output speeds. This can be ensured
by satisfying the following equality constraints:

Cx - C2= 0 (E2)

C1-C3=O (E3)

Cx-C4 = O (E4)

where C1 denotes length of the belt needed to obtain output speed N1 (i =
1,2,3,4) and is given by [1.66,1.67]



where N is the speed of the input shaft and a is the center distance between
the shafts. The ratio of tensions in the belt can be expressed as [1.66,1.67]

Ti

— = e^
T1

where T\ and Tl
2 are the tensions on the right and slack sides of the /th step,

/x the coefficient of friction, and O1 the angle of lap of the belt over the ith
pulley step. The angle of lap is given by

O1: = TT - 2 sin"1

L 2a

and hence the constraint on the ratio of tensions becomes

e x p ^ [ » - 2 s i n - ' ^ - l ) ^ ] ] ] f c 2 , /=1,2,3,4 (E5)

The limitation on the maximum tension can be expressed as

T\ < stw, i = 1,2,3,4 (E6)

where s is the maximum allowable stress in the belt and t is the thickness of
the belt. The constraint on the power transmitted can be stated as (using lbf

for force and ft for linear dimensions)

(V1 - nVd/(350)

^000 * °'75

which can be rewritten, using T\ = stw (upper bound used for simplicity) and
Eq. (E5), as

» ( . - « , [ - , ( . - 2 s in- [ ( f - , ) £ ] ) ] ) » , ;

(jlffio)a0'75' ' - U A 4 «»
Finally, the lower bounds on the design variables can be taken as

w > 0 (E8)

di > 0, i = 1,2,3,4 (E9)



As the objective function, (E1), and most of the constraints, (E2) to (E9), are
nonlinear functions of the design variables dx, d2, d3, d4, and w, this problem
is a nonlinear programming problem.

Geometric Programming Problem

Definition A function h(K) is called a posynomial if h can be expressed as
the sum of power terms each of the form

C1Xx X2 Xn

where C1 and atj are constants with C1 > 0 and x} > 0. Thus a posynomial with
N terms can be expressed as

A geometric programming (GMP) problem is one in which the objective
function and constraints are expressed as posynomials in X. Thus GMP prob-
lem can be posed as follows [1.44]:

Find X which minimizes

NQ / n \

/(X) = S1 C1- ( I I XfA9 q > 0, Xj > 0 (1.8)

subject to

Nk / n v

gk(X) = S aik I n x/s» J > 0, aik > 0, -̂ > 0, k = 1,2,. . .,m

where Â 0 and Nk denote the number of posynomial terms in the objective and
Ath constraint function, respectively.

Example 1.4 Four identical helical springs are used to support a milling ma-
chine weighing 5000 Ib. Formulate the problem of finding the wire diameter
(d), coil diameter (D), and the number of turns (N) of each spring (Fig. 1.10)
for minimum weight by limiting the deflection to 0.1 in. and the shear stress
to 10,000 psi in the spring. In addition, the natural frequency of vibration of
the spring is to be greater than 100 Hz. The stiffness of the spring (k), the shear
stress in the spring (r), and the natural frequency of vibration of the spring (/„)
are given by

SD3N

ird



Figure 1.10 Helical spring.

f = 1 S = I U4G 8 = ^Ggd

where G is the shear modulus, F the compressive load on the spring, w the
weight of the spring, p the weight density of the spring, and Ks the shear stress
correction factor. Assume that the material is spring steel with G = 12 X 106

psi and p = 0.3 lb/in3, and the shear stress correction factor is Ks « 1.05.

SOLUTION The design vector is given by

' • [ : ] • [ ; ]

and the objective function by

/(X) = weight = — irDNp (E1)

N (number of turns)

D

d

F

F



The constraints can be expressed as

^ . F SFD3N ^ ^
deflection = - = . < 0.1

k d G

that is,

*l(X) = vllfik > l (E2)

SFD
shear stress = Ks —j < 10,000

that is,

^Gg d
natural frequency = — j = - -^- > 100

that is,

y/Ggd

Since the equality sign is not included (along with the inequality symbol, > )
in the constraints of Eqs. (E2) to (E4), the design variables are to be restricted
to positive values as

d > 0, D > 0 , A r > 0 (E5)

By substituting the known data, F = weight of the milling machine /4 = 1250
Ib, p = 0.3 lb/in3, G = 12 x 106 psi, and Ks = 1.05, Eqs. (E1) to (E4) become

/(X) = lir2(03)d2DN = 0.7402JC 2̂JC3 (E6)

»-®-ijgi5$-•**>-*'">• <E->
&<x> - i S -2<mxW >' <Et)



It can be seen that the objective function, / (X) , and the constraint functions,
gi(X) to #3(X), are posynomials and hence the problem is a GMP problem.

Quadratic Programming Problem. A quadratic programming problem is a
nonlinear programming problem with a quadratic objective function and linear
constraints. It is usually formulated as follows:

n n n

F(X) = c + S q,x, + 2 2 Q0X1XJ (1.9)
i=\ i=1j=1

subject to

n

Tt dijXi = bj9 j = 1,2,. . .,m

JC/ > 0 , I = 1 , 2 , . . . , n

where c, qh Qtj, atj, and fy are constants.
Example 1.5 A manufacturing firm produces two products, A and B, using
two limited resources. The maximum amounts of resources 1 and 2 available
per day are 1000 and 250 units, respectively. The production of 1 unit of
product A requires 1 unit of resource 1 and 0.2 unit of resource 2, and the
production of 1 unit of product B requires 0.5 unit of resource 1 and 0.5 unit
of resource 2. The unit costs of resources 1 and 2 are given by the relations
(0.375 - 0.00005W1) and (0.75 - 0.000Iw2), respectively, where w, denotes
the number of units of resource i used ( / = 1 , 2 ) . The selling prices per unit
of products A and B, pA and p B , are given by

pA = 2.00 - 0.0005JC^ - 0.00015JC5

pB = 3.50 - 0.0002^ - 0.0015*fl

where xA and xB indicate, respectively, the number of units of products A and
B sold. Formulate the problem of maximizing the profit assuming that the firm
can sell all the units it manufactures.

SOLUTION Let the design variables be the number of units of products A
and B manufactured per day:

The requirement of resource 1 per day is (xA + 0.5jt#) and that of resource 2
is (0.2x̂ 4 + 0.5JC#) and the constraints on the resources are



xA + 0.5*5 ^ 1000 (E1)

0.2X4 + 0.5xB < 250 (E2)

The lower bounds on the design variables can be taken as

xA * 0 (E3)

X8^O (E4)

The total cost of resources 1 and 2 per day is

(X4 + 0.5jcfi) [0.375 - 0.00005(JC4 + 0.5jcfl)]

+ (0.2Jc4 H- 0.5JC^) [0.750 - 0.0001(0.2Jc4 + 0.5jcfl)]

and the return per day from the sale of products A and B is

^(2.00 - 0.0005Jc4 - 0.00015JC5) + jcfl(3.50 - 0.0002^ - 0.0015jcfl)

The total profit is given by the total return minus the total cost. Since the
objective function to be minimized is the negative of the profit per day, / (X)
is given by

/ (X) = (JĈ  + 0.5jcfl) [0.375 - 0.00005(Jc4 + 0.5JCB)]

+ (0.2JĈ 4 + 0.5jcfl) [0.750 - 0,0001(0.2Jc4 + 0.5JCB)]

- JC/1(2.00 - O.OOO5JC,4 - 0.00015JCB)

- JCB(3.50 - 0.0002Jĉ  - 0.0015JCa) (E5)

As the objective function [Eq. (E5)] is a quadratic and the constraints [Eqs.
(E1) to (E4)] are linear, the problem is a quadratic programming problem.

Linear Programming Problem. If the objective function and all the constraints
in Eq. (1.1) are linear functions of the design variables, the mathematical pro-
gramming problem is called a linear programming (LP) problem. A linear
programming problem is often stated in the following standard form:

F M X = [ I ]
n

which minimizes / (X) = Zl C1X1
i= 1



subject to the constraints (1.10)

n

S aijXi = bp j = 1,2,. . .,m

X1 > 0, I = 1,2,. . .,ft

where C1-, a,-,-, and bj are constants.

Example 1.6 A scaffolding system consists of three beams and six ropes as
shown in Fig. 1.11. Each of the top ropes A and B can carry a load of Wx,
each of the middle ropes C and D can carry a load of W1, and each of the
bottom ropes E and F can carry a load of W3. If the loads acting on beams 1,
2, and 3 are X1, x2, and X3, respectively, as shown in Fig. 1.11, formulate the
problem of finding the maximum load (JC1 + x2 + X3) that can be supported by
the system. Assume that the weights of the beams 1, 2, and 3 are W1, w2, and
W3, respectively, and the weights of the ropes are negligible.

SOLUTION Assuming that the weights of the beams act through their re-
spective middle points, the equations of equilibrium for vertical forces and
moments for each of the three beams can be written as:

For beam 3:

TE + Tp = X3 + w3

X3Ol) + w3(2l) - Tp(Al) = 0

Beam 2

Beam 1

Beam 3

Figure 1.11 Scaffolding system with three beams.



For beam 2:

Tc + TD - TE = X2 + W2

X2(I) + W2(I) + TE(l) - TD(2l) = 0

For beam 1:

TA +TB - TC - TD - TF = X1 + W1

XxOl) + W1C2I) - TB(9l) + Tc(2l) + 7D(4/) + 7>(7/) = 0

where T1 denotes the tension in rope /. The solution of these equations gives

TF = Ix3 + 5 W3

TE = \x3 + \w3

TD = \x2 + Ix3 + jw2 + \w3

Tc = JX2 + ^x3 + \w2 + ^w3

TB = Ix1 + |-r2 + \x3 + 5W1 + \w2 + ^w3

TA = \xx + Ix2 + }x3 + jw, + § W2 + ^w3

The optimization problem can be formulated by choosing the design vector as

1 • S
Since the objective is to maximize the total load

/ (X) = -(X1 + x2 + X3) (E1)

The constraints on the forces in the ropes can be stated as

TA S W1 (E2)

TB * W, (E3)

Tc ^ W2 (E4)

TD * W2 (E5)

TE S W3 (E6)

TF * W3 (E7)



Finally, the nonnegativity requirement of the design variables can be expressed
as

X1 > 0

X2 > 0

X3 > 0 (E8)

Since all the equations of the problem (E1) to (E8), are linear functions of Jc1,
X2, and Jc3, the problem is a linear programming problem.

1.5.5 Classification Based on the Permissible Values of the Design
Variables

Depending on the values permitted for the design variables, optimization prob-
lems can be classified as integer- and real-valued programming problems.

Integer Programming Problem. If some or all of the design variables Jc1, JC2,
. . . , Xn of an optimization problem are restricted to take on only integer (or
discrete) values, the problem is called an integer programming problem. On
the other hand, if all the design variables are permitted to take any real value,
the optimization problem is called a real-valued programming problem. Ac-
cording to this definition, the problems considered in Examples 1.1 to 1.6 are
real-valued programming problems.

Example 1,7 A cargo load is to be prepared from five types of articles. The
weight wh volume vh and monetary value C1 of different articles are given
below.

Article Type w, V1 c,

1 4 9 5
2 8 7 6
3 2 4 3
4 5 3 2
5 3 8 8

Find the number of articles Jt1- selected from the /th type (/ = 1,2,3,4,5), so
that the total monetary value of the cargo load is a maximum. The total weight
and volume of the cargo cannot exceed the limits of 2000 and 2500 units,
respectively.

SOLUTION Let xt be the number of articles of type i (i = 1 to 5) selected.
Since it is not possible to load a fraction of an article, the variables xt can take
only integer values.



The objective function to be maximized is given by

/ (X) = 5JC, + 6jt2 + 3JC3 + 2JC4 + Sx5 (E1)

and the constraints by

4Jc1 H- Sx2 + 2JC3 + 5JC4 + 3JC5 < 2000 (E2)

9^1 + Ix2 + 4Jt3 + 3JC4 H- 8x5 < 2500 (E3)

xt >: 0 and integral, i = 1,2,. . .,5 (E4)

Since xt are constrained to be integers, the problem is an integer programming
problem.

1.5.6 Classification Based on the Deterministic Nature of the Variables

Based on the deterministic nature of the variables involved, optimization prob-
lems can be classified as deterministic and stochastic programming problems.

Stochastic Programming Problem. A stochastic programming problem is an
optimization problem in which some or all of the parameters (design variables
and/or preassigned parameters) are probabilistic (nondeterministic or stochas-
tic). According to this definition, the problems considered in Examples 1.1 to
1.7 are deterministic programming problems.

Example 1.8 Formulate the problem of designing a minimum-cost rectan-
gular under-reinforced concrete beam that can carry a bending moment M with
a probability of at least 0.95. The costs of concrete, steel, and form work are
given by Cc = $200/m3, Cs = $5OOO/m3 and Cf = $40/m2 of surface area.
The bending moment M is a probabilistic quantity and varies between 1 X 105

and 2 X 105 N-m with a uniform probability. The strengths of concrete and
steel are also uniformly distributed probabilistic quantities whose lower and
upper limits are given by

fc = 25 and 35 MPa

fs = 500 and 550 MPa

Assume that the area of the reinforcing steel and the cross-sectional dimensions
of the beam are deterministic quantities.

SOLUTION The breadth b in meters, the depth d in meters, and the area of
reinforcing steel As in square meters are taken as the design variables Jc1, X2,
and Jc3, respectively (Fig. 1.12). The cost of the beam per meter length is given



Figure 1.12 Cross section of a reinforced con-
crete beam.

by

/(X) = cost of steel + cost of concrete + cost of formwork

= A5C5 + (bd - AS)CC + 2(b + d)Cf (E1)

The resisting moment of the beam section is given by [1.69]

and the constraint on the bending moment can be expressed as [1.70]

P[MR - M > 0] = P [AS/S (d - 0.59 ^ ) - M > oj > 0.95 (E2)

where P[ • • • ] indicates the probability of occurrence of the event [ • • • ].
To ensure that the beam remains under-reinforced, 1^ the area of steel is

bounded by the balanced steel area A^ as

As < A^ (E3)

where

1If steel area is larger than Af\ the beam becomes over-reinforced and failure occurs all of a
sudden due to lack of concrete strength. If the beam is under-reinforced, failure occurs due to
lack of steel strength and hence it will be gradual.

d

b



Since the design variables cannot be negative, we have

d > 0

b > 0

As > 0 (E4)

Since the quantities M, fc, and fs are nondeterministic, the problem is a sto-
chastic programming problem.

1.5.7 Classification Based on the Separability of the Functions

Optimization problems can be classified as separable and nonseparable pro-
gramming problems based on the separability of the objective and constraint
functions.

Separable Programming Problem

Definition A function /(X) is said to be separable if it can be expressed as
the sum of n single-variable functions, Z1(Jc^9Z2(X2), . . . ,fn(xn),

 t n a t is,

n

/(X) = 2/,(X,) (l.ii)
/ = 1

A separable programming problem is one in which the objective function
and the constraints are separable and can be expressed in standard form as:

n

Find X which minimizes Z(X) = S /(JC,) (1.12)
I = i

subject to

n

gj(X) = S 1 giJ{Xi) < bj9 j = 1,2,. . .,m

where bj is a constant.

Example 1.9 A retail store stocks and sells three different models of TV sets.
The store cannot afford to have an inventory worth more than $45,000 at any
time. The TV sets are ordered in lots. It costs $a; for the store whenever a lot
of TV model j is ordered. The cost of one TV set of model j is cy. The demand
rate of TV model j is dj units per year. The rate at which the inventory costs
accumulate is known to be proportional to the investment in inventory at any
time, with qj = 0.5, denoting the constant of proportionality for TV model j .



Formulate the problem of minimizing the average annual cost of ordering and
storing the TV sets.

SOLUTION Let Xj denote the number of TV sets of model j ordered in each
lot (j = 1,2,3)- Since the demand rate per year of model 7 is dj, the number
of times the TV model j needs to be ordered is d} IXJ. The cost of ordering TV
model j per year is thus ajdj/xj, j = 1,2,3. The cost of storing TV sets of
model j per year is qjCjXj/2 since the average level of inventory at any time
during the year is equal to CjXj/2. Thus the objective function (cost of ordering
plus storing) can be expressed as

/(X) = № + ̂ ) + (** + *%*) + (^ + *%*) (E1)\ Xx 2 / \ X2 2 / \ X3 2 /

where the design vector X is given by

X = j *2 (E2)

I")
The constraint on the volume of inventory can be stated as

C1X1 + C2X2 + C3X3 < 45,000 (E3)

The limitation on the storage area is given by

S1X1 + S2X2 + S3X3 < 90 (E4)

Since the design variables cannot be negative, we have

Xj > 0, J = 1,2,3 (E5)

Each TV set occupies an area of Sj = 0.40 m2 and the maximum storage space
available is 90 m2. The data known from the past experience are given below.

Ordering cost O7 ($)
Unit cost Cj ($)
Demand rate, dj

TV Model j

1

50
40

800

2

80
120
400

3

100
80

1200



By substituting the known data, the optimization problem can be stated as
follows:
Find X which minimizes

/40,000 ^ \ /32,000 ^ \ /120,000 ^ \
/(X) = — + 1Ox1 + — + 3Ox2 + + 2Ox3

V *i / \ X2 J \ x3 )

(E6)

subject to

S1(X) = 4Ox1 4- 12Ox2 + 8Ox3 < 45,000 (E7)

S2(X) = 0.40(X1 + X2 + X3) < 90 (E8)

S3(X) = -X1 < 0 (E9)

S4(X) = -X2 < 0 (E10)

S5(X) = - x 3 < 0 (E11)

It can be observed that the optimization problem stated in Eqs. (E6) to (E11) is
a separable programming problem.

1.5.8 Classification Based on the Number of Objective Functions

Depending on the number of objective functions to be minimized, optimization
problems can be classified as single- and multiobjective programming prob-
lems. According to this classification, the problems considered in Examples
1.1 to 1.9 are single objective programming problems.

Multiobjective Programming Problem. A multiobjective programming prob-
lem can be stated as follows:

Find X which minimizesZ1(X) ,/2(X),. . .,A(X)

subject to (1.13)

S7(X) < 0, J= 1,2,...9m

where/1? /2,. . ., fk denote the objective functions to be minimized simulta-
neously.

Example 1.10 A uniform column of rectangular cross section is to be con-
structed for supporting a water tank of mass M (Fig. 1.13). It is required (1)
to minimize the mass of the column for economy, and (2) to maximize the
natural frequency of transverse vibration of the system for avoiding possible



Cross section of
the column

Figure 1.13 Water tank on a column.

resonance due to wind. Formulate the problem of designing the column to
avoid failure due to direct compression and buckling. Assume the permissible
compressive stress to be amax.

SOLUTION Let X1 = b and X2 = d denote the cross-sectional dimensions of
the column. The mass of the column (m) is given by

m = pbdl = plX]X2 (Ei)

where p is the density and / is the height of the column. The natural frequency
of transverse vibration of the water tank (co), by treating it as a cantilever beam
with a tip mass M, can be obtained as [1.68]:

_ r 3Ei f2

w " UM + 1 ^ ) H (Ez)

where E is the Young's modulus and / is the area moment of inertia of the
column given by

I = T2-bd3 (E3)

The natural frequency of the water tank can be maximized by minimizing -co.
With the help of Eqs. (E1) and (E3), Eq. (E2) can be rewritten as

03-UlHM +^0 ,Ix1X2)]
 (E4)

d

b

I

M



The direct compressive stress (ac) in the column due to the weight of the water
tank is given by

Mg Mg
bd XxX2

and the buckling stress for a fixed-free column (ab) is given by [1.71]

_ /VISA ±_T?EX\
a» ~ yw) bd ~ 48/2 (Efi)

To avoid failure of the column, the direct stress has to be restricted to be less
than amax and the buckling stress has to be constrained to be greater than the
direct compressive stress induced.

Finally, the design variables have to be constrained to be positive. Thus the
multiobjective optimization problem can be stated as follows:

Find X = ] l [ which minimizes

/,(X) = PIx1X2 (E7)

T FY r 3 1 1 / 2

j: / v \ ZXxX2/2(X) = - 2 33 (E8)

IAlXM + -i^ PIx1X2)]

subject to
g,(X) = I**- - ffmax < 0 (E9)

X1X2

-™ - 5 - ̂ s °
g3(X) = -X1 < 0 (E11)

g4(X) = -x2 < 0 (E12)

1.6 OPTIMIZATION TECHNIQUES

The various techniques available for the solution of different types of optimi-
zation problems are given under the heading of mathematical programming
techniques in Table 1.1. The classical methods of differential calculus can be
used to find the unconstrained maxima and minima of a function of several
variables. These methods assume that the function is differentiate twice with

Next Page
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respect to the design variables and the derivatives are continuous. For prob-
lems with equality constraints, the Lagrange multiplier method can be used. If
the problem has inequality constraints, the Kuhn-Tucker conditions can be
used to identify the optimum point. But these methods lead to a set of nonlinear
simultaneous equations that may be difficult to solve. The classical methods
of optimization are discussed in Chapter 2.

The techniques of nonlinear, linear, geometric, quadratic, or integer pro-
gramming can be used for the solution of the particular class of problems in-
dicated by the name of the technique. Most of these methods are numerical
techniques wherein an approximate solution is sought by proceeding in an it-
erative manner by starting from an initial solution. Linear programming tech-
niques are described in Chapters 3 and 4. The quadratic programming tech-
nique, as an extension of the linear programming approach, is discussed in
Chapter 4. Since nonlinear programming is the most general method of opti-
mization that can be used to solve any optimization problem, it is dealt with
in detail in Chapters 5-7. The geometric and integer programming methods
are discussed in Chapters 8 and 10, respectively. The dynamic programming
technique, presented in Chapter 9, is also a numerical procedure that is useful
primarily for the solution of optimal control problems. Stochastic program-
ming deals with the solution of optimization problems in which some of the
variables are described by probability distributions. This topic is discussed in
Chapter 11.

In Chapter 12 we discuss some additional topics of optimization. An intro-
duction to separable programming is presented in Section 12.2. A brief dis-
cussion of multiobjective optimization is given in Section 12.3. In Sections
12.4 to 12.6 we present the basic concepts of simulated annealing, genetic
algorithms, and neural network methods, respectively. When the problem is
one of minimization or maximization of an integral, the methods of the cal-
culus of variations presented in Section 12.7 can be used to solve it. An intro-
duction to optimal control theory, which can be used for the solution of tra-
jectory optimization problems, is given in Seciton 12.8. Sensitivity analysis
and other computational issues are discussed in the context of solution of prac-
tical optimization problems in Chapter 13.

1.7 ENGINEERING OPTIMIZATION LITERATURE

The literature on engineering optimization is large and diverse. Several text-
books are available and dozens of technical periodicals regularly publish pa-
pers related to engineering optimization. This is primarily because optimiza-
tion is applicable to all areas of engineering. Researchers in many fields must
be attentive to the developments in the theory and applications of optimization.

The most widely circulated journals that publish papers related to engineer-
ing optimization are Engineering Optimization, ASME Journal of Mechanical
Design, AIAA Journal, ASCE Journal of Structural Engineering, Computers



and Structures, International Journal for Numerical Methods in Engineering,
Structural Optimization, Journal of Optimization Theory and Applications,
Computers and Operations Research, Operations Research, and Management
Science. Many of these journals are cited in the chapter references.
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REVIEW QUESTIONS

1.1 Match the following terms and descriptions.
(a) Free feasible point gj (X) = 0
(b) Free infeasible point Some gj (X) = 0 and other gj (X) < 0
(c) Bound feasible point Some gj (X) = 0 and other gj (X) > 0
(d) Bound infeasible point Some gj (X) > 0 and other gj (X) < 0
(e) Active constraints All gj (X) < 0

1.2 Answer true or false.
(a) Optimization problems are also known as mathematical program-

ming problems.
(b) The number of equality constraints can be larger than the number

of design variables.
(c) Preassigned parameters are part of design data in a design optimi-

zation problem.
(d) Side constraints are not related to the functionality of the system.
(e) A bound design point can be infeasible.
(f) It is necessary that some gj (X) = 0 at the optimum point.
(g) An optimal control problem can be solved using dynamic program-

ming techniques.
(h) An integer programming problem is same as a discrete program-

ming problem.

1.3 Define the following terms.
(a) Mathematical programming problem
(b) Trajectory optimization problem



(c) Behavior constraint
(d) Quadratic programming problem
(e) Posynomial
(f) Geometric programming problem

1.4 Match the following types of problems with their descriptions.
(a) Geometric programming problem Classical optimization prob-

lem
(b) Quadratic programming problem Objective and constraints are

quadratic
(c) Dynamic programming problem Objective is quadratic and

constraints are linear
(d) Nonlinear programming problem Objective and constraints

arise from a serial system
(e) Calculus of variations problem Objective and constraints are

polynomials with positive
coefficients

1.5 How do you solve a maximization problem as a minimization problem?

1.6 State the linear programming problem in standard form.

1.7 Define an OC problem and give an engineering example.

1.8 What is the difference between linear and nonlinear programming prob-
lems?

1.9 What is the difference between design variables and preassigned param-
eters?

1.10 What is a design space?

1.11 What is the difference between a constraint surface and a composite
constraint surface?

1.12 What is the difference between a bound point and a free point in the
design space?

1.13 What is a merit function?

1.14 Suggest a simple method of handling multiple objectives in an optimi-
zation problem.

1.15 What are objective function contours?

1.16 What is operations research?

1.17 State five engineering applications of optimization.

1.18 What is an integer programming problem?



During any week, no more than 1000 tons of nitrate, 2000 tons of phos-
phates, and 1500 tons of potash will be available. The company is re-
quired to supply a minimum of 5000 tons of fertilizer A and 4000 tons
of fertilizer D per week to its customers; but it is otherwise free to
produce the fertilizers in any quantities it pleases. Formulate the prob-
lem of finding the quantity of each fertilizer to be produced by the com-
pany to maximize its profit.

1.2 The two-bar truss shown in Fig. 1.14 is symmetric about the y axis.
The nondimensional area of cross section of the members A/AKf, and
the nondimensional position of joints 1 and 2, x/h, are treated as the
design variables Jc1 and JC2, respectively, where ArQf is the reference value
of the area (A) and h is the height of the truss. The coordinates of joint
3 are held constant. The weight of the truss (/,) and the total displace-
ment of joint 3 under the given load (/2) are to be minimized without
exceeding the permissible stress, a0. The weight of the truss and the
displacement of joint 3 can be expressed as

/,(X) = lphX^X + xUrzf

1.19 What is graphical optimization, and what are its limitations?

1.20 Under what conditions can a polynomial in n variables be called a
posynomial?

1.21 Define a stochastic programming problem and give two practical ex-
amples.

1.22 What is a separable programming problem?

PROBLEMS

1.1 A fertilizer company purchases nitrates, phosphates, potash, and an in-
ert chalk base at a cost of $1500, $500, $1000, and $100 per ton, re-
spectively, and produces four fertilizers A, B, C, and D. The production
cost, selling price, and composition of the four fertilizers are given be-
low.

Fertilizer

A
B
C
D

Production
Cost

($/ton)

100
150
200
250

Selling
Price

($/ton)

350
550
450
700

Percentage Composition by Weight

Nitrates

5
5

10
15

Phosphates

10
15
20

5

Potash

5
10
10
15

Inert
Chalk Base

80
70
60
65



Figure 1.14 Two-bar truss.
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where p is the weight density, P the applied load, and E is Young's
modulus. The stresses induced in members 1 and 2 {ox and O2) are given
by

P(I +X1)V(I + x2)
^i (X) = —J=

P(X1 - I)V(I +X2Q
(T2(A) = T=

2\/2xlx2Aref

In addition, upper and lower bounds are placed on design variables Xx

and X2 as

min < < max. 1 = 1 9

Find the solution of the problem using a graphical method with (a) fx as the
objective, (b) f2 as the objective, and (c) (Z1 + /2) as the objective for the
following data: E = 30 X 106 psi, p - 0.283 lb/in3, P = 10,000 Ib, <r0 =
20,000 psi, h = 100 in., Aref = 1 in2, jcfn = 0.1, xfn = 0.1, x^ax = 2.0,
andx?ax = 2.5.

Member 1
Member 2



1.3 Ten jobs are to be performed in an automobile assembly line as noted
in the following table.

Time Required
Job to Complete Jobs that Must Be Completed

Number the Job (min) Before Starting This Job

1 4 None
2 8 None
3 7 None
4 6 None
5 3 1,3
6 5 2 ,3 ,4
7 1 5, 6
8 9 6
9 2 7, 8

10 8 9

It is required to set up a suitable number of workstations with one worker
assigned to each workstation to perform certain jobs. Formulate the
problem of determining the number of workstations and the particular
jobs to be assigned to eack workstation to minimize the idle time of the
workers as an integer programming problem. (Hint: Define variables xtj

such that X1J = 1 if job / is assigned to station j , and xtj = 0 otherwise.)

1.4 A railroad track of length L is to be constructed over an uneven terrain
by adding or removing dirt (Fig. 1.15). The absolute value of the slope
of the track is to be restricted to a value of r, to avoid steep slopes. The
absolute value of the rate of change of the slope is to be limited to a
value T1 to avoid rapid accelerations and decelerations. The absolute

Terrain (known elevation, g(x))
Track (unknown elevation, h(x))

Figure 1.15 Railroad track on an uneven terrain.

a

x L
x

bg(x)

h(x)



value of the second derivative of the slope is to be limited to a value of
r3 to avoid severe jerks. Formulate the problem of finding the elevation
of the track to minimize the construct costs as an OC problem. Assume
the construction costs to be proportional to the amount of dirt added or
removed. The elevation of the track is equal to a and b at x = O and x
= L, respectively.

1.5 A manufacturer of a particular product produces Xx units in the first
week and X2 units in the second week. The number of units produced
in the first and second weeks must be at least 200 and 400, respectively,
to be able to supply the regular customers. The initial inventory is zero
and the manufacturer ceases to produce the product at the end of the
second week. The production cost of a unit, in dollars, is given by
Ax], where xt is the number of units produced in week i (i = 1,2). In
addition to the production cost, there is an inventory cost of $10 per
unit for each unit produced in the first week that is not sold by the end
of the first week. Formulate the problem of minimizing the total cost
and find its solution using a graphical optimization method.

1.6 Consider the slider-crank mechanism shown in Fig. 1.16 with the crank
rotating at a constant angular velocity co. Use a graphical procedure to
find the lengths of the crank and the connecting rod to maximize the
velocity of the slider at a crank angle of 6 = 30° for co = 100 rad/s.
The mechanism has to satisfy Groshofs criterion / > 2.5r to ensure
360° rotation of the crank. Additional constraints on the mechanism are
given by 0.5 < r < 10, 2.5 < Z < 25, and 10 < x < 20.

Figure 1.16 Slider-crank mechanism.

1.7 Solve Problem 1.6 to maximize the acceleration (instead of the velocity)
of the slider at 6 = 30° for co = 100 rad/s.

1.8 It is required to stamp four circular disks of radii Zf1, R2, R3, and R4

from a rectangular plate in a fabrication shop (Fig. 1.17). Formulate
the problem as an optimization problem to minimize the scrap. Identify
the design variables, objective function, and the constraints.

Crank, length r
Connecting rod, length I

Slider



Figure 1.17 Locations of circular disks in a rectangular plate.

1.9 The torque transmitted (T) by a cone clutch, shown in Fig. 1.18, under
uniform pressure condition is given by

3 sin a

where p is the pressure between the cone and the cup, / t h e coefficient
of friction, a the cone angle, R1 the outer radius, and R2 the inner ra-
dius.

Cup

Cone

Figure 1.18 Cone clutch.



(a) Find R1 and R2 that minimize the volume of the cone clutch with
a = 30°, F = 30 Ib, and/ = 0.5 under the constraints: T > 100
lb-in., R1 > 2R2, 0 < R{ < 15 in., and 0 < /?2 < 10 in.

(b) What is the solution if the constraint Rx > 2R2 is changed to Rx <
2#2?

(c) Find the solution of the problem stated in part (a) by assuming a
uniform wear condition between the cup and the cone. The torque
transmitted (T) under uniform wear condition is given by

T=^PR2(R2_R22)

sm a

(Note: Use graphical optimization for the solutions.)

1.10 A hollow circular shaft is to be designed for minimum weight to achieve
a minimum reliability of 0.99 when subjected to a random torque of
(T9G7) = (106,104) lb-in., where T is the mean torque and oT is the
standard deviation of the torque, T. The permissible shear stress, r0, of
the material is given by (ro,aTO) = (50,000, 5000) psi, where T0 is the
mean value and oT0 is the standard deviation of r0. The maximum in-
duced stress (r) in the shaft is given by

Tr0
T = T

where ro is the outer radius and J is the polar moment of inertia of the
cross section of the shaft. The manufacturing tolerances on the inner
and outer radii of the shaft are specified as ±0.06 in. The length of the
shaft is given by 50 ± 1 in. and the specific weight of the material by
0.3 ± 0.03 lb/in3. Formulate the optimization problem and solve it
using a graphical procedure. Assume normal distribution for all the ran-
dom variables and 3a values for the specified tolerances.
[Hints: (1) The minimum reliability requirement of 0.99 can be ex-
pressed, equivalently, as [1.70]

Zi = 2.326 , -*f*
Va, 4- GZ

TO

(2) If/(X1 ,Jc2,. . .,Xn) is a function of the random variables Jc1 ,Jt2,. . .,Jt,,,
the mean value of Z(Z) and the standard deviation off(of) are given by

Z = Z(Jt15X2,. . .,Xn)

r n / ~f \2 nl/2

= 2 f — ) a2

where X1 is the mean value of Jt1- and GXJ is the standard deviation of Jt1-.]



1.11 Certain nonseparable optimization problems can be reduced to a sepa-
rable form by using suitable transformation of variables. For example,
the product term / = xxx2 can be reduced to the separable form / = y\
- y\ by introducing the transformations

yx = \ (X1 + X2), y2 = \ (*i ~ X2)

Suggest suitable transformations to reduce the following terms to sep-
arable form.

(a) / = x\x\, xx > 0, jc2 > 0

(b) Z=Xf9X1 > 0

1.12 In the design of a shell-and-tube heat exchanger (Fig. 1.19), it is de-
cided to have the total length of tubes equal to at least ax [1.8]. The
cost of the tube is a2 per unit length and the cost of the shell is given
by (X3Z)2 5L, where D is the diameter and L is the length of the heat
exchanger shell. The floor space occupied by the heat exchanger costs
a4 per unit area and the cost of pumping cold fluid is a5L/d5N2 per day,

Figure 1.19 Shell-and-tube heat exchanger.

where d is the diameter of the tube and Af is the number of tubes. The
maintenance cost is given by Ot6NdL. The thermal energy transferred to
the cold fluid is given by cx1IN

x-2dLXA + as/d°-2L. Formulate the math-
ematical programming problem of minimizing the overall cost of the
heat exchanger with the constraint that the thermal energy transferred
be greater than a specified amount a9. The expected life of the heat
exchanger is al0 years. Assume that ah i = 1,2,. . .,10, are known
constants, and each tube occupies a cross-sectional square of width and
depth equal to d.

1.13 The bridge network shown in Fig. 1.20 consists of five resistors R1

(i = 1,2,. . .,5). If It is the current flowing through the resistance Rh

the problem is to find the resistances R1, R2, . . . , R5 so that the total

Tubes of diameter d
Number of tubes N

L

D



Figure 1.20 Electrical bridge network.

power dissipated by the network is a minimum. The current I1 can vary
between the lower and upper limits I1 m{n and /;,max>

 a n d the voltage
drop, Vi = R1Ih must be equal to a constant ct for 1 < / < 5. Formulate
the problem as a mathematical programming problem.

1.14 A traveling saleswoman has to cover n towns. She plans to start from
a particular town numbered 1, visit each of the other n — 1 towns, and
return to the town 1. The distance between towns i andj is given by dtj.
Formulate the problem of selecting the sequence in which the towns are
to be visited to minimize the total distance traveled.

1.15 A farmer has a choice of planting barley, oats, rice, or wheat on his
200-acre farm. The labor, water, and fertilizer requirements, yields per
acre, and selling prices are given in the following table:

Labor Water Fertilizer Selling
Type of Cost Required Required Yield Price
Crop ($) (m3) (Ib) (Ib) ($/lb)

Barley 300 10,000 100 1,500 0.5
Oats 200 7,000 120 3,000 0.2
Rice 250 6,000 160 2,500 0.3
Wheat 360 8,000 200 2,000 0.4

The farmer can also give part or all of the land for lease, in which case
he gets $200 per acre. The cost of water is $0.02/m3 and the cost of the
fertilizer is $2/lb. Assume that the farmer has no money to start with
and can get a maximum loan of $50,000 from the land mortgage bank
at an interest of 8%. He can repay the loan after six months. The irri-
gation canal cannot supply more than 4 X 105 m3 of water. Formulate
the problem of finding the planting schedule for maximizing the ex-
pected returns of the farmer.

1.16 There are two different sites, each with four possible targets (or depths)
to drill an oil well. The preparation cost for each site and the cost of
drilling at site i to target j are given below.



Formulate the problem of determining the best site for each target so
that the total cost is minimized.

1.17 A four-pole dc motor, whose cross section is shown in Fig. 1.21, is to
be designed with the length of the stator and rotor Jc1, the overall di-
ameter of the motor Jc2, the unnotched radius JC3, the depth of the notches
X4, and the ampere turns JC5 as design variables. The air gap is to be less

Slots (to house armature winding)

Site i

1
2

Drilling Cost to Target j

1

4
7

2

1
9

3

9
5

4

7
2

Preparation
Cost

11
13

Air gap

Rotor

Stator

Figure 1.21 Cross section of an idealized motor.



than Zc1 VJt2 + 7.5 where Zc1 is a constant. The temperature of the ex-
ternal surface of the motor cannot exceed AT above the ambient tem-
perature. Assuming that the heat can be dissipated only by radiation,
formulate the problem for maximizing the power of the motor [1.44].
[Hints:

1. The heat generated due to current flow is given by Ic2X1X2
1Xi1Xl

where k2 is a constant. The heat radiated from the external surface
for a temperature difference of AT is given by JC3XXX2AT where Jc3

is a constant.
2. The expression for power is given by Jc4NBxxX3X5 where Ic4 is a

constant, N is the rotational speed of the rotor, and B is the av-
erage flux density in the air gap.

3. The units of the various quantities are as follows. Lengths: cen-
timeter, heat generated, heat dissipated; and power: watt; tem-
perature: 0 C; rotational speed: rpm; flux density: gauss.]

1.18 A gas pipeline is to be laid between two cities A and E9 making it pass
through one of the four locations in each of the intermediate towns B,
C, and D (Fig. 1.22). The associated costs are indicated in the follow-
ing tables.

Costs for A to B and D to E:

From A to point i of B
From point / of D to E

Station i

1

30
50

2

35
40

3

25
35

4

40
25

City A
City E

Town B Town C Town D

Figure 1.22 Possible paths of the pipeline between A and E.



Formulate the problem of minimizing the cost of the pipeline.

1.19 A beam-column of rectangular cross section is required to carry an axial
load of 25 Ib and a transverse load of 10 Ib, as shown in Fig. 1.23. It
is to be designed to avoid the possibility of yielding and buckling and
for minimum weight. Formulate the optimization problem by assuming

Figure 1.23 Beam-column.

that the beam-column can bend only in the vertical (xy) plane. Assume
the material to be steel with a specific weight of 0.3 lb/in3, Young's
modulus of 30 X 106 psi, and a yield stress of 30,000 psi. The width
of the beam is required to be at least 0.5 in. and not greater than twice
the depth. Also, find the solution of the problem graphically. [Hint: The
compressive stress in the beam-column due to Py is Pylbd and that due
to Px is

PJd = 6PJ
2 4 bd2

The axial buckling load is given by

-K1EI7, Tr2Ebd3

V*Vcri 4 / 2 4 8 /2 -1

1.20 A two-bar truss is to be designed to carry a load of 2 Was shown in Fig.
1.24. Both bars have a tubular section with mean diameter d and wall

Costs for B to C and C to D:

From:

1
2
3
4

To:

1

22
35
24
22

2

18
25
20
21

3

24
15
26
23

4

18
21
20
22



Figure 1.24 Two-bar truss.

thickness t. The material of the bars has Young's modulus E and yield
stress Oy. The design problem involves the determination of the values
of d and t so that the weight of the truss is a minimum and neither
yielding nor buckling occurs in any of the bars. Formulate the problem
as a nonlinear programming problem.

1.21 Consider the problem of determining the economic lot sizes for four
different items. Assume that the demand occurs at a constant rate over
time. The stock for the ith item is replenished instantaneously upon
request in lots of sizes Q1. The total storage space available is A, whereas
each unit of item / occupies an area d{. The objective is to find the values
of Qi that optimize the per unit cost of holding the inventory and of
ordering subject to the storage area constraint. The cost function is given
by

c = s (% + baX Q1 > o

where at and bt are fixed constants. Formulate the problem as a dynamic
programming (optimal control) model. Assume that Q1 is discrete.

1.22 The layout of a processing plant, consisting of a pump (P), a water tank
(T), a compressor (C), and a fan (F), is shown in Fig. 1.25. The lo-
cations of the various units, in terms of their (x,y) coordinates, are also
indicated in this figure. It is decided to add a new unit, a heat exchanger
(H), to the plant. To avoid congestion, it is decided to locate H within
a rectangular area defined by { — 15 < x < 15, —10 < y < 10}.

Section A-A

2W

h

•26

A
A

t

d



Figure 1.25 Processing plant layout (coordinates in ft.).

Formulate the problem of finding the location of H to minimize the sum
of its x and y distances from the existing units, P, T, C, and F.

1.23 Two copper-based alloys (brasses), A and B, are mixed to produce a
new alloy, C. The composition of alloys A and B and the requirements
of alloy C are given in the following table.

Compressor (C)
Fan (F)

Tank (T)

Pump (P)

If alloy B costs twice as much as alloy A, formulate the problem of
determining the amounts of A and B to be mixed to produce alloy C at
a minimum cost.

1.24 An oil refinery produces four grades of motor oil in three process plants.
The refinery incurs a penalty for not meeting the demand of any partic-

Alloy

A
B
C

Composition by Weight

Copper

80
60

> 65

Zinc

10
20

> 15

Lead

6
18

> 16

Tin

4
2

> 3



Formulate the problem of minimizing the overall cost as an LP prob-
lem.

1.25 A part-time graduate student in engineering is enrolled in a four-unit
mathematics course and a three-unit design course. Since the student
has to work for 20 hours a week at a local software company, he can
spend a maximum of 40 hours a week to study outside the class. It is
known from students who took the courses previously that the numeri-
cal grade (g) in each course is related to the study time spent outside
the class as gm = tml6 and gd = td/5, where g indicates the numerical
grade (g = 4 for A, 3 for B, 2 for C, 1 for D, and 0 for F), t represents
the time spent in hours per week to study outside the class, and the
subscripts m and d denote the courses, mathematics and design, respec-
tively. The student enjoys design more than mathematics and hence
would like to spend at least 75 minutes to study for design for every 60
minutes he spends to study mathematics. Also, as far as possible, the
student does not want to spend more time on any course beyond the
time required to earn a grade of A. The student wishes to maximize his
grade point P, given by P = Agm + 3gd, by suitably distributing his
study time. Formulate the problem as an LP problem.

1.26 The scaffolding system, shown in Fig. 1.26, is used to carry a load of
10,000 Ib. Assuming that the weights of the beams and the ropes are
negligible, formulate the problem of determining the values of X1, x2,
X3, and X4 to minimize the tension in ropes A and B while maintaining
positive tensions in ropes C, D, E, and F.

ular grade of motor oil. The capacities of the plants, the production
costs, the demands of the various grades of motor oil, and the penalties
are given in the following table.

Process
Plant

1
2
3

Capacity of the Plant
(kgal/day)

100
150
200

Demand (kgal/day)
Penalty (per each kilogallon

shortage)

Production Cost ($/day) to Manufacture
Motor Oil of Grade:

1

750
800
900

50
$10

2

900
950

1000

150
$12

3

1000
1100
1200

100
$16

4

1200
1400
1600

75
$20



Figure 1.26 Scaffolding system.

1.27 Formulate the problem of minimum weight design of a power screw
subjected to an axial load, F, as shown in Fig. 1.27 using the pitch (/?),
major diameter (d), nut height (H), and screw length (s) as design vari-
ables. Consider the following constraints in the formulation:

1. The screw should be self-locking [1.67].
2. The shear stress in the screw should not exceed the yield strength

of the material in shear. Assume the shear strength in shear (ac-
cording to distortion energy theory), to be 0.577^ where oy is the
yield strength of the material.

Beam 3

Beam 2

Beam 1

Figure 1.27 Power screw.

Screw

F = Load

d

Z
2 d

F_
2

P

Nut

F

A B

xi
C D

*3 X2

•X4
E

^b X^
F

P=IO1OOO Ib



3. The bearing stress in the threads should not exceed the yield
strength of the material, oy.

4. The critical buckling load of the screw should be less than the
applied load, F.

1.28 (a) A simply supported beam of hollow rectangular section is to be
designed for minimum weight to carry a vertical load Fy and an
axial load P as shown in Fig. 1.28. The deflection of the beam in
the y direction under the self-weight and Fy should not exceed 0.5
in. The beam should not buckle either in the yz or the xz plane under
the axial load. Assuming the ends of the beam to be pin ended,
formulate the optimization problem using Jt1-, / = 1,2,3,4 as design
variables for the following data: Fy = 300 Ib, P = 40,000 Ib, / =
120 in., E = 30 X 106 psi, p = 0.284 lb/in3, lower bound on X1

and X2 = 0.125 in, upper bound on Jt1, and Jt2 = 4 in.

Cross section
of beam

(a) (b)
Figure 1.28 Simply supported beam under loads.

(b) Formulate the problem stated in part (a) using Jt1 and X2 as design
variables, assuming the beam to have a solid rectangular cross sec-
tion. Also find the solution of the problem using a graphical tech-
nique.

1.29 A cylindrical pressure vessel with hemispherical ends (Fig. 1.29) is
required to hold at least 20,000 gallons of a fluid under a pressure of
2500 psia. The thicknesses of the cylindrical and hemispherical parts of
the shell should be equal to at least those recommended by Section VIII
of the ASME pressure vessel code, which are given by

t = pR

c Se + OAp

t PR

" Se + 0.8/>



Figure 1.29 Pressure vessel.

where S is the yield strength, e the joint efficiency, p the pressure, and
R the radius. Formulate the design problem for minimum structural vol-
ume using X1, i = 1,2,3,4, as design variables. Assume the following
data: S = 30,000 psi and e = 1.0.

1.30 A crane hook is to be designed to carry a load F as shown in Fig. 1.30.
The hook can be modeled as a three-quarter circular ring with a rect-

Figure 1.30 Crane hook carrying a load.

Cross section AB

F

A B

B A b

h

R

ro

n \e\

rn

r0



angular cross section. The stresses induced at the inner and outer fibers
at section AB should not exceed the yield strength of the material. For-
mulate the problem of minimum volume design of the hook using ro,
rh b, and h as design variables. [Note: The stresses induced at points A
and B are given by [1.67]

Mc0

Mc1

AeT1

where M is the bending moment due to the load (=FR), R the radius of
the centroid, ro the radius of the outer fiber, rt the radius of the inner
fiber, co the distance of the outer fiber from the neutral axis = R0 - rn,
Ci the distance of inner fiber from neutral axis = rn — rh rn the radius
of neutral axis, given by

_ h

Vn " ln(r>,)

A the cross-sectional area of the hook = bh, and e the distance between
the centroidal and neutral axes = R — rn.]

1.31 Consider the four-bar truss shown in Fig. 1.31, in which members 1,
2, and 3 have the same cross-sectional area Xx and the same length /,
while member 4 has an area of cross section X2 and length V3 /. The
trus is made of a lightweight material for which Young's modulus and
the weight density are given by 30 x 106 psi and 0.03333 lb/in3, re-
spectively. The truss is subject to the loads Px = 10,000 Ib and P2 =
20,000 Ib. The weight of the truss per unit value of / can be expressed

Figure 1.31 Four-bar truss.

A

P2

Pl



as

/ = 3^,(1X0.03333) + X2S (0.03333) = 0.U1 + 0.05773x2

The vertical deflection of joint A can be expressed as

0.6 0.3464
8A = — +

X1 X1

and the stresses in members 1 and 4 can be written as

5(10,000) 50,000 - 2 V3 (10,000) 34,640
Ox = — , a 4 — =

X\ JC 1 X2 X2

The weight of the truss is to be minimized with constraints on the ver-
tical deflection of the joint A and the stresses in members 1 and 4. The
maximum permissible deflection of joint A is OA in. and the permissible
stresses in members are amax = 8333.3333 psi (tension) and amin =
—4948.5714 psi (compression). The optimization problem can be stated
as a separable programming problem as follows:

Minimize/(JC1,Jc2) = 0.IjC1 + O.O5773JC2

subject to

— + — 0.1 < 0, 6 - Jc1 < 0, 7 - x2 < 0
X1 X2

Determine the solution of the problem using a graphical procedure.



CLASSICAL OPTIMIZATION
TECHNIQUES

2.1 INTRODUCTION

The classical methods of optimization are useful in finding the optimum so-
lution of continuous and differentiate functions. These methods are analytical
and make use of the techniques of differential calculus in locating the optimum
points. Since some of the practical problems involve objective functions that
are not continuous and/or differentiate, the classical optimization techniques
have limited scope in practical applications. However, a study of the calculus
methods of optimization forms a basis for developing most of the numerical
techniques of optimization presented in subsequent chapters. In this chapter
we present the necessary and sufficient conditions in locating the optimum
solution of a single-variable function, a multivariable function with no con-
straints, and a multivariable function with equality and inequality constraints.

2.2 SINGLE-VARIABLE OPTIMIZATION

A function of one variable f(x) is said to have a relative or local minimum at
x = Jt* if /(Jt*) < /(Jt* + h) for all sufficiently small positive and negative
values of A. Similarly, a point Jt* is called a relative or local maximum if/(Jt*)
> /(Jt* + h) for all values of h sufficiently close to zero. A function/(jt) is
said to have a global or absolute minimum at Jt* if/(jt*) < f(x) for all Jt, and
not just for all x close to Jt*, in the domain over which/(Jt) is defined. Simi-
larly, a point Jt* will be a global maximum of f(x) if /(Jt*) > /(Jt) for all Jt in
the domain. Figure 2.1 shows the difference between the local and global op-
timum points.

2



Figure 2.1 Relative and global minima.

A single-variable optimization problem is one in which the value of x = x*
is to be found in the interval [a,b] such that x* minimizes/(JC). The following
two theorems provide the necessary and sufficient conditions for the relative
minimum of a function of a single variable.

Theorem 2.1: Necessary Condition If a function/(x) is defined in the in-
terval a < x < b and has a relative minimum at x = x*, where a < x* < b,
and if the derivative dj{x)ldx = / ' (*) exists as a finite number at x = x*, then
/'(**) = 0.

/Vtftf/: It is given that

fix* + k) — fix*)
f'(x*) = limJ(X +H! J(X) (2.1)

h^o n

exists as a definite number, which we want to prove to be zero. Since x* is a
relative minimum, we have

f(x*) < f(x* + h)

for all values of/? sufficiently close to zero. Hence

W + V-W , 0 if H > 0

*** + *>-***> . 0 if Z1 < 0

Ai , A2, A3 = Relative maxima
A2 = Global maximum

£i,Z?2 = Relative minima
B\ = Global minimum

Relative minimum
is also global
minimum

fix)

X
ba

xb

fix)

a

Ai
B2

A3

A2



Thus Eq. (2.1) gives the limit as h tends to zero through positive values as

/'(**) ^ 0 (2.2)

while it gives the limit as h tends to zero through negative values as

/'(•**) ^ 0 (2.3)

The only way to satisfy both Eqs. (2.2) and (2.3) is to have

fix*) = 0 (2.4)

This proves the theorem.

Notes:

1. This theorem can be proved even if x* is a relative maximum.

2. The theorem does not say what happens if a minimum or maximum oc-
curs at a point x* where the derivative fails to exist. For example, in
Fig. 2.2,

lim = m (positive) or m (negative)
A-O h

depending on whether h approaches zero through positive or negative
values, respectively. Unless the numbers m+ and m~ are equal, the de-
rivative/'(**) does not exist. If/'(**) does not exist, the theorem is not
applicable.

3. The theorem does not say what happens if a minimum or maximum oc-
curs at an endpoint of the interval of definition of the function. In this

Negative slope mr

Positive slope m+

Figure 2.2 Derivative undefined at JC*.



Figure 2.3 Stationary (inflection) point.

case

lim/(** +H) ~fiX^

exists for positive values of h only or for negative values of h only, and
hence the derivative is not defined at the endpoints.

4. The theorem does not say that the function necessarily will have a min-
imum or maximum at every point where the derivative is zero. For ex-
ample, the derivative/'(JC) = 0 at x = 0 for the function shown in Fig.
2.3. However, this point is neither a minimum nor a maximum. In gen-
eral, a point JC* at which/'(JC*) = 0 is called a stationary point.

If the function/(JC) possesses continuous derivatives of every order that come
in question, in the neighborhood of x = JC*, the following theorem provides
the sufficient condition for the minimum or maximum value of the function.

Theorem 2.2: Sufficient Condition Let/'(jc*) =/"(**) = • • • = / ( / l " 1 )

(JC*) = 0, but/^(jc*) * 0. Then/(JC*) is (i) a minimum value of/(jc) if f(n)

(JC*) > 0 and n is even; (ii) a maximum value of /(JC) if/(AI)(JC*) < 0 and n is
even; (iii) neither a maximum nor a minimum if n is odd.

Proof: Applying Taylor's theorem with remainder after n terms, we have

/(JC* + h) = / (**) + hf'(x*) + ^ / "C**) + • • • + * f{n~X)(x*)

hn

+ —/ ( W )(JC* + 6h) for 0 < 0 < 1 (2.5)
n\

Stationary
point, /TxJ = O



Since/'C**) = /"(**) = • • • =/ (w-1)(JC*) = O, Eq. (2.5) becomes

/(** + h) - /(^*) = ^ / ( I V + Oh)

AS/(W)(JC*) ^ 0, there exists an interval around JC* for every point JC of which
the nth derivative /(n)(jc) has the same sign, namely, that of/(n)(jc*). Thus for
every point** + h of this interval,/(n)(jc* + Oh) has the sign of/(rt)(jc*). When
n is even, hnln\ is positive irrespective of whether h is positive or negative,
and hence/(JC* + h) — /(JC*) will have the same sign as that of/(n)(jc*). Thus
JC* will be a relative minimum if/(/1)(JC*) is positive and a relative maximum if
/(W)(JC*) is negative. When n is odd, hnln\ changes sign with the change in the
sign of h and hence the point JC* is neither a maximum nor a minimum. In this
case the point JC* is called a point of inflection.

Example 2.1 Determine the maximum and minimum values of the function

/(JC) = 12JC5 - 45JC4 + 40JC3 + 5

SOLUTION Since/'(*) = 60(JC4 - 3JC3 + 2JC2) = 60JC2(JC - 1) (JC - 2),
f'{x) = 0 at x = 0, JC = 1, and x = 2. The second derivative is

/"(*) = 60(4JC3 - 9JC2 + 4JC)

Atjc = 1,/"(JC) = —60 and hence JC = 1 is a relative maximum. Therefore,

/max = / ( • * = D = 12

Atjc = 2, /"(JC) = 240 and hence JC = 2 is a relative minimum. Therefore,

/min=/(* = 2) = - 1 1

At JC = 0, /"(*) = 0 and hence we must investigate the next derivative.

/ " ( J C ) = 60(12JC2 - 18JC + 4) = 240 at JC = 0

Since/ '" (JC) =£ 0 at JC = 0, JC = 0 is neither a maximum nor a minimum, and
it is an inflection point.

Example 2.2 In a two-stage compressor, the working gas leaving the first
stage of compression is cooled (by passing it through a heat exchanger) before
it enters the second stage of compression to increase the efficiency [2.13]. The
total work input to a compressor (W) for an ideal gas, for isentropic compres-
sion, is given by



to) + (P-A - 2
Pi) W J

where cp is the specific heat of the gas at constant pressure, k is the ratio of
specific heat at constant pressure to that at constant volume of the gas, and Tx

is the temperature at which the gas enters the compressor. Find the pressure,
p2, at which intercooling should be done to minimize the work input to the
compressor. Also determine the minimum work done on the compressor.

SOLUTION The necessary condition for minimizing the work done on the
compressor is:

+ (p3f-mdLtAip2)o-2m^=o

which yields

PI = (P1P3)172

The second derivative of W with respect to p2 gives

dpi ~CpTxV [pj 1{P2)

-(P3f-mL^(P2f-3m]

(d*w\ 2CpTl~Y~
[ sjn2 ) ~ n(3k-l)/2k(k+l)/2k
\dp2 /p2 = {pip2)M P\ Pl

Since the ratio of specific heats k is greater than 1, we get

-jY > 0 at p2 = (P]p3)
m

and hence the solution corresponds to a relative minimum. The minimum work
done is given by

/ r/ \(*-i)/2* i

-r- " 2^ l h [fe) " ']



2.3 MULTIVARIABLE OPTIMIZATION WITH NO
CONSTRAINTS

In this section we consider the necessary and sufficient conditions for the min-
imum or maximum of an unconstrained function of several variables. Before
seeing these conditions, we consider the Taylor's series expansion of a mul-
tivariable function.

Definition: xth Differential of f If all partial derivatives of the function /
through order r > 1 exist and are continuous at a point X*, the polynomial

dy(x*) = S S • • • E hihj • • • h, dJ{X\
i = i j = i k = 1 J OX1 OXj ' ' ' OXk n ^

r summations

is called the rth differential of/at X*. Notice that there are r summations and
one hi is associated with each summation in Eq. (2.6).

For example, when r = 2 and n = 3, we have

d2f(X*) = d2f(xt,x?,xf)= S 2/Mkn^r2

i= ly = l J dxtdXj

=h>Ax*)+hi?£(x*)+hi%x*)
OX i OX 2 OX 3

+ 2 ^ 2 3 T ^ - (X*) + 2 M 3 - ^ - (X*) + 2Zi1A3 T-^f- (X*)

The Taylor's series expansion of a function/(X) about a point X* is given by

/(X) = /(X*) + df(X*) + ̂  d2f{X*) + ̂  d3f(X*)

+ • • • + ̂  dNf(X*) + RN(X*,h) (2.7)

where the last term, called the remainder, is given by

*w(X*, h) = I rf^+ '/(X* + №) (2.8)

where O < 0 < 1 and h = X - X*.



Example 2.3 Find the second-order Taylor's series approximation of the
function

f(xux2,x3) = xjx3 + X1^
3

about the point X* = < 0 >.

C - 2 J
SOLUTION The second-order Taylor's series approximation of the function
/about point X* is given by

where

is)-^(j)-**(jH(j)
/ A

= [ZI1C^3 + H1Qx1XH + hx\ + M i ^ 3 ] 0 = ft,e"2 + he'2

V-V
-»(j)-,y^(j)-(^+^+^

+ IhxH1 -p— + 2Zi2Zi3 T ^ - + 2/I1Zi3 T ^ - ) 0 J
dxi dx2 dx2 Bx3 dxt dx3/ \ _ 2 /

= [h] (0) + hl(2x3) + h\{xxe
X7>) + 2Zi1Zi2(O) + 2h2h3(2x2)

I A
+ 2A1A3(O] O = -Ah\ + e~2h\ + Ih1^e'2

V2J



Thus the Taylor's series approximation is given by

/(X) - e-1 + e~\hx + h3) + ^ (-4h2
2 + e~2h\ + 2hxh,e~2)

where hx = Xx — 1, A2 = *2> a n d A3 = X3 + 2 .

Theorem 2.3: Necessary Condition If/(X) has an extreme point (maxi-
mum or minimum) at X = X* and if the first partial derivatives of/(X) exist
at X*, then

M. (X*) = M (x*) = . • • = M (x*) = 0 (2.9)
OXx OX2 OXn

Proof: The proof given for Theorem 2.1 can easily be extended to prove the
present theorem. However, we present a different approach to prove this theo-
rem. Suppose that one of the first partial derivatives, say the /Ih one, does not
vanish at X*. Then, by Taylor's theorem,

/(X* + h) = /(X*) + S A ^ (X*) + Rx (x*,h)
z = 1 OXi

that is,

/(X* + h) - / ( X * ) = h^-(X*) + ^ J2/(X* + 0h), 0 < e < 1
dxk 2!

Since d2/(X* + Oh) is of order h2, the terms of order h will dominate the
higher-order terms for small h. Thus the sign of/(X* + h) — /(X*) is decided
by the sign of hk df(X*)ldxk. Suppose that df(X*)/dxk > 0. Then the sign of
/(X* + h) - /(X*) will be positive for hk > 0 and negative for hk < 0. This
means that X* cannot be an extreme point. The same conclusion can be ob-
tained even if we assume that df(X*)ldxk < 0. Since this conclusion is in
contradiction with the original statement that X* is an extreme point, we may
say that df/dxk = 0 at X = X*. Hence the theorem is proved.

Theorem 2.4: Sufficient Condition A sufficient condition for a stationary
point X* to be an extreme point is that the matrix of second partial derivatives
(Hessian matrix) of/(X) evaluated at X* is (i) positive definite when X* is a
relative minimum point, and (ii) negative definite when X* is a relative max-
imum point.

Proof: From Taylor's theorem we can write

/(X* + h) =/(x*) + 2 /^(X*) + ^ E M 7 - -
1 = 1 OX1 2 ! « = 1 j= 1 dxt OXj x = x * + 0 h

0 < 9 < 1 (2.10)



Since X* is a stationary point, the necessary conditions give (Theorem 2.3)

df
/ = 0, / = 1,2,...,«
dxt

Thus Eq. (2.10) reduces to

/(X* + h) -/(X*) = y S S WlMz ' ° < * < 1

Therefore, the sign of

/(X* + h) - /(X*)

will be same as that of

Since the second partial derivative of d2f(X)/dXj dxj is continuous in the neigh-
borhood of X*,

d2f
dxi dx;

X = X*+dh

will have the same sign as (d2f/dxj dxj)\X = X* for all sufficiently small h.
Thus /(X* + h) — /(X*) will be positive, and hence X* will be a relative
minimum, if

n n ~2r

G = S S hthj—^-- (2.11)
/ = l y = l dxt 9-*/x=X*

is positive. This quantity Q is a quadratic form and can be written in matrix
form as

Q = H7JhIx=X* (2.12)

where

\_dXi dXj X = X * J

is the matrix of second partial derivatives and is called the Hessian matrix of
/(X).



It is known from matrix algebra that the quadratic form of Eq. (2.11) or
(2.12) will be positive for all h if and only if [J] is positive definite at X =
X*. This means that a sufficient condition for the stationary point X* to be a
relative minimum is that the Hessian matrix evaluated at the same point be
positive definite. This completes the proof for the minimization case. By pro-
ceeding in a similar manner, it can be proved that the Hessian matrix will be
negative definite if X* is a relative maximum point.

Note: A matrix A will be positive definite if all its eigenvalues are positive;
that is, all the values of X that satisfy the determinantal equation

IA - X I | = 0 (2.14)

should be positive. Similarly, the matrix [A] will be negative definite if its
eigenvalues are negative.

Another test that can be used to find the positive definiteness of a matrix A
of order n involves evaluation of the determinants

A = \an\,

#11 #12 #13 * * ' <*\n
#11 #12

A2 = , Cl2x #22 #23 ' " ' #2«
#21 #22

A = #31 #32 #33 * ' ' #3«

#11 #12 #13 ;

A 3 = a2X a22 O23 9 . . . , anl an2 an3 • • • ann

#31 #32 #32

(2.15)

The matrix A will be positive definite if and only if all the values Ax, A2, A3,
. . . , An are positive. The matrix A will be negative definite if and only if the
sign of Aj is (—iy for 7 = 1,2,. . .,n. If some of the Aj are positive and the
remaining Aj are zero, the matrix A will be positive semidefinite.

Example 2.4 Figure 2.4 shows two frictionless rigid bodies (carts) A and B
connected by three linear elastic springs having spring constants kx,k2, and k3.
The springs are at their natural positions when the applied force P is zero. Find
the displacements Xx and X2 under the force P by using the principle of mini-
mum potential energy.

SOLUTION According to the principle of minimum potential energy, the
system will be in equilibrium under the load P if the potential energy is a
minimum. The potential energy of the system is given by



Figure 2.4 Spring-cart system.

potential energy (U)

= strain energy of springs — work done by external forces

= [{Ic2X] + \ Ic3Qc2 - X1)
2 + \ M i l ~ Px2

The necessary conditions for the minimum of U are

dU
— = k2xx - Jc3Qc2 - X1) = 0 (E1)
OJC1

dU
— = Ic3(X2 - X1) + kxx2 -P = O (E2)
OX2

The values of Xx and X2 corresponding to the equilibrium state, obtained by
solving Eqs. (Ei) and (E2) are given by

1 kxk2 + kxk3 + k2k3

x* = P(k2 + k3)
kxk2 + kxk3 + k2k3

The sufficiency conditions for the minimum at (x*,x2) can also be verified by
testing the positive definiteness of the Hessian matrix of U. The Hessian matrix
of Uevaluated at Qc*,X2) is

Uxh ~ ox] dxx dx2 - [ -k3 kx + k3]

O2U cfV

_dxx dx2 dx\ J (x*ux*2)

P

Bki

A
k3k2

'Xl X2



The determinants of the square submatrices of J are

Jx = \k2 + h\ = k2 + k3 > 0

k2 + k3 —k3
J2 = = kxk2 + Jk1Jk3 + k2k3 > 0

-k3 kx + k3

since the spring constants are always positive. Thus the matrix J is positive
definite and hence (x*,x2) corresponds to the minimum of potential energy.

2.3.1 Semidefinite Case

We now consider the problem of determining the sufficient conditions for the
case when the Hessian matrix of the given function is semidefinite. In the case
of a function of a single variable, the problem of determining the sufficient
conditions for the case when the second derivative is zero was resolved quite
easily. We simply investigated the higher-order derivatives in the Taylor's se-
ries expansion. A similar procedure can be followed for functions of n vari-
ables. However, the algebra becomes quite involved, and hence we rarely in-
vestigate the stationary points for sufficiency in actual practice. The following
theorem, analogous to Theorem 2.2, gives the sufficiency conditions for the
extreme points of a function of several variables.

Theorem 2.5 Let the partial derivatives of / of all orders up to the order
k > 2 be continuous in the neighborhood of a stationary point X*, and

drf\x=x* = 0, 1 < T < k - 1

^/Ix=X* * 0

so that dkf\x=x* is the first nonvanishing higher-order differential of/at X*.
If k is even, then (i) X* is a relative minimum if dkf\x=x* *s positive definite,
(ii) X* is a relative maximum if dkf\x=x* is negative definite, and (iii) if
dkf\x=x* is semidefinite (but not definite), no general conclusion can be drawn.
On the other hand, if k is odd, X* is not an extreme point of/(X).

Proof: A proof similar to that of Theorem 2.2 can be found in Ref. [2.5].

2.3.2 Saddle Point

In the case of a function of two variables, f{x,y), the Hessian matrix may be
neither positive nor negative definite at a point (x*,y*) at which

^ = ^ = 0
dx dy



In such a case, the point (jc*,y*) is called a saddle point. The characteristic of
a saddle point is that it corresponds to a relative minimum or maximum of
/(JC,y) with respect to one variable, say, x (the other variable being fixed at y
— y*) and a relative maximum or minimum off(x,y) with respect to the second
variable y (the other variable being fixed at JC*).

As an example, consider the function f{x,y) = x2 — y2. For this function,

^- = 2x and ^- = -2y
ox oy

These first derivatives are zero at JC* = 0 and y* = 0. The Hessian matrix of
/ a t (jc*,y*) is given by

J = [o -2j
Since this matrix is neither positive definite nor negative definite, the point
(JC* = 0, v* = 0) is a saddle point. The function is shown graphically in Fig.
2.5. It can be seen that/(x,j*) = /(JC,O) has a relative minimum and/(jc*,j)
= /(O,j) has a relative maximum at the saddle point (x*9y*). Saddle points
may exist for functions of more than two variables also. The characteristic of
the saddle point stated above still holds provided that JC and y are interpreted
as vectors in multidimensional cases.

Figure 2.5 Saddle point of the function f{x,y) = x2 — y2.

X

y

f(x,y)



Example 2.5 Find the extreme points of the function

/(X11JC2) = x] + x\ + 2x] + 4*2 + 6

SOLUTION The necessary conditions for the existence of an extreme point
are

$L = 3x\ + 4Jc1 = JC1(SJC1 + 4) = 0
dxx

rif
— = 3*2 + &x2 = x2(3x2 + 8) = 0

OX2

These equations are satisfied at the points

(0,0), (0 , - f ) , (-5,0), and ( - f , - f )
To find the nature of these extreme points, we have to use the sufficiency
conditions. The second-order partial derivatives of /are given by

a2/

djCj 3JC2

The Hessian matrix of/ is given by

["6Jc1 + 4 O l

~ L 0 6JC2 + 8J

IfJ1 = 16Jc1 + 41 and J2=
 x

 n , , o , the values OfJ1 and J2 and
U OX2 H" o

the nature of the extreme point are as given below.

Value Value
Point X of/, of/2 Nature of J Nature of X /(X)

(0,0) +4 +32 Positive definite Relative minimum 6
(0,-f) +4 -32 Indefinite Saddle point 418/27
(-|,0) - 4 -32 Indefinite Saddle point 194/27
("I. "f) ~ 4 + 3 2 Negative definite Relative maximum 50/3



2.4 MULTIVARIABLE OPTIMIZATION WITH EQUALITY
CONSTRAINTS

In this section we consider the optimization of continuous functions subjected
to equality constraints:

Minimize / = /(X)

subject to (2.16)

gj(X) = 0 , J = 1 ,2 , . . .,m

where

1 X1

X = X} >

Xn
V S

Here m is less than or equal to n; otherwise (if m > n), the problem becomes
overdefined and, in general, there will be no solution. There are several meth-
ods available for the solution of this problem. The methods of direct substi-
tution, constrained variation, and Lagrange multipliers are discussed in the
following sections.

2.4.1 Solution by Direct Substitution

For a problem with n variables and m equality constraints, it is theoretically
possible to solve simultaneously the m equality constraints and express any set
of m variables in terms of the remaining n — m variables. When these expres-
sions are substituted into the original objective function, there results a new
objective function involving only n — m variables. The new objective function
is not subjected to any constraint, and hence its optimum can be found by using
the unconstrained optimization techniques discussed in Section 2.3.

This method of direct substitution, although it appears to be simple in the-
ory, is not convenient from practical point of view. The reason for this is that
the constraint equations will be nonlinear for most of practical problems, and
often, it becomes impossible to solve them and express any m variables in
terms of the remaining n — m variables. However, the method of direct sub-
stitution might prove to be very simple and direct for solving simpler problems,
as shown by the following example.

Example 2.6 Find the dimensions of a box of largest volume that can be
inscribed in a sphere of unit radius.

SOLUTION Let the origin of the Cartesian coordinate system Jt1, Jt2, Jc3 be
at the center of the sphere and the sides of the box be 2xx, 2x2, and 2x3. The



volume of the box is given by

f(xux2,x3) = 8^1X2X3 (E1)

Since the corners of the box lie on the surface of the sphere of unit radius, X1,
X2, and X3 have to satisfy the constraint

JC? + x\ + x\ = 1 (E2)

This problem has three design variables and one equality constraint. Hence
the equality constraint can be used to eliminate any one of the design variables
from the objective function. If we choose to eliminate X3, Eq. (E2) gives

X3 = (1 - x\ - x\)m (E3)

Thus the objective function becomes

/(x,,x2) = 8X1X2(I - x? - x\)m (E4)

which can be maximized as an unconstrained function in two variables.
The necessary conditions for the maximum of/give

g - * > [ < • - * ? - * & " - < • - / - 4 A ' 0 <E'>
g - «., [(I - x{ - x|>-° - (| _ x̂ _ j j ) l a ] - 0 <E.>

Equations (E5) and (E6) can be simplified to obtain

1 - 2x] - x\ = 0

1 - x] - 2x\ = 0

from which it follows that xf = x* = 1/V3 and hence x* = 1/V3. This
solution gives the maximum volume of the box as

f = _ L

To find whether the solution found corresponds to a maximum or a mini-
mum, we apply the sufficiency conditions to/(X1 ,X2) of Eq. (E4). The second-
order partial derivatives o f / a t (xf ,x*) are given by



dfy _ Sx}x2 &t2 [" x]
dx] ~ (1 - Jt? - x \ ) m \ - x ] - x \ L(I - x \ - x2

2)
m

+ Ix1 (1 - x\ - xh112]

= - -j= at (jc f,x2*)

<Pf _ Sx1X2 8Jc1 F x \
dx2

2 ~ (1 - JC? - x2
2)

m 1 -x\-x\ L(I - *? - x \ ) m

+ Ix2 (1 - x] - x\f^

32
= --j= at (xf,x^)

d2f _ o M _ r 2 _ r2xl/2 8J*! 8 x |

dxtdx2~
m X | Xl) ( \ - x \ - x \ ) m \ - x \ - x \

Since

a2/ d2f d2f ( d2/ V n- 4 < O and —4 T 4 - , ^ > O
dx] dx] dx\ \dxx dx2/

the Hessian matrix of / is negative definite at (JC*,**). Hence the point
(JC*,x*) corresponds to the maximum of/.
2.4.2 Solution by the Method of Constrained Variation
The basic idea used in the method of constrained variation is to find a closed-
form expression for the first-order differential of f(df) at all points at which
the constraints g/(X) = 0,y = 1,2,. . .,m, are satisfied. The desired optimum
points are then obtained by setting the differential df equal to zero. Before
presenting the general method, we indicate its salient features through the fol-
lowing simple problem with n = 2 and m = 1.

Minimize f(x ^ ,X2) (2.17)



subject to

S(X19X2) = 0 (2.18)

A necessary condition f o r / t o have a minimum at some point (JC*,JC*) is that
the total derivative of /(Jc19Jc2) with respect to Jc1 must be zero at (JCf5Jc*). By
setting the total differential OfZ(Jc1 ,JC2) equal to zero, we obtain

df=^-dxl+^-dx2=O (2.19)
3Jc1 dx2

Since g(jc* ,JC*) = O at the minimum point, any variations dxx and dx2 taken
about the point (JC f ,JC *) are called admissible variations provided that the new
point lies on the constraint:

S(x f + A15JC2* + dx2) = O (2.20)

The Taylor's series expansion of the function in Eq. (2.20) about the point
(Xf9X*) gives

g(xf + dxux* + dx2)

- g(jcf,jc*2) + ̂ - (Jcf,jc?) dxx + ̂ - (jcf,Jc2*) dx2 = 0 (2.21)
OX1 OX2

where dxx and dx2 are assumed to be small. Since g(x*9x2) = O, Eq. (2.21)
reduces to

dg = ^- CIx1 + ̂ - dx2 = 0 at (xfrf) (2.22)
OX i OX2

Thus Eq. (2.22) has to be satisfied by all admissible variations. This is illus-
trated in Fig. 2.6, where PQ indicates the curve at each point of which Eq.

Figure 2.6 Variations about A.



(2.18) is satisfied. If A is taken as the base point (JC*,JC*), the variations in Jt1
and X2 leading to points B and C are called admissible variations. On the other
hand, the variations in Jt1 and X2 representing point D are not admissible since
point D does not lie on the constraint curve, g(xi,x2) — 0. Thus any set of
variations (dx\9 dx2) that does not satisfy Eq. (2.22) lead to points such as D
which do not satisfy constraint Eq. (2.18).

Assuming that dg/dx2 =£ 0, Eq. (2.22) can be rewritten as

*>--*£!**•**>*• <2-23)

This relation indicates that once the variation in Xx (dxx) is chosen arbitrarily,
the variation in X2 (dx2) is decided automatically in order to have dxx and dx2

as a set of admissible variations. By substituting Eq. (2.23) in Eq. (2.19), we
obtain

„ . ( £ - & * • f t * , _ „ «2.24,

The expression on the left-hand side is called the constrained variation off.
Note that Eq. (2.24) has to be satisfied for all values Of̂ Lt1. Since dxx can be
chosen arbitrarily, Eq. (2.24) leads to

\dxx dx2 dx2 dxj (x*x*2)

Equation (2.25) represents a necessary condition in order to have (xf,x2) as
an extreme point (minimum or maximum).

Example 2.7 A beam of uniform rectangular cross section is to be cut from
a log having a circular cross section of diameter 2a. The beam has to be used
as a cantilever beam (the length is fixed) to carry a concentrated load at the
free end. Find the dimensions of the beam that correspond to the maximum
tensile (bending) stress carrying capacity.

SOLUTION From elementary strength of materials, we know that the tensile
stress induced in a rectangular beam (a) at any fiber located a distance y from
the neutral axis is given by

o __ M

y ~~i

where M is the bending moment acting and / is the moment of inertia of the
cross section about the x axis. If the width and depth of the rectangular beam



Figure 2.7 Cross section of the log.

shown in Fig. 2.7 are 2x and 2y9 respectively, the maximum tensile stress
induced is given by

M My _ 3 M
< W - f y - ^(2x)(2yf- 4xy2

Thus for any specified bending moment, the beam is said to have maximum
tensile stress carrying capacity if the maximum induced stress (amax) is a min-
imum. Hence we need to minimize k/xy2 or maximize Kxy2, where k =
3M/4 and K= 1/fc, subject to the constraint

x2 + y2 = a2

This problem has two variables and one constraint; hence Eq. (2.25) can be
applied for finding the optimum solution. Since

f=kx~y2 (E1)

g = x2 + y
2 - a2 (E2)

we have

x (Neutral axis)

y

2x

2y

a

x2 + y2 = a2



dx

f-2y
dy

Equation (2.25) gives

-kx~2y~2(2y) + 2kx~ly~3(2x) = 0 at (Jt*,?*)

that is,

y* = V2;c* (E3)

Thus the beam of maximum tensile stress carrying capacity has a depth of
V2 times its breadth. The optimum values of x and y can be obtained from
Eqs. (E3) and (E2) as

a /-a
x* = —= and y* = V 2 - p

Necessary Conditions for a General Problem. The procedure indicated above
can be generalized to the case of a problem in n variables with m constraints.
In this case, each constraint equation g/(X) = 0,7 = 1,2,. . .,ra, gives rise to
a linear equation in the variations dx{, / = 1,2,. . .,n. Thus there will be in all
m linear equations in n variations. Hence any m variations can be expressed
in terms of the remaining n — m variations. These expressions can be used to
express the differential of the objective function, df, in terms of the n — m
independent variations. By letting the coefficients of the independent variations
vanish in the equation df = 0, one obtains the necessary conditions for the
constrained optimum of the given function. These conditions can be expressed
as [2.6]

df df df df
dxk dxx dx2 dxm

dg\ dgl dgx dgx

dxk dxx dx2 dxm

jf f,g\,g2,' - ->gm \ = dgi dgi dgi . . . dgi = o (2 26)
\xk,xux2,x3,. . .9xm/ dxk dxx dx2 dxm

dgm dgm dgm ^ ^ ^ dgn

dxk dxx dx2 dxm



where k = m + 1, m + 2, . . . , n. It is to be noted that the variations of the
first m variables (dx\,dx2,. . .,dxm) have been expressed in terms of the varia-
tions of the remaining n - m variables (dxm + udxm + 2,. . .,dxn) in deriving
Eqs. (2.26). This implies that the following relation is satisfied:

Jgx,82,...,gm\ ^ 0 ( 2 2 ? )

The n — m equations given by Eqs. (2.26) represent the necessary conditions
for the extremum of/(X) under the m equality constraints, g,-(X) = 0, j =
1,2,. . .,m.

Example 2.8

Minimize/(Y) = \{y] + y\ + y* + yj) (E1)

subject to

*i(Y) = yi + 2y2 + 3y3 + 5y4 - 10 = 0 (E2)

S2(Y) = J1 + 2y2 + 5y3 + 6y4 - 15 = 0 (E3)

SOLUTION This problem can be solved by applying the necessary condi-
tions given by Eqs. (2.26). Since n = 4 and m = 2, we have to select two
variables as independent variables. First we show that any arbitrary set of vari-
ables cannot be chosen as independent variables since the remaining (depen-
dent) variables have to satisfy the condition of Eq. (2.27).

In terms of the notation of our equations, let us take the independent vari-
ables as

x3 = y3 and X4 = y4 so that Jc1 = y, and X2 = y2

Then the Jacobian of Eq. (2.27) becomes

j(8u82\ = ft* fa =
 l 2

 =Q

\xux2/ dg2 Sg2 1 2

3y, dy2

and hence the necessary conditions of Eqs. (2.26) cannot be applied.
Next, let us take the independent variables as X3 = y2 and X4 = y4 so that

X1 = V1 and X2 = y3. Then the Jacobian of Eq. (2.27) becomes



j(«*) = ^ ^ = l 3 = 2 * O

and hence the necessary conditions of Eqs. (2.26) can be applied. Equations
(2.26) give for k = m + 1 = 3,

d^ df^ df_ _ # _ y _ y
3 x 3 SJC1 3JC2 3 J 2 9ji ^ J 3

Sg1 ^g1 ^g1 = ^g1 Sg1 Sg1

3x3 dxx dx2 dy2 By1 dy3

3g2 dgi 3gg 3g2 9g2 dg2

3JC3 3JC1 3X2 3 J2 dji 3 J 3

y2 yi 3̂

= 2 1 3

2 1 5

= J2(5 - 3) - J1(IO - 6) + j3(2 - 2)

= 2 j 2 ~ 4J1 = 0 (E4)

and for k = m + 2 = n = 4,

9JC4 dx\ dx2 9j4 9 Ji 3J3

dg\ ^g1 9g! = 3g! 9g! 3g t

3JC4 ĴC1 3JC2 3 J 4 3J1 9J3

9^2 ^g2 3g2 dg2 dg2 dgi
dx4 dx{ dx2 dJ4 ^ j 1 3 J3

J4 Jl J3

= 5 1 3

6 1 5

= j4(5 - 3) - y i(25 - 18) + j3(5 - 6)

= 2 j 4 - 7J1 - J3 = 0 (E5)

Equations (E4) and (E5) give the necessary conditions for the minimum or the



maximum of/as

J1 = hi (E6)

y3 = 2y4 - Iy1 = 2y4 - \y2

When Eqs. (E6) are substituted, Eqs. (E2) and (E3) take the form

-Sy2 + Hy4 = 10

-I5y2 + 16y4 = 15

from which the desired optimum solution can be obtained as

y? = -Ti

y? = %
™ * - 3 0

J4 ~ 37

Sufficiency Conditions for a General Problem. By eliminating the first m vari-
ables, using the m equality constraints (this is possible, at least in theory), the
objective function/can be made to depend only on the remaining variables,
xm + u xm + 2, . . . ,xn. Then the Taylor's series expansion of/, in terms of
these variables, about the extreme point X* gives

/(X* + dX) « /(X*) + S (f) dxt
/ = m + l XOXi/ g

+ 1 S S ( r ^ - ) ^ 1 dx7 (2.28)
21 i = m + lj = m + l\dXidXj/g

 l J

where (df/dXj)g is used to denote the partial derivative of /wi th respect to xt

(holding all the other variables xm + u xm + 2, . . . , *,-_,, xi + u xi + 2, . . . , Xn

constant) when Jc1, JC2, . . . , xm are allowed to change so that the constraints
gj(K* + dX) = OJ = 1,2,. . .,m, are satisfied; the second derivative, (d2//
dx( dXj)g, is used to denote a similar meaning.

As an example, consider the problem of minimizing

/ ( X ) =/(X19X29X3)

subject to the only constraint

S1(X) = x\ + JĈ  + x\ - 8 = 0



Since n = 3 and m = 1 in this problem, one can think of any of the m variables,
say Jt1, to be dependent and the remaining n — m variables, namely X2 and Jt3,
to be independent. Here the constrained partial derivative (df/dx2)g, for ex-
ample, means the rate of change of /wi th respect to X2 (holding the other
independent variable Jt3 constant) and at the same time allowing Xx to change
about X* so as to satisfy the constraint g\(X) = 0. In the present case, this
means that dxx has to be chosen to satisfy the relation

gl(X* + dX) - gl(X*) + Y1 (x*> d*\ + IT (x*> ^2 + ^ 1 (X*) dx3 = 0
OX] OX2 OX3

that is,

2xf dxx + 2jt* dx2 = 0

since gi(X*) = 0 at the optimum point and dx3 = 0 (JC3 is held constant).
Notice that (df/dx^ has to be zero for / = m + 1, m 4- 2, . . . , n since

the ^ appearing in Eq. (2.28) are all independent. Thus the necessary con-
ditions for the existence of constrained optimum at X* can also be expressed
as

( a ) = ° ' i = /n + 1, /n + 2, . . . , n (2.29)

Of course, with little manipulation, one can show that Eqs. (2,29) are nothing
but Eqs. (2.26). Further, as in the case of optimization of a multivariable
function with no constraints, one can see that a sufficient condition for X* to
be a constrained relative minimum (maximum) is that the quadratic form Q
defined by

Q= Z S - ^ - dx, dxj (2.30)
i = m+\ j = m + \ \OXidXj/g

is positive (negative) for all nonvanishing variations dxt. As in Theorem 2.4,
the matrix

~( a2/ \ ( a2/ \ , / d2f \ ~
\^m+l/g \ ^ m + l dxm + 2/g \3^ni+l 3-Wg

/ a2/ \ / a2 / \ . . . / ^ \
\3xnaxm + ,/g \dxndxm + 2/g KdX2J1,



has to be positive (negative) definite to have Q positive (negative) for all choices
of dxt. It is evident that computation of the constrained derivatives (d2f/dXi
dxj)g is a difficult task and may be prohibitive for problems with more than
three constraints. Thus the method of constrained variation, although it appears
to be simple in theory, is very difficult to apply since the necessary conditions
themselves involve evaluation of determinants of order m + 1. This is the
reason that the method of Lagrange multipliers, discussed in the following
section, is more commonly used to solve a multivariable optimization problem
with equality constraints.

2.4.3 Solution by the Method of Lagrange Multipliers

The basic features of the Lagrange multiplier method is given initially for a
simple problem of two variables with one constraint. The extension of the
method to a general problem of n variables with m constraints is given later.

Problem with Two Variables and One Constraint. Consider the problem:

Minimize f(xux2) (2.31)

subject to

8(Xx9X2) = 0

For this problem, the necessary condition for the existence of an extreme point
at X = X* was found in Section 2.4.2 to be

(V_ _ 3JIdX1 8g\\ = Q

\ax, dg/dx2 dxjltfsx

By defining a quantity X, called the Lagrange multiplier, as

\dg/dx2j\(x;xl)

Equation (2.32) can be expressed as

( f + x f ) \ = 0 (2.34)

and Eq. (2.33) can be written as

(¥ + \£-)\ = 0 (2.35)
\dx2 9X2J]^1 xh



In addition, the constraint equation has to be satisfied at the extreme point,
that is,

S(*i,*2)U,2*) = 0 (2.36)

Thus Eqs. (2.34) to (2.36) represent the necessary conditions for the point
(JC*,JC*) to be an extreme point.

Notice that the partial derivative (dg/dx2)\(Xux2) ^ a s t o ^ e nonzero to be able
to define X by Eq. (2.33). This is because the variation dx2 was expressed in
terms of dxx in the derivation of Eq. (2.32) [see Eq. (2.23)]. On the other
hand, if we choose to express dxx in terms of dx2, we would have obtained the
requirement that (dg/dxx)\(x*x*2) be nonzero to define X. Thus the derivation of
the necessary conditions by the method of Lagrange multipliers requires that
at least one of the partial derivatives of g(xx, X2) be nonzero at an extreme point.

The necessary conditions given by Eqs. (2.34) to (2.36) are more commonly
generated by constructing a function L, known as the Lagrange function, as

L(xux2M =/(X19X2) + Xg(X19X2) (2.37)

By treating L as a function of the three variables Jc1, Jc2, and X, the necessary
conditions for its extremum are given by

dL d/ dg
— (X1 ,x2,X) = — (xx,x2) + ^ T " (X19X2) = 0
aJCj OJc1 OJC1

dL df dg
— (X19X29X) = ~- (X19JC2) + X - ^ (Jc1 ,x2) = O (2.38)
OX2 OX2 OX2

dL
— (xl9 X2, X) = g(xx,x2) = O

Equations (2.38) can be seen to be same as Eqs. (2.34) to (2.36). The suffi-
ciency conditions are given later

Example 2.9 Find the solution of Example 2.7 using the Lagrange multiplier
method:

Minimize/(JC,y) = kx~ly~2

subject to

g(x,y) = jc2 + y2 - a2 = 0

SOLUTION The Lagrange function is

L(x,y,X) =/(JC0O + Xg(x,y) = kx'Y2 + X(x2 + y2 - a2)



The necessary conditions for the minimum of f(x, y) [Eqs. (2.38)] give

yx = - f c t -y 2 + 2xX = 0 (E1)

^ = -2fcc-y3 + 2y\ = 0 (E2)
dy

^ = x2 + y2 - a2 = 0 (E3)
OA

Equations (E1) and (E2) yield

2 X - k - 2 k

from which the relation JC* = ( l /v2) y* can be obtained. This relation, along
with Eq. (E3), gives the optimum solution as

a f— (x
JC* = —= and y* = V 2 - p

V3 V3

Necessary Conditions for a General Problem. The equations derived above
can be extended to the case of a general problem with n variables and m equal-
ity constraints:

Minimize /(X)

subject to (2.39)

gj(X) = 0 , J= 1,2,. . .,m

The Lagrange function, L, in this case is defined by introducing one Lagrange
multiplier X7 for each constraint gy(X) as

= /(X) + X lgl(X) + X2^2(X) + • • • + KgnQS) (2.40)

By treating L as a function of the n + m unknowns, Jt1, Jt2, • • • , Jtn, X1, X2,
. . . , Xm, the necessary conditions for the extremum of L, which also corre-
spond to the solution of the original problem stated in Eq. (2.39), are given
by

dL df £ ds;
- = / + S \ f = 0, / = 1,2,. . .,n (2.41)
OXi OXi 7 = 1 OXi



dL
— = gj(X) = O, j = 1,2,. . .,m (2.42)

j

Equations (2.41) and (2.42) represent n + m equations in terms of the n + m
unknowns, xt and X7-. The solution of Eqs. (2.41) and (2.42) gives

X* = . and P =

Vx *y Vx* J

The vector X* corresponds to the relative constrained minimum of/(X) (suf-
ficient conditions are to be verified) while the vector X* provides the sensitivity
information, as discussed in the next subsection.

Sufficiency Conditions for a General Problem. A sufficient condition for/(X)
to have a constrained relative minimum at X* is given by the following theo-
rem.

Theorem 2.6: Sufficient Condition A sufficient condition for/(X) to have
a relative minimum at X* is that the quadratic, Q, defined by

£ = S S - ^ - dx( dxj (2 A3)
I = Iy = I OXi °xj

evaluated at X = X* must be positive definite for all values of dX for which
the constraints are satisfied.

Proof: The proof is similar to that of Theorem 2.4.

Notes:

1. If

G = S S - ^ 4 " (x*> ^*) dxt dxj
i=\ j = \ OX1 OXj

is negative for all choices of the admissible variations dxt, X* will be a
constrained maximum of/(X).

2. It has been shown by Hancock [2.1] that a necessary condition for the
quadratic form Q, defined by Eq. (2.43), to be positive (negative) defi-
nite for all admissible variations dX is that each root of the polynomial



Zi, defined by the following determinantal equation, be positive (nega-
tive):

L11 - z L12 L13 • • • L1n gn g2l • • • gmX

L21 L22 - z L23 • • • L2n g12 g22 • • • gm2

An Ln2 Ln3 • • • L ^ - z g l n g2n • • • gmn

= 0
#11 gn #13 " ' ' #1« 0 0 • • • 0

#21 #22 #23 " • • #2* 0 0 • • • 0

#ml #m2 #m3 ' ' - gmn 0 0 • • ' 0

(2.44)

where

Ltj = T ^ 4 " (X*, *•) (2.45)

.0 = I ) (X*) (2.46)

3. Equation (2.44), on expansion, leads to an (n — ra)th-order polynomial
in z. If some of the roots of this polynomial are positive while the others
are negative, the point X* is not an extreme point.

The application of the necessary and sufficient conditions in the Lagrange
multiplier method is illustrated with the help of the following example.

Example 2.10 Find the dimensions of a cylindrical tin (with top and bottom)
made up of sheet metal to maximize its volume such that the total surface area
is equal to A0 = 24 TT.

SOLUTION IfJc1 and X2 denote the radius of the base and length of the tin,
respectively, the problem can be stated as:

Maximize/(JC j,Jc2) = TTJĈ JC2

subject to

2-KX\ + 2-KXxX1 = A0 = 2 4 x



The Lagrange function is

L(Xx, X2, X) = TTX1X2 + X(2 TTx] + 27TJC1JC2 — A0)

and the necessary conditions for the maximum of/give

dL
— = 27TJC1X2 + 4TTXJC1 + 27TXJC2 = 0 (E 1 )
CJX 1

dL ~
— = -KX\ + 2TTXJC1 = 0 (E2)
OX2

dL 9
— = 27TXt + 27TX1X2 ~ A0 = 0 (E3)
OA

Equations (E1) and (E2) lead to

X1X2 1

2X1 + X2 2

that is,

X1 = I X2 (E4)

and Eqs. (E3) and (E4) give the desired solution as

« - ( s ) • * - ( £ ) • - - - - ( ^ )

This gives the maximum value of/ as

/ ,43 \1/2

/ * = ( — )1 \54TJ

If A0 = 24 TT, the optimum solution becomes

jc* = 2, X2* = 4 , X* = - 1 , and / * = 16TT

To see that this solution really corresponds to the maximum of/, we apply the
sufficiency condition of Eq. (2.44). In this case

32L
L11 = —2 = 2TTX2* + 4TTX* = 4TT

"x\ (X*,X*)



82L
Li2 = a a = L1I = 2xxf + 2TTX* = 2x

0*1 <«2 (X*,X*)

a x 2 (X*, X*)

S " = I T = 4 7 r J C * + 2TTJC2* = 1 6 x
^ 2 (X*,X*)

«12 = I 5 1 = 27TXf = 47T
^ X 2 (X*,X*)

Thus Eq. (2.44) becomes

4TT — z 2TT 16TT

2TT 0 - Z 4TT = 0

16TT 4TT O

that is,

272TT2Z + 192TT3 = O

This gives

z = -^

Since the value of z is negative, the point (JC*^C*) corresponds to the maximum
of/

Interpretation of the Lagrange Multipliers. To find the physical meaning of
the Lagrange multipliers, consider the following optimization problem involv-
ing only a single equality constraint:

Minimize/(X) (2.47)

subject to

g(X) = b or g(X) = b - g(X) = O (2.48)

where b is a constant. The necessary conditions to be satisfied for the solution
of the problem are

^- + A ^ = O, / = 1,2,...,« (2.49)
OX1 OX1

g = 0 (2.50)



Let the solution of Eqs. (2.49) and (2.50) be given by X*, X*, and/* = /(X*).
Suppose that we want to find the effect of a small relaxation or tightening of
the constraint on the optimum value of the objective function (i.e., we want
to find the effect of a small change in b on /* ) . For this we differentiate Eq.
(2.48) to obtain

db - dg = 0

or

db = dg = S -^dX1 (2.51)

Equation (2.49) can be rewritten as

df dg df dg
/ + x/ = / - \ - - = 0 (2.52)
OX1 OX1 OXi OX1

or

£ - * £ * . , - U (2.53,
dxt X

Substituting Eq. (2.53) into Eq. (2.51), we obtain

d&=S±f*, = f (2.54)
I = I A OXt A

since

df= I 1 ^ dxt (2.55)

i = i dxf

Equation (2.54) gives

df df*

X = ± or X* = -j- (2.56)
db db

or
df* = X* db (2.57)

Thus X* denotes the sensitivity (or rate of change) of/with respect to b or the
marginal or incremental change i n / * with respect to b at JC*. In other words,
X* indicates how tightly the constraint is binding at the optimum point. De-



pending on the value of X* (positive, negative, or zero), the following physical
meaning can be attributed to X*:

1. X* > 0. In this case, a unit decrease in b is positively valued since one
gets a smaller minimum value of the objective function /. In fact, the
decrease i n /* will be exactly equal to X* since df = X*( — 1) = — X*
< 0. Hence X* may be interpreted as the marginal gain (further reduc-
tion) in /* due to the tightening of the constraint. On the other hand, if
b is increased by 1 unit, /will also increase to a new optimum level,
with the amount of increase in /* being determined by the magnitude of
X* since df — X*(+l) > 0. In this case, X* may be thought of as the
marginal cost (increase) in /* due to the relaxation of the constraint.

2. X* < 0. Here a unit increase in b is positively valued. This means that
it decreases the optimum value of/. In this case the marginal gain (re-
duction) in/* due to a relaxation of the constraint by 1 unit is determined
by the value of X* as df* = X*( + l) < 0. If b is decreased by 1 unit,
the marginal cost (increase) i n / * by the tightening of the constraint is
df* = X*(—1) > 0 since, in this case, the minimum value of the ob-
jective function increases.

3. X* = 0 . In this case, any incremental change in b has absolutely no
effect on the optimum value of / and hence the constraint will not be
binding. This means that the optimization of/subject to g = 0 leads to
the same optimum point X* as with the unconstrained optimization of/.

In economics and operations research, Lagrange multipliers are known as
shadow prices of the constraints since they indicate the changes in optimal
value of the objective function per unit change in the right-hand side of the
equality constraints.

Example 2.11 Find the maximum of the function/(X) = Ixx + X2 + 10
subject to g(X) = Jc1 + 2x1 = 3 using the Lagrange multiplier method. Also
find the effect of changing the right-hand side of the constraint on the optimum
value of/

SOLUTION The Lagrange function is given by

L(X,X) = 2X1 + jc2 + 10 + X(3 - Jc1 - 2JC2) (E1)

The necessary conditions for the solution of the problem are

f- - 2 - X - O

bL
— = 1 - 4Xx2 = 0 (E2)
0x2

dL ,
- = 3 - ^ - 2 , 1 = 0



The solution of Eqs. (E2) is

x . . r*n - P-97]
X* = 2.0

The application of the sufficiency condition of Eq. (2.52) yields

Ln ~ Z Ln gn

Lix L22-Z gX2 = 0

gn gn 0

-z 0 - 1 -z 0 - 1

0 - 4 X - z - 4 J C 2 = 0 - S - z - 0 . 5 2 = 0

- 1 -Ax2 0 - 1 -0.52 0

0.2704z + 8 + z = 0

z = -6.2972

Hence X* will be a maximum of /wi th /* = /(X*) = 16.07.
One procedure for finding the effect on / * of changes in the value of b

(right-hand side of the constraint) would be to solve the problem all over with
the new value of b. Another procedure would involve the use of the value of
X*. When the original constraint is tightened by 1 unit (i.e., db = — 1), Eq.
(2.57) gives

df* = X* db = 2 ( - l ) = - 2

Thus the new value of/* i s / * + df* = 14.07. On the other hand, if we relax
the original constraint by 2 units (i.e., db = 2), we obtain

df* = X* db = 2(+2) = 4

and hence the new value of/* i s / * + df* = 20.07.

2.5 MULTIVARIABLE OPTIMIZATION WITH INEQUALITY
CONSTRAINTS

This section is concerned with the solution of the following problem:

Minimize /(X)



subject to

gj(X) < 0, J = 1,2,. . .,m (2.58)

The inequality constraints in Eq. (2.58) can be transformed to equality con-
straints by adding nonnegative slack variables, yj, as

gj(X) + yj = 0, J = 1,2,. . .,m (2.59)

where the values of the slack variables are yet unknown. The problem now
becomes

Minimize /(X)

subject to

G7(X9Y) = gj(X) + yj = 0, J= 1,2,. . .,m (2.60)

where Y = < . > is the vector of slack variables.

U J
This problem can be solved conveniently by the method of Lagrange mul-

tipliers. For this, we construct the Lagrange function L as

m

KX,Y,X) = /(X) + S XfGy(X,Y) (2.61)

M
where ^ = S .2 / is the vector of Lagrange multipliers. The stationary points

of the Lagrange function can be found by solving the following equations (nec-
essary conditions):

^ (X,Y,X) = ^ (X) + S A, ̂  (X) = 0, i = 1,2,. . .,«

(2.62)

^ (X,Y,X) = Gj(K9Y) = ft(X) + y,2 = 0, J= 1,2,. . .,m

(2.63)



dL
— (X,YA) = 2X^- = 0, J = 1,2,. . .,m (2.64)

It can be seen that Eqs. (2.62) to (2.64) represent (n + 2m) equations in the
(n + 2m) unknowns, X, X9 and Y. The solution of Eqs. (2.62) to (2.64) thus
gives the optimum solution vector X*, the Lagrange multiplier vector, X*, and
the slack variable vector, Y*.

Equations (2.63) ensure that the constraints g/(X) < 0, j = 1,2,. . .,m, are
satisfied, while Eqs. (2.64) imply that either X7 = 0 or y,- = 0. If X,- = 0, it
ma&ns that the jth constraint is inactive^ and hence can be ignored. On the
other hand, if yj•, = 0, it means that the constraint is active (gj = 0) at the
optimum point. Consider the division of the constraints into two subsets, Jx

and J2, where Jx + J2 represent the total set of constraints. Let the set Jx

indicate the indices of those constraints that are active at the optimum point
and J2 include the indices of all the inactive constraints.

Thus for j e J1,* y, = 0 (constraints are active), forj e / 2 , X7 = 0 (constraints
are inactive), and Eqs. (2.62) can be simplified as

^ + S X , -^ = O, I = 1,2,...,/i (2.65)

dxt jeJi dXi

Similarly, Eqs. (2.63) can be written as

Sj(X) = O9 JeJx (2.66)
gj(X) + yj = 0, JeJ2 (2.67)

Equations (2.65) to (2.67) represent n+p + (m-p)=n + m equations in
the n + m unknowns xt (i = 1,2,. . .,/i), X7 (j e Jx), and j y (j e J2), where p
denotes the number of active constraints.

Assuming that the firstp constraints are active, Eqs. (2.65) can be expressed
as

-JL = X l ^ + X 2 ^ - f - + X p ^ , / = 1 , 2 , . . , « (2.68)
dxt dxt dxt

 p dxt

These equations can be written collectively as

-Vf= XxVgx + X2V^2 + • • • + \p Vgp (2.69)

1ThOSe constraints that are satisfied with an equality sign, gj = 0, at the optimum point are called
the active constraints, while those that are satisfied with a strict inequality sign, gj < 0, are
termed inactive constraints.
*The symbol e is used to denote the meaning "belongs to" or "element of."



where V/and Vg7 are the gradients of the objective function and theyth con-
straint, respectively:

fdf/dx{\ fdgjIdx A

df/dx2 I dg;/dx2

Vf = . and Vg7- =

\BfldxJ \BgjldxJ

Equation (2.69) indicates that the negative of the gradient of the objective
function can be expressed as a linear combination of the gradients of the active
constraints at the optimum point.

Further, we can show that in the case of a minimization problem, the X7

values (j e J\) have to be positive. For simplicity of illustration, suppose that
only two constraints are active (p = 2) at the optimum point. Then Eq. (2.69)
reduces to

- V / - X1Vg1 + X2Vg2 (2.70)

Let S be a feasible direction1^ at the optimum point. By premultiplying both
sides of Eq. (2.70) by S r , we obtain

- S 7 V / = X1S
7Vg1 + X2S

7Vg2 (2.71)

where the superscript T denotes the transpose. Since S is a feasible direction,
it should satisfy the relations

sTvgi < o (2 72)
S7Vg2 < 0

1A vector S is called a feasible direction from a point X if at least a small step can be taken along
S that does not immediately leave the feasible region. Thus for problems with sufficiently smooth
constraint surfaces, vector S satisfying the relation

STVgj < 0

can be called a feasible direction. On the other hand, if the constraint is either linear or concave,
as shown in Fig. 2.Sb and c, any vector satisfying the relation

S7Vg, s 0

can be called a feasible direction. The geometric interpretation of a feasible direction is that the
vector S makes an obtuse angle with all the constraint normals, except that for the linear or
outward-curving (concave) constraints, the angle may go to as low as 90°.



Figure 2.8 Feasible direction S.

Thus if X1 > 0 and X2 > 0, the quantity S rV/can be seen always to be positive.
As V/indicates the gradient direction, along which the value of the function
increases at the maximum rate,1^ S7V/ represents the component of the incre-
ment of/along the direction S. If S7V/ > 0, the function value increases as
we move along the direction S. Hence if X1 and X2 are positive, we will not
be able to find any direction in the feasible domain along which the function
value can be decreased further. Since the point at which Eq. (2.72) is valid is
assumed to be optimum, X1 and X2 have to be positive. This reasoning can be
extended to cases where there are more than two constraints active. By pro-
ceeding in a similar manner, one can show that the X7 values have to be neg-
ative for a maximization problem.

fSee Section 6.10.2 for a proof of this statement.
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2.5.1 Kuhn-Tucker Conditions

As shown above, the conditions to be satisfied at a constrained minimum point,
X*, of the problem stated in Eq. (2.58) can be expressed as

7 + S A ^ = O, / = 1,2,...,/I (2.73)

\j > 0, j e Jx (2.74)

These are called Kuhn-Tucker conditions after the mathematicians who de-
rived them as the necessary conditions to be satisfied at a relative minimum of
/(X) [2.8]. These conditions are, in general, not sufficient to ensure a relative
minimum. However, there is a class of problems, called convex programming
problems^ for which the Kuhn-Tucker conditions are necessary and sufficient
for a global minimum.

If the set of active constraints is not known, the Kuhn-Tucker conditions
can be stated as follows:

f + S ^ = O, / = 1 , 2 , . . . , «
OXi j=\ OXi

\gj = 0 ^ j = 1,2,. . .,m ( 2 7 5 )

gj < 0, j = 1,2,. . .,m

\j > 0, J = 1,2,. . .,m

Note that if the problem is one of maximization or if the constraints are of the
type gj > 0, the X,- have to be nonpositive in Eqs. (2.75). On the other hand,
if the problem is one of maximization with constraints in the form gj > 0, the
Xj have to be nonnegative in Eqs. (2.75).

2.5.2 Constraint Qualification

When the optimization problem is stated as:

Minimize /(X)

subject to

gj(X) < 0, j = 1,2,. . .,m ^2 76^

hk(X) = 0, k = 1,2,. . .,/?

fSee Sections 2.6 and 7.14 for a detailed discussion of convex programming problems.
*This condition is the same as Eq. (2.64).



the Kuhn-Tucker conditions become

m p

Vf+ S KjVgj- S &V*t = 0

7 = 1 k=l

Xjgj = 0, j = 1,2,. . .,m

g, < 0, j = 1,2,. . .,m ^2 7 7

A* = 0, fc = 1,2, . . . ,/>
Xj > 0, J = 1,2,. . .,m

where X7 and /3fc denote the Lagrange multipliers associated with the constraints
gj < 0 and hk = 0, respectively. Although we found qualitatively that the
Kuhn-Tucker conditions represent the necessary conditions of optimality, the
following theorem gives the precise conditions of optimality.

Theorem 2.7 Let X* be a feasible solution to the problem of Eqs. (2.76). If
Vg7(X*), j E J1 and VZ^(X*), k = 1,2,. . .,/?, are linearly independent, there
exist X* and P* such that (X*, k*9 P*) satisfy Eqs. (2.77).

Proof: SeeRef. [2.11].

The requirement that Vg7(X*), j e Jx and V^(X*), k = 1,2,. . .,/?, be lin-
early independent is called the constraint qualification. If the constraint qual-
ification is violated at the optimum point, Eqs. (2.77) may or may not have a
solution. It is difficult to verify the constraint qualification without knowing
X* beforehand. However, the constraint qualification is always satisfied for
problems having any of the following characteristics:

1. All the inequality and equality constraint functions are linear.
2. All the inequality constraint functions are convex, all the eguality con-

straint functions are linear, and at least one feasible vector X exists that
lies strictly inside the feasible region, so that

gj(X) < 0, J= 1,2,. . .,m and hk(X) = 0, k = 1,2,. . .,/>

Example 2.12 Consider the problem:

Minimize/(Jt1, X2) = (xr - I)2 + xl (E1)

subject to

gl(*!,X2) =x\ - 2X2 < 0 (E2)



82(XuX2) = x] + 2x2 < O (E3)

Determine whether the constraint qualification and the Kuhn-Tucker condi-
tions are satisfied at the optimum point.

SOLUTION The feasible region and the contours of the objective function
are shown in Fig. 2.9. It can be seen that the optimum solution is (0, 0). Since
^1 and g2 are both active at the optimum point (0, 0), their gradients can be
computed as

f 3x f ) C 0) (3xf) CO)
Vg1PL*) = = and Vg2(X*) = =

V Z^(0,0) V Z J V z (̂0,0) VZJ

Feasible space

Figure 2.9 Feasible region and contours of the objective function.



It is clear that Vg,(X*) and Vg2(X*) are not linearly independent. Hence the
constraint qualification is not satisfied at the optimum point.

Noting that

(2(X1 - I)) (-2)
Vf(X*) =

the Kuhn-Tucker conditions can be written, using Eqs. (2.73) and (2.74), as

- 2 + X1(O) + X2(O) = 0 (E4)

0 + X,(-2) + X2(2) = 0 (E5)

X1 > 0 (E6)

X2 > 0 (E7)

Since Eq. (E4) is not satisfied and Eq. (E5) can be satisfied for negative values
of X1 = X2 also, the Kuhn-Tucker conditions are not satisfied at the optimum
point.

Example 2.13 A manufacturing firm producing small refrigerators has en-
tered into a contract to supply 50 refrigerators at the end of the first month, 50
at the end of the second month, and 50 at the end of the third. The cost of
producing x refrigerators in any month is given by $(JC2 + 1000). The firm can
produce more refrigerators in any month and carry them to a subsequent month.
However, it costs $20 per unit for any refrigerator carried over from one month
to the next. Assuming that there is no initial inventory, determine the number
of refrigerators to be produced in each month to minimize the total cost.

SOLUTION Let Xx, X2, and X3 represent the number of refrigerators produced
in the first, second, and third month, respectively. The total cost to be mini-
mized is given by

total cost = production cost + holding cost

or

/(JCi, JC2, Jc3) = (JC? + 1000) + (xl + 1000) + (xl + 1000) + 20(Jc1 - 50)

+ 20(X1 +X1- 100)

= x\ + X2 + x\ + 4OJC1 + 20JC2

The constraints can be stated as

g\(xux2,x3) = xx - 50 > 0



S2(X1,X29X3) = X1 + X2 - 100 > 0

S3(X15X^x3) = X1 + X2 + X3 - 150 >: 0

The Kuhn-Tucker conditions are given by

T - + X1 -— + X2 — - + X3 -— = 0, I = - 1 , 2 , 3
3x/ 9x/ dxt dx{

that is,

2X1 + 40 + X1 + X2 + X3 = 0 (E1)

2x2 + 20 + X2 + X3 = 0 (E2)

2x3 + X3 = 0 (E3)

XyS7 = 0, J= 1 ,2 ,3

that is,

X1(X1 - 50) = 0 (E4)

X2(X1 + X 2 - 100) = 0 (E5)

X3(X1 + X2 + X3 - 150) = 0 (E6)

gj*O, 7 = 1 ,2 ,3

that is,

X1 - 50 > 0 (E7)

X1 + X2 - 100 > 0 (E8)

X1 + X2 + x3 - 150 > 0 (E9)

\j < 0, J= 1 ,2 ,3

that is,

X1 < 0 (E10)

X2 < 0 (E11)

X3 < 0 (E12)

The solution of Eqs. (E1) to (E12) can be found in several ways. We proceed
to solve these equations by first noting that either X1 = 0 OrX1 = 50 according



to Eq. (E4). Using this information, we investigate the following cases to iden-
tify the optimum solution of the problem.

Case 1: X1 = 0. Equations (E1) to (E3) give

x - X3

x 2 = - 1 0 - | - | (E13)

Substituting Eqs. (E13) in Eqs. (E5) and (E6), we obtain

\ 2 ( - 1 3 0 - X2 - X3) = 0

X3(-18O - X2 - |X 3) = 0 (E14)

The four possible solutions of Eqs. (E14) are:

1. X2 = 0, —180 — X2 — § X3 = 0. These equations, along with Eqs. (E13),
yield the solution

X2 = 0, X3 = - 1 2 0 , xx = 40, X2 = 50, x3 = 60

This solution satisfies Eqs. (E10) to (E12) but violates Eqs. (E7) and (E8)
and hence cannot be optimum.

2. X3 = 0, —130 -X 2 -X 3 = 0. The solution of these equations leads to

X2 = - 1 3 0 , X 3 = O , JC1 = 45, x2 = 55, x3 = 0

This solution can be seen to satisfy Eqs. (E10) to (E12) but violate Eqs.
(E7) and (E9).

3. X2 = 0, X3 = 0. Equations (E13) give

Jc1 = - 2 0 , Jc2 = - 10 , Jc3 = 0

This solution satisfies Eqs. (E10) to (E12) but violates the constraints,
Eqs. (E7) to (E9).

4. - 1 3 0 - X2 - X3 = 0, - 1 8 0 - X2 - § X3 = 0. The solution of these
equations and Eqs. (E13) yields

X2 = - 30 , X3 = -100, Jc1 = 45, Jc2 = 55, JC3 = 50



This solution satisfies Eqs. (E10) to (E12) but violates the constraint, Eq.
(E7).

Case 2: X1 = 50. In this case, Eqs. (E1) to (E3) give

X3 = -2x 3

X2 = - 2 0 - 2x2 - X3 = - 2 0 - 2JC2 + 2x3 (E15)

X1 = - 4 0 - 2X1 - X2 - X3 = - 1 2 0 + 2JC2

Substitution of Eqs. (E15) in Eqs. (E5) and (E6) leads to

( - 2 0 - 2;t2 + 2 3̂)(JC1 +X2- 100) = 0

(-2X3)(X1 + x2 + x3 - 150) = 0 (E16)

Once again, it can be seen that there are four possible solutions to Eqs. (E16),
as indicated below.

1. - 2 0 - 2x2 + 2x3 = 0 , X1 + X2 + X3 - 150 = 0: The solution of these
equations yields

X1 = 50, x2 = 45, x3 = 55

This solution can be seen to violate Eq. (E8).

2. —20 — 2x2 + 2x3 = 0, — 2x3 = 0: These equations lead to the solution

X1 = 50, x2 = —10, X3 = 0

This solution can be seen to violate Eqs. (E8) and (E9).

3. X1 + x 2 — 100 = 0, — 2x3 = 0: These equations give

X1 = 50, X2 = 50, X3 = 0

This solution violates the constraint Eq. (E9).

4. X1 + X2 - 100 = 0, X1 + x2 + X3 - 150 = 0: The solution of these
equations yields

X1 = 50, x2 = 50, x3 = 50

This solution can be seen to satisfy all the constraint Eqs. (E7) to (E9).
The values of X1, X2, and X3 corresponding to this solution can be ob-
tained from Eqs. (E15) as

X1 = - 2 0 , X2 = - 2 0 , X3 - - 1 0 0



Since these values of X1- satisfy the requirements [Eqs. (E10) to (E12)],
this solution can be identified as the optimum solution. Thus

jcf = 50, Jc2* = 50, X3* = 50

2.6 CONVEX PROGRAMMING PROBLEM

The optimization problem stated in Eq. (2.58) is called a convex programming
problem if the objective function/(X), and the constraint functions, gy(X), are
convex. The definition and properties of a convex function are given in Ap-
pendix A. Suppose that/(X) and gj(X),j = 1,2,. . .,ra, are convex functions.
The Lagrange function of Eq. (2.61) can be written as

m

L(X9Y9X) = /(X) + L \j[gj(X) + yj] (2.78)

If X7 > 0, then X^g7(X) is convex, and since X7V7 = 0 from Eq. (2.64),
L(X, Y9X) will be a convex function. As shown earlier, a necessary condition
for/(X) to be a relative minimum at X* is that L(X,Y, X) have a stationary
point at X*. However, if L(X,Y,X) is a convex function, its derivative van-
ishes only at one point, which must be an absolute minimum of the function
/(X). Thus the Kuhn-Tucker conditions are both necessary and sufficient for
an absolute minimum of/(X) at X*.

Notes:

1. If the given optimization problem is known to be a convex programming
problem, there will be no relative minima or saddle points, and hence
the extreme point found by applying the Kuhn-Tucker conditions is
guaranteed to be an absolute minimum of/(X). However, it is often very
difficult to ascertain whether the objective and constraint functions in-
volved in a practical engineering problem are convex.

2. The derivation of the Kuhn-Tucker conditions was based on the devel-
opment given for equality constraints in Section 2.4. One of the require-
ments for these conditions was that at least one of the Jacobians com-
posed of the m constraints and m of the n + m variables (Jc1 ,Jt2,. • -,Xn;
Ji»j2»- • ->ym) be nonzero. This requirement is implied in the derivation
of the Kuhn-Tucker conditions.
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REVIEW QUESTIONS

2.1 State the necessary and sufficient conditions for the minimum of a func-
tion/(x).

2.2 Under what circumstances can the condition df(x)ldx = 0 not be used
to find the minimum of the function/(x)?

2.3 Define the rth differential, drf(X), of a multivariable function/(X).

2.4 Write the Taylor's series expansion of a function/(X).

2.5 State the necessary and sufficient conditions for the maximum of a mul-
tivariable function/(X).

2.6 What is a quadratic form?

2.7 How do you test the positive, negative, or indefiniteness of a square
matrix [A]I

2.8 Define a saddle point and indicate its significance.

2.9 State the various methods available for solving a multivariable optimi-
zation problem with equality constraints.

2.10 State the principle behind the method of constrained variation.



2.11 What is the Lagrange multiplier method?

2.12 What is the significance of Lagrange multipliers?

2.13 Convert an inequality constrained problem into an equivalent uncon-
strained problem.

2.14 State the Kuhn-Tucker conditions.

2.15 What is an active constraint?

2.16 Define a usable feasible direction.

2.17 What is a convex programming problem? What is its significance?

2.18 Answer whether each of the following quadratic forms is positive def-
inite, negative definite, or neither.

(a) / = x2 - x\

(b) / = AxxX2

(C) f=x]+ 2x2
2

(d) / = - x 2 + 4x,jc2 + Ax\

(e) / = -jc? + 4Jc1JC2 - 9x2 + 2Jc1Jc3 + 8JC2JC3 - 4x3

2.19 State whether each of the following functions is convex, concave, or
neither.
(a) / = -2JC2 + 8JC + 4

(b) / = jc2 + IOJC + 1

(C) / = JC2 - x\

(d) / = - X 1 + 4.X1X2

(e) / = e ' \ JC > 0

(f) / = Jx,x > 0
(g) f= X1X2

(h ) f=(xx- I ) 2 + 10(jc2 - 2 ) 2

2.20 Match the following equations and their characteristics.
(a) / = 4X1 — 3x2 + 2 Relative maximum at (1, 2)

(b) / = (2X1 - 2)2 + (X1 - 2)2 Saddle point at origin
(c) / = -(X1 - I)2 - (x2 - 2)2 No minimum
(d) / = X1X2 Inflection point at origin
(e) / = x3 Relative minimum at (1, 2)

PROBLEMS

2.1 A dc generator has an internal resistance R ohms and develops an open-
circuit voltage of V volts (Fig. 2.10). Find the value of the load resis-



Figure 2.10 Electric generator with load.

tance r for which the power delivered by the generator will be a maxi-
mum.

2.2 Find the maxima and minima, if any, of the function

f{x) = (x - IKx - 3)3

2.3 Find the maxima and minima, if any, of the function

/(jc) = 4JC3 - ISx2 + 2Ix-I

2.4 The efficiency of a screw jack is given by

__ tan a
1 tan (a + 0)

where a is the lead angle and 0 is a constant. Prove that the efficiency
of the screw jack will be maximum when a = 45° — 0/2 with r/max =
(1 - sin 0)/(l + sin 0).

2.5 Find the minimum of the function

/(jc) = IOJC6 - 48JC5 + 15JC4 + 200x3 - 120JC2 - 480JC + 100

2.6 Find the angular orientation of a cannon to maximize the range of the
projectile.

2.7 In a submarine telegraph cable the speed of signalling varies as JC2

log(l/x), where x is the ratio of the radius of the core to that of the
covering. Show that the greatest speed is attained when this ratio is
l:\fe.

Generator

R

V

r



2.8 The horsepower generated by a Pelton wheel is proportional to u(V —
w), where u is the velocity of the wheel, which is variable, and V is the
velocity of the jet, which is fixed. Show that the efficiency of the Pelton
wheel will be maximum when u = V 12.

2.9 A pipe of length / and diameter D has at one end a nozzle of diameter
d through which water is discharged from a reservoir. The level of water
in the reservoir is maintained at a constant value h above the center of
nozzle. Find the diameter of the nozzle so that the kinetic energy of the
jet is a maximum. The kinetic energy of the jet can be expressed as

1 / 2gD
5h \ 3 / 2

where p is the density of water, / the friction coefficient and g the grav-
itational constant.

2.10 An electric light is placed directly over the center of a circular plot of
lawn 100 m in diameter. Assuming that the intensity of light varies
directly as the sine of the angle at which it strikes an illuminated sur-
face, and inversely as the square of its distance from the surface, how
high should the light be hung in order that the intensity may be as great
as possible at the circumference of the plot?

2.11 If a crank is at an angle 6 from dead center with 6 = ot, where co is the
angular velocity and t is time, the distance of the piston from the end
of its stroke (x) is given by

x = r (1 - cos 0) + — (1 - cos 20)
4/

where r is the length of the crank and / is the length of the connecting
rod. For r = 1 and / = 5, find (a) the angular position of the crank at
which the piston moves with maximum velocity, and (b) the distance
of the piston from the end of its stroke at that instant.

Determine whether each of the following matrices is positive definite, negative
definite, or indefinite by finding its eigenvalues.

" 3 1 - 1 "

2.12 [A] = 1 3 - 1

_ - l - 1 5_

" 4 2 - 4 "

2.13 [B] = 2 4 - 2

_-4 - 2 4_



~-i -i - r

2.14 [C] = - 1 - 2 - 2

_ - l - 2 - 3 _

Determine whether each of the following matrices is positive definite, negative
definite, or indefinite by evaluating the signs of its submatrices.

~ 3 i - r

2.15 [A] = 1 3 - 1

_ - l - 1 5_

" 4 2 - 4 "

2.16 [B] = 2 4 - 2

- 4 - 2 4_

~ - l - 1 - 1 "

2.17 [C] = - 1 - 2 - 2

_ - l - 2 - 3 _

2.18 Express the function

f(xi,x2,x3)
 = -x2\ ~ x\ + 2X1X2 - x\ + 6x\x3 + Axx - 5JC3 + 2

in matrix form as

/(X) = {XT[A] X + B r X + C

and determine whether the matrix [A] is positive definite, negative def-
inite, or indefinite.

2.19 Determine whether the following matrix is positive or negative definite.

" 4 - 3 0"

[A] = - 3 0 4

0 4 2_

2.20 Determine whether the following matrix is positive definite.

" -14 3 0"

[A] = 3 - 1 4

0 4 2_



Figure 2.11 Two-bar truss.

2.21 The potential energy of the two-bar truss shown in Fig. 2.11 is given
by

EA ( 1 \ 2
 2 EA /h\2

 2
/(X1, X2) = — ( — ) xf + — I - I x\ - Pxx cos 0 - Px2 sin 0

where E is Young's modulus, A the cross-sectional area of each mem-
ber, Z the span of the truss, s the length of each member, h the height
of the truss, P the applied load, 0 the angle at which the load is applied,
and Jc1 and X2 are, respectively, the horizontal and vertical displacements
of the free node. Find the values OfX1 and X2 that minimize the potential
energy when E = 207 X 109 Pa, A = 10~5 m2, / = 1.5 m, h = 4.0
m, P = 104N, and 6 = 30°.

2.22 The profit per acre of a farm is given by

2Ox1 + 26x2 + 4x,x2 - 4xj - 3x2

where X1 and X2 denote, respectively, the labor cost and the fertilizer
cost. Find the values OfX1 and X2 to maximize the profit.

2.23 The temperatures measured at various points inside a heated wall are as
follows:

Distance from the heated surface as a
percentage of wall thickness, d 0 25 50 75 100

Temperature, t (0C) 380 200 100 20 0

/

h

a a

A A

P



It is decided to approximate this table by a linear equation (graph) of
the form t = a + bd, where a and b are constants. Find the values of
the constants a and b that minimize the sum of the squares of all dif-
ferences between the graph values and the tabulated values.

2.24 Find the second-order Taylor's series approximation of the function

/(X19X2) = (X1 - I ) V 2 +JC1

at the points (a) (0,0) and (b) (1,1).

2.25 Find the third-order Taylor's series approximation of the function

/(X1 ,X2 ,X3) = XJx3 + X1*?*3

at point (1 ,0 , -2) .

2.26 The volume of sales ( / ) of a product is found to be a function of the
number of newspaper advertisements (x) and the number of minutes of
television time (y) as

/ = 12xy - x2 - 3y2

Each newspaper advertisement or each minute on television costs $1000.
How should the firm allocate $48,000 between the two advertising me-
dia for maximizing its sales?

2.27 Find the value of JC* at which the following function attains its maxi-
mum:

f/x\ = * £-(l/2U(Jc-100)/1012

10 V2^

2.28 It is possible to establish the nature of stationary points of an objective
function based on its quadratic approximation. For this, consider the
quadratic approximation of a two-variable function as

/(X) * a + b rX + \ XT[c] X

where

X - H b . H aad [C1 - \C" H
№J Kp2) Icn C22J

If the eigenvalues of the Hessian matrix, [c], are denoted as /S1 and /S2,



identify the nature of the contours of the objective function and the type
of stationary point in each of the following situations.

(a) 1S1 = /32; both positive

(b) j3, > j82; both positive

(c) I)S1I = |j821; |8i and /32 have opposite signs
(d) /3, > 0, /32 = 0

Plot the contours of each of the following functions and identify the nature of
its stationary point.

2.29 / = 2 -x2 - y2 + 4xy

2.30 / = 2 +jc2 -y2

2.31 f=xy

2.32 f=x3- 3xy2

2.33 Find the admissible and constrained variations at the point X = j . |

for the following problem:

Min imize /= x\ + (x2 — I)2

subject to

-Ix] + Jc2 = 4

2.34 Find the diameter of an open cylindrical can that will have the maxi-
mum volume for a given surface area, S.

2.35 A rectangular beam is to be cut from a circular log of radius r. Find the
cross-sectional dimensions of the beam to (a) maximize the cross-sec-
tional area of the beam, and (b) maximize the perimeter of the beam
section.

2.36 Find the dimensions of a straight beam of circular cross section that can
be cut from a conical log of height h and base radius r to maximize the
volume of the beam.

2.37 The deflection of a rectangular beam is inversely proportional to the
width and the cube of depth. Find the cross-sectional dimensions of a
beam, which corresponds to minimum deflection, that can be cut from
a cylindrical log of radius r.

2.38 A rectangular box of height a and width b is placed adjacent to a wall
(Fig. 2.12). Find the length of the shortest ladder that can be made to
lean against the wall.



Figure 2.12 Ladder against a wall.

2.39 Show that the right circular cylinder of given surface (including the
ends) and maximum volume is such that its height is equal to the di-
ameter of the base.

2.40 Find the dimensions of a closed cylindrical soft drink can that can hold
soft drink of volume V for which the surface area (including the top and
bottom) is a minimum.

2.41 An open rectangular box is to be manufactured from a given amount of
sheet metal (area S). Find the dimensions of the box to maximize the
volume.

2.42 Find the dimensions of an open rectangular box of volume V for which
the amount of material required for manufacture (surface area) is a min-
imum.

2.43 A rectangular sheet of metal with sides a and b has four equal square
portions (of side d) removed at the corners, and the sides are then turned
up so as to form an open rectangular box. Find the depth of the box
that maximizes the volume.

2.44 Show that the cone of the greatest volume which can be inscribed in a
given sphere has an altitude equal to two-thirds of the diameter of the
sphere. Also prove that the curved surface of the cone is a maximum
for the same value of the altitude.

2.45 Prove Theorem 2.6.

Ladder



2.46 A log of length / is in the form of a frustum of a cone whose ends have
radii a and b (a > b). It is required to cut from it a beam of uniform
square section. Prove that the beam of greatest volume that can be cut
has a length of al/[3(a — b)].

2.47 It has been decided to leave a margin of 30 mm at the top and 20 mm
each at the left side, right side, and the bottom on the printed page of
a book. If the area of the page is specified as 5 X 104 mm2, determine
the dimensions of a page that provide the largest printed area.

2.48 Minimize/= 9 - Sx1 - 6x2 - 4JC3 + 2JC2

+ 2x1 + A + 2JC,JC2 + 2Jc1JC3

subject to

X1 + Jc2 + 2JC3 = 3

by (a) direct substitution, (b) constrained variation, and (c) Lagrange
multiplier method.

2.49 Minimize/(X) = \(x\ + x\ + x\)

subject to

S 1 ( X ) = x x - X2 = Q

g2(X) = xx + x2 + x3 - 1 = 0

by (a) direct substitution, (b) constrained variation, and (c) Lagrange
multiplier method.

2.50 Find the values of JC, y9 and z that maximize the function

when JC, y, and z are restricted by the relation xyz = 16.

2.51 A tent on a square base of side 2a consists of four vertical sides of
height b surmounted by a regular pyramid of height h. If the volume
enclosed by the tent is F, show that the area of canvas in the tent can
be expressed as

2 V Sah A r-2 2
a 3



Also show that the least area of the canvas corresponding to a given
volume F, if a and h can both vary, is given by

V5 h
a = —-— and h = 2b

2.52 A departmental store plans to construct a one-story building with a rect-
angular planform. The building is required to have a floor area of 22,500
ft2 and a height of 18 ft. It is proposed to use brick walls on three sides
and a glass wall on the fourth side. Find the dimensions of the building
to minimize the cost of construction of the walls and the roof assuming
that the glass wall costs twice as much as that of the brick wall and the
roof costs three times as much as that of the brick wall per unit area.

2.53 Find the dimensions of the rectangular building described in Problem
2.52 to minimize the heat loss assuming that the relative heat losses per
unit surface area for the roof, brick wall, glass wall, and floor are in
the proportion 4 : 2 : 5 : 1 .

2.54 A funnel, in the form of a right circular cone, is to be constructed from
a sheet metal. Find the dimensions of the funnel for minimum lateral
surface area when the volume of the funnel is specified as 200 in3.

2.55 Find the effect o n / * when the value of A0 is changed to (a) 25TT and
(b) 22TT in Example 2.10 using the property of the Lagrange multiplier.

2.56 (a) Find the dimensions of a rectangular box of volume V = 1000 in3

for which the total length of the 12 edges is a minimum using the
Lagrange multiplier method.

(b) Find the change in the dimensions of the box when the volume is
changed to 1200 in3 by using the value of X* found in part (a).

(c) Compare the solution found in part (b) with the exact solution.

2.57 Find the effect o n / * of changing the constraint to (a) x + X2 + 2x3 =
4 and (b) x + X2 + 2x3 = 2 in Problem 2.48. Use the physical meaning
of Lagrange multiplier in finding the solution.

2.58 A real estate company wants to construct a multistory apartment build-
ing on a 500 ft X 500 ft lot. It has been decided to have a total floor
space of 8 X 105 ft2. The height of each story is required to be 12 ft,
the maximum height of the building is to be restricted to 75 ft, and the
parking area is required to be at least 10% of the total floor area ac-
cording to the city zoning rules. If the cost of the building is estimated
at $(500,000/i + 2000F + 500P), where h is the height in feet, F is
the floor area in square feet, and P is the parking area in square feet.
Find the minimum cost design of the building.

2.59 Identify the optimum point among the given design vectors, X1, X2,
and X3, by applying the Kuhn-Tlucker conditions to the following



problem:

Minimize/(X) = 1OO(JC2 - x]f + (1 - Jc1)
2

subject to

x\ - xx > 0

x\ - X2 > 0

-\ < X1 < \, X2 < 1

» , - [ : } - [ - : } - f t

2.60 Consider the following optimization problem:

Maximize/= —x\ — x\ + xxx2 + Ixx + 4JC2

subject to

2Jc1 + 3JC2 < 24

-5Jc1 + 12JC2 < 24

Jc1 > 0, Jc2 > 0, Jc2 < 4

Find a usable feasible direction at each of the following design vectors:

X i - C } x ' = $

2.61 Consider the following problem:

Minimize/= (Jc1 - 2)2 + (JC2 - I)2

subject to

2 >: JC1 + JC2

X2 > x\

Using Kuhn-Tucker conditions, find which of the following vectors are
local minima:

x - [ 3 * - [ ! ] • x - S



2.62 Using Kuhn-Tucker conditions, find the value(s) of /3 for which the
point JC* = 1, JC* = 2 will be optimal to the problem:

Maximize/(Jc1 ,Jc2) = 2xx + /Sx2

subject to

gx(xux2) = x\ + x\ - 5 < 0

g2(xl9 X2) = X1 - X2 - 2 < 0

Verify your result using a graphical procedure.

2.63 Consider the following optimization problem:

Maximize /= -X1 — X2

subject to

x] + X2 > 2

4 < X1 + 3x2

X1 + x2 < 30

cq
(a) Find whether the design vector X = J ? satisfies the Kuhn-Tucker

conditions for a constrained optimum.
(b) What are the values of the Lagrange multipliers at the given design

vector?

2.64 Consider the following problem:

Minimize/(X) = x\ + x\ + x\

subject to

X1 + X2 + X3 > 5

2 - X2X3 < 0

X1 > 0, X2 > 0, x3 > 2

Determine whether the Kuhn-Tucker conditions are satisfied at the fol-
lowing points:



*•$• "-O)- *•$
c-q

2.65 Find a usable and feasible direction S at (a) X1 = j ? and (b) X2 =

Cl)
j > for the following problem:

Minimize/(X) = (Jc1 - I)2 + (x2 - 5)2

subject to

S1(X) = -jc2 + x2 - 4 < O

g2(X) = -(X1 - 2)2 + x2 - 3 < O

2.66 Consider the following problem:

Minimize/ = x\ — X2

subject to

26 > JC2 + JC2

Xx + x2 > 6

Jc1 > O

Determine whether the following search direction is usable, feasible, or

both at the design vector X = J 1 ? :

- o -n ••[:} -H!
2.67 Consider the following problem:

Minimize/ = Jc1 — 6x\ + HJC1 + JC3

subject to



x\ + x\ - x\ < O

4 - JC? - x\ - x\ < O

xt > O, I = 1,2,3, x3 < 5

Determine whether the following vector represents an optimum solu-
tion:

• • & }

2.68 Min imize /= X1 + 2*2 + 3x2

subject to the constraints

Si = Xx - X2 - 2x3 < 12

g2 = X1 + 2x2 - 3x3 < 8

using Kuhn-Tucker conditions.

2.69 Minimize/(JC15JC2) = (Jc1 - I)2 + (JC2 - 5)2

subject to

-jc2 + JC2 < 4
-(Jc1 - 2)2 + Jc2 < 3

by (a) the graphical method and (b) Kuhn-Tucker conditions.

2.70 Maximize /= 8X1 H- 4x2 + X1X2 — x2 — X2

subject to

2X1 + 3x2 < 24

-5X1 + 12x2 < 24

x2 < 5

by applying Kuhn-Tucker conditions.

2.71 Consider the following problem:

Maximize/(x) = (x — I)2



subject to

- 2 < x < 4

Determine whether the constraint qualification and Kuhn-Tucker con-
ditions are satisfied at the optimum point.

2.72 Consider the following problem:

Min imize /= (JC, - I)2 + (JC2 - I)2

subject to

2x2 - (1 - X1)
3 < 0

X1 > 0

X2 > 0

Determine whether the constraint qualification and the Kuhn-Tucker
conditions are satisfied at the optimum point.

2.73 Verify whether the following problem is convex:

Minimize/(X) = -Axx H- x\ - IxxX2 + 2JC2

subject to

Ixx + Jc2 < 6

Xx - Ax2 < 0

JC, > 0, Jc2 > 0

2.74 Check the convexity of the following problems.

(a) Minimize/(X) = 2JC1 4- 3JC2 - JC1 - 2JC2

subject to

Jc1 + 3JC2 < 6

5Jc1 + 2JC2 < 10

Jc1 > 0, Jc2 > 0

(b) Minimize/(X) = 9x\ - ISx1X2 + 13Jc1 - 4

subject to

JC2 + Jc2
1 + 2Jc1 > 16



LINEAR PROGRAMMING I:
SIMPLEX METHOD

3.1 INTRODUCTION

Linear programming is an optimization method applicable for the solution of
problems in which the objective function and the constraints appear as linear
functions of the decision variables. The constraint equations in a linear pro-
gramming problem may be in the form of equalities or inequalities. The linear
programming type of optimization problem was first recognized in the 1930s
by economists while developing methods for the optimal allocation of re-
sources. During World War II the U.S. Air Force sought more effective pro-
cedures of allocating resources and turned to linear programming. George B.
Dantzig, who was a member of the Air Force group, formulated the general
linear programming problem and devised the simplex method of solution in
1947. This has become a significant step in bringing linear programming into
wider use. Afterward, much progress has been made in the theoretical devel-
opment and in the practical applications of linear programming. Among all the
works, the theoretical contributions made by Kuhn and Tucker had a major
impact in the development of the duality theory in LP. The works of Charnes
and Cooper were responsible for industrial applications of LP.

Linear programming is considered a revolutionary development that permits
us to make optimal decisions in complex situations. At least four Nobel Prizes
were awarded for contributions related to linear programming. For example,
when the Nobel Prize in Economics was awarded in 1975 jointly to L. V.
Kantorovich of the former Soviet Union and T. C. Koopmans of the United
States, the citation for the prize mentioned their contributions on the applica-
tion of LP to the economic problem of allocating resources [3.1]. George Dant-

3



zig, the inventor of LP, was awarded the National Medal of Science by Pres-
ident Gerald Ford in 1976.

Although several other methods have been developed over the years for
solving LP problems, the simplex method continues to be the most efficient
and popular method for solving general LP problems. Among other methods,
Karmarkar's method, developed in 1984, has been shown to be up to 50 times
as fast as the simplex algorithm of Dantzig. In this chapter we present the
theory, development, and applications of the simplex method for solving LP
problems. Additional topics, such as the revised simplex method, duality the-
ory, decomposition method, postoptimality analysis, and Karmarkar's method,
are considered in Chapter 4.

3.2 APPLICATIONS OF LINEAR PROGRAMMING

The number of applications of linear programming has been so large that it is
not possible to describe all of them here. Only the early applications are men-
tioned here and the exercises at the end of this chapter give additional example
applications of linear programming. One of the early industrial applications of
linear programming has been made in the petroleum refineries. In general, an
oil refinery has a choice of buying crude oil from several different sources with
differing compositions and at differing prices. It can manufacture different
products, such as aviation fuel, diesel fuel, and gasoline, in varying quantities.
The constraints may be due to the restrictions on the quantity of the crude oil
available from a particular source, the capacity of the refinery to produce a
particular product, and so on. A mix of the purchased crude oil and the man-
ufactured products is sought that gives the maximum profit.

The optimal production plan in a manufacturing firm can also be decided
using linear programming. Since the sales of a firm fluctuate, the company can
have various options. It can build up an inventory of the manufactured products
to carry it through the period of peak sales, but this involves an inventory
holding cost. It can also pay overtime rates to achieve higher production during
periods of higher demand. Finally, the firm need not meet the extra sales de-
mand during the peak sales period, thus losing a potential profit. Linear pro-
gramming can take into account the various cost and loss factors and arrive at
the most profitable production plan.

In the food-processing industry, linear programming has been used to de-
termine the optimal shipping plan for the distribution of a particular product
from different manufacturing plants to various warehouses. In the iron and
steel industry, linear programming was used to decide the types of products to
be made in their rolling mills to maximize the profit. Metal working industries
use linear programming for shop loading and for determining the choice be-
tween producing and buying a part. Paper mills use it to decrease the amount
of trim losses. The optimal routing of messages in a communication network



and the routing of aircraft and ships can also be decided using linear program-
ming.

Linear programming has also been applied to formulate and solve several
types of engineering design problems, such as the plastic design of frame struc-
tures, as illustrated in the following example.

Example 3.1 In the limit design of steel frames, it is assumed that plastic
hinges will be developed at points with peak moments. When a sufficient num-
ber of hinges develop, the structure becomes an unstable system referred to as
a collapse mechanism. Thus a design will be safe if the energy-absorbing ca-
pacity of the frame (U) is greater than the energy imparted by the externally
applied loads (E) in each of the deformed shapes as indicated by the various
collapse mechanisms [3.9].

For the rigid frame shown in Fig. 3.1, plastic moments may develop at the
points of peak moments (numbered 1 through 7 in Fig. 3.1). Four possible
collapse mechanisms are shown in Fig. 3.2 for this frame. Assuming that the
weight is a linear function of the plastic moment capacities, find the values of
the ultimate moment capacities Mb and Mc for minimum weight. Assume that
the two columns are identical and that P1 = 3, P1 = 1, /z = 8, and / = 10.

SOLUTION The objective function can be expressed as

f(Mb,Mc) = weight of beam + weight of columns

= a(2lMb + 2hMc)

where a is a constant indicating the weight per unit length of the member with
a unit plastic moment capacity. Since a constant multiplication factor does not
affect the result, /can be taken as

/ = 2lMb + 2hMc = 20A^ + 16MC (E1)

Figure 3.1 Rigid frame.



E = Pi 5i + P2 52 = 349 E = Pi 5i = 249

C/ = 4M69 + 2MC9 [/ = 2M69 + 2MC9

Figure 3.2 Collapse mechanisms of the frame. Mb, moment carrying capacity of
beam; MC9 moment carrying capacity of column [3.9].

The constraints (U > E) from the four collapse mechanisms can be expressed
as

Mc > 6

Mb > 2.5

2Mb + Mc > 17

M^ + Mc > 12 (E2)

3.3 STANDARD FORM OF A LINEAR
PROGRAMMING PROBLEM

The general linear programming problem can be stated in the following stan-
dard form:

1. Scalar form



MmInIiZeZ(JC15JC2,. . .,Jtn) = C1X1 + c2x2 + • • • + cnxn (3.1a)

subject to the constraints

^11JC1 + a12x2 + • • • + a]nxn = bx

O21X1 + O22X2 + • • • + a2nxn = b2 {3.2a)

amXxx + ow 2x2 + • • • 4- omnxn = bm

X1 > O

* 2 " ° (3.3o)

Xn > O

where c}, bjy and atj (i = 1,2,. . .,m; j = 1,2,. . .,«) are known con-
stants, and Xj are the decision variables.

2. Matrix form

Minimize/(X) = C7X (3.1fc)

subject to the constraints

aX = b (3.2b)

X > O (3.36)

where

X1 \ ( 1 I [ l

X = ^2, b = r . 2 , c = ? : - ,

Vx^y ^fem^ ^ y

O11 O12 • • • O1n

^21 #22 * * " a2n
a =

_ o m i o m 2 • * • o m n _



The characteristics of a linear programming problem, stated in the standard
form, are:

1. The objective function is of the minimization type.

2. All the constraints are of the equality type.

3. All the decision variables are nonnegative.

It is now shown that any linear programming problem can be expressed in the
standard form by using the following transformations.

1. The maximization of a function/(Jc1,X2,. . .,Xn) is equivalent to the min-
imization of the negative of the same function. For example, the objec-
tive function

minimize / = C1Jc1 + c2x2 + # * * + cnxn

is equivalent to

maximize/ ' = —/ = -C1JCi ~~ C2*2 — • • • — cnxn

Consequently, the objective function can be stated in the minimization
form in any linear programming problem.

2. In most engineering optimization problems, the decision variables rep-
resent some physical dimensions, and hence the variables Jc7 will be non-
negative. However, a variable may be unrestricted in sign in some prob-
lems. In such cases, an unrestricted variable (which can take a positive,
negative, or zero value) can be written as the difference of two non-
negative variables. Thus if Xj is unrestricted in sign, it can be written as
Xj = xj — xj, where

x'j > 0 and JC/ > 0

It can be seen that Jc7 will be negative, zero, or positive, depending on
whether x" is greater than, equal to, or less than jcy'.

3. If a constraint appears in the form of a "less than or equal to" type of
inequality as

0*1*1 + akix2 + • • • + aknxn < bk

it can be converted into the equality form by adding a nonnegative slack
variable Xn+ ] as follows:

akxxx + Uk2X2 + • * • + QtnXn +Xn + 1 = bk



Similarly, if the constraint is in the form of a "greater than or equal to"
type of inequality as

akxxx + Uk2X2 + • • • + aknxn > bk

it can be converted into the equality form by subtracting a variable as

akxxx + ak2x2 + • • • + OfnXn -Xn + 1 = bk

where Xn + 1 is a nonnegative variable known as a surplus variable.

It can be seen that there are m equations in n decision variables in a linear
programming problem. We can assume that m < n; for if m > n, there would
be m — n redundant equations that could be eliminated. The case n = m is of
no interest, for then there is either a unique solution X that satisfies Eqs. (3.2)
and (3.3) (in which case there can be no optimization) or no solution, in which
case the constraints are inconsistent. The case m < n corresponds to an
underdetermined set of linear equations which, if they have one solution, have
an infinite number of solutions. The problem of linear programming is to find
one of these solutions that satisfies Eqs. (3.2) and (3.3) and yields the mini-
mum of/.

3.4 GEOMETRY OF LINEAR PROGRAMMING PROBLEMS

A linear programming problem with only two variables presents a simple case
for which the solution can be obtained by using a rather elementary graphical
method. Apart from the solution, the graphical method gives a physical picture
of certain geometrical characteristics of linear programming problems. The
following example is considered to illustrate the graphical method of solution.

Example 3.2 A manufacturing firm produces two machine parts using lathes,
milling machines, and grinding machines. The different machining times re-
quired for each part, the machining times available on different machines, and
the profit on each machine part are given in the following table.

Type of Machine

Lathes
Milling machines
Grinding machines

Profit per unit

Machining Time Required (min)

Machine Part I

10
4
1

$50

Machine Part II

5
10
1.5

$100

Maximum Time Available
per Week (min)

2500
2000
450



Determine the number of parts I and II to be manufactured per week to max-
imize the profit.

SOLUTION Let the number of machine parts I and II manufactured per week
be denoted by x and y, respectively. The constraints due to the maximum time
limitations on the various machines are given by

IOJC + 5y < 2500 (E1)

Ax + 10y < 2000 (E2)

JC + 1.5y < 450 (E3)

Since the variables x and y cannot take negative values, we have

x - ° (E4)

y > 0

The total profit is given by

f(x,y) = 50x + 10Oy (E5)

Thus the problem is to determine the nonnegative values of x and y that satisfy
the constraints stated in Eqs. (Ej) to (E3) and maximize the objective function
given by Eq. (E5). The inequalities (E1) to (E4) can be plotted in the xy plane
and the feasible region identified as shown in Fig. 3.3. Our objective is to find

Figure 3.3 Feasible region given by Eqs. (E,) to (E4).
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at least one point out of the infinite points in the shaded region of Fig. 3.3
which maximizes the profit function (E5).

The contours of the objective function, / , are defined by the linear equation

5(k + 10Oy = k = constant

As k is varied, the objective function line is moved parallel to itself. The max-
imum value of/ is the largest k whose objective function line has at least one
point in common with the feasible region. Such a point can be identified as
point G in Fig. 3.4. The optimum solution corresponds to a value of JC* =
187.5, y* = 125.0 and a profit of $21,875.00.

In some cases, the optimum solution may not be unique. For example, if
the profit rates for the machine parts I and II are $40 and $100 instead of $50
and $100, respectively, the contours of the profit function will be parallel to
side CG of the feasible region as shown in Fig. 3.5. In this case, line P"Q",
which coincides with the boundary line CG, will correspond to the maximum
(feasible) profit. Thus there is no unique optimal solution to the problem and
any point between C and G on line P"Q" can be taken as an optimum solution
with a profit value of $20,000. There are three other possibilities. In some
problems, the feasible region may not be a closed convex polygon. In such a
case, it may happen that the profit level can be increased to an infinitely large
value without leaving the feasible region, as shown in Fig. 3.6. In this case
the solution of the linear programming problem is said to be unbounded. On
the other extreme, the constraint set may be empty in some problems. This
could be due to the inconsistency of the constraints; or, sometimes, even though

Figure 3.4 Contours of objective function.



Figure 3.5 Infinite solutions.

the constraints may be consistent, no point satisfying the constraints may also
satisfy the nonnegativity restrictions. The last possible case is when the fea-
sible region consists of a single point. This can occur only if the number of
constraints is at least equal to the number of variables. A problem of this kind
is of no interest to us since there is only one feasible point and there is nothing
to be optimized.

Thus a linear programming problem may have (1) a unique and finite opti-
mum solution, (2) an infinite number of optimal solutions, (3) an unbounded

Figure 3.6 Unbounded solution.



solution, (4) no solution, or (5) a unique feasible point. Assuming that the
linear programming problem is properly formulated, the following general ge-
ometrical characteristics can be noted from the graphical solution.

1. The feasible region is a convex polygon.f

2. The optimum value occurs at an extreme point or vertex of the feasible
region.

3.5 DEFINITIONS AND THEOREMS

The geometrical characteristics of a linear programming problem stated in Sec-
tion 3.4 can be proved mathematically. Some of the more powerful methods
of solving linear programming problems take advantage of these characteris-
tics. The terminology used in linear programming and some of the important
theorems are presented in this section.

Definitions

1. Point in n-Dimensional Space A point X in an n-dimensional space is
characterized by an ordered set of n values or coordinates (xux2,. . .,Jcn). The
coordinates of X are also called the components of X.

2. Line Segment in n-Dimensions (L) If the coordinates of two points A and
B are given by xf] and JC)2) (j = 1,2,. . . ,n), the line segment (L) joining these
points is the collection of points X (X) whose coordinates are given by Xj =
\x(jl) + (1 - \)xf\j = 1,2,. . .,n, with 0 < X < 1.

Thus

L = {X|X = XX(1) + (1 - X)X(2)} (3.4)

In one dimension, for example, it is easy to see that the definition is in accor-
dance with our experience (Fig. 3.7):

JC<2> - x(X) = X[JC(2) - JC(1)], 0 < X < 1 (3.5)

A B
1 i I I ^ x

0 X(D X(W X(2)
Figure 3.7 Line segment.

1A convex polygon consists of a set of points having the property that the line segment joining
any two points in the set is entirely in the convex set. In problems having more than two decision
variables, the feasible region is called a convex polyhedron, which is defined in the next section.



whence

X(K) = XJC(1) + (1 - \)x(2\ O < X < 1 (3.6)

3. Hyperplane In n-dimensional space, the set of points whose coordinates
satisfy a linear equation

axxx + • • • + anxn = a rX = b (3.7)

is called a hyperplane.
A hyperplane, H, is represented as

H(a,b) = {X|arX = b} (3.8)

A hyperplane has n — 1 dimensions in an rc-dimensional space. For example,
in three-dimensional space it is a plane, and in two-dimensional space it is a
line. The set of points whose coordinates satisfy a linear inequality like axxx

+ • • • + anxn < b is called a closed half-space, closed due to the inclusion
of an equality sign in the inequality above. A hyperplane partitions the
/i-dimensional space (En) into two closed half-spaces, so that

H+ = (XIa7X > b} (3.9)

H~ = {X|a rX < b} (3.10)

This is illustrated in Fig. 3.8 in the case of a two-dimensional space (£2).

4. Convex Set A convex set is a collection of points such that if X(1) and X(2)

are any two points in the collection, the line segment joining them is also in
the collection. A convex set, S, can be defined mathematically as follows:

If X ( 1 ) ,X ( 2 ) e5 , then X e S

where

X = XX(1) + (1 - X)X(2), 0 < X < 1

Hyperplane

Figure 3.8 Hyperplane in two dimensions.



Figure 3.9 Convex sets.

A set containing only one point is always considered to be convex. Some
examples of convex sets in two dimensions are shown shaded in Fig. 3.9. On
the other hand, the sets depicted by the shaded region in Fig. 3.10 are not
convex. The L-shaped region, for example, is not a convex set because it is
possible to find two points a and b in the set such that not all points on the line
joining them belong to the set.

5. Convex Polyhedron and Convex Polytope A convex polyhedron is a set
of points common to one or more half-spaces. A convex polyhedron that is
bounded is called a convex polytope.

Figure 3.1 \a and b represent convex polytopes in two and three dimensions,
and Fig. 3.11c and d denote convex polyhedra in two and three dimensions.
It can be seen that a convex polygon, shown in Fig. 3.11a and c, can be
considered as the intersection of one or more half-planes.

6. Vertex or Extreme Point This is a point in the convex set that does not
lie on a line segment joining two other points of the set. For example, every
point on the circumference of a circle and each corner point of a polygon can
be called a vertex or extreme point.

7. Feasible Solution In a linear programming problem, any solution that sat-
isfies the constraints

aX = b (3.2)

X > 0 (3.3)

is called a feasible solution.

Figure 3.10 Nonconvex sets.



Figure 3.11 Convex poly topes in two and three dimensions (a, b) and convex poly-
hedra in two and three dimensions (c, d).

8. Basic Solution A basic solution is one in which n — m variables are set
equal to zero. A basic solution can be obtained by setting n — m variables to
zero and solving the constraint Eqs. (3.2) simultaneously.

9. Basis The collection of variables not set equal to zero to obtain the basic
solution is called the basis.

10. Basic Feasible Solution This is a basic solution that satisfies the non-
negativity conditions of Eq. (3.3).

11. Nondegenerate Basic Feasible Solution This is a basic feasible solution
that has got exactly m positive X1.

12. Optimal Solution A feasible solution that optimizes the objective func-
tion is called an optimal solution.



13. Optimal Basic Solution This is a basic feasible solution for which the
objective function is optimal.

Theorems The basic theorems of linear programming can now be stated and
proved. 1^

Theorem 3.1 The intersection of any number of convex sets is also convex.

Proof: Let the given convex sets be represented as R1 (i = 1,2,. . .,K) and
their intersection as R, so that*

K

R = n Ri

If the points X(1), X(2) e R9 then from the definition of intersection,

X = XX(1) + (1 - X) X(2) e R1 (i = 1,2,. . .,K)

0 < X < 1

Thus

K

XeR= PI R1
I = i

and the theorem is proved. Physically, the theorem states that if there are a
number of convex sets represented by R1, R2, . . . , the set of points R common
to all these sets will also be convex. Figure 3.12 illustrates the meaning of this
theorem for the case of two convex sets.

Theorem 3.2 The feasible region of a linear programming problem is con-
vex.

1ThC proofs of the theorems are not needed for an understanding of the material presented in
subsequent sections.
*The symbol O represents the intersection of sets.

Figure 3.12 Intersection of two convex sets.



Proof: The feasible region S of a standard linear programming problem is
defined as

S = {X|aX = b , X > 0} (3.11)

Let the points X1 and X2 belong to the feasible set S so that

aX, = b , X1 > 0 (3.12)

aX2 = b , X2 > 0 (3.13)

Multiply Eq. (3.12) by X and Eq. (3.13) by (1 - X) and add them to obtain

B[XX1 + (1 - X)X2] = Xb + (1 - X)b = b

that is,

aXx = b

where

Xx = XX1 + (1 - X)X2

Thus the point Xx satisfies the constraints and if

0 < X < 1, Xx > 0

Hence the theorem is proved.

Theorem 3.3 Any local minimum solution is global for a linear program-
ming problem.

Proof: In the case of a function of one variable, the minimum (maximum) of
a function/(x) is obtained at a value x at which the derivative is zero. This
may be a point like A(x = X1) in Fig. 3.13, where/(JC) is only a relative (local)
minimum, or a point like B(x = X2), where/(x) is a global minimum. Any
solution that is a local minimum solution is also a global minimum solution
for the linear programming problem. To see this, let A be the local minimum
solution and assume that it is not a global minimum solution so that there is
another point B at which fB < fA. Let the coordinates of A and B be given by

I } / and I . / , respectively. Then any point C = \ .2 / which lies on the

C O U J U J



Figure 3.13 Local and global minima.

line segment joining the two points A and B is a feasible solution and / c = \fA

+ (1 — ̂ )IB- I n this case, the value of/decreases uniformly from fA tofB, and
thus all points on the line segment between A and B (including those in the
neighborhood of A) have / values less than fA and correspond to feasible so-
lutions. Hence it is not possible to have a local minimum at A and at the same
time another point B such that fA > fB. This means that for all B, fA < / f i , so
that fA is the global minimum value.

The generalized version of this theorem is proved in Appendix A so that it
can be applied to nonlinear programming problems also.

Theorem 3.4 Every basic feasible solution is an extreme point of the convex
set of feasible solutions.

Theorem 3.5 Let S be a closed, bounded convex polyhedron with Xf, / =
1 to p, as the set of its extreme points. Then any vector X e S can be written
as

p

x = S X1Xf
1 = 1

X, > 0

P

Ex1 = I

Theorem 3.6 Let 5 be a closed convex polyhedron. Then the minimum of a
linear function over S is attained at an extreme point of S.

The proofs of Theorems 3.4 to 3.6 can be found in Ref. [3.1].

Local
minimum

Global minimum

A

B

xi X2



3.6 SOLUTION OF A SYSTEM OF LINEAR
SIMULTANEOUS EQUATIONS

Before studying the most general method of solving a linear programming
problem, it will be useful to review the methods of solving a system of linear
equations. Hence in the present section we review some of the elementary
concepts of linear equations. Consider the following system of n equations in
n unknowns.

011*1 + ^12*2 + ' ' * + Cl1nXn = bx (E1)

021*1 + 022*2 + • • • + alnxn = b2 (E2)

031*1 + 032*2 + ' ' ' + Cl3nXn = b3 (E3) (3.14)

0/!i*i + 0*2*2 + • • • + annxn = bn (En)

Assuming that this set of equations possesses a unique solution, a method of
solving the system consists of reducing the equations to a form known as can-
onical form.

It is well known from elementary algebra that the solution of Eqs. (3.14)
will not be altered under the following elementary operations: (1) any equation
Er is replaced by the equation kEr, where k is a nonzero constant, and (2) any
equation Er is replaced by the equation E1. + kEs, where Es is any other equa-
tion of the system. By making use of these elementary operations, the system
of Eqs. (3.14) can be reduced to a convenient equivalent form as follows. Let
us select some variable X1 and try to eliminate it from all the equations except
they'th one (for which O7, is nonzero). This can be accomplished by dividing
theyth equation by ajt and subtracting aki times the result from each of the other
equations, k = 1,2,. . .J — 1, j + 1,. . .,n. The resulting system of
equations can be written as

a'uxx + ^i2X2 + • • • + a'XJ_xxi_x + (k,- + a[J+lxi+l + • • •

+ a'lnxn = b\

021*1 + 022*2 + ' ' ' + 02,i-1*/-1 + °*/ + «2,/+1*/+1 + " ' '

+ a'lnxn = b'2

a]_XAxx + «/-1,2*2 + • • • H- 0 y ' - i , / - i + Ox1 H- aj-U+1X1+x

H- • • • + a[_x^xn = Z?;_,



Uj1X1 + aj2x2 + • • • + aj^-xXi-x + Xx1 + ajJ+lxi+l

+ • • • + ajnxn = bj

a/+1,1*1 + a,'+1,2*2 + " • " + aj+xj-\Xi-\ + O*/ + ^+i , / + i*/ + i

+ • • • + aj+Unxn = bj+x

a'n\X\ + a'n2x2 + • • • + a'n%i-xXi-\ + Q*/ + < /+ i* / + i + ' ' '

+ annxn =b'n (3.15)

where the primes indicate that the a[} and bj are changed from the original
system. This procedure of eliminating a particular variable from all but one
equations is called a pivot operation. The system of Eqs. (3.15) produced by
the pivot operation have exactly the same solution as the original set of Eqs.
(3.14). That is, the vector X that satisfies Eqs. (3.14) satisfies Eqs. (3.15),
and vice versa.

Next time, if we take the system of Eqs. (3.15) and perform a new pivot
operation by eliminating xs, s =£ / , in all the equations except the rth equation,
t =£ 7, the zeros or the 1 in the /th column will not be disturbed. The pivotal
operations can be repeated by using a different variable and equation each time
until the system of Eqs. (3.14) is reduced to the form

Ix1 + 0JC2 + OJC3 + • • • 4- Oxn = b'{

OJC1 + 1JC2 + OJC3 + • • • + OJCW = b'{

OJC1 + 0JC2 + Lc3 + • • • 4- Oxn = b'{ (3.16)

Ox1 + Ox2 + Ox3 + • • • + Ixn = bn'

This system of Eqs. (3.16) is said to be in canonical form and has been ob-
tained after carrying out n pivot operations. From the canonical form, the so-
lution vector can be directly obtained as

X1 = b?9 i = 1,2,. ..,/i (3.17)

Since the set of Eqs. (3.16) has been obtained from Eqs. (3.14) only through
elementary operations, the system of Eqs. (3.16) is equivalent to the system
of Eqs. (3.14). Thus the solution given by Eqs. (3.17) is the desired solution
of Eqs. (3.14).



3.7 PIVOTAL REDUCTION OF A GENERAL SYSTEM OF
EQUATIONS

Instead of a square system, let us consider a system of m equations in n vari-
ables with n > m. This system of equations is assumed to be consistent so
that it will have at least one solution.

UnX1 + anx2 + • • • H- a]nxn = bx

U21X1 + Gi22X2 H- • • • + U2nXn = b2 ( 3 1 8 )

0*11*1 + 0m2*2 + • # • + amnxn = bm

The solution vector(s) X that satisfy Eqs. (3.18) are not evident from the equa-
tions. However, it is possible to reduce this system to an equivalent canonical
system from which at least one solution can readily be deduced. If pivotal
operations with respect to any set of m variables, say, Jc1, Jt2, . . . , xm, are
carried, the resulting set of equations can be written as follows:

Canonical system with pivotal variables X1, x2, . . . , xm

Xxx + Ox2 H- • • • + 0xm + al\m + lxm + l + • • • + a['nxn = b'[

Qx1 + LK2 + • • • + 0xm H- a'lm + xxm + x + • • • + a'2'nxn = b2' (3.19)

Ox1 + Ox2 + • • • H- \xm H- a^m+lxm + i H- • • • + QlnXn = bn
m

Pivotal
variables

Nonpivotal or
independent

variables

Constants

One special solution that can always be deduced from the system of Eqs. (3.19)
is

Cb?, i = 1,2, . . . ,m
(3.20)

(0, 1 = m H- 1, m + 2, . . . , n

This solution is called a &a?/c solution since the solution vector contains no
more than m nonzero terms. The pivotal variables X1, i = 1, 2, . . . , m, are
called the basic vuriubles and the other variables JC/5 i — m H- 1, m H- 2,
. . . , ft, are called the nonbusic variubles. Of course, this is not the only
solution, but it is the one most readily deduced from Eqs. (3.19). If all b", i
= 1, 2, . . . , m, in the solution given by Eqs. (3.20) are nonnegative, it
satisfies Eqs. (3.3) in addition to Eqs. (3.2), and hence it can be called a busic
feusible solution.



It is possible to obtain the other basic solutions from the canonical system
of Eqs. (3.19). We can perform an additional pivotal operation on the system
after it is in canonical form, by choosing a'p'q (which is nonzero) as the pivot
term, q > m, and using any row/? (among 1,2,. . .,m). The new system will
still be in canonical form but with xq as the pivotal variable in place of xp. The
variable xp, which was a basic variable in the original canonical form, will no
longer be a basic variable in the new canonical form. This new canonical sys-
tem yields a new basic solution (which may or may not be feasible) similar to
that of Eqs. (3.20). It is to be noted that the values of all the basic variables
change, in general, as we go from one basic solution to another, but only one
zero variable (which is nonbasic in the original canonical form) becomes non-
zero (which is basic in the new canonical system), and vice versa.

Example 3.3 Find all the basic solutions corresponding to the system of
equations

2JC, + 3JC2 - 2x3 - Ix4 = 1 (I0)

JC1 H- X2 H- X3 H- 3x4 = 6 (H0)

Xx — X2 + X3 + 5JC4 = 4 (HI0)

SOLUTION First we reduce the system of equations into a canonical form
with Jc1, X2, and X3 as basic variables. For this, first we pivot on the element
au = 2 to obtain

x\ + 2 X2 ~ X3 - 2 XA — 2 1 I = 21O

0 - | x 2 + 2x3 + T *4 = T H1 = H0 - Ii

0 - § JC2 H- 2JC3 H- 1J JC4 = \ IH1 = IH0 - I1

Then we pivot on a22 = —\, to obtain

JC1 + 0 H- 5JC3 H- 16JC4 = 17 I2 = I1 — § H2

0 + Jc2 - 4JC3 - 13JC4 = - 1 1 H2 = - 2 H1

0 + 0 - 8JC3 - 24JC4 = - 2 4 HI2 = IH1 + f H2

Finally we pivot on ^3 3 to obtain the required canonical form as

Jc1 + Jc4 = 2 I3 = I2 - 5 HI3

jc2 - Jc4 = 1 H3 = H2 H- 4 IH3

jc3 + 3x4 = 3 IH3 = -I IH2



From this canonical form, we can readily write the solution of Jc1, JC2, and X3

in terms of the other variable X4 as

Xx = 2 — X4

X2 = 1 + X4

X3 = 3 — 3x4

If Eqs. (I0), (H0), and (HI0) are the constraints of a linear programming prob-
lem, the solution obtained by setting the independent variable equal to zero is
called a basic solution. In the present case, the basic solution is given by

Jc1 = 2, Jc2 = 1, Jc3 = 3 (basic variables)

and x4 = 0 (nonbasic or independent variable). Since this basic solution has
all Xj > 0 (j = 1,2,3,4), it is a basic feasible solution.

If we want to move to a neighboring basic solution, we can proceed from
the canonical form given by Eqs. (I3), (H3), and (HI3). Thus if a canonical
form in terms of the variables JC1, JC2, and JC4 is required, we have to bring JC4

into the basis in place of the original basic variable JC3. Hence we pivot on
a34 in Eq. (HI3). This gives the desired canonical form as

x{ - I X3 = 1 I4 = I3 - IH4

Jc2 + ! Jc3 = 2 H4 = H3 + IH4

X4 + \x3 = 1 HI4 = 1IH3

This canonical system gives the solution of Jc1, JC2, and JC4 in terms of JC3 as

Xl = 1 + 1 X3

X2 = I - \x3

JC4 = 1 — 3 JC3

and the corresponding basic solution is given by

Jc1 = 1, Jc2 = 2, Jc4 = 1 (basic variables)

Jc3 = 0 (nonbasic variable)

This basic solution can also be seen to be a basic feasible solution. If we want
to move to the next basic solution with Jc1, JC3, and JC4 as basic variables, we
have to bring JC3 into the current basis in place of JC2. Thus we have to pivot



a23 in Eq. (H4). This leads to the following canonical system:

X1 + x2 = 3 I5 = I4 + \n5

X3 + 3x2 = 6 H5 = 31I4

J t 4 - J c 2 = - i Hi5 = Hi4 - | n 5

The solution for Jc1, X3, and X4 is given by

xx = 3 - X2

x3 = 6 — 3x2

JC4 = — 1 H - X 2

from which the basic solution can be obtained as

JCI = 3, Jc3 = 6, Jc4 = - 1 (basic variables)

jc2 = 0 (nonbasic variable)

Since all the Xj are not nonnegative, this basic solution is not feasible.
Finally, to obtain the canonical form in terms of the basic variables Jc2, Jc3,

and Jc4, we pivot on a"2 in Eq. (I5), thereby bringing JC2 into the current basis
in place of Jc1. This gives

X2 + X1 = 3 I6 = I5

Jc3 - 3^1 = - 3 H6 = H5 - 3I6

Jc4 + Jc1 = 2 IH6 = IH5 + I6

This canonical form gives the solution for JC2, Jc3, and JC4 in terms OfJC1 as

X2 = 3 - X1

Jc3 = —3 + 3Jc1

Jc4 = 2 — JC1

and the corresponding basic solution is

Jc2 = 3, Jc3 = —3, Jc4 = 2 (basic variables)

Jc1 = O (nonbasic variable)

This basic solution can also be seen to be infeasible due to the negative value
for Jc3.



3.8 MOTIVATION OF THE SIMPLEX METHOD

Given a system in canonical form corresponding to a basic solution, we have
seen how to move to a neighboring basic solution by a pivot operation. Thus
one way to find the optimal solution of the given linear programming problem
is to generate all the basic solutions and pick the one that is feasible and cor-
responds to the optimal value of the objective function. This can be done be-
cause the optimal solution, if one exists, always occurs at an extreme point or
vertex of the feasible domain. If there are m equality constraints in n variables
with n > m, a basic solution can be obtained by setting any of the n — m
variables equal to zero. The number of basic solutions to be inspected is thus
equal to the number of ways in which m variables can be selected from a set
of n variables, that is,

(n) - " !

\m/ (n - m)\ ml

For example, if n = 10 and m = 5, we have 252 basic solutions, and if n =
20 and m = 10, we have 184,756 basic solutions. Usually, we do not have to
inspect all these basic solutions since many of them will be infeasible. How-
ever, for large values of n and m, this is still a very large number to inspect
one by one. Hence what we really need is a computational scheme that ex-
amines a sequence of basic feasible solutions, each of which corresponds to a
lower value of/until a minimum is reached. The simplex method of Dantzig
is a powerful scheme for obtaining a basic feasible solution; if the solution is
not optimal, the method provides for finding a neighboring basic feasible so-
lution that has a lower or equal value of/. The process is repeated until, in a
finite number of steps, an optimum is found.

The first step involved in the simplex method is to construct an auxiliary
problem by introducing certain variables known as artificial variables into the
standard form of the linear programming problem. The primary aim of adding
the artificial variables is to bring the resulting auxiliary problem into a can-
onical form from which its basic feasible solution can be obtained immedi-
ately. Starting from this canonical form, the optimal solution of the original
linear programming problem is sought in two phases. The first phase is in-
tended to find a basic feasible solution to the original linear programming prob-
lem. It consists of a sequence of pivot operations that produces a succession
of different canonical forms from which the optimal solution of the auxiliary
problem can be found. This also enables us to find a basic feasible solution, if
one exists, of the original linear programming problem. The second phase is
intended to find the optimal solution of the original linear programming prob-
lem. It consists of a second sequence of pivot operations that enables us to
move from one basic feasible solution to the next of the original linear pro-
gramming problem. In this process, the optimal solution of the problem, if one
exists, will be identified. The sequence of different canonical forms that is



necessary in both the phases of the simplex method is generated according to
the simplex algorithm described in the next section. That is, the simplex al-
gorithm forms the main subroutine of the simplex method.

3.9 SIMPLEX ALGORITHM

The starting point of the simplex algorithm is always a set of equations, which
includes the objective function along with the equality constraints of the prob-
lem in canonical form. Thus the objective of the simplex algorithm is to find
the vector X > 0 that minimizes the function/(X) and satisfies the equations:

Ixx + Ox2 + • • • + 0xm + alm + lxm + l + • • • + a'[nxn = b'{

Ox1 + Ix2 + • • • + 0xm + alm + lxm + l + • • • + OZnXn = b'{

Oxx + Ox2 + • • • + lxm + < w + i*w + i + • • • + alnxn = bl

Oxx + Ox2 + • • • + 0xm - f

+ C^ + 1Xn + 1 + • • • + CnXn = - / £

(3.21)

where a-j , c" , b" , and/o are constants. Notice that (—/) is treated as a basic
variable in the canonical form of Eqs. (3.21). The basic solution which can
readily be deduced from Eqs. (3.21) is

X1 = b", i = 1,2,. . .,m

/ = /o (3-22)

xt = 0, / = m + 1, m + 2, . . . , n

If the basic solution is also feasible, the values of Jc1-, i = 1,2,. . .,«, are non-
negative and hence

bn
{ > 0, I = 1,2,. . .,m (3.23)

In phase I of the simplex method, the basic solution corresponding to the can-
onical form obtained after the introduction of the artificial variables will be
feasible for the auxiliary problem. As stated earlier, phase II of the simplex
method starts with a basic feasible solution of the original linear programming
problem. Hence the initial canonical form at the start of the simplex algorithm
will always be a basic feasible solution.



We know from Theorem 3.6 that the optimal solution of a linear program-
ming problem lies at one of the basic feasible solutions. Since the simplex
algorithm is intended to move from one basic feasible solution to the other
through pivotal operations, before moving to the next basic feasible solution,
we have to make sure that the present basic feasible solution is not the optimal
solution. By merely glancing at the numbers c" , j = 1, 2, . . ., n, we can tell
whether or not the present basic feasible solution is optimal. Theorem 3.7
provides a means of identifying the optimal point.

3.9.1 Identifying an Optimal Point

Theorem 3.7 A basic feasible solution is an optimal solution with a mini-
mum objective function value of/o if all the cost coefficients c" , j = m + 1,
m + 2, . . . , n, in Eqs. (3.21) are nonnegative.

Proof: From the last row of Eqs. (3.21), we can write that

n

JS + S CfX1=J (3.24)
i = m + 1

Since the variables xm + j , xm + 2, . . . ,Xn are presently zero and are constrained
to be nonnegative, the only way any one of them can change is to become
positive. But if c" > 0 for i = m + 1, m + 2, . . . , n, then increasing any
Xi cannot decrease the value of the objective function/. Since no change in the
nonbasic variables can cause/to decrease, the present solution must be optimal
with the optimal value of/equal to /o .

A glance over c" can also tell us if there are multiple optima. Let all c" >
0, / = ra + 1, ra + 2, . . . , & — I, k + I, . . . , n, and let cl — 0 for some
nonbasic variable xk. Then if the constraints allow that variable to be made
positive (from its present value of zero), no change in/results, and there are
multiple optima. It is possible, however, that the variable may not be allowed
by the constraints to become positive; this may occur in the case of degenerate
solutions. Thus, as a corollary to the discussion above, we can state that a
basic feasible solution is the unique optimal feasible solution if c" > 0 for all
nonbasic variables Jc7, j = m + 1, m + 2, . . . , n. If, after testing for opti-
mality, the current basic feasible solution is found to be nonoptimal, an im-
proved basic solution is obtained from the present canonical form as follows.

3.9.2 Improving a Nonoptimal Basic Feasible Solution

From the last row of Eqs. (3.21), we can write the objective function as

m n

J = JZ + S CfX1+ S CfXj
i = l j = «(+l (3.25)

= /o for the solution given by Eqs. (3.22)



If at least one cj' is negative, the value o f /can be reduced by making the
corresponding Xj> 0. In other words, the nonbasic variable xj9 for which the
cost coefficient cj is negative, is to be made a basic variable in order to reduce
the value of the objective function. At the same time, due to the pivotal op-
eration, one of the current basic variables will become nonbasic and hence the
values of the new basic variables are to be adjusted in order to bring the value
of/less than/o. If there are more than one cj' < 0, the index s of the nonbasic
variable xs which is to be made basic is chosen such that

c'J = minimum cj' < 0 (3.26)

Although this may not lead to the greatest possible decrease in /(since it may
not be possible to increase xs very far), this is intuitively at least a good rule
for choosing the variable to become basic. It is the one generally used in prac-
tice because it is simple and it usually leads to fewer iterations than just choos-
ing any cj' < 0. If there is a tie-in applying Eq. (3.26), (i.e., if more than one
cj' has the same minimum value), we select one of them arbitrarily as c'J .

Having decided on the variable xs to become basic, we increase it from zero
holding all other nonbasic variables zero and observe the effect on the current
basic variables. From Eqs. (3.21), we can obtain

X1 = b[' -a['sxs, b'{ > 0

X2 = Vi - OS5X59 Vi > 0 (3.27)

*m = Vm -(C5X59 K > O

f = f 5 + CJx59 c ' J < 0 (3.28)

Since c'J < O, Eq. (3.28) suggests that the value of xs should be made as large
as possible in order to reduce the value of/as much as possible. However, in
the process of increasing the value of xS9 some of the variables Jt1- (/ =
1,2,. . .,m) in Eqs. (3.27) may become negative. It can be seen that if all the
coefficients a"s < O, i = 1,2,. . .,m, then xs can be made infinitely large with-
out making any xt < O, / = 1,2,. . .,m. In such a case, the minimum value of
/ i s minus infinity and the linear programming problem is said to have an un-
bounded solution.

On the other hand, if at least one a"s is positive, the maximum value that xs

can take without making xt negative is b"/a"s. If there are more than one
a"s > 0, the largest value JC* that xs can take is given by the minimum of the
ratios b-la^ for which a? > 0. Thus

if! / J1 It \
jcf = - ^ = minimum ( -^ ) (3.29)

ars ais>o \ f l ,5/



The choice of r in the case of a tie, assuming that all b" > 0, is arbitrary. If
any b" for which a"s > 0 is zero in Eqs. (3.27), Jc5 cannot be increased by any
amount. Such a solution is called a degenerate solution.

In the case of a nondegenerate basic feasible solution, a new basic feasible
solution can be constructed with a lower value of the objective function as
follows. By substituting the value of ;t* given by Eq. (3.29) into Eqs. (3.27)
and (3.28), we obtain

r = x *

Xi = b'j' - a'i'sxf > 0, / = 1,2,. . .,m and i * r (3.30)

xr = 0

Xj• = 0, j = m + 1, m + 2, . . . , n and j ^ s

f = fo + c!xf </o
w (3.31)

which can readily be seen to be a feasible solution different from the previous
one. Since a"s > 0 in Eq. (3.29), a single pivot operation on the element a"s

in the system of Eqs. (3.21) will lead to a new canonical form from which the
basic feasible solution of Eqs. (3.30) can easily be deduced. Also, Eq. (3.31)
shows that this basic feasible solution corresponds to a lower objective function
value compared to that of Eqs. (3.22). This basic feasible solution can again
be tested for optimality by seeing whether all c" > 0 in the new canonical
form. If the solution is not optimal, the entire procedure of moving to another
basic feasible solution from the present one has to be repeated. In the simplex
algorithm, this procedure is repeated in an iterative manner until the algorithm
finds either (1) a class of feasible solutions for which/ -• — oo or (2) an optimal
basic feasible solution with all c" > 0, i = 1,2,. . .,n. Since there are only a
finite number of ways to choose a set of m basic variables out of n variables,
the iterative process of the simplex algorithm will terminate in a finite number
of cycles. The iterative process of the simplex algorithm is shown as a flow-
chart in Fig. 3.14.

Example 3.4

Maximize F = Xx + Ix2 + X3

subject to

2X1 + X2 - X3 < 2

-2X1 + J c 2 - 5JC3 > - 6

4JC1 + Jc2 + Jc3 < 6

JC/ > 0, i = 1,2,3



Figure 3.14 Flowchart for finding the optimal solution by the simplex algorithm.
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SOLUTION We first change the sign of the objective function to convert it
to a minimization problem and the signs of the inequalities (where necessary)
so as to obtain nonnegative values of bt (to see whether an initial basic feasible
solution can be obtained readily). The resulting problem can be stated as:

Minimize/ = —xx — 2x2 — X3

subject to

2^1 + Jc2 - Jc3 < 2

2Jc1 — Jc2 + 5JC3 < 6

4Jc1 + Jc2 + Jc3 < 6

JC1- > 0, i = 1 to 3

By introducing the slack variables JC4 >: 0, JC5 > 0, and JC6 > 0, the system of
equations can be stated in canonical form as

2JC} + Jc2 — Jc3 + Jc4 =2

Ixx - X2 + 5x3 + x5 =6 Q2 v

4Jc1 H- Jc2 + JC3 + JC6 = 6

-xx -2x2-x3 - f = 0

where JC4, JC5, JC6, and —/can be treated as basic variables. The basic solution
corresponding to Eqs. (E1) is given by

jc4 = 2, Jc5 = 6, Jc6 = 6 (basic variables)

Jc1 = X2 = x3 = 0 (nonbasic variables) (E2)

/ = o

which can be seen to be feasible.
Since the cost coefficients corresponding to nonbasic variables in Eqs. (E1)

are negative (c" = - 1 , C2 = - 2 , C3 = -1 ) , the present solution given by
Eqs. (E2) is not optimum. To improve the present basic feasible solution, we
first decide the variable (xs) to be brought into the basis as

c's
f = min(c/ < 0) = c'{ = -2

Thus x2 enters the next basic set. To obtain the new canonical form, we select
the pivot element a"s such that

K . (b?\
— = mm —
a'r's als>o \aZ/



In the present case, s = 2 and a"2 and a%2 are >: O. Since frf/afc = 2/1 and
b3la32 = 6/1, Jtr = Jt1. By pivoting an a"2, the new system of equations can be
obtained as

2Jt1 4- IJt2 - X3 + X4 = 2

4Jt1 + OJt2 4 4jt3 4- X4 4- X5 = 8 /p v

2Jt1 + Ox2 + 2x3 - X4 4 x6 = 4

3Jt1 4 OJt2 - 3jt3 4 2Jt4 - / = 4

The basic feasible solution corresponding to this canonical form is

Jt2 = 2, Jt5 = 8, Jt6 = 4 (basic variables)

Jt1 = X3 = Jt4 = 0 (nonbasic variables) (E4)

/ = - 4

Since C3 = —3, the present solution is not optimum. As c" = min(c" < 0)
= c 3 , xs = x3 enters the next basis.

To find the pivot element a"S9 we find the ratios b"la"s for a"s > 0. In Eqs.
(E3), only a23 and a33 are > 0, and hence

a23 4 a33 I

Since both these ratios are same, we arbitrarily select ^23 as the pivot element.
Pivoting on a'{3 gives the following canonical system of equations:

3X1 4- Ix2 4- Ox3 + 4 X4 + ^x5 = 4

Ix1 4 Ox2 4- Ix3 + \ X4 4- \ X5 = 2 ~, v

Ox1 + Ox2 4 Ox3 - § X4 - \ X5 4- X6 = 0

6X1 + Ox2 4- Ox3 + x-} X4 + IX5 - / = 10

The basic feasible solution corresponding to this canonical system is given
by

X2 = 4, x3 = 2, x6 = 0 (basic variables)

X1 = x4 = x5 = 0 (nonbasic variables) (E6)

/= -io

Since all c" are >: 0 in the present canonical form, the solution given in (E6)
will be optimum. Usually, starting with Eqs. (E1), all the computations are



All c'i are > O and hence the present solution is optimum.

Example 3.5: Unbounded Solution

Minimize/= -3Jc1 — Ix2

subject to

Xx - X2 < 1

done in a tableau form as shown below:

Most negative c" (x2 enters next basis)

Result of pivoting:

X1 2 1 - 1 1 0 0 0 2
Jc5 4 0 [4] 1 1 0 0 8 2 (Select this

Pivot arbitrarily,
element JC5 drops

from next
basis)

X6 2 0 2 - 1 0 1 0 4 2

- / 3 0 - 3 2 0 0 1 4

T
Most negative c" (JC3 enters the next basis)

Result of pivoting:

Jc2 3 1 0 \ \ 0 0 4

X3 1 0 1 \ \ 0 0 2

Jc6 0 0 0 - \ - \ 1 0 0

-/6 0 0 xi \ 0 1 10

Basic
Variables

JC4

* 5

-*6

~f

Variables

JC 1

2

2
4

- 1

X2

Pivot
element

i

1

- 2
T

- 1

5
1

- 1

JC4

1

0
0

0

JC5

0

1
0

0

X6

0

0

1
0

- /

0

0
0

1

b?

2

6
6

0

b'/lai for

2 <- Smaller one
(x4 drops
from next
basis)

6



3X1 - 2JC2 < 6

Jc1 > O, X2 > 0

SOLUTION Introducing the slack variables X3 > 0 and X4 >: 0, the given
system of equations can be written in canonical form as

JC1 — X2 + X3 = 1

3Jc1 - 2JC2 + J C 4 = 6 (E 1 )

-3Jc1 - 2x2 - / = 0

The basic feasible solution corresponding to this canonical form is given by

Jc3 = 1, JC4 = 6 (basic variables)

Jc1 = Jc2 = 0 (nonbasic variables) (E2)

/ = o

Since the cost coefficients corresponding to the nonbasic variables are nega-
tive, the solution given by Eq. (E2) is not optimum. Hence the simplex pro-
cedure is applied to the canonical system of Eqs. (E1) starting from the solu-
tion, Eqs. (E2). The computations are done in tableau form as shown below:

Most negative c" (X1 enters the next basis)

Result of pivoting:

Jc1 1 - 1 1 0 0 1
X4 0 Q] - 3 1 0 3 3 (jc4 leaves the

Pivot basis)
element

- / 0 - 5 3 0 1 3

t
Most negative c" (x2 enters the next basis)

Basic
Variables

* 3

X4

-f

Variables

Xi

Pivot
element

3

- 3

X2

- 1

_2

2

X3

1

0

0

X4

0

1

0

r

0

0

1

bi

1

6

0

b'llal for
a£ > 0

1<- Smaller value
(jc3 leaves
the basis)

2



Result of pivoting:

JC1 1 0 - 2 1 0 4 Both a"s are
Jc2 0 1 - 3 1 0 3 negative (i.e.,

no variable
leaves the
basis)

- / 0 0 -12 5 1 18

t
Most negative c" (JC3 enters the basis)

At this stage we notice that X3 has the most negative cost coefficient and
hence it should be brought into the next basis. However, since all the coeffi-
cients a"3 are negative, the value o f / c a n be decreased indefinitely without
violating any of the constraints if we bring X3 into the basis. Hence the problem
has no bounded solution.

In general, if all the coefficients of the entering variable xs (a"s) have nega-
tive or zero values at any iteration, we can conclude that the problem has an
unbounded solution.

Example 3.6: Infinite Number of Solutions To demonstrate how a problem
having infinite number of solutions can be solved, Example 3.2 is again con-
sidered with a modified objective function:

Min imize /= -4OJC1 - 100JC2

subject to

IQx1 + 5x2 < 2500

4Jc1 + 10JC2 < 2000

2Jc1 + 3JC2 < 900

Jc1 > 0, Jc2 > 0

SOLUTION By adding the slack variables JC3 > 0, JC4 > 0 and JC5 > 0, the
equations can be written in canonical form as follows:

1OJC1 + 5JC2 +JC3 = 2500

4JC1 + 10JC2 +JC4 = 2000

2Jc1 + 3JC2 +JC5 =900

-4OJC1 - 100JC2 - / = 0



Most negative c" (x2 enters the basis)

Result of pivoting:

X3 8 0 1 - \ 0 0 1,500

jc2 ^ 1 0 J0 0 0 200

jc5 j-0 0 0 — ^ 1 0 300

- / 0 0 0 10 0 1 20,000

Since all c" > 0, the present solution is optimum. The optimum values are
given by

x2 = 200, Jc3 = 1500, Jc5 = 300 (basic variables)

JCi = Jc4 = 0 (nonbasic variables)

/m i n = -20,000

Important Note: It can be observed from the last row of the preceding ta-
bleau that the cost coefficient corresponding to the nonbasic variable JC1 (c") is
zero. This is an indication that an alternative solution exists. Here X1 can be
brought into the basis and the resulting new solution will also be an optimal
basic feasible solution. For example, introducing X1 into the basis in place of
X3 (i.e., by pivoting on aJ3), we obtain the new canonical system of equations
as shown in the following tableau:

The computations can be done in tableau form as shown below:

Basic
Variables

* 3

X4

X5

Variables

Xx

10
4

2

-40

JC2

5

Pivot
element

3

-100

X3

1
0

0

0

X4

0
1

0

0

X 5

0
0

1

0

- /

0
0

0

1

v;
2,500
2,000

900

0

V(IaI for al > 0

500
200 <- Smaller value

(x4 leaves the
basis)

300

Basic
Variables

X,

X2

X5

- /

Variables

Xi

1

0

0

0

X 2

0

1

0

0

X 3

i
8
1

20
I
10

0

X 4

i
16
1
8
1
4

10

X 5

0

0

1

0

- /

0

0

0

1

v;
1500

8

125

150

20,000

WIaI for
a;: >o



The solution corresponding to this canonical form is given by

Jc1 = - ^ , X2 = 125, x5 = 150 (basic variables)

x3 = X4 = 0 (nonbasic variables)

/min = -20,000

Thus the value of/has not changed compared to the preceding value since Jc1

has a zero cost coefficient in the last row of the preceding tableau. Once two
basic (optimal) feasible solutions, namely,

200 125

X1 = 1500 and X2 = 0 >

0 0 '

V 300y V150y

are known, an infinite number of nonbasic (optimal) feasible solutions can be
obtained by taking any weighted average of the two solutions as

X* = XX1 + (1 - X)X2

/ * r \ r ( i -x )T N ^d -X)T^
jc2* 200X + (1 - X)125 125 + 75X

X * = Jc3* = 1500X = 1500X

Jc4* 0 0 '

Vjc*y V300X + (1 - X)150y V150 4- 150Xy

0 < X < 1

It can be verified that the solution X* will always give the same value of
-20,000 for/for all 0 < X < 1.

3.10 TWO PHASES OF THE SIMPLEX METHOD

The problem is to find nonnegative values for the variables Jc1, JC2, . . . , Xn that
satisfy the equations



axxxx + ^12X2 + • • • + aXnxn = bx

Q2xXx + ^22X2 + • • • + alnxn = b2 ^3 3 2 ^

amXxx + am2x2 H- • • • + amnxn = bm

and minimize the objective function given by

C1X1 + c2x2 + • • • + cnxn = f (3.33)

The general problems encountered in solving this problem are:

1. An initial feasible canonical form may not be readily available. This is
the case when the linear programming problem does not have slack vari-
ables for some of the equations or when the slack variables have negative
coefficients.

2. The problem may have redundancies and/or inconsistencies, and may
not be solvable in nonnegative numbers.

The two-phase simplex method can be used to solve the problem.
Phase I of the simplex method uses the simplex algorithm itself to find

whether the linear programming problem has a feasible solution. If a feasible
solution exists, it provides a basic feasible solution in canonical form ready to
initiate phase II of the method. Phase II, in turn, uses the simplex algorithm
to find whether the problem has a bounded optimum. If a bounded optimum
exists, it finds the basic feasible solution which is optimal. The simplex method
is described in the following steps.

1. Arrange the original system of Eqs. (3.32) so that all constant terms bj
are positive or zero by changing, where necessary, the signs on both
sides of any of the equations.

2. Introduce to this system a set of artificial variables ^1, y2, . . . , ym (which
serve as basic variables in phase I), where each yt > 0, so that it becomes

axxxx + ^12X2 + • • • + aXnxn + J 1 =bx

021*1 + 022*2 + • • • + Cl2nXn + y2 = b2

. (3.34)

<*m\X\ + ami*! + • • • + amnxn + ym = bm

bt > 0



Note that in Eqs. (3.34), for a particular /, the a^-'s and the bt may be
the negative of what they were in Eq. (3.32) because of step 1.

The objective function of Eq. (3.33) can be written as

C1X1 + c2x2 + • • • + cnxn + ( - / ) = 0 (3.35)

3. Phase I of the Method. Define a quantity w as the sum of the artificial
variables

w = Ji + yi + • • * + ym (3.36)

and use the simplex algorithm to find Jt1- > 0 (/ = 1,2,. . .,n) and y,
> 0 (/ = 1,2,. . .,ra) which minimize w and satisfy Eqs. (3.34) and
(3.35). Consequently, consider the array

G11X1 + ̂ 12X2 + • ' • + U1nXn + J1 = bx

U21X1 + ^22X2 + • • • + U2nXn + y2 = b2

umXxx + um2x2 + • • • + umnxn + ym = bm

C1X1 +c2x2 + • • • H- cnxn + ( - / ) = 0 ( 3 3 ? )

yx + yi + • • • + ym + ( -w) = o

This array is not in canonical form; however, it can be rewritten as a
canonical system with basic variables J i , J2, . . . 9ym, - / , and -w by
subtracting the sum of the first m equations from the last to obtain the
new system

0n*i + ^12*2 + • • * + auxn + V1 = bx

U21Xx + ^22X2 + • • • + u2nxn + y2 = b2

0ml *l + 0m2*2 + * * ' + amn^n + Jm ~ ^m

C1X1 + C2X2 + • ' ' + CnXn + (-/) = 0

J1JC1 + J2X2 + • • • + JnXn + (-w) = ~w0

where

J1- = - ( a H + O21- + • • • + GnO)9 i = 1,2,. . .,n (3.39)

-W0 = -(&, H- b2 + • • • + bm) (3.40)



Equations (3.38) provide the initial basic feasible solution that is nec-
essary for starting phase I.

4. w is called the infeasibility form and has the property that if as a result
of phase I, with a minimum of w > 0, no feasible solution exists for the
original linear programming problem stated in Eqs. (3.32) and (3.33),
and thus the procedure is terminated. On the other hand, if the minimum
of w = 0, the resulting array will be in canonical form and hence initiate
phase II by eliminating the w equation as well as the columns corre-
sponding to each of the artificial variables y\9 y2, • • • , ym from the array.

5. Phase II of the Method. Apply the simplex algorithm to the adjusted
canonical system at the end of phase I to obtain a solution, if a finite one
exists, which optimizes the value of/.

The flowchart for the two-phase simplex method is given in Fig. 3.15.

Example 3.7

Minimize/ = Ix1 + 3x2 + 2x3 - JC4 H- JC5

subject to the constraints

3X1 — 3x2 + 4;t3 H- 2x4 — x5 = 0

x\ + X2 + X3 + ĴC4 + JC5 = 2

JC/ > 0, i = 1 to 5

SOLUTION

Step 1: As the constants on the right-hand side of the constraints are already
nonnegative, the application of step 1 is unnecessary.

Step 2: Introducing the artificial variables ^1 > 0 and y2 > 0, the equations
can be written as follows:

3Jc1 - 3;c2 + 4x3 + 2JC4 - Jc5 + ^ 1 = 0

Xx + X2 + X3 + 3x4 H-Jc5 H-J2 = 2 (E1)

2s, H- 3JC2 H- 2JC3 - JC4 H- JC5 - / = 0

Step 3: By defining the infeasibility form w as

w = y\ + yi



Figure 3.15 Flowchart for the two-phase simplex method.
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Figure 3.15 (Continued)

the complete array of equations can be written as

3^1 — 3x2 + 4x3 4- 2x4 — X5 + yx = 0

Xi + X2 + X3 + 3x4 +X 5 + y 2
 = 2 ,£ x

2Jc1 + 3JC2 + Ix3 - X4 + Jc5 - / = 0

yx + y2 - W = 0

From block C

Find s such that
c's = min (c';) From block A

Present basic
feasible solution
is optimal, Stop

Yes is c's > 0 ?

No

Yes
All a'is < 0 ?

Solution is
unbounded,

Stop

No

Choose r such that -^f- = min / -^f-)
a r s a ' i s > 0 V a i s *

Use a random choice in the case of a tie

Replace r-th basic variable by xs by
pivoting on the element a"rs



This array can be rewritten as a canonical system with basic variables as yx,
)>2> —/> a nd — w by subtracting the sum of the first two equations of (E2)
from the last equation of (E2). Thus the last equation of (E2) becomes

-4Jc1 + 2JC2 - 5x3 - 5JC4 + Ox5 - w = - 2 (E3)

Since this canonical system [first three equations of (E2), and (E3)] provides
an initial basic feasible solution, phase I of the simplex method can be
started. The phase I computations are shown below in tableau form.

Basic
Variables

y\

yi

—w

Admissible Variables

Xx

3

1

2
- 4

X2

- 3

1

3
2

X3

4

1

2
- 5

X4

2
Pivot

element

3

- 1
- 5

- 1

1

1
0

Artificial
Variables

y\

i

0

0
0

yi

0

i

0
0

0 0

2 §

0
- 2

Value of
bl'/a? for
al > 0

<- Smaller
value

drops
from
next
basis)

Most negative

Since there is a tie between d'{ and d'l, d'l is selected arbitrarily as the most
negative d" for pivoting (JC4 enters the next basis).

Result of pivoting:

-f
— w

3
2
7
2

7
2
7
2

3
2

Pivot
element

3
2

2
- 5

4
5

1
0

0
0

1
2
5
2

1
2
5
2

1
2
3
2

1
2
5
2

0
1

0
0

0

2 T T - ^ 2
drops
from
next
basis

0
- 2

Most negative d" (x2 enters next basis)



Result of pivoting (since V1 and y2 are dropped from basis, the columns
corresponding to them need not be filled):

JC4 77 0 Ti 1 fi Dropped £ §
*2 ^JJ A - j j U jj H 5

r 98 n H8 n _4_ _̂
""/ 22 U 22 U ~22 ~~11
- w 0 0 0 0 0 0

Step 4: At this stage we notice that the present basic feasible solution does not
contain any of the artificial variables J1 and y2, and also the value of w is
reduced to 0. This indicates that phase I is completed.

Step 5: Now we start phase II computations by dropping the w row from fur-
ther consideration. The results of phase II are again shown in tableau form.

Most negative c" (x5 enters next basis)

Result of pivoting:

~~^4 i 1 I i i o 1
*s -̂  ^ -2 0 1 I
-/ 2J 1 5 Q 0 -1

Now, since all c" are nonnegative, phase II is completed. The (unique)
optimal solution is given by

Jc1 = X2 = X3 = 0 (nonbasic variables)

Jc4 = §, Jc5 = I (basic variables)

f = -
J mm 5

Basic
Variables

X4

X2

-f

Original Variables

_1_

98
22

X2

0
1

0

7
11
K)
11

118
22

X4

1

0

0

2
11

Pivot
element

__4_
22

Constant
bf
6
11

_4_
11

__6_

Value of &/'/< for
a;: >o

6
2

f<-Smaller value
(x2 drops from
next basis)
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REVIEW QUESTIONS

3.1 Define a line segment in /i-dimensional space.

3.2 What happens when m = n in a (standard) LP problem?

3.3 How many basic solutions can an LP problem have?

3.4 State an LP problem in standard form.



3.5 State four applications of linear programming.

3.6 Why is linear programming important in several types of industries?

3.7 Define the following terms: point, hyperplane, convex set, extreme
point.

3.8 What is a basis?

3.9 What is a pivot operation?

3.10 What is the difference between a convex polyhedron and a convex poly-
tope?

3.11 What is a basic degenerate solution?

3.12 What is the difference between the simplex algorithm and the simplex
method?

3.13 How do you identify the optimum solution in the simplex method?

3.14 Define the infeasibility form.

3.15 What is the difference between a slack and a surplus variable?

3.16 Can a slack variable be part of the basis at the optimum solution of an
LP problem?

3.17 Can an artificial variable be in the basis at the optimum point of an LP
problem?

3.18 How do you detect an unbounded solution in the simplex procedure?

3.19 How do you identify the presence of multiple optima in the simplex
method?

3.20 What is a canonical form?

3.21 Answer true or false.
(a) The feasible region of an LP problem is always bounded.
(b) An LP problem will have infinite solutions whenever a constraint

is redundant.
(c) The optimum solution of an LP problem always lies at a vertex.
(d) A linear function is always convex.
(e) The feasible space of some LP problems can be nonconvex.
(f) The variables must be nonnegative in a standard LP problem.
(g) The optimal solution of an LP problem can be called the optimal

basic solution.
(h) Every basic solution represents an extreme point of the convex set

of feasible solutions.



(i) We can generate all the basic solutions of an LP problem using
pivot operations.

(j) The simplex algorithm permits us to move from one basic solution
to another basic solution.

(k) The slack and surplus variables can be unrestricted in sign.
(1) An LP problem will have an infinite number of feasible solutions.
(m) An LP problem will have an infinite number of basic feasible so-

lutions.
(n) The right-hand-side constants can assume negative values during

the simplex procedure.
(o) All the right-hand-side constants can be zero in an LP problem.
(p) The cost coefficient corresponding to a nonbasic variable can be

positive in a basic feasible solution.
(q) If all elements in the pivot column are negative, the LP problem

will not have a feasible solution.
(r) A basic degenerate solution can have negative values for some of

the variables.
(s) If a greater-than or equal-to type of constraint is active at the op-

timum point, the corresponding surplus variable must have a pos-
itive value.

(t) A pivot operation brings a nonbasic variable into the basis.
(u) The optimum solution of an LP problem cannot contain slack vari-

ables in the basis.
(v) If the infeasibility form has a nonzero value at the end of phase I,

it indicates an unbounded solution to the LP problem.
(w) The solution of an LP problem can be a local optimum.
(x) In a standard LP problem, all the cost coefficients will be positive.
(y) In an standard LP problem, all the right-hand-side constants will

be positive.
(z) In a LP problem, the number of inequality constraints cannot ex-

ceed the number of variables.
(aa) A basic feasible solution cannot have zero value for any of the

variables.

PROBLEMS

3.1 State the following LP problem in standard form:

Maximize/= -Ixx — X2 + 5JC3



subject to

xx - 2x2 + Jc3 < 8

3JC, - 2x2 > - 1 8

2Jc1 + X2 - 2x3 < - 4

3.2 State the following LP problem in standard form:

Maximize /= JCJ — 8JC2

subject to

3Jc1 + 2JC2 > 6

9Jc1 + 7JC2 < 108

2JCJ - 5JC2 > - 3 5

JC15Jc2 unrestricted in sign

3.3 Solve the following system of equations using pivot operations:

6Jc1 — 2JC2 + 3JC3 = 1 1

4JC1 + Ix2 + JC3 = 21

5Jc1 + 8JC2 + 9JC3 = 48

3.4 It is proposed to build a reservoir of capacity Jc1 to better control the
supply of water to an irrigation district [3.15, 3.171. The inflow to the
reservoir is expected to be 4.5 X 106 acre-ft during the wet (rainy)
season and 1.1 X 106 acre-ft during the dry (summer) season. Between
the reservoir and the irrigation district, one stream (A) adds water to
and another stream (B) carries water away from the main stream, as
shown in Fig. 3.16. Stream A adds 1.2 X 106 and 0.3 X 106 acre-ft
of water during the wet and dry seasons, respectively. Stream B takes
away 0.5 X 106 and 0.2 X 106 acre-ft of water during the wet and dry
seasons, respectively. Of the total amount of water released to the
irrigation district per year (JC2), 30% is to be released during the wet
season and 70% during the dry season. The yearly cost of diverting
the required amount of water from the main stream to the irrigation
district is given by 18(0.3JC2) + 12(0.7JC2). The cost of building and
maintaining the reservoir, reduced to an yearly basis, is given by 25Jc1.
Determine the values of X1 and JC2 to minimize the total yearly cost.



Figure 3.16 Reservoir in an irrigation district.

3.5 Solve the following system of equations using pivot operations:

Axx - Ix2 + 2x3 = - 8

3JC, + Ax1 - 5x3 = - 8

5Jc1 + X 2 - 8JC3 = - 3 4

3.6 What elementary operations can be used to transform

2JC, + Jc2 + Jc3 = 9

JCj + X2 + X3 = 6

2JC, 4- 3JC2 H- JC3 = 13

Irrigation district
(Water received: x2)

Main stream
Stream B

Stream A

Capacity, x\

Proposed reservoir

Inflow to reservoir



into

X1 = 3

X2 = 2

xx + 3x2 + x3 = 10

Find the solution of this system by reducing into canonical form.

3.7 Find the solution of the following LP problem graphically:

Maximize / = Zx1 + 6x2

subject to

-JC1 + JC2 < 1

2JC1 4- Jc2 < 2

Jc1 > 0, Jc2 > 0

3.8 Find the solution of the following LP problem graphically:

Minimize /= -3Jc1 + 2JC2

subject to

0 < Jc1 < 4

1 < jc2 < 6

Jc1 + Jc2 < 5

3.9 Find the solution of the following LP problem graphically:

Minimize /= 3Jc1 + 2JC2

subject to

8Jc1 + Jc2 > 8

2Jc1 + Jc2 > 6

Jc1 + 3JC2 > 6

Jc1 H- 6JC2 > 8

Jc1 > 0, Jc2 > 0



3.10 Find the solution of the following problem by the graphical method:

Minimize/ = x\x\

subject to

X1 x\ > e*

x\x\ < e

JC1 > 0, Jc2 > 0

where e is the base of natural logarithms.

3.11 Prove Theorem 3.6.

For Problems 3.12 to 3.43, use a graphical procedure to identify (a) the fea-
sible region, (b) the region where the slack (or surplus) variables are zero, and
(c) the optimum solution.

3.12 Maximize/= 6JC + Iy

subject to

7JC + 6y < 42

5JC + 9y < 45

x — y < 4

JC > 0, y > 0

3.13 Rework Problem 3.12 when JC and y are unrestricted in sign.

3.14 Maximize/= 19JC + Iy

subject to

7JC + 6y < 42

5JC + 9y < 45

JC — y < 4

JC > 0, y > 0

3.15 Rework Problem 3.14 when JC and y are unrestricted in sign.



3.16 Maximize/= x + 2y

subject to

x - y > - 8

5JC - y > 0

x + y > 8

-jc + 6y >: 12

5JC + 2j < 68

JC < 10

JC > 0, j > 0

3.17 Rework Problem 3.16 by changing the objective to: Minimize/ = JC
- y-

3.18 Maximize/ = JC + 2y

subject to

JC - y > - 8

5JC - y > 0

JC + y > 8

-JC + 6y > 12

5JC + Iy > 68

JC < 10

JC > 0, y > 0

3.19 Rework Problem 3.18 by changing the objective to: Minimize/ = JC
- y-

3.20 Maximize/= JC + 3v

subject to

-4JC + 3;y < 12

JC + y < 7

JC - 4y < 2

JC > 0, >; > 0



3.21 Minimize/= x + 3y

subject to

-Ax + 3y < 12

x + y < 7

JC - 4y < 2

A: and y are unrestricted in sign

3.22 Rework Problem 3.20 by changing the objective to: Maximize/ = x

3.23 Maximize/= x + 3y

subject to

-Ax + 3y < 12

JC + y < 7

JC - 4 j >: 2

JC > 0, y > 0

3.24 Minimize/= JC - 8j

subject to

3JC + 2y > 6

JC - j < 6

9JC + 7j < 108

3JC + Iy < 70

2JC - 5y > -35

JC > 0, y > 0

3.25 Rework Problem 3.24 by changing the objective to: Maximize/ = x
-Sy.

3.26 Maximize/= x — Sy

subject to

3JC + 2y > 6



x - y < 6

9JC + Iy < 108

3JC + 7;y < 70

2x - 5j > - 3 5

JC > 0, j is unrestricted in sign

3.27 Maximize/= 5JC - 2y

subject to

3x + 2y > 6

JC - j < 6

9JC + 7y < 108

3JC + 7j < 70

2JC - 5y > - 3 5

JC > 0, j > 0

3.28 Minimize/ = JC — Ay

subject to

JC — y > —4

4JC + 5y < 45

5JC - 2y < 20

5JC + 2y < 10

JC > 0, y > 0

3.29 Maximize/ = x — Ay

subject to

JC - y > - 4

4JC + 5y < 45

5JC - 2j < 20

5JC + 2y > 10

JC > 0, j is unrestricted in sign



3.30 Minimize/ = x — Ay

subject to

x — y > —4

Ax + 5y < 45

5JC - 2y < 20

5JC + 2y > 10

JC > 0, y > 0

3.31 Rework Problem 3.30 by changing the objective to: Maximize/ = x
-4y.

3.32 Minimize/= Ax + 5y

subject to

IOJC + y > 10

5x + Ay > 20

3JC + Iy > 21

x + \2y > 12

x > 0, y > 0

3.33 Rework Problem 3.32 by changing the objective to: Maximize/ = Ax
+ 5y.

3.34 Rework Problem 3.32 by changing the objective to: Minimize/ = 6x
+ 2y.

3.35 Minimize/= 6x + 2y

subject to

\0x + y > 10

5JC + Ay > 20

3JC + Iy > 21

JC + 12y > 12

JC and y are unrestricted in sign



3.36 Minimize/= 5JC + Iy

subject to

3x + Ay < 24

JC - j < 3

JC + Ay > 4

3JC + y > 3

JC > 0, j > 0

3.37 Rework Problem 3.36 by changing the objective to: Maximize/ = 5JC
+ 2y.

3.38 Rework Problem 3.36 when JC is unrestricted in sign and y > 0.

3.39 Maximize/= 5JC + Iy

subject to

3JC + Ay < 24

JC - y < 3

JC + 4y < 4

3JC + y > 3

JC > 0, y > 0

3.40 Maximize/= 3JC + 2y

subject to

9JC + IQy < 330

21JC - Ay > -36

JC + 2y > 6

6JC - y < 72

3JC + y < 54

JC > 0, j > 0

3.41 Rework Problem 3.40 by changing the constraint JC + Iy > 6 to JC +
2y < 6.



3.42 Maximize/= 3x + Iy

subject to

9x + Wy < 330

21JC - Ay > -36

x + 2y < 6

6JC - y < 72

3JC + y > 54

x > 0, y > 0

3.43 Maximize/= 3x + 2y

subject to

2Lt - 4y > -36

JC + 2y > 6

6x - y < 72

x > 0, j > 0

3.44 Reduce the system of equations

2JC, + 3x2 - Ix3 - Ix4 = 2

Jc1 + Jc2 — Jc3 + 3JC4 = 12

Jc1 — Jc2 + Jc3 + 5JC4 = 8

into a canonical system with Jc1, JC2 and Jc3 as basic variables. From this
derive all other canonical forms.

3.45 Maximize /= 24OJC1 + 104JC2 + 60JC3 + 19JC4

subject to

2OJC1 + 9JC2 + 6x3 + Jc4 < 20

1OJC1 + 4JC2 + 2JC3 + JC4 < 10

JC/ >: 0, i = 1 to 4

Find all the basic feasible solutions of the problem and identify the
optimal solution.



3.46 A progressive university has decided to keep its library open round the
clock and gathered that the following number of attendants are re-
quired to reshelve the books:

Time of Day Minimum Number of
(hours) Attendants Required

0-4 4
4-8 7
8-12 8

12-16 9
16-20 14
20-24 3

If each attendant works eight consecutive hours per day, formulate the
problem of finding the minimum number of attendants necessary to
satisfy the requirements above as a LP problem.

3.47 A paper mill received an order for the supply of paper rolls of widths
and lengths as indicated below.

Number of Rolls Width of Roll Length
Ordered (m) (m)

1 6 100
1 8 300
1 9 200

The mill produces rolls only in two standard widths, 10 and 20 m. The
mill cuts the standard rolls to size to meet the specifications of the
orders. Assuming that there is no limit on the lengths of the standard
rolls, find the cutting pattern that minimizes the trim losses while sat-
isfying the order above.

3.48 Solve the LP problem stated in Example 1.6 for the following data: /
= 2 m, Wx = 3000 N, W2 = 2000 N, W3 = 1000 N, and Wx=W2 =
W3 = 200 N.

3.49 Find the solution of Problem 1.1 using the simplex method.

3.50 Find the solution of Problem 1.15 using the simplex method.

3.51 Find the solution of Example 3.1 using (a) the graphical method and
(b) the simplex method.

3.52 In the scaffolding system shown in Fig. 3.17, loads Xx and X2 are ap-
plied on beams 2 and 3, respectively. Ropes A and B can carry a load
of Wx = 300 Ib each, the middle ropes, C and D, can withstand a load



Figure 3.17 Scaffolding system with three beams.

of W2 = 200 Ib each, and ropes E and F are capable of supporting a
load W3 = 100 Ib each. Formulate the problem of finding the loads Jc1

and X2 and their location parameters JC3 and X4 to maximize the total
load carried by the system, Jc1 + JC2, by assuming that the beams and
ropes are weightless.

3.53 A manufacturer produces three machine parts, A9 B9 and C. The raw
material costs of parts A, B9 and C are $5, $10, and $15 per unit, and
the corresponding prices of the finished parts are $50, $75, and $100
per unit, respectively. Part A requires turning and drilling operations,
while part B needs milling and drilling operations. Part C requires
turning and milling operations. The number of parts that can be pro-
duced on various machines per day and the daily costs of running the
machines are given below.

Beam 3

Beam 2

Formulate the problem of maximizing the profit.

Solve each problem by the simplex method.

3.54 Problem 1.22

3.55 Problem 1.23

Machine Part

A
B
C

Cost of running the
machines per day

Number of Parts That Can Be Produced on

Turning Lathes

15

25

$250

Drilling Machines

15
20

$200

Milling Machines

30
10

$300

BA

C D

E F

Beam 1



3.56 Problem 1.24

3.57 Problem 1.25

3.58 Problem 3.7

3.59 Problem 3.12

3.60 Problem 3.13

3.61 Problem 3.14

3.62 Problem 3.15

3.63 Problem 3.16

3.64 Problem 3.17

3.65 Problem 3.18

3.66 Problem 3.19

3.67 Problem 3.20

3.68 Problem 3.21

3.69 Problem 3.22

3.70 Problem 3.23

3.71 Problem 3.24

3.72 Problem 3.25

3.73 Problem 3.26

3.74 Problem 3.27

3.75 Problem 3.28

3.76 Problem 3.29

3.77 Problem 3.30

3.78 Problem 3.31

3.79 Problem 3.32

3.80 Problem 3.33

3.81 Problem 3.34

3.82 Problem 3.35

3.83 Problem 3.36

3.84 Problem 3.37

3.85 Problem 3.38



3.86 Problem 3.39

3.87 Problem 3.40

3.88 Problem 3.41

3.89 Problem 3.42

3.90 Problem 3.43

3.91 The temperatures measured at various points inside a heated wall are
given below.

Distance from the heated surface as a
percentage of wall thickness, X1 0 20 40 60 80 100

Temperature, I1 (
0C) 400 350 250 175 100 50

It is decided to use a linear model to approximate the measured values
as

t = a + bx (1)

where t is the temperature, x the percentage of wall thickness, and a
and b the coefficients that are to be estimated. Obtain the best estimates
of a and b using linear programming with the following objectives.

(a) Minimize the sum of absolute deviations between the measured
values and those given by Eq. (1): E1- |a H- bxt — tt\.

(b) Minimize the maximum absolute deviation between the measured
values and those given by Eq. (1):

M a x \a H- bxt — tt\
i

3.92 A snack food manufacturer markets two kinds of mixed nuts, labeled
A and B. Mixed nuts A contain 20% almonds, 10% cashew nuts, 15%
walnuts, and 55% peanuts. Mixed nuts B contain 10% almonds, 20%
cashew nuts, 25% walnuts, and 45% peanuts. A customer wants to
use mixed nuts A and B to prepare a new mix that contains at least 4
Ib of almonds, 5 Ib of cashew nuts, and 6 Ib of walnuts, for a party.
If mixed nuts A and B cost $2.50 and $3.00 per pound, respectively,
determine the amounts of mixed nuts A and B to be used to prepare
the new mix at a minimum cost.

3.93 A company produces three types of bearings, Bu B2, and B3, on two
machines, Ax and A2. The processing times of the bearings on the two
machines are indicated in the following table.



If the amounts of time available per day for component placement,
soldering, and inspection are 1500, 1000, and 500 person-minutes,
respectively, determine the number of units of A and B to be produced
for maximizing the production. If each unit of A and B contributes a
profit of $10 and $15, respectively, determine the number of units of
A and B to be produced for maximizing the profit.

3.95 A paper mill produces paper rolls in two standard widths; one with
width 20 in. and the other with width 50 in. It is desired to produce
new rolls with different widths as indicated below.

Width Number of Rolls
(in.) Required

40 150
30 200
15 50
6 100

The new rolls are to be produced by cutting the rolls of standard widths
to minimize the trim loss. Formulate the problem as an LP problem.

The times available on machines Ax and A2 per day are 1200 and 1000
minutes, respectively. The profits per unit OfZZ1, B2, and B3 are $4,
$2, and $3, respectively. The maximum number of units the company
can sell are 500, 400, and 600 for ZJ1, B2, and B3, respectively. For-
mulate and solve the problem for maximizing the profit.

3.94 Two types of printed circuit boards A and B are produced in a com-
puter manufacturing company. The component placement time, sol-
dering time, and inspection time required in producing each unit of A
and B are given below.

Machine

A2

Processing Time (min) for Bearing:

B1

10
8

B2

6
4

B3

12
4

Circuit Board

A
B

Time Required per Unit (min) for:

Component Placement

16
10

Soldering

10
12

Inspection

4
8



If the total machining times available in a week are 500 hours on lathes
and 400 hours on milling machines, determine the number of units of
P1 and P2 to be produced per week to maximize the profit.

3.97 A bank offers four different types of certificates of deposits (CDs) as
indicated below.

Duration Total Interest at Maturity
CD Type (yr) (%)

1 0.5 5
2 1.0 7
3 2.0 10
4 4.0 15

If a customer wants to invest $50,000 in various types of CDs, deter-
mine the plan that yields the maximum return at the end of the fourth
year.

3.98 The production of two machine parts A and B requires operations on
a lathe (L), a shaper (S), a drilling machine (Z)), a milling machine
(M), and a grinding machine (G). The machining times required by A
and B on various machines are given below.

3.96 A manufacturer produces two types of machine parts, P1 and P2 , using
lathes and milling machines. The machining times required by each
part on the lathe and the milling machine and the profit per unit of each
part are given below.

Machine Part

Machine Time (hr) Required by
Each Unit on:

Lathe

5
4

Milling Machine

2
4

Cost per Unit

$200
$300

Machine Part

A
B

Machine Time Required (hours per unit) on:

L

0.6
0.9

S

0.4
0.1

D

0.1
0.2

M

0.5
0.3

G

0.2
0.3

The number of machines of different types available is given by L: 10,
S: 3, D: 4, M: 6, and G: 5. Each machine can be used for 8 hours a
day for 30 days in a month.



(a) Determine the production plan for maximizing the output in a
month

(b) If the number of units of A is to be equal to the number of units
of B, find the optimum production plan.

3.99 A salesman sells two types of vacuum cleaners, A and B. He receives
a commission of 20% on all sales provided that at least 10 units each
of A and B are sold per month. The salesman needs to make telephone
calls to make appointments with customers and demonstrate the prod-
ucts in order to sell the products. The selling price of the products, the
average money to be spent on telephone calls, the time to be spent on
demonstrations, and the probability of a potential customer buying the
product are given below.

Coal Type

Ci
C2

C3

Quantify of
Coal Required
to Generate 1
MWh at the
Power Plant

(tons)

A

2.5
1.0
3.0

B

1.5
2.0
2.5

Pollution
Caused at

Power Plant

A

1.0
1.5
2.0

B

1.5
2.0
2.5

Cost of Coal
at Power

Plant

A

20
25
18

B

18
28
12

Vacuum
Cleaner

A
B

Selling
Price

per Unit

$250
$100

Money to Be Spent
on Telephone Calls
to Find a Potential

Customer

$3
$1

Time to Be Spent
in Demonstrations

to a Potential
Customer (hr)

3
1

Probability of a
Potential
Customer

Buying the
Product

0.4
0.8

In a particular month, the salesman expects to sell at most 25 units of
A and 45 units of B. If he plans to spend a maximum of 200 hours in
the month, formulate the problem of determining the number of units
of A and B to be sold to maximize his income.

3.100 An electric utility company operates two thermal power plants, A and
B, using three different grades of coal, C1, C2, and C3. The minimum
power to be generated at plants A and B is 30 and 80 MWh, respec-
tively. The quantities of various grades of coal required to generate 1
MWh of power at each power plant, the pollution caused by the var-
ious grades of coal at each power plant, and the costs of coal are given
in the following table.



Formulate the problem of determining the buying scheme that corre-
sponds to a minimum cost.

3.102 A steel plant produces steel using four different types of processes.
The iron ore, coal, and labor required, the amounts of steel and side
products produced, the cost information, and the physical limitations
on the system are given below.

Farm

1
2
3
4

Minimum amount
required (tons)

Price ($/ton) of Vegetable Type

1
(Potato)

200
300
250
150

100

2
(Tomato)

600
550
650
500

60

3
(Okra)

1600
1400
1500
1700

20

4
(Eggplant)

800
850
700
900

80

5
(Spinach)

1200
1100
1000
1300

40

Maximum
(of All
Types

Combined)
They Can

Supply

180
200
100
120

Formulate the problem of determining the amounts of different grades
of coal to be used at each power plant to minimize (a) the total pol-
lution level, and (b) the total cost of operation.

3.101 A grocery store wants to buy five different types of vegetables from
four farms in a month. The prices of the vegetables at different farms,
the capacities of the farms, and the minimum requirements of the gro-
cery store are indicated in the following table.

Process
Type

1
2
3
4

Cost

Limitations

Iron Ore
Required
(tons/day)

5
8
3

10

$50/ton

600 tons
available
per
month

Coal
Required
(tons/day)

3
5
2
7

$10/ton

250 tons
available
per
month

Labor
Required

(person-days)

6
12
5

12

$150/person-
day

No limita-
tions on
availability
of labor

Steel
Produced
(tons/day)

4
6
2
6

$350/ton

All steel
produced
can be
sold

Side
Products
Produced
(tons/day)

1
2
1
4

$100/ton

Only 200
tons
can be
sold per
month

Assuming that a particular process can be employed for any number
of days in a 30-day month, determine the operating schedule of the
plant for maximizing the profit.



LINEAR PROGRAMMING II:
ADDITIONAL TOPICS AND
EXTENSIONS

4.1 INTRODUCTION

If a LP problem involving several variables and constraints is to be solved by
using the simplex method described in Chapter 3, it requires a large amount
of computer storage and time. Some techniques, which require less computa-
tional time and storage space compared to the original simplex method, have
been developed. Among these techniques, the revised simplex method is very
popular. The principal difference between the original simplex method and the
revised one is that in the former we transform all the elements of the simplex
tableau, while in the latter we need to transform only the elements of an inverse
matrix. Associated with every LP problem, another LP problem, called the
dual, can be formulated. The solution of a given LP problem, in many cases,
can be obtained by solving its dual in a much simpler manner.

As stated above, one of the difficulties in certain practical LP problems is
that the number of variables and/or the number of constraints is so large that it
exceeds the storage capacity of the available computer. If the LP problem has
a special structure, a principle known as the decomposition principle can be
used to solve the problem more efficiently. In many practical problems, one
will be interested not only in finding the optimum solution to a LP problem,
but also in finding how the optimum solution changes when some parameters
of the problem, such as cost coefficients change. Hence the sensitivity or
postoptimality analysis becomes very important.

An important special class of LP problems, known as transportation prob-
lems, occurs often in practice. These problems can be solved by algorithms
that are more efficient (for this class of problems) than the simplex method.
Karmarkar's method is an interior method and has been shown to be superior

4



to the simplex method of Dantzig for large problems. The quadratic program-
ming problem is the best-behaved nonlinear programming problem. It has a
quadratic objective function and linear constraints and is convex (for minimi-
zation problems). Hence the quadratic programming problem can be solved by
suitably modifying the linear programming techniques. All these topics are
discussed in this chapter.

4.2 REVISED SIMPLEX METHOD

We notice that the simplex method requires the computing and recording of an
entirely new tableau at each iteration. But much of the information contained
in the tableau is not used; only the following items are needed.

1. The relative cost coefficients c, to compute*

cs = min(Cj) (4.1)

cs determines the variable Jt5 that has to be brought into the basis in the
next iteration.

2. By assuming that cs < 0, the elements of the updated column

a\s

\MmsJ

and the values of the basic variables

P O

x - r 2

\l>mJ

have to be calculated. With this information, the visiable xr that has to
be removed from the basis is found by computing the quantity

^ = min & (4.2)
ars ais>o iais)

trrhe modified values of bh aij9 and c, are denoted by overbars in this chapter (they were denoted
by primes in Chapter 3).



and a pivot operation is performed on ars. Thus only one nonbasic col-
umn A5 of the current tableau is useful in finding xr. Since most of the
linear programming problems involve many more variables (columns)
than constraints (rows), considerable effort and storage is wasted in deal-
ing with the A7 for j =£ s. Hence it would be more efficient if we can
generate the modified cost coefficients Cj and the column A5, from the
original problem data itself. The revised simplex method is used for this
purpose; it makes use of the inverse of the current basis matrix in gen-
erating the required quantities.

Theoretical Development. Although the revised simplex method is applicable
for both phase I and phase II computations, the method is initially developed
by considering linear programming in phase II for simplicity. Later, a step-by-
step procedure is given to solve the general linear programming problem in-
volving both phases I and II.

Let the given linear programming problem (phase II) be written in column
form as

Minimize
/(X) = C1X1 + C2X2 + • • • + cnxn (4.3)

subject to
AX = A1Jc1 + A2Jc2 + • • • + AnXn = b (4.4)

X > 0 (4.5)
nX 1 n x 1

where they th column of the coefficient matrix A is given by

m x 1

KamjJ

Assuming that the linear programming problem has a solution, let

B = [Aj1 AJ2 • • • AjJ

be a basis matrix with

Xj2 ' )1 '
X8= . ) and cB = . ;

m X 1 V m X 1



representing the corresponding vectors of basic variables and cost coefficients,
respectively. If XB is feasible, we have

XB = B *b = b > 0

As in the regular simplex method, the objective function is included as the
(m + l)th equation and —/is treated as a permanent basic variable. The aug-
mented system can be written as

n

Z,Pjxj + Pn + i(-f)=q (4.6)
J = *

where

a2j 0 / b2

Pj = ; , j = 1 to ft, Pw + 1 = ; > and q = ; >

amj 0 bm

V cy y viy Vo/

Since B is a feasible basis for the system of Eqs. (4.4), the matrix D defined
by

[B Ol
D = [P;, IV 2 - • - P ^ P n + 1 ] = T

m + l x m + l LC^ I J

will be a feasible basis for the augmented system of Eqs. (4.6). The inverse
of D can be found to be

D - L - * - J

Definition The row vector

C^B-1 = nT = ? > (4.7)

V7rwy

is called the vector of simplex multipliers relative to the / equation. If the
computations correspond to phase I, two vectors of simplex multipliers, one



relative to the/equation, and the other relative to the w equation are to be
defined as

fTiY
Vxmy

T4 7 1Y

By premultiplying each column of Eq. (4.6) by D~', we obtain the follow-
ing canonical system of equations*:

Xj1 I1

+ 2J A7-JC,- = .
• _/'nonbasic •

xjm K

- / + S CjXj = -/o
ynonbasic

where

£ } • - > - c a t s

From Eq. (4.8), the updated column A,- can be identified as

A, = B-'A ; (4.9)

^remultiplication of PjXj by D"1 gives

f B 1A7 ") fjcy if jc, is a basic variable
~ \ ( x- ~ \

I^ — nTAj + C7J
 J (^D-1P7X7 if Xj is not a basic variable



and the modified cost coefficient c, as

Cj = Cj - TT7A, (4 .10)

Equations (4.9) and (4.10) can be used to perform a simplex iteration by gen-
erating Aj and Cj from the original problem data, A7 and c,.

Once Ay and cy are computed, the pivot element ars can be identified by
using Eqs. (4.1) and (4.2). In the next step, P5 is introduced into the basis and
Vj1. is removed. This amounts to generating the inverse of the new basis matrix.
The computational procedure can be seen by considering the matrix:

a\s

D I ^ (4.11)

m + 1 X m + 1 ra+lxra+l

where ez is a (m + l)-dimensional unit vector with a one in the ith row. Pre-
multiplication of the above matrix by D"1 yields

et C2 • • • er • • • ew + ^ D"1 a]s

I m + l X m + 1 a2s

m + 1 x m + 1 :

Pivot
element ( 4 1 2 )

m 4- 1 X 1_

By carrying out a pivot operation on ars, this matrix transforms to

Ue1 e2 • • • er_! p er + 1 • • • em + 1] Dn^ er] (4.13)

where all the elements of the vector P are, in general, nonzero and the second



partition gives the desired matrix D n ^ . 1^ It can be seen that the first partition
(matrix I) is included only to illustrate the transformation, and it can be dropped
in actual computations. Thus, in practice, we write the m + 1 X m + 2 matrix

D"1 | 3

cs _

and carry out a pivot operation on ars. The first m + 1 columns of the resulting
matrix will give us the desired matrix D n ^ .

Procedure. The detailed iterative procedure of the revised simplex method to
solve a general linear programming problem is given by the following steps.

1. Write the given system of equations in canonical form, by adding the
artificial variables Xn+ u Xn + 2, . . . , Xn+ m, a n d the infeasibility form for
phase I as shown below:

anxx + anx2 + • • • + alnxn +Xn + 1 = bx

021*1 + ^22*2 + * # " + Cl2nXn + Xn + 2 = b2

0m 1*1 + 0m2*2 + ' ' ' + ClmnXn + Xn+m = bm

C1X1 + C2X2 + ' • * + CnXn ~ f = 0

dxxx + d2x2 + • • • + dnxn ~w= -W0

(4.14)

1TMs can be verified by comparing the matrix of Eq. (4.13) with the one given in Eq. (4.11).
The columns corresponding to the new basis matrix are given by

Dnew = [Py1 P72 ' •'• Pyr_, P, Pyr+1 ' ' * Pym P n + 1 ]

brought in
place of P r

These columns are modified and can be seen to form a unit matrix in Eq. (4.13). The sequence
of pivot operations that did this must be equivalent to multiplying the original matrix, Eq. (4.11),
by T>nJw. Thus the second partition of the matrix in Eq. (4.13) gives the desired D n ^ .



Here the constants bh i = 1 to m, are made nonnegative by changing, if
necessary, the signs of all terms in the original equations before the ad-
dition of the artificial variables xn + h i = 1 to m. Since the original in-
feasibility form is given by

w = xn + ] + Xn + 2 + • • • + xn + m (4.15)

the artificial variables can be eliminated from Eq. (4.15) by adding the
first m equations of Eqs. (4.14) and subtracting the result from Eq.
(4.15). The resulting equation is shown as the last equation in Eqs. (4.14)
with

m m

dj; = - S atj and w0 = S bt (4.16)

Equations (4.14) are written in tableau form as shown in Table 4 .1 .

2. The iterative procedure (cycle 0) is started with Xn + 1, Xn + 2, . . . , xn + m,
—/, and — w as the basic variables. A tableau is opened by entering the
coefficients of the basic variables and the constant terms as shown in
Table 4.2. The starting basis matrix is, from Table 4 . 1 , B = I, and its
inverse B~l = [j3/7] can also be seen to be an identity matrix in Table
4.2. The rows corresponding to —/and — w in Table 4.2 give the neg-
ative of simplex multipliers Tr1- and ot (i = 1 to m), respectively. These
are also zero since cB — dB = 0 and hence

nT = c^B"1 = 0

GT = dT
BB * = 0

In general, at the start of some cycle k (k = 0 to start with) we open a
tableau similar to Table 4.2, as shown in Table 4.4. This can also be
interpreted as composed of the inverse of the current basis, B~ l = [/3^],
two rows for the simplex multipliers TT, and ah a column for the values
of the basic variables in the basic solution, and a column for the variable
xs. At the start of any cycle, all entries in the tableau, except the last
column, are known.

3. The values of the relative cost factors dj (for phase I) or Cj (for phase II)
are computed as

dj = dj - CT7A7-

Cj = Cj - TT7A7-



Objective
VariableArtificial VariableAdmissible (Original) Variable

Constant— w-/Xn + mXn + 2Xn+\* * * Xn' ' ' XjX2X1

< Initial basis •

b2

bm

0

-W0

0
1

1
0

1

0
0

0
0

0
0

"in I An
ay I Ay

amj)

di

^22 I A2

C2

«11^]
«21 I A1

^l

TABLE 4.1 Original System of Equations



3This column is blank at the beginning of cycle 0 and filled up only at the end of cycle 0.

and entered in a tableau form as shown in Table 4.3. For cycle 0, GT =
0 and hence dj = dj.

4. If the current cycle corresponds to phase I, find whether all d, > 0. If
all dj > 0 and W0 > 0, there is no feasible solution to the linear pro-
gramming problem, so the process is terminated. If all dj > 0 and W0 =
0, the current basic solution is a basic feasible solution to the linear
programming problem and hence phase II is started by (a) dropping all
variables Xj with dj > 0, (b) dropping the w row of the tableau, and (c)
restarting the cycle (step 3) using phase II rules.

If some dj < 0, choose xs as the variable to enter the basis in the next
cycle in place of the present rth basic variable (r will be determined

TABLE 4.3 Relative Cost Factor dj or c,

TABLE 4.2 Tableau at the Beginning of Cycle 0

Basic
Variables

Xn+X

Xn + 2

Xn + r

Xn + m

Columns of the Canonical Form

Xn+\

1

Xn + 2

1

Xn + r

1

Xn+m

1

- / — w
Value of the

Basic Variable xs
a

bx
b2

K

bm

< Inverse of the basis - •

- /

— w

0

0

0

0

0

0

0

0

1

1

0
m

-W0 = -Ti bt
i— 1

Cycle Number

f?
Phase I \ .

U
P + 1

Phase II Il + 2

Variable Jt7

X1

dx

X2

d2 • • • dn 0

Xn + 2

0

Xn + m

0

Use the values of 07 (if phase I) or TT, (if phase II) of
the current cycle and compute

dj = dj - (G1Ci1J + a2a2j + • • • + amamj)
or

Cj = Cj - (IT1CIy + V2O2J + • * • + icmamj)

Enter dj or C7 in the row corresponding to the current
cycle and choose the pivot column s such that ds =
min dj (if phase I) or cs = min C7 (if phase II)



later) such that

ds = min(dj < O)

On the other hand, if the current cycle corresponds to phase II, find
whether all c, > 0. If all c, > 0, the current basic feasible solution is
also an optimal solution and hence terminate the process. If some C7- <
0, choose Jc5 to enter the basic set in the next cycle in place of the rth
basic variable (r to be found later), such that

C5 = ITUn(C7 < 0 )

5. Compute the elements of the xs column from Eq. (4.9) as

A5 = B-1A5 = ptjAs

that is,

aXs = Puau + $X2als + • • • + $\mams

a2s = ftntfi* + fe«25 + • • • + &imams

ams = 0ml*l5 + 0m2*2* + ' ' ' + Pmm^ms

and enter in the last column of Table 4.2 (if cycle 0) or Table 4.4 (if
cycle k).

6. Inspect the signs of all entries ais, i = 1 to m. If all ais < 0, the class
of solutions

jc5 > 0 arbitrary

Xj1 — bt — ais • Jc5 if Xj1 is a basic variable, and JC, = 0 if jcy is a nonbasic
variable (j ^ s), satisfies the original system and has the property

/ = /o 4- C5Jc5 -• — oo as Jc5 -^ + oo

Hence terminate the process. On the other hand, if some ais > 0, select
the variable jcr that can be dropped in the next cycle as

zr = mm (bi/ais)
ars ais > 0

In the case of a tie, choose r at random.



"This column is blank at the start of cycle k and is filled up only at the end of cycle k.

TABLE 4.5 Tableau at the Beginning of Cycle k + 1

Basic
Variable

XJl

-f

— w

Columns of the Original
Canonical Form

Xn+l ' ' ' Xn+m

Wijl = [«,,„+,]
••-Inverse of the basis->

/3, , • • • /3>m

/3rl • • • firm

&m\ * * * @mm

- T T ' ' ' - 7 T m

- ( T 1 • • • -am

i-aj = +dn+j)

-f

1

— w

1

Value of

the Basic

Variable

K

K

- / o

-Tv0

x"

m

als = Tif$uais

m

ars = S/3rtafc
/ = 1

m

m

Q = C5 - S T 1 C J 1
i=i

m

ds = ds - TiO1(Ii3

TABLE 4.4 Tableau at the Beginning of Cycle k

Basic
Variables

xi\

xs

XJm

— w

Columns of the Canonical Form

•*„+• ' •

Pn ~ a. A* • •

PT1 • •

Pmi ~ amMx • •

- T 1 - cfiTi • •

- a , - dj& • •

Xn+m

• &Xm ~ S1JSJ1

• Pl,

r*mm tlmsPrm

_ 7; /D*
^m CsPrm

-am - ds^

-f

1

—w

1

Value of the
Basic Variable

h - 5, A*

K - amsb*

-/0 - cjbr
-W0 - djb*

Xs"

P* = ^ i (I = 1 to m) and ^ = ^

aThis column is blank at the start of the cycle.



7. To bring xs into the basis in place of jcr, carry out a pivot operation on
the element ars in Table 4.4 and enter the result as shown in Table 4.5.
As usual, the last column of Table 4.5 will be left blank at the beginning
of the current cycle k H- 1. Also, retain the list of basic variables in the
first column of Table 4.5 the same as in Table 4.4, except that jr is
changed to the value of s determined in step 4.

8. Go to step 3 to initiate the next cycle, k H- 1.

Example 4.1

Maximize F = Xx H- 2x2 + x3

subject to

Ix1 + X2 - x3 < 2

- 2 J C 1 + J c 2 - 5JC 3 > — 6

4Jc1 H- Jc2 4- Jc3 < 6

Jc1 > 0, Jc2 > 0, Jc3 > 0

SOLUTION This problem can be stated in standard form as (making all the
constants bt positive and then adding the slack variables):

Minimize

/ = -X1 - 2x2 - x3 (E1)

subject to

2JC1 H- JC2 — JC3 + JC4 = 2

2JC1 - X2 + 5JC3 H-X5 = 6 (E2)

4JC1 H- JC2 H- JC3 H- JC6 = 6

Jc1- > 0, i = 1 to 6

where X49 X5, and X6 are slack variables. Since the set of equations (E2) are in
canonical form with respect to JC4, JC5, and JC6, JC, = 0 (/ = 1,2,3) and JC4 = 2,
X5 = 6, and X6 = 6 can be taken as an initial basic feasible solution and hence
there is no need for phase I.



Step 1: All the equations (including the objective function) can be written in
canonical form as

2Jc1 + X2 — X3 + X4 =2

2Jc1 — X2 + 5x3 + J c 5 = 6

4Jc1 H- JC2 + JC3 + J c 6 = 6

-X1 - Ix2 - X3 - / = 0

These equations are written in tableau form in Table 4.6.
Step 2: The iterative procedure (cycle 0) starts with JC4, JC5, JC6, and —/as basic

variables. A tableau is opened by entering the coefficients of the basic vari-
ables and the constant terms as shown in Table 4.7. Since the basis matrix
is B = I, its inverse B 1 = [0tj\ = I. The row corresponding to —/in Table
4.7 gives the negative of simplex multipliers irh i = 1,2,3- These are all
zero in cycle 0. The entries of the last column of the table are, of course,
not yet known.

TABLE 4.7 Tableau at the Beginning of Cycle 0

Basic
Variables

X 4

X5

X6

Columns of the
Canonical Form

X4

1

0
0

X5

0

1
0

0

0

1

- /

0

0
0

Value of the
Basic Variable

(Constant)

2

6
6

x2
a

Pivot
element

^52 = - 1

a62 = 1
Inverse of the basis = [fty]

- / 0 0 0 1 0 C2= -2

aThis column is entered at the end of step 5.

TABLE 4.6 Detached Coefficients of the Original System

X1

2
2
4

- 1

Admissible Variables

X2

1
- 1

1

- 2

X3

-1
5
1

- 1

X4

1
0
0

0

X 5

0
1
0

0

X6

0
0
1

0

- /

1

Constants

2
6
6

0



Step 3: The relative cost factors C7 are computed as

Cj = Cj - Ti7A7 = Cj, j = 1 to 6

since all TT,- are zero. Thus

C1 = C1 = - 1

^ 2 = C2 = - 2

c3 = c3 = - 1

C4 = C4 = 0

C5 = C5 = 0

C6 = c6 = 0

These cost coefficients are entered as the first row of a tableau (Table 4.8).
Step 4: Find whether all C7 > 0 for optimality. The present basic feasible

solution is not optimal since some C7 are negative. Hence select a variable
xs to enter the basic set in the next cycle such that cs = min(cy < 0) = C2

in this case. Therefore, X2 enters the basic set.
Step 5: Compute the elements of the xs column as

A, = W1J] As

where [/3̂ ] is available in Table 4.7 and As in Table 4.6.

A2 = IA2 = - 1

These elements, along with the value of C2, are entered in the last column
of Table 4.7.

TABLE 4.8 Relative Cost Factors Cj

Cycle
Number

Phase II
Cycle 0
Cycle 1
Cycle 2

Variable Xj

Xx

- 1
3
6

X2

0
0

- 1

0

X4

0
2
ii
4

0
0
3
4

0
0
0



Step 6: Select a variable (xr) to be dropped from the current basic set as

K . (bt\
— = mm Z- )
ars ais>o \ais/

In this case,

«42 1

*« - 6 - *

Therefore, xr = X4.

Step 7: To bring X2 into the basic set in place of X4, pivot on ars — a42 in Table
4.7. Enter the result as shown in Table 4.9, keeping its last column blank.
Since a new cycle has to be started, we go to step 3.

Step 3: The relative cost factors are calculated as

Cj = Cj - (-KxaXj + TT2^2./ + *303 / )

where the negative values of Tr1, TT2, and TT3 are given by the row of —/in
Table 4.9, and a(j and C1 are given in Table 4.6. Here Tr1 = —2, TT2 = 0,
and TT3 = 0.

Ci = C1 - TT1G11 = - 1 - ( - 2 ) (2) = 3

C2 = C2- TT1G12 = -2 - ( - 2 ) (1) = 0

TABLE 4.9 Tableau at the Beginning of Cycle 1

Basic
Variables

X2

X5

Columns of the Original Canonical Form

X4

1
1

- 1

0
1

0

Xt

0
0

1

- /

0
0

1

Value of
the Basic
Variable

2
8

4

x,a

^23 = " I

Pivot
element

«63 = 2
<- Inverse of the basis = [&,-]-•

- / 2= - T T 1 0 = - T T 2 0 = -TT3 1 4 C3= -3

"This column is entered at the end of step 5.



C 3 = C3 - TT1Cl13 = -1 ~ (-2) (-1) = -3

C4 = C4- TT1U14 = O ~ (-2) (1) = 2

C 5 = C 5 - TT1G15 = O - ( - 2 ) (O) = 0

C6 = C 6 - TT1G16 = 0 - (-2) (0) = 0

Enter these values in the second row of Table 4.8.
Step 4: Since all cy are not > 0 , the current solution is not optimum. Hence

select a variable (xs) to enter the basic set in the next cycle such that cs =
min(c, < 0) = C3 in this case. Therefore, xs = X3.

Step 5: Compute the elements of the xs column as

A5 = [^]A,

where [ft-,-] is available in Table 4.9 and As in Table 4.6.

ra23\ Y i o o ] r - n r - n

A 3 = a 5 3 = 1 1 0 5 = 4

U 6 3 J L - I o l j C I J I i )

Enter these elements and the value of cs = C3 = - 3 in the last column of
Table 4.9.

Step 6: Find the variable (xr) to be dropped from the basic set in the next cycle
as

br . (bt\
— = mm ( z - )
ars ais>o \ais/

Here

h = * = 2

Since there is a tie between X5 and X6, we select xr = X5 arbitrarily.
Step 7: To bring x3 into the basic set in place of JC5, pivot on ars = a53 in Table

4.9. Enter the result as shown in Table 4.10, keeping its last column blank.
Since a new cycle has to be started, we go to step 3.

Step 3: The simplex multipliers are given by the negative values of the num-
bers appearing in the row of —/in Table 4.10. Therefore, Tr1 = — j , Tr2 =



'This column is blank at the beginning of cycle 2.

—f, and TT3 = 0. The relative cost factors are given by

Cj = Cj - nTAj

Then

C1= C1- IT1U11 - TT2U2x = - 1 - {-xi) (2 ) - (-1) (2 ) = 6

C2 = C2- IT1U12 - IT2U22 = - 2 - (-1-}) (1 ) - ( - I K - 1 ) = 0

C3 = C3- IT1U13 - TT2U23 = -1 - ( -TK-D - i-l) (5) = 0

C4 = C4- TT1U14 - TT2U24 = 0 - (~Xi) (1) - (-1) (0) = 'i

C5 = C5- TT1U15 ~ TT2U25 =0- (~li) (0) - (-1) (1) = I

C6 = C6- TT1U16 ~ TT2U26 = 0 - ( - ^ ) (0) ~ (-1) (0) = 0

These values are entered as third row in Table 4.8.

Step 4: Since all c, are > 0 , the present solution will be optimum. Hence the
optimum solution is given by

x2 = 4, x3 = 2, x6 = 0 (basic variables)

xx = x4 = x5 = 0 (nonbasic variables)

/min = - 1 0

4.3 DUALITY IN LINEAR PROGRAMMING

Associated with every linear programming problem, called the primal, there
is another linear programming problem called its dual. These two problems
possess very interesting and closely related properties. If the optimal solution
to any one is known, the optimal solution to the other can readily be obtained.
In fact, it is immaterial which problem is designated the primal since the dual

Basic
Variables

X2

*3

*6

" /

Columns of the Original
Canonical Form

X4

5
4
1
4
6
4

11
4

X5

1
4
1
4
2
4
3
4

0
0
1

0

" /
0
0

1

1

Value of
the Basic
Variable

4
2
0

10

xs
a

TABLE 4.10 Tableau at the Beginning of Cycle 2



of a dual is the primal. Because of these properties, the solution of a linear
programming problem can be obtained by solving either the primal or the dual,
whichever is easier. This section deals with the primal-dual relations and their
application in solving a given linear programming problem.

4.3.1 Symmetric Primal-Dual Relations

A nearly symmetric relation between a primal problem and its dual problem
can be seen by considering the following system of linear inequalities (rather
than equations).

Primal Problem

axxxx + ^12X2+ • • • + aXnxn > bx

021*1 + 2̂2*2 + • • • + alnxn > b2

; (4.17)

amXxx + am2x2 + • • • + amnxn > bm

CxXx + C2X2 + • • • + CnXn = f

(xt > 0, / = 1 to n, a n d / i s to be minimized)

Dual Problem. As a definition, the dual problem can be formulated by trans-
posing the rows and columns of Eq. (4.17) including the right-hand side and
the objective function, reversing the inequalities and maximizing instead of
minimizing. Thus, by denoting the dual variables as yx, y2, . . . , ym, the dual
problem becomes

a\\y\ + a2Xy2 + • • • + amXym < Cx

ax2yx + a22y2 + • • • 4- am2ym < C2

I (4.18)

<*\ny\ + a2nyi + • • • + amnym < Cn

bxyx + b2y2 + • • • + bmym = v

(yt > 0, / = 1 to m, and v is to be maximized)

Equations (4.17) and (4.18) are called symmetric primal-dual pairs and it is
easy to see from these relations that the dual of the dual is the primal.

4.3.2 General Primal-Dual Relations

Although the primal-dual relations of Section 4.3.1 are derived by considering
a system of inequalities in nonnegative variables, it is always possible to obtain



TABLE 4.11 Correspondence Rules for Primal-Dual Relations

Primal Quantity Corresponding Dual Quantity

Objective function: Minimize C7X Maximize Y rb
Variable X1 > 0 ith constraint Y7A1 < q (inequality)
Variable X1 unrestricted in sign /th constraint Y7A1 = C1 (equality)
jth constraint, A7X = bj (equality) jth variable vy unrestricted in sign
jth constraint, A7X > bj (inequality) jth variable yj > 0

[A1I
Coefficient matrix A = • Coefficient matrix A r = [A1 • • • An]

L A W _
Right-hand-side vector b Right-hand-side vector c
Cost coefficients c Cost coefficients b

the primal-dual relations for a general system consisting of a mixture of equa-
tions, less than or greater than type of inequalities, nonnegative variables or
variables unrestricted in sign by reducing the system to an equivalent inequality
system of Eqs. (4.17). The correspondence rules that are to be applied in de-
riving the general primal-dual relations are given in Table 4.11 and the primal-
dual relations are shown in Table 4.12.

4.3.3 Primal-Dual Relations When the Primal Is in Standard Form

If m* = m and n* = n, primal problem shown in Table 4.12 reduces to the
standard form and the general primal-dual relations take the special form shown
in Table 4.13.

It is to be noted that the symmetric primal-dual relations, discussed in Sec-

TABLE 4.12 Primal-Dual Relations

Primal Problem Corresponding Dual Problem

n m

Minimize /= S C1X1 subject to Maximize v = S ytbi subject to

n m

S CL1JXj = bh i = 1,2,. . .,m* S y^j = cj9j = n* + 1, n* + 2,
y=l i=l

" . . . ,n
ZJ ai}Xj > bh i = m* + 1, m* + 2,

j=l
 m . S y,.^ < CjJ= 1 ,2, . . . ,/I*

where where
Jc1- > 0, i = 1,2,. . .,H*; yf > 0, i = m* + 1, m* + 2, . . . , m\

and and
JC, unrestricted in sign, i = n* -f 1, yt unrestricted in sign, i = 1,2,. . .,m*

n* H- 2, . . . , n



TABLE 4.13 Primal-Dual Relations Where m* = m and n* = n

Primal Problem Corresponding Dual Problem
n m

Minimize/= 2 C1X1 Maximizes = S ^ j ,
i = i 1 = 1

subject to subject to
n m

S dijXj = bh i =1,2,. . .,/w E j , ^ - < CjJ = 1,2,. . .,n
7 = 1 / = 1

where where
X1 > 0, / = 1,2,. . .,n J1- is unrestricted in sign, i = 1,2,. . .,m

/n matrix form In matrix form
Minimize/= C7X Maximize v = Yrb

subject to subject to
AX = b A7Y < c

where where
X > 0 Y is unrestricted in sign

tion 4.3.1, can also be obtained as a special case of the general relations by
setting ra* = 0 and n* = n in the relations of Table 4.12.

Example 4.2 Write the dual of the following linear programming problem:

Maximize /= 50x j + 100JC2

subject to

2Jc1 + X2 < 125(T

2X1 + 5x2 < 1000 .
n = 2, m = 4

2X1 + 3JC2 < 900

Jc2 < 150 J

where

JC1 > 0 and JC2 > 0

SOLUTION Let yx, y2, y^, and y4 be the dual variables. Then the dual prob-
lem can be stated as:

Minimize v = 125Oj1 + 100Oj2 + 90Oj3 + 15Oj4

subject to

Iyx + 2 j 2 + 2 j 3 > 50

J1 + 5 j 2 H- 3 j 3 H- J4 > 100

where J1 >: 0, J2 > 0, J3 > 0, and J4 > 0.



Notice that the dual problem has a lesser number of constraints compared
to the primal problem in this case. Since, in general, an additional constraint
requires more computational effort than an additional variable in a linear pro-
gramming problem, it is evident that it is computationally more efficient to
solve the dual problem in the present case. This is one of the advantages of
the dual problem.

4.3.4 Duality Theorems

The following theorems are useful in developing a method for solving LP prob-
lems using dual relationships. The proofs of these theorems can be found in
Ref. [4.10].

Theorem 4.1 The dual of the dual is the primal.

Theorem 4.2 Any feasible solution of the primal gives an / value greater
than or at least equal to the v value obtained by any feasible solution of the
dual.

Theorem 4.3 If both primal and dual problems have feasible solutions, both
have optimal solutions and minimum/ = maximum v.

Theorem 4.4 If either the primal or the dual problem has an unbounded
solution, the other problem is infeasible.

4.3.5 Dual Simplex Method

There exist a number of situations in which it is required to find the solution
of a linear programming problem for a number of different right-hand-side
vectors b(0. Similarly, in some cases, we may be interested in adding some
more constraints to a linear programming problem for which the optimal so-
lution is already known. When the problem has to be solved for different vec-
tors b(i), one can always find the desired solution by applying the two phases
of the simplex method separately for each vector b w . However, this procedure
will be inefficient since the vectors b0) often do not differ greatly from one
another. Hence the solution for one vector, say, b(1) may be close to the so-
lution for some other vector, say, b(2). Thus a better strategy is to solve the
linear programming problem for b(1) and obtain an optimal basis matrix B. If
this basis happens to be feasible for all the right-hand-side vectors, that is, if

B - V 0 > 0 for all i (4.19)

then it will be optimal for all cases. On the other hand, if the basis B is not
feasible for some of the right-hand-side vectors, that is, if

B V r ) < 0 for some r (4.20)



then the vector of simplex multipliers

nT = cjB"1 (4.21)

will form a dual feasible solution since the quantities

Cj = Cj - Jt7A7 > 0

are independent of the right-hand-side vector b(r). A similar situation exists
when the problem has to be solved with additional constraints.

In both the situations discussed above, we have an infeasible basic (primal)
solution whose associated dual solution is feasible. Several methods have been
proposed, as variants of the regular simplex method, to solve a linear program-
ming problem by starting from an infeasible solution to the primal. All these
methods work in an iterative manner such that they force the solution to be-
come feasible as well as optimal simultaneously at some stage. Among all the
methods, the dual simplex method developed by Lemke [4.2] and the primal-
dual method developed by Dantzig, Ford, and Fulkerson [4.3] have been most
widely used. Both these methods have the following important characteristics:

1. They do not require the phase I computations of the simplex method.
This is a desirable feature since the starting point found by phase I may
be nowhere near optimal, since the objective of phase I ignores the op-
timality of the problem completely.

2. Since they work toward feasibility and optimality simultaneously, we
can expect to obtain the solution in a smaller total number of iterations.

We shall consider only the dual simplex algorithm in this section.

Algorithm. As stated earlier, tl̂ e dual simplex method requires the availability
of a dual feasible solution which is not primal feasible to start with. It is the
same as the simplex method applied to the dual problem but is developed such
that it can make use of the same tableau as the primal method. Computation-
ally, the dual simplex algorithm also involves a sequence of pivot operations,
but with different rules (compared to the regular simplex method) for choosing
the pivot element.

Let the problem to be solved be initially in canonical form with some of the
bt< 0, the relative cost coefficients corresponding to the basic variables Cj =
0, and all other Cj > 0. Since some of the bt are negative, the primal solution
will be infeasible, and since all c, > 0, the corresponding dual solution will
be feasible. Then the simplex method works according to the following itera-
tive steps.

1. Select row r as the pivot row such that

br = min bt < 0 (4.22)



2. Select column s as the pivot column such that

- ^ - = min (-^-) (4.23)
-ars arj<o \-arj/

If all arj > 0, the primal will not have any feasible (optimal) solution.
3. Carry out a pivot operation on ars

4. Test for optimality: If all bt > 0, the current solution is optimal and
hence stop the iterative procedure. Otherwise, go to step 1.

Remarks:

1. Since we are applying the simplex method to the dual, the dual solution
will always be maintained feasible, and hence all the relative cost factors
of the primal (cy) will be nonnegative. Thus the optimality test in step 4
is valid because it guarantees that all bt are also nonnegative, thereby
ensuring a feasible solution to the primal.

2. We can see that the primal will not have a feasible solution when all arj

are nonnegative from the following reasoning. Let (JC15JC2,. . .,xm) be the
set of basic variables. Then the rth basic variable, Xn can be expressed
as

n

xr = b r - S arjxj
j = m+ 1

It can be seen that if br < 0 and arj > 0 for all j , xr can not be made
nonnegative for any nonnegative value of Jc7. Thus the primal problem
contains an equation (the rth one) that cannot be satisfied by any set of
nonnegative variables and hence will not have any feasible solution.

The following example is considered to illustrate the dual simplex method.

Example 4.3

Minimize/= 2Qx1 + \6x2

subject to

Jc1 > 2.5

Jc2 > 6

2Jc1 + Jc2 > 17

Jc1 + Jc2 > 12

Jc1 > 0, X2 > 0



SOLUTION By introducing the surplus variables X3, X4, X5, and X6, the prob-
lem can be stated in canonical form as:

Minimize /

with

-xx + X3 = - 2 . 5

— JC2 +Jc4 = — 6

-2^1 ~x2 +x5 = -17 (E1)

- J c 1 — Jc2 + J c 6 = —12

2OJC1 + 16JC2 - / = 0

JC/ > 0, i = 1 to 6

The basic solution corresponding to (Ex) is infeasible since JC3 = — 2.5, JC4 =
—6, Jc5 = — 17, and JC6 = —12. However the objective equation shows opti-
mality since the cost coefficients corresponding to the nonbasic variables are
nonnegative (C1 = 20, C2 = 16). This shows that the solution is infeasible to
the primal but feasible to the dual. Hence the dual simplex method can be
applied to solve this problem as follows.

Step 1: Write the system of equations (E1) in tableau form:

Basic
Variables

X3

*4

*5

*6

Variables

- 1
0

Pivot
element

- 1

20

X2

0
- 1
- 1

- 1

16

X3

1
0
0

0

0

X4

0
1
0

0

0

X5

0
0
1

0

0

0
0
0

1

0

- /

0
0
0

0

1

-2.5
- 6

—17 «- Minimum,
pivot row

-12

0

Select the pivotal row r such that

br = min(bi < 0) = b3 = -17

in this case. Hence r = 3.
Step 2: Select the pivotal column s as

Cs . ( ~CJ\

-ars arj<o \-arjJ



Step 4: Since some of the bt are <0, the present solution is not optimum.
Hence we proceed to the next iteration.

Step 1: The pivot row corresponding to minimum (Jb1 < 0) can be seen to be
2 in the preceding table.

Step 2: Since a22 *
s the only negative coefficient, it is taken as the pivot ele-

ment.
Step 3: The result of pivot operation on a22 in the preceding table is as follows:

Since

.*!_ = * 10, Jl- = 1* = 16, and , = 1
-a3l 2 -a32 1

Step 3. The pivot operation is carried on <z31 in the preceding table, and the
result is as follows:

Basic
Variables

X3

X4

X6

-f

Variables

0

0

1
0

0

X2

i
2

Pivot
element

i
2
1
2

6

X3

1

0

0
0

0

X4

0
1

0
0

0

1
2

0

1
2
1
2

10

X6

0
0

0
1

0

- /

0
0

0
0

1

hi

6

— 6 <- Minimum,

pivot row

17
2

7
2

-170

Basic
Variables

X3

X2

Xx

Xe

r

Variables

X\

0
0
1

0

0

X2

0
1

0

0

0

X3

1
0
0

0

0

X4

i
2

- 1
1
2
1
2

Pivot
element

6

X5

i
2

0
1
2
1
2

10

X6

0
0
0

1

0

- /

0
0
0

0

1

3
6

ii
2

—̂  <— Minimum,

pivot row

- 2 0 6

Step 4: Since all fof- are not >0, the present solution is not optimum. Hence
we go to the next iteration.

Step 1: The pivot row (corresponding to minimum bt < 0) can be seen to be
the fourth row.



Step 4: Since all b( are >0, the present solution is dual optimal and primal
feasible. The solution is

JCi = 5, X2 = 7, x3 = §, x4 = 1 (dual basic variables)

*5 = X6 = 0 (dual nonbasic variables)

/min = 212

4.4 DECOMPOSITION PRINCIPLE

Some of the linear programming problems encountered in practice may be very
large in terms of the number of variables and/or contraints. If the problem has
some special structure, it is possible to obtain the solution by applying the
decomposition principle developed by Dantzing and Wolfe [4.4]. In the de-
composition method, the original problem is decomposed into small subprob-
lems and then these subproblems are solved almost independently. The pro-
cedure, when applicable, has the advantage of making it possible to solve large-
scale problems that may otherwise be computationally very difficult or infeas-
ible. As an example of a problem for which the decomposition principle can
be applied, consider a company having two factories, producing three and two
products, respectively. Each factory has its own internal resources for produc-
tion, namely, workers and machines. The two factories are coupled by the fact
that there is a shared resource which both use, for example, a raw material
whose availability is limited. Let b2 and b3 be the maximum available internal
resources for factory 1, and let b4 and b5 be the similar availabilities for factory

Basic
Variables

X3

X2

X1

X4

-f

Variables

X\

0
0
1
0

0

X2

0
1
0
0
0

1
0
0
0

0

X4

0
0
0
1

0

- 1
1
1

1

4

X6

1
-2

1
-2

12

- /
0
0
0
0

1

bt
5
2

7
5
1

-212

Step 2: Since

- ^ - = 12 and - 4 - = 20
-Cl44 -CL45

the pivot column is selected as s = 4.
Step 3: The pivot operation is carried on a44 in the preceding table, and the

result is as follows:



2. If the limitation on the common resource is bx, the problem can be stated
as follows:

Minimize/(X1, X2, X3, yx, y2) = C1X1 + C1X1 + c3x3 + cAyx + c5y2

subject to

Ia11X1 + Ci11X1 + ^ 1 3X 3 + aX4yx + Q\5y2\^ bx

U21X1 + ^22X2 + ^23X3I < b2

Q3xXx + Q32X2 + a33x3 < b3 (4.24)

«4iJi + Q4Iy2I < b4

Q5\y\ + a52y2 < b5

where X1 and yj are the quantities of the various products produced by the two
factories (design variables) and the atj are the quantities of resource / required
to produce 1 unit of product j .

Xi > 0, yj > 0
(/=1,2,3) 0=1,2)

An important characteristic of the problem stated in Eqs. (4.24) is that its
constraints consist of two independent sets of inequalities. The first set consists
of a coupling constraint involving all the design variables, and the second set
consists of two groups of constraints, each group containing the design vari-
ables of that group only. This problem can be generalized as follows:

Minimize/(X) = cfX, + c[X2 + • • • + c*Xp (4.25a)

subject to

A1X1 + A2X2 + • • • + ApXp = b 0 (4.256)

B1X1 = bx >v

B2X2 = b2 j (4.25c)

X1 > 0, X2 > 0, . . . , Xp > 0



where

x\ xm\ + 1

Y - Xl Y - Xm+2 l>

A 1 - . , A 2 - . r, . . . ,

^xmy ^xm+my

( xm\+m2+ ' • • +mp-\ + l J

P ~ ) Xmi+m2+ ' • • +mp-i+2 }
\^xmi + mi + • • • +mp-\ +mp J

T M
X 2 I

X =

vxpy

It can be noted that if the size of the matrix \k is (r0 X mk) and that of B t is
(rk X wt), the problem has T,^=ork constraints and Ep

k=x mk variables.
Since there are a large number of constraints in the problem stated in Eqs.

(4.25), it may not be computationally efficient to solve it by using the regular
simplex method. However, the decomposition principle can be used to solve
it in an efficient manner. The basic solution procedure using the decomposition
principle is given by the following steps.

1. Define p subsidiary constraint sets using Eqs. (4.25) as

B1X1 = b,

B2X2 = b2

(4.26)
BkXk = bk

B p X p = bp

The subsidiary constraint set

BkXk = bk, k=l,2,..-,p (4.27)



represents rk equality constraints. These constraints along with the re-
quirement X^ >: 0 define the set of feasible solutions of Eqs. (4.27).
Assuming that this set of feasible solutions is a bounded convex set, let
sk be the number of vertices of this set. By using the definition of convex
combination of a set of points, * any point X^ satisfying Eqs. (4.27) can
be represented as

X, = ^ 1 X f + MwX£> + • • • + /^X<? (4.28)

PkA + f**,2 + * ' • + Hk,sk = l (4.29)

0 < iikJ < 1, I = 1,2,. . .,sk, k = 1,2,. . .,/? (4.30)

where X^, X^, . . . , X^ are the extreme points of the feasible set
defined by Eqs. (4.27). These extreme points Xf, X?\ . . . , X<?; k =
1,2,. . .,p, can be found by solving the Eqs. (4.27).

2. These new Eqs. (4.28) imply the complete solution space enclosed by
the constraints

B A = b* (4.31)
X, > 0, k= 1,2,...,p

By substituting Eqs. (4.28) into Eqs. (4.25), it is possible to eliminate
the subsidiary constraint sets from the original problem and obtain the
following equivalent form:

Minimize/(X) = cf ( . S M I , ^ + c2
r ( . 2 ^2,,X?>)

+ . . . + « £ ( I ,V-X^)

1If X(l) and X(2) are any two points in an rc-dimensional space, any point lying on the line segment
joining X(l) and X(2) is given by a convex combination of X( l) and X(2) as

XOO = /X X(1) + (1 - fi) X(2), 0 < fi < 1

This idea can be generalized to define the convex combination of r points X( l ), X(2), . . . , X(r)

as

X(Ji19Ii29. . .,iir) = Ai1 X
(1) + M2 X

(2) + • • • + Mr X
(r)

where /x, + \i2 + • • • + \ir = 1 and 0 < /tt,- < 1, i = 1,2,. . .,r.



subject to

A1 ( S1 MuX,<'>) + A2 ( I! M2,,XP>) + • • • + Ap ( I! / y , * ^ ) = bo

Sl

2 Mu = 1
i= 1

si

S M2,, = 1
I = 1

Sp

S npJ = l
i = i

lijj > 0, I = 1,2,. . .,Sj9 j = 1,2,. . .,/? (4.32)

Since the extreme points Xf\ X2^, . . . , X*f are known from the
solution of the set B^X* = b*, X^ > 0 , ^ = 1,2,. . .,/?, and since Ĉ  and
A^, k = 1,2,. . .,/?, are known as problem data, the unknowns in Eqs.
(4.32) are /^1-, / = 1,2,. . .,^;./ = 1,2,. . .,/7. Hence /^1- will be the new
decision variables of the modified problem stated in Eqs. (4.32).

3. Solve the linear programming problem stated in Eqs. (4.32) by any of
the known techniques and find the optimal values of ^1-. Once the op-
timal values fi*i are determined, the optimal solution of the original prob-
lem can be obtained as

X2*
X* =

vx; J
where

Sk

k — LJ /X^/A; , K — L,Z,. . .,p
i= 1

Remarks:

1. It is to be noted that the new problem in Eqs. (4.32) has (r0 -f p) equality
constraints only as against r0 + TPk = 1 rk in the original problem of Eq.
(4.25). Thus there is a substantial reduction in the number of constraints
due to the application of the decomposition principle. At the same time,
the number of variables might increase from EJ = 1 mk to EJ = 1 sk, de-



pending on the number of extreme points of the different subsidiary prob-
lems defined by Eqs. (4.31). The modified problem, however, is com-
putationally more attractive since the computational effort required for
solving any linear programming problem depends primarily on the num-
ber of constraints rather than on the number of variables.

2. The procedure outlined above requires the determination of all the ex-
treme points of every subsidiary constraint set defined by Eqs. (4.31)
before the optimal values /xfj are found. However, this is not necessary
when the revised simplex method is used to implement the decomposi-
tion algorithm [4.5].

3. If the size of the problem is small, it will be convenient to enumerate all
the extreme points of the subproblems and use the simplex method to
solve the problem. This procedure is illustrated in the following exam-
ple.

Example 4.4 A fertilizer mixing plant produces two fertilizers, A and B, by
mixing two chemicals, C1 and C2, in different proportions. The contents and
costs of the chemicals C1 and C2 are as follows:

Fertilizer A should not contain more than 60% of ammonia and B should con-
tain at least 50% of ammonia. On the average, the plant can sell up to 1000
lb/hr and due to limitations on the production facilities, not more than 600 Ib
of fertilizer A can be produced per hour. The availability of chemical C1 is
restricted to 500 lb/hr. Assuming that the production costs are same for both
A and B9 determine the quantities of A and B to be produced per hour for
maximum return if the plant sells A and B at the rates of $6 and $7 per pound,
respectively.

SOLUTION Let Xx and X2 indicate the amounts of chemicals C1 and C2 used
in fertilizer A, and V1 and y2 in fertilizer B per hour. Thus the total amounts of
A and B produced per hour are given by Jc1 H- X2 and ^1 + y2, respectively.
The objective function to be maximized is given by

/ = selling price — cost of chemicals C1 and C2

= 6(xx + X2) + l(yx + y2) - 5(X1 + yx) - 4(x2 + y2)

Chemical

C1
C2

Contents

Ammonia

0.70
0.40

Phosphates

0.30
0.60

Cost ($/lb)

5
4



The constraints are given by

(Jc1 4- X2) + (y\ + y2) ^ 1000 (amount that can be sold)

X1 + JJ1 < 500 (availability of C1)

JC1 H- JC2 < 600 (production limitations on
A)

To X1 + JQ X2 < J0" (Jc1 4- Jc2) (A should not contain more
than 60% of ammonia)

Toyi + "Rjyi — "R) (^i + yi) (B should contain at least

50% of ammonia)

Thus the problem can be restated as:

M a x i m i z e / = JC1 + 2JC2 -1- Iyx + 3y2 (E1)

subject to

JC1 + JC2 + y, + y2\ < 1000 (E2)

X1 + J1 < 500

JC1 + Jc2 I < 600 (E3)

Jc1 - 2JC2 < 0

| - 2 y i + y 2 I < 0 (E4)

X1 > 0, 3;, > 0, 1 = 1,2

This problem can also be stated in matrix notation as follows:

Maximize/(X) = C[X1 + c[X2

subject to

A1X1 + A2X2 < b 0

B1X1 < b, (E5)

B2X2 < b2

X1 > 0, X2 > 0



where

[~i i ] Ti i l fioaT)
A i - [ . oJ- [ A d = L oj- b>-{s»y

fl I l f600")
Bl = |_l - 2 j ' bl = i o j ' B l = {"2 1 J ' 1 * = *0*'

• • E3
Step i : We first consider the subsidiary constraint sets

B1X1 < b , , X1 > 0 (E6)

B2X2 < b2 , X2 > 0 (E7)

The convex feasible regions represented by (E6) and (E7) are shown in Fig.
4.1a and fo, respectively. The vertices of the two feasible regions are given
by

X\l) = point P =

X ^ = point G =
C600J

X f = point R = ]

X(,2) = point S = \

X f = point T = )
C2OOOJ

X f = p o i n t U=X



Figure 4.1 Vertices of feasible regions. To make the feasible region bounded, the
constraint yx < 1000 is added in view of Eq. (E2).

Thus any point in the convex feasible sets defined by Eqs. (E6) and (E7) can
be represented, respectively, as

Co^) fOl (400^) C 400/x13 Y \
X1 = /X11 + /X12 + /X13

CoJ C600J IjXXi ) (.600/X12 + 200/X13J
with

Mn + M12 + MB = 1> 0 ^ Mii - *> l = ^ 2 ' 3 >^

and

Col fiooo^) fiooo^) ^
X2 - /X21 y + /X22 ^ 0 0 0 J + /X23 ^ o j

flOOO/x22 H- 1000/X23^)

" [ 2000/x22 j [ (E9)

with

M21 + M22 + /x23 = 1; 0 < /x2, < 1, 1 = 1,2,3^

Step 2: By substituting the relations of (E8) and (E9), the problem stated in
Eqs. (E5) can be rewritten as:

f 400/x13 )̂
M a x i m i z e / ^ ! j , / x 1 2 , . . . , /x23) = ( 1 2 )

(^600/X 1 2 + 200/X 1 3 J

riOOO/x22+ 1000/x2O

C 2000/x22 j

= 8OO/x13 H- 1200/x12 + 8000/x22 + 2000/x23



subject to

r i i i r 4oo/,13 1

Ll o j 1600^12 + 20OAC13J

Fi i l riooo/>t22 + iooo/x23^) fiooo^)
Ll OJ i 2000/x22 j ~ I 500 j

that is,

600/i12 + 600/x13 + 300O)Lt22 + 1000/x23 < 1000

400/x13 + 1000/x22 + 1000/x23 < 500

Mn + M12 + Mi3 = 1

/X21 + /X22 + /X23 = 1

with

/xu > 0, /x12 > 0, /x13 >: 0, /x21 > 0, /x22 > 0, /x23 > 0

The optimization problem can be stated in standard form (after adding the
slack variables a and (3) as:

M i n i m i z e / = -1200/x12 - 8OO/x13 - 8000/x22 - 2000/x23

subject to

600/x12 + 600/x13 + 3000/x22 + 1000/x23 + a = 1000

400/x13 + 1000/x22 + 1000/x23 + 13 = 500 ( R ,

/X11 + /X12 + /X13 = 1

/X21 H- /X22 + /X23 = 1

/xl7 > 0 (i = 1,2;./ = 1,2,3), a > 0, /3 > 0

Step 3: The problem (E10) can now be solved by using the simplex method.

4.5 SENSITIVITY OR POSTOPTIMALITY ANALYSIS

In most practical problems, we are interested not only in optimal solution of
the LP problem, but also in how the solution changes when the parameters of
the problem change. The change in the parameters may be discrete or contin-

Next Page
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uous. The study of the effect of discrete parameter changes on the optimal
solution is called sensitivity analysis and that of the continuous changes is
termed parametric programming. One way to determine the effects of changes
in the parameters is to solve a series of new problems once for each of the
changes made. This is, however, very inefficient from a computational point
of view. Some techniques that take advantage of the properties of the simplex
solution are developed to make a sensitivity analysis. We study some of these
techniques in this section. There are five basic types of parameter changes that
affect the optimal solution. They are:

1. Changes in the right-hand-side constants bt

2. Changes in the cost coefficients Cj

3. Changes in the coefficients of the constraints atj

4. Addition of new variables
5. Addition of new constraints

In general, when a parameter is changed, it results in one of the three cases:

1. The optimal solution remains unchanged; that is, the basic variables and
their values remain unchanged.

2. The basic variables remain the same but their values are changed.
3. The basic variables as well as their values are changed.

4.5.1 Changes in the Right-Hand-Side Constants bt

Suppose that we have found the optimal solution to a LP problem. Let us now
change the bt to bt + Ab1 so that the new problem differs from the original only
on the right-hand side. Our interest is to investigate the effect of changing bt

to bt + Abi on the original optimum. We know that a basis is optimal if the
relative cost coefficients corresponding to the nonbasic variables Cj are non-
negative. By considering the procedure according to which Cj are obtained, we
can see that the values of Cj are not related to the bt. The values of c, depend
only on the basis, on the coefficients of the constraint matrix, and the original
coefficients of the objective function. The relation is given in Eq. (4.10):

Cj = Cj ~ K7Aj = Cj - cJfi^Aj (4.33)

Thus changes in bt will affect the values of basic variables in the optimal so-
lution and the optimality of the basis will not be affected provided that the
changes made in bt do not make the basic solution infeasible. Thus if the new
basic solution remains feasible for the new right-hand side, that is, if

X'B = B-J(b + Ab) > 0 (4.34)



then the original optimal basis, B, also remains optimal for the new problem.
Since the original solution, say*

is given by

XB = B *b (4.35)

Eq. (4.34) can also be expressed as

m

x\ = xt + S ft, Ab: > 0, i = 1,2,. . .,m (4.36)
7=1

where

B " 1 = [fiijl (4.37)

Hence the original optimal basis B remains optimal provided that the changes
made in bh Abh satisfy the inequalities (4.36). The change in the value of the
/th optimal basic variable, Axh due to the change in bt is given by

X'B - XB = AX8 = B~'Ab

that is,

m

Ax1 = S frjAbj, i = 1,2,. . .,m (4.38)

Finally, the change in the optimal value of the objective function (Af) due to
the change Ab1 can be obtained as

m

Af = clAXB = C^B-1Ab = nT Ab = S Tj Ab7 (4.39)

Suppose that the changes made in fe,-(A^1-) are such that the inequality (4.34) is
violated for some variables so that these variables become infeasible for the

1It is assumed that the variables are renumbered such that the first m variables represent the basic
variables and the remaining n — m the nonbasic variables.



new right-hand-side vector. Our interest in this case will be to determine the
new optimal solution. This can be done without reworking the problem from
the beginning by proceeding according to the following steps.

1. Replace the bt of the original optimal tableau by the new values, b ' =
B - 1 (b + Ab) and change the signs of all the numbers that are lying in
the rows in which the infeasible variables appear, that is, in rows for
which bl < 0.

2. Add artificial variables to these rows, thereby replacing the infeasible
variables in the basis by the artificial variables.

3. Go through the phase I calculations to find a basic feasible solution for
the problem with the new right-hand side.

4. If the solution found at the end of phase I is not optimal, we go through
the phase II calculations to find the new optimal solution.

The procedure outlined above saves considerable time and effort compared to
the reworking of the problem from the beginning if only a few variables be-
come infeasible with the new right-hand side. However, if the number of vari-
ables that become infeasible are not few, the procedure above might also re-
quire as much effort as the one involved in reworking of the problem from the
beginning.

Example 4.5 A manufacturer produces four products, A, B9 C, and D, by
using two types of machines (lathes and milling machines). The times required
on the two machines to manufacture 1 unit of each of the four products, the
profit per unit of the product, and the total time available on the two types of
machines per day are given below.

Find the number of units to be manufactured of each product per day for max-
imizing the profit.

Note: This is an ordinary LP problem and is given to serve as a reference
problem for illustrating the sensitivity analysis.

SOLUTION Let xu X2, X3, and X4 denote the number of units of products A,
B9 C, and D produced per day. Then the problem can be stated in standard

Machine

Lathe machine
Milling machine
Profit per unit ($)

Time Required per Unit (min) for
Product:

A

1
3

45

B

10
40

100

C

4
1

30

D

9
1

50

Total Time
Available
per Day

(min)

1200
800



Minimum C7 < O; x2 enters the next basis

Result of pivot operation:

X5 f 0 ^ [g 1 - \ 0 1000 ^ ^ S m a l l e r

Pivot one,
element x5

leaves
the
basis

X2 To 1 id To Q io Q 20 800

- / - f 0 - f - f 0 I 1 2000

t
Minimum Zj < 0, Jt4 enters the basis

form as follows:

Min imize /= -45Jc1 - 100JC2 - 3Qx3 - 5Qx4

subject to

7X1 + 1Ox2 + 4x3 + 9x4 < 1200

3X1 + 4Ox2 + X3 + X4 < 800

Jc1- > 0, i = 1 to 4

By introducing the slack variables X5 >: 0 and X6 > 0, the problem can be
stated in canonical form and the simplex method can be applied. The compu-
tations are shown in tableau form below.

Basic
Variables

X5

*6

" /

Variables

X1

7
3

-45

X2

10
]40|

Pivot
element

-100

X3

4
1

- 3 0

X4

9
1

- 5 0

X5

1
0

0

X6

0
1

0

- /

0
0

1

Ratio bj/ais

T>i for ais > 0

1200 120
800 20 <- Smaller

one,

leaves
the
basis

0



Result of pivot operation:

5 f\ HH 1 4 1 n 4,000 800, c Ii

Jc4 7 0 [JJ 1 35 —35 0 -35- —^-Smaller
Pivot one, Jt4
element leaves

the
basis

-2_ 1 J- O _L _2_ 0 - ^ 1900X2 35 i 70 ^ ~350 350 U 7 i Z U U

7 25 ^ 50 ^ 38 8 ] 52,000
J ~ 7 U ~ 7 U 7 7 1 ~~7

T
Minimum C7 < 0, Jt3 enters the basis

Result of pivot operation:

X3 3 U X 3 15 ~ 1 5 U 3

r ± 1 0 - - - — - 0 ^
•*2 30 A U 30 150 75 U 3
_ r 25 n n 50 22 2 ! 28,000

J 3 U U 3 3 3 X 3

The optimum solution is given by

X2 = ^ , X3 = ^p (basic variables)

Xx = x4 = x5 = x6 = 0 (nonbasic variables)

. -28,000 . $28,000
/min = ^ or maximum profit =

From the final tableau, one can find that

X3 I _ ) 3 / _ vector of basic variables in . p .

jc2 j " t T J ~ the ° P t i m u m solution

[c ") C _3Q ") vector of original cost
[ = ] [ = coefficients corresponding (E2)

C2 J v ~~ 100 J t o t^e basic variables
o _ M" ^ - m a t r ix of original coefficients (V .

Ll 40 J corresponding to the basic variables

_, r&3 fei TB - B I inverseofthecoefficient

B = = x 2 i m a t r i x B which appears (E4)
Lfe &2 J L-Bo 75-1 in the final tableau also



n = c^B"1 = (-30 - 100) l5 j 2
 15

L ~~T50 75 J

C _22") simplex multipliers, the
= \ 2 ( = neEatives of which appear (E5)

L~3 J in the final tableau also

Example 4.6 Find the effect of changing the total time available per day on
the two machines from 1200 and 800 min to 1500 and 1000 min in Example
4.5.

SOLUTION Equation (4.36) gives

m

Xi + S 0ij Abj > 0, i = 1,2,. . .,m (4.36)

where xt is the optimum value of the /th basic variable. (This equation assumes
that the variables are renumbered such that Xx to xm represent the basic vari-
ables.)

If the variables are not renumbered, Eq. (4.36) will be applicable for / = 3
and 2 in the present problem with Ab3 = 300 and Ab2 = 200. From Eqs. (E1)
to (E5) of Example 4.5, the left-hand sides of Eq. (4.36) become

X3 + fe A^3 + 3̂2 Ab2 = ^ + ± (300) ~ ^ (200) = ^ P

X2 + fe Ab3 + /322 Ab2 = f - ^o (300) + ^ (200) = ^ g

Since both these values are > 0, the original optimal basis B remains optimal
even with the new values of bt. The new values of the (optimal) basic variables
are given by Eq. (4.38) as

Xi, = Y] I = XB + AX8 = XB + B"1 Ab

_ m r £ -Al f3oo^ _ r±fn
= m + L -^ d U o r U J

and the optimum value of the objective function by Eq. (4.39) as

/Tnin = /min + A / = /min + C£ AXB = -^9. + ( _ 3 0 - 100) I J j

_ 35,000
3

Thus the new profit will be $35,000/3.



4.5.2 Changes in the Cost Coefficients Cj

The problem here is to find the effect of changing the cost coefficients from C7

to Cj + Ac7 on the optimal solution obtained with C7. The relative cost coeffi-
cients corresponding to the nonbasic variables, xm + i,xm + 2, . . . , xn are given
by Eq. (4.10):

m

Cj = Cj — n T A j = Cj — S TCiOiJ, j = m + l , m + 2 , . . . , n ( 4 . 4 0 )
/ = i

where the simplex multipliers Tr1- are related to the cost coefficients of the basic
variables by the relation

nT = c£B- '

that is,
m

-K1 = S ck(3kh i = 1, 2, . . . , m (4.41)
Ic= 1

From Eqs. (4.40) and (4.41), we obtain

m / m \ m / m \

Cj = Cj - S atj ( S Cffiki ) = Cj - S c J S a^ia ),
/—1 \k—\ / k—l \i— 1 J

i = m + 1, m + 2, . . . , n (4.42)

If the Cj are changed to c, + Ac7, the original optimal solution remains optimal,
provided that the new values of c,, c-, satisfy the relation

m / m \

cj = Cj + Acj - ^S (Q + AQ) ( S aypuj > 0

m / m \

= cy + ACj - ^S Ac, ( S a ^ . J > 0,

j = m + l , m + 2 , . . . , n (4.43)

where c; indicate the values of the relative cost coefficients corresponding to
the original optimal solution.

In particular, if changes are made only in the cost coefficients of the non-
basic variables, Eq. (4.43) reduces to

Cj: + Acj > 0, j = m + 1, m + 2, . . . , n (4.44)

If Eq. (4.43) is satisfied, the changes made in cy, Ac7, will not affect the
optimal basis and the values of the basic variables. The only change that occurs



is in the optimal value of the objective function according to

m

A/ = S Xj Acj (4.45)

and this change will be zero if only the Cj of nonbasic variables are changed.
Suppose that Eq. (4.43) is violated for some of the nonbasic variables. Then

it is possible to improve the value of the objective function by bringing any
nonbasic variable that violates Eq. (4.43) into the basis provided that it can be
assigned a nonzero value. This can be done easily with the help of the previous
optimal tableau. Since some of the cj are negative, we start the optimization
procedure again, by using the old optimum as an initial feasible solution. We
continue the iterative process until the new optimum is found. As in the case
of changing the right-hand-side bh the effectiveness of this procedure depends
on the number of violations made in Eq. (4.43) by the new values Cj + Ac7.

In some of the practical problems, it may become necessary to solve the
optimization problem with a series of objective functions. This can be accom-
plished without reworking the entire problem for each new objective function.
Assume that the optimum solution for the first objective function is found by
the regular procedure. Then consider the second objective function as obtained
by changing the first one and evaluate Eq. (4.43). If the resulting cj > 0, the
old optimum still remains as optimum and one can proceed to the next objec-
tive function in the same manner. On the other hand, if one or more of the
resulting cj < 0, we can adopt the procedure outlined above and continue the
iterative process using the old optimum as the starting feasible solution. After
the optimum is found, we switch to the next objective function.

Example 4.7 Find the effect of changing C3 from -30 to -24 in Example
4.5.

SOLUTION Here Ac3 = 6 and Eq. (4.43) gives that

ci = C1 + Ac1 - Ac3[a2lp32 + 3̂1033] = T + 0 - 6[3(-£) + 7(£)] = - f

C^ = C4 + Ac4 - Ac3[tf24/?32 + a34(333] = f + 0 - 6[1(-^) + 9(£] = |

c'5 = c5 + Ac5 - Ac3[a25p32 + O35P33] = f + 0 - 6[0(-^) + 1(^)] = ff

c'6 = c6 + Ac6 - Ac3[^26]S32 + a36&33\ = I + 0 - 6[1(-^) + 0(£)] = {f

The change in the value of the objective function is given by Eq. (4.45) as

4800 28,000 4800 23,200
A/ = Ac3 x3 = - y - so that / = — + - y - = —



Since all the relative cost coefficients are nonnegative, the present solution is
optimum with

X1 = 160, X2 = 8 (basic variables)

x3 = X4. = x5 = X6 = 0 (nonbasic variables)

/min = -8000 and maximum profit = $8000

4.5.3 Addition of New Variables

Suppose that the optimum solution of a LP problem with n variables Jc1, X2,
. . . ,xn has been found and we want to examine the effect of adding some
more variables Xn+ k, k = 1, 2, . . . , on the optimum solution. Let the con-
straint coefficients and the cost coefficients corresponding to the new variables
Jcn + k be denoted by ain + k, i — 1 to m and Cn + k, respectively. If the new
variables are treated as additional nonbasic variables in the old optimum so-
lution, the corresponding relative cost coefficients are given by

m

Cn+Ic = Cn+k ~ S TTi^n+k (4.46)
/ = 1

where Tr1, TT2, . . . , 7rm are the simplex multipliers corresponding to the original
optimum solution. The original optimum remains optimum for the new prob-
lem also provided that Cn + k > 0 for all k. However, if one or more Cn + k < 0,
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1
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1

0

0

1

0
0

1
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800
3

40
3

23,200
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8

8000

Ratio bj/cijj
for ay > 0

160 <-

400

Since c\ is negative, we can bring Xx into the basis. Thus we start with the
optimal tableau of the original problem with the new values of relative cost
coefficients and improve the solution according to the regular procedure.



it pays to bring some of the new variables into the basis provided that they can
be assigned a nonzero value. For bringing a new variable into the basis, we
first have to transform the coefficients ain + k into ain+k so that the columns of
the new variables correspond to the canonical form of the old optimal basis.
This can be done by using Eq. (4.9) as

An + k = B~ An+k
mx 1 mXm mX 1

that is,
m

ahn + k = S PiJd1n+^ i = 1 to m {AAl)

where B" 1 = [ft ̂ ] is the inverse of the old optimal basis. The rules for bringing
a new variable into the basis, finding a new basic feasible solution, testing this
solution for optimality, and the subsequent procedure is same as the one out-
lined in the regular simplex method.

Example 4.8 In Example 4.5, if a new product, Zs, which requires 15 min of
work on the lathe and 10 min on the milling machine per unit, is available,
will it be worthwhile to manufacture it if the profit per unit is $40?

SOLUTION Let xk be the number of units of product E manufactured per
day. Then ck = —40, axk = 15, and a2k = 10; therefore,

ck = ck- TXaxk - Tr2a2k = - 4 0 + (f) (15) + (§) (10) = ^f > 0

Since the relative cost coefficient ck is nonnegative, the original optimum so-
lution remains optimum for the new problem also and the variable xk will re-
main as a nonbasic variable. This means that it is not worth manufacturing
product E.

4.5.4 Changes in the Constraint Coefficients atj

Here the problem is to investigate the effect of changing the coefficient atj to
atj + Aa1J after finding the optimum solution with atj. There are two possibil-
ities in this case. The first possibility occurs when all the coefficients atj, in
which changes are made, belong to the columns of those variables which are
nonbasic in the old optimal solution. In this case, the effect of changing atj on
the optimal solution can be investigated by adopting the procedure outlined in
the preceding section. The second possibility occurs when the coefficients
changed atj correspond to a basic variable, say, Jt70 of the old optimal solution.
The following procedure can be adopted to examine the effect of changing

<*i,jo t 0 aijo + Aaijo-

1. Introduce a new variable xn + x to the original system with constraint coef-
ficients



0«\/i + l = <*i,jo + Aaijo (4-48)

and cost coefficient

Cn + 1 = Cj0 (original value itself) (4.49)

2. Transform the coefficients ain + x to at ^ + 1 by using the inverse of the
old optimal basis, B" 1 = [ft-,-], as

m

aiin + x = S )8,/i/,w + i, i = 1 to m (4.50)

3. Replace the original cost coefficient (C70) of J(Cy0 by a large positive number
N, but keep Cn + x equal to the old value Cy0.

4. Compute the modified cost coefficients using Eq. (4.43):

m / m \

cj = Cj + ACJ - S A c J S Oifiu J,
k- 1 y -1 /

j = m + 1, m + 2, . . . , n9 n + 1 (4.51)

where A Q = 0 for k = 1, 2, . . . , J0 - I9J0+ 1, . . . , m and Ac70 =
/V — c-

5. Carry the regular iterative procedure of simplex method with the new
objective function and the augmented matrix found in Eqs. (4.50) and
(4.51) until the new optimum is found.

Remarks:

1. The number N has to be taken sufficiently large to ensure that xj0 cannot
be contained in the new optimal basis that is ultimately going to be found.

2. The procedure above can easily be extended to cases where changes in
coefficients atJ of more than one column are made.

3. The present procedure will be computationally efficient (compared to
reworking of the problem from the beginning) only for cases where there
are not too many number of basic columns in which the a(J are changed.

Example 4.9 Find the effect of changing A1 from j j to j n ( in Example

4.5 (i.e., changes are made in the coefficients atj of nonbasic variables only).

SOLUTION The relative cost coefficients of the nonbasic variables (of the
original optimum solution) corresponding to the new atj are given by

Cy = Cy — Ti7Ay, j = nonbasic (1, 4, 5, 6)



Since A1 is changed, we have

C1=C,- U7X1 = -45 - ( - f - I) 1 Uj = ^

As C1 is positive, the original optimum solution remains optimum for the new
problem also.

Example 4.10 Find the effect of changing A1 from j - | to j , | in Example

4.5.

SOLUTION The relative cost coefficient of the nonbasic variable Jt1 for the
new A1 is given by

Ci=Ct- TT7A1 = -45 - ( - § - I) T J = - f

Since C1 is negative, Jc1 can be brought into the basis to reduce the objective
function further. For this we start with the original optimum tableau with the
new values of A1 given by

L—Bo 75-1 L ° J L-30 +25-I L B O J
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Since all c-} are nonnegative, the present tableau gives the new optimum solu-
tion as

X1 = 2000/19, X3 = 3200/19 (basic variables)

X2 = X4 = X5 = X6 = 0 (nonbasic variables)

186,000 j . $186,000
/min = — — and maximum profit = —

4.5.5 Addition of Constraints

Suppose that we have solved a LP problem with m constraints and obtained
the optimal solution. We want to examine the effect of adding some more
inequality constraints on the original optimum solution. For this we evaluate
the new constraints by substituting the old optimal solution and see whether
they are satisfied. If they are satisfied, it means that the inclusion of the new
constraints in the old problem would not have affected the old optimum solu-
tion, and hence the old optimal solution remains optimal for the new problem
also. On the other hand, if one or more of the new constraints are not satisfied
by the old optimal solution, we can solve the problem without reworking the
entire problem by proceeding as follows.

1. The simplex tableau corresponding to the old optimum solution ex-
presses all the basic variables in terms of the nonbasic ones. With this
information, eliminate the basic variables from the new constraints.

2. Transform the constraints thus obtained by multiplying throughout by
- 1 .

3. Add the resulting constraints to the old optimal tableau and introduce
one artificial variable for each new constraint added. Thus the enlarged
system of equations will be in canonical form since the old basic vari-
ables were eliminated from the new constraints in step 1. Hence a new
basis, consisting of the old optimal basis plus the artificial variables in
the new constraint equations, will be readily available from this canon-
ical form.

4. Go through phase I computations to eliminate the artificial variables.
5. Go through phase II computations to find the new optimal solution.

Example 4.11 If each of the products A, B, C, and D require respectively 2,
5,3, and 4 min of time per unit on grinding machine in addition to the oper-
ations specified in Example 4.5, find the new optimum solution. Assume that
the total time available on grinding machine per day is 600 min and all this
time has to be utilized fully.



SOLUTION The present data corresponds to the addition of a constraint
which can be stated as

2^1 + 5x2 + 3JC3 + Ax4 = 600 (E1)

By substituting the original optimum solution,

_ 4 0 _ 8 0 0 _ _ _ _ _ n

X2 — 3 , X3 — 3 , X\ — X4 — X5 — X^ — U

the left-hand side of Eq. (E1) gives

2(0) + 5 ( f ) + 3 (*f) + 4(0) = ^ * 600

Thus the new constraint is not satisfied by the original optimum solution. Hence
we proceed as follows:

Step 1: From the original optimum tableau, we can express the basic variables
as

_ 8 0 0 _ 5 _ 7 4 . 1
X3 ~ 3 3 x\ 3 X4 15 X 5 "+" 15 X6

X2 = T ~~ 30 X\ + 30 X4 + T50 X5 ~ 75 X6

Thus Eq. (E1) can be expressed as

2*1 + 5 (-y — 30 Xx + 30 X4 + 750 *5 ~ 75 X6)

+ 3 ( ^ — § Jc1 — Ix4 - ^5X5 + ^ x 6 ) + Ax4 = 600

that is,

6 * 1 6 " * 4 ~ 3 0 * 5 " ' " T 5 * 6 = 3~ № 2 )

Step 2: Transform this constraint such that the right-hand side becomes posi-
tive, that is,

" 6 * 1 + "6 *4 + 30 X5 ~~ \5 X6 = ~T №3)

5^/7 3: Add an artifical variable, say, xk, the new constraint given by Eq. (E3)
and the infeasibility form w = xk into the original optimum tableau to obtain
the new canonical system as follows:



Thus the new optimum solution is given by

*i = "TT, *2 = if, x3 = ̂ r (basic variables)

X4 = X5 = X6 = 0 (nonbasic variables)

164,000 $164,000
/min = j ^ — and maximum profit = —

4.6 TRANSPORTATION PROBLEM

This section deals with an important class of LP problems called the transpor-
tation problem. As the name indicates, a transportation problem is one in which
the objective for minimization is the cost of transporting a certain commodity
from a number of origins to a number of destinations. Although the transpor-
tation problem can be solved using the regular simplex method, its special
structure offers a more convenient procedure for solving this type of problems.
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Step 4: Eliminate the artificial variable by applying the phase I procedure:
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This procedure is based on the same theory of the simplex method, but it makes
use of some shortcuts that yield a simpler computational scheme.

Suppose that there are m origins Rx, R2, . . . , Rm (e.g., warehouses) and n
destinations, D1, D2, . . . ,Dn (e.g., factories). Let at be the amount of a
commodity available at origin / (i = 1, 2, . . . , m) and bj be the amount
required at destination j (j = 1, 2, . . . , « ) . Let ctj be the cost per unit of
transporting the commodity from origin i to destination j . The objective is to
determine the amount of commodity (jc,y) transported from origin / to destina-
tion j such that the total transportation costs are minimized. This problem can
be formulated mathematically as:

m n

Minimize/= S S xtj (4.52)

subject to

n

S Xij = ah / = 1,2,. . .,m (4.53)

m

S1Jc0 = bp j = 1,2,. . . ,* (4.54)

*0 > 0, I = 1,2,. . .,m, j = 1,2,. . .,H (4.55)

Clearly, this is a LP problem in mn variables and m + n equality constraints.
Equations (4.53) state that the total amount of the commodity transported

from the origin i to the various destinations must be equal to the amount avail-
able at origin i (i = 1,2,. . .,m), while Eqs. (4.54) state that the total amount
of the commodity received by destination j from all the sources must be equal
to the amount required at the destination./ (j = 1,2,. . .,/?). The nonnegativity
conditions Eqs. (4.55) are added since negative values for any xtj have no
physical meaning. It is assumed that the total demand equals the total supply,
that is,

m n

S ax•, = S bi (4.56)
i = i j = \ J

Equation (4.56), called the consistency condition, must be satisfied if a solu-
tion is to exist. This can be seen easily since

m m / n \ n / m \ n

S a , - = S ( S x J = S ( S x J = Xbj (4.57)

The problem stated in Eqs. (4.52) to (4.56) was originally formulated and
solved by Hitchcock in 1941 [4.6]. This was also considered independently by



Koopmans in 1947 [4.7]. Because of these early investigations the problem is
sometimes called the Hitchcock-Koopmans transportation problem. The spe-
cial structure of the transportation matrix can be seen by writing the equations
in standard form:

X\\ + x\2 + # * * + Xyn = ax

X2\ + *22 + * • • + X2n = a2

Xm\ + xm2 + # ' * + Xmn = am

(4.58a)

JC11 + X1x + xmX = bx

X» +X* +*m2 = h (4.5»)

xXn + X1n + xmn = bn

C\\XU + C12X12 + • • • + cXnxXn + C21X21 + • • • 4- C2nX2n + • • •

+ cw i*w i + • • • + cmnxmn = f

(4.58c)

We notice the following properties from Eqs. (4.58).

1. All the nonzero coefficients of the constraints are equal to 1.
2. The constraint coefficients appear in a triangular form.
3. Any variable appears only once in the first m equations and once in the

next n equations.

These are the special properties of the transportation problem that allow
development of the transportation technique. To facilitate the identification of
a starting solution, the system of equations (4.58) is represented in the form
of an array, called the transportation array, as shown in Fig. 4.2. In all the
techniques developed for solving the transportation problem, the calculations
are made directly on the transportation array.

Computational Procedure. The solution of a LP problem, in general, requires
a calculator or, if the problem is large, a high-speed digital computer. On the
other hand, the solution of a transportation problem can often be obtained with
the use of a pencil and paper since additions and subtractions are the only



Figure 4.2 Transportation array.

calculations required. The basic steps involved in the solution of a transpor-
tation problem are:

1. Determine a starting basic feasible solution.
2. Test the current basic feasible solution for optimality. If the current so-

lution is optimal, stop the iterative process; otherwise, go to step 3.
3. Select a variable to enter the basis from among the current nonbasic

variables.
4. Select a variable to leave from the basis from among the current basic

variables (using the feasibility condition).

5. Find a new basic feasible solution and return to step 2.

The details of these steps are given in Ref. [4.10].

4.7 KARMARKAR'S METHOD

Karmarkar proposed a new method in 1984 for solving large-scale linear pro-
gramming problems very efficiently. The method is known as an interior

To

From

Origin
i

Destination j Amount
available

Amount
required



method since it finds improved search directions strictly in the interior of the
feasible space. This is in contrast with the simplex method, which searches
along the boundary of the feasible space by moving from one feasible vertex
to an adjacent one until the optimum point is found. For large LP problems,
the number of vertices will be quite large and hence the simplex method would
become very expensive in terms of computer time. Along with many other
applications, Karmarkar's method has been applied to aircraft route scheduling
problems. It was reported [4.19] that Karmarkar's method solved problems
involving 150,000 design variables and 12,000 constraints in 1 hour while the
simplex method required 4 hours for solving a smaller problem involving only
36,000 design variables and 10,000 constraints. In fact, it was found that Kar-
markar's method is as much as 50 times faster than the simplex method for
large problems.

Karmarkar's method is based on the following two observations:

1. If the current solution is near the center of the poly tope, we can move
along the steepest descent direction to reduce the value of/by a maxi-
mum amount. From Fig. 4.3, we can see that the current solution can
be improved substantially by moving along the steepest descent direction
if it is near the center (point 2) but not near the boundary point (points
1 and 3).

2. The solution space can always be transformed without changing the na-
ture of the problem so that the current solution lies near the center of the
poly tope.

Minimum value of/

Figure 4.3 Improvement of objective function from different points of a polytope.



It is well known that in many numerical problems, by changing the units of
data or rescaling (e.g., using feet instead of inches), we may be able to reduce
the numerical instability. In a similar manner, Karmarkar observed that the
variables can be transformed (in a more general manner than ordinary rescal-
ing) so that straight lines remain straight lines while angles and distances change
for the feasible space.

4.7.1 Statement of the Problem

Karmarkar's method requires the LP problem in the following form:

Minimize / = C7X

subject to

MX = 0

x{ + x2 + • • • + xn = 1 (4.59)

X > 0

where X = {xx X2 • • • xn}
T, c = {cx C2 - • • cn}

T, and [a] is an m X n
matrix. In addition, an interior feasible starting solution to Eqs. (4.59) must

be known. Usually, X = J - - • • • - ( is chosen as the starting point. In
{jt n n)

addition, the optimum value of /must be zero for the problem. Thus

X(1) = j - - • • • - [ = interior feasible
Ln n n) (4.60)

/min = 0

Although most LP problems may not be available in the form of Eq. (4.59)
while satisfying the conditions of Eq. (4.60), it is possible to put any LP prob-
lem in a form that satisfies Eqs. (4.59) and (4.60) as indicated below.

4.7.2 Conversion of an LP Problem into the Required Form

Let the given LP problem be of the form:

Minimize d rX

subject to

M X = b ( 4 6 1 )

X > 0



To convert this problem into the form of Eq. (4.59), we use the procedure
suggested in Ref. [4.20] and define integers m and n such that X will be an
(n - 3)-component vector and [a] will be a matrix of order m - 1 X n - 3.
We now define the vector z = \z\ Zi • • • Zn-3V as

z = | (4.62)

where ]8 is a constant chosen to have a sufficiently large value such that

n-3

/3 > S JC1- (4.63)
i = 1

for any feasible solution X (assuming that the solution is bounded). By using
Eq. (4.62), the problem of Eq. (4.61) can be stated as follows:

Minimize j3drz

subject to

M z = \ b
P (4.64)

z > 0

We now define a new vector z as

^ n - 2
Z =

1 zn-\ '

and solve the following related problem instead of the problem in Eqs. (4.64):

Minimize {/3dr 0 0 M) z

subject to

0 0 n 0 UJ
erz + zn-2 + zn-i + Zn = 1 (4.65)

z > 0



where e is an (m — l)-component vector whose elements are all equal to 1,
Zn - 2 is a slack variable that absorbs the difference between 1 and the sum of
other variables, zn-\ is constrained to have a value of Hn, and M is given a
large value (corresponding to the artificial variable zn) to force Zn to zero when
the problem stated in Eqs. (4.61) has a feasible solution. Equations (4.65) are
developed such that if z is a solution to these equations, X = /3z will be a
solution to Eqs. (4.61) if Eqs. (4.61) have a feasible solution. Also, it can be
verified that the interior point z = (l/n)e is a feasible solution to Eqs. (4.65).
Equations (4.65) can be seen to be the desired form of Eqs. (4.61) except for
a 1 on the right-hand side. This can be eliminated by subtracting the last con-
straint from the next-to-last constraint, to obtain the required form:

Minimize {/3dr 0 0 M} z

subject to

" w o - J b ( j j " > - w ) l f O

- e r - 1 (n - 1) - 1 J W
eTz + zn-2 + zn-i + Zn = I (4.66)

z > 0

Note: When Eqs. (4.66) are solved, if the value of the artificial variable Zn

> 0, the original problem in Eqs. (4.61) is infeasible. On the other hand, if
the value of the slack variable Zn -2 = 0, the solution of the problem given by
Eqs. (4.61) is unbounded.

Example 4.12 Transform the following LP problem into a form required by
Karmarkar's method:

Minimize 2x\ + 3x2

subject to

3Jc1 + Jc2 - 2JC3 = 3

5Jc1 - 2JC2 = 2

Jc1 > 0, 1 = 1,2,3

SOLUTION It can be seen that d = {2 3 0}7, M = U _\ " H b

= j I, and X = (JC1 JC2 Jc3}
T. We define the integers m and n as n = 6 and



m = 3 and choose (3 = 10 so that

Noting that e = {l 1 l } r , Eqs. (4.66) can be expressed as

Minimize {20 30 0 0 0 M) z

subject to

Ls - 2 o j CoJ io h i

• ( i S - K J - a d J ) " -

{-{1 1 1} - 1 5 - 1 } z = 0

Zi -I- Z2 + £3 + Z4 + Z5 + Z6 = 1

z = {zi Z2 Z3 Z4 Z5 Z6V ^ 0

where M is a very large number. These equations can be seen to be in the
desired form.

4.7.3 Algorithm

Starting from an interior feasible point X(1), Karmarkar's method finds a se-
quence of points X(2), X(3), . . . using the following iterative procedure:

1. Initialize the process. Being at the center of the simplex as the initial

feasible point X(1) = ) - - . . . - [ Set the iteration number as k
(^n n n)

= 1.

2. Test for optimality. Since/ = 0 at the optimum point, we stop the pro-
cedure if the following convergence criterion is satisfied:

IkWI < e (4.67)

where e is a small number. If Eq. (4.67) is not satisfied, go to step 3.



3. Compute the next point, X(* +1}. For this, we first find a point Y(k+{) in
the transformed unit simplex as

ln n n) (4.68)
Qj ([/] ~ [Pf ([P] [PfV1IP]) [D(X(k))]c

\\c\\ y/n (n - 1)

where ||c|| is the length of the vector c, [/] the identity matrix of order
n, [D(X^)] ann X n matrix with all off-diagonal entries equal to 0, and
diagonal entries are equal to the components of the vector X(k) as

[D(X(k))h = xf\ i = 1,2,. . .,/i (4.69)

[P] is an (m H- 1) X n matrix whose first m rows are given by
[a] [D(X^)] and the last row is composed of l's:

[pj _ ^ , « j

and the value of the parameter a is usually chosen as a = \ to ensure
convergence. Once Y(lc + l) is found, the components of the new point
X(k + l) art determined as

r<*+i) - X[ y'1 i - 1 2 n (A 7n

Set the new iteration number as k = k + 1 and go to step 2.

Example 4.13 Find the solution of the following problem using Karmarkar's
method:

Minimize/ = 2X1 + X2 — X3

subject to

X2 - x3 = 0 ( E 2 )

JC1 H- JC2 H- X3 = 1

xt > 0, / = 1,2,3

Use the value of e = 0.05 for testing the convergence of the procedure.



SOLUTION The problem is already in the required form of Eq. (4.59), and
hence the following iterative procedure can be used to find the solution of the
problem.

Step 1: We choose the initial feasible point as

Y ( l ) - 1 1 (

" I y

and set k = 1.
Step 2: Since |/(X(1))| = | | | > 0.05, we go to step 3.
Step 3: Since [a] = {0 1 - 1 } , c = {2 1 - l } r , ||c|| =

V(2)2 + (I)2 + (-1)2 = V6, we find that

~3 0 0"

[D(X(1))] = 0 J 0

_0 0 }_

[a] [D(Xm)] = {0 I -\}

rw[D(x<'>)n_ ro 3 - n

L i i i J Li i iJ

p o oir 2. r h
[ D ( X * 1 * ) ] C = O i O 1 = i

_0 0 U U l J L-O

(U] ~ [Pf(IP] [PfV1IP]) [O(X(1))] c

-(E !3-[J I]K r . I])(J)
r 2 1 1-, ̂  2̂  , 4̂3 " "3If 0 { *)

1 1 1 J 1 ( ) 2 (
i i 1 ( 1 ) 2 )

L - 3 6 6 J ^ " " 3 ^ ^ - 9 - ^



Using a = \, Eq. (4.68) gives

--[M-^-(I)
V3V K-gJ KjosJ

Noting that
n

^ j x r j r — 3 ^1 0 8; -f 3 ^1 0 8 ; -t- 3 I 4 0 8 ; — 3

Eq. (4.71) can be used to find
^ - 3 ± N r 34 ^

MN ^ f 324 ) ( 108 )

S JC ( 1 ) V ( 2 ) ( 3 7 J ( 3 7 J
(^rTi r J r J ^324^ ^T08^

Set the new iteration number ask = k + l = 2 and go to step 2. The
procedure is to be continued until convergence is achieved.

Notes:

1. Although X(2) = Y(2) in this example, they need not be, in general, equal
to one another.

2. The value of/atX (2 ) is

/ ( X ^ ) = 2 ( ^ ) + 1 S - | ^ < / ( * '> ) = #

4.8 QUADRATIC PROGRAMMING

A quadratic programming problem can be stated as:

Minimize/(X) = C7X + ^X7DX (4.72)

subject to

A X < B (4.73)

X > 0 (4.74)



where

A A (̂ cA Sb1^i

X2 C2 b2

X = . , C = . , B = . ,

V x n y ^cnJ ^bmy

dn dn - - • dln an aX2 • • • aXn

d2X d22 • • • d2n a2l a22 • • • ^2n

D = . , and A =

-dn\ dn2 • • • dw nJ Law l am2 • # • • amn-

In Eq. (4.72) the term X7DX/2 represents the quadratic part of the objective
function with D being a symmetric positive-definite matrix. If D = O, the
problem reduces to a LP problem. The solution of the quadratic programming
problem stated in Eqs. (4.72) to (4.74) can be obtained by using the Lagrange
multiplier technique. By introducing the slack variables sf9 i = 1, 2, . . . , m,
in Eqs. (4.73) and the surplus variables tj, j = 1, 2, . . . , n, in Eqs. (4.74),
the quadratic programming problem can be written as:

Minimize/(X) = C7X + ^X7DX (4.72)

subject to the equality constraints

AfX +sj= bh i = 1,2,. . .,m (4.75)

-Xj + tj = 0, J= 1,2,. . .,/i (4.76)

where

A , - "?•

The Lagrange function can be written as

m

L(X,S,T,X,0) = C7X + jXrDX + S X,- (AfX + sj - £,)
i = 1

n
+ S 0/-JC,- + f,2) ( 4 . 7 7 )



The necessary conditions for the stationariness of L give

— = Cj; + _S dijXi + .E \fiij - 6j = 0, j = 1,2,. . .,n (4.78)

^ = 2V,- = 0, i = 1,2,. . .,iw (4.79)
as,

^ = 20/,- = 0, j = 1,2,. . .,« (4.80)

— = A1
7X + sj - bt = 0, I = 1,2,. . .,m (4.81)

^ l = -jc + ,? = 0 , J= 1,2,. . .,« (4.82)

OUj

By defining a set of new variables Y1 as

Y1• = s2
t > 0, i = 1,2,. . .,m (4.83)

Equations (4.81) can be written as

AfX - bt = -s2
t = -Yh i = 1,2,. . .,m (4.84)

Multiplying Eq. (4.79) by st and Eq. (4.80) by tj9 we obtain
X^? = X1-J;- = 0, I = 1,2,. . .,m (4.85)

djtj = 0, j = 1,2,. . .,/i (4.86)

Combining Eqs. (4.84) and (4.85), and Eqs. (4.82) and (4.86), we obtain

X1(AfX - bt) = 0 , I = 1,2,. . .,m (4.87)
OjXj = 0, j = 1,2,. . .,n (4.88)

Thus the necessary conditions can be summarized as follows:

n m

Cj ~ OJ + S X/dy + S \fl« = 0, J = 1,2,. . .,/Z (4.89)

i=\ i=\

AfX - bt = -Y1, i = 1,2,. . .,m (4.90)

JCy > 0, j = 1,2 n (4.91)
Ĵ  > 0, i = 1,2,. . .,m (4.92)

X, > 0, j = 1,2,. . .,m (4.93)



Oj > O, J = 1,2,. . .,w (4.94)

X^ = 0, i = 1,2,. . .,m (4.95)

0,JC, = 0, ./ = 1,2,. . .,n (4.96)

We can notice one important thing in Eqs. (4.89) to (4.96). With the ex-
ception of Eqs. (4.95) and (4.96), the necessary conditions are linear functions
of the variables JC,, Yh X1-, and 0,. Thus the solution of the original quadratic
programming problem can be obtained by finding a nonnegative solution to
the set ofm + n linear equations given by Eqs. (4.89) and (4.90), which also
satisfies the m + n equations stated in Eqs. (4.95) and (4.96).

Since D is a positive-definite matrix, / (X) will be a strictly convex func-
tion^ and the feasible space is convex (because of linear equations), any local
minimum of the problem will be the global minimum. Further, it can be seen
that there are 2 (n + m) variables and 2 (n + m) equations in the necessary
conditions stated in Eqs. (4.89) to (4.96). Hence the solution of the Eqs. (4.89),
(4.90), (4.95), and (4.96) must be unique. Thus the feasible solution satisfying
all the Eqs. (4.89) to (4.96), if it exists, must give the optimum solution of
the quadratic programming problem directly. The solution of the system of
equations above can be obtained by using phase I of the simplex method. The
only restriction here is that the satisfaction of the nonlinear relations, Eqs.
(4.95) and (4.96), has to be maintained all the time. Since our objective is just
to find a feasible solution to the set of Eqs. (4.89) to (4.96), there is no ne-
cessity of phase II computations. We shall follow the procedure developed by
Wolfe [4.21] to apply phase I. This procedure involves the introduction of n
nonnegative artificial variables zt into the Eqs. (4.89) so that

n m

Cj - Oj + S 1 xAj + . 2 \flij + Zj = 0, j = 1,2,. . .,n (4.97)

Then we minimize
n

F = Ti Zj (4.98)

subject to the constraints

n m

Cj - Oj + S Xjdij + S \flij + Zj = 0, j = 1,2,. . .,«

i = i i = i

AfX + Yi = bh i = 1,2,. . . ,m

X > 0 , Y > 0 , X . > 0 , 0 > O

1SeC Appendix A for the definition and properties of a convex function.



While solving this problem, we have to take care of the additional conditions

\Yi = 0, I = 1,2,. . .,m ^ ggv

OjXj = 0, j = 1,2,. . .,n

Thus when deciding whether to introduce Y1 into the basic solution, we first
have to ensure that either A, is not in the solution or \ will be removed when
Y1 enters the basis. Similar care has to be taken regarding the variables Oj and
Xj. These additional checks are not very difficult to make during the solution
procedure.

Example 4.14

Minimize/ = -Axx + x\ — IxxX2 H- 2*2

subject to

2X1 + xx < 6

Xx - Ax2 < 0

xx > 0, X2 > 0

SOLUTION By introducing the slack variables Yx = s \ and Y2 = ^2 and the
surplus variables ^1 = rf and O2 = t\9 the problem can be stated as follows:

subject to

c J C ) - f : : ] - ( 3

-X1 + Ox = 0 (E1)

- ^ 2 + O2 = 0

By comparing this problem with the one stated in Eqs. (4.72) to (4.74), we
find that

r 2 ~ 2 i T2 n

„ = - 4 , C2 = 0, D - [ _ 2 J , A - ^ _ 4 j .



The necessary conditions for the solution of the problem stated in Eqs. (E1)
can be obtained, using Eqs. (4.89) to (4.96), as

-A - O1 H- 2Jc1 - 2JC2 H- 2X1 + X2 = 0

0 - 02 - Ixx + Ax2 + X1 - 4X2 = 0 (E2)

2xx + jc2 - 6 = -Yx

Jc1 - 4JC2 - 0 = -Y2

xx > 0, X2 > 0, Yx > 0, Y2 > 0, X1 > 0, ( E a )

X2 > 0, (9, > 0, O2 ^ 0

XxYx = 0, 6J1JC1 = 0
(E4)

X2Y2 = 0, 02JC2 = 0

(If Y1 is in the basis, X1 cannot be in the basis, and if Jc7 is in the basis, Oj cannot
be in the basis to satisfy these equations.) Equations (E2) can be rewritten as

2Jc1 - 2JC2 + 2X1 +X2-OX + ZX = A

-Ixx H- 4JC2 H- X1 - 4X2 - O2 + Z2 = 0

(E5)
2JC1 H- Jc2 H-F1 = 6

JC1 - 4JC2 + Y2 = 0

where Zx and Z2 are artificial variables. To find a feasible solution to Eqs. (E2)
to (E4) by using phase I of simplex method, we minimize w = Zx H-Z2 with
constraints stated in Eqs. (E5), (E3), and (E4).

The initial simplex tableau is shown below.

X2 selected for
entering next basis

Most negative

Basic
Variables

Y1

Zi

Z2

— w

Variables

2
1
2

- 2

0

X2

1
- 4
- 2

- 2

Xi

0
0
2
1

- 3

X2

0

0
1

- 4

3

Ox

0
0

- 1
0

1

O2

0
0
0

- 1

1

Y1

1
0
0
0

0

Y2

0
1
0
0

0

Zx

0
0
1

0

0

Z2

0
0
0
1

0

VV

0
0
0
0

1

6
0
4
0

- 4

btlais

for
a is > 0

6

O ^ Smaller
one



X1 selected to Most negative
enter the basis

This tableau shows that X1 has to enter the basis and F2 or x2 has to leave the
basis. However, X1 cannot enter the basis since F1 is already in the basis [to
satisfy the requirement of Eqs. (E4)]. Hence Jc1 is selected to enter the basis
and this gives F1 as the variable that leaves the basis. The pivot operation on
the element f results in the following tableau:

According to the regular procedure of simplex method, X1 enters the next basis
since thejcost coefficient of X1 is most negative and Z2 leaves the basis since
the ratio bt/ais is smaller for z2. However, X1 cannot enter the basis, as Yx is
already in the basis [to satisfy Eqs. (E4)]. Hence we select X2 for entering the
next basis. According to this choice, Z2 leaves the basis. By carrying out the
required pivot operation, we obtain the following tableau.

Basic
Variables

F,

Y2

Z\

X2

— w

Variables

X1

- 1
1
i
2

i

X2

0

0
0
1

0

X1

1
4

1
5
2
1
4
5
2

X2

1

- 4

- 1

- 1

1

0i

0

0
- 1

0

1

O2

1
4

- 1
1
2
1
4
1
2

F1

1

0

0

0

0

F2

0

1

0

0

0

Z\

0

0
1

0

0

Z2

~4

1
1
2
1
4
1
2

W

0

0
0
0

1

bi

0
4 4
0

- 4

for
ais > 0

<-Smaller
one

Basic
Variables

Xx

F 2

Zx

X2

— w

Variables

X\

1
0
0

0

0

X2

0
0
0

1

0

X1

1
10
9
10

[U]

1
5
13
5

X2

2
5
18
5
7
5

4
5
7
5

0i

0

0

- 1

0

1

S2

1
10
9
10
3
5

1
5
3
5

Y1

2
5
2
5
2
5

1
5
2
5

F2

0

1

0

0

0

Z\

0
0

1

0

0

Z2

""To
9
10
3
5

5
2
5

W

0
0
0

0

1

bt
12
5
12
5
8
5

6
5
8
5

btlais

for
ais > 0

8
3

fs <- Smaller
one

6

Most negative

From this tableau we find that X1 enters the basis (this can be permitted this
time since F1 is not in the basis) and Z1 leaves the basis. The necessary pivot
operation gives the following tableau:



Since both the artificial variables Z\ and Z1 are driven out of the basis, the
present tableau gives the desired solution as Xx = f|, Jt2 = jf, Y2

 = ft > X1
 =

75 (basic variables), X2 = O, Fj = 0,O1 = 0, 02 = 0 (nonbasic variables). Thus
the solution of the original quadratic programming problem is given by

~* _ 32 * _ 14 j r __ r,* *\ _ 88
x\ - T3> *2 ~ 13» a n d /min ~ / (*1 > *2) ~ "TI
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REVIEW QUESTIONS

4.1 Is the decomposition method efficient for all LP problems?

4.2 What is the scope of postoptimality analysis?

4.3 Why is Karmarkar's method called an interior method?

4.4 What is the major difference between the simplex and Karmarkar meth-
ods?

4.5 State the form of LP problem required by Karmarkar's method.

4.6 What are the advantages of the revised simplex method?

4.7 Match the following terms and descriptions.
(a) Karmarkar's method Moves from one vertex to another
(b) Simplex method Interior point algorithm
(c) Quadratic programming Phase I computations not required
(d) Dual simplex method Dantzig and Wolfe method
(e) Decomposition method Wolfe's method



4.8 Answer true or false.
(a) The quadratic programming problem is a convex programming prob-

lem.
(b) It is immaterial whether a given LP problem is designated the primal

or dual.
(c) If the primal problem involves minimization of/subject to greater-

than constraints, its dual deals with the minimization of/subject to
less-than constraints.

(d) If the primal problem has an unbounded solution, its dual will also
have an unbounded solution.

(e) The transportation problem can be solved by simplex method.

4.9 Match the following in the context of duality theory.
(a) xt is nonnegative /th constraint is of less-than or

equal-to type
(b) xt is unrestricted Maximization type
(c) /th constraint is of equality type /th variable is unrestricted
(d) /th constraint is of greater-than /th variable is nonnegative

or equal-to type
(e) Minimization type /th constraint is of equality type

PROBLEMS

Solve the following LP problems by the revised simplex method.

4.1 Minimize/= -5Jc1+ Ix2 + 5JC3 — 3JC4

subject to

2x\ + X2 — x3 = 6

3Jc1 + 8JC3 + Jc4 = 7

X1 > 0, i = 1 to 4

4.2 Maximize /= 15Jt1 + 6JC2 + 9JC3 + 2JC4

subject to

1OJC1 + 5JC2 + 25JC3 + 3JC4 < 50

12Jc1 + 4JC2 + 12JC3 +JC4 < 48

7Jc1 +Jc4 < 35

JC/ > 0, i = 1 to 4



4.3 Minimize/ = 2X1 + 3x2 + 2x3 — X4 + X5

subject to

3Jt1 - 3jt2 + 4x3 + 2x4 - X5 = 0

Jt1 + Jt2 4- Jt3 H- 3jt4 + X5 = 2

X1 > 0, / = 1,2,. . .,5

4.4 Discuss the relationships between the regular simplex method and the
revised simplex method.

4.5 Solve the following LP problem graphically and by the revised simplex
method:

Maximize /= X2

subject to

-xx + X2 < 0

-2Jt1 - 3Jt2 < 6

Jt1, Jt2 unrestricted in sign

4.6 Consider the LP problem:

Minimize / = 3X1 + X3 + 2x5

subject to

-*i 4- Jt3 — Jt4 + X5 = — 1

Jt2 — 2jt3 + 3jt4 + 2jt5 = —2

Xi > 0, i = 1 to 5

Solve this problem using the dual simplex method.

4.7 Maximize/= 4Jt1 + 2jt2

subject to

X1 - 2jt2 > 2

X1 + 2x2 = 8

X1 - X2 < 11

X1 > 0, x2 unrestricted in sign



(a) Write the dual of this problem.
(b) Find the optimum solution of the dual.

(c) Verify the solution obtained in part (b) by solving the primal problem
graphically.

4.8 A water resource system consisting of two reservoirs is shown in Fig.
4.4. The flows and storages are expressed in a consistent set of units.
The following data are available:

Quantity Stream 1 (/ = 1) Stream 2 (i = 2)

Capacity of reservoir / 9 7
Available release from reservoir i 9 6

Capacity of channel below reservoir i 4 4
Actual release from reservoir i JC, X2

Figure 4.4 Water-resource system.

The capacity of the main channel below the confluence of the two streams
is 5 units. If the benefit is equivalent to $2 X 106 and $3 X 106 per unit
of water released from reservoirs 1 and 2, respectively, determine the
releases Xx and X1 from the reserovirs to maximize the benefit. Solve this
problem using duality theory.

4.9 Solve the following LP problem by the dual simplex method:

Minimize / = Ixx + 9x2 + 2Ax3 4- Sx4 + 5x5

Stream 1

Reservoir 1

Channel 1
(X1)

Stream 2

Reservoir 2

Channel 2

(X2)

I r r igat ion

d is t r i c t 2

Irr igat ion

d is t r i c t 1

Main channe l

( x i +X2)



subject to

x\ + X2 + 2*3 - X5 - X6 = 1

-2JC1 + X3 H- X4 + ;c5 — X7 = 2

JC/ >: 0, i = 1 to 7

4.10 Solve Problem 3.1 by solving its dual.

4.11 Show that neither the primal nor the dual of the problem,

Maximize /= —Jc1 4- 2JC2

subject to

-Jc1 + Jc2 < - 2

x} - X2 < 1

X1 > 0, X2 >: 0

has a feasible solution. Verify your result graphically.

4.12 Solve the following LP problem by decomposition principle, and verify
your result by solving it by the revised simplex method:

Maximize /= 8X1 + 3x2 + 8x3 + 6x4

subject to

4X1 + 3x2 + X3 + 3x4 < 16

4X1 - x2 + x3 < 12

X1 + 2x2 < 8

3X1 + X2 < 10

2x3 + 3x4 < 9

4x3 + x4 < 12

JC1- > 0, i = 1 to 4

4.13 Apply the decomposition principle to the dual of the following problem
and solve it.

Minimize/ = 1Ox1 + 2x2 H- 4x3 H- 8x4 H- X5

subject to



JC1 + 4x 2 — JC3 > 16

2Jc1 H- JC2 + JC3 > 4

3X1 H- X4 H- X5 > 8

X1 + 2JC4 - X5 > 2 0

x( > 0, / = 1 to 5

4.14 Express the dual of the following LP problem:

Maximize /= 2X1 H-X2

subject to

X1 - 2x2 > 2

X1 H- 2x2 = 8

X1 - X2 < 11

X1 > 0, X2 is unrestricted in sign

f 1200^) f 118(T)
4.15 Find the effect of changing b = ] \ to ] [ i n Example 4.5

C 800J C 120J
using sensitivity analysis.

4.16 Find the effect of changing the cost coefficients C1 and C4 from —45 and
— 50 to —40 and —60, respectively, in Example 4.5 using sensitivity
analysis.

4.17 Find the effect of changing C1 from —45 to —40 and C2 from —100 to
—90 in Example 4.5 using sensitivity analysis.

4.18 If a new product, E, which requires 10 min of work on lathe and 10 min
of work on milling machine per unit, with a profit of $120 per unit is
available in Example 4.5, determine whether it is worth manufacturing
E.

4.19 A metallurgical company produces four products, A, B, C, and D9 by
using copper and zinc as basic materials. The material requirements and
the profit per unit of each of the four products, and the maximum quan-
tities of copper and zinc available are given below.

Copper (Ib)
Zinc (Ib)
Profit per unit ($)

Product

A

4
2

15

B

9
1

25

C

1
3

20

D

10
20
60

Maximum Quantity
Available

6000
4000



Find the number of units of the various products to be produced for max-
imizing the profit.

Solve problems 4.20-4.28 using the data of problem 4.19.

4.20 Find the effect of changing the profit per unit of product D to $30.

4.21 Find the effect of changing the profit per unit of product A to $10, and
of product B to $20.

4.22 Find the effect of changing the profit per unit of product B to $30 and of
product Cto $25.

4.23 Find the effect of changing the available quantities of copper and zinc to
4000 and 6000 Ib, respectively.

4.24 What is the effect of introducing a new product, E, which requires 6 Ib
of copper and 3 Ib of zinc per unit if it brings a profit of $30 per unit?

4.25 Assume that products A, B9 C, and D require, in addition to the stated
amounts of copper and zinc, 4, 3, 2 and 5 Ib of nickel per unit, respec-
tively. If the total quantity of nickel available is 2000 Ib, in what way
the original optimum solution is affected?

4.26 If product A requires 5 Ib of copper and 3 Ib of zinc (instead of 4 Ib of
copper and 2 Ib of zinc) per unit, find the change in the optimum solution.

4.27 If product C requires 5 Ib of copper and 4 Ib of zinc (instead of 7 Ib of
copper and 3 Ib of zinc) per unit, find the change in the optimum solution.

4.28 If the available quantities of copper and zinc are changed to 8000 Ib and
5000 Ib, respectively, find the change in the optimum solution.

4.29 Solve the following LP problem:

Minimize/= 8Jc1 — 2x2

subject to
-4Jc1 + 2JC2 < 1

5JC1 — 4JC2 < 3

Jc1 > 0, Jc2 > 0

Investigate the change in the optimum solution of Problem 4.29 when the fol-
lowing changes are made (a) by using sensitivity analysis and (b) by solving
the new problem graphically.

4.30 6, = 2

4.31 b2 = 4

4.32 C1 = 10



4.33 c2 = - 4

4.34 an = -5

4.35 a22 = —2

4.36 Perform one iteration of Karmarkar's method for the LP problem:

Min imize /= Ixx — 2x2 + 5x3

subject to

Jc1 — x2 = 0

Xx + X2 + X3 = 1

Xi > 0, I = 1,2,3

4.37 Perform one iteration of Karmarkar's method for the following LP prob-
lem:

Minimize /= 3Jc1 + 5JC2 — 3x3

subject to

X1 - x3 = 0

Xx + X2 + X3 = I

xt > 0, I = 1,2,3

4.38 Transform the following LP problem into the form required by Kar-
markar's method:

Minimize/ = Xx +X2 H-JC3

subject to

Jc1 + Jc2 — JC3 = 4

3X1 — Jc2 = 0

JC; > 0, I = 1,2,3

4.39 A contractor has three sets of heavy construction equipment available
at both New York and Los Angeles. He has construction jobs in Seattle,
Houston, and Detroit that require two, three, and one set of equipment,
respectively. The shipping costs per set between cities i andj (ctj) are
shown in Fig. 4.5. Formulate the problem of finding the shipping pat-
tern that minimizes the cost.



Figure 4.5 Shipping costs between cities.

4.40 Minimize/(X) = 3Jc1 + 2x1 + 5JC3 ~ 4Jc1Jc2 - 2Jc1Jc3 - 2JC2JC3

subject to

3Jc1 + 5JC2 + 2JC3 > 10

3JC1 H- 5JC3 < 15

JC1- > 0, I = 1,2,3

by quadratic programming.

4.41 Find the solution of the quadratic programming problem stated in Ex-
ample 1.5.

4.42 According to elastic-plastic theory, a frame structure fails (collapses)
due to the formation of a plastic hinge mechanism. The various possible
mechanisms in which a portal frame (Fig. 4.6) can fail are shown in

Figure 4.6 Plastic hinges in a frame.

Detroit

Houston

Seattle

New York

Los Angeles



Figure 4.7 Possible failure mechanisms of a portal frame.

Fig. 4.7. The reserve strengths of the frame in various failure mecha-
nisms (Z1) can be expressed in terms of the plastic moment capacities
of the hinges as indicated in Fig. 4.7. Assuming that the cost of the
frame is proportional to 200 times each of the moment capacities M1,
M2, M6, and M7, and 100 times each of the moment capacities M3, M4,
and M5, formulate the problem of minimizing the total cost to ensure
nonzero reserve strength in each failure mechanism. Also, suggest a
suitable technique for solving the problem. Assume that the moment
capacities are restricted as 0 < M1- < 2 x 105 lb-in., i = 1,2,. . . ,7.
Data: JC = 100 in., y = 150 in., P1 = 1000 Ib, and P2 = 500 Ib.



NONLINEAR PROGRAMMING I:
ONE-DIMENSIONAL MINIMIZATION
METHODS

5.1 INTRODUCTION

In Chapter 2 we saw that if the expressions for the objective function and the
constraints are fairly simple in terms of the design variables, the classical meth-
ods of optimization can be used to solve the problem. On the other hand, if
the optimization problem involves the objective function and/or constraints
that are not stated as explicit functions of the design variables or which are too
complicated to manipulate, we cannot solve it by using the classical analytical
methods. The following example is given to illustrate a case where the con-
straints cannot be stated as explicit functions of the design variables. Example
5.2 illustrates a case where the objective function is a complicated one for
which the classical methods of optimization are difficult to apply.

Example 5.1 Formulate the problem of designing the planar truss shown in
Fig. 5.1 for minimum weight subject to the constraint that the displacement of
any node, either in the vertical or horizontal direction, should not exceed a
value 6.

SOLUTION Let the density p and Young's modulus E of the material, the

length of the members /, and the external loads Q, R, and S be known as design

data. Let the member areas A1, A2, . . . ,An be taken as the design variables

JCi, Jc2, . . . , Jc11, respectively. The equations of equilibrium can be derived in

terms of the unknown nodal displacements M1, M2, . . . , M10 asf (the displace-

according to the matrix methods of structural analysis, the equilibrium equations for the jth

member are given by [5.1]

5



Figure 5.1 Planar truss: (a) nodal and member numbers; (b) nodal degrees of free-
dom.

merits M11, M12, M13, and M14 are zero, as they correspond to the fixed nodes)

(4x4 4 x6 4 X1)Ux 4 v 3 ( x 6 — X7)M2 — 4-Jt4M3 — Jc7M7 4- V 3 X 7 M 8 = 0 (E1)

\ /3(x 6 - X1)Ux H- 3(X6 4- X7)M2 + >/3X7M7 - 3X7M8 = - — (E2)

— 4Jt4M1 + (4Jt4 + 4x5 4 X8 4 X9)M3 + V3(X8 — X9)M4 — 4X5M5

- X8M7 - V3X8M8 - X9M9 + V3X9M1O = 0 (E3)

\ /3(x8 - X9)M3 4- 3(x8 + X9)M4 - V3X8M7

— 3X8M8 + V3X 9M 9 — 3X9M10 = 0 (E4)

- 4 X 5 M 3 4 (4x5 + X10 4- X11)M5 4 V3(x1 0 - X11)M6

r 4G'
- X10M9 - V 3 X 1 0 M 1 0 = — (E5)

W »; = Py
4 x 4 4 x 1 4 x 1

where the stiffness matrix can be expressed as

COS2^7 cos Bj sin Bj —cos2Bj —cos Bj sin Bj

A1E; cos B: sin 0. sin20. —cos B1- sin 6. —sin2B,
[k.] = J-L j j j j j j

Ij -COS2Oj —cos Bj sin Bj COs2G7- cos Bj sin Bj

—cos Bj sin G; — sin2Bj cos G7 sin G7 Sm2G7

where G7 is the inclination of the7th member with respect to the x axis, Aj the cross-sectional area
of the jth member, Z7 the length of the jth member, U7 the vector of displacements for the y'th
member, and P7 the vector of loads for the jth member. The formulation of the equilibrium
equations for the complete truss follows fairly standard procedure [5.1].



>/3(*io ~ xu)u5 + 3(x10 4- X11)W6 - V3x10w9 - 3x10w10 = O (E6)

-X7W1 + V3x7w2 - X8W3 - V3x8w4 + (4X1 4- 4x2

+ X7 + X8)W7 - V3(x7 - X8)W8 - 4x2w9 = O (E7)

VSx7W1 — 3x7w2 — v3x8w3 — 3x8w4 — V3(x7 — X8) W7

+ 3(x7 + X8)W8 = O (E8)

-X9W3 + V3x9w4 - X10W5 - V3x10w6 - 4x2w7

+ (4x2 + 4X3 + x9 + X10)W9 - V3(x9 - X10)W10 = O (E9)

V3x9w3 - 3x9w4 - N/3X10W5 - 3x10w6 - V3(x9 - x lo)w9

45/
+ 3(x9 + X10)W10 = - — (E10)

It is important to note that an explicit closed-form solution cannot be obtained
for the displacements as the number of equations becomes large. However,
given any vector X , the system of Eqs. (E1) to (E10) can be solved numerically
to find the nodal displacement W1, W2, . . . , W10.

The optimization problem can be stated as follows:

ii

Minimize/(X) = S px,/, (E11)
I = i

subject to the constraints

gj(X) = |w7(X)| - 8 < 0, J= 1,2,. . .,10 (E12)

JC1- > 0, I = 1,2,... ,11 (E13)

The objective function of this problem is a straightforward function of the
design variables as given in Eq. (E11). The constraints, although written by the
abstract expressions gy(X), cannot easily be written as explicit functions of the
components of X. However, given any vector X we can calculate gj (X) nu-
merically. Many engineering design problems possess this characteristic (i.e.,
the objective and/or the constraints cannot be written explicitly in terms of the
design variables). In such cases we need to use the numerical methods of op-
timization for solution.

Example 5.2 The shear stress induced along the z-axis when two spheres are
in contact with each other is given by

" 2 K 1 + (I)] 1 VfJ]J



Figure 5.2 Contact stress between two spheres.

where a is the radius of the contact area and pm a x is the maximum pressure
developed at the center of the contact area (Fig. 5.2):

1/3

c i - "•,i - "Q
a = 1 8 J_ J_ (Ez)

P™ ~ 2ira
2 (Es)

where F is the contact force, Ex and E2 are Young's moduli of the two spheres,
v\ and V1 are Poisson's ratios of the two spheres, and dx and d2 the diameters
of the two spheres. In many practical applications such as ball bearings, when
the contact load (F) is large, a crack originates at the point of maximum shear
stress and propagates to the surface, leading to a fatigue failure. To locate the
origin of a crack, it is necessary to find the point at which the shear stress
attains its maximum value. Formulate the problem of finding the location of
maximum shear stress for v = vx — V1 = 0.3.

Contact area

•Pmax

Pmax

a a

F

F

2a

z

X

•y



SOLUTION For j>, = v2 = 0.3, Eq. (E1) reduces to

/ W = T-TT5 + 0 6 5 X t 3 1 1 " ' 7 - ° 6 5 №4)
1 -r A A

where/ = r^//?max and X = zla. Since Eq. (E4) is a nonlinear function of the
distance, X, the application of the necessary condition for the maximum of/,
dfld\ = 0, gives rise to a nonlinear equation from which a closed-form solu-
tion for X* cannot easily be obtained.

The basic philosophy of most of the numerical methods of optimization is
to produce a sequence of improved approximations to the optimum according
to the following scheme.

1. Start with an initial trial point X1.

2. Find a suitable direction S1- (/ = 1 to start with) which points in the
general direction of the optimum.

3. Find an appropriate step length Xf for movement along the direction S1.

4. Obtain the new approximation X1-+ j as

X/ + 1 = X,- + XfS1- (5.1)

5. Test whether X1-+ j is optimum. If X1-+ \ is optimum, stop the procedure.
Otherwise, set a new / = / H- 1 and repeat step (2) onward.

The iterative procedure indicated by Eq. (5.1) is valid for unconstrained as
well as constrained optimization problems. The procedure is represented
graphically for a hypothetical two-variable problem in Fig. 5.3. Equation (5.1)
indicates that the efficiency of an optimization method depends on the effi-
ciency with which the quantities X* and S1- are determined. The methods of
finding the step length Xf are considered in this chapter and the methods of
finding S/ are considered in Chapters 6 and 7.

If/(X) is the objective function to be minimized, the problem of determin-
ing Xf reduces to finding the value \ = Xf that minimizes /(X1- + 0 = /(X, H-
\S/) = f(\) f° r fixed values of X1 and S1-. Since/becomes a function of one
variable X, only, the methods of finding Xf in Eq. (5.1) are called one-dimen-
sional minimization methods. Several methods are available for solving a one-
dimensional minimization problem. These can be classified as shown in Table
5.1.

We saw in Chapter 2 that the differential calculus method of optimization
is an analytical approach and is applicable to continuous, twice-differentiable
functions. In this method, calculation of the numerical value of the objective
function is virtually the last step of the process. The optimal value of the ob-
jective function is calculated after determining the optimal values of the deci-
sion variables. In the numerical methods of optimization, an opposite proce-
dure is followed in that the values of the objective function are first found at



Figure 5.3 Iterative process of optimization.

TABLE 5.1 One-Dimensional Minimization Methods

Analytical methods Numerical methods
(differential calculus methods) |

I I
Elimination Interpolation

methods methods
I

Unrestricted f [
search Requiring no Requiring

Exhaustive search derivatives derivatives
Dichotomous (quadratic) Cubic

search Direct root
Fibonacci method Newton
Golden section Quasi-Newton

method Secant

Optimum point



various combinations of the decision variables and conclusions are then drawn
regarding the optimal solution. The elimination methods can be used for the
minimization of even discontinuous functions. The quadratic and cubic inter-
polation methods involve polynomial approximations to the given function.
The direct root methods are root finding methods that can be considered to be
equivalent to quadratic interpolation.

5.2 UNIMODAL FUNCTION

A unimodal function is one that has only one peak (maximum) or valley (min-
imum) in a given interval. Thus a function of one variable is said to be uni-
modal if, given that two values of the variable are on the same side of the
optimum, the one nearer the optimum gives the better functional value (i.e.,
the smaller value in the case of a minimization problem). This can be stated
mathematically as follows:

A function/(;c) is unimodal if (/) Xx < X2 < JC* implies that/(jc2) < /(Jc1),
and (ii) X2 > Xx > JC* implies that /(JC1) < / (JC 2) , where JC* is the minimum
point.

Some examples of unimodal functions are shown in Fig. 5.4. Thus a unimodal
function can be a nondifferentiable or even a discontinuous function. If a func-
tion is known to be unimodal in a given range, the interval in which the min-
imum lies can be narrowed down provided that the function values are known
at two different points in the range.

For example, consider the normalized interval [0,1] and two function eval-
uations within the interval as shown in Fig. 5.5. There are three possible out-
comes, namely, / < /2 , o r / > /2 , o r / = /2 . If the outcome is t h a t / < /2 ,
the minimizing JC cannot lie to the right of JC2. Thus that part of the interval
[x2,1] can be discarded and a new smaller interval of uncertainty, [0,JC2] , results
as shown in Fig. 5.5a. IfZOc1) > /Oc2), the interval [0,Jc1] can be discarded to

Figure 5.4 Unimodal function.



Figure 5.5 Outcome of first two experiments. (a)f{ < /2; (b) fx > /2; (c)/, = /2.

obtain a new smaller interval of uncertainty, [Jc19I] (Fig. 5.5£), while if/(Jc1)
— f(x2), intervals [0,Jc1] and [JC2,1] can both be discarded to obtain the new
interval of uncertainty as [Jc19JC2] (Fig. 5.5c). Further, if one of the original
experiments1^ remains within the new interval, as will be the situation in Fig.
5.5a and b, only one other experiment need be placed within the new interval
in order that the process be repeated. In situations such as Fig. 5.5c, two more
experiments are to be placed in the new interval in order to find a reduced
interval of uncertainty.

The assumption of unimodality is made in all the elimination techniques. If
a function is known to be multimodal (i.e., having several valleys or peaks),
the range of the function can be subdivided into several parts and the function
treated as a unimodal function in each part.

ELIMINATION METHODS

5.3 UNRESTRICTED SEARCH

In most practical problems, the optimum solution is known to lie within re-
stricted ranges of the design variables. In some cases this range is not known,
and hence the search has to be made with no restrictions on the values of the
variables.

5.3.1 Search with Fixed Step Size

The most elementary approach for such a problem is to use a fixed step size

and move from an initial guess point in a favorable direction (positive or neg-

ative). The step size used must be small in relation to the final accuracy de-

tach function evaluation is termed as an experiment or a trial in the elimination methods.



sired. Although this method is very simple to implement, it is not efficient in
many cases. This method is described in the following steps.

1. Start with an initial guess point, say, Jc1.

2. Find/, = /(JC1).
3. Assuming a step size s, find JC2 = Jc1 + s.

4. Find/, =/(JC2).
5. If/2 < / , and if the problem is one of minimization, the assumption of

unimodality indicates that the desired minimum cannot lie at JC < Jc1.
Hence the search can be continued further along points JC3, JC4, . . . using
the unimodality assumption while testing each pair of experiments. This
procedure is continued until a point, JC, — XX + (i — \)s, shows an in-
crease in the function value.

6. The search is terminated at Jc1, and either jcf-_ i or Jt1- can be taken as the
optimum point.

7. Originally, if/2 > / , the search should be carried in the reverse direction
at points JC_2, JC_3, . . . , where X-j = Xx — (j — l)s.

8. If/2 = / , the desired minimum lies in between Jc1 and Jc2, and the min-
imum point can be taken as either Jc1 or JC2.

9. If it happens that both/> and/_2 are greater t h a n / , it implies that the
desired minimum will lie in the double interval JC_2 < JC < JC2.

5.3.2 Search with Accelerated Step Size

Although the search with a fixed step size appears to be very simple, its major
limitation comes because of the unrestricted nature of the region in which the
minimum can lie. For example, if the minimum point for a particular function
happens to be xopt = 50,000 and, in the absence of knowledge about the lo-
cation of the minimum, if Jc1 and s are chosen as 0.0 and 0.1, respectively, we
have to evaluate the function 5,000,001 times to find the minimum point. This
involves a large amount of computational work. An obvious improvement can
be achieved by increasing the step size gradually until the minimum point is
bracketed. A simple method consists of doubling the step size as long as the
move results in an improvement of the objective function. Several other im-
provements of this method can be developed. One possibility is to reduce the
step length after bracketing the optimum in (JC/.^JC/). By starting either from
X1^x or JC/, the basic procedure can be applied with a reduced step size. This
procedure can be repeated until the bracketed interval becomes sufficiently
small. The following example illustrates the search method with accelerated
step size.

Example 5.3 Find the minimum of/ = JC(JC — 1.5) by starting from 0.0 with
an initial step size of 0.05.



SOLUTION The function value at Xx is fx = 0.0. If we try to start moving
in the negative x direction, we find that JC_2 = —0.05 and/_2 = 0.0775. Since
/_2 > / i , the assumption of unimodality indicates that the minimum cannot lie
toward the left of JC_2. Thus we start moving in the positive x direction and
obtain the following results:

[ Value of s X1 = Xx 4- s ft = /Jx1) Isft > / • - !?

1 - 0.0 0.0 -
2 0.05 0.05 -0.0725 No
3 0.10 0.10 -0.140 No
4 0.20 0.20 -0.260 No
5 0.40 0.40 -0.440 No
6 0.80 0.80 -0.560 No
7 1.60 1.60 +0.160 Yes

From these results, the optimum point can be seen to be jcopt « X6 = 0.8.
In this case, the points X6 and X1 do not really bracket the minimum point but
provide information about it. If a better approximation to the minimum is de-
sired, the procedure can be restarted from X5 with a smaller step size.

5.4 EXHAUSTIVE SEARCH

The exhaustive search method can be used to solve problems where the interval
in which the optimum is known to lie is finite. Let xs and xf denote, respec-
tively, the starting and final points of the interval of uncertainty^ The exhaus-
tive search method consists of evaluating the objective function at a predeter-
mined number of equally spaced points in the interval (xsrXf)9 and reducing the
interval of uncertainty using the assumption of unimodality. Suppose that a
function is defined on the interval (xs,Xf) and let it be evaluated at eight equally
spaced interior points Jc1 to JC8. Assuming that the function values appear as
shown in Fig. 5.6, the minimum point must lie, according to the assumption
of unimodality, between points X5 and X1. Thus the interval (X59X1) can be con-
sidered as the final interval of uncertainty.

In general, if the function is evaluated at n equally spaced points in the
original interval of uncertainty of length L0 = xf — xs, and if the optimum
value of the function (among the n function values) turns out to be at point xj9

the final interval of uncertainty is given by

2
Ln = xj + x - Xj^x = ^ + 1 L0 (5.2)

^ince the interval (xs,xf), but not the exact location of the optimum in this interval, is known to
us, the interval (xs,xf) is called the interval of uncertainty.



Figure 5.6 Exhaustive search.

The final interval of uncertainty obtainable for different number of trials in the
exhaustive search method is given below.

Number of trials 2 3 4 5 6 • • • n

LnIL0 2/3 2/4 2/5 2/6 2/7 • • • 21 {n + 1)

Since the function is evaluated at all n points simultaneously, this method can
be called a simultaneous search method. This method is relatively inefficient
compared to the sequential search methods discussed next, where the infor-
mation gained from the initial trials is used in placing the subsequent experi-
ments.

Example 5.4 Find the minimum of/ = x(x - 1.5) in the interval (0.0,1.00)
to within 10% of the exact value.

SOLUTION If the middle point of the final interval of uncertainty is taken
as the approximate optimum point, the maximum deviation could be
\l{n + 1) times the initial interval of uncertainty. Thus, to find the optimum
within 10% of the exact value, we should have

1 1
< — or n > 9

n + 1 10

By taking n = 9, the following function values can be calculated.

/ 1 2 3 4 5 6 7 8 9

X1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

/;.=/(Jt.)-0.14 -0.26 -0.36 -0.44 -0.50 -0.54 -0.56 -0 .56-0 .54

Since X1 .= X8, the assumption of unimodality gives the final interval of
uncertainty as L9 = (0.7,0.8). By taking the middle point OfL9 (i.e., 0.75) as



an approximation to the optimum point, we find that it is, in fact, the true
optimum point.

5.5 DICHOTOMOUS SEARCH

The exhaustive search method is a simultaneous search method in which all
the experiments are conducted before any judgment is made regarding the lo-
cation of the optimum point. The dichotomous search method, as well as the
Fibonacci and the golden section methods discussed in subsequent sections,
are sequential search methods in which the result of any experiment influences
the location of the subsequent experiment.

In the dichotomous search, two experiments are placed as close as possible
at the center of the interval of uncertainty. Based on the relative values of the
objective function at the two points, almost half of the interval of uncertainty
is eliminated. Let the positions of the two experiments be given by (Fig. 5.7)

Xl~ 2 2

2 2 2

where 5 is a small positive number chosen so that the two experiments give
significantly different results. Then the new interval of uncertainty is given by
(Lo/2 + 6/2). The building block of dichotomous search consists of conducting
a pair of experiments at the center of the current interval of uncertainty. The
next pair of experiments is, therefore, conducted at the center of the remaining
interval of uncertainty. This results in the reduction of the interval of uncer-
tainty by nearly a factor of 2. The intervals of uncertainty at the end of different
pairs of experiments are given in the following table.

Figure 5.7 Dichotomous search.



Number of experiments 2 4 6

1 l / L 0 + <5\ 6 If L0 + 6 8\ <5
Final interval of uncertainty -(L0 + o) - I — - — J + ^ ~l — 7 1- — ) H—

In general, the final interval of uncertainty after conducting n experiments (n
even) is given by

Ln = jm + s ( l - ^/2) (5-3)

The following example is given to illustrate the method of search.

Example 5.5 Find the minimum of/ = x(x — 1.5) in the interval (0.0,1.00)
to within 10% of the exact value.

SOLUTION The ratio of final to initial intervals of uncertainty is given by
[from Eq. (5.3)]

L0 ~ T" + L0 V T»)

where 5 is a small quantity, say 0.001, and n is the number of experiments. If
the middle point of the final interval is taken as the optimum point, the re-
quirement can be stated as

2L0-IO

i.e.,

J- — (\ - -L\ I
2"n + L0 V 2n/V ~ 5

Since § = 0.001 and L0 = 1.0, we have

2"'2 + 1000 V 2"'2J ~ 5

i.e.,

999 1 995 „,, 999
1000 2"/2 - 5000 ° r l ~ 199 " 5 U



Since n has to be even, this inequality gives the minimum admissible value of
n as 6.

The search is made as follows: The first two experiments are made at

x = h _ * = o.5 - 0.0005 = 0.4995
2 2

x2 = y + ^ = 0.5 + 0.0005 = 0.5005

with the function values given by

/ =/(JC1) = 0.4995(-1.0005) => -0.49975

/2 = /(JC2) = 0.5005(-0.9995) ^ -0.50025

Since/2 < fu the new interval of uncertainty will be (0.4995,1.0). The second
pair of experiments is conducted at

X3 = (o.4995 + 1 0 ~ 0 4 9 9 5 J _ 0.0005 = 0.74925

Jc4 = (o.4995 + L 0 - 0.4995\ + 0QQ05 = 0 7 5 0 2 5

which give the function values as

/3 =f(x3) = 0.74925(-0.75075) = -0.5624994375

/4 =/(JC4) = 0.75025(-0.74975) = -0.5624999375

Since/3 > f4, we delete (0.4995 ,JC3) and obtain the new interval of uncertainty
as

(Jc3,1.0) = (0.74925,1.0)

The final set of experiments will be conducted at

jc5 = fo.74925 + 0.74925\ _ ^0005 = 0.874125

jc6 = f 0.74925 + L ° ~ 0 - 7 4 9 2 5 j + 0.0005 = 0.875125



The corresponding function values are

/5 =/(JC5) = 0.874125(-0.625875) = -0.5470929844

/6 =f{x6) = 0.875125(-0.624875) = -0.5468437342

Since /5 < /6, the new interval of uncertainty is given by (x3,x6) =
(0.74925,0.875125). The middle point of this interval can be taken as opti-
mum, and hence

xopt ^ 0.8121875 and /opt « -0.5586327148

5.6 INTERVAL HALVING METHOD

In the interval halving method, exactly one-half of the current interval of un-
certainty is deleted in every stage. It requires three experiments in the first
stage and two experiments in each subsequent stage. The procedure can be
described by the following steps:

1. Divide the initial interval of uncertainty L0 = [a,b] into four equal parts
and label the middle point X0 and the quarter-interval points X1 and JC2.

2. Evaluate the function fix) at the three interior points to obtain/! = /(X1),
/o = /(X0), andZ2=Z(X2).

3. (a) If/2 > /o > /i as shown in Fig. 5.8a, delete the interval (xo,£), label
X1 and X0 as the new X0 and b, respectively, and go to step 4.

(b) If/2 < /o < /i as shown in Fig. 5.8fo, delete the interval (a,X0), label
X2 and X0 as the new X0 and a, respectively, and go to step 4.

(c) If/ > /0 and/2 > /0 as shown in Fig. 5.8c, delete both the intervals
(0,X1) and (x2,fo), label X1 and X2 as the new a and b, respectively,
and go to step 4.

4. Test whether the new interval of uncertainty, L = b - a, satisfies the
convergence criterion L < e, where e is a small quantity. If the conver-
gence criterion is satisfied, stop the procedure. Otherwise, set the new
L0 = L and go to step 1.

Remarks:

1. In this method, the function value at the middle point of the interval of
uncertainty, /0, will be available in all the stages except the first stage.

2. The interval of uncertainty remaining at the end of n experiments (n >
3 and odd) is given by

/jV (/!-l)/2

Ln = {-} L0 (5.4)



Figure 5.8 Possibilities in the interval halving method: (a)f2 > /0 > / i ; (b)f{ > /0

>/2Ac)Z1 > / 0 and / 2 > / 0 .



Example 5.6 Find the minimum of/ = x(x — 1.5) in the interval (0.0,1.0)
to within 10% of the exact value.

SOLUTION If the middle point of the final interval of uncertainty is taken
as the optimum point, the specified accuracy can be achieved if

Since L0 = 1, Eq. (E1) gives

^ < i or 2<—>'2>5 (E2)

Since n has to be odd, inequality (E2) gives the minimum permissible value of
n as 7. With this value of n = 7, the search is conducted as follows. The first
three experiments are placed at one-fourth points of the interval L0 = [a = 0,
b = 1] as

Jc1 = 0.25, /, = 0.25(-1.25) = -0.3125

JC0 = 0.50, /o = 0.50(-1.00) = -0.5000

X2 = 0.75, /2 = 0.75(-0.75) = -0.5625

Since/j > /0 > /2, we delete the interval (a9x0) = (0.0,0.5), label X2 and X0

as the new X0 and a so that a = 0.5, X0 = 0.75, and b = 1.0. By dividing the
new interval of uncertainty, L3 = (0.5,1.0) into four equal parts, we obtain

X1 = 0.625, /} = 0.625(-0.875) = -0.546875

Jc0 = 0.750, /o = 0.750(-0.750) = -0.562500

Jc2 = 0.875, /2 = 0.875(-0.625) = -0.546875

SmCeZ1 > f0 and/2 > f0, we delete both the intervals (̂ ,Jc1) and (JC2,&), and
label Jc1, JC0, and JC2 as the new a, JC0, and b, respectively. Thus the new interval
of uncertainty will be L5 = (0.625,0.875). Next, this interval is divided into
four equal parts to obtain

Jc1 = 0.6875, Z1 = 0.6875(-0.8125) = -0.558594

Jc0 = 0.75, /o = 0.75(-0.75) = -0.5625

Jc2 = 0.8125, /2 = 0.8125(-0.6875) = -0.558594



Again we note that/, > fQ and/2 > f0 and hence we delete both the intervals
(a,Xi) and (Jt2,6) to obtain the new interval of uncertainty as L1 =
(0.6875,0.8125). By taking the middle point of this interval (L7) as optimum,
we obtain

xopt * 0.75 and /opt * -0.5625

(This solution happens to be the exact solution in this case.)

5.7 FIBONACCI METHOD

As stated earlier, the Fibonacci method can be used to find the minimum of a
function of one variable even if the function is not continuous. This method,
like many other elimination methods, has the following limitations:

1. The initial interval of uncertainty, in which the optimum lies, has to be
known.

2. The function being optimized has to be unimodal in the initial interval
of uncertainty.

3. The exact optimum cannot be located in this method. Only an interval
known as the final interval of uncertainty will be known. The final in-
terval of uncertainty can be made as small as desired by using more
computations.

4. The number of function evaluations to be used in the search or the res-
olution required has to be specified beforehand.

This method makes use of the sequence of Fibonacci numbers, {Fn}9 for plac-
ing the experiments. These numbers are defined as

F0 = Fx = 1

Fn = Fn_x + Fn_2, n = 2 , 3 , 4 , . . .

which yield the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . .

Procedure. Let L0 be the initial interval of uncertainty defined by a < x < b
and n be the total number of experiments to be conducted. Define

LT = ^ L 0 (5.5)

and place the first two experiments at points Jc1 and X2, which are located at a



distance of L* from each end OfL0.1 This gives*

X l = a + I* = a + ^ l L o
K (5.6)

X2 = b - L* = b - ^ L 0 = a + ^ L 0

Discard part of the interval by using the unimodality assumption. Then there
remains a smaller interval of uncertainty L2 given by§

/ F \ F
T T T * T I 1 rn-2 \ _ rn- I j ,c ̂ N.L2 = L0 - L2 = L0[I — I - —— L0 (5.7)

and with one experiment left in it. This experiment will be at a distance of

L 2 * = ^ 1 L 0 = ^ L 2 (5.8)

from one end and

L2 - L 2 * = ^ L 0 = ^ L 2 (5.9)

from the other end. Now place the third experiment in the interval L2 so that
the current two experiments are located at a distance of

£* = ̂ f1L0 = ^jT1L2 (5.10)

from each end of the interval L2. Again the unimodality property will allow us
to reduce the interval of uncertainty to L3 given by

L3=L2-Lf = L2 - ^ L 2 = ^ L 2 =?fl L0 (5.11)
^n — 1 Fn _ i Pn

fIf an experiment is located at a distance of (Fn__2lFn)L0 from one end, it will be at a distance of
(Fn^1ZFn)L0 from the other end. Thus L* = (Fn^1ZFn)L0 will yield the same result as with L? =
(Fn^2IFn)L0.
*It can be seen that

I* = % ^ L0 < \ L0 for n > 2

§The symbol L} is used to denote the interval of uncertainty remaining after conducting j exper-
iments, while the symbol Lf is used to define the position of the 7th experiment.



This process of discarding a certain interval and placing a new experiment in
the remaining interval can be continued, so that the location of thejth exper-
iment and the interval of uncertainty at the end of j experiments are, respec-
tively, given by

Lf =-^Zi-L1 ^1 (5.12)
tn-{j-2)

LJ = ^ ^ 1 L 0 (5.13)

The ratio of the interval of uncertainty remaining after conducting j of the n
predetermined experiments to the initial interval of uncertainty becomes

L1 ^ F 1 ^ 1 ( 5 u )

M) rn

and for j = n, we obtain

Lo Fn Fn

The ratio LJL0 will permit us to determine n, the required number of experi-
ments, to achieve any desired accuracy in locating the optimum point. Table
5.2 gives the reduction ratio in the interval of uncertainty obtainable for dif-
ferent number of experiments.

Position of the Final Experiment. In this method the last experiment has to
be placed with some care. Equation (5.12) gives

- ^ - = § = 1 for all n (5.16)
Ln - i 12 I

Thus, after conducting n — 1 experiments and discarding the appropriate in-
terval in each step, the remaining interval will contain one experiment pre-
cisely at its middle point. However the final experiment, namely, the nth ex-
periment, is also to be placed at the center of the present interval of uncertainty.
That is, the position of the nth experiment will be same as that of (n — l)th
one, and this is true for whatever value we choose for n. Since no new infor-
mation can be gained by placing the nth experiment exactly at the same loca-
tion as that of the (n — l)th experiment, we place the nth experiment very
close to the remaining valid experiment, as in the case of the dichotomous
search method. This enables us to obtain the final interval of uncertainty to
within \Ln _ x. A flowchart for implementing the Fibonacci method of mini-
mization is given in Fig. 5.9.



TABLE 5.2 Reduction Ratios

Value of Fibonacci Number, Reduction Ratio,
n Fn LnIL0

0 1 1.0
1 1 1.0
2 2 0.5
3 3 0.3333
4 5 0.2
5 8 0.1250
6 13 0.07692
7 21 0.04762
8 34 0.02941
9 55 0.01818
10 89 0.01124
11 144 0.006944
12 233 0.004292
13 377 0.002653
14 610 0.001639
15 987 0.001013
16 1,597 0.0006406
17 2,584 0.0003870
18 4,181 0.0002392
19 6,765 0.0001479
20 10,946 0.00009135

Example 5.7 Minimize/(JC) = 0.65 - [0.75/(1 + JC2)] - 0.65* tan'^l/jc)
in the interval [0,3] by the Fibonacci method using n = 6. (Note that this
objective is equivalent to the one stated in Example 5.2.)

SOLUTION Here n = 6 and L0 = 3.0, which yield

L2* = % ^ L0 = - | (3.0) = 1.153846
tn 13

Thus the positions of the first two experiments are given by X1 = 1.153846
and X1 = 3.0 - 1.153846 = 1.846154 with/! =/(JC,) = -0.207270 and/2
= / t o ) = -0.115843. Since/, is less than/2, we can delete the interval
[jc2,3.0] by using the unimodality assumption (Fig. 5.10a). The third experi-
ment is placed at JC3 = 0 + (JC2 - JC,) = 1.846154 - 1.153846 = 0.692308,
with the corresponding function value of/3 = -0.291364.

Since/, > /3, we delete the interval [JC,,JC2] (Fig. 5.10b). The next experi-
ment is located at JC4 = 0 + (JC, - JC3) = 1.153846 - 0.692308 = 0.461538
with/4 = -0.309811. Noting that/4 < /3, we delete the interval [JC3,JC,] (Fig.



Figure 5.9 Flowchart for implementing Fibonacci search method.
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Figure 5.10 Graphical representation of the solution of Example 5.7.



Figure 5.10 (Continued)

5.10c). The location of the next experiment can be obtained as Jt5 = 0 + (Jt3
- Jc4) = 0.692308 - 0.461538 = 0.230770 with the corresponding objective
function value of/5 = —0.263678. Since/5 > /4 , we delete the interval [0,Jt5]
(Fig. 5.10J). The final experiment is positioned at X6 = X5 + (x3 — X4) =
0.230770 + (0.692308 - 0.461538) = 0.461540 with/6 = -0.309810. (Note
that, theoretically, the value of X6 should be same as that of Jt4; however, it is
slightly different from Jt4, due to round-oif error).

Since f6 > /4 , we delete the interval [Jt6,Jt3] and obtain the final interval of
uncertainty as L6 = [x5,x6] = [0.230770,0.461540] (Fig. 5.10e). The ratio of
the final to the initial interval of uncertainty is

L6 0.461540 - 0.230770i r0— -0076923



This value can be compared with Eq. (5.15), which states that if n experiments
(n = 6) are planned, a resolution no finer than MFn = MF6 = 13 = 0.076923
can be expected from the method.

5.8 GOLDEN SECTION METHOD

The golden section method is same as the Fibonacci method except that in the
Fibonacci method the total number of experiments to be conducted has to be
specified before beginning the calculation, whereas this is not required in the
golden section method. In the Fibonacci method, the location of the first two
experiments is determined by the total number of experiments, n. In the golden
section method we start with the assumption that we are going to conduct a
large number of experiments. Of course, the total number of experiments can
be decided during the computation.

The intervals of uncertainty remaining at the end of different number of
experiments can be computed as follows:

L2 = lim ^ 1 L 0 (5.17)
N-+oo r N

T T FN-2 j T FN-2 FN-\ TL3 = hm —— L0 = hm — L0
/v->oo rN yv-x» tjsf-\ rN

- lim (^1) L0 (5.18)
yv^oo \ FN )

This result can be generalized to obtain

Lk= lim ( % ^ ) L0 (5.19)
N-* oo \ tN J

Using the relation

FN = FN _, + FN _2 (5.20)

we obtain, after dividing both sides by FN-u

By defining a ratio y as

7 = lim - ^ (5.22)
/V-> oo rN_ j



Eq. (5.21) can be expressed as

7

that is,

7
2 - y - i = o (5.23)

This gives the root y = 1.618, and hence Eq. (5.19) yields

/l\k'x
Lk = (-) L0 = (0.618)*-1L0 (5.24)

In Eq. (5.18) the ratios FN__2/FN- ] and FN_ XIFN have been taken to be same
for large values of N. The validity of this assumption can be seen from the
following table:

alueofW 2 3 4 5 6 7 8 9 1Oo

atio-^^1 0.5 0.667 0.6 0.625 0.6156 0.619 0.6177 0.6181 0.6184 0.6

The ratio y has a historical background. Ancient Greek architects believed
that a building having the sides d and b satisfying the relation

d H- b d
— = -b = y (5-25)

will be having the most pleasing properties (Fig. 5.11). It is also found in
Euclid's geometry that the division of a line segment into two unequal parts
so that the ratio of the whole to the larger part is equal to the ratio of the larger
to the smaller, being known as the golden section or golden mean—thus the
term golden section method.

Figure 5.11 Rectangular building of sides
b and d.

b

d



Procedure. The procedure is same as the Fibonacci method except that the
location of the first two experiments is defined by

^ = ^ A , = ^ ^ F i L 0 = ^ = 0.382L0 (5.26)

The desired accuracy can be specified to stop the procedure.

Example 5.8 Minimize the function fix) = 0.65 - [0.75/(1 + x2)]
- 0.65 x tan" 1Cl/*) using the golden section method with n = 6.

SOLUTION The locations of the first two experiments are defined by L* =
0.382L0 = (0.382)(3.0) = 1.1460. ThUSJC1 = 1.1460 and X2 = 3.0 - 1.1460
= 1.8540 with/ t = /(JC1) = -0.208654 and/2 = / ( JC 2 ) = -0.115124. Since

/i < />> w e delete the interval [JC2,3.0] based on the assumption of unimodality
and obtain the new interval of uncertainty as L2 = [0,JC2] = [0.0,1.8540]. The
third experiment is placed at X3 = 0 + (JC2 — Jc1) = 1.8540 — 1.1460 =
0.7080. Since/3 = -0.288943 is smaller t h a n / = -0.208654, we delete the
interval [X1,X2] and obtain the new interval of uncertainty as [O.O,JC,] =
[0.0,1.1460]. The position of the next experiment is given by X4 = 0 + (Jc1 —
X3) = 1.1460 - 0.7080 = 0.4380 with/4 = -0.308951.

Since f4 < /3 , we delete [X35X1] and obtain the new interval of uncertainty
as [0,x3] = [0.0,0.7080]. The next experiment is placed at X5 = 0 + (x3 —
X4) = 0.7080 - 0.4380 = 0.2700. Since/5 = -0.278434 is larger than/4 =
—0.308951, we delete the interval [0,x5] and obtain the new interval of un-
certainty as [x5,x3] = [0.2700,0.7080]. The final experiment is placed atx6 =
x5 + (x3 - x4) = 0.2700 + (0.7080 - 0.4380) = 0.5400 with / 6 =
-0.308234. Since/6 > /4 , we delete the interval [x6,x3] and obtain the final
interval of uncertainty as [x5,x6] = [0.2700,0.5400]. Note that this final inter-
val of uncertainty is slightly larger than the one found in the Fibonacci method,
[0.461540,0.230770]. The ratio of the final to the initial interval of uncertainty
in the present case is

U _ 0.5400 - 0.2700 _ O27

L0 ~ 3.0 " 3.0 ~ '

5.9 COMPARISON OF ELIMINATION METHODS

The efficiency of an elimination method can be measured in terms of the ratio
of the final and the initial intervals of uncertainty, LnZL0. The values of this
ratio achieved in various methods for a specified number of experiments (n =
5 and n = 10) are compared in Table 5.3. It can be seen that the Fibonacci
method is the most efficient method, followed by the golden section method,
in reducing the interval of uncertainty.



A similar observation can be made by considering the number of experi-
ments (or function evaluations) needed to achieve a specified accuracy in var-
ious methods. The results are compared in Table 5.4 for maximum permissible
errors of 0.1 and 0.01. It can be seen that to achieve any specified accuracy,
the Fibonacci method requires the least number of experiments, followed by
the golden section method.

INTERPOLATION METHODS

The interpolation methods were originally developed as one-dimensional
searches within multivariable optimization techniques, and are generally more
efficient than Fibonacci-type approaches. The aim of all the one-dimensional
minimization methods is to find X*, the smallest nonnegative value of X, for

TABLE 5.4 Number of Experiments for a Specified Accuracy

TABLE 5.3 Final Intervals of Uncertainty

Method

Exhaustive search

Dichotomous search
(5 = 0.01 and n
= even)

Interval halving
(n > 3 and odd)

Fibonacci

Golden section

Formula

L - U +s(l 1 l̂
L n - ^ / 2 " r o i l ^/1/2 J

Ln = ( I )<- '>%,

Ln = — L0

Ln = (O^lSr-1L0

n = 5

0.33333L0

^L0 + 0.0075
with /i = 4,
IL0 +
0.00875
with n = 6

0.25L0

0.125L0

0.1459L0

n = 10

0.18182L0

0.03125L0 + 0.0096875

0.0625L0 with n = 9,
0.03125L0 with n =
11

0.01124L0

0.01315L0

Method

Exhaustive search
Dichotomous search

(6 = 0.01,L0 = 1)
Interval halving

(n > 3 and odd)
Fibonacci
Golden section

Error: \— < 0.1
2 L0

n > 9
n > 6

n > 7

n > 4
n > 5

Error: - — < 0.01
2L0

n > 99
n > 14

n > 13

n > 9
n > 10



which the function

/(X) = / ( X + XS) (5.27)

attains a local minimum. Hence if the original function/(X) is expressible as
an explicit function of Jt1-(Z = 1,2,. . .,«), we can readily write the expression
for/(X) = / ( X + XS) for any specified vector S, set

TT M = 0 (5.28)

and solve Eq. (5.28) to find X* in terms of X and S. However, in many prac-
tical problems, the function/(X) cannot be expressed explicitly in terms of X
(as shown in Example 5.1). In such cases the interpolation methods can be
used to find the value of X*.

Example 5.9 Derive the one-dimensional minimization problem for the fol-
lowing case:

Minimize / (X) •= (x2 - X2)
2 + (1 - Jt1)

2 (E1)

(-2) f l .Of)
from the starting point Xi = \ \ along the search direction S = I \.

1-2 J (.0.25 J
SOLUTION The new design point X can be expressed as

(xi~) f - 2 + X J
X = = X1 + XS =

Ot2J ( . - 2 + 0.25XJ

By substituting JC, = - 2 + X and X2 = - 2 + 0.25X in Eq. (E,), we obtain/
as a function of X as

/(X) = / ( " 2
2

+
+

X
0 2 5 X ) = K"2 + X>2 " (-2 + °'25X)]2

+ [1 - ( - 2 + X)]2 = X4 - 8.5X3 + 31.0625X2 - 57.0X + 45.0

The value of X at which/(X) attains a minimum gives X*.

In the following sections, we discuss three different interpolation methods
with reference to one-dimensional minimization problems that arise during
multivariable optimization problems.



5.10 QUADRATIC INTERPOLATION METHOD

The quadratic interpolation method uses the function values only; hence it is
useful to find the minimizing step (X*) of functions/(X) for which the partial
derivatives with respect to the variables x{ are not available or difficult to com-
pute [5.2, 5.5]. This method finds the minimizing step length X* in three stages.
In the first stage the S-vector is normalized so that a step length of X = 1 is
acceptable. In the second stage the function/(X) is approximated by a quad-
ratic function h(X) and the minimum, X*, of h(k) is found. If X* is not suffi-
ciently close to the true minimum X*, a third stage is used. In this stage a new
quadratic function (refit) h'(k) = a' + br\ + c'X2 is used to approximate/(X),
and a new value of X* is found. This procedure is continued until a X* that is
sufficiently close to X* is found.

Stage 1. In this stage,f the S vector is normalized as follows: Find A = max

IJ1-I , where st is the ith component of S and divide each component of S by A.
Another method of normalization is to find A = {s\ + s\ + • • • + sl)l/2 and
divide each component of S by A.

Stage 2. Let

A(X) = a + b\ + c\2 (5.29)

be the quadratic function used for approximating the function/(X). It is worth
noting at this point that a quadratic is the lowest-order polynomial for which
a finite minimum can exist. The necessary condition for the minimum of h(K)
is that

^- = b + 2cX = 0
d\

that is,

X* = ~ (5.30)
2c

The sufficiency condition for the minimum of h(\) is that

3 ? « . > 0

1TMs stage is not required if the one-dimensional minimization problem has not arisen within a
multivariable minimization problem.



that is,

c > O (5.31)

To evaluate the constants a, b, and c in Eq. (5.29), we need to evaluate the
function/(X) at three points. Let X = A, X = B, and X = C be the points at
which the function/(X) is evaluated and let/4,/0, and / c be the corresponding
function values, that is,

fA = a + bA + cA2

fB = a + bB + cB2

Sc = a + bC + cC2 (5.32)

The solution of Eqs. (5.32) gives

= SABC(C - B) + SBCA(A - C) + /<y4B(B - A)
a (A - B)(B - C)(C -A) K ' }

_ SA(B2 - C2) + SB(C2 - A2) + /CQ42 - i?2)

04 - B)(B - C)(C -A) - ' ]

= / ^ ~ O +IB(C - ^) + / c ( ^ - B)

(A -B)(B- C)(C-A) P }

From Eqs. (5.30), (5.34), and (5.35), the minimum of h(\) can be obtained
as

** = -fr _ A(^2 ~ C2) + /^(C2 ~ A2) + /CQ42 - B2)
2c 2[SA(B - C) + SB(C -A)+ SC(A -B)] l " j

provided that c, as given by Eq. (5.35), is positive.
To start with, for simplicity, the points A, B9 and C can be chosen as 0, t,

and 2t, respectively, where t is a preselected trial step length. By this proce-
dure, we can save one function evaluation since SA = SQ^ = 0) is generally
known from the previous iteration (of a multivariable search). For this case,
Eqs. (5.33) to (5.36) reduce to

a= SA (5.37)

b = 4 / g " ^ ~ / c (5.38)

c=fc+f*~2fB (5.39)



provided that

c=fc+f*p~
2f">0 (5.41)

The inequality (5.41) can be satisfied if

f A ~ > fs (5.42)

(i.e., the function value fB should be smaller than the average value offA and
f c ) . This can be satisfied iffB lies below the line joining fA and/ c as shown in
Fig. 5.12.

The following procedure can be used not only to satisfy the inequality (5.42)
but also to ensure that the minimum X* lies in the interval 0 < X* < 2t.

1. Assuming that fA = /(X = 0) and the initial step size t0 are known,
evaluate the function/at X = 10 and obtain/ = /(X = t0). The possible
outcomes are shown in Fig. 5.13.

2. If/ > fA is realized (Fig. 5.13c), set / c = / and evaluate the function
/ a t X = fo/2 and X* using Eq. (5.40) with t = to/2.

3. I f / ^ /A is realized (Fig. 5A3a or b), set /5 = / , and evaluate the
function/at X = 2f0 to find/2 = /(X = 2t0). This may result in any one
of the situations shown in Fig. 5.14.

Figure 5.12 fB smaller than (fA + /c)/2.



Figure 5.14 Possible outcomes when function is evaluated at X = t0 and 2t0:
(a)f2 < Z1 and/2 < fA; (b)f2 < fA and/2 > /,; (c)f2 > fA and/2 > /, .

Figure 5.13 Possible outcomes when the function is evaluated at X = t0: (a)/, < fA

and t0 < X*; (b) fx < fA and t0 > X*; (c)/, > fA and t0 > X*.



4. If/2 turns out to be greater than J1 (Fig. 5.14b or c), se t / c = /2 and
compute X* according to Eq. (5.40) with t = t0.

5. If/2 turns out to be smaller than/,, set new/! = /2 and t0 = 2f0, and
repeat steps 2 to 4 until we are able to find X*.

Stage 3. The X* found in stage 2 is the minimum of the approximating quad-
ratic /z(X) and we have to make sure that this X* is sufficiently close to the true
minimum X* of/(X) before taking X* ^ X*. Several tests are possible to
ascertain this. One possible test is to compare /(X*) with /z(X*) and consider
X* a sufficiently good approximation if they differ not more than by a small
amount. This criterion can be stated as

Another possible test is to examine whether df/d\ is close to zero at X*. Since
the derivatives of/are not used in this method, we can use a finite-difference
formula for df/d\ and use the criterion

/(X* + AX*) - / ( X * - AX*) ^ £2 (5M)

to stop the procedure. In Eqs. (5.43) and (5.44), z{ and e2 are small numbers
to be specified depending on the accuracy desired.

If the convergence criteria stated in Eqs. (5.43) and (5.44) are not satisfied,
a new quadratic function

h'(\) = a' + b'\ + c'X2

is used to approximate the function/(X). To evaluate the constants a', b' and
c', the three best function values of the current fA = /(X = 0), fB — /(X =
h)ifc — / ( ^ = 2f0), and/ = /(X = X*) are to be used. This process of trying
to fit another polynomial to obtain a better approximation to X* is known as
refitting the polynomial.

For refitting the quadratic, we consider all possible situations and select the
best three points of the present A9 B, C, and X*. There are four possibilities,
as shown in Fig. 5.15. The best three points to be used in refitting in each case
are given in Table 5.5. A new value of X* is computed by using the general
formula, Eq. (5.36). If this X* also does not satisfy the convergence criteria
stated in Eqs. (5.43) and (5.44), a new quadratic has to be refitted according
to the scheme outlined in Table 5.5.



Figure 5.15 Various possibilities for refitting.

TABLE 5.5 Refitting Scheme

Case

1

2

3

4

Characteristics

X* > B
f<fs

X* > B
f>fs

X* < B
f<fs

X* < B
f>fs

New Points for Refitting

New

A
B
C

Neglect old A
A
B
C

Neglect old C
A
B
C

Neglect old C
A
B
C

Neglect old A

Old

B
X*
C

A
B
X*

A
X*
B

X*
B
C



Example 5.10 Find the minimum of/ = X5 - 5X3 - 2OX + 5.

SOLUTION Since this is not a multivariable optimization problem, we can
proceed directly to stage 2. Let the initial step size be taken as t0 = 0.5 and A
= 0.

Iteration 1

£ = / ( X = O) = 5

/i =/(X = f0) = 0.03125 - 5(0.125) - 20(0.5) + 5 = -5.59375

Since/ < Xi, we set/B = /, = -5.59375, and find that

/2 = / (X = 2/0 = 1.0) = -19.0

As/2 < / , we set new t0 = 1 and/, = -19.0. Again we find that / < fA

and hence set/B = / = -19.0, and find that/, = /(X = 2t0 = 2) = - 4 3 .
Since/2 < / , we again set t0 = 2 and/ = - 4 3 . As this / < Z1, set/B = /
= -43 and evaluate/, =/(X = 2t0 = 4) = 629. This time/, > / and hence
we set/c = /2 = 629 and compute X* from Eq. (5.40) as

= 4(-43) - 3(5) - 629 1632 = 2 3 5

4(-43) - 2(629) - 2(5) l ; 1440

Convergence test: Since A = 0,fA = 5, B = 2,fB = - 4 3 , C = 4, and/c

= 629, the values of a, b, and c can be found to be

0 = 5, b = -204, c = 90

and

/,(X*) = /,(1.135) = 5 - 204(1.135) + 90(1.135)2 = -110.9

Since

/ = /(X*) = (1.135)5 - 5(1.135)3 - 20(1.135) + 5.0 = -23.127

we have

h(\*) ~ /(X*) _ -116.5 + 23.127
/(X*) " -23.127 " '

As this quantity is very large, convergence is not achieved and hence we have
to use refitting.



Iteration 2
Since X* < B and/ > fB, we take the new values of A, B, and C as

A = 1.135, /,, = -23.127

B = 2.0, fB = -43.0

C = 4.0, fc = 629.0

and compute new X*, using Eq. (5.36), as

(-23.127)(4.0 - 16.0) + (-43.0)(16.0 - 1.29)
j . , = + (629.0)(1.29 - 4.0) =

2[(-23.127)(2.0 - 4.0) + (-43.0)(4.0 - 1.135)
+ (629.0) (1.135 - 2.0)]

Convergence test: To test the convergence, we compute the coefficients of
the quadratic as

a = 288.0, b = -417.0, c = 125.3

As

/t(X*) = /i(1.661) = 288.0 - 417.0(1.661) + 125.3(1.661)2 = -59.7

f = f(k*) = 12.8 - 5(4.59) - 20(1.661) + 5.0 = -38.37

we obtain

h(\*)-f(k*) -59.70 + 38.37
—AX^O = =3837^ = °-556

Since this quantity is not sufficiently small, we need to proceed to the next
refit.

5.11 CUBIC INTERPOLATION METHOD

The cubic interpolation method finds the minimizing step length X* in four
stages [5.5, 5.11]. It makes use of the derivative of the function/:

/(X) = ~r = -^-/(X + XS) = S7Vf(X + XS)
ah ah

The first stage normalizes the S vector so that a step size X = 1 is acceptable.
The second stage establishes bounds on X*, and the third stage finds the value



of X* by approximating/(X) by a cubic polynomial h(K). If the X* found in
stage 3 does not satisfy the prescribed convergence criteria, the cubic poly-
nomial is refitted in the fourth stage.

Stage 1. Calculate A = max, |^ | , where |^ | is the absolute value of the /th
component of S, and divide each component of S by A. An alternative method
of normalization is to find

A = (s2 + s\ + • • • + s2
n)

m

and divide each component of S by A.

Stage 2. To establish lower and upper bounds on the optimal step size X*, we
need to find two points A and B at which the slope dfld\ has different signs.
We know that at X = 0,

^- = STVf(X)<0

since S is presumed to be a direction of descent^
Hence, to start with we can take A = O and try to find a point X = B at

which the slope dfld\ is positive. Point B can be taken as the first value out
of % 2r0, 4r0, 8r0, . . . at which / ' is nonnegative, where t0 is a preassigned
initial step size. It then follows that X* is bounded in the interval A < X* <
B (Fig. 5.16).

Stage 3. If the cubic equation

h(k) = a + b\ + cX2 + d\3 (5.45)

fIn this case the angle between the direction of steepest descent and S will be less than 90°.

Figure 5.16 Minimum of/(X) lies between A and B.



is used to approximate the function/(X) between points A and B, we need to
find the values fA = /(X = A)9 f'A = df/d\ (X = A)9 fB = /(X = B)9 and/^
= dfld\ (X = B) in order to evaluate the constants, a, b, c, and d in Eq.
(5.45). By assuming that A =£ 0, we can derive a general formula for X*. From
Eq. (5.45) we have

fA = a + bA + cA2 + dA3

fB = a + bB + cB2 + dB3

f'A = b + IcA + 3dA2

f'B = b + 2cB + 3dB2 (5.46)

Equations (5.46) can be solved to find the constants as

a = fA - bA - cA2 - dA3 (5.47)

with

b = (A _ m2 ^fA + ^V^ + 2ABZ) (5.48)

c = ~fA l mz [ ( /4 + B ) Z + fi/^ + ^ 1 ( 5 ' 4 9 )

and

d = 3 ^ 2 (2Z + /^ + f'B) (5.50)

where

Z = 3igA~AB) +/'A +/'B (5.51)

The necessary condition for the minimum of h(\) given by Eq. (5.45) is that

dh
— = b + 2cX + 3JX2 = 0
d\

that is,

%, . ^ ± ( ^ - 3 « ) - ( 5 5 2 )

The application of the sufficiency condition for the minimum of h(\) leads to
the relation



^ =2c + 6dX* > O (5.53)
dh x~*

By substituting the expressions for b, c, and d given by Eqs. (5.48) to (5.50)
into Eqs. (5.52) and (5.53), we obtain

**-A + / f ^ r i "-^ (554)

where

Q = (Z2 - fM?12 (5-55)

2(B - A)QZ + f'A +f'B)(f'A +Z + Q)

-2(B - A)(fA
2 + Zf >B + 3Zf\ + 2Z2)

-2(B + A)f'AfB > 0 (5.56)

By specializing Eqs. (5.47) to (5.56) for the case where A = 0, we obtain

a=fA

b=f'A

c= ~\(Z+f'A)

d = ^2(2Z+f'A+f'B)

»-• am
Q = (Z2 - f'Af'B)m > 0 (5.58)

where

Z = 3(fA
B

fB) +f'A +fB (5.59)

The two values of X* in Eqs. (5.54) and (5.57) correspond to the two pos-
sibilities for the vanishing of h'(X) [i.e., at a maximum of h(\) and at a min-
imum]. To avoid imaginary values of Q, we should ensure the satisfaction of
the condition

Z2
 - W B ^ 0



in Eq. (5.55). This inequality is satisfied automatically since A and B are se-
lected such that/^ < 0 and f'B > 0. Furthermore, the sufficiency condition
(when A = 0) requires that Q > 0, which is already satisfied. Now we com-
pute X* using Eq. (5.57) and proceed to the next stage.

Stage 4. The value of X* found in stage 3 is the true minimum of h(k) and
may not be close to the minimum of/(X). Hence the following convergence
criteria can be used before choosing X* « X*:

A(X*) - / (X*)
/(X*) * e ' ( 5-6 0 )

^- = S7V/ < C2 (5.61)

where e{ and e2 are small numbers whose values depend on the accuracy de-
sired. The criterion of Eq. (5.61) can be stated in nondimensional form as

S7V/

i S f W F * s E ' < 5-6 2 )

If the criteria stated in Eqs. (5.60) and (5.62) are not satisfied, a new cubic
equation

h'(\) = a
f + b'\ + c'X2 + d'\3

can be used to approximate/(X). The constants a', b'', cr, and d' can be
evaluated by using the function and derivative values at the best two points
out of the three points currently available: A, B, and X*. Now the general
formula given by Eq. (5.54) is to be used for finding the optimal step size
X*. If/'(X*) < 0, the new points A and B are taken as X* and B, respectively;
otherwise [if/'(X*) > 0], the new points A and B are taken as A and X*, and
Eq. (5.54) is applied to find the new value of X*. Equations (5.60) and (5.62)
are again used to test for the convergence of X*. If convergence is achieved,
X* is taken as X* and the procedure is stopped. Otherwise, the entire procedure
is repeated until the desired convergence is achieved.

The flowchart for implementing the cubic interpolation method is given in
Fig. 5.17.

Example 5.11 Find the minimum of/ = X5 — 5X3 — 2OX + 5 by the cubic
interpolation method.



Figure 5.17 Flowchart for cubic interpolation method.
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SOLUTION Since this problem has not arisen during a multivariable opti-
mization process, we can skip stage 1. We take A = O and find that

^- (X = A = 0) = 5X4 - 15X2 - 20 = -20 < 0
dX x = o

To find B at which df/d\ is nonnegative, we start with t0 = 0.4 and evaluate
the derivative at t0, 2t0, 4t0, . . .. This gives

/'(*o = 0.4) = 5(0.4)4 - 15(0.4)2 - 20.0 = -22.272

f(2t0 = 0.8) = 5(0.8)4 - 15(0.8)2 - 20.0 = -27.552

/'(4f0 = 1.6) = 5(1.6)4 - 15(1.6)2 - 20.0 = -25.632

/'(8*o = 3.2) = (3.2)4 - 15(3.2)2 - 20.0 = 350.688

Thus we find thatf

A = 0.0, fA = 5.0, f'A = -20.0

B = 3.2, fB = 113.0, f'B = 350.688

A < X* < B

Iteration 1

To find the value of X* and to test the convergence criteria, we first compute
Z and Q as:

Z = 3 ( 5 ' ° ~ 1 1 3 0 ) - 20.0 + 350.688 = 229.588

Q = [229.5882 + (20.0) (350.688)] "2 = 244.0

Hence

-, - ( - 2 0 - 0 + 229.588 + 244.0 \
X* = 3"2 ( -20 .0 + 350.688 +"459.176J = L 8 4 OT ~0A396

By discarding the negative value, we have

X* = 1.84

1As/' has been found to be negative at X = 1.6 also, we can take A = 1.6 for faster convergence.



Convergence criterion: If X* is close to the true minimum, X*, then/'(X*)
= df(k*)/d\ should be approximately zero. Since/' = 5X4 - 15X2 - 20,

/'(X*) = 5(1.84)4 - 15(1.84)2 - 20 = -13.0

Since this is not small, we go to the next iteration or refitting. As/'(X*) < 0,
we take A = X* and

fA =/(X*) = (1.84)5 - 5(1.84)3 - 20(1.84) + 5 = -41.70

Thus

A = 1.84, fA = -41.70, f'A = -13.0

B = 3.2, fB = 113.0, f'B = 350.688

A < X* < B

Iteration 2

Z = 3^4On7J -I1QA ^ " 1 3 ° + 3 5 0 - 6 8 8 = -3.312

Q = [(-3.312)2 + (13.0)(350.688)]l/2 = 67.5

Hence

Convergence criterion:

/'(X*) = 5.0(2.05)4 - 15.0(2.05)2 - 20.0 = 5.35

Since this value is large, we go the next iteration with B = X* = 2.05 [as
/'(X*) > 0] and

fB = (2.05)5 - 5.0(2.05)3 - 20.0(2.05) + 5.0 = -42.90

Thus

A = 1.84, fA = -41.70, f'A = -13.00

B = 2.05, fB = -42.90, f'B = 5.35

A < X* < B



Iteration 3

3.0(-41.70 H- 42.90)
Z - (2.05-!.84) " 1 3 ° ° + 5 ' 3 5 " 9 ' 4 9

Q = [(9.49)2 + (13.0)(5.35)]1/2 = 12.61

Therefore,

Convergence criterion:

/'(X*) = 5.0(2.0086)4 - 15.0(2.0086)2 - 20.0 = 0.855

Assuming that this value is close to zero, we can stop the iterative process and
take

X* ~ X* = 2.0086

5.12 DIRECT ROOT METHODS

The necessary condition for/(X) to have a minimum of X* is that/'(X*) =
0. The direct root methods seek to find the root (or solution) of the equation,
/'(X) = 0. Three root-finding methods—the Newton, the quasi-Newton, and
the secant methods—are discussed in this section.

5.12.1 Newton Method

Consider the quadratic approximation of the function/(X) at X = X, using the
Taylor's series expansion:

/(X) =f(\) +/'(X1)(X - X,) + l2f"(\)(\ - X,)2 (5.63)

By setting the derivative of Eq. (5.63) equal to zero for the minimum of/(X),
we obtain

/'(X) = /'(X/) + /"(X;)(X - \) = 0 (5.64)

If X1- denotes an approximation to the minimum of/(X), Eq. (5.64) can be
rearranged to obtain an improved approximation as



Thus the Newton method, Eq. (5.65), is equivalent to using a quadratic ap-
proximation for the function/(X) and applying the necessary conditions. The
iterative process given by Eq. (5.65) can be assumed to have converged when
the derivative, /'(X/ + 0, is close to zero:

|/'(Ai+i)| ^ e (5.66)

where e is a small quantity. The convergence process of the method is shown
graphically in Fig. 5.18a.

Remarks:

1. The Newton method was originally developed by Newton for solving
nonlinear equations and later refined by Raphson, and hence the method
is also known as Newton-Raphson method in the literature of numerical
analysis.

2. The method requires both the first- and second-order derivatives of/(X).
3. If/"(X1-) = 0 [in Eq. (5.65)], the Newton iterative method has a pow-

erful (fastest) convergence property, known as quadratic convergence.^
4. If the starting point for the iterative process is not close to the true so-

lution X*, the Newton iterative process might diverge as illustrated in
Fig. 5.18*.

Example 5.12 Find the minimum of the function

/(X) = 0.65 - " ' 7 ^ 2 - °-6 5 X t a n~' \
1 + A X

using the Newton-Raphson method with the starting point X) = 0 . 1 . Use e =
0.01 in Eq. (5.66) for checking the convergence.

SOLUTION The first and second derivatives of the function/(X) are given
by

, , , . , 1.5X 0.65X n ^ _, 1
f (X) = ̂ TW + TTx* - °-65 tan x

ftw - L 5 ( 1 ~ 3^2) 0-65(1 - X2) 0.65 _ 2.8 - 3.2X2

; (A) " a + x2)3 + a + x2)2 + i + x2 " (i + x2)3

1ThC definition of quadratic convergence is given in Section 6.7.



Figure 5.18 Iterative process of Newton method: (a) convergence; (b) divergence.
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Iteration 1

X1 = 0.1, /(X1) = -0.188197, /'(X1) = -0.744832, /"(X1) = 2.68659

X ! - x ' - / w = 0377241

Convergence check: \f '(X2)I = |-0.138230| > e.

Iteration 2

/(X2) = -0.303279, /'(X2) = -0.138230, /"(X2) = 1.57296

Xj-^"7w-0-465"9

Convergence check: | / ' (X3) | = | —0.0179078) > e.

Iteration 3

/(X3) = -0.309881, /'(X3) = -0.0179078, /"(X3) = 1.17126

X4 = X3 - ^ g = 0.480409

Convergence check: 1/'(X4)I = |-O.OOO5O33| > e.
Since the process has converged, the optimum solution is taken as X* ~ X4

= 0.480409.

5.12.2 Quasi-Newton Method

If the function being minimized /(X) is not available in closed form or is
difficult to differentiate, the derivatives/'(X) and/"(X) in Eq. (5.65) can be
approximated by the finite difference formulas as

m ) . / < * - + ^ - * » . - * > ( 5 . 6 7 )
ZZlA

/''(X1) = / ^ + AX)-2 / (X , . ) + / (X , . -AX) ( 5 6 8 )

AX

where AX is a small step size. Substitution of Eqs. (5.67) and (5.68) into Eq.
(5.65) leads to

X = X - AX[/(X,+ AX) - / ( X , - AX)]
A/ +1 A/ 2[/(X1- + AX) - 2/(X1) + /(X1 - AX)] KD'W)



The iterative process indicated by Eq. (5.69) is known as the quasi-Newton
method. To test the convergence of the iterative process, the following crite-
rion can be used:

I / ' C W I - 1 / < ^ + ^ > 2 - / ^ . - ^ | £ « ( 5 . 7 0 )

where a central difference formula has been used for evaluating the derivative
of/and e is a small quantity.

Remarks:

1. The central difference formulas have been used in Eqs. (5.69) and (5.70).
However, the forward or backward difference formulas can also be used
for this purpose.

2. Equation (5.69) requires the evaluation of the function at the points
X1- + AX and \ — AX in addition to \ in each iteration.

Example 5.13 Find the minimum of the function

/(X) = 0.65 - "'7^2 - °-65X tan~! I1 H- X X

using quasi-Newton method with the starting point X1 = 0.1 and the step size
AX = 0.01 in central difference formulas. Use e = 0.01 in Eq. (5.70) for
checking the convergence.

SOLUTION
Iteration 1

X = 0.1, AX = 0.01, e = 0.01, / , = /(X1) = -0.188197,

/ + = / ( \ , H- AX) = -0.195512, / f = / ( X , - AX) = -0.180615

f+ _ f-
Convergence check: | / ' ( X 2 ) I = . A . = 0.137300 > e.

2AX

Iteration 2

/2 =/(X2) = -0.303368, /2
+ = / ( X 2 + AX) = -0.304662,

fi =/(X2 - A^) = -0.301916



^ - «%?*i%'- ° 46539°
Convergence check: \f'(\3)\ = ——r^1- = 0.017700 > e.

2AX
Iteration 3

/3 =/(X3) = -0.309885, /3
+ = / (X 3 + AX) = -0.310004,

f- = / (X 3 - AX) = -0.309650

Convergence check: 1/'(X4) =
 J \ .J 4 = 0.000350 < e.

2AX
Since the process has converged, we take the optimum solution as X* « X4

= 0.480600.

5.12.3 Secant Method

The secant method uses an equation similar to Eq. (5.64) as

/'(X) =f'(\) + S(X-X1) =0 (5.71)

where s is the slope of the line connecting the two points (A J'(A)) and
(BJ' (B)), where A and B denote two different approximations to the correct
solution, X*. The slope s can be expressed as (Fig. 5.19)

Equation (5.71) approximates the function/'(X) between A and B as a linear
equation (secant), and hence the solution of Eq. (5.71) gives the new approx-
imation to the root of/'(X) as

\ . /'(X,) f (A)(B - A)
X< + 1 = X< ~ ~T = A ~ /'(B)-T(A) (5-?3)

The iterative process given by Eq. (5.73) is known as the secant method (Fig.
5.19). Since the secant approaches the second derivative of /(X) at A as B
approaches A, the secant method can also be considered as a quasi-Newton
method. It can also be considered as a form of elimination technique since part



Figure 5.19 Iterative process of the secant method.

of the interval, (̂ 4,A/ + 1) in Fig. 5.19, is eliminated in every iteration. The
iterative process can be implemented by using the following step-by-step pro-
cedure.

1. Set X1 = A = 0 and evaluate/ '^) . The value of/'(,4) will be negative.
Assume an initial trial step length t0. Set i = 1.

2. Evaluate/'Oo).

3. If/'('o) < 0, set A = \ = to,f'(A) = ff(t0)9 new t0 = 2t0, and go to
step 2.

4. Iff (t0) > 0, set B = to,f '(B) = f'(t0), and go to step 5.
5. Find the new approximate solution of the problem as

f (A)(B - A)
X^=A-f>(B)-f>(A) ( 5 ' 7 4 )

6. Test for convergence:

1/'(X1 + 1)I < e (5.75)

Slope, s



Figure 5.20 Situation when f'A varies very slowly.

where e is a small quantity. If Eq. (5.75) is satisfied, take X* « X1 + 1

and stop the procedure. Otherwise, go to step 7.
7. If/'(X / + 1) > 0, set new B = X/ + , , / ' ( £ ) = / ' (X / + 1), / = / + 1, and

go to step 5.
8. I f / ' ( \ + l ) < 0, set new A = X1-+,,/'(^) =/ ' (X 1 + 1 U = i + 1, and

go to step 5.

Remarks:

1. The secand method is identical to assuming a linear equation for/'(X).
This implies that the original function,/(X), is approximated by a quad-
ratic equation.

2. In some cases we may encounter a situation where the function/'(X)
varies very slowly with X, as shown in Fig. 5.20. This situation can be
identified by noticing that the point B remains unaltered for several con-
secutive refits. Once such a situation is suspected, the convergence pro-
cess can be improved by taking the next value of X, + x as (A + B)Il
instead of finding its value from Eq. (5.74).

Example 5.14 Find the minimum of the function

/(X) = 0.65 - - ^ I 1 " °-65^ tan"1 \
1 + A A.

using the secant method with an initial step size of t0 = 0.1, X1 = 0.0, and
e = 0.01.



SOLUTION X1 = A = 0.0, t0 = 0.1, /''(A) = -1.02102, B = A + J0 =
0.1,/'(B) = -0.744832. Since/'(B) < 0, we set new A = OA9 f'(A) =
-0.744832, t0 = 2(0.1) = 0.2, B = X1 + t0 = 0.2, and compute / '(B) =
-0.490343. Since/'(B) < 0, we set new A = OXf(A) = -0.490343, t0

= 2(0.2) = 0.4, B = X1 + t0 = 0.4, and compute/'(B) = -0.103652. Since
/'(B) < 0, we set new A = 0.4, /''(A) = -0.103652, t0 = 2(0.4) = 0.8, B
= X1 + t0 = 0.8, and compute/'(B) = +0.180800. Since/'(B) > 0, we
proceed to find X2.

Iteration 1
Since A = X1 = 0.4, f'(A) = -0.103652, B = 0.8,/'(B) = +0.180800, we
compute

Convergence check: |/'(X2)I = |+0.0105789| > e.

Iteration 2
Since/'(X2) = +0.0105789 > 0, we set new ,4 = OA9 f'(A) = -0.103652,
B = X2 = 0.545757,/'(B) =/ ' (X2) = +0.0105789, and compute

Convergence check: | / '(X3) | = |+0.00151235| < e.
Since the process has converged, the optimum solution is given by X* «

X3 = 0.490632.

5.13 PRACTICAL CONSIDERATIONS

5.13.1 How to Make the Methods Efficient and More Reliable

In some cases, some of the interpolation methods discussed in Sections 5.10
to 5.12 may be very slow to converge, may diverge, or may predict the min-
imum of the function, /(X), outside the initial interval of uncertainty, espe-
cially when the interpolating polynomial is not representative of the variation
of the function being minimized. In such cases we can use the Fibonacci or
golden section method to find the minimum. In some problems it might prove
to be more efficient to combine several techniques. For example, the unre-
stricted search with an accelerated step size can be used to bracket the mini-
mum and then the Fibonacci or the golden section method can be used to find
the optimum point. In some cases the Fibonacci or golden section method can
be used in conjunction with an interpolation method.



5.13.2 Implementation in Multivariable Optimization Problems

As stated earlier, the one-dimensional minimization methods are useful in
multivariable optimization problems to find an improved design vector X1- + \
from the current design vector X, using the formula

X1 + 1 = Xf + XfS1- (5.76)

where S1- is the known search direction and X* is the optimal step length found
by solving the one-dimensional minimization problem as

Xf = min [/(X1 + X1-Sf)] (5.77)

X/

Here the objective function/is to be evaluated at any trial step length J0 as

f(tQ) = /(X1- + t0S() (5.78)
Similarly, the derivative of the function / with respect to X corresponding to
the trial step length t0 is to be found as

^- = SfAfIx-* (5.79)

Separate function programs or subroutines can be written conveniently to im-
plement Eqs. (5.78) to (5.79).

5.13.3 Comparison of Methods

It has been shown in Section 5.9 that the Fibonacci method is the most efficient
elimination technique in finding the minimum of a function if the initial inter-
val of uncertainty is known. In the absence of the initial interval of uncertainty,
the quadratic interpolation method or the quasi-Newton method is expected to
be more efficient when the derivatives of the function are not available. When
the first derivatives of the function being minimized are available, the cubic
interpolation method or the secant method are expected to be very efficient.
On the other hand, if both the first and second derivatives of the function are
available, the Newton method will be the most efficient one in finding the
optimal step length, X*.

In general, the efficiency and reliability of the various methods are problem
dependent and any efficient computer program must include many heuristic
additions not indicated explicitly by the method. The heuristic considerations
are needed to handle multimodal functions (functions with multiple extreme
points), sharp variations in the slopes (first derivatives) and curvatures (second
derivatives) of the function, and the effects of round-off errors resulting from



the precision used in the arithmetic operations. A comparative study of the
efficiencies of the various search methods is given in Ref. [5.10].

REFERENCES AND BIBLIOGRAPHY

5.1 J. S. Przemieniecki, Theory of Matrix Structural Analysis, McGraw-Hill, New
York, 1968.

5.2 M. J. D. Powell, An efficient method for finding the minimum of a function of
several variables without calculating derivatives, Computer Journal, Vol. 7, pp.
155-162, July 1964.

5.3 R. Fletcher and C M . Reeves, Function minimization by conjugate gradients,
Computer Journal, Vol. 7, pp. 149-154, July 1964.

5.4 B. Carnahan, H. A. Luther, and J. O. Wilkes, Applied Numerical Methods,
Wiley, New York, 1969.

5.5 R. L. Fox, Optimization Methods for Engineering Design, Addison-Wesley,
Reading, Mass., 1971.

5.6 D. J. Wilde, Optimum Seeking Methods, Prentice Hall, Englewood Cliffs, NJ. ,
1964.

5.7 A. I. Cohen, Stepsize analysis for descent methods, Journal of Optimization
Theory and Applications, Vol. 33, pp. 187-205, 1981.

5.8 P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic
Press, New York, 1981.

5.9 J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Op-
timization and Nonlinear Equations, Prentice Hall, Englewood Cliffs, NJ. ,
1983.

5.10 R. P. Brent, Algorithms for Minimization Without Derivatives, Prentice Hall,
Englewood Cliffs, NJ. , 1973.

5.11 W. C. Davidon, Variable metric method for minimization, Argonne National
Laboratory, ANL-5990 (rev), 1959.

REVIEW QUESTIONS

5.1 What is an one-dimensional minimization problem?

5.2 What are the limitations of classical methods in solving a one-dimen-
sional minimization problem?

5.3 What is the difference between elimination and interpolation methods?

5.4 Define Fibonacci numbers.

5.5 What is the difference between Fibonacci and golden section methods?

5.6 What is a unimodal function?

5.7 What is an interval of uncertainty?



5.8 Suggest a method of finding the minimum of a multimodal function.

5.9 What is an exhaustive search method?

5.10 What is a dichotomous search method?

5.11 Define the golden mean.

5.12 What is the difference between quadratic and cubic interpolation meth-
ods?

5.13 Why is refitting necessary in interpolation methods?

5.14 What is a regula falsi method?

5.15 What is the basis of the interval halving method?

5.16 What is the difference between Newton and quasi-Newton methods?

5.17 What is the secant method?

5.18 Answer true or false.
(a) A unimodal function cannot be discontinuous.
(b) All elimination methods assume the function to be unimodal.

(c) The golden section method is more accurate than the Fibonacci
method.

(d) Nearly 50% of the interval of uncertainty is eliminated with each
pair of experiments in the dichotomous search method.

(e) The number of experiments to be conducted is to be specified be-
forehand in both the Fibonacci and golden section methods.

PROBLEMS

5.1 Find the minimum of the function

f(x) = 0.65 - ° +
7 5

2 - 0.65JC tan"1 ^

using the following methods.

(a) Unrestricted search with a fixed step size of 0.1 from the starting
point 0.0

(b) Unrestricted search with an accelerated step size using an initial
step size of 0.1 and starting point of 0.0

(c) Exhaustive search method in the interval (0,3) to achieve an accu-
racy of within 5 % of the exact value

(d) Dichotomous search method in the interval (0,3) to achieve an ac-
curacy of within 5 % of the exact value using a value of 5 = 0.0001



(e) Interval halving method in the interval (0,3) to achieve an accuracy
of within 5 % of the exact value

5.2 Find the minimum of the function given in Problem 5.1 using the quad-
ratic interpolation method with an initial step size of 0.1.

5.3 Find the minimum of the function given in Problem 5.1 using the cubic
interpolation method with an initial step size of t0 = 0.1.

5.4 Plot the graph of the function/(JC) given in Problem 5.1 in the range
(0,3) and identify its minimum.

5.5 The shear stress induced along the z-axis when two cylinders are in
contact with each other is given by

where 2b is the width of the contact area and /?max is the maximum
pressure developed at the center of the contact area (Fig. 5.21):

/ *-* , 1--A172

I IF E1 E2 \

*-l w i i <2)

\ 4 + * I
IF

/W = ^ (3)

F is the contact force; Ex and E2 are Young's moduli of the two cyl-
inders; vx and V2 are Poisson's ratios of the two cylinders; dx and d2 the
diameters of the two cylinders, and / the axial length of contact (length
of the shorter cylinder). In many practical applications, such as roller
bearings, when the contact load (F) is large, a crack originates at the
point of maximum shear stress and propagates to the surface leading to
a fatigue failure. To locate the origin of a crack, it is necessary to find
the point at which the shear stress attains its maximum value. Show that
the problem of finding the location of the maximum shear stress for



Contact area

Figure 5.21 Contact stress between two cylinders.

P1 = P2 = 0.3 reduces to maximizing the function

/(X) = Wh ~ V r T 7 (' " TTl?) + x (4)

where/ = rzy/pmax and X = zlb.

5.6 Plot the graph of the function/(X) given by Eq. (4) in Problem 5.5 in
the range (0,3) and identify its maximum.

5.7 Find the maximum of the function given by Eq. (4) in Problem 5.5
using the following methods.
(a) Unrestricted search with a fixed step size of 0.1 from the starting

point 0.0
(b) Unrestricted search with an accelerated step size using an initial

step length of 0.1 and a starting point of 0.0
(c) Exhaustive search method in the interval (0,3) to achieve an accu-

racy of within 5 % of the exact value

m̂ax

m̂ax



(d) Dichotomous search method in the interval (0,3) to achieve an ac-
curacy of within 5 % of the exact value using a value of 8 = 0.0001

(e) Interval halving method in the interval (0,3) to achieve an accuracy
of within 5 % of the exact value

5.8 Find the maximum of the function given by Eq. (4) in Problem 5.5
using the following methods.
(a) Fibonacci method with n = 8
(b) Golden section method with n = 8

5.9 Find the maximum of the function given by Eq. (4) in Problem 5.5
using the quadratic interpolation method with an initial step length of
0.1.

5.10 Find the maximum of the function given by Eq. (4) in Problem 5.5
using the cubic interpolation method with an initial step length of t0 =
0.1.

5.11 Find the maximum of the function/(X) given by Eq. (4) in Problem
5.5 using the following methods.
(a) Newton method with the starting point 0.6
(b) Quasi-Newton method with the starting point 0.6 and a finite dif-

ference step size of 0.001
(c) Secant method with the starting point X1 = 0.0 and t0 = OA

5.12 Prove that a convex function is unimodal.

5.13 Compare the ratios of intervals of uncertainty (LJL0) obtainable in the
following methods for n = 2, 3, . . . , 10.
(a) Exhaustive search
(b) Dichotomous search with 5 = 10"4

(c) Interval halving method
(d) Fibonacci method
(e) Golden section method

5.14 Find the number of experiments to be conducted in the following meth-
ods to obtain a value of LnIL0 = 0.001.
(a) Exhaustive search
(b) Dichotomous search with 5 = 10~4

(c) Interval halving method
(d) Fibonacci method
(e) Golden section method

5.15 Find the value of x in the interval (0,1) which minimizes the function
/ = x(x - 1.5) to within ±0.05 by (a) the golden section method and
(b) the Fibonacci method.



5.16 Find the minimum of the function/ = X5 — 5X3 — 2OX + 5 by the
following methods.

(a) Unrestricted search with a fixed step size of 0.1 starting from X =
0.0

(b) Unrestricted search with accelerated step size from the initial point
0.0 with a starting step length of 0.1

(c) Exhaustive search in the interval (0,5)
(d) Dichotomous search in the interval (0,5) with 8 = 0.0001
(e) Interval halving method in the interval (0,5)
(f) Fibonacci search in the interval (0,5)
(g) Golden section method in the interval (0,5)

5.17 Find the minimum of the function/ = (X/log X) by the following meth-
ods (take the initial trial step length as 0.1).
(a) Quadratic interpolation method

(b) Cubic interpolation method

5.18 Find the minimum of the function/ = X/log X using the following meth-
ods.
(a) Newton method
(b) Quasi-Newton method
(c) Secant method

5.19 Consider the function

_ 2JC2 + 2x\ + 3*3 - 2Jc1JC2 - 2JC2JC3

i " x\ + x\ + 2Jc3
1

Substitute X = X1 +XS into this function and derive an exact formula
for the minimizing step length X*.

5.20 Minimize the function/ = Jc1 — JC2 H- 2JC2 H- 2JC1JC2 H- X\ starting from
the point X1 = I o ) along the direction S = { ~o } using the quadratic
interpolation method with an initial step length of 0.1.

5.21 Consider the problem:

Minimize/(X) = 100(JC2 - JC2)2 H - ( I - Jc1)
2

and the starting point, X1 = { " / } . Find the minimum of / (X) along
the direction, S1 = {o} using quadratic interpolation method. Use a
maximum of two refits.

5.22 Solve Problem 5.21 using the cubic interpolation method. Use a max-
imum of two refits.



5.23 Solve Problem 5.21 using the direct root method. Use a maximum of
two refits.

5.24 Solve Problem 5.21 using the Newton method. Use a maximum of two
refits.

5.25 Solve Problem 5.21 using the Fibonacci method with L0 = (0,0.1).

5.26 Write a computer program, in the form of a subroutine, to implement
the Fibonacci method.

5.27 Write a computer program, in the form of a subroutine, to implement
the golden section method.

5.28 Write a computer program, in the form of a subroutine, to implement
the quadratic interpolation method.

5.29 Write a computer program, in the form of a subroutine, to implement
the cubic interpolation method.

5.30 Write a computer program, in the form of a subroutine, to implement
the secant method.



NONLINEAR PROGRAMMING II:
UNCONSTRAINED OPTIMIZATION
TECHNIQUES

6.1 INTRODUCTION

This chapter deals with the various methods of solving the unconstrained min-
imization problem:

X2

Find X = . which minimizes/(X) (6.1)

^xnJ

It is true that rarely a practical design problem would be unconstrained; still,
a study of this class of problems is important for the following reasons:

1. The constraints do not have significant influence in certain design prob-
lems.

2. Some of the powerful and robust methods of solving constrained min-
imization problems require the use of unconstrained minimization tech-
niques.

3. The study of unconstrained minimization techniques provide the basic
understanding necessary for the study of constrained minimization meth-
ods.

4. The unconstrained minimization methods can be used to solve certain
complex engineering analysis problems. For example, the displacement

6



response (linear or nonlinear) of any structure under any specified load
condition can be found by minimizing its potential energy. Similarly,
the eigenvalues and eigenvectors of any discrete system can be found by
minimizing the Rayleigh quotient.

As discussed in Chapter 2, a point X* will be a relative minimum of/(X) if
the necessary conditions

| f (X = X*) = 0, / = 1,2,. . . ,/i (6.2)
dxt

are satisfied. The point X* is guaranteed to be a relative minimum if the Hes-
sian matrix is positive definite, that is,

Jx* = Mx* = T ^ T - (X*) = positive definite (6.3)
IdX1 dXj J

Equations (6.2) and (6.3) can be used to identify the optimum point during
numerical computations. However, if the function is not differentiate, Eqs.
(6.2) and (6.3) cannot be applied to identify the optimum point. For example,
consider the function

( ax for JC > 0
fix) "

^-bx for JC < 0

where a > 0 and b > 0. The graph of this function is shown in Fig. 6.1. It
can be seen that this function is not differentiate at the minimum point, JC* =
0, and hence Eqs. (6.2) and (6.3) are not applicable in identifying JC*. In all
such cases, the commonly understood notion of a minimum, namely,/(X*) <
/(X) for all X, only can be used to identify a minimum point. The following
example illustrates the formulation of a typical analysis problem as an uncon-
strained minimization problem.

Example 6.1 A cantilever beam is subjected to an end force P0 and an end
moment M0 as shown in Fig. 6.2a. By using a one-finite-element model indi-

Figure 6.1 Function is not different! -
able at minimum point.



Figure 6.2 Finite-element model of a cantilever beam,

cated in Fig. 6.2b, the transverse displacement, w(x), can be expressed as [6.1]

P O

W(X) = [N1(X) N2(X) N3(X) N4(X)) ^ (E1)
1 u3 \

where Nj (x) are called shape functions and are given by

N1(X) = 2OL3 - 3a 2 + 1 (E2)

JSf2(X) = (a3 - 2a2 + a)l (E3)

N3(x) = - 2 a 3 + 3a 2 (E4)

N4(JC) = (a3 - OL2)1 (E5)



a. = x/l, and W1, u2, u3, and U4 are the end displacements (or slopes) of the
beam. The deflection of the beam at point A can be found by minimizing the
potential energy of the beam (F), which can be expressed as [6.1]

1 f1 /d2w\2

F = 2 Jo EI\d^J *** ~ P°U3 " M°W 4 (Ee)

where E is Young's modulus and / is the area moment of inertia of the beam.
Formulate the optimization problem in terms of the variables X1=U3 and X2

= u4l for the case P0I
3IEI = 1 and M0I

2IEI = 2.

SOLUTION Since the boundary conditions are given by Ux = U2 = 0, w(x)
can be expressed as

w(x) = ( -2a 3 + 3a2)u3 + (a3 - a2)lu4 (E7)

so that

g = f (-2« + 1) + ^(3«-l) (E8)

Equation (E6) can be rewritten as

F=\iEii^)ida-p^-M^

= j j (6W3 + 2 M | / 2 - 6M3M4/) - P0W3 - M0M4 (E 9 )

By using the relations U3 = X1, U4I = X2, P0I
3IEI = 1, and M0I

2IEI = 2, and
introducing the notation/ = Fl3IEI, Eq. (E9) can be expressed as

/ = 6x 1 - 6X1Jf2 + 2x1 ~ X1 - Ix2 (E10)

Thus the optimization problem is to determine Xx and X2, which minimize the
function/given by Eq. (E10).

6.1.1 Classification of Unconstrained Minimization Methods

Several methods are available for solving an unconstrained minimization prob-
lem. These methods can be classified into two broad categories as direct search



TABLE 6.1 Unconstrained Minimization Methods

Direct Search Methods0 Descent Methods*

Random search method Steepest descent (Cauchy) method
Grid search method Fletcher-Reeves method
Univariate method Newton's method
Pattern search methods Marquardt method

Powell's method Quasi-Newton methods
Hooke-Jeeves method Davidon-Fletcher-Powell method

Rosenbrock's method Broyden-Fletcher-Goldfarb-Shanno method
Simplex method
aDo not require the derivatives of the function.
^Require the derivatives of the function.

methods and descent methods as indicated in Table 6.1. The direct search
methods require only the objective function values but not the partial deriva-
tives of the function in finding the minimum and hence are often called the
nongradient methods. The direct search methods are also known as zeroth-
order methods since they use zeroth-order derivatives of the function. These
methods are most suitable for simple problems involving a relatively small
number of variables. These methods are, in general, less efficient than the
descent methods. The descent techniques require, in addition to the function
values, the first and in some cases the second derivatives of the objective func-
tion. Since more information about the function being minimized is used
(through the use of derivatives), descent methods are generally more efficient
than direct search techniques. The descent methods are known as gradient
methods. Among the gradient methods, those requiring only first derivatives
of the function are called first-order methods', those requiring both first and
second derivatives of the function are termed second-order methods.

6.1.2 General Approach

All the unconstrained minimization methods are iterative in nature and hence
they start from an initial trial solution and proceed toward the minimum point
in a sequential manner. The general iterative scheme is shown in Fig. 6.3 as
a flow diagram. It is important to note that all the unconstrained minimization
methods (1) require an initial point X1 to start the iterative procedure, and (2)
differ from one another only in the method of generating the new point X1- + x

(from X1) and in testing the point X1- +, for optimality.

6.1.3 Rate of Convergence

Different iterative optimization methods have different rates of convergence.
In general, an optimization method is said to have convergence of order p



Figure 6.3 General iterative scheme of optimization,

if [6.2]

where X1- and X1-+ 1 denote the points obtained at the end of iterations i and
/ 4 - 1 , respectively, X* represents the optimum point, and ||X|| denotes the
length or norm of the vector X:

I|X|| = xlx\ + x\ + • • • + x\ (6.5)

If p = 1 and 0 < k < 1, the method is said to be linearly convergent (cor-
responds to slow convergence), lip = 2, the method is said to be quadratically
convergent (corresponds to fast convergence). An optimization method is said
to have superlinear convergence (corresponds to fast convergence) if

Start with a trial point X1

Set i = 1

Find AX/)

Generate a new point *i + i

Find/-(X1 + 1)

Is convergence satisfied?
No

S e t i = i + l

Yes

Take *opt = X. + x

and stop



,•-.00 1IX1- - X* Il

The definitions of rates of convergence given in Eqs. (6.4) and (6.6) are ap-
plicable to single-variable as well as multivariable optimization problems. In
the case of single-variable problems, the vector, X1-, for example, degenerates
to a scalar, xt.

6.1.4 Scaling of Design Variables

The rate of convergence of most unconstrained minimization methods can be
improved by scaling the design variables. For a quadratic objective function,
the scaling of the design variables changes the condition number1" of the Hes-
sian matrix. When the condition number of the Hessian matrix is 1, the steepest
descent method, for example, finds the minimum of a quadratic objective func-
tion in one iteration.

If/ = \ XT [A]X denotes a quadratic term, a transformation of the form

X - [K1Y or M - [ '" H M ,6.7)

can be used to obtain a new quadratic term as

\ Y7W]Y = {-YT[R]T[A][R]Y (6.8)

The matrix [R] can be selected to make [A] = [R]T[A][R] diagonal (i.e., to
eliminate the mixed quadratic terms). For this, the columns of the matrix [R]
are to be chosen as the eigenvectors of the matrix [A]. Next the diagonal ele-
ments of the matrix [Jj can be reduced to 1 (so that the condition number of

fThe condition number of an n Xn matrix, [A], is defined as

cond(H]) = Il[,4]|| HHr1II > 1

where \\[A]\\ denotes a norm of the matrix [A]. For example, the infinite norm of [A] is defined
as the maximum row sum given by

HH]IL = max S Ia17I
1 < i < n J = 1

If the condition number is close to 1, the round-off errors are expected to be small in dealing
with the matrix H] . For example, if condH] is large, the solution vector X of the system of
equations H]X = B is expected to be very sensitive to small variations in [A] and B. If condH]
is close to 1, the matrix [A] is said to be well behaved or well conditioned. On the other hand,
if condH ] is significantly greater than 1, the matrix [A ] is said to be not well behaved or ill
conditioned.



the resulting matrix will be 1) by using the transformation

V - № or M . P" ° 1 M (6.9)
iy2) LO s22j ^z2)

where the matrix [S] is given by

r i=vfe ° 1
[S] = i (6.10)

0 S22 = -TT=
L Va2 2J

Thus the complete transformation that reduces the Hessian matrix of/to an
identity matrix is given by

X = [R][S]Z = [T]Z (6.11)

so that the quadratic term jXr[/4]X reduces to {-ZT[I]Z.
If the objective function is not a quadratic, the Hessian matrix and hence

the transformations vary with the design vector from iteration to iteration. For
example, the second-order Taylor's series approximation of a general nonlin-
ear function at the design vector X, can be expressed as

/(X) = c + B7X + Ix7IA]X (6.12)

where

C=Z(X1) (6.13)

(*l ^

B = '• } (6.14)

^dXn x /

~ ^L ... d2f

dx] X1 fa, dxn x,.

[A] = '; I (6.15)

d2f ^ l
— dxn dxx X1 dx2

n X1 —



The transformations indicated by Eqs. (6.7) and (6.9) can be applied to the
matrix [A] given by Eq. (6.15). The procedure of scaling the design variables
is illustrated with the following example.

Example 6.2 Find a suitable scaling (or transformation) of variables to re-
duce the condition number of the Hessian matrix of the following function to
1:

/(Z1 , X2) = 6x] - 6X1X2 + 2xj - X1 - 2x2 (Ei)

SOLUTION The quadratic function can be expressed as

/(X) = B7X + ±XT[A]X (E2)

where

x = £ ] • B = V i a n d w=[-6 "3
As indicated above, the desired scaling of variables can be accomplished in
two stages.

Stage 1: Reducing [A] to a Diagonal Form, [A]
The eigenvectors of the matrix [A ] can be found by solving the eigenvalue
problem

[[A] - X1[Z]] U1 = 0 (E3)

where X, is the /th eigenvalue and U1 is the corresponding eigenvector. In the
present case, the eigenvalues, X1-, are given by

12 - X, - 6
= X? - 16X; + 12 = 0 (E4)

- 6 4 - X1-

which yield X1 = 8 + V52 = 15.2111 and X2 = 8 - V52 = 0.7889. The
eigenvector U1 corresponding to X, can be found by solving Eq. (E3):

[12 -X 1 -6l Cun^l Co^)

i -6 4 - J U = loj M <12 " "•""' " ̂ ' * °
or M2I = -0.5332M11

that is,

u = M = f L0 1
U' U J 1-O.5332J



and

[ 1 2 - X 2 -61Cu12) CO)

or U11 = 1.8685w12

that is,

" 2 I «22 J (,1-8685 j

Thus the transformation that reduces [A ] to a diagonal form is given by

r ! 1 I M
X = [/?]Y = [U1 U2]Y = (E5)

L-0.5352 1.8685J Iy2J

that is,

*\ = y\ + yi

X2 = -0.5352^1 + 1.8685)>2

This yields the new quadratic term as jYr[/4]Y, where
[19.5682 0.0 1

[A] = [Rf[A][R] =
L 0.0 3.5432J

and hence the quadratic function becomes

/(Ji, yi) = Br[*]Y + № ] Y

= 0.0704^1 - 4.737Oy2 + \ (19.5682)^1 + \ (3.5432)^2 (E6)

Stage 2: Reducing [A] to a Unit Matrix
The transformation is given by Y = [S]Z, where

V 19.5682 ° fO.2262 0.0 1

i ~ Lo.o 0.5313J
V3.5432.



Stage 3: Complete Transformation

The total transformation is given by

X = [R]Y = [R][S]Z = [T]Z (E7)

where

[ 1 I l [0.2262 0 1
[T] = [R][S] = \

L-0.5352 1.8685 J |_0 0.5313 J

f 0.2262 0.53131

~ L—0.1211 0.9927J 8

or

jc, = 0.2262Z1 + 0.5313z2

x2 = -0.121Iz1 + 0.9927z2

With this transformation, the quadratic function of Eq. (E1) becomes

/(Z1, Z2) = BT[T]Z + \ ZT[T]T[A][T]Z

= 0.016Oz1 - 2.5167z2 + \z\ + \z\ (E9)

The contours of the quadratic functions given by Eqs. (E1), (E6), and (E9) are
shown in Fig. 6.4a, b, and c, respectively.

DIRECT SEARCH METHODS

6.2 RANDOM SEARCH METHODS

Random search methods are based on the use of random numbers in finding
the minimum point. Since most of the computer libraries have random number
generators, these methods can be used quite conveniently. Some of the best
known random search methods are presented in this section.

6.2.1 Random Jumping Method

Although the problem is an unconstrained one, we establish the bounds /, and
Ui for each design variable X1•,, i = 1,2,. . . ,n, for generating the random values
o f JC/:

I1 < X1 < ui9 i = 1,2,. . .,n (6.16)



Figure 6.4 Contours of the original and transformed functions.



Figure 6.4 (Continued)

In the random jumping method, we generate sets of n random numbers, (r,,
r2, . . . , rn), that are uniformly distributed between 0 and 1. Each set of these
numbers, is used to find a point, X, inside the hypercube defined by Eqs.
(6.16) as

A A nx + T1(M1 - Z1A

x= ? L 1I + ^i-1M (6.17)

^xnS VZ11 + rn(un - In)J

and the value of the function is evaluated at this point X. By generating a large
number of random points X and evaluating the value of the objective function
at each of these points, we can take the smallest value of/(X) as the desired
minimum point.

6.2.2 Random Walk Method

The random walk method is based on generating a sequence of improved ap-
proximations to the minimum, each derived from the preceding approximation.



Thus if X1- is the approximation to the minimum obtained in the (/ — l)th stage
(or step or iteration), the new or improved approximation in the /th stage is
found from the relation

X/ + 1 = X, + Xu, (6.18)

where X is a prescribed scalar step length and U1 is a unit random vector gen-
erated in the /th stage. The detailed procedure of this method is given by the
following steps [6.3]:

1. Start with an initial point X1, a sufficiently large initial step length X, a
minimum allowable step length e, and a maximum permissible number
of iterations Af.

2. Find the function value/ = /(X1).
3. Set the iteration number as i = 1.
4. Generate a set of n random numbers ru r2, . . . , rn each lying in the

interval [ — 1,1] and formulate the unit vector u as

PO
1 r2

u = —j 5 j-rpy . > (6.19)

(r? + r\ + • • • + r2
n)m .

KrnJ

The directions generated using Eq. (6.19) are expected to have a bias
toward the diagonals of the unit hypercube [6.3]. To avoid such a bias,
the length of the vector, R, is computed as

R = ( r ? + r2 + . . . + ,.2)1/2

and the random numbers generated (r1?r2,. . ., rn) are accepted only if R
< 1 but are discarded if R > 1. If the random numbers are accepted,
the unbiased random vector u, is given by Eq. (6.19).

5. Compute the new vector and the corresponding function value asX =
X1 + Xu and/ =/(X).

6. Compare the values o f / a n d / . If/ < / , set the new values as X1 = X
and/ = / , and go to step 3. If/ > / , go to step 7.

7. If i < N9 set the new iteration number as / = i H- 1 and go to step 4.
On the other hand, if / > N9 go to step 8.

8. Compute the new, reduced, step length as X = X/2. If the new step
length is smaller than or equal to e, go to step 9. Otherwise (i.e., if the
new step length is greater than e), go to step 4.

9. Stop the procedure by taking Xopt « X1 and/opt « / .

This method is illustrated with the following example.



flOut of the directions generated that satisfy R < 1, number of trials required to find a direction
that also reduces the value of/.

Example 6.3 Minimize/(X1, x2) = x{ - X1 + 2x\ + 2xxx2 + x\ using random

walk method from the point X1 = j ' | with a starting step length of X =

1.0. Take e = 0.05 and Af = 100.

SOLUTION The results are summarized in Table 6.2 where only the trials
that produced an improvement are shown.

6.2.3 Random Walk Method with Direction Exploitation

In the random walk method described in Section 6.2.2, we proceed to generate
a new unit random vector U1-+ 1 as soon as we find that U1 is successful in
reducing the function value for a fixed step length X. However, we can expect
to achieve a further decrease in the function value by taking a longer step
length along the direction u,. Thus the random walk method can be improved
if the maximum possible step is taken along each successful direction. This
can be achieved by using any of the one-dimensional minimization methods
discussed in Chapter 5. According to this procedure, the new vector X1-+ 1 is
found as

TABLE 6.2 Minimization of/by Random Walk Method

Step
Length,

X

1.0
1.0

Number of
Trials

Required"

1
2

Components of X1 + Xu

1

-0.93696
-1.15271

2

0.34943
1.32588

Current Objective
Function Value,

/, = / (X 1 +Xu)

-0.06329
-1.11986

Next 100 trials did not reduce the function value.
0.5
0.5

1
3

-1.34361
-1.07318

1.78800
1.36744

-1.12884
-1.20232

Next 100 trials did not reduce the function value.
0.25
0.25
0.25
0.25
0.25
0.25
0.25

0.125

0.0625
0.03125

4
2
8

30
6

50
23

-0.86419
-0.86955
-1.10661
-0.94278
-1.08729
-0.92606
-1.07912

1.23025
1.48019
1.55958
1.37074
1.57474
1.38368
1.58135

-1.21362
-1.22074
-1.23642
-1.24154
-1.24222
-1.24274
-1.24374

Next 100 trials did not reduce the function value.
1 -0.97986 1.50538 -1.24894

Next 100 trials did not reduce the function value.
100 trials did not reduce the function value.
As this step length is smaller than e, the program is terminated.



Xf + 1 = X f + XfU1- (6.20)

where Xf is the optimal step length found along the direction u, so that

fi + i = / ( X / + XfU1-) = inin/CX,. + X1-U1-) (6.21)

X/

The search method incorporating this feature is called the random walk method
with direction exploitation.

Advantages of Random Search Methods

1. These methods can work even if the objective function is discontinuous
and nondifferentiable at some of the points.

2. The random methods can be used to find the global minimum when the
objective function possesses several relative minima.

3. These methods are applicable when other methods fail due to local dif-
ficulties such as sharply varying functions and shallow regions.

4. Although the random methods are not very efficient by themselves, they
can be used in the early stages of optimization to detect the region where
the global minimum is likely to be found. Once this region is found,
some of the more efficient techniques can be used to find the precise
location of the global minimum point.

6.3 GRID SEARCH METHOD

This method involves setting up a suitable grid in the design space, evaluating
the objective function at all the grid points, and finding the grid point corre-
sponding to the lowest function value. For example, if the lower and upper
bounds on the ith design variable are known to be I1 and ui9 respectively, we
can divide the range (Z1-, U1) into pt — 1 equal parts so that x- l ) , jt-2), . . . ,
xt

Pl denote the grid points along the Jt1- axis (i = 1,2,. . .,n). This leads to a
total ofpip2 • • 'Pn grid points in the design space. Grids with/7, = 3 and 4
are shown in a two-dimensional design space in Fig. 6.5. The grid points can
also be chosen based on methods of experimental design [6.4, 6.5]. It can be
seen that the grid method requires prohibitively large number of function eval-
uations in most practical problems. For example, for a problem with 10 design
variables (n = 10), the number of grid points will be 310 = 59, 049 with/?, =
3 and 410 = 1,048,576 with/?, = 4 (* = 1,2,. . .,10). However, for problems
with a small number of design variables, the grid method can be used conve-
niently to find an approximate minimum. Also, the grid method can be used
Io jfind .a good j&artiqg point Jhr one of the more efficient methods.



Figure 6.5 Grids with/?, = 3 and 4.



6.4 UNIVARIATE METHOD

In this method we change only one variable at a time and seek to produce a
sequence of improved approximations to the minimum point. By starting at a
base point X1- in the ith iteration, we fix the values of n - 1 variables and vary
the remaining variable. Since only one variable is changed, the problem be-
comes a one-dimensional minimization problem and any of the methods dis-
cussed in Chapter 5 can be used to produce a new base point Xi + l. The search
is now continued in a new direction. This new direction is obtained by chang-
ing any one of the n — 1 variables that were fixed in the previous iteration. In
fact, the search procedure is continued by taking each coordinate direction in
turn. After all the n directions are searched sequentially, the first cycle is com-
plete and hence we repeat the entire process of sequential minimization. The
procedure is continued until no further improvement is possible in the objective
function in any of the n directions of a cycle. The univariate method can be
summarized as follows:

1. Choose an arbitrary starting point X1 and set / = 1.
2. Find the search direction S,- as

^(1,0,0,. . .,0) for i = 1, n + 1, In + 1, . . .

(0,1,0,. . .,0) for i = 2, n + 2, In + 2, . . .
S<r = (0,0,1,. . .,0) for i = 3, n + 3, In + 3, . . .

^(0,0,0, . . .,1) for i = n, 2n, 3n, . . .

3. Determine whether A, should be positive or negative. For the current
direction S,-, this means find whether the function value decreases in the
positive or negative direction. For this we take a small probe length (e)
and evaluate/ = / ( X , ) , / + = /(X, + eS,), and / " = /(X, - eS,). If
/ + < /•, S, will be the correct direction for decreasing the value of/and
if/~ < / , — S/ will be the correct one. If both/+ and / " are greater
than / , we take X, as the minimum along the direction S,.

4. Find the optimal step length Xf such that

/(X1- ± XfS,) = min(X, ± X1-S1-)
x,

where + or — sign has to be used depending upon whether S, or — S1-
is the direction for decreasing the function value.

5. Set X1-+ 1 = X, ± Xf S, depending on the direction for decreasing the
function value, and / +1 = /(X, + l).



Figure 6.6 Failure of the univariate method on a steep valley.

6. Set the new value of / = / + 1, and go to step 2. Continue this procedure
until no significant change is achieved in the value of the objective func-
tion.

The univariate method is very simple and can be implemented easily. How-
ever, it will not converge rapidly to the optimum solution, as it has a tendency
to oscillate with steadily decreasing progress toward the optimum. Hence it
will be better to stop the computations at some point near to the optimum point
rather than trying to find the precise optimum point. In theory, the univariate
method can be applied to find the minimum of any function that possesses
continuous derivatives. However, if the function has a steep valley, the method
may not even converge. For example, consider the contours of a function of
two variables with a valley as shown in Fig. 6.6. If the univariate search starts
at point P, the function value cannot be decreased either in the direction +S 1

or in the direction +S 2 . Thus the search comes to a halt and one may be misled
to take the point P, which is certainly not the optimum point, as the optimum
point. This situation arises whenever the value of the probe length e needed
for detecting the proper direction ( + S1 or +S2) happens to be less than the
number of significant figures used in the computations.

Example 6.4 Minimize f(xx, X2) = JC1 — X2 + 2x^ + Zx1Jc2 +Jc 2 with the
starting point (0,0).

SOLUTION We will take the probe length (e) as 0.01 to find the correct
direction for decreasing the function value in step 3. Further, we will use the

Optimum point

Line of steep
valley



differential calculus method to find the optimum step length Xf along the di-
rection +S1- in step 4.

Iteration i = 1

Step 2: Choose the search direction S1 as S1 = ] ~ [.

Step 3: To find whether the value of/decreases along S1 or - S 1 , we use the
probe length e. Since

/i =/(X,) = / (0 ,0 ) = 0,

/ + =/(Xi + CS1) = / ( c , 0) = 0.01 - 0 + 2(0.0001)

+ 0 + 0 = 0.0102 > /

/ - = f(X{ - ES1) = / ( - £ , 0) = -0.01 - 0 + 2(0.0001)

+ 0 + 0 = -0.9998 < / ,

- S 1 is the correct direction for minimizing/from X1.

Step 4: To find the optimum step length Xf, we minimize

/(X1 -X1S1) = / ( -X 1 ? 0)
= (-X1) - 0 + 2 (-X1)2 + 0 + 0 = 2\\ - X1

As CIfIdX1 = 0 at X1 = | , we have Xf = | .
Step 5: Set

*-*—a-cra
Z2=Z(X2) =/(-1,0) = -I

Iteration i = 2

Step 2: Choose the search direction S2 as S2 = j 1 (.

Step 3: Since/2 =/(X2) = -0.125,

/ + =/(X 2 + eS2) =/(-0.25,0.01) = -0.1399 < / 2

/ " =/(X 2 - eS2) = / ( -0 .25 , -0 .01) = -0.1099 > / 2

S2 is the correct direction for decreasing the value of/from X2.



Step 4: We minimize/(X2 + X2S2) to find A*.
Here

/(X2 + X2S2) = / ( -0.25,X 2)

= -0 .25 - X2 + 2(0.25)2 - 2(0.25) (X2) + X̂

= Xl - 1.5X2 - 0.125

-^- = 2X2 - 1.5 = 0 at X2* = 0.75
oX2

Step 5: Set

f-0.25^ f(f) f-0.25^)

X1 = X2 + X 2-S 2^ o j + 0 . 7 5 y ^ o 7 5 j
/ 3 = /(X3) = -0.6875

Next we set the iteration number as / = 3, and continue the procedure

until the optimum solution X* = j " | with/(X*) = —1.25 is found.

Note: If the method is to be computerized, a suitable convergence criterion
has to be used to test the point X1 + 1 (/ = 1,2,. . .) for optimality.

6.5 PATTERN DIRECTIONS

In the univariate method, we search for the minimum along directions parallel
to the coordinate axes. We noticed that this method may not converge in some
cases, and that even if it converges, its convergence will be very slow as we
approach the optimum point. These problems can be avoided by changing the
directions of search in a favorable manner instead of retaining them always
parallel to the coordinate axes. To understand this idea, consider the contours
of the function shown in Fig. 6.7. Let the points 1, 2, 3, . . . indicate the
successive points found by the univariate method. It can be noticed that the
lines joining the alternate points of the search (e.g., 1 , 3 ; 2 , 4 ; 3 , 5 ; 4 , 6 ; . . .)
lie in the general direction of the minimum and are known as pattern direc-
tions. It can be proved that if the objective function is a quadratic in two vari-
ables, all such lines pass through the minimum. Unfortunately, this property
will not be valid for multivariable functions even when they are quadratics.
However, this idea can still be used to achieve rapid convergence while finding
the minimum of an n-variable function. Methods that use pattern directions as
search directions are known as pattern search methods.

Two of the best known pattern search methods, the Hooke-Jeeves method



Figure 6.7 Lines defined by the alternate points lie in the general direction of the
minimum.

and the Powell's method, are discussed in Sections 6.6 and 6.7. In general, a
pattern search method takes n univariate steps, where n denotes the number of
design variables and then searches for the minimum along the pattern direction
S1-, defined by

S1- = X1- - X1-_„ (6.22)

where X1 is the point obtained at the end of n univariate steps and X1-_n is the
starting point before taking the n univariate steps. In general, the directions
used prior to taking a move along a pattern direction need not be univariate
directions.

6.6 HOOKE AND JEEVES' METHOD

The pattern search method of Hooke and Jeeves is a sequential technique each
step of which consists of two kinds of moves, the exploratory move and the
pattern move. The first kind of move is included to explore the local behavior
of the objective function, and the second kind of move is included to take
advantage of the pattern direction. The general procedure can be described by
the following steps [6.6].

Minimum point



1. Start with an arbitrarily chosen point X1 = \ } ?, called the starting

UJ
base point, and prescribed step lengths AJC; in each of the coordinate
directions U1-, / = 1, 2, . . . , n. Set k = 1.

2. Compute^ = f(Xk). Set / = 1, Y ^ = X^, and start the exploratory
move as stated in step 3.

3. The variable X1 is perturbed about the current temporary base point Y 1̂- _ i
to obtain the new temporary base point as

r Y M _ , + Ax1 U1- if / + = /(Ykj-\ + Ax, U1-)

< / =/(YiU-,)

Y M _ ! - Ax1
1U1- if / ~ =f(YkJ_x - AX 1 U 1 )

YM j < / = /(YM-,)

^kj-i if / =/<Ykj-i) < min(/ + , / - )

(6.23)

This process of finding the new temporary base point is continued for i
= 1,2,. . . until Xn is perturbed to find Ykn.

4. If the point \ k n remains same as Xk9 reduce the step lengths Ax1 (say,
by a factor of 2), set / = 1 and go to step 3. If Y^n is different from X*,
obtain the new base point as

X,t + i = Y ^ n

and go to step 5.
5. With the help of the base points X^ and X^+ 1 , establish a pattern direc-

tion S as

S = X4 + 1 - X , (6.24)

and find a point Y^ + , 0 as

Y, + Uo = X, + 1 + XS (6.25)

1THe point YkJ indicates the temporary base point obtained from the base point Xk by perturbing
the y'th component of X*.



where X is the step length, which can be taken as 1 for simplicity. Al-
ternatively, we can solve a one-dimensional minimization problem in the
direction S and use the optimum step length X* in place of X in Eq.
(6.25).

6. Set k = k + 1, fk = /(Y^0), i — 1, and repeat step 3. If at the end of
step 3,f(Ykn) < /(Xfc), we take the new base point as Xk + j = Ykn and
go to step 5. On the other hand, if /(Y^n) > /(X*), set X^+1 = X*,
reduce the step lengths Ax1-, set k = k + 1, and go to step 2.

7. The process is assumed to have converged whenever the step lengths fall
below a small quantity e. Thus the process is terminated if

max(Ajc,) < e (6.26)
i

Example 6.5 Minimize /(Jc15Jc2) = Jc1 — Jc2 -f 2JC^ + 2JC1JC2 + JC2 starting from

the point X1 = L . Take AjC1 = AJC2 = 0.8 and e = 0.1.

SOLUTION

Step 1: We take the starting base point as X1 = \ ~i and step lengths as AJC1

= 0.8 and Ax2 = 0.8 along the coordinate directions U1 and U2, respec-
tively. Set k = 1.

Step 2: fx = /(X1) = 0, i = 1, and Y10 = X1 = j ° |

Step 3: To find the new temporary base point, we set i = 1 and evaluate/ =
/(Y10) = 0.0,

/ + =/(Y1 0 + AJC1U1) =/(0.8,0.0) = 2.08

/ " =/(Y1 0 - Ax1U1) =/(-0.8,0.0) = 0.48

Since/ < min( / + , /~ ) , we take Y11 = X1. Next we set / = 2, and evaluate
/ = / (Y n ) = 0.0, and

Z+ = Z(Y11 + Ax2U2) =/(0.0,0.8) = -0.16.

(0.0~)
Since/+ < / , we set Y12 =

(S). 8 J

Step 4: As Y12 is different from X1, the new base point is taken as X2 =

J0.8J-



Step 5: A pattern direction is established as

(0.6) (0.6) (0.6)
S = X2 - X1 = - =

(J).8J (0.0J (J).8J

The optimal step length X* is found by minimizing

/(X2 + XS) =/(0.0, 0.8 + 0.8X) = 0.64 X2 + 0.48 X - 0.16

As dfldk = 1.28 X + 0.48 = 0 at X* = -0.375, we obtain the point Y20

as

(O.O^I (O.O^j f0.(H
Y20 = X2 + X*S = J - 0.375 =

C0.8J C0.8J (J).5j

Step 6: Set k = 2 , / = /2 = /(Y20) = -0.25, and repeat step 3. Thus with /
= 1, we evaluate

/ + =/(Y2 0 + AJc1 U1) =/(0.8,0.5) = 2.63

/ " =/(Y2 0 - Ax1 U1) =/(-0.8,0.5) = -0.57

Since/" < / < / + , we take Y21 = ] ft' L Next we set / = 2 and evaluate

Z = Z(Y21) = -0.57 and

Z+ = Z(Y2I + Ax2U2) =/(-0.8,1.3) = -1.21

A s / + < / we take Y22 = J " J ' * . Since/(Y22) = -1.21 < /(X2) =

—0.25, we take the new base point as X3 = Y22 = j . ' |, and go to step

5. This procedure has to be continued until the optimum point Xopt =
f - i . o l . , .
j . - is found.

6.7 POWELL'S METHOD

Powell's method is an extension of the basic pattern search method. It is the
most widely used direct search method and can be proved to be a method of
conjugate directions [6.7]. A conjugate directions method will minimize a
quadratic function in a finite number of steps. Since a general nonlinear func-



tion can be approximated reasonably well by a quadratic function near its min-
imum, a conjugate directions method is expected to speed up the convergence
of even general nonlinear objective functions. The definition, a method of gen-
eration of conjugate directions and the property of quadratic convergence are
presented in this section.

6.7.1 Conjugate Directions

Definition: Conjugate Directions Let A = [A] be an n x n symmetric ma-
trix. A set of n vectors (or directions) {S,} is said to be conjugate (more ac-
curately A-conjugate) if

SfASj = 0 for all i ± j , i = 1,2,. . .,n, j = 1,2,. . .,n

(6.27)

It can be seen that orthogonal directions are a special case of conjugate direc-
tions (obtained with [A] = [I] in Eq. (6.27)).

Definition: Quadratically Convergent Method If a minimization method,
using exact arithmetic, can find the minimum point in n steps while minimizing
a quadratic function in n variables, the method is called a quadratically con-
vergent method.

Theorem 6.1 Given a quadratic function of n variables and two parallel hy-
perplanes 1 and 2 of dimension k < n. Let the constrained stationary points
of the quadratic function in the hyperplanes be X1 and X2, respectively. Then
the line joining X1 and X2 is conjugate to any line parallel to the hyperplanes.

Proof: Let the quadratic function be expressed as

G(X) = 2-X7AX + B7X + C

The gradient of Q is given by

Vg(X) = AX + B

and hence

Vg(X1) - VG(X2) = A(X1 - X2)

If S is any vector parallel to the hyperplanes, it must be orthogonal to the
gradients VG(X1) and VG(X2). Thus

S7VQ(X1) = S7AX1 + S7B = 0 (6.28)

S7VG(X2) = S7AX2 + S7B = 0 (6.29)



By subtracting Eq. (6.29) from Eq. (6.28), we obtain

S7A(X1 - X2) = 0 (6.30)

Hence S and (X1 — X2) are A — conjugate.
The meaning of this theorem is illustrated in a two-dimensional space in

Fig. 6.8. If X1 and X2 are the minima of Q obtained by searching along the
direction S from two different starting points Xa and X^, respectively, the line
(X1 — X2) will be conjugate to the search direction S.

Theorem 6.2 If a quadratic function

G(X) = ^X7AX + B7X + C (6.31)

is minimized sequentially, once along each direction of a set of n mutually
conjugate directions, the minimum of the function Q will be found at or before
the nth step irrespective of the starting point.

Figure 6.8 Conjugate directions.



Proof: Let X* minimize the quadratic function Q(X). Then

Vg(X*) = B + AX* = 0 (6.32)

Given a point X1 and a set of linearly independent directions S1, S2, . . . , Sn,
constants ft can always be found such that

n

X* = X1 + S 18, S1- (6.33)
/ = 1

where the vectors S1, S2, . . . , Sn have been used as basis vectors. If the
directions S, are A conjugate and none of them is zero, the S, can easily be
shown to be linearly independent and the /S/ can be determined as follows.

Equations (6.32) and (6.33) lead to

B + AX1 + Af S ftS1- J = 0 (6.34)

Multiplying this equation throughout by Sj9 we obtain

Sf(B + AX1) + S/A( 2 ftS,-) = 0 (6.35)

Equation (6.35) can be rewritten as

(B + AX1)
7S7- + 0,-S/AS,- = 0 (6.36)

that is,

* - - 2 ^

Now consider an iterative minimization procedure starting at point X1, and
successively minimizing the quadratic Q(X) in the directions S1, S2, . . . , Sn,
where these directions satisfy Eq. (6.27). The successive points are determined
by the relation

X/ + 1 = X1- + XfS1-, i = 1 to n (6.38)

where X* is found by minimizing Q(Xf + X1-S1-) so that1^

fS,r VQ(X1-+ ,) = 0 is equivalent to dQldkx = 0 at Y = X1-+ ,.

(Ik1 y=i dyj d\

w h e r e j y a r e t h e c o m p o n e n t s o f Y = X1- + , .



SfVg(X1 + 1) = O (6.39)

Since the gradient of Q at the point X, + , is given by

Vg(X1 + 1) = B + AX1 + 1 (6.40)

Eq. (6.39) can be written as

Sf(B + A(X, + X*S,)} = 0 (6.41)

This equation gives

(B + AX,.)rS,
X; ~ sfAsT" (6-42)

From Eq. (6.38), we can express X1 as

X, = X1 + S XfS, (6.43)
7=1

so that

XfAS, = X[AS1- + S Xf SjAS1

= X[AS1- (6.44)

using the relation (6.27). Thus Eq. (6.42) becomes

Xf = - ( B + A X 1 ) 7 ^ r ; (6.45)

which can be seen to be identical to Eq. (6.37). Hence the minimizing step
lengths are given by ft or Xf. Since the optimal point X* is originally ex-
pressed as a sum of n quantities JS1, jS2, . . . , Pn which have been shown to be
equivalent to the minimizing step lengths, the minimization process leads to
the minimum point in n steps or less. Since we have not made any assumption
regarding X1 and the order of S1, S2, . . . ,Sn, the process converges in n steps
or less, independent of the starting point as well as the order in which the
minimization directions are used.

Example 6.6 Consider the minimization of the function

/(Jf1, X2) = 6x] + 2x2
2- 6x\X2 -X1-Ix2



If S1 = j 2 [ denotes a search direction, find a direction S2 which is conjugate

to the direction S1.

SOLUTION The objective function can be expressed in matrix form as

/(X) = B r X + ^X7U]X

and the Hessian matrix [A ] can be identified as

r 12 - 6 i

The direction S2 = ) 1J will be conjugate to S1 = ) 0 ( if

S[M1S2 = O 2) [ ^ ~ ' ] Q = °

which upon expansion gives 2s2 = 0 or S1 = arbitrary and S2 = 0. Since S1

can have any value, we select S1 = 1 and the desired conjugate direction can

be expressed as S2 = j ~ j .

6.7.2 Algorithm

The basic idea of Powell's method is illustrated graphically for a two-variable
function in Fig. 6.9. In this figure the function is first minimized once along
each of the coordinate directions starting with the second coordinate direction
and then in the corresponding pattern direction. This leads to point 5. For the
next cycle of minimization, we discard one of the coordinate directions (the Jc1

direction in the present case) in favor of the pattern direction. Thus we mini-
mize along u2 and S1 and obtain point 7. Then we generate a new pattern
direction S2 as shown in the figure. For the next cycle of minimization, we
discard one of the previously used coordinate directions (the X2 direction in
this case) in favor of the newly generated pattern direction. Then, by starting
from point 8, we minimize along directions S1 and S2, thereby obtaining points
9 and 10, respectively. For the next cycle of minimization, since there is no



Figure 6.9 Progress of Powell's method.

coordinate direction to discard, we restart the whole procedure by minimizing
along the X2 direction. This procedure is continued until the desired minimum
point is found.

The flow diagram for the version of Powell's method described above is
given in Fig. 6.10. Note that the search will be made sequentially in the di-



Figure 6.10 Flowchart for Powell's method.

StopSet i = i + 1

No Yes
Yes is X optimum?

No

Is X optimum?

Set X = X + X*$t

Find X* to minimize
f (X + XS1)

Find X* to minimize /TX+ XSt)
Set X = X + X*$t

No

Yes
lsi = n + 1? Set S1 = X - Z

Set i = 1

Set new
S1 = S1 + 1

i= 1, 2 n
Set Z = X

Set X = X1 + X*Sn

Find X* to minimize /(X1 + XSn)

Set Sj equal to the coordinate unit
vectors i =1 to n

Start with X1



rections Sn ; S1, S2, S3, . . . , Sn_ l 9 Sn; Sp ; S2, S3, . . . , Sn _ i , Sn , S^ ;
Sp

2); S3, S4, . . . , S n_, , Sn , Sp
l), S<,2); S£3), . . . until the minimum point is

found. Here S, indicates the coordinate direction U1- and S{
p
j) the y'th pattern

direction. In Fig. 6.10, the previous base point is stored as the vector Z in
block A, and the pattern direction is constructed by subtracting the previous
base point from the current one in block B. The pattern direction is then used
as a minimization direction in blocks C and D. For the next cycle, the first
direction used in the previous cycle is discarded in favor of the current pattern
direction. This is achieved by updating the numbers of the search directions
as shown in block E. Thus both points Z and X used in block B for the con-
struction of pattern direction are points that are minima along Sn in the first
cycle, the first pattern direction S^1} in the second cycle, the second pattern
direction S^2) in the third cycle, and so on.

Quadratic Convergence. It can be seen from Fig. 6.10 that the pattern direc-
tions S ^ , Sp

2), S^3), . . . are nothing but the lines joining the minima found
along the directions Sn , Sp

l), S^2), . . . respectively. Hence, by Theorem 6.1,
the pairs of directions (Sn , Sp

l)), (Sp
]\ S{2)), and so on, are A-conjugate. Thus

all the directions Sn , S ^ , S(2\ . . . are A-conjugate. Since, by Theorem 6.2,
any search method involving minimization along a set of conjugate directions
is quadratically convergent, Powell's method is quadratically convergent. From
the method used for constructing the conjugate directions Sp

l\ S(2), . . . , we
find that n minimization cycles are required to complete the construction of n
conjugate directions. In the /th cycle, the minimization is done along the al-
ready constructed / conjugate directions and the n — i nonconjugate (coordi-
nate) directions. Thus after n cycles, all the n search directions are mutually
conjugate and a quadratic will theoretically be minimized in n2 one-dimen-
sional minimizations. This proves the quadratic convergence of Powell's
method.

It is to be noted that as with most of the numerical techniques, the conver-
gence in many practical problems may not be as good as the theory seems to
indicate. Powell's method may require a lot more iterations to minimize a
function than the theoretically estimated number. There are several reasons for
this:

1. Since the number of cycles n is valid only for quadratic functions, it will
take generally greater than n cycles for nonquadratic functions.

2. The proof of quadratic convergence has been established with the as-
sumption that the exact minimum is found in each of the one-dimen-
sional minimizations. However, the actual minimizing step lengths Xf
will be only approximate, and hence the subsequent directions will not
be conjugate. Thus the method requires more number of iterations for
achieving the overall convergence.

3. Powell's method described above can break down before the minimum



point is found. This is because the search directions S1 might become
dependent or almost dependent during numerical computation.

Convergence Criterion. The convergence criterion one would generally adopt
in a method such as Powell's method is to stop the procedure whenever a
minimization cycle produces a change in all variables less than one-tenth of
the required accuracy. However, a more elaborate convergence criterion, which
is more likely to prevent premature termination of the process, was given by
Powell [6.7].

Example 6.7 Minimize/(X1 ,Jt2) = X1 - X2 + 2x\ + IxxX2 + x\ from the

starting point X1 = j n f using Powell's method.

SOLUTION

Cycle 1: Univariate Search

We minimize / along S2 = Sn = \ - j from X1-To find the correct direction

(H-S2 or -S2) for decreasing the value of/, we take the probe length as 8 =
0.01. A s / = / (X0 = 0.0, and

/ + =/(X, + eS2) =/(0.0,0.01) = -0.0099 < /

/decreases along the direction +S2. To find the minimizing step length X*
along S2, we minimize

/(X1 + X S2) = /(0.0,X) = X2 - X

As dfldh = 0 at X* = 5, we have X2 = X1 + X*S2 = j JJ 5 •

Next we minimize/along S1 = ] „ [ from X2 = ] ' j . Since

/2 = /(X2) = /(0.0,0.5) = -0 .25

/ + = / ( X 2 + eS,) =/(0.01,0.50) = -0.2298 > / 2

/ " = / ( X 2 - eS,) = / ( -0 .01 ,0 .50 ) = -0.2698

/decreases along - S 1 . As/(X 2 - XS1) = / ( - X , 0 . 5 0 ) = 2X2 - 2 X - 0.25,

dfldh = 0 at X* = \. Hence X3 = X2 - X*S, = j " J J ^ J.



Now we minimize/along S2 = j , ( from X3 = j ' (. As/3 = /(X3) =

- 0 . 7 5 , / + = / (X 3 + eS2) =/(-0.5,0.51) = -0.7599 </3 , /decreases
along +S2 direction. Since

/(X3 + XS2) = / ( -0.5, 0.5 + X) = X2 - X - 0.75, ^L = 0 at X* = \
ah

This gives

C-0.5)
X4 = X1 + X-S2 = ^ J

Cycle 2: Pattern Search
Now we generate the first pattern direction as

• • * - * • ( D - G H t !

and minimize/along S{
p

l) from X4. Since

/ 4 = / ( X 4 ) = - l . o

Z+ =Z(X4 + eS£°) = / ( - 0 . 5 - 0.005, 1 + 0.005)

= /(-0.505,1.005) = -1.004975

/decreases in the positive direction of S^. As

/(X4 + XS^) = / ( - 0 . 5 - 0.5X, 1.0 + 0.5X)

= 0.25X2 - 0.50X - 1.00,

df
- f = 0 at X* = 1.0 and hence
ah

X 5 = X 4 + X - S H - J M t H - - ]

The point X5 can be identified to be the optimum point.
If we do not recognize X5 as the optimum point at this stage, we proceed



to minimize/along the direction S2 = j , ( from X5. Then we would obtain

/5 =/(X5) = -1.25, / + = / (X 5 + eS2) > / 5 ,

and / " =/(X 5 - eS2) > / 5

This shows that/cannot be minimized along S2, and hence X5 will be the
optimum point. In this example the convergence has been achieved in the sec-
ond cycle itself. This is to be expected in this case, as/is a quadratic function,
and the method is a quadratically convergent method.

6.8 ROSENBROCK'S METHOD OF ROTATING COORDINATES

The method of rotating coordinates, given by Rosenbrock [6.8], can be con-
sidered as a further development of the Hooke and Jeeves method. In this
method the coordinate system is rotated in each stage of minimization in such
a manner that the first axis is oriented toward the locally estimated direction
of the valley and all the other axes are made mutually orthogonal and normal
to the first one. The details can be found in Refs. [6.8] and [6.9].

6.9 SIMPLEX METHOD

Definition: Simplex. The geometric figure formed by a set of n + 1 points
in an ^-dimensional space is called a simplex. When the points are equidistant,
the simplex is said to be regular. Thus in two dimensions, the simplex is a
triangle, and in three dimensions, it is a tetrahedron.

The basic idea in the simplex method* is to compare the values of the ob-
jective function at the n + 1 vertices of a general simplex and move the sim-
plex gradually toward the optimum point during the iterative process. The fol-
lowing equations can be used to generate the vertices of a regular simplex
(equilateral triangle in two-dimensional space) of size a in the ^-dimensional
space [6.10]:

n

X1 = X0 + PU1- + 2 quj9 i = 1,2,. . .,/i (6.46)
J= Uj *i

where

p = -^r (^n + l + n - I) and q = -^7= (Vw + 1 - 1) (6.47)
W 2 W 2

fThis simplex method should not be confused with the simplex method of linear programming.



where X0 is the initial base point and uy is the unit vector along the jth coor-
dinate axis. This method was originally given by Spendley, Hext, and Hims-
worth [6.10] and was developed later by Nelder and Mead [6.11]. The move-
ment of the simplex is achieved by using three operations, known as reflection,
contraction, and expansion.

6.9.1 Reflection

If X/j is the vertex corresponding to the highest value of the objective function
among the vertices of a simplex, we can expect the point Xr obtained by re-
flecting the point X^ in the opposite face to have the smallest value. If this is
the case, we can construct a new simplex by rejecting the point Xh from the
simplex and including the new point Xr. This process is illustrated in Fig.
6.11. In Fig. 6.11a, the points X1, X2, and X3 form the original simplex, and
the points X1, X2, and Xr form the new one. Similarly, in Fig. 6. life, the
original simplex is given by points X1, X2, X3, and X4, and the new one by
X1, X2, X3, and Xr. Again we can construct a new simplex from the present
one by rejecting the vertex corresponding to the highest function value. Since
the direction of movement of the simplex is always away from the worst result,
we will be moving in a favorable direction. If the objective function does not
have steep valleys, repetitive application of the reflection process leads to a
zigzag path in the general direction of the minimum as shown in Fig. 6.12.
Mathematically, the reflected point Xr is given by

Xr = (1 + a)X0 - aXh (6.48)

where X, is the vertex corresponding to the maximum function value:

/(X,) = max /(X1-), (6.49)
/ = 1 to n + 1

Figure 6.11 Reflection.



Points 8 and 10
are mirror points
about 7-9

Figure 6.12 Progress of the reflection process.

X0 is the centroid of all the points X1- except i = h:

1 n + \

X0 = - E X1- (6.50)
n i=\

and o: > 0 is the reflection coefficient defined as

distance between Xr and X0

distance between Xh and X0

Thus Xr will lie on the line joining Xh and X0, on the far side of X0 from Xh

with |Xr - Xo| = a|X,, - Xo|. If/(Xr) lies between/(X^) and/(X/), where
X/ is the vertex corresponding to the minimum function value,

/(Xz) = min /(X1) (6.52)
/ = 1 to n + 1

X/j is replaced by Xr and a new simplex is started.
If we use only the reflection process for finding the minimum, we may

encounter certain difficulties in some cases. For example, if one of the sim-
plexes (triangles in two dimensions) straddles a valley as shown in Fig. 6.13
and if the reflected point Xr happens to have an objective function value equal



Figure 6.13 Reflection process not leading to a new simplex.

to that of the point Xh, we will enter into a closed cycle of operations. Thus
if X2 is the worst point in the simplex defined by the vertices X1, X2, and X3,
the reflection process gives the new simplex with vertices X1, X3, and X r .
Again, since Xr has the highest function value out of the vertices X1, X3, and
X r , we obtain the old simplex itself by using the reflection process. Thus the
optimization process is stranded over the valley and there is no way of moving
toward the optimum point. This trouble can be overcome by making a rule that
no return can be made to points that have just been left.

Whenever such situation is encountered, we reject the vertex corresponding
to the second worst value instead of the vertex corresponding to the worst
function value. This method, in general, leads the process to continue toward
the region of the desired minimum. However, the final simplex may again
straddle the minimum, or it may lie within a distance of the order of its own
size from the minimum. In such cases it may not be possible to obtain a new
simplex with vertices closer to the minimum compared to those of the previous
simplex, and the pattern may lead to a cyclic process, as shown in Fig. 6.14.
In this example the successive simplexes formed from the simplex 123 are 234,
245, 456, 467, 478, 348, 234, 245, . . .f which can be seen to be forming a
cyclic process. Whenever this type of cycling is observed, one can take the
vertex that is occurring in every simplex (point 4 in Fig. 6.14) as the best
approximation to the optimum point. If more accuracy is desired, the simplex
has to be contracted or reduced in size, as indicated later.

1SiIiIpIeXeS 456, 467, and 234 are formed by reflecting the second-worst point to avoid the dif-
ficulty mentioned earlier.



Figure 6.14 Reflection process leading to a cyclic process.

6.9.2 Expansion

If a reflection process gives a point Xr for which/(Xr) < /(X/), (i.e., if the
reflection produces a new minimum), one can generally expect to decrease the
function value further by moving along the direction pointing from X0 to X r.
Hence we expand Xr to Xe using the relation

Xe = yXr + (1 - 7)Xo (6.53)

where y is called the expansion coefficient, defined as

distance between Xe and X0

y z= > 1
distance between Xr and X0

If/(X^) < /(X/), we replace the point X^ by Xe and restart the process of
reflection. On the other hand, if/(X^) > /(X/), it means that the expansion
process is not successful and hence we replace point X^ by Xr and start the
reflection process again.



6.9.3 Contraction

If the reflection process gives a point Xr for which/(Xr) > /(X1-) for all /
except i = h, and/(Xr) < /(X,,), we replace point Xh by Xr. Thus the new
Xh will be Xr. In this case we contract the simplex as follows:

Xc = pXh + (1 - j8)Xo (6.54)

where /3 is called the contraction coefficient (0 < j3 < 1) and is defined as

_ distance between Xe and X0

distance between XA and X0

If/(Xr) > /(X,,), we still use Eq. (6.54) without changing the previous point
Xh. If the contraction process produces a point Xc for which /(Xc) <
min[/(X/j),/(Xr)], we replace the point Xh in X1, X2, . . . , Xn + 1 by Xc and
proceed with the reflection process again. On the other hand, if/(Xc) >
mm[f(Xh),f(Xr)], the contraction process will be a failure, and in this case
we replace all X1- by (X1- + X1)/2 and restart the reflection process.

The method is assumed to have converged whenever the standard deviation
of the function at the n + 1 vertices of the current simplex is smaller than
some prescribed small quantity e, that is,

_ r-£ ffiwrtf s, (6.55)
(j = i n + 1 )

Example 6.8 Minimizef(xx,x2) = X1 - X2 + 2x] + IxxX1 + x\. Take the
points defining the initial simplex as

U.Q) (5.6) f4.0^)
X1 = I, X2 = , and X3 =

UoJ U o J U o J
and a = 1.0, (3 = 0.5, and y = 2.0. For convergence, take the value of e as
0.2.

SOLUTION

Iteration 1

Step 1: The function value at each of the vertices of the current simplex is
given by

Z1 = /(X1) = 4.0 - 4.0 + 2(16.0) + 2(16.0) + 16.0 = 80.0



fi =/(X2) = 5.0 - 4.0 + 2(25.0) + 2(20.0) + 16.0 = 107.0

/3 =/(X3) = 4.0 - 5.0 + 2(16.0) + 2(20.0) + 25.0 = 96.0

Therefore,

(5.6)
X, = X2 = | 4 o j , /(X,) = 107.0,

(4.6)
X1 = X1 = , and /(X,) = 80.0

C.4.0J
Step 2: The centroid X0 is obtained as

1 1 f4.0 + 4.0") f4.(f)

X. - j (X1 + X3) - - [4 o + 5 oJ - y with /(X0, = 87̂ 75

Step 5: The reflection point is found as

(S.6) (5.6) (3.6)

Then

/(X1.) = 3.0 - 5.0 + 2(9.0) + 2(15.0) + 25.0 = 71.0

Step 4: As/(X,.) < /(X,), we find Xe by expansion as

( 6.6) (4.6) f2.0^

Then

/(X,) = 2.0 - 5.5 + 2(4.0) + 2(11.0) + 30.25 = 56.75

Step 5: Since/(X,,) < /(X,), we replace Xh by X, and obtain the vertices of
the new simplex as

(4.6) (2.6) (4.6)
X1 = , X2 = , and X3 =



Step 6: To test for convergence, we compute

_ F (80.0 - 87.75)2 + (56.75 - 87.75)2 + (96.0 - 87.75)2l'/2
Q ~ [ 3 J

= 19.06

As this quantity is not smaller than e, we go to the next iteration.

Iteration 2

Step 1: AsZ(X1) = 80.0,/(X2) = 56.75, and/(X3) = 96.0,

(4.0) (2.0)

W , - y and X, - X2 = y
Step 2: The centroid is

1 1 (4.0 + 2.Qi) (3.0 ")
X0 = - (X1 + X2) = - =

2 2 (̂ 4.0 + 5.5J C4-75J

/(X0) = 67.31

Step 3:

(6.0) (4.0) f2.0^
x , . 2 x o - x » - y - y - y

/(Xr) = 2.0 - 4.5 + 2(4.0) + 2(9.0) + 20.25 = 43.75

Step 4: As/(Xr) < /(X/), we find Xe as

f4.6) f3.0 )̂ Cl.O )̂
x - - 2 x - - ^ - U i " U i • U J

/(X,) = 1.0 - 4.25 + 2(1.0) + 2(4.25) + 18.0625 = 25.3125

Step 5: As/(Xe) < /(X,), we replace X^ by Xe and obtain the new vertices
as

f4.0 )̂ f2.0 )̂ fl.O 1
X1 = , X2 = , and X3 =

C4.0J is.5) C4-25J



Step 6: For convergence, we compute Q as

_ r(80.0 - 67.31)2 + (56.75 - 67.31)2 + (25.3125 - 67.31)2l'/2G - [ 3 J
= 26.1

Since Q > e, we go to the next iteration.

This procedure can be continued until the specified convergence is satisfied.
When the convergence is satisfied, the centroid X0 of the latest simplex can be
taken as the optimum point.

INDIRECT SEARCH (DESCENT) METHODS

6.10 GRADIENT OF A FUNCTION

The gradient of a function is an n-component vector given by

(dfldXl~\

df/dx2
Vf = . > (6.56)

nxl

Kdf/dxJ

The gradient has a very important property. If we move along the gradient
direction from any point in rc-dimensional space, the function value increases
at the fastest rate. Hence the gradient direction is called the direction of
steepest ascent. Unfortunately, the direction of steepest ascent is a local prop-
erty and not a global one. This is illustrated in Fig. 6.15, where the gradient
vectors V/evaluated at points 1, 2, 3, and 4 lie along the directions 11', 22',
33', and 44', respectively. Thus the function value increases at the fastest rate
in the direction 11' at point 1, but not at point 2. Similarly, the function value
increases at the fastest rate in direction 22' (33') at point 2(3), but not at point
3 (4). In other words, the direction of steepest ascent generally varies from
point to point, and if we make infinitely small moves along the direction of
steepest ascent, the path will be a curved line like the curve 1-2-3-4 in Fig.
6.15.

Since the gradient vector represents the direction of steepest ascent, the
negative of the gradient vector denotes the direction of steepest descent. Thus
any method that makes use of the gradient vector can be expected to give the
minimum point faster than one that does not make use of the gradient vector.
All the descent methods make use of the gradient vector, either directly or

Next Page
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Figure 6.15 Steepest ascent directions.

indirectly, in finding the search directions. Before considering the descent
methods of minimization, we prove that the gradient vector represents the di-
rection of steepest ascent.

Theorem 6.3 The gradient vector represents the direction of steepest ascent.

Proof: Consider an arbitrary point X in the rc-dimensional space. Let/denote
the value of the objective function at the point X. Consider a neighboring point
X + dX with

dXy i
dX = . > (6.57)

\.dxnJ

where dx\, dx2, . . . , dxn represent the components of the vector dX. The
magnitude of the vector dX, ds, is given by

n

dXTdX = (ds)2 = S (dXif (6.58)
; = i



If/ + df denotes the value of the objective function at X + dX, the change
in/, df, associated with dX can be expressed as

df= S -^- dxx: = VfTdX (6.59)
/ = 1 OX1

If u denotes the unit vector along the direction dX and ds the length of dX,
we can write

dX = u ds (6.60)

The rate of change of the function with respect to the step length ds is given
by Eq. (6.59) as

^ S l ^ V / f = Vfu (6.61)
ds / = i OX1 ds ds

The value of dflds will be different for different directions and we are inter-
ested in finding the particular step dX along which the value of dflds will be
maximum. This will give the direction of steepest ascent.f By using the defi-
nition of the dot product, Eq. (6.61) can be rewritten as

f = IIV/II Hull cos 0 (6.62)
ds

where ||V/|| and ||u|| denote the lengths of the vectors V/and u, respectively,
and 0 indicates the angle between the vectors V/ and u. It can be seen that
dflds will be maximum when 0 = 0° and minimum when 0 = 180°. This
indicates that the function value increases at a maximum rate in the direction
of the gradient (i.e., when u is along V/).

Theorem 6.4 The maximum rate of change o f /a t any point X is equal to
the magnitude of the gradient vector at the same point.

Proof: The rate of change of the function /with respect to the step length s
along a direction u is given by Eq. (6.62). Since dflds is maximum when 6 =
0° and u is a unit vector, Eq. (6.62) gives

( I ) I - M
x / max

which proves the theorem.

fIn general, if dflds = VfT u > 0 along a vector dX, it is called a direction of ascent, and if
dflds < 0, it is called a direction of descent.



6.10.1 Evaluation of the Gradient

The evaluation of the gradient requires the computation of the partial deriva-
tives df/dxi, i = 1,2,. . .,ft. There are three situations where the evaluation of
the gradient poses certain problems:

1. The function is differentiable at all the points, but the calculation of the
components of the gradient, df/dxi9 is either impractical or impossible.

2. The expressions for the partial derivatives df/dxt can be derived, but they
require large computational time for evaluation.

3. The gradient V/is not defined at all the points.

In the first case, we can use the forward finite-difference formula

Jf s / ( X m ^ , , , ) - / ( X J , = 1>2,...,n (6.63)
dxt Ax i

Am

to approximate the partial derivative df/dxt at Xm. If the function value at the
base point Xm is known, this formula requires one additional function evalu-
ation to find (df/dXi)\Xm. Thus, it requires n additional function evaluations to
evaluate the approximate gradient V/|Xm. For better results we can use the
central finite difference formula to find the approximate partial derivative
df/dxt\Xm:

Jf g/(X, + A ^ - / (X.- W / = 1 > 2 _ n (6M)
dxt Xm 2Ax1

This formula requires two additional function evaluations for each of the partial
derivatives. In Eqs. (6.63) and (6.64), Ax1 is a small scalar quantity and U1- is
a vector of order n whose ith component has a value of 1, and all other com-
ponents have a value of zero. In practical computations, the value of Ax1 has
to be chosen with some care. If Ax1 is too small, the difference between the
values of the function evaluated at (Xm + Ax1 u,) and (Xm - Ax1 U1) may be
very small and numerical round-off error may predominate. On the other hand,
if Ax1 is too large, the truncation error may predominate in the calculation of
the gradient.

In the second case also, the use of finite-difference formulas is preferred
whenever the exact gradient evaluation requires more computational time than
the one involved in using Eq. (6.63) or (6.64).

In the third case, we cannot use the finite-difference formulas since the gra-
dient is not defined at all the points. For example, consider the function shown
in Fig. 6.16. If Eq. (6.64) is used to evaluate the derivative dfldx at Xm, we
obtain a value of (X1 for a step size Ax1 and a value of a2 for a step size Ax2.
Since, in reality, the derivative does not exist at the point Xm, use of finite-
difference formulas might lead to a complete breakdown of the minimization



Figure 6.16 Gradient not defined at xm.

process. In such cases the minimization can be done only by one of the direct
search techniques discussed earlier.

6.10.2 Rate of Change of a Function Along a Direction

In most optimization techniques, we are interested in finding the rate of change
of a function with respect to a parameter X along a specified direction, S1-,
away from a point X1. Any point in the specified direction away from the given
point X/ can be expressed as X = X1- + XS1. Our interest is to find the rate of
change of the function along the direction S, (characterized by the parameter
X), that is,

ak 7 = i OXj oX

where Jt7- is the jth component of X. But

^ = ^ (Xy + Xs,y) = S1J (6.66)

where xtj and s(j are the jth components of X, and S1, respectively. Hence

IfX* minimizes/in the direction S1-, we have

f

•X



df T

J- = v / Sf = O (6.68)
^ A = X*

at the point X, + X*SZ.

6.11 STEEPEST DESCENT (CAUCHY) METHOD

The use of the negative of the gradient vector as a direction for minimization
was first made by Cauchy in 1847 [6.12]. In this method we start from an
initial trial point X1 and iteratively move along the steepest descent directions
until the optimum point is found. The steepest descent method can be sum-
marized by the following steps:

1. Start with an arbitrary initial point Xj. Set the iteration number as i =
1.

2. Find the search direction S1- as

S1- = -Wi = -V/(X,) (6.69)

3. Determine the optimal step length Xf in the direction S1- and set

X/ + 1 = X1- + X* S1- = X1- - X* Vfi (6.70)

4. Test the new point, X1-+ 1, for optimality. IfX1 + 1 is optimum, stop the
process. Otherwise, go to step 5.

5. Set the new iteration number i = i + 1 and go to step 2.

The method of steepest descent may appear to be the best unconstrained min-
imization technique since each one-dimensional search starts in the "best"
direction. However, owing to the fact that the steepest descent direction is a
local property, the method is not really effective in most problems.

Example 6.9 Minimize f(x j , JC2) = Jc1 — Jt2 + 2JC^ + 2X1JC2 +Jt2 starting from

the point X1 = J ~ |.

SOLUTION

Iteration 1
The gradient of Z is given by

Cdf/ta^l = C 1 +4X1 +Ix2)

idf/dx2j i-l + 2Jt1 + Ix2)

Wi = w o = j _ I]



Therefore,

To find X2, we need to find the optimal step length Xf. For this, we minimize
/(X1 + X1S1) = / ( - X 1 , X1) = Xi - 2X1 with respect to X1. Since JZZJX1 = 0
at Xf = 1, we obtain

X1. x ,+xj8,-gj+•(• ; ] - (• ; ]

As Vf2 = Vf(X2) = ~ j j * I] , X2 is not optimum.

Iteration 2

S1 - -,A - [;]
To minimize

/(X 2 + X2S2) = / ( - 1 + X2, 1 + X2)

= 5X| - 2X2 - 1

we set (IfIdK1 = 0. This gives X* = 5, and hence

*-*+«%-[~;]+;(!)-t~3
Since the components of the gradient at X3, Vf3 = \ _ ' (, are not zero, we

proceed to the next iteration.

Iteration 3

As

/ (X3 + X3S3) = / ( - 0 . 8 - 0.2X3, 1.2 + 0.2X3)

= 0.04X! - 0.08X3 - 1.20, -^- = 0 at X3* = 1.0
JX3



Therefore,

C-O.S) f-0.2') C-I-O)
X4 = X3 + X3*S3 = + 1.0 =C 1.2J I 0.2J C 1.4J

The gradient at X4 is given by

f-0.20)
V/< " [-0.20J

Since Vf4 =£ \ ~ |, X4 is not optimum and hence we have to proceed to the next

iteration. This process has to be continued until the optimum point, X* =
f-1.0) . - ,j . - U is found.

Convergence Criteria. The following criteria can be used to terminate the it-
erative process:

1. When the change in function value in two consecutive iterations is small:

ffi^ffi) s £] № 7 l )

2. When the partial derivatives (components of the gradient) of/are small:

^- < C2, i = 1,2,. . .,Ai (6.72)

3. When the change in the design vector in two consecutive iterations is
small:

IX1-+ 1 -X1-I < e3 (6.73)

6.12 CONJUGATE GRADIENT (FLETCHER-REEVES) METHOD

The convergence characteristics of the steepest descent method can be im-
proved greatly by modifying it into a conjugate gradient method (which can
be considered as a conjugate directions method involving the use of the gra-
dient of the function). We saw (in Section 6.7) that any minimization method
that makes use of the conjugate directions is quadratically convergent. This
property of quadratic convergence is very useful because it ensures that the
method will minimize a quadratic function in n steps or less. Since any general
function can be approximated reasonably well by a quadratic near the optimum
point, any quadratically convergent method is expected to find the optimum
point in a finite number of iterations.



We have seen that Powell's conjugate direction method requires n single-
variable minimizations per iteration and sets up a new conjugate direction at
the end of each iteration. Thus it requires, in general, n2 single-variable min-
imizations to find the minimum of a quadratic function. On the other hand, if
we can evaluate the gradients of the objective function, we can set up a new
conjugate direction after every one-dimensional minimization, and hence we
can achieve faster convergence. The construction of conjugate directions and
development of the Fletcher-Reeves method are discussed in this section.

6.12d Development of the Fletcher-Reeves Method

Consider the development of an algorithm by modifying the steepest descent
method applied to a quadratic function/(X) = 5X7AX + B7X + C by impos-
ing the condition that the successive directions be mutually conjugate. Let X1

be the starting point for the minimization and let the first search direction be
the steepest descent direction:

Si = -Vf1 = -AX1 - B (6.74)

X2 = X1 + XfS1 (6.75)

or

S1 = ^ - ^ i (6.76)

where Xf is the minimizing step length in the direction S1, so that

S[V/|X2 = 0 (6.77)

Equation (6.77) can be expanded as

Sf[A(X1 + XfS1) + B] = 0 (6.78)

from which the value of Xf can be found as

„ -Sf(AX1 + B) S[V/,
Xi = S[As1

 = - S T A S ; (6-79)

Now express the second search direction as a linear combination of S1 and
-Yf2 :

S2 = -V/2 + (S2S1 (6.80)

where (32 is to be chosen so as to make S, and S2 conjugate. This requires that

S[AS2 = O (6.81)



Substituting Eq. (6.80) into Eq. (6.81) leads to

S[A (-Vf2 + j82S,) = 0 (6.82)

Equations (6.76) and (6.82) yield

- ( X ' ~*X l ) A (Vf2 - P2S1) = 0 (6.83)

The difference of the gradients (Vf2 — Vf) can be expressed as

(V/2 - Vf) = (AX2 + B) - (AX1 + B) = A(X2 - X1) (6.84)

With the help of Eq. (6.84), Eq. (6.83) can be written as

(V/2 - VfY(Vf2 - P1Sx) = 0 (6.85)

where the symmetricity of the matrix A has been used. Equation (6.85) can be
expanded as

V/2
r Vf2 - Vf] Vf2 - p2 Vf2 S1 + P2 Vfx S1 = 0 (6.86)

Since Vf Vf2 = -S]Vf2 = 0 from Eq. (6.77), Eq. (6.86) gives

2̂ = _ YfIVt = YI^A (6.87)

Next we consider the third search direction as a linear combination of S1, S2,
and — Vf3 as

S3 = -V/3 + &S2 + S3Si (6.88)

where the values of P3 and 53 can be found by making S3 conjugate to S1 and
S2. By using the condition S[AS3 = 0, the value of S3 can be found to be zero
(see Problem 6.40). When the condition S2AS3 = 0 is used, the value of P3

can be obtained as (see Problem 6.41)

so that Eq. (6.88) becomes

S3 = -Yf3 + (S3S2 (6.90)



where j33 is given by Eq. (6.89). In fact, Eq. (6.90) can be generalized as

S1- = -V/5 + IS1S1. _, (6.91)

where

* - ^Bt, <6-92)
Equations (6.91) and (6.92) define the search directions used in the Fletcher-
Reeves method [6.13].

6.12.2 Fletcher-Reeves Method

The iterative procedure of Fletcher-Reeves method can be stated as follows:

1. Start with an arbitrary initial point X1.
2. Set the first search direction S1 = -Vf(X1) = -Vf1.
3. Find the point X2 according to the relation

X2 = X1 + XfS1

where Xf is the optimal step length in the direction S1. Set i = 2 and go
to the next step.

4. Find Vf = Vf(X,), and set

IVfI2

S/= -V/. + T ^ 1 5 S1^1 (6.93)
IY/;-11

5. Compute the optimum step length X* in the direction S1-, and find the
new point

X1 + 1 = X,- + XfS1- (6.94)

6. Test for the optimality of the point Xi + i. If X1̂  + 1 is optimum, stop the
process. Otherwise, set the value of / = i + 1 and go to step 4.

Remarks:

1. The Fletcher-Reeves method was originally proposed by Hestenes and
Stiefel [6.14] as a method for solving systems of linear equations derived
from the stationary conditions of a quadratic. Since the directions S1 used
in this method are A-conjugate, the process should converge in n cycles
or less for a quadratic function. However, for ill-conditioned quadratics
(whose contours are highly eccentric and distorted), the method may



require much more than n cycles for convergence. The reason for this
has been found to be the cumulative effect of rounding errors. Since S1

is given by Eq. (6.93), any error resulting from the inaccuracies involved
in the determination of Xf, and from the round-off error involved in
accumulating the successive |V/̂  12S/ _ i/1V/J — 112 terms, is carried for-
ward through the vector S1-. Thus the search directions S, will be pro-
gressively contaminated by these errors. Hence it is necessary, in prac-
tice, to restart the method periodically after every, say, m steps by taking
the new search direction as the steepest descent direction. That is, after
every m steps, Sm + X is set equal to — V/m + x instead of the usual form.
Fletcher and Reeves have recommended a value of m = n + 1, where
n is the number of design variables.

2. Despite the limitations indicated above, the Fletcher-Reeves method is
vastly superior to the steepest descent method and the pattern search
methods, but it turns out to be rather less efficient than the Newton and
the quasi-Newton (variable metric) methods discussed in the latter sec-
tions.

Example 6.10 Minimize /(X19JC2) = Xx - X2 + 2x] + IxxX2 + x\ starting

from the point X1 = J 0 f.

SOLUTION

Iteration 1

(dfldx^i f 1 + 4^1 + 2X2)

~ UfIdX2) ~~ i-l + Ixx + Ix2)

VZ1 = V Z ( X 1 ) = \ \ \

The search direction is taken as S1 = — Vf1 = | (. To find the optimal step

length Xf along S1, we minimize/(X1 + X1S1) with respect to X1. Here

/(X1 + X1S1) = / ( - X , , +X1) = \] - 2X1

^ = O at Xf = 1
a A1

Therefore,



Iteration 2

Since Vf2 = Vf(X2) = )__••(, Eq. (6.93) gives the next search direction as

where

IYAl2 = 2 and |V/2|2 = 2

Therefore,

-CH)tH3
To find X*, we minimize

/(X2 + X2S2) = / ( - 1 , 1 +2X 2 )

= - 1 - (1 + 2X2) + 2 - 2(1 + 2X2) + (1 + 2X2)
2

= 4X^ - 2X2 - 1

with respect to X2. As dfldk2 = 8X2 - 2 = 0 at X* = \, we obtain

Thus the optimum point is reached in two iterations. Even if we do not know
this point to be optimum, we will not be able to move from this point in the
next iteration. This can be verified as follows.

Iteration 3
Now

Vf3 = Vf(X3) = r , |V/2|2 = 2, and |V/3|2 = 0.

Thus

This shows that there is no search direction to reduce / further, and hence X3

is optimum.



6.13 NEWTON'S METHOD

Newton's method presented in Section 5.12.1 can be extended for the min-
imization of multivariable functions. For this, consider the quadratic approx-
imation of the function/(X) at X = X, using the Taylor's series expansion

/(X) =/(Xf.) + VfJ(X - X1) + \ (X - Xf[Jj](X - X,) (6.95)

where [J1] = [J]Ix1 is the matrix of second partial derivatives (Hessian matrix)
of/evaluated at the point X1-. By setting the partial derivatives of Eq. (6.95)
equal to zero for the minimum of/(X), we obtain

^ = 0, J= 1,2,. . .,Az (6.96)

dxj

Equations (6.96) and (6.95) give

V/ = V/ + [J1](X - X1) = 0 (6.97)
If [Ji] is nonsingular, Eqs. (6.97) can be solved to obtain an improved ap-
proximation (X = X /+1) as

X/ + 1 = X,- - [ ^ r 1 V / (6.98)

Since higher-order terms have been neglected in Eq. (6.95), Eq. (6.98) is to
be used iteratively to find the optimum solution X*.

The sequence of points X1, X2, . . . ,X1 + 1 can be shown to converge to the
actual solution X* from any initial point X1 sufficiently close to the solution
X*, provided that [Z1] is nonsingular. It can be seen that Newton's method
uses the second partial derivatives of the objective function (in the form of the
matrix [J1]) and hence is a second-order method.

Example 6.11 Show that the Newton's method finds the minimum of a quad-
ratic function in one iteration.

SOLUTION Let the quadratic function be given by

/(X) = \XT[A]X + B7X + C

The minimum of/(X) is given by

V/= [A]X + B = O

or

X* = -[^1"1B



The iterative step of Eq. (6.98) gives

X1 + 1 =X f - [4"1IMX1- + B) (E1)

where X/ is the starting point for the ith iteration. Thus Eq. (E1) gives the exact
solution

X /+1 = X * = - M - 1 B

Figure 6.17 illustrates this process.

Example 6.12 Minimize/(Jt1, X2) = X1 - x2 + 2x\ + IxxX2 + x\ by taking

the starting point as Xj = J n J .

SOLUTION To find X2 according to Eq. (6.98), we require [Z1]"1 , where

" a2/ a2/ ~
dx] dxx dx2 U 21

Jk2 dx{ bx\ J x,

Therefore,

Figure 6.17 Minimization of a quadratic function in one step.



As

gl ~ [df/dx2)Xi ~ [ - I + 2x, + 3x2j(OO) ~ [ - l j

Equation (6.98) gives

— ' - [ : ) - U i ] p ^ r 1 )

To see whether or not X2 is the optimum point, we evaluate

= Cdf/dxt') = r i + 4JC, + 2X2) _ CQT)
g2 Uf/axJ* ~ l - l + 2xt + 2x2\_U3/2) ~ (o j

As g2 = 0, X2 is the optimum point. Thus the method has converged in one
iteration for this quadratic function.

If/(X) is a nonquadratic function, Newton's method may sometimes di-
verge, and it may converge to saddle points and relative maxima. This problem
can be avoided by modifying Eq. (6.98) as

X/ + 1 = X1 + XfS1 = X1 - Xf[JiV1 Wi (6.99)

where \f is the minimizing step length in the direction S1- = -[Z,]"1 V/j-. The
modification indicated by Eq. (6.99) has a number of advantages. First, it will
find the minimum in lesser number of steps compared to the original method.
Second, it finds the minimum point in all cases, whereas the original method
may not converge in some cases. Third, it usually avoids convergence to a
saddle point or a maximum. With all these advantages, this method appears to
be the most powerful minimization method. Despite these advantages, the
method is not very useful in practice, due to the following features of the
method:

1. It requires the storing of the n X n matrix [ / J .
2. It becomes very difficult and sometimes, impossible to compute the ele-

ments of the matrix [ J1].
3. It requires the inversion of the matrix [J1] at each step.
4. It requires the evaluation of the quantity [ JJ"1 V/- at each step.

These features make the method impractical for problems involving a compli-
cated objective function with a large number of variables.



6.14 MARQUARDT METHOD

The steepest descent method reduces the function value when the design vector
X1- is away from the optimum point X*. The Newton method, on the other
hand, converges fast when the design vector X, is close to the optimum point
X*. The Marquardt method [6.15] attempts to take advantage of both the
steepest descent and Newton methods. This method modifies the diagonal ele-
ments of the Hessian matrix, [J1-], as

Ui] = [//] + Ci1[I] (6.100)

where [/] is an identity matrix and Ot1 is a positive constant that ensures the
positive definiteness of [J-] when [J1-] is not positive definite. It can be noted
that when at is sufficiently large (on the order of 104), the term af [I] dominates
[J)] and the inverse of the matrix [J1-] becomes

UiV1 = [[Ji] + «,-[/]]"! * Ia1-[Z]]"1 = - [/] (6.101)

Thus if the search direction S1- is computed as

S, = - [ J 1 ] " 1 Vf1 (6.102)

S1- becomes a steepest descent direction for large values of a,. In the Marquardt
method, the value of at is taken to be large at the beginning and then reduced
to zero gradually as the iterative process progresses. Thus, as the value of af

decreases from a large value to zero, the characteristics of the search method
change from those of a steepest descent method to those of the Newton method.
The iterative process of a modified version of Marquardt method can be de-
scribed as follows.

1. Start with an arbitrary initial point X1 and constants (X1 (on the order of
104), cx (0 < C1 < 1), C2 (c2 > 1), and e (on the order of 10~2). Set
the iteration number as / = 1.

2. Compute the gradient of the function, Vf1 = Vf(X1).

3. Test for optimality of the point X1-. If \\Vf\\ = || VZ(X1OH < e, X1 is
optimum and hence stop the process. Otherwise, go to step 4.

4. Find the new vector X1-+1 as

X/ + 1 = X1- + S1- = X1- - [[J1.] + CK1-[Z]]-1 Vf (6.103)

5. Compare the values of/-+1 a n d / . lff+i < f, go to step 6. I f^+i ^
Z , goto step 7.



6. Set ai + x = CJQ:/, i = i + 1, and go to step 2.
7. Set a; = C2OL1 and go to step 4.

An advantage of this method is the absence of the step size X, along the
search direction S1-. In fact, the algorithm above can be modified by introducing
an optimal step length in Eq. (6.103) as

X1 + 1 = X1- + XfS, = X1- - Xf[M] + a, [Z]]"1 V/. (6.104)

where Xf is found using any of the one-dimensional search methods described
in Chapter 5.

Example 6.13 Minimize f(xx ,X2) = Xx — X2 + 2x\ + IxxX2 + x\ from the

starting point X1 = j ~ j using Marquardt method with ax = 104, C1 = | , C2 =

2, and e = 10"2.

SOLUTION

Iteration 1 (i = 1)
Here/, =/(X,) = 0.0 and

i Jf I (.-1 + 2*, + 2.2)(00, (.-I)
Kdx2J(0,0)

Since ||V/i|| = 1.4142 > e, we compute

f a y _ a f l _ [ 4 21

a2 ay

_ajc!x2 a^2 J (O,o)

X2 = X1 - [[7,] + «,[/]]"' V/,

. [0I _ [4 + 10< 2 J ' f '] . f"0"98] ,0-
COJ L 2 2 + 104J i-l) i 1.0000J

As/ 2 = /(X2) = -1.9997 X 10~4 < / , , we set a2 = cxax = 2500, i = 2,
and proceed to the next iteration.



Iteration 2 (i = 2)
C Q 9993^)

The gradient vector corresponding to X2 is given by Vf1 = j _ . QQQQ I, Il YZ2II

= 1.4141 > e, and hence we compute

X3 = X2 - [[Z2] + Ct2[I]V1 Vf2

_ f-0.9998 X 10"4^) T2504 21"1 C 0.9998^)

i 1.0000 x 10~4j L 2 2502J i-1.0000j
f-4.9958 x 10"4^)

~ C 5.0000 x 10"4J

Since/3 = / ( X 3 ) = -0 .9953 X 10"3 < /2 , we set a3 = cxa2 = 625, / = 3,
and proceed to the next iteration. The iterative process is to be continued until
the convergence criterion, ||V/J|| < e, is satisfied.

6.15 QUASI-NEWTON METHODS

The basic equation used in the development of Newton method, Eq. (6.97),
can be expressed as

VZ(X,) = -[J1] (X - X1) = 0

or

X = X , - [/J-1VZ(X,) (6.105)

which can be rewritten, in the form of an iterative formula, as

X / + 1 = X1- - [7J-1VZ(X,) (6.106)

Note that the Hessian matrix [J1] is composed of the second partial derivatives
of Z and varies with the design vector X1- for a nonquadratic (general nonlinear)
objective functionZ The basic idea behind the quasi-Newton or variable metric
methods is to approximate either [J1] by another matrix [̂ 1-] or [J1-]"

1 by an-
other matrix [S1-], using only the first partial derivatives of Z If Ui] l is ap-
proximated by [Bi], Eq. (6.106) can be expressed as

X1 + 1 = X f - Xf[B1]VZ(X1) (6.107)

where X1* can be considered as the optimal step length along the direction

S1- = -[Bi]Vf(X1) (6.108)



It can be seen that the steepest descent direction method can be obtained as a
special case of Eq. (6.108) by setting [B1] = [I].

Computation of [Bi]. To implement Eq. (6.107), an approximate inverse of
the Hessian matrix, [B1] = [^1-]"1, is to be computed. For this, we first expand
the gradient of/about an arbitrary reference point, X0, using Taylor's series
as

V/(X) « V/(X0) + [J0](X - X0) (6.109)

If we pick two points X1- and X,- + x and use [A1] to approximate [J 0], Eq. (6.109)
can be rewritten as

Wi+I= V/(X0) + [A1](X1 + 1 - X0) (6.110)

V/ = VZ(X0) + [A1](Xt - X0) (6.111)

Subtracting Eq. (6.111) from (6.110) yields

[Ai]Oi = Si (6.H2)

where

df- = Xi + 1 -X1- (6.113)

& = VZ + , - V Z (6.114)

The solution of Eq. (6.112) for d, can be written as

d, = №•]&• (6.115)

where [B1-] = [^1-]"1 denotes an approximation to the inverse of the Hessian
matrix, [ J 0 ] " 1 . It can be seen that Eq. (6.115) represents a system of n equa-
tions in n2 unknown elements of the matrix [B)]. Thus, for n > 1, the choice
of [Bi] is not unique and one would like to choose [B1-] that is closest to [ J 0 ] " 1 ,
in some sense. Numerous techniques have been suggested in the literature for
the computation of [B1] as the iterative process progresses (i.e., for the com-
putation of [B1:+,] once [B1] is known). A major concern is that in addition to
satisfying Eq. (6.115), the symmetry and positive definiteness of the matrix
[Bi] is to be maintained; that is, if [B1] is symmetric and positive definite,
[B1- + \] must remain symmetric and positive definite.

6.15.1 Rank 1 Updates

The general formula for updating the matrix [B1] can be written as

[B / + 1] = [B1-] + [AB1] (6.116)



where [AB1] can be considered to be the update (or correction) matrix added
to [B1]. Theoretically, the matrix [ABi] can have its rank as high as n. How-
ever, in practice, most updates, [ABJ, are only of rank 1 or 2. To derive a
rank 1 update, we simply choose a scaled outer product of a vector z for [ABt]
as

[AB{] = czzT (6.117)

where the constant c and the ̂ -component vector z are to be determined. Equa-
tions (6.116) and (6.117) lead to

[B1 + 1] = [B1-] + czz r (6.118)

By forcing Eq. (6.118) to satisfy the quasi-Newton condition, Eq. (6.115),

d, = [B, + I]g, (6.119)

we obtain

d; = ([B1] + czz7) &. = [Bt]gi + cz(zT

gi) (6.120)

Since (zrg;) in Eq. (6.120) is a scalar, we can rewrite Eq. (6.120) as

n = *LZ^№ ( 6 . 1 2 1 )

Thus a simple choice for z and c would be

z = d, - [B1]Z1 (6.122)

c = — (6.123)
z g;

This leads to the unique rank 1 update formula for [Bi +,]:

W+1] - m i + [A5,] . m + W " f f 1 6 ^ ^ №124)

This formula has been attributed to Broyden [6.16]. To implement Eq. (6.124),
an initial symmetric positive definite matrix is selected for [Bx] at the start of
the algorithm, and the next point X2 is computed using Eq. (6.107). Then the
new matrix [B2] is computed using Eq. (6.124) and the new point X3 is deter-
mined from Eq. (6.107). This iterative process is continued until convergence
is achieved. If [B1] is symmetric, Eq. (6.124) ensures that [B1 + 1] is also sym-
metric. However, there is no guarantee that [B1 + 1] remains positive definite



even if [B1] is positive definite. This might lead to a breakdown of the proce-
dure, especially when used for the optimization of nonquadratic functions. It
can be verified easily that the columns of the matrix [AB)] given by Eq. (6.124)
are multiples of each other. Thus the updating matrix has only one independent
column and hence the rank of the matrix will be 1. This is the reason why Eq.
(6.124) is considered to be a rank 1 updating formula. Although the Broyden
formula, Eq. (6.124), is not robust, it has the property of quadratic conver-
gence [6.17]. The rank 2 update formulas given next guarantee both symmetry
and positive definiteness of the matrix [B) + x] and are more robust in minimiz-
ing general nonlinear functions, hence are preferred in practical applications.

6.15.2 Rank 2 Updates

In rank 2 updates we choose the update matrix [AB1] as the sum of two rank
1 updates as

[AB1] = C1Z1Zf + c2z2z[ (6.125)

where the constants C1 and C2 and the ^-component vectors Z1 and Z2 are to be
determined. Equations (6.116) and (6.125) lead to

[Bi + l] = [B1] + C1Z1Zf + c2z2z[ (6.126)

By forcing Eq. (6.126) to satisfy the quasi-Newton condition, Eq. (6.119), we
obtain

d,- = №]&• + C1Z1 (zf g i) + C2Z2 (zhi) (6.127)

where (zfg,) and (z2g,) can be identified as scalars. Although the vectors Z1

and Z2 in Eq. (6.127) are not unique, the following choices can be made to
satisfy Eq. (6.127):

Z1 = d, (6.128)

Z 2 = [B1-Ig1- (6.129)

Cx=-^- (6.130)

zf &-

C2 = - ^ - (6.131)

Thus the rank 2 update formula can be expressed as

n.a- m + ™ - m + H - ^ S T 1 <6B2)



This equation is known as the Davidon-Fletcher-Powell (DFP) formula
[6.20,6.21]. Since

X/ + I = X1-+ XfS1- (6.133)

where S/ is the search direction, d/ = X1-+ j — X/ can be rewritten as

d, = XfS, (6.134)

Thus Eq. (6.132) can be expressed as

m i l ] . m ] + ^ _ H * ^ !
k/ gi 8i № Jg/

Remarks:

1. Equations (6.124) and (6.132) are known as inverse update formulas
since these equations approximate the inverse of the Hessian matrix of
/•

2. It is possible to derive a family of direct update formulas in which ap-
proximations to the Hessian matrix itself are considered. For this we
express the quasi-Newton condition as [see Eq. (6.112)]

g/ = [AM (6.136)

The procedure used in deriving Eqs. (6.124) and (6.132) can be followed
by using [,4,], di9 and g, in place of [Z?,], gt, and d/, respectively. This
leads to the rank 2 update formula (similar to Eq. (6.132)), known as
the Broydon-Fletcher-Goldfarb-Shanno (BFGS) formula [6.22-6.25]:

XA i XA i -L. *& ( K M ) (K-Id1-)7'
W + l l = W + ^ " flW4 ( 6 ' 1 3 ? )

In practical computations, Eq. (6.137) is rewritten more conveniently in
terms Of[S1-], as

m i r m i d ' d ' 7 i i R 7 ^IgA №]g/df dfgT№]

(6.138)

3. The DFP and the BFGS formulas belong to a family of rank 2 updates
known as Huang's family of updates [6.18], which can be expressed for
updating the inverse of the Hessian matrix as



where

>• - < * * * > • » ( & - $ & ) <« •"«>

and P1- and 0, are constant parameters. It has been shown [6.18] that Eq.
(6.139) maintains the symmetry and positive definiteness of [#/ + 1] if
[B1] is symmetric and positive definite. Different choices of pt and O1 in
Eq. (6.139) lead to different algorithms. For example, when pt = 1 and
O1 = 0, Eq. (6.139) gives the DFP formula, Eq. (6.132). When pf = 1
and Of= 1, Eq. (6.139) yields the BFGS formula, Eq. (6.138).

4. It has been shown that the BFGS method exhibits superlinear conver-
gence near X* [6.17].

5. Numerical experience indicates that the BFGS method is the best uncon-
strained variable metric method and is less influenced by errors in finding
X* compared to the DFP method.

6. The methods discussed in this section are also known as secant methods
since Eqs. (6.112) and (6.115) can be considered as secant equations
(see Section 5.12).

The DFP and BFGS iterative methods are described in detail in the following
sections.

6.16 DAVIDON-FLETCHER-POWELL METHOD

The iterative procedure of the Davidon-Fletcher-Powell (DFP) method can be
described as follows:

1. Start with an initial point X1 and a n X n positive definite symmetric
matrix [ZJ1] to approximate the inverse of the Hessian matrix of/. Usu-
ally, [B1] is taken as the identity matrix [/]. Set the iteration number as
i = 1.

2. Compute the gradient of the function, Vft, at point X1-, and set

S1= -[B1]Vf1 (6.141)

3. Find the optimal step length X* in the direction S1- and set

X1 + 1 =Xf- + XfS, (6.142)



4. Test the new point X1 + 1 for optimality. If X1 + x is optimal, terminate the
iterative process. Otherwise, go to step 5.

5. Update the matrix [B)] using Eq. (6.132) as

[Bi+l] = [B1] + [M1] + [N1] (6.143)

where

[M1] = \*WL (6.144)
^i Si

Wl = - mj$™*f «.145)

g/ = VZ(X1-+ 1) - VZ(X,) = Vf1 + 1 -Vf1 (6.146)

6. Set the new iteration number as / = / + 1, and go to step 2.

Note: The matrix [Bj + 1], given by Eq. (6.143), remains positive definite
only if Xf is found accurately. Thus if Xf is not found accurately in any iter-
ation, the matrix [B1 ] should not be updated. There are several alternatives in
such a case. One possibility is to compute a better value of Xf by using more
number of refits in the one-dimensional minimization procedure (until the
product Sf VZ + I becomes sufficiently small). However, this involves more
computational effort. Another possibility is to specify a maximum number of
refits in the one-dimensional minimization method and to skip the updating of
[B1] if Xf could not be found accurately in the specified number of refits. The
last possibility is to continue updating the matrix [B1] using the approximate
values of Xf found, but restart the whole procedure after certain number of
iterations, that is, restart with i = 1 in step 2 of the method.

Example 6.14 Show that the DFP method is a conjugate gradient method.

SOLUTION Consider the quadratic function

Z(X) = \ Xl[A\X 4- B7X + C (E1)

for which the gradient is given by

VZ= [^]X + B (E2)

Equations (6.146) and (E2) give

g/ = VZ + I - VZ = [A] (X1 + 1 - X1-) (E3)



Since

X / + 1 = X; + XfS; (E4)

Eq. (E3) becomes

g/ = Xf[^]S1. (E5)

or

[A]S1 = -^g1- (E6)

Premultiplication of Eq. (E6) by [Bi+{] leads to

[Bi + 1] [A] S1 = - ^ ([B1] + [M1] + [#*])&. (E7)

Equations (6.144) and (E5) yield

[M1Jg1 = X f ^ = XfS, (E8)
^i Si

Equation (6.145) can be used to obtain

r v i (№•!&•) ( g f t f i f g . ) r R 1 m .
lNi]gi = g f № ] &

 = - [ S ' ] 8 ' ( E s )

since [B1-] is symmetric. By substituting Eqs. (E8) and (E9) into Eq. (E7), we
obtain

[B1+1][A]S1 = - ^ ([BJg, + XfS1- - [BJg1-) = S1- (E1 0)

The quantity Sf+ i[A]S( can be written as

S f + 1 [ ^ ] S , = -([Bf + 1]VZ + 1 ) ^ ] S 1 .

= -VZr+1[Bf + 1][^]S1. = -VZf+1 S1 = 0 (E1 1)

since Xf is the minimizing step in the direction S1-. Equation (E1 1) proves that
the successive directions generated in the DFP method are [/1 !-conjugate and
hence the method is a conjugate gradient method.



Example 6.15 Minimize /Qt1,X2) = 100Qt1 - X2)
1 + (1 - .X1)

2 taking X1 =

j _ 2 ( as the starting point. Use cubic interpolation method for one-dimen-

sional minimization.

SOLUTION Since this method requires the gradient of/, we find that

_ Cdf/dxC) _ (40Oc1Cx? - X2) - 2(1 - X1)I

UfZdX2) ~ I -200(jc? - X2))

Iteration 1
We take

[1 Ol

At X1 = \~_2X V/i = W i ) = [ l^Oo] and/l = 3609- Therefore'

f4806^)

By normalizing, we obtain

Sl = [(4806)2 + (12OO)2]172 [1200J = L0.244J

To find Xf, we minimize

/(X1 + X1S1) =f(-2 + 0.970X1, - 2 + 0.244X1)

= 100(6 - 4.124X1 + 0.938X2J2 + (3 - 0.97X1)
2 (E1)

with respect to X1. Equation (E1) gives

^- = 200(6 -4.124X1 +0.938X]) (1.876X1 -4.124) - 1.94(3 - 0.97X1)d\\

Since the solution of the equation dfldkx = 0 cannot be obtained in a simple
manner, we use the cubic interpolation method for finding Xf.



Cubic Interpolation Method (First Fitting)

Stage 1: As the search direction S1 is normalized already, we go to stage 2.

Stage 2: To establish lower and upper bounds on the optimal step size Xf, we
have to find two points A and B at which the slope dfldkx has different signs.
We take A = O and choose an initial step size of t0 = 0.25 to find B.

At X1 = A = 0:

/A = /(X, = ^4=0) = 3609

/A = # = " 4 9 5 6 6 4

^ l A1=Zl = O

At X1 = t0 = 0.25:

/ = 2535.62

-^f- = -3680.82
dkx

As dfldkx is negative, we accelerate the search by taking X1 = 4t0 = 1.00.
AtX1 = 1.00:

/ = 795.98

— = -1269.18
dkx

Since dfldkx is still negative, we take X1 = 2.00.
At X1 = 2.00:

/ = 227.32

-^- = -113.953
dkx

Although df/d\x is still negative, it appears to have come close to zero and
hence we take the next value of X1 as 2.50.

At X1 = 2.50:

/ = 241.51

df
-^- = 174.684 = positive
0X1



Since dfldkx is negative at X1 = 2.0 and positive at X1 = 2.5, we take A =
2.0 (instead of zero for faster convergence) and B = 2.5. Therefore,

A = 2.0, £ = 227.32, / ^ = -113.95

B = 2.5, fB = 241.51, / i = 174.68

Stage 3: To find the optimal step length Xf using Eq. (5.54), we compute

Z = 3 ( 2 2 ^ 2 : f n L 5 1 ) - 11395 + 17468 = -2441

Q = [(24.4I)2 + (113.95) (174.68)]1'2 = 143.2

Therefore,

f* 2 0 I - H 3 . 9 5 - 2 4 . 4 1 + 143.2
Xl ~ 2 ° + -113.95 + 174.68 - 48.82 (2>5 2 0 )

= 2.2

Stage 4: To find whether Xf is close to Xf, we test the value of dfldk\.

~- = -0.818

Also,

/(X1 = Xf) = 216.1

Since dfldkx is not close to zero at Xf, we use a refitting technique.

Second Fitting: Now we take A = Xf since dfldkx is negative at Xf and B —
2.5. Thus

A = 2.2, fA = 216.10, f'A = -0.818

B = 2.5, SB = 241.51, SB = 174.68

With these values we find that

Z = 3 ( 2 1 6 1 - 2 4 L 5 1 ) - 2.818 + 174.68 = -80.238
2.5 - 2.2

Q = [(80.238)2 + (0.818) (174.68)]m = 81.1



T* 2 2 I -0-818 ~ 80-238 + 81.1
X> - 2 2 + _0.818 + 174.68 - 160.476 ( 2 5 2 2 ) " 2 ^

To test for convergence, we evaluate^/ d\ at Xf. Since df/d\\xi = %\ = —0.211,
it can be assumed to be sufficiently close to zero and hence we take Xf = Xf
= 2.201. This gives

(-2 + 0.970Xf") C 0.135^)
X2 = X1 + XfS1 = I =

C.-2 + 0.244XfJ C-1.463J

Testing X2 for Convergence: To test whether the D-F-P method has con-
verged, we compute the gradient of/at X2:

Ldf/dx2JX2 C-296.24J

As the components of this vector are not close to zero, X2 is not optimum and
hence the procedure has to be continued until the optimum point is found.

6.17 BROYDEN-FLETCHER-GOLDFARB-SHANNO METHOD

As stated earlier, a major difference between the DFP and BFGS methods is
that in the BFGS method, the Hessian matrix is updated iteratively rather than
the inverse of the Hessian matrix. The BFGS method can be described by the
following steps.

1. Start with an initial point X1 and a n X n positive definite symmetric
matrix [B1] as an initial estimate of the inverse of the Hessian matrix of
/. In the absence of additional information, [2J1] is taken as the identity
matrix [/]. Compute the gradient vector Vfx = Vf(X1) and set the iter-
ation number as / = 1.

2. Compute the gradient of the function, Vf(, at point X1, and set

S1- = -[B1-] Wi (6.147)

3. Find the optimal step length X1* in the direction S1- and set

X/+1 =X f + XfS1 (6.148)

4. Test the point Xi + 1 for optimality. If || V/J + 1|| < e, where e is a small
quantity, take X* « X/ + 1 and stop the process. Otherwise, go to step
5.



5. Update the Hessian matrix as

lBi+i]-lBi] + v^~^~)^r~^r~ dTa
(6.149)

where

d, = Xi + l - X1 = X* S1 (6.150)

g/ = V/5 + 1 - V/. = Vf(X1 + 1) - Vf(Xd (6.151)

6. Set the new iteration number as / = / + 1 and go to step 2.

Remarks:

1. The BFGS method can be considered as a quasi-Newton, conjugate gra-
dient, and variable metric method.

2. Since the inverse of the Hessian matrix is approximated, the BFGS
method can be called an indirect update method.

3. If the step lengths Xf are found accurately, the matrix, [B1], retains its
positive definiteness as the value of i increases. However, in practical
application, the matrix [B1] might become indefinite or even singular if
Xf are not found accurately. As such, periodical resetting of the matrix
[S1-] to the identity matrix [/] is desirable. However, numerical experi-
ence indicates that the BFGS method is less influenced by errors in Xf
than is the DFP method.

4. It has been shown that the BFGS method exhibits superlinear conver-
gence near X* [6.19].

Example 6.16 Minimize f(xux2) = Xx - X2 + 2x\ + Ix1X2 + x\ from the

starting point X1 = L f using the BFGS method with [B1] = L and e =

0.01.

SOLUTION

Iteration 1 (i = 1)
Here

C 1 + 4Jc1 + 2X2) C 0
V/, = VZ(X1) = =

C-I +2^1 + 2x2){QQ) i-l)



and hence

*--™w.--£ 3 (_!)-('!]
To find the minimizing step length Xf along S1, we minimize

/(X1 + X1S1) = / ( L ! + Xl ["!]) =/(~x"Xl) = x' ~ 2Xl

with respect to X1. Since dfldkx = 0 at Xf = 1, we obtain

X2=x, + xrs, - g j +. [-;) - {-;]
Since Vf2 = Vf(X2) = ~ J and ||V/2|| = 1.4142 > e, we proceed to update

the matrix [B1] by computing

_ . v/2 - v/, . p - ( J J - ( - J

*,.xf s,-i [-;].(-;]

d[gl = M , , ( - 2 _ 2

•JlB,H.-J-2 0} [J »] f - g - {-2 01 ("J] =4
r 2 oi ri oi r 2 oi

" ^ " [-2 oj L ,J " [-2 oj



Equation (6.149) gives

<*»-n+H)VrMH-%-i
=[: HnR: :H: "H-! 1]

Iteration 2 (i = 2)
The next search direction is determined as

— - U I t K ]

To find the minimizing step length X* along S2, we minimize

/ (X 2 + X2S2) =f(\ " I + M j ) = f ( ~ l > l + 2X2> = 4 X2 - 2X2 - 1

with respect to X2. Since df/d\2 = 0 at X* = \, we obtain

* - * + « * - t 3 + i ( 3 " t 3

This point can be identified to be optimum since

Vf3 = and ||V/3|| = 0 < e

6.18 TEST FUNCTIONS

The efficiency of an optimization algorithm is studied using a set of standard
functions. Several functions, involving different number of variables, repre-
senting a variety of complexities have been used as test functions. Almost all
the test functions presented in the literature are nonlinear least squares; that is,
each function can be represented as



m

f(xux2,. . .,Xn) = S Zt(X19X2,. . .,Xn)
2 (6.152)

/ = i

where n denotes the number of variables and m indicates the number of func-
tions (fi) that define the least-squares problem. The purpose of testing the
functions is to show how well the algorithm works compared to other algo-
rithms. Usually, each test function is minimized from a standard starting point.
The total number of function evaluations required to find the optimum solution
is usually taken as a measure of the efficiency of the algorithm. References
[6.29] to [6.32] present a comparative study of the various unconstrained op-
timization techniques. Some of the commonly used test functions are given
below.

1. Rosenbrock's parabolic valley [6.8]:

/(X19JC2) = 100(X2 - x2)2 + (1 - X1)
2 (6.153)

» - r a - a

/ i = 24.0 , / * = 0.0

2. A quadratic function:

/(JC1 ,X2) = (x, +2x2- if + (2x, +X2- 5)2 (6.154)

-u - a
/ , = 74.0, / • = 0.0

3. Powell's quartic function [6.7]:

f(xux2,x3,x4) = (X1 + 1Ox2)
2 + 5(x3 - X4)

2

+ (x2 - 2x3)
4 + 10(X1 - X4)

4 (6.155)

X [ = { J C , X2 X3 x4}, = {3 - 1 0 1}, X * r = { 0 0 0 0}

/ , = 215.0, / * = 0.0

4. Fletcher and Powell's helical valley [6.21]:

/(x,,x2,x3) = 100{[x3 - lO0(x,,x2)]
2 + [Vx2 + x\ - I]2} + x\

(6.156)



where

f x
( arctan — if Jc1 > O
) JC1

27Td(XuX2) = <

( TT + arctan — if Jc1 < O
V xx

s - [ 3 - - 8

Z1 = 25,000.0, / * = 0.0

5. A nonlinear function of three variables [6.7]:

/ < A W J ) = 1 4- <*,' - xtf + Si" G " * )

x " ( ; } x 4 : l
/ , = 1.5, / *= / m ax = 3.0

6. Freudenstein and Roth function [6.27]:

/(X11X2) = {-13 + X1 + [(5 - X2)X2 - 2]x2}
2

+ {-29 + x, + [(X2 + I)X2 - 14]x2}
2 (6.158)

_ f °-5l _ T 5 I * _ f 1 L 4 1 ••• 1
Xl = [_2 } X - [4} X " - [-0.8968 . . J

/ , = 400.5, / • = 0.0, / a1 t e I T O t e = 48.9842 . . .
7. Powell's badly scaled function [6.28]:

/(JC15X2) = (10,00OJC1JC2 - I)2 + [expt-JcO + exp(-jc2) - 1.0001]2

(6.159)



(6) f l .098 . . . X 10"5 )̂

/ , = 1.1354, / * = 0.0

8. Brown's badly scaled function [6.29]:

/Oc1 ,JC2) = (Jt1 - 106)2 + (x2 - 2 X 10~6)2 + (JC1JC2 - 2)2 (6.160)

ClI ClO6 -)
X1 = , X* =

0 3 U X 10-6J
/ , * 1012, / • = 0.0

9. Beale's function [6.29]:

/Or,,**) = [1-5 - JC1(I - JC2)]
2 + [2.25 - x,(l - Jt2O]2

+ [2.625 - X 1 ( I - x\)f (6.161)

X1 = , X* =

Z1 = 14.203125, / * = 0.0

10. Wood's function [6.30]:

/(,X^x3J4) = [10(X2 - jc2)]2 + (1 - JC1)
2 + 90(JC4 - Jt2O2

+ (1 - Jt3)
2 + 10(Jt2 + J C 4 - 2)2 + 0.1(Jt2 - JC4)

(6.162)

- 1 / 1
X1 = >, X* = < -

- 3 I / 1

V- W \\)

/, = 19192.0, / * = 0.0
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REVIEW QUESTIONS

6.1 State the necessary and sufficient conditions for the unconstrained min-
imum of a function.

6.2 Give three reasons why the study of unconstrained minimization meth-
ods is important.



6.3 What is the major difference between zeroth-, first-, and second-order
methods?

6.4 What are the characteristics of a direct search method?

6.5 What is a descent method?

6.6 Define each term.
(a) Pattern directions
(b) Conjugate directions
(c) Simplex
(d) Gradient of a function
(e) Hessian matrix of a function

6.7 State the iterative approach used in unconstrained optimization.

6.8 What is quadratic convergence?

6.9 What is the difference between linear and superlinear convergence?

6.10 Define the condition number of a square matrix.

6.11 Why is the scaling of variables important?

6.12 What is the difference between random jumping and random walk meth-
ods?

6.13 Under what conditions the processes of reflection, expansion, and con-
traction used in the simplex method?

6.14 Why is Rosenbrock method called the method of rotating coordinates?

6.15 Why is a quadratically convergent method considered to be superior for
the minimization of a nonlinear function?

6.16 Why is Powell's method called a pattern search method?

6.17 What are the roles of exploratory and pattern moves in the Hooke-
Jeeves Method?

6.18 What is univariate method?

6.19 Indicate a situation where a central difference formula is not as accurate
as a forward difference formula.

6.20 Why is a central difference formula more expensive than a forward or
backward difference formula in finding the gradient of a function?

6.21 What is the role of one-dimensional minimization methods in solving
an unconstrained minimization problem?

6.22 State possible convergence criteria that can be used in direct search
methods.



6.23 Why is the steepest descent direction not efficient in practice, although
the directions used are the best directions?

6.24 What are rank 1 and rank 2 updates?

6.25 How are the search directions generated in the Fletcher-Reeves method?

6.26 Give examples of methods that require n2, n, and 1 one-dimensional
minimizations for minimizing a quadratic in n variables.

6.27 What is the reason for possible divergence of Newton's method?

6.28 Why is a conjugate directions method preferred in solving a general
nonlinear problem?

6.29 What is the difference between Newton and quasi-Newton methods?

6.30 What is the basic difference between DFP and BFGS methods?

6.31 Why are the search directions reset to the steepest descent directions
periodically in the DFP method?

6.32 What is a metric? Why is the DFP method considered as a variable
metric method?

6.33 Answer true or false.
(a) A conjugate gradient method can be called a conjugate directions

method.
(b) A conjugate directions method can be called a conjugate gradient

method.

(c) In the DFP method, the Hessian matrix is sequentially updated di-
rectly.

(d) In the BFGS method, the inverse of the Hessian matrix is sequen-
tially updated.

(e) The Newton method requires the inversion of an n X n matrix in
each iteration.

(f) The DFP method requires the inversion ofann Xn matrix in each
iteration.

(g) The steepest descent directions are the best possible directions.
(h) The central difference formula always gives a more accurate value

of the gradient than does the forward or backward difference for-
mula.

(i) Powell's method is a conjugate directions method.

(j) The univariate method is a conjugate directions method.

PROBLEMS

6.1 A bar is subjected to an axial load, P0, as shown in Fig. 6.18. By using
a one-finite-element model, the axial displacement, u(x), can be ex-



Figure 6.18 Bar subjected to an axial load,

pressed as [6.1]

u(x) = [N1(X) N2(X)) Ul

Cw2J

where N((x) are called the shape functions:

2V1(X) = l - y , N2(X) = %-

and M1 and M2 are the end displacements of the bar. The deflection of
the bar at point Q can be found by minimizing the potential energy of
the bar ( / ) , which can be expressed as

where E is Young's modulus and A is the cross-sectional area of the
bar. Formulate the optimization problem in terms of the variables M1

and M2 for the case P0IfEA = 1.

6.2 The natural frequencies of the tapered cantilever beam (0) shown in
Fig. 6.19, based on the Rayleigh-Ritz method, can be found by mini-

Figure 6.19 Tapered cantilever beam.
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mizing the function [6.34]:

Ell (CA + £i + £i£i\
3/2 V 4 10 5 /

"W (,30 + 2̂ b" + IbTJ

with respect to C1 and c2, where / = co2, E is Young's modulus, and p
is the density. Plot the graph of 3fpl3/Eh2 in (C^c2) space and identify
the values of Co1 and co2.

6.3 The Rayleigh's quotient corresponding to the three-degree-of-freedom
spring-mass system shown in Fig. 6.20 is given by [6.34]

_ xrmx
R(X) ~ XT[M]X

where

" 2 - 1 01 r i 0 0"| rxi>i

[K] = k - 1 2 - 1 , [M] = 0 1 0 , X = X2

_ o - i l j Lo o l j U 3 J

Figure 6.20 Three-degree-of-freedom spring-mass
system.



It is known that the fundamental natural frequency of vibration of the
system can be found by minimizing R(X). Derive the expression of
R(X) in terms of Jc1, X2, and X3 and suggest a suitable method for min-
imizing the function R(X).

6.4 The steady-state temperatures at points 1 and 2 of the one-dimensional
fin (Jc1 and JC2) shown in Fig. 6.21 correspond to the minimum of the

Figure 6.21 Straight fin.

function [6.1]:

/(JC15JC2) = O.6382JC? + 0.319Lc2
1 - 0.2809JC1JC2

- 67.906Jc1 - 14.290JC2

Plot the function/in the (Jc1,JC2) space and identify the steady-state tem-
peratures of the fin.

6.5 Figure 6.22 shows two bodies, A and B, connected by four linear
springs. The springs are at their natural positions when there is no force

Figure 6.22 Two bodies connected by springs.



applied to the bodies. The displacements Jc1 and X2 of the bodies under
any applied force can be found by minimizing the potential energy of
the system. Find the displacements of the bodies when forces of 1000
Ib and 2000 Ib are applied to bodies A and B, respectively, using New-
ton's method. Use the starting vector, X1 = \ ~ (. [Hint:

Potential energy of the system

= strain energy of springs — potential of applied loads

where the strain energy of a spring of stiffness k and end displacements
Jc1 and Jc2 is given by 2 Kx1 - X1)

2 and the potential of the applied force,
F1, is given by X1F1.]

6.6 The potential energy of the two-bar truss shown in Fig. 6.23 under the
applied load P is given by

FA / / \ 2 EA Ih\2

/(X19X2) = — ( - ) jt? + — - )x\ - Pxx cos 6 - Px2 sin 6
s \2s/ s \s/

where E is Young's modulus, A the cross-sectional area of each mem-
ber, / the span of the truss, s the length of each member, h the depth of
the truss, 6 the angle at which load is applied, Jc1 the horizontal dis-

Figure 6.23 Two-bar truss.



placement of free node, and X2 the vertical displacement of the free
node.

(a) Simplify the expression of/for the data E = 207 X 109 Pa, A =
1(T5 m2, Z = 1.5 m, h = 4 m, P = 10,000 N, and 0 = 30°.

(b) Find the steepest descent direction, S1, of/at the trial vector X1 =

(c) Derive the one-dimensional minimization problem,/(X), at X1 along
the direction S1.

(d) Find the optimal step length X* using the calculus method and find
the new design vector X2.

6.7 Three carts, interconnected by springs, are subjected to the loads P1,
P2 and P3 as shown in Fig. 6.24. The displacements of the carts can be
found by minimizing the potential energy of the system ( / ) :

/(X) = \ XT[K]X - X7P

where

"^1 + k4 + fc5 —fc4 — Ic5

[K] = -Ic4 k2 + kA + k6 -k6

_-k5 ~k6 k3 + Ic5 + k6 + Ic7 + ks_

P - [ £ ] - , . £ ]
Derive the function f(xux2) for the following data: kx = 5000 N/m, k2

= 1500 N/m, k3 = 2000 N/m, fc4 = 1000 N/m, k5 = 2500 N/m, k6 =

Figure 6.24 Three carts interconnected by springs.

Cart 3Cart 2CarM



500 N/m, k7 = 3000 N/m, ks = 3500 N/m, P1 = 1000 N, P2 = 2000
N, and P3 = 3000 N. Complete one iteration of Newton's method and
find the equilibrium configuration of the carts. Use X1 = {0 0 0} r .

6.8 Plot the contours of the following function over the region (—5 < X1

< 5, — 3 < X2 < 6) and identify the optimum point:

f (xuX2) = (X1 + Ix2 - I)2 + (2^1 ^x2- 5)2

6.9 Plot the contours of the following function in the two dimensional (Jc1 ,JC2)
space over the region ( - 4 < x 1 < 4 , - 3 : < x 2 < 6 ) and identify the
optimum point:

/(X19JC2) - 2 (x 2 - x 2 ) 2 + (1 - X 1 ) 2

6.10 Consider the problem

/(X19X2) = 100(x2 - x2)2 + (1 - X1)
2

Plot the contours of/over the region ( - 4 < X1 < 4, - 3 < X2 < 6)
and identify the optimum point.

6.11 It is required to find the solution of a system of linear algebraic equa-
tions given by [A]X = b , where [A] is a known n X n symmetric
positive-definite matrix and b is an n-component vector of known con-
stants. Develop a scheme for solving the problem as an unconstrained
minimization problem.

6.12 Solve the following equations using the steepest descent method (two

(°)
iterations only) with the starting point, X1 = < 0 >:

2X1 + X2 = 4, X1 + 2x2 + X3 = 8, X2 + 3x3 = 11

6.13 An electric power of 100 MW generated at a hydroelectric power plant
is to be transmitted 400 km to a stepdown transformer for distribution
at 11 kV. The power dissipated due to the resistance of conductors is
/2C"1, where / is the line current in amperes and c is the conductance
in mhos. The resistance loss, based on the cost of power delivered, can
be expressed as 0.15/2C"1 dollars. The power transmitted (k) is related
to the transmission line voltage at the power plant (e) by the relation k
= v3e/, where e is in kilovolts. The cost of conductors is given by 2c
millions of dollars, and the investment in equipment needed to accom-
modate the voltage e is given by 500e dollars. Find the values of e and



c to minimize the total cost of transmission using Newton's method (one
iteration only).

6.14 Find a suitable transformation of variables to reduce the condition num-
ber of the Hessian matrix of the following function to one:

/ = 2JC1 + 16*2 - 2JC,JC2 - Jc1 - 6JC2 - 5

6.15 Find a suitable transformation or scaling of variables to reduce the con-
dition number of the Hessian matrix of the following function to one:

/ = 4X
2

{ + 3x1 ~ 5Jc1JC2 - 8Jc1 + 10

6.16 Determine whether the following vectors serve as conjugate directions
for minimizing the function/ = 2x] + 16x2 - 2X1X2 - Xx - 6x2 - 5.

,.» S1 . [ «], S, - [1]
(W s, - [->], S2 = [;]

6.17 Consider the problem:

Minimize/ = Jc1 — JC2 + 2x] + 2JC1Jc2 + JC2

Find the solution of this problem in the range —10 < Jt1- < 10, / = 1,
2, using the random jumping method. Use a maximum of 10,000 func-
tion evaluations.

6.18 Consider the problem:

Minimize/ = 6JC1 — 6Jc1Jc2 + 2JC2 — Jc1 — 2JC2

Find the minimum of this function in the range — 5 < Jt1- < 5, / = 1,2,
using the random walk method with direction exploitation.

6.19 Find the condition number of each matrix.

(a) lA] = [1.0001 2]
« ™ - [11 $

6.20 Perform two iterations of the Newton's method to minimize the function

/(X1 ,X2) = 100(.X2 - x}f + (1 - X1)
2

(-1 2)
from the starting point j i r. (•



6.21 Perform two iterations of univariate method to minimize the function
given in Problem 6.20 from the stated starting vector.

6.22 Perform four iterations of Powell's method to minimize the function
given in Problem 6.20 from the stated starting point.

6.23 Perform two iterations of the steepest descent method to minimize the
function given in Problem 6.20 from the stated starting point.

6.24 Perform two iterations of the Fletcher-Reeves method to minimize the
function given in Problem 6.20 from the stated starting point.

6.25 Perform two iterations of the DFP method to minimize the function
given in Problem 6.20 from the stated starting vector.

6.26 Perform two iterations of the BFGS method to minimize the function
given in Problem 6.20 from the indicated starting point.

6.27 Perform two iterations of the Marquardt's method to minimize the func-
tion given in Problem 6.20 from the stated starting point.

6.28 Prove that the search directions used in the Fletcher-Reeves method are
[A]-conjugate while minimizing the function

/(Xi ,X2) = x\ + \x\

6.29 Generate a regular simplex of size 4 in a two-dimensional space using
each base point.

«[Ji «[I) «(:(!
6.30 Find the coordinates of the vertices of a simplex in a three-dimensional

space such that the distance between vertices is 0.3 and one vertex is
given by (2 , -1 , -8 ) .

6.31 Generate a regular simplex of size 3 in a three-dimensional space using
each base point.

6.32 Find a vector S2 that is conjugate to the vector S1 = < — 3 > with respect

L 6J
to the matrix:

"1 2 3"

[A]= 2 5 6

_3 6 9_



6.33 Compare the gradients of the function/(X) = 1OO(JC2 - JC2)2 + (1 -

JC1)
2 at X = j ' I given by the following methods.

(a) Analytical differentiation

(b) Central difference method

(c) Forward difference method

(d) Backward difference method
Use a perturbation of 0.005 for JC1 and JC2 in the finite-difference meth-
ods.

6.34 It is required to evaluate the gradient of the function

/(X19JC2) = 100(X2 - jc2)2 H - ( I - Jc1)
2

at point X = j ~* j using a finite-difference scheme. Determine the step

size Ax to be used to limit the error in any of the components, df/dxi9

to 1% of the exact value, in the following methods.
(a) Central difference method
(b) Forward difference method
(c) Backward difference method

6.35 Consider the minimization of the function f = * * . Perform
JC2 + Jc2 + 2

one iteration of Newton's method from the starting point X1 = j ~ >

using Eq. (6.98). How much improvement is achieved with X2?

6.36 Consider the problem:

Minimize /= 2(JC2 - JC2)2 H- (1 - Jc1)
2

If a base simplex is defined by the vertices

x - - $ - * - B - * - $

find a sequence of four improved vectors using reflection, expansion,
and/or contraction.

6.37 Consider the problem:

Minimize/= (JC1 + 2JC2 - if + (2JC, + JC2 - 5)2



If a base simplex is defined by the vertices

* . - [ : * ) • x - [ " o } * - [ : ! ]

find a sequence of four improved vectors using reflection, expansion,
and/or contraction.

6.38 Consider the problem:

/ = 100(JC2 - JC2)2 + (1 - Jc1)
2

Find the solution of the problem using grid search with a step size Ax1-
= 0.1 in the range - 3 < xt < 3, i = 1,2.

6.39 Show that the property of quadratic convergence of conjugate directions
is independent of the order in which the one-dimensional minimizations
are performed by considering the minimization of

/ = 6JC2 + 2*2 - 6JC1JC2 - JC1 - 2JC2

using the conjugate directions S1 = j ~ [ and S2 = ] 0 [ and the starting

point X1 = L j .

6.40 Show that S3 = 0 in Eq. (6.88) using the condition Sf[^]S3 = 0.

VfI Vf3
6.41 Show that /J3 in Eq. (6.88) can be expressed as /33 = T

V 2 Y/2
6.42 Minimize/ = 2x\ + x\ from the starting point (1,2) using the univariate

method (two iterations only).
6.43 Minimize/ = 2JC2 + JC2 by using the steepest descent method with the

starting point (1,2) (two iterations only).

6.44 Minimize/ = JC2 + 3JC2 + 6JC2 by the Hooke-Jeeves method by taking
Ar1 = AJC2 = Ac3 = 0.5 and the starting point as (2,-1,1). Perform
two iterations.

6.45 Minimize/= 4JC2 H- 3JC2 - 5JC1JC2 - 8JC1 starting from point (0,0) using
Powell's method. Perform four iterations.

6.46 Minimize/(Jc1 ,Jc2) = x\ — 2x\x2 + JC2 + JC2 — 2Jc1 + 1 by the simplex
method. Perform two steps of reflection, expansion, and/or contraction.



6.47 Solve the following system of equations using Newton's method of un-

constrained minimization with the starting point X, = < 0 >.

Lv
Ixx - X2 + X3 = - 1 , X1 + 2x2 = 0, 3JC, + Jc2 4- 2x3 = 3

6.48 It is desired to solve the following set of equations using an uncon-
strained optimization method:

jc2 + y
2 = 2, IOJC2 - IQy - 5x + 1 = 0

Formulate the corresponding problem and complete two iterations of

optimization using the DFP method starting from X1 = j n j .

6.49 Solve Problem 6.48 using the BFGS method (two iterations only).

6.50 The following nonlinear equations are to be solved using an uncon-
strained optimization method:

2xy = 3 , X 2 - y = 2

Complete two one-dimensional minimization steps using the univariate
method starting from the origin.

6.51 Consider the two equations

Ix3 - IQx - y = I9 Sy3 - Uy + x = 1

Formulate the problem as an unconstrained optimization problem and
complete two steps of the Fletcher-Reeves method starting from the
origin.

6.52 Solve the equations 5Jc1 + 3JC2 = 1 and 4Jc1 — 7JC2 = 76 using the BFGS
method with the starting point (0,0).

6.53 Indicate the number of one-dimensional steps required for the minimi-
zation of the function/ = Jc1 + JC2 — 2Jc1 — 4JC2 + 5 according to each
scheme.

(a) Steepest descent method

(b) Fletcher-Reeves method

(c) DFP method

(d) Newton's method

(e) Powell's method

(f) Random search method



(g) BFGS method
(h) Univariate method

6.54 Same as Problem 6.53 for the following function:

/ = (X2 -x\f + (1 -X 1 ) 2

6.55 Verify whether the following search directions are [/1 !-conjugate while
minimizing the function

/ = X1 - X2 + 2x\ + 2̂ 1JC2 + x\

(a) S1 - [ "} ) . S,-[J]

6.56 Solve the equations Xx + Ix2 + 3x3 = 14, X1 — X2 + X3 = 1 and 3X1

— Ix2 + X3 = 2 using Marquardt's method of unconstrained minimi-
zation. Use the starting point X1 = {0 0 0} r .

6.57 Apply the simplex method to minimize the function/given in Problem
6.20. Use the point ( — 1.2,1.0) as the base point to generate an initial
regular simplex of size 2 and go through three steps of reflection, ex-
pansion, and/or contraction.

6.58 Write a computer program to implement Powell's method using the
golden section method of one-dimensional search.

6.59 Write a computer program to implement the Davidon-Fletcher-Powell
method using the cubic interpolation method of one-dimensional search.
Use a finite-difference scheme to evaluate the gradient of the objective
function.

6.60 Write a computer program to implement the BFGS method using the
cubic interpolation method of one-dimensional minimization. Use a fi-
nite-difference scheme to evaluate the gradient of the objective func-
tion.

6.61 Write a computer program to implement the steepest descent method of
unconstrained minimization with the direct root method of one-dimen-
sional search.

6.62 Write a computer program to implement the Marquardt method coupled
with the direct root method of one-dimensional search.



NONLINEAR PROGRAMMING IH:
CONSTRAINED OPTIMIZATION
TECHNIQUES

7.1 INTRODUCTION

This chapter deals with techniques that are applicable to the solution of the
constrained optimization problem:

Find X which minimizes/(X)

subject to

gj(X) < 0, J= 1,2,...,m

hk(X) = 0, k= 1,2,... ,p (7.1)

There are many techniques available for the solution of a constrained nonlinear
programming problem. All the methods can be classified into two broad cat-
egories: direct methods and indirect methods, as shown in Table 7.1. In the
direct methods, the constraints are handled in an explicit manner, whereas in
most of the indirect methods, the constrained problem is solved as a sequence
of unconstrained minimization problems. We discuss in this chapter all the
methods indicated in Table 7.1.

7.2 CHARACTERISTICS OF A CONSTRAINED PROBLEM

In the presence of constraints, an optimization problem may have the following
features [7.1, 7.51]:

7



TABLE 7.1 Constrained Optimization Techniques

Direct Methods Indirect Methods

Random search methods Transformation of variables technique
Heuristic search methods Sequential unconstrained minimization

Complex method techniques
Objective and constraint approximation Interior penalty function method

methods Exterior penalty function method
Sequential linear programming Augmented Lagrange multiplier

method method
Sequential quadratic programming

method
Methods of feasible directions

Zoutendijk's method
Rosen's gradient projection method

Generalized reduced gradient method

1. The constraints may have no effect on the optimum point; that is, the
constrained minimum is the same as the unconstrained minimum as
shown in Fig. 7.1. In this case the minimum point X* can be found by
making use of the necessary and sufficient conditions

V/|x* = 0 (7.2)

Jx* = T—r~ = positive definite (7.3)
Idx( dxjjx*

Figure 7.1 Constrained and unconstrained minima same (linear constraints).



Figure 7.2 Constrained minimum occurring on a nonlinear constraint.

Figure 7.3 Relative minima introduced by objective function.



However, to use these conditions, one must be certain that the con-
straints are not going to have any effect on the minimum. For simple
optimization problems like the one shown in Fig. 7.1, it may be possible
to determine beforehand whether or not the constraints have an influence
on the minimum point. However, in most practical problems, even if we
have a situation as shown in Fig. 7.1, it will be extremely difficult to
identify it. Thus one has to proceed with the general assumption that the
constraints have some influence on the optimum point.

2. The optimum (unique) solution occurs on a constraint boundary as shown
in Fig. 7.2. In this case the Kuhn-Tucker necessary conditions indicate
that the negative of the gradient must be expressible as a positive linear
combination of the gradients of the active constraints.

3. If the objective function has two or more unconstrained local minima,
the constrained problem may have multiple minima as shown in Fig.
7.3.

4. In some cases, even if the objective function has a single unconstrained
minimum, the constraints may introduce multiple local minima as shown
in Fig. 7.4.

A constrained optimization technique must be able to locate the minimum in
all the situations outlined above.

Figure 7.4 Relative minima introduced by constraints.



DIRECT METHODS

7.3 RANDOM SEARCH METHODS

The random search methods described for unconstrained minimization (Section
6.2) can be used, with minor modifications, to solve a constrained optimization
problem. The basic procedure can be described by the following steps:

1. Generate a trial design vector using one random number for each design
variable.

2. Verify whether the constraints are satisfied at the trial design vector.
Usually, the equality constraints are considered satisfied whenever their
magnitudes lie within a specified tolerance. If any constraint is violated,
continue generating new trial vectors until a trial vector that satisfies all
the constraints is found.

3. If all the constraints are satisfied, retain the current trial vector as the
best design if it gives a reduced objective function value compared to
the previous best available design. Otherwise, discard the current fea-
sible trial vector and proceed to step 1 to generate a new trial design
vector.

4. The best design available at the end of generating a specified maximum
number of trial design vectors is taken as the solution of the constrained
optimization problem.

It can be seen that several modifications can be made to the basic procedure
indicated above. For example, after finding a feasible trial design vector, a
feasible direction can be generated (using random numbers) and a one-dimen-
sional search can be conducted along the feasible direction to find an improved
feasible design vector.

Another procedure involves constructing an unconstrained function, F(X),
by adding penalty for violating any constraint as (as described in Section 7.12):

m p

F(X) = /(X) + a S [Gj (X)]2 + b ^S [Hk(X)]2 (7.4)

where

[G7(X)]2 = [max(O,g,(X))]2 (7.5)

[//,(X)]2 = /Z2XX) (7.6)

indicate the squares of violations of inequality and equality constraints, re-
spectively, and a and b are constants. Equation (7.4) indicates that while min-
imizing the objective function/(X), a positive penalty is added whenever a



constraint is violated, the penalty being proportional to the square of the amount
of violation. The values of the constants a and b can be adjusted to change the
contributions of the penalty terms relative to the magnitude of the objective
function.

Note that the random search methods are not efficient compared to the other
methods described in this chapter. However, they are very simple to program
and usually are reliable in finding a nearly optimal solution with a sufficiently
large number of trial vectors. Also, these methods can find near global optimal
solution even when the feasible region is nonconvex.

7.4 COMPLEX METHOD

In 1965, Box extended the simplex method of unconstrained minimization (dis-
cussed in Section 6.9) to solve constrained minimization problems of the type
[7.2]:

Minimize/(X) (1.1a)
subject to

gj(X) < 0, J= l ,2, . . . , ifi (Ub)

x{P < JC1- < x{?\ i = 1,2,. . .,n (7.7c)

In general, the satisfaction of the side constraints (lower and upper bounds on
the variables X1) may not correspond to the satisfaction of the constraints gj (X)
< 0. This method cannot handle nonlinear equality constraints. The formation
of a sequence of geometric figures each having k = n + 1 vertices in an
^-dimensional space (called the simplex) is the basic idea in the simplex
method. In the complex method also, a sequence of geometric figures each
having k > n + 1 vertices is formed to find the constrained minimum point.
The method assumes that an initial feasible point X1 (which satisfies all the m
constraints) is available.

Iterative Procedure

1. Find k > n + 1 points, each of which satisfies all m constraints. In
actual practice, we start with only one feasible point X1, and the re-
maining k — 1 points are found one at a time by the use of random
numbers generated in the range 0 to 1, as

Xij = x\l) + rtJ(x\u) - JCP), i = 1,2,. . .,/i, j = 2,3,. . .,*

(7.8)

where xtj is the /th component of the point X7, and rtj is a random
number lying in the interval (0,1). It is to be noted that the points X2,



X3, . . ., X* generated according to Eq. (7.8) satisfy the side constraints,
Eqs. (7.7c) but may not satisfy the constraints given by Eqs. (J.Ib).

As soon as a new point X7 is generated (j = 2,3,. . .,k), we find
whether it satisfies all the constraints, Eqs. {1 .Ib). IfX7- violates any of
the constraints stated in Eqs. (1.1b), the trial point X7 is moved halfway
toward the centroid of the remaining, already accepted points (where the
given initial point X1 is included). The centroid X0 of already accepted
points is given by

1 j~l

X0 = —-x S1 X, (7.9)

If the trial point X7 so found still violates some of the constraints, Eqs.
(1.1b), the process of moving halfway in toward the centroid X0 is con-
tinued until a feasible point X7 is found. Ultimately, we will be able to
find a feasible point X7 by this procedure provided that the feasible region
is convex. By proceeding in this way, we will ultimately be able to find
the required feasible points X2, X3, . . ., X*.

2. The objective function is evaluated at each of the k points (vertices). If
the vertex X^ corresponds to the largest function value, the process of
reflection is used to find a new point Xr as

Xr = (1 + a)X0 - aXh (7.10)

where a > 1 (to start with) and X0 is the centroid of all vertices except
XA:

X0 = ^ S 1 X , (7.11)

3. Since the problem is a constrained one, the point Xr has to be tested for
feasibility. If the point Xr is feasible and/(X r) < f(Xh), the point Xh

is replaced by Xr, and we go to step 2. If/(Xr) > f(Xh), a new trial
point Xr is found by reducing the value of a in Eq. (7.10) by a factor of
2 and is tested for the satisfaction of the relation/(Xr) < f(Xh). If/(Xr)
> /(Xj1), the procedure of finding a new point Xr with a reduced value
of a is repeated again. This procedure is repeated, if necessary, until the
value of a becomes smaller than a prescribed small quantity e, say, 10~6.
If an improved point Xr, with /(X,.) < f(Xh) cannot be obtained even
with that small value of a, the point Xr is discarded and the entire pro-
cedure of reflection is restarted by using the point Xp (which has the
second-highest function value) instead of Xh.

4. If at any stage, the reflected point Xr (found in step 3) violates any of
the constraints [Eqs. (Ub)], it is moved halfway in toward the centroid



until it becomes feasible, that is,

(Xr)new = 1(X0 + Xr) (7.12)

This method will progress toward the optimum point as long as the com-
plex has not collapsed into its centroid.

5. Each time the worst point Xh of the current complex is replaced by a
new point, the complex gets modified and we have to test for the con-
vergence of the process. We assume convergence of the process when-
ever the following two conditions are satisfied:
(a) The complex shrinks to a specified small size (i.e., the distance be-

tween any two vertices among X1, X2, . . . , X^ becomes smaller
than a prescribed small quantity, e\.

(b) The standard deviation of the function value becomes sufficiently
small (i.e., when

Cl k V/2

U S [/(X) -f (XJ)]2I < e2 (7.13)

where X is the centroid of all the k vertices of the current complex,
and e2 > 0 is a specified small number).

Discussion. This method does not require the derivatives of/(X) and gj(X)
to find the minimum point, and hence it is computationally very simple. The
method is very simple from programming point of view and does not require
a large computer storage.

1. A value of 1.3 for the initial value of a in Eq. (7.10) has been found to
be satisfactory by Box.

2. Box recommended a value of k — 2n (although a lesser value can be
chosen if n is greater than, say, 5). If k is not sufficiently large, the
complex tends to collapse and flatten along the first constraint boundary
encountered.

3. From the procedure above, it can be observed that the complex rolls over
and over, normally expanding. However, if a boundary is encountered,
the complex contracts and flattens itself. It can then roll along this con-
straint boundary and leave it if the contours change. The complex can
also accommodate more than one boundary and can turn corners.

4. If the feasible region is nonconvex, there is no guarantee that the centroid
of all feasible points is also feasible. If the centroid is not feasible, we
cannot apply the procedure above to find the new points Xr.

5. The method becomes inefficient rapidly as the number of variables in-
creases.

6. It cannot be used to solve problems having equality constraints.



7. This method requires an initial point X1 that is feasible. This is not a
major restriction. If an initial feasible point is not readily available, the
method described in Section 7.13 can be used to find a feasible point X1.

7.5 SEQUENTIAL LINEAR PROGRAMMING

In the sequential linear programming (SLP) method, the solution of the orig-
inal nonlinear programming problem is found by solving a series of linear
programming problems. Each LP problem is generated by approximating the
nonlinear objective and constraint functions using first-order Taylor series ex-
pansions about the current design vector, X r The resulting LP problem is
solved using the simplex method to find the new design vector X1- + {. If X1 + 1

does not satisfy the stated convergence criteria, the problem is relinearized
about the point X1 + 1 and the procedure is continued until the optimum solution
X* is found.

If the problem is a convex programming problem, the linearized constraints
always lie entirely outside the feasible region. Hence the optimum solution of
the approximating LP problem, which lies at a vertex of the new feasible re-
gion, will lie outside the original feasible region. However, by relinearizing
the problem about the new point and repeating the process, we can achieve
convergence to the solution of the original problem in few iterations. The SLP
method, also known as the cutting plane method, was originally presented by
Cheney and Goldstein [7.3] and Kelly [7.4].

Algorithm. The SLP algorithm can be stated as follows:

1. Start with an initial point X1 and set the iteration number as / = 1. The
point X1 need not be feasible.

2. Linearize the objective and constraint functions about the point X1 as

/(X) « /(X1) 4- Vf(Xf(X - X1) (7.14)

gj(X) * gj(Xi) + VgJ(Xf(X - X1) (7.15)

hk(X) * ^(X1) + V^(X/ (X - X,) (7.16)

3. Formulate the approximating linear programming problem asf

fNotice that the LP problem stated in Eq. (7.17) may sometimes have an unbounded solution.
This can be avoided by formulating the first approximating LP problem by considering only the
following constraints:

I1 < Xi < uh i = 1,2,. . .,n (7.18)

In Eq. (7.18), /, and M, represent the lower and upper bounds on xh respectively. The values of
/, and Uj depend on the problem under consideration, and their values have to be chosen such
that the optimum solution of the original problem does not fall outside the range indicated by
Eq. (7.18).



Minimize/(X1) + VfJ(X - X1)

subject to

Sj(X1) + VgJ(Xd7Oi ~ X1) < 0, J = 1,2,. . .,m

/1,(X,) + VAa(X1Z(X - X1-) = 0, * = 1,2,. . .,/> (7.17)

4. Solve the approximating LP problem to obtain the solution vector X1- + x.

5. Evaluate the original constraints at X/ + 1; that is, find

ft-(X/+1), j = 1,2,. . .,m and hk(Xi+l), * = 1,2,. . .,p

If ft(X/ + 1) < e fory = 1,2,. . .,/», and |A*(X, + 1) | < e, £ = 1,2,. . .,/7,
where e is a prescribed small positive tolerance, all the original con-
straints can be assumed to have been satisfied. Hence stop the procedure
by taking

XOpt — X j + I

If gj (Xt+ \) > e f ° r some j , or \hk(Xi + l)\ > e for some £, find the most
violated constraint, for example, as

gk(Xi + l) = max [gj(X1 + 1)] (7.19)
j

Relinearize the constraint gk(X) < 0 about the point X1 + { as

gk(X) - ^ (X, + 1) + Vg,(X/ + 1)r(X - X1-+ 1) < 0 (7.20)

and add this as the (m + l)th inequality constraint to the previous LP
problem.

6. Set the new iteration number as i = i + 1, the total number of constraints
in the new approximating LP problem as m + 1 inequalities andp equal-
ities, and go to step 4.

The sequential linear programming method has several advantages:

1. It is an efficient technique for solving convex programming problems
with nearly linear objective and constraint functions.

2. Each of the approximating problems will be a LP problem and hence
can be solved quite efficiently. Moreover, any two consecutive approx-
imating LP problems differ by only one constraint, and hence the dual
simplex method can be used to solve the sequence of approximating LP
problems much more efficiently.1

fThe dual simplex method was discussed in Section 4.3.



3. The method can easily be extended to solve integer programming prob-
lems. In this case, one integer LP problem has to be solved in each stage.

Geometric Interpretation of the Method. The SLP method can be illustrated
with the help of a one-variable problem:

Minimize/(JC) = cxx

subject to

g(x) < 0 (7.21)

where C1 is a constant and g(x) is a nonlinear function of JC. Let the feasible
region and the contour of the objective function be as shown in Fig. 7.5. To
avoid any possibility of unbounded solution, let us first take the constraints on
x as c < x < d, where c and d represent the lower and upper bounds on x.
With these constraints, we formulate the LP problem:

Minimize/(JC) = C1JC

subject to

c < JC < d (7.22)

/"decreases

Figure 7.5 Graphical representation of the problem stated by Eq. (7.21).



The optimum solution of this approximating LP problem can be seen to be x*
= c. Next, we linearize the constraint g(x) about point c and add it to the
previous constraint set. Thus the new LP problem becomes:

Minimize fix) = cxx (7.23a)

subject to

c < x < d (7.23b)

g(c) + ^ (c)(x - c) < 0 (7.23c)

The feasible region of x, according to the constraints (7.23b) and (7.23c), is
given by e < x < d (Fig. 7.6). The optimum solution of the approximating
LP problem given by Eqs. (7.23) can be seen to be JC* = e. Next, we linearize
the constraint g(x) < 0 about the current solution JC* = e and add it to the
previous constraint set to obtain the next approximating LP problem as:

Minimize/(JC) = cxx (7.24a)

Linearization of g(x) about
the point* = c:

Figure 7.6 Linearization of constraint about c.



subject to

c < x < d (7.24b)

g(c) + ^ (c)(x - c) < 0 (7.24c)

S(e) + ^ (e)(x - e) < 0 (7.24J)

The permissible range of x, according to the constraints (1.24b), (7.24c), and
(7.24J), can be seen to b e / < x < J from Fig. 7.7. The optimum solution
of the LP problem of Eqs. (7.24) can be obtained as x* = /.

We then linearize g(;c) < 0 about the present point JC* = /and add it to the
previous constraint set [Eqs. (7.24)] to define a new approximating LP prob-
lem. This procedure has to be continued until the optimum solution is found
to the desired level of accuracy. As can be seen from Figs. 7.6 and 7.7, the
optimum of all the approximating LP problems (e.g., points c, e, / , . . .) lie

. Linearization of g(x) about
the point x = c

Linearization of g{x) about
the point x = e:

Figure 7.7 Linearization of constraint about e.



outside the feasible region and converge toward the true optimum point, x =
a. The process is assumed to have converged whenever the solution of an
approximating problem satisfies the original constraint within some specified
tolerance level as

g(4) ^ €

where e is a small positive number and x* is the optimum solution of the kth
approximating LP problem. It can be seen that the lines (hyperplanes in a
general problem) defined by g(x*) + dgldx (x*) (x — x*) cut off a portion of
the existing feasible region. Hence this method is called the cutting plane
method.

Example 7.1

Minimize/(X1,Jc2) = Jc1 — X2

subject to

gx(xux2) = 3x\ - IxxX2 + x\ - 1 < 0

using the cutting plane method. Take the convergence limit in step 5 as e =
0.02.

Note: This example was originally given by Kelly [7.4]. Since the constraint
boundary represents an ellipse, the problem is a convex programming problem.
From graphical representation, the optimum solution of the problem can be
identified asx* = 0, x* = 1, and/min = — 1.

SOLUTION

Steps 1, 2, 3: Although we can start the solution from any initial point X1, to
avoid the possible unbounded solution, we first take the bounds on X1 and
X2 as - 2 < X1 < 2 and - 2 < X2 < 2 and solve the following LP problem:

Minimize/ = X1 — X2

subject to

- 2 < X1 < 2 ( E j )

- 2 < X2 < 2

The solution of this problem can be obtained as

X = \~2\ with /(X) = - 4



Step 4: Since we have solved one LP problem, we can take

Step 5: Since g\(X2) = 23 > e, we linearize g\(X) about point X2 as

gl(X) - gl(X2) + Vs1(X2)
7CX - X2) < 0 (E2)

As

g,(X2) = 23, ^ 1 = (6^1 - 2x2)|X2 = - 1 6
°*\ X2

^ = (-2X1 + 2x2)|x2 = 8
°X2 X2

Eq. (E2) becomes

S1(X) ^ -16X1 + 8x2 - 25 < 0

By adding this constraint to the previous LP problem, the new LP problem
becomes:

Minimize/ = X1 — X2

subject to

-2 < X1 < 2 ( E a )

- 2 < x2 < 2

- 16X1 H- 8x2 - 25 < 0

Step 6: Set the iteration number as i = 2 and go to step 4.
Step 4: Solve the approximating LP problem stated in Eqs. (E3) and obtain the

solution

f-0.5625^)
X3 = ] Q with / 3 = / (X 3 ) = -2.5625

This procedure is continued until the specified convergence criterion, ^1(X1)
< e, in step 5 is satisfied. The computational results are summarized in Table
7.2.



TABLE 7.2 Results for Example 7.1

Solution of the
Iteration Approximating LP
Number, New Linearized Constraint Problem

i Considered X ^ /(X1-+ Q S1(X1- + 1)

1 - 2 < X1 < 2 and (-2.0,2.0) -4.00000 23.00000
- 2 < Jc2 < 2

2 -16.0bc, + 8.Ox2 - 25.0 < 0 (-0.56250,2.00000) -2.56250 6.19922
3 -7.375JC, + 5.125JC2 (0.27870,2.00000) -1.72193 2.11978

-8.19922 < 0
4 -2.33157Jc1 + 3.44386*2 (-0.52970,0.83759) -1.36730 1.43067

-4.11958 < 0
5 -4.85341^+2.73459Jc2 (-0.05314,1.16024) -1.21338 0.47793

-3.43067 < 0
6 -2.63930^+2.42675JC2 (0.42655,1.48490) -1.05845 0.48419

-2.47792 < 0
7 -0.4107^+2.11690*2 (0.17058,1.20660) -1.03603 0.13154

-2.48420 < 0
8 -1.38975JC1 +2.07205JC2 (0.01829,1.04098) -1.02269 0.04656

-2.13155 < 0
9 -1.97223Jc1 + 2.04538*2 (-0.16626,0.84027) -1.00653 0.06838

-2.04657 < 0
10 -2.67809JC, + 2.01305JC2 (-0.07348,0.92972) -1.00321 0.01723

-2.06838 < 0

7.6 BASIC APPROACH IN THE METHODS OF FEASIBLE
DIRECTIONS

In the methods of feasible directions, basically we choose a starting point sat-
isfying all the constraints and move to a better point according to the iterative
scheme

X1-+ l = X; + XS, (7.25)

where X, is the starting point for the /th iteration, S1- the direction of movement,
X the distance of movement (step length) and X1- + x the final point obtained at
the end of the /th iteration. The value of X is always chosen so that X1- + x lies
in the feasible region. The search direction S1 is found such that (1) a small
move in that direction violates no constraint, and (2) the value of the objective
function can be reduced in that direction. The new point X1 + 1 is taken as the
starting point for the next iteration and the entire procedure is repeated several
times until a point is obtained such that no direction satisfying both properties
1 and 2 can be found. In general, such a point denotes the constrained local
minimum of the problem. This local minimum need not be a global one unless
the problem is a convex programming problem. A direction satisfying property



1 is called feasible while a direction satisfying both properties 1 and 2 is called
a usable feasible direction. This is the reason that these methods are known as
methods of feasible directions. There are many ways of choosing usable fea-
sible directions, and hence there are many different methods of feasible direc-
tions. As seen in Chapter 2, a direction S is feasible at a point X, if it satisfies
the relation

J^ gj(Xt + XS)|X=O = S7VgJ(X1) < 0 (7.26)

where the equality sign holds true only if a constraint is linear or strictly con-
cave, as shown in Fig. 2.8. A vector S will be a usable feasible direction if it
satisfies the relations

^f(X1 + XS)|X=O = S7VZ(X1) < 0 (7.27)
dk

J^ ft (X1- + XS)|X = O = S7VgJ(X1) < 0 (7.28)

It is possible to reduce the value of the objective function at least by a small
amount by taking a step length X > 0 along such a direction.

The detailed iterative procedure of the methods of feasible directions will
be considered in terms of two well-known methods: Zoutendijk's method of
feasible directions and Rosen's gradient projection method.

7.7 ZOUTENDIJK'S METHOD OF FEASIBLE DIRECTIONS

In Zoutendijk's method of feasible directions, the usable feasible direction is
taken as the negative of the gradient direction if the initial point of the iteration
lies in the interior (not on the boundary) of the feasible region. However, if
the initial point lies on the boundary of the feasible region, some constraints
will be active and the usable feasible direction is found so as to satisfy Eqs.
(7.27) and (7.28). The iterative procedure of Zoutendijk's method can be stated
as follows (only inequality constraints are considered in Eq. (7.1), for sim-
plicity.

Algorithm

1. Start with an initial feasible point X1 and small numbers el5 e2, and e3 to
test the convergence of the method. Evaluate/(X1) and ^7(X1), j =
1,2,. . .,m. Set the iteration number as i = 1.

2. If gj (Xt) < 0,7 = 1,2,. . .,m (i.e., X, is an interior feasible point), set
the current search direction as



S1- = -VZ(X1) (7.29)

Normalize S1- in a suitable manner and go to step 5. If at least one gj (X1)
= 0, go to step 3.

3. Find a usable feasible direction S by solving the direction-finding prob-
lem:

Minimize — a (7.30a)

subject to

S7Vg7(X;) + Oj<x < 0, j = 1,2,. . .,/> (1.30b)

S 7 V / + a < 0 (7.30c)

- 1 < S1. < 1, / = 1,2,. . .,AZ (7.3Od)

where st is the ith component of S, the first p constraints have been
assumed to be active at the point X1- (the constraints can always be re-
numbered to satisfy this requirement), and the values of all 0,- can be
taken as unity. Here a can be taken as an additional design variable.

4. If the value of a* found in step 3 is very nearly equal to zero, that is, if
a* < C1, terminate the computation by taking Xopt ^ X1-. If a* > ei,
go to step 5 by taking S1- = S.

5. Find a suitable step length A, along the direction S1- and obtain a new
point X1- +1 as

X1.+ 1 = X1- H- X1-S1- (7.31)

The methods of finding the step length \ will be considered later.
6. Evaluate the objective function /(X1- +1).

7. Test for the convergence of the method. If

/ ( X | ) " / , ( X ' + l ) < e2 and ||X, - X1 + 1H < e3 (7.32)

terminate the iteration by taking Xopt =• X1-+ 1. Otherwise, go to step 8.
8. Set the new iteration number as i = i + 1, and repeat from step 2 on-

ward.

There are several points to be considered in applying this algorithm. These
are related to (1) finding an appropriate usable feasible direction (S), (2) find-
ing a suitable step size along the direction S, and (3) speeding up the conver-
gence of the process. All these aspects are discussed below.



7.7.1 Direction-Finding Problem

If the point X, lies in the interior of the feasible region [i.e. g/X,) < 0 for j
= 1,2,. . .,m], the usable feasible direction is taken as

S, = -VZ(X,) (7.33)

The problem becomes complicated if one or more of the constraints are criti-
cally satisfied at X1-, that is, when some of the gJ-(X1) = 0. One simple way to
find a usable feasible direction at a point X, at which some of the constraints
are active is to generate a random vector and verify whether it satisfies Eqs.
(7.27) and (7.28). This approach is a crude one but is very simple and easy to
program. The relations to be checked for each random vector are also simple,
and hence it will not require much computer time. However, a more systematic
procedure is generally adopted to find a usable feasible direction in practice.
Since there will be, in general, several directions that satisfy Eqs. (7.27) and
(7.28), one would naturally be tempted to choose the "best" possible usable
feasible direction at X1.

Thus we seek to find a feasible direction which, in addition to decreasing
the value of/, also points away from the boundaries of the active nonlinear
constraints. Such a direction can be found by solving the following optimiza-
tion problem. Given the point X1-, find the vector S and the scalar a that max-
imize a subject to the constraints

S7Vg7(X,) + Opt < 0, jeJ (7.34)

S7VZ(X,) + ex < 0 (7.35)

where J represents the set of active constraints and S is normalized by one of
the following relations:

n

S7S = S a? = 1 (7.36)
I = 1

- 1 < si < 1, I = 1,2,. . . , / i (7.37)

S7VZ(X,) < 1 (7.38)

In this problem, 0y- are arbitrary positive scalar constants, and for simplicity,
we can take all 6j = 1. Any solution of this problem with a > 0 is a usable
feasible direction. The maximum value of a gives the best direction (S) that
makes the value of S7 V/ negative and the values of S7 Vg7(X/) as negative as
possible simultaneously. In other words, the maximum value of a makes the
direction S steer away from the active nonlinear constraint boundaries. It can
easily be seen that by giving different values for different Oj, we can give more
importance to certain constraint boundaries compared to others. Equations
(7.36) to (7.38) represent the normalization of the vector S so as to ensure that



the maximum of a will be a finite quantity. If the normalization condition is
not included, the maximum of a may be made to approach oo without violating
the constraints [Eqs. (7.34) and (7.35)].

Notice that the objective function a, and the constraint equations (7.34) and
(7.35) are linear in terms of the variables sus2,. . .,sn9a. The normalization
constraint will also be linear if we use either Eq. (7.37) or (7.38). However,
if we use Eq. (7.36) for normalization, it will be a quadratic function. Thus
the direction-finding problem can be posed as a linear programming problem
by using either Eq. (7.37) or (7.38) for normalization. Even otherwise, the
problem will be a LP problem except for one quadratic constraint. It was shown
by Zoutendijk [7.5] that this problem can be handled by a modified version of
linear programming. Thus the direction-finding problem can be solved with
reasonable efficiency. We use Eq. (7.37) in our presentation. The direction-
finding problem can be stated more explicitly as:

Minimize —a

subject to

dxx dx2 dxn

dxx dx2 OXn

S1 ^ + S2^ + • • • + Sn^ + 6pa < 0 (7.39)
&*i dx2 OXn

of df df
dx\ dx2 oxn

sx - 1 < 0
S2 - 1 < 0

sn - 1 < 0

- 1 - S1 < 0

- 1 - S2 < 0

- 1 -SH < 0



where p is the number of active constraints and the partial derivatives Sg1IdX1,
dg\ldx2,. . .,dgp/dxn, df/dxu. . .,df /dxn have been evaluated at point X1. Since
the components of the search direction, sh i = 1 to n, can take any value
between —1 and 1, we define new variables tt as tt = S1 : + 1, i = 1 to n, so
that the variables will always be nonnegative. With this change of variables,
the problem above can be restated as a standard linear programming problem
as follows:

Find (f,,f2,. . .,tn,a,yi,y2,. . .,yp + n + \) which

minimizes —a

subject to

dg\ dg] dg\ „ v̂  dgi
f' a + h a + ' ' ' + tn IT + ^01 + y> = 2 ^

OXi "X2 OXn i = l OXj

. dg2 Sg2 dg2 Y Bg2

t l ^ + t2^+---+tn^ + epa+yp^i:d^ (7.40)
^ J C 1 dx2 dxn

 p p i = i dxt

df df df A df
3JC1 dx2 dxn

 y / = i dx(

h + )V+2 = 2

2̂ + yP+3 = 2

rn + ^ + „ + 1 = 2

f! > 0
t2 > 0

rn > 0

a > 0

where J1, y2,. . .,yp + n + \ are the nonnegative slack variables. The simplex
method discussed in Chapter 3 can be used to solve the direction-finding prob-



lem stated in Eqs. (7.40). This problem can also be solved by more sophisti-
cated methods which treat the upper bounds on t( in a special manner instead
of treating them as constraints [7.6]. If the solution of the direction-finding
problem gives a value of a* > 0 , / (X) can be improved by moving along the
usable feasible direction

/% "\ ft* - 1^\
Si f J 1 — 1

s= i M-1:-
KsnJ Kt* - \J

If, however, a* = 0, it can be shown that the Kuhn-Tucker optimality con-
ditions are satisfied at X1- and hence point X, can be taken as the optimal so-
lution.

7.7.2 Determination of Step Length

After finding a usable feasible direction S1- at any point X1, we have to deter-
mine a suitable step length X1 to obtain the next point X1- + x as

X1-+1 = X,- + X1S, (7.41)

There are several ways of computing the step length. One of the methods is to
determine an optimal step length (X1-) that minimizes/(X1 + XS/) such that the
new point X1 + { given by Eq. (7.41) lies in the feasible region. Another method
is to choose the step length (X1-) by trial and error so that it satisfies the relations

/(X1. + XjSi) < /(X1.) ( 7 4 2 )

gjiXi + X1S1.) < 0, j = 1,2,. . .,m

Method 1. The optimal step length, X1, can be found by any of the one-
dimensional minimization methods described in Chapter 5. The only drawback
with these methods is that the constraints will not be considered while finding
X1-. Thus the new point X1+ l = X1- + X1-S1- may lie either in the interior of the
feasible region (Fig. 7.8a), or on the boundary of the feasible region (Fig.
7.8&), or in the infeasible region (Fig. 7.8c).

If the point X; +1 lies in the interior of the feasible region, there are no active
constraints and hence we proceed to the next iteration by setting the new usable
feasible direction as S1 + 1 = — V/(Xi + i) (i.e., we go to step 2 of the algo-
rithm). On the other hand, if X, +1 lies on the boundary of the feasible region,
we generate a new usable feasible direction S = S1- +1 by solving a new direc-
tion-finding problem (i.e, we go to step 3 of the algorithm). One practical
difficulty has to be noted at this stage. To detect that point Xz + 1 is lying on



Figure 7.8 Effect of taking optimal step length.

the constraint boundary, we have to find whether one or more gj(Xi + ]) are
zero. Since the computations are done numerically, will we say that the con-
straint gj is active if gj(Xi + l) = 10~2, 10~3, 10~8, and so on? We immediately
notice that a small margin e has to be specified to detect an active constraint.
Thus we can accept a point X to be lying on the constraint boundary if Ig7(X) |
< e where e is a prescribed small number. If point X1- + x lies in the infeasible
region, the step length has to be reduced (corrected) so that the resulting point
lies in the feasible region only. It is to be noted that an initial trial step size
(E1) has to be specified to initiate the one-dimensional minimization process.

Method 2. Even if we do not want to find the optimal step length, some sort
of a trial-and-error method has to be adopted to find the step length A, so as to

Direction in
which the
function value

1 decreases
Direction in
which
function value
decreases



satisfy the relations (7.42). One possible method is to choose an arbitrary step
length e and compute the values of

/ = /(X1. + eSt) and gj = &{Xf + eS,)

Depending on the values of/and gj9 we may need to adjust the value of e until
we improve the objective function value without violating the constraints.

Initial Trial Step Length. It can be seen that in whatever way we want to find
the step size X1-, we need to specify an initial trial step length e. The value of
e can be chosen in several ways. Some of the possibilities are given below.

1. The average of the final step lengths X, obtained in the last few iterations
can be used as the initial trial step length e for the next step. Although
this method is often satisfactory, it has a number of disadvantages:
(a) This method cannot be adopted for the first iteration.
(b) This method cannot take care of the rate of variation of/(X) in

different directions.
(c) This method is quite insensitive to rapid changes in the step length

that take place generally as the optimum point is approached.
2. At each stage, an initial step length e is calculated so as to reduce the

objective function value by a given percentage. For doing this, we can
approximate the behavior of the function/(X) to be linear in X. Thus if

/(X1) = /(X = O) = / , (7.43)

^- (X,) = ^- (X1- + XS,) = SrV/ = /J (7.44)

are known to us, the linear approximation of/(X) is given by

/(X) = / , +/1X

To obtain a reduction of 8% in the objective function value compared to
I / I, the step length X = e is given by

that is,



It is to be noted that the value of e will always be positive since/J given
in Eq. (7.44) is always negative. This method yields good results if the
percentage reduction (5) is restricted to small values on the order of 1 to
5.

7.7.3 Termination Criteria

In steps (4) and (5) of the algorithm, the optimization procedure is assumed to
have converged whenever the maximum value of a(a*) becomes approxi-
mately zero and the results of the current iteration satisfy the relations stated
in Eq. (7.32). In addition, one can always test the Kuhn-Tucker necessary
conditions before terminating the procedure.

However, we can show that if the Kuhn-Tucker conditions are satisfied,
the value of a* will become zero. The Kuhn-Tucker conditions are given by

p

V/ + 2 XjVgj = 0 (7.46)

Xj > 0, J= 1,2,. . .,/? (7.47)

where the first p constraints are assumed to be the active constraints. Equation
(7.46) gives

p

S7Vf = - TtX1S
7VgJ > 0 (7.48)

if S is a usable feasible direction. Thus if the Kuhn-Tucker conditions are
satisfied at a point X1-, we will not be able to find any search direction S that
satisfies the strict inequalities in the relations

STVgj < 0, J = 1,2,...,p

S7Vf < 0 (7.49)

However, these relations can be satisfied with strict equality sign by taking the
trivial solution S = O, which means that the value of a* in the direction-finding
problem, Eqs. (7.39), is zero.

Some modifications and accelerating techniques have been suggested to im-
prove the convergence of the algorithm presented in this section and the details
can be found in Refs. [7.7] and [7.8].

Example 7.2

Minimize/(X19X2) = x] + x\ - Axx - Ax2 + 8



subject to

Si(*i,*2) = *i + 2*2 - 4 < 0

with the starting point X, = j 0 • Take e, = 0.001, e2 = 0.001, and e3 =

0.01.

SOLUTION

Stepl: AtX 1 = Q :

/ (X 1) = 8 and S1(X1) = - 4

Iteration 1

Step 2: Since gi(X,) < 0, we take the search direction as

( d f IdXx) ( A )

This can be normalized to obtain S1 = j 1 | .

Step 5: To find the new point X2, we have to find a suitable step length along
S1. For this, we choose to minimize/(X1 +XS1) with respect to X. Here

/ ( X 1 + XS1) = /(O + X, 0 + X) = 2X2 - 8X + 8

-TT = 0 at X = 2

C2)
Thus the new point is given by X2 = j 9 | and ^1(X2) = 2. As the constraint

is violated, the step size has to be corrected.
As gi = ^i|x = o = ~ 4 and g" = gi|x = 2 = 2, linear interpolation gives

the new step length as

This gives gi | \ = x = 0 and hence X2 = j 4 [.



Step 6: /(X2) = §.
Step 7: Here

1/(XQ-Z(X2) _ 8_^J _ g
I / (X 1 ) " 8 " 5 > £ 2

HX1 - X2H = [(O - I)2 + (0 - f)2]1/2 = 1.887 > Z2

and hence the convergence criteria are not satisfied.

Iteration 2

Step 2: As ^1 = 0 at X2, we proceed to find a usable feasible direction.
Step 3: The direction-finding problem can be stated as [Eqs. (7.40)]:

Minimize/= —a

subject to

tx + It2 + a + yx = 3

- f*i - \h + « + yi = - f

h + y 3 = 2

'2 + J4 = 2

f, > 0

t2 > 0

a > 0

where J1 to J4 are the nonnegative slack variables. Since an initial basic
feasible solution is not readily available, we introduce an artificial variable
y5 >: 0 into the second constraint equation. By adding the infeasibility form
w = y5, the LP problem can be solved to obtain the solution:

tf=2, $=•&, a*= 4 yt=%, yf = y* = y* = 0

/min — a — 10

As a* > 0, the usable feasible direction is given by

-Cl-G ::)•(-)



Step 4: Since a* > e1? we go to the next step.

Step 5: We have to move along the direction S2 = j _ 0 7 ( from the point X2

= j . \ ™ f. To find the minimizing step length, we minimize

/(X2 + XS2) =/(1.333 + X, 1.333 - 0.7X)

= 1.49X2 - 0.4X + 0.889

As dfld\ = 2.98X - 0.4 = 0 at X = 0.134, the new point is given by

fl.333^) C 1.(T) fl.467^)
X3 = X2 + XS2 = + 0.134 = )

U.333J 1-0.7J (J.239J
At this point, the constraint is satisfied since gi(X3) = —0.055. Since point
X3 lies in the interior of the feasible domain, we go to step 2.

The procedure is continued until the optimum point X* = j ' > and/min

= 0.8 are obtained.

7.8 ROSEN'S GRADIENT PROJECTION METHOD

The gradient projection method of Rosen [7.9,7.10] does not require the so-
lution of an auxiliary linear optimization problem to find the usable feasible
direction. It uses the projection of the negative of the objective function gra-
dient onto the constraints that are currently active. Although the method has
been described by Rosen for a general nonlinear programming problem, its
effectiveness is confined primarily to problems in which the constraints are all
linear. Consider a problem with linear constraints:

Minimize/(X)

subject to

n

gj(X) = S1 aijXi - bj ^ 0, j = 1, 2,. . .,m (7.50)

Let the indices of the active constraints at any point be JiJ2 , . . .Jp. The gra-
dients of the active constraints are given by



(ay)
Vg/X) = ^ , J= JiJ2,---JP (7.51)

\JhlJ

By defining a matrix N of order n x p as

N = [Vgy, Vg 2̂ • • • Vgjp] (7.52)

the direction-finding problem for obtaining a usable feasible direction S can be
posed as follows.

Find S which minimizes SrV/(X) (7.53)
subject to

N7S = 0 (7.54)

S7S - 1 = 0 (7.55)

where Eq. (7.55) denotes the normalization of the vector S. To solve this
equality constrained problem, we construct the Lagrangian function as

US9X9P) = SrV/(X) + 5.7N7S + /3(S7S - 1) (7.56)

where

X = Y;

KXPJ

is the vector of Lagrange multipliers associated with Eqs. (7.54) and /3 is the
Lagrange multiplier associated with Eq. (7.55). The necessary conditions for
the minimum are given by

dL

— = Vf(X) + fiX + 2/3S = 0 (7.57)

^ = N7-S = 0 (7.58)

^ = S7S - 1 = O (7.59)
dp



Equation (7.57) gives

S = ~ (V/ + NX) (7.60)

Substitution of Eq. (7.60) into Eq. (7.58) gives

N7S = — l - (N7V/ + N7Nk) = 0 (7.61)

If S is normalized according to Eq. (7.59), /3 will not be zero, and hence Eq.
(7.61) gives

N7V/ 4- N7NX = 0 (7.62)

from which X can be found as

Jt = -(N7N)-1N7V/ (7.63)

This equation, when substituted in Eq. (7.60), gives

S = - ^ r (I - N ( N 7 N r 1 N W = - - L FV/ (7.64)

where

P = I - N(N7N)-1N7 (7.65)

is called the projection matrix. Disregarding the scaling constant 2/3, we can
say that the matrix P projects the vector — V/(X) onto the intersection of all
the hyperplanes perpendicular to the vectors

Vgj> J =J\J2,- • -Jp

We assume that the constraints g/X) are independent so that the columns
of the matrix N will be linearly independent, and hence N7N will be nonsin-
gular and can be inverted. The vector S can be normalized [without having to
know the value of /3 in Eq. (7.64)] as

PVf
S - "lFVl ^

If X1- is the starting point for the ith iteration (at which gj\,gj2,- • -9gjp are crit-
ically satisfied), we find S1 from Eq. (7.66) as



_ P1Vf(X1.)
S/ • " IIP,V/(X,.)|| (7-67)

where P1- indicates the projection matrix P evaluated at the point X,. If S1- =̂
0, we start from X, and move along the direction S1- to find a new point X1 + x

according to the familiar relation

X1 + 1 = X f + X1S1- (7.68)

where X1 is the step length along the search direction S1-. The computational
details for calculating X/ will be considered later. However, if S1- = 0, we have
from Eqs. (7.64) and (7.63),

-Vf(X1) = m = X1VgJ1 + \2VgJ2 + • • • + XpVgjp (7.69)

where

X = -(N7N)-1N7Vf(X1) (7.70)

Equation (7.69) denotes that the negative of the gradient of the objective func-
tion is given by a linear combination of the gradients of the active constraints
at X1-. Further, if all X7, given by Eq. (7.63), are nonnegative, the Kuhn-Tucker
conditions [Eqs. (7.46) and (7.47)] will be satisfied and hence the procedure
can be terminated.

However, if some X7 are negative and S1- = 0, Eq. (7.69) indicates that some
constraint normals Vg7 make an obtuse angle with — V/at X1-. This also means
that the constraints gj, for which X7 are negative, are active at X1- but should
not be considered in finding a new search direction S which will be both fea-
sible and usable. (If we consider all of them, the search direction S comes out
to be zero.) This is illustrated in Fig. 7.9, where the constraint normal Vg1(X/)
should not be considered in finding a usable feasible direction S at point X1-/

In actual practice we do not discard all the active constraints for which X7

are negative in forming the matrix N. Rather, we delete only one active con-
straint that corresponds to the most negative value of X7. That is, the new N
matrix is taken as

Nnew = [Vgy, VgJ2 • • • Vgjq_x Vgjq+{ Vgjq + 2 • • • V ^ ] (7.71)

where Vgjq is dropped from N by assuming that X̂  is most negative among X7

obtained from Eq. (7.63). The new projection matrix is formed, by dropping
the constraint gjq9 as

Pnew = (I - Nn^(NJeJVnCw)-1NL,) (7-72)



Less than 90°

Figure 7.9 Situation when S,- = 0 and some Xy are negative.

and the new search direction (S;)new as

( S ' ) n e W ~ l|PnewV/(X(.)||
 ( ? - 7 3 )

and this vector will be a nonzero vector in view of the new computations we
have made. The new approximationX1 + j is found as usual by using Eq. (7.68).
At the new point X1- +19 a new constraint may become active (in Fig. 7.9, the
constraint g3 becomes active at the new point X1 + 1). In such a case, the new
active constraint has to be added to the set of active constraints to find the new
projection matrix at X1+ l.

We shall now consider the computational details for computing the step
length X1- in Eq. (7.68).

7.8.1 Determination of Step Length

The step length X1- in Eq. (7.68) may be taken as the minimizing step length
X* along the direction S1-, that is,

/(X1. + XfS1) = min/(X / + XS1) (7.74)
x

Less than 90° ôpt

Greater than 90°

(Sj) new



However, this minimizing step length Xf may give the point

X/ + 1 = X/ + X; S1-

that lies outside the feasible region. Hence the following procedure is generally
adopted to find a suitable step length \ . Since the constraints g/X) are linear,
we have

n

gj(k) = Sj(X1 + XS,) = S 1 Cy(X1 + Xs1) - bj

n n

= ZI ciyXi — bj + X S atjSi

n

= g/X,) + X S aijSh J= 1,2,. . .,in (7.75)
/= 1

where

2̂ ( 2̂
X1- = < . > and S1- = < . • .

This equation shows that g/X) will also be a linear function of X. Thus if a
particular constraint, say the fcth, is not active at X1-, it can be made to become
active at the point X1 + X^S; by taking a step length X̂  where

n

gk(K) = g*(X/) + X* S 0^1. = o
/ = i

that is,

X* = - - n (7.76)

I = i

Since the Jcth constraint is not active at X1-, the value of ^(X1-) will be negative
and hence the sign of X̂  will be same as that of the quantity (EJ1= x aikst). From
Eqs. (7.75) we have

, n

-^ (X) = E aikSi (7.77)
a X / = i



and hence the sign of X, depends on the rate of change of gk with respect to X.
If this rate of change is negative, we will be moving away from the kth con-
straint in the positive direction of X. However, if the rate of change (dgk/d\)
is positive, we will be violating the constraint gk if we take any step length X
larger than X .̂ Thus to avoid violation of any constraint, we have to take the
step length (XM) as

X M = min (X,) (7.78)
Xk > 0 and k

is any integer among
1 to m other than

j\,J2,- . -Jp

In some cases, the function/(X) may have its minimum along the line S1- in
between X = O and X = XM. Such a situation can be detected by calculating
the value of

^r = S[Vf(X) at X = \Mdk

If the minimum value of X, Xf, lies in between X = O and X = \M, the quantity
df/d\(kM) will be positive. In such a case we can find the minimizing step
length Xf by interpolation or by using any of the techniques discussed in Chap-
ter 5.

An important point to be noted is that if the step length is given by X, (not
by Xf), at least one more constraint will be active at X1 + 1 than at X1-. These
additional constraints will have to be considered in generating the projection
matrix at X1- + ̂  On the other hand, if the step length is given by Xf, no new
constraint will be active at X1- + \, and hence the projection matrix at X, + ̂  in-
volves only those constraints that were active at X1-.

Algorithm. The procedure involved in the application of the gradient projec-
tion method can be described by the following steps:

1. Start with an initial point X1. The point X1 has to be feasible, that is,

gjiXO < 0, j = 1,2,. . .,m

2. Set the iteration number as / = 1.

3. IfX4 is an interior feasible point [i.e., if g/X,-) < 0 forj = 1 ,2 , . . .,m],
set the direction of search as S; = -V/(X/) , normalize the search direc-
tion as

-Vf(X1)

' llv/(x,.)||



and go to step (5). However, if g/X,) = 0 forj = J1J2,. . . Jp, go to
step 4.

4. Calculate the projection matrix P1 as

P1- = I - N11(NjNp)-1Nj

where

Np = [VgJ1(X1) VgJ2(X1) • - • VgJ^X1)]

and find the normalized search direction S, as

_ -P,V/(X,)
' llP,V/(X,.)||

5. Test whether or not S, = 0. If S, ± 0, go to step 6. If S, = 0, compute
the vector X at X, as

x = -(N;NP)-'N;V/(X,)

If all the components of the vector X are nonnegative, take Xopt = X1-
and stop the iterative procedure. If some of the components of X are
negative, find the component X̂  that has the most negative value and
form the new matrix Np as

Np = [Vgj, VgJ2 • • • Vgjq_x Vgjq+] • • • Vgjp]

and go to step 3.
6. If S; =£ 0, find the maximum step length \ M that is permissible without

violating any of the constraints as XM = min(X^), X̂  > 0 and k is any
integer among 1 torn other than j\J2,. . >JP- Also find the value of dfl
d\(\M) = SfVf(X1 + XMS/). If df/d\(\M) is zero or negative, take the
step length as X, = XM. On the other hand, if df/d\(kM) is positive, find
the minimizing step length Xf either by interpolation or by any of the
methods discussed in Chapter 5, and take X1- = X*.

7. Find the new approximation to the minimum as

Xi + \ = Xj + X,-S/

If X/ = XM or if \M < Xf, some new constraints (one or more) become
active at X, + j and hence generate the new matrix Np to include the gra-
dients of all active constraints evaluated at X/ +!. Set the new iteration
number as / = / + 1, and go to step 4. If X, = Xf and Xf < XM, no
new constraint will be active at Xt + { and hence the matrix Np remains
unaltered. Set the new value of / as / = / + 1, and go to step 3.



Example 7.3

Minimize/(X1 ,X2) = X1 + X2 - 2xx - Ax2

subject to

8\(xux2) = X1 + Ax2 - 5 < 0

g2(xux2) = Ixx + Zx2 - 6 < 0

£3(*lv*2) = -X1 < 0

^4(X19X2) = - x 2 < 0

starting from the point X1 = | ' I •

SOLUTION

Iteration / = 1

Step 3: Since ^7(X1) = 0 forj = 1, we have/? = 1 andJ1 = 1.

Step 4: As N1 = [Vg1 (X1)] = , L the projection matrix is given by

= 1 [ 1 6 " 4 I
17 L - 4 l j

The search direction S1 is given by

1 [ 16 -4]f 0") (-fll_( -0.4707"]
S' = - n U l J l - 2 J = [ A J " l 0.1177 j

a s

(2X1 - 2 ~ ) T O )

U*2-4JXI C-2J

The normalized search direction can be obtained as

1 f-0.4707^ r-0.970O
S ' = [(-0.4707)2 + (0.1177)2]"2 [ o.l 177J = [ 0.2425J



Step 5: Since S1 ^ O, we go step 6.
Step 6: To find the step length XM, we set

X = = X1 + XS.

f 1.0 - 0.9701X^)

~ (.1.0 + 0.2425XJ

Fory = 2:

g2(X) = (2.0 - 1.9402X) + (3.0 + 0.7275X) - 6.0 = 0 at X = X2 =
-0.8245

For 7 = 3:

^3(X) = -(1.0 - 0 .9701X) = 0 at X = X3 = 1.03

Forj = 4:

S4(X) = -(1.0 + 0.2425X) = 0 at X = X4 = -4.124

Therefore,

XM = X3 = 1.03

Also

/(X) =/(X) = (1.0 - 0.9701X)2 + (1.0 + 0.2425X)2

- 2(1.0 - 0.9701X) - 4(1.0 + 0.2425X)

= 0.9998X2 - 0.4850X - 4.0

— = 1.9996X - 0.4850
aX

— (K11) = 1.9996(1.03) - 0 .4850 = 1.5746
ah

As dfld\(\M) > 0, we compute the minimizing step length Xf by setting
dfldK = 0. This gives



Step 7: We obtain the new point X2 as

f 1.0") f - 0 . 9 7 0 0 f 0.7647 ̂ )
X2 = X1 + X1S1 = ( + 0.2425 =

CLOJ C 0.2425 J C 1.0588 J

Since X1 = Xf and Xf < XM, no new constraint has become active at X2

and hence the matrix N1 remains unaltered.

Iteration / = 2

Step 3: Since ^1(X2) = 0, we setp=l,j\ = l and go to step 4.
Step 4:

- • Cl

(lxx -2~) fl-5294 -2.0") f -0.4706")
A/(X2) = =

[Ix2 -4J X 2 [2.1176 - 4 . 0 J C-1.8824J

1 f 16 -4i( '0.4706') fO.0")

5f6/? 5: Since S2 = 0, we compute the vector X, at X2 as

X = -(N[NO-1N[VZ(X2)

1 f-0.4706^)
= [ 1 4 ] ( = 0.4707 > 0

17 C-1.8824 J

The nonnegative value of X indicates that we have reached the optimum
point and hence that

fO.7647^)
X- = Xl = L o s s s j with A- = -4059

7.9 GENERALIZED REDUCED GRADIENT METHOD

The generalized reduced gradient (GRG) method is an extension of the re-
duced gradient method that was presented originally for solving problems with



linear constraints only [7.11]. To see the details of the GRG method, consider
the nonlinear programming problem:

Minimize/(X) (7.79)

subject to

/iy(X) < 0, j = 1,2 m (7.80)

4(X) = 0, k = 1,2,. . .,/ (7.81)

x\l) < Xi < x\u\ i = 1,2,. . .,/i (7.82)

By adding a nonnegative slack variable to each of the inequality constraints in
Eq. (7.80), the problem can be stated as

Minimize/(X) (7.83)

subject to

A,-(X) + xn+j = 0, J = 1,2,. . .,m (7.84)

hk(X) = 0, Jk= 1,2,. . .,/ (7.85)

x{P < X1 < Jt?0, i = 1,2,. . .,n (7.86)

x,+ y > 0, J = 1,2,. . .,m (7.87)

with n + m variables (Jc15JC2,. . .,Jc^Jcn + 1,. . .,xn + m). The problem can be re-
written in a general form as:

Minimize/(X) (7.88)

subject to

gj(X) = 0, j= 1,2,. . .,/n + / (7.89)

JC<° < JC1 < Jc1^, i = 1,2,. . .,n + m (7.90)

where the lower and upper bounds on the slack variable, xh are taken as 0 and
a large number (infinity), respectively (/ = n H- 1, n H- 2, . . ., n H- m).

The GRG method is based on the idea of elimination of variables using the
equality constraints (see Section 2.4.1). Thus, theoretically, one variable can
be reduced from the set JC, (I = 1,2,. . .,n H- m) for each of the m + I equality
constraints given by Eqs. (7.84) and (7.85). It is convenient to divide the n H-
m design variables arbitrarily into two sets as



X - Q (7.9,,

f y, "\
y2 (

Y = . = design or independent variables (7.92)

Vy* -i J

Zl
Z = . = state or dependent variables (7.93)

^Zm +1J

and where the design variables are completely independent and the state vari-
ables are dependent on the design variables used to satisfy the constraints gj (X)
= 0,7 = 1,2, . . . 9m + /.

Consider the first variations of the objective and constraint functions:

n l df m + l df
df(X) = S / dyx, + S / dzj = VyfdY + VJ/JZ (7.94)

i = i cry,- i = i dz,-

dgi(X) = Z dfdyj+ X ^dZj
j=x dyj J 7 = 1 dij J

or

dg = [C] d\ + [D] JZ (7.95)

where

f K }

i t
V Y / = < > (7-96)

y

13y»-/ J



f M }

M.
V z / = I y (7.97)

JL
V. Szm +1 J

Sg1 # _ dg\

^y1I ^yn-I

[C] = '; '; (7.98)

dgm + l # m m dgm+l
^y i Syn.,

Oil . . . dgl

Szx dzm + i

[D] = j j (7.99)

d£m + / # # ^ ^ m + /

dzi Szm + i_

C dyx >j
rfy2 i

dX = . > (7.100)

^dyn-tJ

( ^ ^)
dz2

dZ = . (7.101)

^dzm +1J

Assuming that the constraints are originally satisfied at the vector X, (g(X) =
0), any change in the vector dX must correspond to Jg = 0 to maintain fea-
sibility at X + dX. Equation (7.95) can be solved to express dZ as

dZ = -[D]-1CC]JY (7.102)



The change in the objective function due to the change in X is given by Eq.
(7.94), which can be expressed, using Eq. (7.102), as

df(X) = <y$f - Vlf[DVl[C]) dY (7.103)

or

j | ( X ) = G* (7.104)

where

GR = V Y / - ([DV'[C])TVzf (7.105)

is called the generalized reduced gradient. Geometrically, the reduced gradient
can be described as a projection of the original n-dimensional gradient onto
the (n — m) dimensional feasible region described by the design variables.

We know that a necessary condition for the existence of a minimum of an
unconstrained function is that the components of the gradient vanish. Simi-
larly, a constrained function assumes its minimum value when the appropriate
components of the reduced gradient are zero. This condition can be verified to
be same as the Kuhn-Tucker conditions to be satisfied at a relative minimum.
In fact, the reduced gradient GR can be used to generate a search direction S
to reduce the value of the constrained objective function similar to the gradient
V/that can be used to generate a search direction S for an unconstrained func-
tion. A suitable step length X is to be chosen to minimize the value of/along
the search direction S. For any specific value of X, the dependent variable
vector Z is updated using Eq. (7.102). Noting that Eq. (7.102) is based on
using a linear approximation to the original nonlinear problem, we find that
the constraints may not be exactly equal to zero at X, that is, dg =£ 0. Hence,
when Y is held fixed, in order to have

ft(X) + dgi(X) = 0, i = 1,2,. . .,m + / (7.106)

we must have

g(X) + ^g(X) = 0 (7.107)

Using Eq. (7.95) for dg in Eq. (7.107), we obtain

dZ = [D]-\-g(X) - [C] dY) (7.108)

The value of dZ given by Eq. (7.108) is used to update the value of Z as

Zupdate = Zcurrent + dZ (7.109)



The constraints evaluated at the updated vector X, and the procedure [of find-
ing dZt using Eq. (7.108)] is repeated until JZ is sufficiently small. Note that
Eq. (7.108) can be considered as Newton's method of solving simultaneous
equations for dX.

Algorithm

1. Specify the design and state variables. Start with an initial trial vector
X. Identify the design and state variables (Y and Z) for the problem
using the following guidelines.
(a) The state variables are to be selected to avoid singularity of the ma-

trix, [D].
(b) Since the state variables are adjusted during the iterative process to

maintain feasibility, any component of X that is equal to its lower
or upper bound initially is to be designated a design variable.

(c) Since the slack variables appear as linear terms in the (originally
inequality) constraints, they should be designated as state variables.
However, if the initial value of any state variable is zero (its lower
bound value), it should be designated a design variable.

2. Compute the generalized reduced gradient. The GRG is determined using
Eq. (7.105). The derivatives involved in Eq. (7.105) can be evaluated
numerically, if necessary.

3. Test for convergence. If all the components of the GRG are close to
zero, the method can be considered to have converged and the current
vector X can be taken as the optimum solution of the problem. For this,
the following test can be used:

HGj < e

where e is a small number. If this relation is not satisfied, we go to step
4.

4. Determine the search direction. The GRG can be used similar to a gra-
dient of an unconstrained objective function to generate a suitable search
direction, S. The techniques such as steepest descent, Fletcher-Reeves,
Davidon-Fletcher-Powell, or Broydon-Fletcher-Goldfarb-Shanno
methods can be used for this purpose. For example, if a steepest descent
method is used, the vector S is determined as

S = - G * (7.110)

5. Find the minimum along the search direction. Although any of the one-
dimensional minimization procedures discussed in Chapter 5 can be used
to find a local minimum of/along the search direction S, the following
procedure can be used conveniently.



(a) Find an estimate for X as the distance to the nearest side constraint.
When design variables are considered, we have

f y " ~ <*>" if s, > 0
X = J * (7-111)

yf) ~ {yd°« if s, < 0

where S1 is the rth component of S. Similarly, when state variables
are considered, we have, from Eq. (7.102),

dZ = -[D]-\C]dY (7.112)

Using dY = XS, Eq. (7.112) gives the search direction for the vari-
ables Z as

T = -[Dr\C]S (7.113)

Thus

(z'u) ~ fe)old if t-t > o

X = ) ( 0 '' ( 7 - 1 1 4 )

^ ° ~ fe)old if ti < o
V h

where ^ is the ith component of T.
(b) The minimum value of X given by Eq. (7.111), X1, makes some

design variable attain its lower or upper bound. Similarly, the min-
imum value of X given by Eq. (7.114), X2, will make some state
variable attain its lower or upper bound. The smaller of X1 or X2 can
be used as an upper bound on the value of X for initializing a suitable
one-dimensional minimization procedure. The quadratic interpola-
tion method can be used conveniently for finding the optimal step
length X*.

(c) Find the new vector Xnew:

rYold + dY~] (YM + X*S)
Xnew = = (7.115)

If the vector Xnew corresponding to X* is found infeasible, then Ynew

is held constant and Znew is modified using Eq. (7.108) with dZ =
Znew - Zold. Finally, when convergence is achieved with Eq.



(7.108), we find that

f Yold + AY^)
X n e w = A r w { (7.116)

CZold + AZJ

and go to step 1.

Example 7.4

Minimize f(xux2,x3) = (xx - X2)
2 + (x2 - X3)

4

subject to

g l(X) = X1(I + x\) + x\ - 3 = 0

- 3 < xt < 3, I = 1,2,3

using the GRG method.

SOLUTION

Step 1: We choose arbitrarily the independent and dependent variables as

* - £ ) • £ ] • z ^ f e l

r - 2 . 6 ^

Let the starting vector be X1 = j 2 \ with/(X1) =21 .16 .

Step 2: Compute the GRG at X1. Noting that

^ = 2 ^ ~x*

^ - = -2(JC1 - Jc2) + 4(x2 - X3)
3

OX2

I - - 4 ^ - * t

H l - • - ?



dgi - Ix x

we find, at X1,

r j n

v W^, f 2(-2.6-2) ~) = r-9.2^)
Y / _ # \ C-2(-2.6-2) + 4(2 -2 ) 3 j [ 9.2J

vdx2 -^
xi

V z / = f ^ ] = { - 4 f e - x 3 ) 3 } X l = 0
C « 3 J x ,

[C] = r ^ l ^ i ] = [5 -10.4]

CT = [ W =[32]

[D]-1 = [^], [D]-'[C] = 35 [5 -10.4] = [0.15625 -0.325]

GK = V Y / - [[D]"'[C]]TVZ/

_C-9.2~) C 0.15625^ f~9-2!
~ I 9.2 J [-0.325 j ~ I 9.2J

5rep J: Since the components of GR are not zero, the point X, is not optimum,
and hence we go to step 4.

Step 4: We use the steepest descent method and take the search direction as

r 9.2)
S=-G*i-9.2J

Step 5: We find the optimal step length along S.
(a) Considering the design variables, we use Eq. (7.111) to obtain:
For J1 = X1:

X . l^g*> . 0.6087



For y2 = X2:

x = ~3 - V = 0 5 4 3 5

-9 .2

Thus the smaller value gives X1 = 0.5435. Equation (7.113) gives

T = -([£>r'[C])S = -(0.15625 -0.325) = -4.4275
C -9.2 )

and hence Eq. (7.114) leads to:

— 3 — (2)
F ° r * I = X 3 : X = ^ 4 ^ 7 5 L 1 2 9 3

ThusX2 = 1.1293.

(b) The upper bound on X is given by the smaller of X, and X2, which is
equal to 0.5435. By expressing

C.Z + XTJ

we obtain

fxA f-2-6^ C 9.2 ^ r -2.6 + 9.2X^
X = J X2 J = J 2 } + x { - 9 . 2 [ = J 2 - 9.2X

(̂JC3J C 2 J (̂-4.4275 J (̂2-4.4275X J
and hence

/(X) = / (X) = (-2.6 + 9.2X - 2 + 9.2X)2

+ (2 - 9.2X - 2 + 4.4275X)4

= 518.7806X4 + 338.56X2 - 169.28X + 21.16

dfld\ = 0 gives

2075.1225X3 + 677.12X - 169.28 = 0

from which we find the root as X* » 0.22. Since X* is less than the upper
bound value 0.5435, we use X*.



(c) The new vector Xn e w is given by

rv o l d + dY^,
Xnew [zM + dzj

^ f -2.6 + 0.22(9.2) ^ C -0.576 ^

rYo l d + x*s^ / /
= < 2 + 0.22(-9.2) > = { -0.024 >

(̂ 2 + 0.22( -4.4275) J [^ 1.02595 J
with

( 2.024^)
^ Y = , dZ = {-0.97405}

C -2.024 J

Now, we need to check whether this vector is feasible. Since

•?i(Xnew) = (~0.576)[l + (-0.024)2] + (1.02595)4 - 3 = -2.4684 * 0

the vector Xnew is infeasible. Hence we hold Ynew constant and modify Z n e w

using Newton's method [Eq. (7.108)] as

dZ = [Z>r'[-g(X) - [C] f̂Y]

Since

[D] = [ ^ ] = [Ax\] = [4(1.02595)3] = [4.319551]

g,(X) = {-2.4684}

[C] = № ^ i = {[2(-0.576 + 0.024)][-2(-0.576 + 0.024)

Ltyl 3̂ 2 J

+ 4(-0.024 - 1.02595)3]}

= [-1.104 -3.5258]

rfZ = 4 ^ i k r [ 2 - 4 6 8 4 ~ { " 1 1 0 4 "35258}

C 2.024")]
= {-0.5633}

C-2.024JJ

we have Z n e w = Z o l d + dZ = {2 - 0.5633} = {1.4367}. The current Xn e w

becomes



r >. C -0 .576 -N
f Y0H + dY /

Xnew = = -0 .024
/ Zold + dZ) J
^ J I 1.4367 J

The constraint becomes

S, = (-0.576)0 - (-0.024)2) + (1.4367)4 - 3 = 0.6842 * 0

Since this Xnew is infeasible, we need to apply Newton's method [Eq. (7.108)]
at the current Xnew. In the present case, instead of repeating Newton's iteration,
we can find the value of Znew = {x3}new by satisfying the constraint as

S1(X) = (-0.576)[l + (-0.024)2] + x\ - 3 = 0

or X3 = (2.4237)025 = 1.2477

This gives

C -0.576 ^

Xnew = J -0.024 j and

(̂  1.2477 J

/(Xnew) = (-0.576 + 0.024)2 + (-0.024 - 1.2477)4 = 2.9201

Next we go to step 1.

Step 1: We do not have to change the set of independent and dependent vari-
ables and hence we go to the next step.

Step 2: We compute the GRG at the current X using Eq. (7.105). Since

\ Bx1 I _ C 2(-0.576 + 0.024) ~)

] M-\~ l -2 ( -° - 5 7 6 + °-024) + 4(-0.024 - 1.2477)3j

C-1.104 ~)
~ (-7.1225 j

V2/= I ^ J = [ ^ j = {-4(-0.024 - 1.2477)3} = {8.2265}



[C] = I ̂ 1 ^11 = [(I + (-0.024)2) 2(-0.576)(-0.024)]
L OXx ax2 J

= [1.000576 0.027648]

[D] = \jjjA = [4x3
3] = [4(1.2477)3] = [7.7694]

[D]~l[C] = —-—[1.000576 0.027648] = [0.128784 0.003558]

GR = VYf- [[DVl[C]]TVzf

C -1.104 *) CO. 128784 )̂ f-2.1634^)
- (8.2265) =

C -7.1225 J CO.OO3558J C-7.1518 J

Since GR =£ 0, we need to proceed to the next step.

Note: It can be seen that the value of the objective function reduced from
an initial value of 21.16 to 2.9201 in one iteration.

7.10 SEQUENTIAL QUADRATIC PROGRAMMING

The sequential quadratic programming is one of the most recently developed
and perhaps one of the best methods of optimization. The method has a theo-
retical basis that is related to (1) the solution of a set of nonlinear equations
using Newton's method, and (2) the derivation of simultaneous nonlinear equa-
tions using Kuhn-Tucker conditions to the Lagrangian of the constrained op-
timization problem. In this section we present both the derivation of the equa-
tions and the solution procedure of the sequential quadratic programming
approach.

7.10.1 Derivation

Consider a nonlinear optimization problem with only equality constraints as:

Find X which minimizes /(X)

subject to

hk(X) = 0 , k= 1,2,... ,p (7.117)

The extension to include inequality constraints will be considered at a later
stage. The Lagrange function, L(X9X)9 corresponding to the problem of Eq.



(7.117) is given by

p

L=/(X) + S X^(X) (7.118)
k= 1

where \k is the Lagrange multiplier for the £th equality constraint. The Kuhn-
Tucker necessary conditions can be stated as

p

VL = 0 or V/+ S \kVhk = 0 or V/+ [A]TX = 0 (7.119)
& = 1

hk(X) = 0 , k= 1,2,...,p (7.120)

where [/4] is an n Xp matrix whose £th column denotes the gradient of the
function hk. Equations (7.119) and (7.120) represent a set of n + p nonlinear
equations in n 4- p unknowns (xh i = 1,. . .,n and X ,̂ k = 1,. ..,/?). These
nonlinear equations can be solved using Newton's method. For convenience,
we rewrite Eqs. (7.119) and (7.120) as

F(Y) = 0 (7.121)

where

(it) m r<n
F = , Y = , 0 = (7.122)

V h J(n +p) x 1 V ^ J(Yi +p) X 1 L" ) (n +p) x 1

According to Newton's method, the solution of Eqs. (7.121) can be found
iteratively as (see Section 6.13)

Yj+1 = Yj + AYJ (7.123)

with

[VF]JAYj = -F(Y,) (7.124)

where Y7 is the solution at the start of jth iteration and AY7 is the change in Y7

necessary to generate the improved solution, Y7 + 1, and [VF]7 = [VF(Y7)] is
the (n + p) X (n + p) Jacobian matrix of the nonlinear equations whose /th
column denotes the gradient of the function F1 (Y) with respect to the vector
Y. By substituting Eqs. (7.121) and (7.122) into Eq. (7.124), we obtain

[[V2L] [H]I (AX) (VL)
( = -) (7-125)

LlHf [O]J7-UxJ7. ChJ7.



AX7 = X7 + 1 - X , . (7.126)

AXj = Xj + 1 - XJ (7.127)

where [V2L]n x „ denotes the Hessian matrix of the Lagrange function. The first
set of equations in (7.125) can be written separately as

[V2L]7AX^ + [H]JAXJ = -VL7 (7.128)

Using Eq. (7.127) for AX7 and Eq. (7.119) for VL7, Eq. (7.128) can be ex-
pressed as

[V2L]7AX7 + [H]J(Xj + 1 - Xj) = -VJS - [H]JXj (7.129)

which can be simplified to obtain

[V2L]7AX7 + [ /Z]7Vi = -Vfj ( 7 1 3 ° )

Equation (7.130) and the second set of equations in (7.125) can now be com-
bined as

1[Hf [O]J)Uy + J U 7 J

Equations (7.131) can be solved to find the change in the design vector AX7

and the new values of the Lagrange multipliers, X7 + 1. The iterative process
indicated by Eq. (7.131) can be continued until convergence is achieved.

Now consider the following quadratic programming problem:

Find AX that minimizes the quadratic objective function

Q = V/ rAX + ^AXr[V2L]AX

subject to the linear equality constraints (7.132)

hk + VZi[AX = 0, k= 1,2,. . .,/? or h + [H]7AX = 0

The Lagrange function, L, corresponding to the problem of Eq. (7.132) is
given by

p

L = Vf7AX H- 5AXr[V2L]AX + S \k(hk + VZi[AX) (7.133)
k= 1

where X* is the Lagrange multiplier associated with the £th equality constraint.



The Kuhn-Tucker necessary conditions can be stated as

V/ + [V2L]AX + [H]X = 0 (7.134)

hk + VhIAX = 0, k = 1,2,. . .,/? (7.135)

Equations (7.134) and (7.135) can be identified to be same as Eq. (7.131) in
matrix form. This shows that the original problem of Eq. (7.117) can be solved
iteratively by solving the quadratic programming problem defined by Eq.
(7.132). In fact, when inequality constraints are added to the original problem,
the quadratic programming problem of Eq. (7.132) becomes:

Find X which minimizes Q = Vf7AX + ^AXr[V2L]AX

subject to

gj + VgJAX < 0, ; = 1,2,...,m

hk + VZz[AX = 0, k = 1,2,. . .,/? (7.136)

with the Lagrange function given by

m p

L =/(X) + S \jgj(X) + S \m+*MX) (7.137)
j = 1 fc = 1

Since the minimum of the augmented Lagrange function is involved, the se-
quential quadratic programming method is also known as the projected La-
grangian method.

7.10.2 Solution Procedure

As in the case of Newton's method of unconstrained minimization, the solution
vector AX in Eq. (7.136) is treated as the search direction, S, and the quadratic
programming subproblem (in terms of the design vector S) is restated as:

Find S which minimizes G(S) = V/(X)7S + jS r[f/]S

subject to

(3jgj(X) + Vgj(XfS < 0, J= 1,2,. . .,m

J8**(X) + VZ (̂X)7S = 0, k = 1,2,. . .,p (7.138)

where [H] is a positive definite matrix that is taken initially as the identity
matrix and is updated in subsequent iterations so as to converge to the Hessian



matrix of the Lagrange function of Eq. (7.137), and j8, and /3 are constants
used to ensure that the linearized constraints do not cut off the feasible space
completely. Typical values of these constants are given by

Tl if ft(X) < 0
P * 0.9; ft = I _ (7.139)

1 l(j if ft(X) > 0

The subproblem of Eq. (7.138) is a quadratic programming problem and
hence the method described in Section 4.8 can be used for its solution. Alter-
natively, the problem can be solved by any of the methods described in this
chapter since the gradients of the function involved can be evaluated easily.
Since the Lagrange multipliers associated with the solution of the problem,
Eq. (7.138), are needed, they can be evaluated using Eq. (7.263). Once the
search direction, S9 is found by solving the problem in Eq. (7.138), the design
vector is updated as

Xj + l = Xj + a*S (7.140)

where a* is the optimal step length along the direction S found by minimizing
the function (using an exterior penalty function approach):

m p

0 = / ( X ) + S X,(max[0,g,.(X)]) + ^S \m + k\hk(X)\ (7.141)

with

!

IX,I, / = 1,2,. . .,m + p in first iteration
, - (7.142)

max {|Xy|, 2 ( \> l \ l )} *n subsequent iterations

and Xj = Xj of the previous iteration. The one-dimensional step length a* can
be found by any of the methods discussed in Chapter 5.

Once X7 + 1 is found from Eq. (7.140), for the next iteration the Hessian
matrix [H] is updated to improve the quadratic approximation in Eq. (7.138).
Usually, a modified BFGS formula, given below, is used for this purpose
[7.12]:

P; = X1 + 1 - X,- (7.144)

Y = 0Q, + (1 - O)[HSPt (V. 145)

Q, = V^L(X,- + , X +1) - V,L(X,.A,-) (7.146)



f 1.0 if PfQ, > 0.2Pf[H1]P, (7.147)

' ~~ { P f Z C ^ T Q , if ejQ< " 02P< ™P<
where L is given by Eq. (7.137) and the constants 0.2 and 0.8 in Eq. (7.147)
can be changed, based on numerical experience.

Example 7.5 Find the solution of the problem (see Problem 1.31):

Minimize/(X) = 0.IJC1 + 0.05773JC2 (E1)

subject to

_ O6 + O3464 _ 0 A s o

X1 X2

g2(X) = 6 - X1 < 0 (E3)

&(X) = 7 - x2 < 0 (E4)

using the sequential quadratic programming technique.

SOLUTION Let the starting point be X1 = (11.8765 7.0)7" with g,(X,) =
S3(X1) = 0, ^2(X1) = -5.8765, and/(X1) = 1.5917. The gradients of the
objective and constraint functions at X1 are given by

(OA ") \ x\ I C -0.004254")
VZ(X1) = , Vg1(X1) = { 1 J =

C0.05773J / -0.3464 \ (^-0.007069J

L x\ Jx1

V g 2 ( X 1 ) = L Vg3(X1) = ! ^
We assume the matrix [//,] to be the identity matrix and hence the objective
function of Eq. (7.138) becomes

Q(S) = 0.Is1 + 0.05773s2 + 0.55? + 0.5s2 (E5)

Equation (7.139) gives /3, = /33 = 0 since gt = g3 = 0 and /32 = 1.0 since g2

< 0, and hence the constraints of Eq. (7.138) can be expressed as

I, = -0.0042545, - 0.00706952 < 0 (E6)



g2 = -5.8765 - S1 < O (E7)

g3 = -S2 < O (E8)

We solve this quadratic programming problem [Eqs. (E5) to (E8)] directly with
the use of the Kuhn-Tucker conditions. The Kuhn-Tucker conditions are given
by

^ + S A , ^ = O (E9)
OSx j = l OSx

— + ZJ A, —^ - 0 (E10)
OS2 j = \ OS2

Xjgj = 0, J = 1,2,3 (E n )

gj < 0, J= 1,2,3 (E12)

X7 > 0, J= 1,2,3 (E13)

Equations (E9) and (E10) can be expressed, in this case, as

0.1 + S1 - 0.004254X1 - X2 = 0 (E14)

0.05773 +S2- 0.007069X1 - X3 = 0 (E15)

By considering all possibilities of active constraints, we find that the optimum
solution of the quadratic programming problem [Eqs. (E5) to (E8)] is given by

s* = -0 .04791, s2* = 0.02883, Xf = 12.2450, X2* = 0, X3* = 0

The new design vector, X, can be expressed as

C 11.8765 - 0.04791oO
X = X1 + aS = {

(̂  7.0 + 0.02883a )

where a can be found by minimizing the function 0 in Eq. (7.141):

</> = 0.1(11.8765 - 0.04791a) + 0.05773(7.0 + 0.02883a)

/ ^ 6 0.3464 _ \
+ 1 2 ' 4 Vl 1.8765 - 0.04791a + 7.0 + 0.02883a ' /

By using quadratic interpolation technique (unrestricted search method can also
be used for simplicity), we find that </> attains its minimum value of 1.48 at a*



= 64.93, which corresponds to the new design vector

X2 =
C8.8719J

with/ (X 2 ) = 1.38874 and g,(X2) = +0.0074932 (violated slightly). Next we
update the matrix [H] using Eq. (7.143) with

L = OAx1 + 0 .05773JC 2 + 12.2450 ( — + 0 3 4 6 4 -OA)
V X1 X1 )

( - )

and ^ = 0.05773 - ^
OX2 X 2

("-3.11O8")
P1 = X2 - X1 =

C 1.8719 J

("0.00438") C 0.0479O ("-0.04353^)
Q1 = V1L(X2) - VxL(X1) = - =

C0.00384J C -0.02883 j C 0.03267 j

Pf[W1]P, = 13.1811, P[Q1 = 0.19656

This indicates that P[Q1 < 0.2P[CH1]P1, and hence 6 is computed using Eq.
(7.147) as

(0.8X13.1811)
13.1811 - 0.19656

C 0.54914^)
T -« ,+ ( • - W 1 - ^ 3 2 5 1 8 J

Hence

T0.2887 0.42831
2 ~ L0.4283 0.7422J

We can now start another iteration by defining a new quadratic programming
problem using Eq. (7.138) and continue the procedure until the optimum so-
lution is found. Note that the objective function reduced from a value of 1.5917
to 1.38874 in one iteration when X changed from X1 to X2.



INDIRECT METHODS

7.11 TRANSFORMATION TECHNIQUES

If the constraints g/X) are explicit functions of the variables Jc1- and have certain
simple forms, it may be possible to make a transformation of the independent
variables such that the constraints are satisfied automatically [7.13]. Thus it
may be possible to convert a constrained optimization problem into an uncon-
strained one by making change of variables. Some typical transformations are
indicated below:

1. If lower and upper bounds on X1 are specified as

Z1. < X / < U[ (7.148)

these can be satisfied by transforming the variable xt as

JC1- = I1 + (K1- - Id sin2 yt (7.149)

where yt is the new variable, which can take any value.
2. If a variable Jc1- is restricted to lie in the interval (0,1), we can use the

transformation:

JC/ = sin2)?/ , Jc1- = COS2J1

" - ̂ TT=-' """"lh (7'150)

3. If the variable Jc1- is constrained to take only positive values, the trans-
formation can be

Jt1. = abs(j/), Jc1. = y] or JC, = eyi (7.151)

4. If the variable is restricted to take values lying only in between — 1 and
1, the transformation can be

JC/ = sin yh xt = cos yh or x( = l— (7.152)
i "•" yi

Note the following aspects of transformation techniques:

1. The constraints g/X) have to be very simple functions of X1.

2. For certain constraints it may not be possible to find the necessary trans-
formation.



3. If it is not possible to eliminate all the constraints by making change of
variables, it may be better not to use the transformation at all. The partial
transformation may sometimes produce a distorted objective function
which might be more difficult to minimize than the original function.

To illustrate the method of transformation of variables, we consider the
following problem.

Example 7.6 Find the dimensions of a rectangular prism type box that has
the largest volume when the sum of its length, width, and height is limited to
a maximum value of 60 in. and its length is restricted to a maximum value of
36 in.

SOLUTION Let JC1, Jc2, and X3 denote the length, width, and height of the
box, respectively. The problem can be stated as follows:

Maximize /(X1, X2 ,X3) = XxX2X3 (E1)

subject to

Jc1 + Jc2 + Jc3 < 60 (E2)

xx < 36 (E3)

JC1 > 0, i = 1,2,3 (E4)

By introducing new variables as

y \ = X1, y2 = X2, y3 = xx + x2 + x3 (E5)

or

*\ = yu *i = yi, X3 = y3 - yx - y2 (E6)

the constraints of Eqs. (E2) to (E4) can be restated as

0 < V1 < 36, 0 < y2 < 60, 0 < y3 < 60 (E7)

where the upper bound, for example, on y2 is obtained by setting Jc1 = JC3 = 0
in Eq. (E2). The constraints of Eq. (E7) will be satisfied automatically if we
define new variables Zi, i = 1,2,3, as

V1 = 36 Sm2Z1, y2 = 60 sin2z2, y3 = 60 sin2z3 (E8)

Thus the problem can be stated as an unconstrained problem as follows:



Maximize /(Z1 ,Z2 ,Z3)

= ytfiiyi - y\ - yi) (E9)

= 2160 sin2Zisin2z2(60 sin2z3 — 36 Sm2Z1 — 60 Sm2Z2)

The necessary conditions of optimality yield the relations

— = 259,200 sin Z1 cos Z1 sin2z2 (sin2z3 — f Sm2Z1 — sin2z2) = 0
OZ\

(E10)

—- = 518,400 Sm2Z1 sin Z2 cos Z2 (isin2z3 - i|sin2zj - sin2z2) = 0
dz2

(E11)

df 2 2
—— = 259,200 sin Z1 sin Z2 sin Z3 cos Z3 = 0 (E12)
OZ3

Equation (E12) gives the nontrivial solution as cos z3 = 0 or sin2z3 = 1. Hence
Eqs. (E10) and (En) yield Sm2Z1 = § and sin2z2 = \. Thus the optimum solution
is given by xf = 20 in., x* = 20 in., x* = 20 in., and the maximum volume
= 8000 in3.

7.12 BASIC APPROACH OF THE PENALTY FUNCTION
METHOD

Penalty function methods transform the basic optimization problem into alter-
native formulations such that numerical solutions are sought by solving a se-
quence of unconstrained minimization problems. Let the basic optimization
problem, with inequality constraints, be of the form:

Find X which minimizes/(X)

subject to (7.153)

gj(X) < 0, j= 1,2,. . . ,m

This problem is converted into an unconstrained minimization problem by con-
structing a function of the form

m

<$>k = cKX,rk) = / ( X ) ± rk S Gj[gj(X)} (7.154)



where Gj is some function of the constraint gj, and rk is a positive constant
known as the penalty parameter. The significance of the second term on the
right side of Eq. (7.154), called the penalty term, will be seen in Sections 7.13
and 7.14. If the unconstrained minimization of the </> function is repeated for
a sequence of values of the penalty parameter rk (k = 1,2,. . .), the solution
may be brought to converge to that of the original problem stated in Eq.
(7.153). This is the reason why the penalty function methods are also known
as sequential unconstrained minimization techniques (SUMTs).

The penalty function formulations for inequality constrained problems can
be divided into two categories: interior and exterior methods. In the interior
formulations, some popularly used forms of Gj are given by

°' - -^k <7i55>

Gj = log[-g/X)] (7.156)

Some commonly used forms of the function Gj in the case of exterior penalty
function formulations are

Gj = max[O,#/X)] (7.157)

Gj = {max[0,£,(X)]}2 (7.158)

In the interior methods, the unconstrained minima of <j>k all lie in the feasible
region and converge to the solution of Eq. (7.153) as rk is varied in a particular
manner. In the exterior methods, the unconstrained minima of cj>k all lie in the
infeasible region and converge to the desired solution from the outside as rk is
changed in a specified manner. The convergence of the unconstrained minima
of <t>k is illustrated in Fig. 7.10 for the simple problem:

Find X = {jcj which minimizes/(X) = a Xx

subject to (7.159)

S1(X) = 0 - Jc1 < 0

It can be seen from Fig. 1 AOa that the unconstrained minima of 0(X,r*) con-
verge to the optimum point X* as the parameter rk is increased sequentially.
On the other hand, the interior method shown in Fig. 1 AOb gives convergence
as the parameter rk is decreased sequentially.

There are several reasons for the appeal of the penalty function formula-
tions. One main reason, which can be observed from Fig. 7.10, is that the
sequential nature of the method allows a gradual or sequential approach to
criticality of the constraints. In addition, the sequential process permits a graded



Figure 7.10 Penalty function methods: (a) exterior method; (b) interior method.

approximation to be used in analysis of the system. This means that if the
evaluation of /and gj [and hence <t>(X,rk)] for any specified design vector X is
computationally very difficult, we can use coarse approximations during the
early stages of optimization (when the unconstrained minima of <£*. are far away
from the optimum) and finer or more detailed analysis approximation during
the final stages of optimization. Another reason is that the algorithms for the
unconstrained minimization of rather arbitrary functions are well studied and
generally are quite reliable. The algorithms of the interior and the exterior
penalty function methods are given in Sections 7.13 and 7.15.

7.13 INTERIOR PENALTY FUNCTION METHOD

As indicated in Section 7.12, in the interior penalty function methods, a new
function (</> function) is constructed by augmenting a penalty term to the ob-
jective function. The penalty term is chosen such that its value will be small
at points away from the constraint boundaries and will tend to infinity as the
constraint boundaries are approached. Hence the value of the </> function also
"blows up" as the constraint boundaries are approached. This behavior can
also be seen from Fig. 7.106. Thus once the unconstrained minimization of
4>(X,rk) is started from any feasible point X1, the subsequent points generated
will always lie within the feasible domain since the constraint boundaries act

Optimum X*
Optimum X*

Next Page
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as barriers during the minimization process. This is why the interior penalty
function methods are also known as barrier methods. The <t> function defined
originally by Carroll [7.14] is

m

</>(X,r,) = / (X) - r, S —— (7.160)
y=l gj(X)

It can be seen that the value of the function </> will always be greater than/
since g/X) is negative for all feasible points X. If any constraint g/X) is sat-
isfied critically (with equality sign), the value of <j> tends to infinity. It is to be
noted that the penalty term in Eq. (7.160) is not defined if X is infeasible. This
introduces serious shortcoming while using the Eq. (7.160). Since this equa-
tion does not allow any constraint to be violated, it requires a feasible starting
point for the search toward the optimum point. However, in many engineering
problems, it may not be very difficult to find a point satisfying all the con-
straints, g/X) < 0, at the expense of large values of the objective function,
/(X). If there is any difficulty in finding a feasible starting point, the method
described in the latter part of this section can be used to find a feasible point.
Since the initial point as well as each of the subsequent points generated in this
method lies inside the acceptable region of the design space, the method is
classified as an interior penalty function formulation. Since the constraint
boundaries act as barriers, the method is also known as a barrier method. The
iteration procedure of this method can be summarized as follows.

Iterative Process

1. Start with an initial feasible point X1 satisfying all the constraints with
strict inequality sign, that is, g/XO < 0 forj = 1,2,. . .,m, and an initial
value of r, > 0. Set Jfc = 1.

2. Minimize 0(X,r*) by using any of the unconstrained minimization meth-
ods and obtain the solution X*.

3. Test whether X* is the optimum solution of the original problem. If
X* is found to be optimum, terminate the process. Otherwise, go to the
next step.

4. Find the value of the next penalty parameter, rk + u as

r*+i = crk

where c < 1.
5. Set the new value of k = k + 1, take the new starting point as X1 =

X*, and go to step 2.

Although the algorithm is straightforward, there are a number of points to be
considered in implementing the method. These are:



1. The starting feasible point X1 may not be readily available in some cases.
2. A suitable value of the initial penalty parameter (V1) has to be found.
3. A proper value has to be selected for the multiplication factor, c.
4. Suitable convergence criteria have to be chosen to identify the optimum

point.
5. The constraints have to be normalized so that each one of them vary

between — 1 and 0 only.

All these aspects are discussed in the following paragraphs.

Starting Feasible Point X1. In most engineering problems, it will not be very
difficult to find an initial point X1 satisfying all the constraints, S7(X1) < 0.
As an example, consider the problem of minimum weight design of a beam
whose deflection under a given loading condition has to remain less than or
equal to a specified value. In this case one can always choose the cross section
of the beam to be very large initially so that the constraint remains satisfied.
The only problem is that the weight of the beam (objective) corresponding to
this initial design will be very large. Thus in most of the practical problems,
we will be able to find a feasible starting point at the expense of a large value
of the objective function. However, there may be some situations where the
feasible design points could not be found so easily. In such cases, the required
feasible starting points can be found by using the interior penalty function
method itself as follows:

1. Choose an arbitrary point X1 and evaluate the constraints g/X) at the
point X1. Since the point X1 is arbitrary, it may not satisfy all the con-
straints with strict inequality sign. If r out of a total of m constraints are
violated, renumber the constraints such that the last r constraints will
become the violated ones, that is,

S7(X1) < 0, j = 1,2,. . .,m - r (7.161)

S7(X1) > 0, j = m - r + l , m - r + 2,...9m

2. Identify the constraint that is violated most at the point X1, that is, find
the integer k such that

S^(X1) = maxtg/XO]

for j = m - r + 1, m - r + 2, . . . , m (7.162)

3. Now formulate a new optimization problem as:

Find X which minimizes gk(X)



subject to

gj(X) < 0, j = 1,2,. . . , m - r

ft<X) ~ ^(X1) < 0, 7 = m - r + 1, m - r + 2, . . . ,

k - 1, Jt + 1, . . . , m (7.163)

4. Solve the optimization problem formulated in step 3 by taking the point
X1 as a feasible starting point using the interior penalty function method.
Note that this optimization method can be terminated whenever the value
of the objective function gk(X) drops below zero. Thus the solution ob-
tained XM will satisfy at least one more constraint than did the original
point X1.

5. If all the constraints are not satisfied at the point XM, set the new starting
point as X1 = XM, and renumber the constraints such that the last r
constraints will be the unsatisfied ones (this value of r will be different
from the previous value), and go to step 2.

This procedure is repeated until all the constraints are satisfied and a
point X1 = XM is obtained for which ^7(X1) < 0, j = 1,2,. . .,m.

If the constraints are consistent, it should be possible to obtain, by applying
the procedure, a point X1 that satisfies all the constraints. However, there may
exist situations in which the solution of the problem formulated in step 3 gives
the unconstrained or constrained local minimum of gk(X) that is positive. In
such cases one has to start afresh with a new point X1 from step 1 onward.

Initial Value of the Penalty Parameter (r2). Since the unconstrained minimi-
zation of <l>(X,rk) is to be carried out for a decreasing sequence of rk, it might
appear that by choosing a very small value of rx, we can avoid an excessive
number of minimizations of the function 0. But from a computational point of
view, it will be easier to minimize the unconstrained function <t>(X,rk) if rk is
large. This can be seen qualitatively from Fig. IAOb. It can be seen that as
the value of rk becomes smaller, the value of the function <f> changes more
rapidly in the vicinity of the minimum </>*. Since it is easier to find the mini-
mum of a function whose graph is smoother, the unconstrained minimization
of <f) will be easier if rk is large. However, the minimum of <j)k, X*, will be
farther away from the desired minimum X* if rk is large. Thus it requires an
excessive number of unconstrained minimizations of <j>(X,rk) (for several val-
ues of rk) to reach the point X* if r{ is selected to be very large. Thus a
moderate value has to be choosen for the initial penalty parameter (r{). In
practice, a value of rx that gives the value of 0(X1^1) approximately equal to
1.1 to 2.0 times the value OfZ(X1) has been found to be quite satisfactory in
achieving quick convergence of the process. Thus, for any initial feasible start-
ing point X1, the value of rx can be taken as



r, - C1 ,0 LO _ ^ ; ; / X | ) (7..M)

Subsequent Values of the Penalty Parameter. Once the initial value of rk is
chosen, the subsequent values of rk have to be chosen such that

rk+l < rk (7.165)

For convenience, the values of rk are chosen according to the relation

rk+\ =crk (7.166)

where c < 1. The value of c can be taken as 0.1, 0.2, or 0.5.

Convergence Criteria. Since the unconstrained minimization of 0(X,r*) has
to be carried out for a decreasing sequence of values rk9 it is necessary to use
proper convergence criteria to identify the optimum point and to avoid an un-
necessarily large number of unconstrained minimizations. The process can be
terminated whenever the following conditions are satisfied.

1. The relative difference between the values of the objective function ob-
tained at the end of any two consecutive unconstrained minimizations
falls below a small number zu that is,

2. The difference between the optimum points X* and X*_ x becomes very
small. This can be judged in several ways. Some of them are given be-
low:

1(AXX-I ^ e2 (7.168)

where AX = X* - X*_,, and (AX)/ is the ith component of the vector
AX.

max 1(AX)1I < e3 (7.169)

|AX| = [(AXfx + (AXf2 + • • • + (AX)^]1/2 < e4 (7.170)

Note that the values of C1 to e4 have to be chosen depending on the
characteristics of the problem at hand.



Normalization of Constraints. A structural optimization problem, for exam-
ple, might be having constraints on the deflection (S) and the stress (a) as

S1(X) = 6(X) - 5max < 0 (7.171)

g2(X) = a(X) - amax < 0 (7.172)

where the maximum allowable values are given by 5max = 0.5 in. and amax =
20,000 psi. If a design vector X1 gives the values of ^1 and g2 as —0.2 and
— 10,000, the contribution of ^1 will be much larger than that of g2 (by an
order of 104) in the formulation of the cf> function given by Eq. (7.160). This
will badly affect the convergence rate during the minimization of <j> function.
Thus it is advisable to normalize the constraints so that they vary between — 1
and 0 as far as possible. For the constraints shown in Eqs. (7.171) and (7.172),
the normalization can be done as

,((X) = ^ = ^ - 1 * 0 (7.173)
^max ^max

^ ( X ) = ^ > = ^ - l < 0 (7.174)
^Ynax ^max

If the constraints are not normalized as shown in Eqs. (7.173) and (7.174), the
problem can still be solved effectively by defining different penalty parameters
for different constraints as

m n

0(X,r*) = / ( X ) - rk S — ^ - (7.175)

where Rx, R2, . . . , Rm are selected such that the contributions of different
gj(X) to the <j) function will be approximately the same at the initial point X1.
When the unconstrained minimization of <j>(X9rk) is carried for a decreasing
sequence of values of rk, the values of Rx, R2, . . . , Rm will not be altered;
however, they are expected to be effective in reducing the disparities between
the contributions of the various constraints to the 0 function.

Example 7.7

Minimize f{xx ,X2) = 1(JC1 + I)3 + x2

subject to

gx(xux2) = -xx + 1 < 0

82(Xx9X2) = -X2 ^ 0



SOLUTION To illustrate the interior penalty function method, we use the
calculus method for solving the unconstrained minimization problem in this
case. Hence there is no need to have an initial feasible point X1. The </> function
is

,0M-IC 1+ , , » + * - , ( - L 7 - I )

To find the unconstrained minimum of 0, we use the necessary conditions:

I ^ = (X1 + I)2 - V
 2 = 0, that is, (x\ - I)2 = r

OXx ( 1 - Xx)

dd> r o
— = 1 9 = 0, that is, xi = r
dx2 xi

These equations give

x*(r) = (rm + 1)1/2, x2*(r) = rm

0minW = 3 Kr + D +l]+2r - ^ _ ^312 + i / | > 2 ) I / 2

To obtain the solution of the original problem, we know that

/min = lim 0min (r)

JC* = Hm jc*(r)

JC* = Hm jc*(r)

The values of/, JC*, and JC* corresponding to a decreasing sequence of values
of r are shown in Table 7.3.

Example 7.8

Minimize/(X) = x\ - 6x] 4- HJC1 + X3

subject to

x\ + x\ - x\ < 0

4 - x\ - x\ - JC| < 0

X3 - 5 < 0

-Jc1 < 0, i = 1,2,3



TABLE 7.3 Results for Example 7.7

Value of r x*(r) = (rm + l)m jcj(r) = r1/2 * m i n ( r ) /(r)

1000 5.71164 31.62278 376.2636 132.4003
100 3.31662 10.00000 89.9772 36.8109
10 2.04017 3.16228 25.3048 12.5286

1 1.41421 1.00000 9.1046 5.6904
0.1 1.14727 0.31623 4.6117 3.6164
0.01 1.04881 0.10000 3.2716 2.9667
0.001 1.01569 0.03162 2.8569 2.7615
0.0001 1.00499 0.01000 2.7267 2.6967
0.00001 1.00158 0.00316 2.6856 2.6762
0.000001 1.00050 0.00100 2.6727 2.6697

Exact solution 0 1 0 8/3 8/3

SOLUTION The interior penalty function method, coupled with the Davi-
don-Fletcher-Powell method of unconstrained minimization and cubic inter-
polation method of one-dimensional search, is used to solve this problem. The
necessary data are assumed as follows:

n
Starting feasible point, X, = < 0.1 >

u.oj
r, = 1.0, /(X1) = 4.041, 0(X1,r,) = 25.1849

f °)The optimum solution of this problem is known to be [7.15] X = ] V2 >, / *

= yfl. The results of numerical optimization are summarized in Table 7.4.

Convergence Proof. The following theorem proves the convergence of the
interior penalty function method.

Theorem 7.1 If the function

m

0(X,r,) =/(X) - r, S —— (7.176)
j=\ gj(X)

is minimized for a decreasing sequence of values of rk, the unconstrained min-
ima X* converge to the optimal solution of the constrained problem stated in
Eq. (7.153) as rk -> 0.



ft

5.70766

2.73267

1.83012

1.54560

1.45579

1.42735

1.41837

<t>t

10.36219

4.12440

2.25437

1.67805

1.49745

1.44052

1.42253

Optimum X*

[0.378981
1.67965

L2.34617J

[0.100881
1.41945

L 1.68302J

[0.030661
1.41411

L 1.49842 J

[0.0095761
1.41419

L 1.44081 J

[0.0030201
1.41421

L 1.42263 J

[0.00095301
1.41421

L 1.41687 J

[0.00030131
1.41421

L 1.41505 J

Number of
Iterations Taken
for Minimizing

9

7

5

3

7

3

3

Starting Point
for Minimizing

pi]
[0.378981

1.67965
L2.34617J

[0.100881
1.41945

L 1.68302J

[0.030661
1.41411

L 1.49842J

[0.0095761
1.41419

L 1.44081 J

[0.0030201
1.41421

L 1.42263 J

[0.00095301
1.41421

L 1.41687 J

k Value of rk

1 1.0 X 10°

2 1.0 X 10"1

3 1.0 X 10~2

4 1.0 x 10~3

5 1.0 x 10~4

6 1.0 X 10~5

7 1.0 X 10~6

TABLE 7.4 Results for Example 7.8



ft

1.41553

1.41463

1.41435

1.41426

1.41423

1.41422

1.41684

1.41505

1.41448

1.41430

1.41424

1.41422

Optimum Xf

[ 0.000095351
1.41421

L 1.41448 J

[ 0.000030191
1.41421

L 1.41430 J

[ 0.0000095671
1.41421

L 1.41424 J

ro.000030111
1.41421

L 1.41422 J

[0.9562 X KT6I
1.41421

L 1.41422 J

[0.3248 x 10~6l
1.41421

Ll.41421 J

Number of
Iterations Taken
for Minimizing

3

5

4

3

3

4

Starting Point
for Minimizing

[0.00030131
1.41421

L 1.41505 J

[0.000095351
1.41421

L 1.41448 J

[0.000030191
1.41421

L 1.41430 J

[0.0000095671
1.41421

L 1.41424 J

[0.0000030111
1.41421

L 1.41422 J

[0.9562 x 10~6l
1.41421

L 1.41422 J

k Value of rk

8 1.0 x 10~7

9 1.0 x 10~8

10 1.0 x 10~9

11 1.0 x 10~10

12 1.0 x 10~n

13 1.0 x KT12

TABLE 7.4 (Continued)



Proof: If X* is the optimum solution of the constrained problem, we have to
prove that

lim [min 0(X,/-*)] = </>(X*,rfc) =/(X*) (7.177)

Since/(X) is continous and/(X*) < /(X) for all feasible points X, we can
choose feasible point X such that

/(X) </(X*) + ^ (7.178)

for any value of e > 0. Next select a suitable value of fc, say K, such that

r^Wf[~^]] ai79)

From the definition of the <j> function, we have

/(X*) < min 0(X,r*) = 0(X?,r*) (7.180)

where X* is the unconstrained minimum of <t>(X,rk). Further,

0(X?,r*) < 4>(X]U) (7.181)

since X* minimizes <f>(X9rk) and any X other than X* leads to a value of </>
greater than or equal to <t>(X*9rk). Further, by choosing rk < rK, we obtain

<t>№,rK) = /(Xl) - rK S - ^ 5 -

> /(XS) - rt S - ^ 5 -
^ = i §/(^A:)

> </>(X*,rfc) (7.182)

as X* is the unconstrained minimum of <l>(X,rk). Thus

/(X*) < 0(X?,^ < 0(X|,r,) < 0(X*,^) (7.183)

But

HI j
ct>(XtrK) < 0(X,r^) =/(X) - ^ S - - (7.184)



Combining the inequalities (7.183) and (7.184), we have

m

/(X*) < </>(X*,r,) < /(X) - T1, S —— (7.185)

Inequality (7.179) gives

~rK S —— < f (7.186)
j=\ gj(X) 2

By using inequalities (7.178) and (7.186), inequality (7.185) becomes

/(X*) < 0(X*,r,) < /(X*) + I + I = /(X*) + e

or

</>(X*,r,) - / ( X * ) < e (7.187)
Given any e > 0 (however small it may be), it is possible to choose a value
of k so as to satisfy the inequality (7.187). Hence as k -• oo (rk -• 0), we have

lim 0(XiV*) = /(X*)

This completes the proof of the theorem.

Additional Results. From the proof above, it follows that as rk -• 0,

lim/(X,*) =/(X*) (7.188)

r m i i
Hm rJ - S — s - =0 (7.189)
it-oo L ^=Ig7(Xf)J

It can also be shown that if T1, r2, . . . is a strictly decreasing sequence of
positive values, the sequence/(Xf) , / (X*), . . . will also be strictly decreas-
ing. For this, consider two consecutive parameters, say, rk and rk+u with

0 < rk+l < rk (7.190)

Then we have

/(Xf+1) - r t+1 S - — j — < /(Xf) - r t+ I S —=5- (7.191)
J = ' 5/-X-/!: + l ) ^ = 1 gj\*-k )



since Xf+1 alone minimizes <j>(X9rk+x). Similarly,

/(X,*) - rk S — — < / (Xf + 1 ) - rk S - — — (7.192)
J= { gjK-^k) J= l gji^k + V

Divide Eq. (7.191) by rk+u Eq. (7.192) by rk, and add the resulting inequal-
ities to obtain

1 m 1 1 m

r~ / (xr+i ) ~ s, ̂ ^ + 7 / (X?) ~ s, 7?k
rit+i ^ = 1 Sz(^+ 1) rk j = \ gj(Xk)

1 ^ 1 1 m
< - - / ( X f ) - S — s - + - / ( X f + 1 ) - S — , — (7.193)

?k+\ J = ] Sj(Xk) rk J=* gjK*k+\)

Canceling the common terms from both sides, the inequality (7.193) can be
written as

/(Xf+1) ( — - - ) < /(Xf) (— - - ) (7.194)

since

_L_ l =
 r * - r ^ ' > 0 (7.l95)

r)t + 1 rit rA;rA: + 1

we obtain

/(Xf+1) </(Xf) (7.196)

7.14 CONVEX PROGRAMMING PROBLEM

In Section 7.13 we saw that the sequential minimization of

TTl j

</>(X,r,) = / ( X ) - rk Z ——, rk > 0 (7.197)
j=\ gj(X)

for a decreasing sequence of values of rk gives the minima Xf. As k -• oo,
these points Xf converge to the minimum of the constrained problem.

Minimize/(X)

subject to (7.198)

gj(X) < 0, J= 1,2, . . . ,m



To ensure the existence of a global minimum of <t>(X9rk) for every positive
value of rk, </> has to be strictly convex function of X. The following theorem
gives the sufficient conditions for the </> function to be strictly convex. If </> is
convex, for every rk > 0 there exists a unique minimum of 0(X,^).

Theorem 7.2 If/(X) and g/X) are convex and at least one of/(X) and g/X)
is strictly convex, the function 4>(X,rk) defined by Eq. (7.197) will be a strictly
convex function of X.

Proof: This theorem can be proved in two steps. In the first step we prove that
if a function gk(X) is convex, l/g*(X) will be concave. In the second step, we
prove that a positive combination of convex functions is convex, and strictly
convex if at least one of the functions is strictly convex.

Thus Theorem A.3 of Appendix A guarantees that the sequential minimi-
zation of 4>(X,rk) for a decreasing sequence of values of rk leads to the global
minimum of the original constrained problem. When the convexity conditions
are not satisfied, or when the functions are so complex that we do not know
beforehand whether the convexity conditions are satisfied, it will not be pos-
sible to prove that the minimum found by the SUMT method is a global one.
In such cases one has to satisfy with a local minimum only. However, one can
always reapply the SUMT method from different feasible starting points and
try to find a better local minimum point if the problem has several local min-
ima. Of course, this procedure requires more computational effort.

7.15 EXTERIOR PENALTY FUNCTION METHOD

In the exterior penalty function method, the </> function is generally taken as

m

</>(X,r,) = / (X) + rk S <g/X)>« (7.199)

where rk is a positive penalty parameter, the exponent q is a nonnegative con-
stant, and the bracket function <g/X)> is defined as

<g/X)> = max<g/X),0>

1 gj(X) g/X) > 0
_ J (constraint is violated)

' 0 g/X) < 0
V (constraint is satisfied)



It can be seen from Eq. (7.199) that the effect of the second term on the right
side is to increase <t>(X9rk) in proportion to the qth power of the amount by
which the constraints are violated. Thus there will be a penalty for violating
the constraints, and the amount of penalty will increase at a faster rate than
will the amount of violation of a constraint (for q > 1). This is the reason why
the formulation is called the penalty function method. Usually, the function
</>(X,rfc) possesses a minimum as a function of X in the infeasible region. The
unconstrained minima X* converge to the optimal solution of the original prob-
lem as k -• oo and rk -• <x>. Thus the unconstrained minima approach the
feasible domain gradually, and as k -> oo, the X* eventually lies in the feasible
region. Let us consider Eq. (7.199) for various values of q.

1. q = O. Here the </> function is given by

m

4>(K,rk) = / (X) + rk S <g/X)>°

= Cf(X) + mrk if all gj(X) > O

If(X) if all gj(X) < O

This function is discontinuous on the boundary of the acceptable region
as shown in Fig. 7.11 and hence it would be very difficult to minimize
this function.

2. O < q < 1. Here the </> function will be continuous, but the penalty for
violating a constraint may be too small. Also, the derivatives of the func-
tion are discontinuous along the boundary. Thus it will be difficult to
minimize the </> function. Typical contours of the </> function are shown
in Fig. 7.12.

Section A-A

Figure 7.11 A 0 function discontinuous for q = O.



Figure 7.12 Derivatives of a <t> function discontinuous for 0 < q < 1.

3. q = 1. In this case, under certain restrictions, it has been shown by
Zangwill [7.16] that there exists an r0 large that the minimum of </>(X9rk)
is exactly the constrained minimum of the original problem for all rk >
r0. However, the contours of the </> function look similar to those shown
in Fig. 7.12 and possess discontinuous first derivatives along the bound-
ary. Hence, despite the convenience of choosing a single rk that yields
the constrained minimum in one unconstrained minimization, the method
is not very attractive from computational point of view.

4. q > 1. The </> function will have continuous first derivatives in this case
as shown in Fig. 7.13. These derivatives are given by

J i - I C + * S , < « « , > . - S ^ (7.202,
dxt dx{ j= \ J dxt

Generally, the value of q is chosen as 2 in practical computation. We
assume a value of q > 1 in subsequent discussion of this method.

Algorithm. The exterior penalty function method can be stated by the follow-
ing steps:

1. Start from any design X1 and a suitable value of rx. Set k = 1.
2. Find the vector X* that minimizes the function

m

<KX,rk) = / (X) + rk E <g/X)>«

Section A-A



Figure 7.13 A </> function for q > 1.

3. Test whether the point X* satisfies all the constraints. IfX* is feasible,
it is the desired optimum and hence terminate the procedure. Otherwise,
go to step 4.

4. Choose the next value of the penalty parameter that satisfies the relation

rk + \ > rk

and set the new value of k as original k plus 1 and go to step 2. Usually,
the value of rk + l is chosen according to the relation rk + l = crk, where
c is a constant greater than 1.

Example 7.9

Minimize /(JC1,X2) = | (Jc1 + I)3 + JC2

subject to

gi(xux2) = 1 - X1 < 0

g2(xux2) = -X2 < 0

SOLUTION To illustrate the exterior penalty function method, we solve the
unconstrained minimization problem by using differential calculus method. As
such, it is not necessary to have an initial trial point X1. The </> function is

<KX1?r) = I (Jc1 + I)3 + x2 + r [max(O, 1 - X1)]
2 + r [max(O, -X2)]2

Section on A - A



The necessary conditions for the unconstrained minimum of 0(X,r) are

dd> ,
- ^ = Cr1 + I)2 - 2r[max(0, 1 - *,)] = 0a*,

- ^ = I - 2r[max(0,-x2)] = 0
OX2

These equations can be written as

min[(jc, + I)2, (JC1 + I)2 - 2r(l - Jc1)] = 0 (E1)

min[l, 1 + 2rx2] = 0 (E2)

In Eq. (E1), if (JC, + I)2 = 0, Jc1 = - 1 (this violates the first constraint), and
if

(Jc1 + I)2 - 2r(l - Jc1) = 0, Jc1 = - 1 - r + Vr2 + Ar

In Eq. (E2), the only possibility is that 1 + 2rx2 = 0 and hence JC2 = — l/2r.
Thus the solution of the unconstrained minimization problem is given by

/ 4 \ 1 / 2

jcf(r) = -1 - r + r( 1 + - J (E3)

From this, the solution of the original constrained problem can be obtained as

xf = lim jcf(r) = 1, JC2* = lim JC2V) = 0

r-* 00 r-* 00
/min = I™ 0minW = f

r-> 00

The convergence of the method, as r increases gradually, can be seen from
Table 7.5.

Convergence Proof. To prove the convergence of the algorithm given above,
we assume that /and gj9 j = 1,2,. . .,m, are continuous and that an optimum
solution exists for the given problem. The following results are useful in prov-
ing the convergence of the exterior penalty function method.

Theorem 7.3 If
m

<j>(X,rk) = / ( X ) + r,G[g(X)] = / ( X ) + rk S <g/X)>«
7 = 1



TABLE 7.5 Results for Example 7.9

Value of r x* ** 0min(r) /min(r)

0.001 -0.93775 -500.00000 -249.9962 -500.0000
0.01 -0.80975 -50.00000 -24.9650 -49.9977
0.1 -0.45969 -5.00000 -2.2344 -4.9474
1 0.23607 -0.50000 0.9631 0.1295
10 0.83216 -0.05000 2.3068 2.0001

100 0.98039 -0.00500 2.6249 2.5840
1,000 0.99800 -0.00050 2.6624 2.6582
10,000 0.99963 -0.00005 2.6655 2.6652

°° 1 0 § I

the following relations will be valid for any 0 < rk < rk +,:

(i) <t>(X£,rk) < 0(Xf+1^+1).
(ii)/(Xf) </(Xf+1).

(iii) G[g(X?)] > G[g(X,*+1)L

Proof: The proof is similar to that of Theorem 7.1.

Theorem 7.4 If the function <j>(X,rk) given by Eq. (7.199) is minimized for
an increasing sequence of values of rk, the unconstrained minima X* converge
to the optimum solution (X*) of the constrained problem as rk -• oo.

Proof: The proof is similar to that of Theorem 7.1 (see Problem 7.46).

7.16 EXTRAPOLATION TECHNIQUE IN THE INTERIOR
PENALTY FUNCTION METHOD

In the interior penalty function method, the 0 function is minimized sequen-
tially for a decreasing sequence of values rx > r2 > • * • > rk to find the
unconstrained minima Xf, X*, . . . , X * , respectively. Let the values of the
objective'function corresponding to Xf, Xf, . . . , X* b e / * , / * , . . . , / * ,
respectively. It has been proved that the sequence Xf, Xf, . . . ,X* converges
to the minimum point X*, and the sequence/f , / * , . . . , / * to the minimum
value /* of the original constrained problem stated in Eq. (7.153) as rk -» 0.
After carrying out a certain number of unconstrained minimizations of 0, the
results obtained thus far can be used to estimate the minimum of the original
constrained problem by a method known as the extrapolation technique. The
extrapolations of the design vector and the objective function are considered
in this section.



7.16.1 Extrapolation of the Design Vector X

Since different vectors Xf, i = 1,2,. . .,k, are obtained as unconstrained min-
ima of 0(X,rf) for different rh i = 1,2,. . .,k, the unconstrained minimum
</>(X,r) for any value of r, X*(r), can be approximated by a polynomial in r as

k-\

X*(r) = S A1-(r)'" = A0 + TA1 + r2A2 + • • • + / " 1 A ^ 1 (7.203)
j = 0

where A7 are n-component vectors. By substituting the known conditions

X*(r = rt) = Xf, i = 1,2,. . .,* (7.204)

in Eq. (7.203), we can determine the vectors Aj9j = 0,1,2,. . .,fc — 1 uniquely.
Then X*(r), given by Eq. (7.203), will be a good approximation for the un-
constrained minimum of 0(X,r) in the interval (0,r,). By setting r = 0 in Eq.
(7.203), we can obtain an estimate to the true minimum, X*, as

X* = X*(r = 0) = A0 (7.205)

It is to be noted that it is not necessary to approximate X*(r) by a (k - l)st-
order polynomial in r. In fact, any polynomial of order 1 < p < k — 1 can
be used to approximate X*(r). In such a case we need only p + 1 points out
of Xf, X*, . . . , X* to define the polynomial completely.

As a simplest case, let us consider approximating X*(r) by a first-order
polynomial (linear equation) in r as

X*(r) = A0 + rA, (7.206)

To evaluate the vectors A0 and A1, we need the data of two unconstrained
minima. If the extrapolation is being done at the end of the fcth unconstrained
minimization, we generally use the latest information to find the constant vec-
tors A0 and A1. Let X*_ x and X* be the unconstrained minima corresponding
to rk_x and rk, respectively. Since rk = crk_x(c < 1), Eq. (7.206) gives

X*(r = r*_,) = A0 + r*_,A, = XjJ8., (7.207)

X*(r = rk) = A0 + Cr^1A1 = Xf

These equations give

X f - c X ? . ,
A0 =

1 ~ c (7.208)
X* Y*

A l ~ r t _ , ( l - c )



From Eqs. (7.206) and (7.208), the extrapolated value of the true minimum
can be obtained as

X* — cX*
X*(r = 0) = A0 = — — (7.209)

\ — c

The extrapolation technique [Eq. (7.203)] has several advantages:

1. It can be used to find a good estimate to the optimum of the original
problem with the help of Eq. (7.205).

2. It can be used to provide an additional convergence criterion to terminate
the minimization process. The point obtained at the end of the &th iter-
ation, X*, can be taken as the true minimum if the relation

|X** - X*(r = 0)| < E (7.210)

is satisfied, where e is the vector of prescribed small quantities.
3. This method can also be used to estimate the next minimum of the </>

function after a number of minimizations have been completed. This
estimate1^ can be used as a starting point for the (k + l)st minimization
of the </> function. The estimate of the (k + l)st minimum, based on the
information collected from the previous k minima, is given by Eq.
(7.203) as

Xf+1 - X*(r = r*+1 = rxc
k)

= A0 + ( ^ ) A 1 + ( ^ ) 2 A 2 + • • • + A*_! {rxc
k)k~x (7.211)

If Eqs. (7.206) and (7.208) are used, this estimate becomes

Xk+l - X*(r = c V i ) = A0 + C V 1 A 1

= (1 + c)X? - ex,*-, (7.212)

Discussion. It has been proved that under certain conditions, the difference
between the true minimum X* and the estimate X*(r = 0) = A0 will be of the
order r\ [7.17]. Thus as T1 -• 0, A0 -> X*. Moreover, if T1 < 1, the estimates
of X* obtained by using k minima will be better than those using (k — 1)
minima, and so on. Hence as more minima are achieved, the estimate of X*
or X*+ x presumably gets better. This estimate can be used as the starting point
for the (k H- l)st minimization of the </> function. This accelerates the entire
process by substantially reducing the effort needed to minimize the successive

trThe estimate obtained for X* can also be used as a starting point for the (k + l)st minimization
of the <j> function.



0 functions. However, the computer storage requirements and accuracy con-
siderations (such as numerical round-off errors that become important for
higher-order estimates) limit the order of polynomial in Eq. (7.203). It has
been found in practice that extrapolations with the help of even quadratic and
cubic equations in r generally yield good estimates for X*+, and X*. Note that
the extrapolated points given by any of Eqs. (7.205), (7.209), (7.211), and
(7.212) may sometimes violate the constraints. Hence we have to check any
extrapolated point for feasibility before using it as a starting point for the next
minimization of </>. If the extrapolated point is found infeasible, it has to be
rejected.

7.16.2 Extrapolation of the Function /

As in the case of the design vector, it is possible to use extrapolation technique
to estimate the optimum value of the original objective function, / * . For this,
let /*, / * , . . . , / * be the values of the objective function corresponding to
the vectors Xf, X*, . . . , X*. Since the points Xf, X*, . . . ,X* have been
found to be the unconstrained minima of the </> function corresponding to r,,
r2, . . . , rk, respectively, the objective function, / * , can be assumed to be a
function of r. By approximating/* by a (k — l)st-order polynomial in k, we
have

k-\

/*(r) = H aj(r)j = a0 + axr + a2r
2 + • • • + ak.xr

k~x (7.213)

where the k constants aj9j = 0,1,2,. . .,k — 1 can be evaluated by substituting
the known conditions

/*( r = n) =ff = a0+ axrt + a2rj + • • • + ak_xr^\

i = 1,2,. . .Jc (7.214)

Since Eq. (7.213) is a good approximation for the true/* in the interval (0,^),
we can obtain an estimate for the constrained minimum of /as

/ * - /* ( r = 0) = O0 (7.215)

As a particular case, a linear approximation can be made for/* by using the
last two data points. Thus if/*_ i and/* are the function values corresponding
to rk_! and rk = crk_x, we have

fk-\ = a0 + rk-la\ rj 216)

/ * = a0 + crk_xax



These equations yield

a0 = fk ~ Cfk~l (7.217)

1 — c

«• = Sr^l (7-218)

1 - c r*_, 1 - c

Equation (7.219) gives an estimate of/* as
y* _ y* ( r = 0) = ^0 = 7^ ^ ^ (7.220)

1 — c

The extrapolated value a0 can be used to provide an additional convergence
criterion for terminating the interior penalty function method. The criterion is
that whenever the value of/* obtained at the end of &th unconstrained min-
imization of 0 is sufficiently close to the extrapolated value a0, that is, when

f l j ^ S e (7.221)
Jk

where e is a specified small quantity, the process can be terminated.

Example 7.10 Find the extrapolated values of X and/in Example 7.8 using
the results of minimization of 0(X,r,) and </>(X,r2).

SOLUTION From the results of Example 7.8, we have for r, = 1.0,

rO.37898^)

Xf = 1.67965 , / f = 5.70766

C2.346I7J

and for r2 = 0.1,

ro. 10088^

c = 0.1, Xf = J 1.41945 , / J = 2.73267

U.68302 J

By using Eq. (7.206) for approximating X*(r), the extrapolated vector X* is



given by Eq. (7.209) as

IVO.10088^ r0.37898V

X^A0 = * ^ £ = ± 1.41945 - 0.1 1.67865

L U . 68302 J l2.34617j_

r0.06998^

= I 1.39053 I (E,)

U.60933 J

Similarly, the linear resltionships/*(r) = a0 + atr leads to [from Eq. (7.220)]

f* — cf* 1
y * _ JJL. LL = [2.73267 - 0.1 (5.70766)] = 2.40211 (E2)

1 — c 0.9

It can be verified that the extrapolated design vector X* is feasible and hence
can be used as a better starting point for the subsequent minimization of the
function </>.

7.17 EXTENDED INTERIOR PENALTY FUNCTION METHODS

In the interior penalty function approach, the <j> function is defined within the
feasible domain. As such, if any of the one-dimensional minimization methods
discussed in Chapter 5 is used, the resulting optimal step lengths might lead
to infeasible designs. Thus the one-dimensional minimization methods have to
be modified to avoid this problem. An alternative method, known as the ex-
tended interior penalty junction method, has been proposed in which the <j>
function is defined outside the feasible region. The extended interior penalty
function method combines the best features of the interior and exterior methods
for inequality constraints. Several types of extended interior penalty function
formulations are described in this section.

7.17.1 Linear Extended Penalty Function Method

The linear extended penalty function method was originally proposed by Kav-
lie and Moe [7.18] and later improved by Cassis and Schmit [7.19]. In this
method, the 4>k function is constructed as follows:

m

<t>k = <f>(X,rk) = / ( X ) + rk S 1,(X) (7.222)
j = i



where

( ^ r if S,<X) < e

m==) & wx) (7-223)

^ _ ^ L i z ( X ) i f , / X ) > e

and e is a small negative number that marks the transition from the interior
penalty [g/X) < e] to the extended penalty [g/X) > e]. To produce a se-
quence of improved feasible designs, the value of e is to be selected such that
the function </>k will have a positive slope at the constraint boundary. Usually,
e is chosen as

e = -c(rk)
a (7.224)

where c and a are constants. The constant a is chosen such that \ < a < 5,
where the value of a = \ guarantees that the penalty for violating the con-
straints increases as rk goes to zero while the value of a = \ is required to help
keep the minimum point X* in the quadratic range of the penalty function. At
the start of optimization, e is selected in the range —0.3 < e < —0.1. The
value of r, is selected such that the values of/(X) and rx EJL1 g/X) are equal
at the initial design vector X1. This defines the value of c in Eq. (7.224). The
value of e is computed at the beginning of each unconstrained minimization
using the current value of rk from Eq. (7.224) and is kept constant throughout
that unconstrained minimization. A flowchart for implementing the linear ex-
tended penalty function method is given in Fig. 7.14.

7.17.2 Quadratic Extended Penalty Function Method

The (j>k function defined by Eq. (7.222) can be seen to be continuous with
continuous first derivatives at g/X) = e. However, the second derivatives can
be seen to be discontinuous at g/X) = e. Hence it is not possible to use a
second-order method for unconstrained minimization [7.20]. The quadratic ex-
tended penalty function is defined so as to have continuous second derivatives
at g/X) = e as follows:

m

<t>k = 0(X,r*) = /(X) + rk S g/X) (7.225)

where

(~W) if S'(X) s E



Figure 7.14 Linear extended penalty function method.

With this definition, second-order methods can be used for the unconstrained
minimization of <f>k. It is to be noted that the degree of nonlinearity of <j>k is
increased in Eq. (7.225) compared to Eq. (7.222). The concept of extended
interior penalty function approach can be generalized to define a variable pen-
alty function method from which the linear and quadratic methods can be de-
rived as special cases [7.24].

Example 7.11 Plot the contours of the c\>k function using the linear extended
interior penalty function for the following problem:

Minimize/(JC) = (JC - I)2

subject to

gl(x) = 2 - x < 0

giix) = x - 4 < 0

SOLUTION We choose c = 0.2 and a = 0.5 so that e = - 0 . 2 \Frk. The <f>k

function is defined by Eq. (7.222). By selecting the values of rk as 10.0, 1.0,
0.1, and 0.01 sequentially, we can determine the values of (j>k for different
values of x, which can then be plotted as shown in Fig. 7.15. The graph of
/(JC) is also shown in Fig. 7.15 for comparison.

Start with Xi, r\,y, c, a

Set k = 1

Compute e = -c{rk)a

Minimize ^ = (J)(X, r^, e)
as an unconstrained function

Check for convergence
Converged

Not converged

Stop

Set rk = yrk



Figure 7.15 Graphs of 4>k.

7.18 PENALTY FUNCTION METHOD FOR PROBLEMS WITH
MIXED EQUALITY AND INEQUALITY CONSTRAINTS

The algorithms described in previous sections cannot be directly applied to
solve problems involving strict equality constraints. In this section we consider
some of the methods that can be used to solve a general class of problems.

Minimize/(X)

subject to

gj(X) < 0, j = 1,2,. . .,m (7.227)

//X) = 0, J= 1,2,. . .,/>

7.18.1 Interior Penalty Function Method

Similar to Eq. (7.154), the present problem can be converted into an uncon-
strained minimization problem by constructing a function of the form



m p

<t>k = 0(X,r*) = /(X) + rh S GjIgJ(X)] + H ( ^ S /J(X) (7.228)

where Gj is some function of the constraint gj tending to infinity as the con-
straint boundary is approached, and H(rk) is some function of the parameter rk

tending to infinity as rk tends to zero. The motivation for the third term in Eq.
(7.228) is that as H(rk) -* oo, the quantity EjL1 lj(X) must tend to zero. If
EjL1 Ij(X) does not tend to zero, <j>k would tend to infinity, and this cannot
happen in a sequential minimization process if the problem has a solution.
Fiacco and McCormick [7.17,7.21] used the following form of Eq. (7.228):

</>, = 0(X,r*) = /(X) - rk S - ? - + - p S lJ&> (7'229>

If <j>k is minimized for a decreasing sequence of values rk, the following theo-
rem proves that the unconstrained minima X* will converge to the solution X*
of the original problem stated in Eq. (7.227).

Theorem 7.5 If the problem posed in Eq. (7.227) has a solution, the uncon-
strained minima, X*, of <j>(X,rk) defined by Eq. (7.229) for a sequence of
values r, > r2 > • • • > rk, converge to the optimal solution of the con-
strained problem [Eq. (7.227)] as rk -• 0.

Proof: A proof similar to that of Theorem 7.1 can be given to prove this theo-
rem. Further, the solution obtained at the end of sequential minimization of <t>k

is guaranteed to be the global minimum of the problem, Eqs. (7.227), if the
following conditions are satisfied:

(i) /(X) is convex,
(ii) gj(X),j = 1,2,. . .,m are convex,

(iii) EjL1 IJ(X) is convex in the interior feasible domain defined by the
inequality constraints.

(iv) One of the functions among /(X), g,(X), g2(X), . . . , gm(X) and
EjL1 Ij(X) is strictly convex.

Note:

1. To start the sequential unconstrained minimization process, we have to
start from a point X1 at which the inequality constraints are satisfied and
not necessarily the equality constraints.

2. Although this method has been applied to solve a variety of practical
problems, it poses an extremely difficult minimization problem in many
cases, mainly because of the scale disparities that arise between the pen-



alty terms

m 1 1 p

-rk S —— and —2 S IJ(X)
j=\ gj(X) nuj=i J

as the minimization process proceeds.

7.18.2 Exterior Penalty Function Method

To solve an optimization problem involving both equality and inequality con-
straints as stated in Eqs. (7.227), the following form of Eq. (7.228) has been
proposed:

m p

</>, = 0(X,r*) = / (X) + rk S <g/X)>2 + rk S IJ(X) (7.230)
j=* j = \

As in the case of Eq. (7.199), this function has to be minimized for an increas-
ing sequence of values of rk. It can be proved that as rk -• oo, the unconstrained
minima, X*, of (f)(X9rk) converge to the minimum of the original constrained
problem stated in Eq. (7.227).

7.19 PENALTY FUNCTION METHOD FOR PARAMETRIC
CONSTRAINTS

7.19.1 Parametric Constraint

In some optimization problems, a particular constraint may have to be satisfied
over a range of some parameter (0) as

Sj(X9O) < 0, O1 < 0 < 0U (7.231)

where dt and 6U are lower and the upper limits on 6, respectively. These types
of constraints are called parametric constraints. As an example, consider the
design of a four-bar linkage shown in Fig. 7.16. The angular position of the
output link </> will depend on the angular position of the input link, 6, and the
lengths of the links, Z1, /2, /3, and /4. If I1 (i = 1 to 4) are taken as the design
variables Xj(i = 1 to 4), the angular position of the output link, 0(X,0), for
any_ fixed value of 6(O1) can be changed by changing the design vector, X. Thus
if (I)(O) is the output desired, the output </>(X,0) generated will, in general, be
different from that of </>(#), as shown in Fig. 7.17. If the linkage is used in
some precision equipment, we would like to restrict the difference |0(0) —
</>(X,0)| to be smaller than some permissible value, say, e. Since this restriction
has to be satisfied for all values of the parameter O9 the constraint can be stated



Figure 7.16 Four-bar linkage. Fixed Link

as a parametric constraint as

|0(0) - 0(X,0)| < e, 0° < 6 < 360° (7.232)

Sometimes the number of parameters in a parametric constraint may be more
than one. For example, consider the design of a rectangular plate acted on by
an arbitrary load as shown in Fig. 7.18. If the magnitude of the stress induced
under the given loading, |a(jc,y)|, is restricted to be smaller than the allowable
value amax, the constraint can be stated as a parametric constraint as

k<X y)\ ~ <W ^ 0, 0 < x < a, 0 < y < fo (7.233)

Thus this constraint has to be satisfied at all the values of parameters x and y.

Output
link

Crank
(input
link)

Figure 7.17 Output angles generated and desired.



Figure 7.18 Rectangular plate under arbitrary load.

7.19.2 Handling Parametric Constraints

One method of handling a parametric constraint is to replace it by a number
of ordinary constraints as

Sj(X9Oj) < 0, i = 1,2,. . .,r (7.234)

where Ox, 02> . . . , 0r are discrete values taken in the range of 6. This method
is not efficient, for the following reasons:

1. It results in a very large number of constraints in the optimization prob-
lem.

2. Even if all the r constraints stated in Eq. (7.234) are satisfied, the con-
straint may still be violated at some other value of 6 [i.e., g/X,0) > 0
where dk < 0 < 0k + x for some k].

Another method of handling the parametric constraints is to construct the <j>
function in a different manner as follows [7.1, 7.15].

Interior Penalty Function Method

0(X,r,) =/(X) - rk S -T^T, de\ (7-2 3 5)

The idea behind using the integral in Eq. (7.235) for a parametric constraint
is to make the integral tend to infinity as the value of the constraint gj(X,6)
tends to zero even at one value of 6 in its range. If a gradient method is used
for the unconstrained minimization of 0(X,^) , the derivatives of </> with respect



to the design variables Jt1-(Z = 1,2,. . .,n) are needed. Equation (7.235) gives

f (X,rk) = £ (X) + rk S [ f" - J ^ - I OW) «wl (7.236)
3JC1- dXi j=\ IJdi gj (X9O) dxt J

by assuming that the limits of integration, 0/ and 0M, are indepdnent of the
design variables Jt1-. Thus it can be noticed that the computation of <t>(X9rk) or
d(t>(X9rk)/dXi involves the evaluation of an integral. In most of the practical
problems, no closed-form expression will be available for gj(X,0), and hence
we have to use some sort of a numerical integration process to evaluate </> or
d(t>/dXj. If trapezoidal rule [7.22] is used to evaluate the integral in Eq. (7.235),
we obtain1^

m C AO T l I l
0(X,r*) = / (X) - rk S — — — + — r —

r=\ (̂  2 Lg/X,6//) g/XjflJJ
r~l 1 ~)

+ A0 S — — - (7.237)
P = 2gjCX,0p))

where r is the number of discrete values of 0, and A0 is the uniform spacing
between the discrete values so that

0i = Oh O2 = Ox + A0,

03 = 0, + 2 A0, . . . , 6r = ex + (r - 1) A0 = 0tt

If gj(X,6) cannot be expressed as a closed-form function of X, the derivative
dgj/dXi occurring in Eq. (7.236) has to be evaluated by using some form of a
finite-difference formula.

fLet the interval of the parameter 6 be divided into r — 1 equal divisions so that

0i = O1, O2 = Bx + A0, 03 = 0, + 2. A0, . . . , Br = Ox + (r - 1)A0 = 0M,

r - 1

If the graph of the function g/X,0) looks as shown in Fig. 7.19, the integral of \/gj(X,6) can be
found approximately by adding the areas of all the trapeziums, like ABCD. This is the reason
why the method is known as trapezoidal rule. The sum of all the areas is given by

["" de « s' A = s' r _ i _ + i i AS

Jo, gjCX.,6) ~ I=, ' p = . lgj(X,8p)
 +

 gj(X,ep+l)\ 2

- ^. [_J_ 1 1 'v Afl



Figure 7.19 Numerical integration procedure.

Exterior Penalty Function Method

m r- »0u -,

<t>(X,rk) = / ( X ) + rk S <g/X,0)>2 </0 (7.238)

The method of evaluating 0(X,r*) will be similar to that of the interior penalty
function method.

7.20 AUGMENTED LAGRANGE MULTIPLIER METHOD

7.20.1 Equality-Constrained Problems

The augmented Lagrange multiplier (ALM) method combines the Lagrange
multiplier and the penalty function methods. Consider the following equality-
constrained problem:

Minimize/(X) (7.239)

subject to

hj(X) = 0, j = 1,2,. . .,/7, p < n (7.240)

The Lagrangian corresponding to Eqs. (7.239) and (7.240) is given by

L(X9X) = /(X) + S \jhj(X) (7.241)



where X7, j = 1,2,. . .,/?, are the Lagrange multipliers. The necessary condi-
tions for a stationary point of L(X9X) include the equality constraints, Eq.
(7.240). The exterior penalty function approach is used to define the new ob-
jective function A(X9X9rk), termed the augmented Lagrangian function, as

p p

A(X,X9rk) = / (X) + S X^-(X) + rk S A?(X) (7.242)

where rk is the penalty parameter. It can be noted that the function A reduces
to the Lagrangian if rk = 0 and to the </> function used in the classical penalty
function method if all X7 = 0. It can be shown that if the Lagrange multipliers
are fixed at their optimum values X7*, the minimization of A(X9k9rk) gives the
solution of the problem stated in Eqs. (7.239) and (7.240) in one step for any
value of rk. In such a case there is no need to minimize the function A for an
increasing sequence of values of rk. Since the values of X7* are not known in
advance, an iterative scheme is used to find the solution of the problem. In the
first iteration (k = 1), the values of Xj^ are chosen as zero, the value of rk is
set equal to an arbitrary constant, and the function A is minimized with respect
to X to find X*(*\ The values of Xf} and rk are then updated to start the next
iteration. For this, the necessary conditions for the stationary point of L, given
by Eq. (7.241), are written as

^ = f + S x ; ^ = 0, /=1,2,....» (7.243)
OX1 OX1 j=\ J OX1

where X7* denote the values of Lagrange multipliers at the stationary point of
L. Similarly, the necessary conditions for the minimum of A can be expressed
as

^ = ~~ + £ (X; + Irfij) - 1 = 0, / = 1,2,. . .,/i (7.244)
dxt dxt ; = i J J dxt

A comparison of the right-hand sides of Eqs. (7.243) and (7.244) yields

X* = Xj + Irjij, j = 1,2,. . .,p (7.245)

These equations are used to update the values of Xy as

Xf + ') = Xf + 2r^(X(*>), j = 1,2,. . .,p (7.246)

where X(^ denotes the starting vector used in the minimization of A. The value
of rk is updated as

rk+l=crk9 O l (7.247)



Figure 7.20 Flowchart of augmented Lagrange multiplier method.

The function A is then minimized with respect to X to find X*(/c + 1) and the
iterative process is continued until convergence is achieved for Xĵ  or X*.
If the value of rk+l exceeds a prespecified maximum value rmax, it is set equal
to rmax. The iterative process is indicated as a flow diagram in Fig. 7.20.

7.20.2 Inequality-Constrained Problems

Consider the following inequality-constrained problem:

Minimize/(X) (7.248)

Start with X(1\ X(1), rlf o 1, rmax

Set k = 1

Minimize A(X, X{k), rk) from starting
point X and find X

Check for convergence of XUi) and X*(** Take X*= X*{k) and stop

Not converged

Set ^ + 1 ) = ̂ f + 2rk hj(rik))J = 1,2 p

Set rk+i =crk

If rk+\ > rmaX) set rk+\ = rmax

Set k = k + 1



subject to

gj(X) < 0, j = 1,2,. . .,m (7.249)

To apply the ALM method, the inequality constraints of Eq. (7.249) are first
converted to equality constraints as

gj(X) + yj = 0, j = 1,2,. . .,m (7.250)

where yf are the slack variables. Then the augmented Lagrangian function is
constructed as

m m

A(X,X,Y,rk) = /(X) + S [8j(X) + yj] + S rk [gj(X) + yj]2 (7.251)

where the vector of slack variables, Y, is given by

Y = ? •

If the slack variables yj9 j = 1,2,. . .,m, are considered as additional un-
knowns, the function A is to be minimized with respect to X and Y for specified
values of X7 and rk. This increases the problem size. It can be shown [7.23]
that the function A given by Eq. (7.251) is equivalent to

m m

A(X,l9rk) = /(X) + S X7Q:,- + r* S aj (7.252)
y = i J 7 = 1 J

where

CLJ = max L ( X ) , -M (7.253)

Thus the solution of the problem stated in Eqs. (7.248) and (7.249) can be
obtained by minimizing the function A, given by Eq. (7.252), as in the case
of equality-constrained problems using the update formula

\j*+D = \(*) + 2rkaf\ j = 1,2,. . .,m (7.254)

in place of Eq. (7.246). It is to be noted that the function A, given by Eq.



(7.252), is continuous and has continuous first derivatives but has discontin-
uous second derivatives with respect to X at g/X) = —\j/2rk. Hence a second-
order method cannot be used to minimize the function A.

7.20.3 Mixed Equality-Inequality Constrained Problems

Consider the following general optimization problem:

Minimize/(X) (7.255)

subject to

g/X) < 0, j = 1,2,. . .,m (7.256)

hj(X) = 0, j = 1,2,. . .,p (7.257)

This problem can be solved by combining the procedures of the two preceding
sections. The augmented Lagrangian function, in this case, is defined as

m p

A(X,X,rk) = / (X) + S XjCXj + S \m+jhj(X)
7 = 1 7 = 1

m p

+ r* S a] + T4 S A?(X) (7.258)
7 = 1 7 = 1

where otj is given by Eq. (7.253). The solution of the problem stated in Eqs.
(7.255) to (7.257) can be found by minimizing the function A, defined by Eq.
(7.258), as in the case of equality-constrained problems using the update for-
mula

X(* + n = X(*) + lrk m a x \gjCS)9 __J_\ j = x x m (7259)

\%tP = \l\j + 2r^(X), j = 1,2,. . .,p (7.260)

The ALM method has several advantages. As stated earlier, the value of rk

need not be increased to infinity for convergence. The starting design vector,
X(1), need not be feasible. Finally, it is possible to achieve g,(X) = 0 and hj(X)
= 0 precisely and the nonzero values of the Lagrange multipliers (X,- ^ 0)
identify the active contraints automatically.

Example 7.12

Minimize/(X) = 6x\ + 4Jc1JC2 + 3x\ (E1)



subject to

h(X) = Jc1 4- Jc2 - 5 = 0 (E2)

using the ALM method.

SOLUTION The augmented Lagrangian function can be constructed as

A(XMk) = 6*2\ + 4JC1Jc2 + 3JC2 + X(Jc1 + JC2 - 5)

+ rk(xx + X 2 - 5 ) 2 (E3)

For the stationary point of A, the necessary conditions, 3AIdX1 — 0, / = 1,2,
yield

xx(\2 4 2rk) + X2(A + 2rk) = 1Or, - X (E4)

JC1 (4 4- 2rk) 4- JC2(6 4- 2rk) = \0rk - X (E5)

The solution of Eqs. (E4) and (E5) gives

= -9OrJ + 9rk\ - 6X + 6Or,

(14 - 5rk) (12 + 2r,) ( e)

_ 2Or, - 2X
Xl~ 14 - 5rk

 ( E ? )

Let the value of rk be fixed at 1 and select a value of X(l) = 0. This gives

**<» = - £ , x2*
(1) = f with h= -£ + 2-$-5 = -3.01587

For the next iteration,

X<2> = \(») + 2r^(X*(1)) = 0 + 2(1) (-3.01587) = -6.03175

Substituting this value for X along with rk = 1 in Eqs. (E6) and (E7), we get

jcfO = -0 .38171, JC2*
(2) = 3.56261

with h = -0.38171 4 3.56261 - 5 = -1.81910

This procedure can be continued until some specified convergence is satisfied.
The results of the first ten iterations are given in Table 7.6.



TABLE 7.6 Results for Example 7.12

X(0 rk JC*(O JC*(O Value of h

0.00000 1.00000 -0.23810 2.22222 -3.01587
-6.03175 1.00000 -0.38171 3.56261 -1.81910
-9.66994 1.00000 -0.46833 4.37110 -1.09723

-11.86441 1.00000 -0.52058 4.85876 -0.66182
-13.18806 1.00000 -0.55210 5.15290 -0.39919
-13.98645 1.00000 -0.57111 5.33032 -0.24078
-14.46801 1.00000 -0.58257 5.43734 -0.14524
-14.75848 1.00000 -0.58949 5.50189 -0.08760
-14.93369 1.00000 -0.59366 5.54082 -0.05284
-15.03937 1.00000 -0.59618 5.56430 -0.03187

7.21 CHECKING THE CONVERGENCE OF CONSTRAINED
OPTIMIZATION PROBLEMS

In all the constrained optimization techniques described in this chapter, iden-
tification of the optimum solution is very important from the points of view of
stopping the iterative process and using the solution with confidence. In ad-
dition to the convergence criteria discussed earlier, the following two methods
can also be used to test the point for optimality.

7.21.1 Perturbing the Design Vector

Since the optimum point

JC2*
x* = : '

corresponds to the minimum function value subject to the satisfaction of the
constraints g/X*) < 0, j = 1,2,. . .,m (the equality constraints can also be
included, if necessary), we perturb X* by changing each of the design vari-
ables, one at a time, by a small amount, and evaluate the values of/and gj9 j
= 1,2,. . .,m. Thus if

X,+ = X* + AX,-

X1" = X* - AX1-



where

( ° "

O

AX, = < Ax,•. > <- i th row

0

, 0 ,

Ar1- is a small perturbation in xt that can be taken as 0.1 to 2.0% of JC*.
Evaluate

/(X+); / (XD; gj(X?)

g/Xr)> J = 1,2,. . .,m for/ = 1,2,. . .,n

If

/(X1
+) > /(X*); gjiXt) < 0, j = 1,2,. . .,m

/(XD > /(X*); g/XD < 0, j = 1,2,. . .,m

for / = 1,2,. . .,n, X* can be taken as the constrained optimum point of the
original problem.

7.21.2 Testing the Kuhn-Tucker Conditions

Since the Kuhn-Tucker conditions, Eqs. (2.73) and (2.74), are necessarily to
be satisfied1 by the optimum point of any nonlinear programming problem, we
can at least test for the satisfaction of these conditions before taking a point X
as optimum. Equations (2.73) can be written as

S x ^ = -^f, i = 1,2,...,* (7.261)
jeJi dxt dXi

where Jx indicates the set of active constraints at the point X. If gJ1(X) =
gJ2(X) = • • • = gjp(X) = 0, Eqs. (7.261) can be expressed as

G X = F (7.262)
n Xp / ? x l « x l

trrhese may not be sufficient to guarantee a global minimum point for nonconvex programming
problems.



where

SgJ1 dgj2 dgjP

dx{ dxx dx{

G = SgJ1 dgj, ^ dgj^

dx2 dx2 dx2

dg/. dgj2 dgjP

_ dxn dxn dxn_ x

f — ^ l

( M _ _ £
\ h dx2

I= i and F =

K\jpJ

I fan Jx
From Eqs. (7.262) we can obtain an expression for k as

k = (G7G)-1G7F (7.263)

If all the components of X9 given by Eq. (7.263) are positive, the Kuhn-Tucker
conditions will be satisfied. A major difficulty in applying Eq. (7.263) arises
from the fact that it is very difficult to ascertain which constraints are active at
the point X. Since no constraint will have exactly the value of 0.0 at the point
X while working on the computer, we have to take a constraint gj to be active
whenever it satisifes the relation

\gj(X)\ < e (7.264)

where e is a small number on the order of 10~2 to 10~6. Notice that Eq. (7.264)
assumes that the constraints were originally normalized.

7.22 TEST PROBLEMS

As discussed in previous sections, a number of algorithms are available for
solving a constrained nonlinear programming problem. In recent years, a va-



riety of computer programs have been developed to solve engineering opti-
mization problems. Many of these are complex and versatile and the user needs
a good understanding of the algorithms/computer programs to be able to use
them effectively. Before solving a new engineering design optimization prob-
lem, we usually test the behavior and convergence of the algorithm/computer
program on simple test problems. Five test problems are given in this section.
All these problems have appeared in the optimization literature and most of
them have been solved using different techniques.

7.22.1 Design of a Three-Bar Truss

The optimal design of the three-bar truss shown in Fig. 7.21 is considered
using two different objectives with the cross-sectional areas of members 1 (and
3) and 2 as design variables [7.38].

Design vector:

- [ : ; } • ! : ]

Objective functions:

/,(X) = weight = 2 V2 JC1 + JC2

PM 1
/2(X) = vertical deflection of loaded joint = — T=—

E Jc1 + V2 Jc2

Constraints:

O1(X) - o(u) < 0

O2(X) - o{u) < 0

CT3(X) + (7(/) < 0

X^ < JC, < x?\ i = 1,2,3

Figure 7.21 Three-bar truss [7.38].



where ot is the stress induced in member /, a(M) the maximum permissible stress
in tension, a(/) the maximum permissible stress in compression, x\l) the lower
bound on xh and x^u) the upper bound on xt. The stresses are given by

JC2 + V2 Xx
CJ1(X) =P-j=—2 — * -

CT2(X) =P l-=r-
JC1 + V2JC 2

CX3(X) = -P *2

V2 JC 1 + 2JC1Jc2

Data: o(u) = 20, a(/) = - 1 5 , jcj° = 0.1 (/ = 1,2), x^ = 5.0 (1 = 1,2),
P = 20, and£" = 1.

Optimum design:

x * _ TO.78706 I ^ 2.6335, stress constraint of
1 ( 0 40735 ) ' member 1 is active at Xf

X 2 ( 5 0 y /2* = 1-6569

7.22.2 Design of a Twenty-five-Bar Space Truss

The 25-bar space truss shown in Fig. 7.22 is required to support the two load
conditions given in Table 7.7 and is to be designed with constraints on member
stresses as well as Euler buckling [7.38]. A minimum allowable area is spec-
ified for each member. The allowable stresses for all members are specified as
amax in both tension and compression. The Young's modulus and the material
density are taken as E = 107 psi and p = 0.1 lb/in3. The members are assumed
to be tubular with a nominal diameter/thickness ratio of 100, so that the buck-
ling stress in member / becomes

100.017T&4; . 1 ^
Pi= ^ 2 -, i = 1,2,...,25

where A1 and I1 denote the cross-sectional area and length, respectively, of
member /. The member areas are linked as follows:

^i> A2 — A3 = A^ = A$, A(> = A-j = A% = A^,

A10 = An, An = A13, A14 = A15 = A16 = A11,

Ax% = AX9 = A2Q = A2x, A22 = A23 = A24 = A25



Figure 7.22 A 25-bar space truss [7.38].

TABLE 7.7 Loads Acting on the 25-Bar Truss

Fx
Fy
Fz

Fx

Fy
Fz

Joint

1 2 3 6

Load Condition 1, Loads in Pounds

0
20,000
-5,000

0
-20,000
-5,000

0
0
0

0
0
0

Load Condition 2, Loads in Pounds

1,000
10,000

-5,000

0
10,000

-5,000

500
0
0

500
0
0



Thus there are eight independent area design variables in the problem. Three
problems are solved using different objective functions.

25
Z1(X) = S PA1I1 = weight

/ = i

/2(X) = (Si + b\y + 82
lz)

m + ( 4 + 82
2y + 82

2z)
m

= sum of deflections of nodes 1 and 2

/2(X) = — Co1 = negative of fundamental natural frequency of vibration

where 5ix = deflection of node i along x direction.
Constraints:

Ia^(X)I < amax, i = 1,2,. . .,25, j = 1,2

C^(X) < /I1-(X), i = 1,2,. . .,25, j = 1,2

JC<° < JC, < JC^, / = 1,2,. . .,8

where otj is the stress induced in member / under load condition j \ xp the lower
bound on xh and x^u) the upper bound on X1.

Data: amax = 40,000 psi, xf] = 0.1 in2, x\u) = 5.0 in2 for / = 1,2,. . .,25.
Optimum solution: See Table 7.8.

TABLE 7.8 Optimization Results of the 25-Bar Truss [7.38]

aActive side constraint.
^Buckling stress in members, 2, 5, 7, 8, 19, and 20 in load condition 1 and in members 13, 16,
and 24 in load condition 2.
Truckling stress in members 2, 5, 7, and 8 in load condition 1.

Quantity

Design vector, X

Weight (Ib)
Deflection (in.)
Fundamental frequency (Hz)
Number of active behavior

constraints

Optimization Problem

Minimization
of Weight

0.1a

0.80228
0.74789
0.1"
0.12452
0.57117
0.97851
0.80247

233.07265
1.924989

73.25348
9b

Minimization
of Deflection

3.7931
5.0a

5.0a

3.3183
5.0*
5.0a

5.0*
5.0a

1619.3258
0.30834

70.2082
0

Maximization
of Frequency

0.1*
0.79769
0.74605
0.72817
0.84836
1.9944
1.9176
4.1119

600.87891
1.35503

108.6224
4C



Figure 7.23 Welded beam [7.39].

7.22.3 Welded Beam Design

The welded beam shown in Fig. 7.23 is designed for minimum cost subject to
constraints on shear stress in weld (r), bending stress in the beam (a), buckling
load on the bar (Pc), end deflection of the beam (S), and side constraints [7.39].

Design vector:

X2{ = l

X3 I t

Objective function:/(X) = \AOAl\x\x2 + 0.04811Jt3Jc4(I^O + X2)
Constraints:

S1(X) = T(X) - rmax < 0

S2(X) = (7(X) - amax < 0

S3(X) = X1 - X4 < 0



g4(X) = 0.10471x? + 0.04811x^4(14.0 + X2) - 5.0 < 0

S5(X) = 0.125 - X1 < 0

S6(X) = 5(X) - 5max < 0

S7(X) = P - P1(X) < 0

S8(X) to s,i(X): 0.1 < jc, < 2.0, i = 1,4

Si2(X) to Si5(X): 0.1 < JC, < 10.0, i = 2,3

where

T(X) = ^j(T')2 + 2T'T" g + (T")2

j2Xix2 J V 2 /

^ 6PL
(7(X) = j

^4 x 3

4.013 Vg(x^4
6/36) / x3 [E\

Data: P = 6000 Ib, L = 14 in., E = 30 X 106 psi, G = 12 X 106 psi, Tmax

= 13,600 psi, crmax = 30,000 psi, and 6max = 0.25 in.
Optimum solution:

(h*^\ f0.2455 in.̂ v

I* 6.1960 in.
X* = = , f* = 2.386 dollars

t* 8.2730 in.

Vb* J V0.2455 in.y



7.22.4 Speed Reducer (Gear Train) Design

The design of the speed reducer, shown in Fig. 7.24, is considered with the
face width (b), module of teeth (m), number of teeth on pinion (z), length of
shaft 1 between bearings (/}), length of shaft 2 between bearings (Z2), diameter
of shaft 1 (J1), and diameter of shaft 2 (d2) as design variables X1, X2, . . . , X7,
respectively. The constraints include limitations on the bending stress of gear
teeth, surface stress, transverse deflections of shafts 1 and 2 due to transmitted
force, and stresses in shafts 1 and 2 [7.40, 7.41].

Objective (minimization of weight of speed reducer):

/(X) = 0.7854^!(3.3333Z? + 14.9334x3 - 43.0934) - 1.508x,(x;? + X7)

+ 7.477(4 + X7
1) + 0.7854(Jc4Xi H- x5x

2
7)

Constraints:

gl(x) = 27Xf1X2-V ^ !

£2(x) = 397.5Xf1X2-
2X3"

2 ^ 1

g3(x) = 1 .93X2-Vx4V4 ^ 1

S4(Jt) = 1.93X2-
1X3-V5X7-

4 < 1

g5(x) = I Y - ) + (16.9)106l IoAxI * HOO

S6(X) = [ ( ^ ) 2 + d57.5)106] /0.Ix7- < 850

g7(x) = x2x3 < 40

g8(x):5 < ^ < UIg9(X)
Xl

Figure 7.24 Speed reducer (gear pair) [7.40].



gio(*):2.6 < X1 < 3.6:g,,(x)

gl20r): 0.7 < X2 < 0.8 Ig13(X)

gM(x):17 < x3 < 28 :g ls(x)

gi6(x):7.3 < X4 < 8.3:g,7(x)

g lg(x):7.3 < Jc5 < 8.3:g,9(r)

§20(x):2.9 < X6 < 3.9:g2](x)

g22(.x):5.0 < Jc7 < 5.5:g23(x)

g24(x) = (1.Sx6 + l . W < 1

2̂5(JC) = (1.Ix7 + 1.9)x5-' < 1

Optimum solution:

X* = {3.5 0.7 17.0 7.3 7.3 3.35 5.29} r , / * = 2985.22

7.22.5 Heat Exchanger Design [7.42]

Objective function: Minimize/(X) = X1 + X2 + x3

Constraints:

g,(X) = 0.0025(X4 + X6) - 1 < 0

g2(X) = 0.0025(-x4 + X5 + X7) - 1 < 0

S3(X) = 0.01(-X5 + X8) - 1 < 0

S4(X) = 10Ox1 - X1X6 + 833.33252x4 - 83,333.333 < 0

S5(X) = X2X4 - X2X7 - 125Ox4 + 125Ox5 < 0

S6(X) = x3x5 - x3x8 - 250Ox5 + 1,250,000 < 0

S7:100 < x, < 10,000:s8

S9:1000 < X2 < 10,000: Sm

S11:1000 < x 3 < 10,000:s,2

S13 to g22:10 < x, < 1000, i = 4,5, . . .,8

Optimum solution: X* = {567 1357 5125 181 295 219 286
395} r , / * = 7049
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REVIEW QUESTIONS

7.1 Answer true or false.
(a) The complex method is similar to the simplex method.



(b) The optimum solution of a constrained problem can be the same
as the unconstrained optimum.

(c) The constraints can introduce local minima in the feasible space.
(d) The complex method can handle both equality and inequality con-

straints.
(e) The complex method can be used to solve both convex and non-

convex problems.
(f) The number of inequality constraints cannot exceed the number of

design variables.
(g) The complex method requires a feasible starting point.
(h) The solutions of all LP problems in the SLP method lie in the

infeasible domain of the original problem.
(i) The SLP method is applicable to both convex and nonconvex prob-

lems.
(j) The usable feasible directions can be generated using random num-

bers.
(k) The usable feasible direction makes an obtuse angle with the gra-

dients of all the constraints.
(I) If the starting point is feasible, all subsequent unconstrained min-

ima will be feasible in the exterior penalty function method.
(m) The interior penalty function method can be used to find a feasible

starting point.
(n) The penalty parameter rk approaches zero as k approaches infinity

in the exterior penalty function method.
(o) The design vector found through extrapolation can be used as a

starting point for the next unconstrained minimization in the inte-
rior penalty function method.

7.2 Why is SLP method called the cutting plane method?

7.3 How is the direction-finding problem solved in Zoutendijk's method?

7.4 What is SUMT?

7.5 How is a parametric constraint handled in the interior penalty function
method?

7.6 How can you identify an active constraint during numerical optimiza-
tion?

7.7 Formulate the equivalent unconstrained objective function that can be
used in random search methods.

7.8 How is the perturbation method used as a convergence check?

7.9 How can you compute Lagrange multipliers during numerical optimi-
zation?



7.10 What is the use of extrapolating the objective function in the penalty
function approach?

7.11 Why is handling of equality constraints difficult in the penalty function
methods?

7.12 What is the geometric interpretation of the reduced gradient?

7.13 Is the generalized reduced gradient zero at the optimum solution?

7.14 What is the relation between the sequential quadratic programming
method and the Lagrangian function?

7.15 Approximate the nonlinear function/(X) as a linear function at X0.

7.16 What is the limitation of the linear extended penalty function?

7.17 What is the difference between the interior and extended interior penalty
function methods?

7.18 What is the basic principle used in the augmented Lagrangian method?

7.19 When can you use the steepest descent direction as a usable feasible
direction in Zoutendijk's method?

7.20 Construct the augmented Lagrangian function for a constrained opti-
mization problem.

7.21 Construct the 4>k function to be used for a mixed equality-inequality
constrained problem in the interior penalty function approach.

7.22 What is a parametric constraint?

7.23 Match the following methods.
(a) Zoutendijk method Heuristic method
(b) Cutting plane method Barrier method
(c) Complex method Feasible directions method
(d) Projected Lagrangian method Sequential linear program-

ming method
(e) Penalty function method Gradient projection method
(f) Rosen's method Sequential unconstrained

minimization method
(g) Interior penalty function method Sequential quadratic program-

ming method

7.24 Answer true or false.
(a) The Rosen's gradient projection method is a method of feasible

directions.
(b) The starting vector can be infeasible in Rosen's gradient projection

method.



(c) The transformation methods seek to convert a constrained problem
into an unconstrained one.

(d) The cj>k function is defined over the entire design space in the inte-
rior penalty function method.

(e) The sequence of unconstrained minima generated by the interior
penalty function method lie in the feasible space.

(f) The sequence of unconstrained minima generated by the exterior
penalty function method lie in the feasible space.

(g) The random search methods are applicable to convex and noncon-
vex optimization problems.

(h) The GRG method is related to the method of elimination of vari-
ables.

(i) The sequential quadratic programming method can handle only
equality constraints.

(j) The augmented Lagrangian method is based on the concepts of pen-
alty function and Lagrange multiplier methods.

(k) The starting vector can be infeasible in the augmented Lagrangiam
method.

PROBLEMS

7.1 Find the solution of the problem:

Minimize/(X) = x\ + 2^2 - IxxX2 - Uxx - Ux2 + 10

subject to

Ax] + 4 - 25 < 0

using a graphical procedure.

7.2 Generate four feasible design vectors to the welded beam design prob-
lem (Section 7.22.3) using random numbers.

7.3 Generate four feasible design vectors to the three-bar truss design prob-
lem (Section 7.22.1) using random numbers.

7.4 Consider the tubular column described in Example 1.1. Starting from
the design vector (d = 8.0 cm, t = OA cm), complete two steps of
reflection, expansion, and/or contraction of the complex method.

7.5 Consider the problem:

Minimize/(X) = Xx — X2



subject to

3x] - 2xxx2 + x\ - 1 < 0

(a) Generate the approximating LP problem at the vector, X1 =

( D -
(b) Solve the approximating LP problem using graphical method and

find whether the resulting solution is feasible to the original prob-
lem.

7.6 Approximate the following optimization problem as (a) a quadratic pro-
gramming problem, and (b) a linear programming problem at X =

Minimize/(X) = 2x\ + 15*2 - 8JC1Jc2 + 15

subject to

jĉ  + JC1Jc2 + 1 = 0

4Jc1 - x\ < 4

7.7 The problem of minimum volume design subject to stress constraints of
the three-bar truss shown in Fig. 7.21 can be stated as follows:

Minimize/(X) = 282.8Jc1 + 100.0JC2

subject to

20(jc2 + 4l Jc1)
Ox-O0 = jF-T- - 20 < 0

2Jc1JC2 + V 2 jcf

-(T3 -O0 = *2
 r , - 20 < 0

2Jc1JC2 + V2JC?

0 < JC1- < 0.3, i = 1,2

where at is the stress induced in member i, a0 = 20 the permissible
stress, Jc1 the area of cross section of members 1 and 3, and JC2 the area
of cross section of member 2. Approximate the problem as a LP prob-
lem at (Xi = 1, Jc2 = 1).



7.8 Minimize/(X) = x\ + jci - 6JC, - 8JC2 + 10

subject to

Ax\ + xj < 16

3Jc1 + 5JC2 < 15

JC, > 0, I = 1,2

with the starting point X1 = j . | . Using the cutting plane method,

complete one step of the process.

7.9 Minimize/(X) = 9Jc1 + 6x2
2 + x2

3 - ISx1 - YIx1 - 6JC3 - 8

subject to

JC1 4- 2JC2 + JC3 < 4

Jc1 > 0, I = 1,2,3

Using the starting point X1 = {0 0 0}T, complete one step of se-
quential linear programming method.

7.10 Complete one cycle of the sequential linear programming method for

the truss of Section 7.22.1 using the starting point, X1 = j . | .

7.11 A flywheel is a large mass that can store energy during coasting of an
engine and feed it back to the drive when required. A solid disk-type
flywheel is to be designed for an engine to store maximum possible
energy with the following specifications: maximum permissible weight
= 150 Ib, maximum permissible diameter (d) = 25 in., maximum ro-
tational speed = 3000 rpm, maximum allowable stress (amax) = 20,000
psi, unit weight (7) = 0.283 lb/in3, and Poisson's ratio (v) = 0.3. The
energy stored in the flywheel is given by \lo)2, where / is the mass
moment of inertia and co is the angular velocity, and the maximum tan-
gential and radial stresses developed in the flywheel are given by

7(3 + V)U1Cl1

where g is the acceleration due to gravity and d the diameter of the
flywheel. The distortion energy theory of failure is to be used, which



leads to the stress constraint

ot + or - otor < amax

Considering the diameter (d) and the width (w) as design variables,
formulate the optimization problem. Starting from (d = 15 in., w = 2
in.), complete one iteration of the SLP method.

7.12 Derive the necessary conditions of optimality and find the solution for
the following problem:

Minimize/(X) = 5Jt1Jt2

subject to

25 - x\ - x\ > 0

7.13 Consider the following problem:

Minimize/= (Jt1 - 5)2 + (x2 - 5)2

subject to

Jt1 + 2jt2 < 15

1 < X1 < 10, i = 1,2

Derive the conditions to be satisfied at the point X = j 7 j by the search

direction S = ] ] ( if it is to be a usable feasible direction.

7.14 Consider the problem:

Minimize/= (Jt1 - I)2 + (x2 - 5)2

subject to

g] = -x] + X2 - 4 < 0

g2 = -(X1 - 2)2 + Jt2 - 3 < 0

Formulate the direction-finding problem at X/ = j ' | as a linear pro-

gramming problem (in Zoutendijk method).



7.15 Minimize/(X) = (JC, - I)2 + (JC2 - 5)2

subject to

-JC2 + X2 < 4

-(X1 - 2)2 + x2 < 3

starting from the point Xj = \ . f and using Zoutendijk's method. Com-

plete two one-dimensional minimization steps.

7.16 Minimize/(X) = (JC, - I)2 + (x2 - 2)2 - 4

subject to

X1 + Ix2 < 5

4Jt1 + 3JC2 < 10

6xx + Jc2 < 7

Jr1- > 0, I = 1,2

by using Zoutendijk's method from the starting point X1 = J . j . Per-

form two one-dimensional minimization steps of the process.

7.17 Complete one iteration of Rosen's gradient projection method for the
following problem:

Min imize /= (Jc1 - I)2 + (JC2 - 2)2 - 4

subject to

Jc1 + 2JC2 < 5

4Jc1 + 3JC2 < 10

6Jc1 + X2 < 7

X1 > 0 , I = 1 ,2

U s e t h e s t a r t i n g p o i n t , X 1 = J J .



7.18 Complete one iteration of the GRG method for the problem:

Minimize f = x\ + jcf

subject to

JC1X2 - 9 = 0

starting from X1 = j .' j .

7.19 Approximate the following problem as a quadratic programming prob-
lem at (JC1 = 1, X2 = 1):

Minimize/ = Jc1 4- x\ - 6xx - Sx2 + 15

subject to

4x2
{ + x\ < 16

3x] + 5x2
2 ^ 15

xt > 0, i = 1,2

7.20 Consider the truss structure shown in Fig. 7.25. The minimum weight
deisgn of the truss subject to a constraint on the deflection of node S
along with lower bounds on the cross sectional areas of members can
be started as follows:

Minimize/= 0.1847Jc1 + 0.1306JC2

Area, AI =x\

Area, A2 =*2 Area, A2 =X2

Area, Ai =x\

Figure 7.25 Four-bar truss.



subject to

26.1546 30.1546
+ < 1.0

Xx X1

X1 > 25 mm2, i = 1,2

Complete one iteration of sequential quadratic programming method for
this problem.

7.21 Find the dimensions of a rectangular prism type parcel that has the larg-
est volume when each of its sides is limited to 42 in. and its depth plus
girth is restricted to a maximum value of 72 in. Solve the problem as
an unconstrained minimization problem using suitable transformations.

7.22 Transform the following constrained problem into an equivalent uncon-
strained problem:

JC3

Maximize/(JC1, X1) = [9 - (Jc1 - 3)2] —1J=

subject to

0 < Jc1

0 < Jc1 + V3 Jc2 < 6

7.23 Construct the (f>k function, according to (a) interior and (b) exterior pen-
alty function methods and plot its contours for the following problem:

Maximize f = 2x

subject to

2 < JC < 10

7.24 Construct the <j)k function according to the exterior penalty function ap-
proach and complete the minimization of <j)k for the following problem.

Minimize/(JC) = (JC — I)2

subject to

gx(x) = 2 - x < 0, gl(x) = x - 4 < 0



7.25 Plot the contours of the <j*k function using the quadratic extended interior
penalty function method for the following problem:

Minimize/(JC) = (JC - I)2

subject to

g,(jc) = 2 - x < 0, g2(jc) = x - 4 < 0

7.26 Consider the problem:

Minimize/(JC) = x2 - 10x - 1

subject to

1 < JC < 10

Plot the contours of the 4>k function using the linear extended interior
penalty function method.

7.27 Consider the problem:

Minimize/(JC, ,Jc2) = (JC, - I)2 + (JC2 - 2)2

subject to

2Jc1 — Jc2 = 0 and Jc1 < 5

Construct the <j>k function according to the interior penalty function ap-
proach and complete the minimization of ^ 1 .

7.28 Solve the following problem using an interior penalty function approach
coupled with the calculus method of unconstrained minimization:

Minimize/ = JC2 — 2x — 1

subject to

1 - JC > 0

(Note: Sequential minimization is not necessary.)

7.29 Consider the problem:

Minimize/ = x] + x% — 6xx — 8JC2 + 15



subject to

4jt2 + 4 > 16, 3JC, + 5JC2 < 15

Normalize the constraints and find a suitable value of rx for use in the
interior penalty function method at the starting point (Jc1, Jt2) = (0,0).

7.30 Determine whether the following optimization problem is convex, con-
cave, or neither type:

Minimize/ = -4Jt1 + x\ ~ 2xxx2 + 2JC2

subject to

2Jc1 + Jc2 < 6, Jc1 - 4JC2 < 0, xt > 0, / = 1,2

7.31 Find the solution of the following problem using an exterior penalty
function method with classical method of unconstrained minimization:

Minimize/(JC1 ,Jt2) = (2Jt1 - Jt2)
2 + (Jt2 + I)2

subject to

Jc1 + Jc2 = 10

Consider the limiting case as rk -* oo analytically.

7.32 Minimize / = 3JC2 + 4JC2 subject to Jt1 + 2JC2 = 8 using an exterior
penalty function method with the calculus method of unconstrained
minimization.

7.33 A beam of uniform rectangular cross section is to be cut from a log
having a circular cross section of diameter 2a. The beam is to be used
as a cantilever beam to carry a concentrated load at the free end. Find
the cross-sectional dimensions of the beam which will have the maxi-
mum bending stress carrying capacity using an exterior penalty function
approach with analytical unconstrained minimization.

7.34 Consider the problem:

Minimize/ = 5 (Jc1 + I)3 + X2

subject to

1 - Jt1 < 0, Jt2 > 0

The results obtained during the sequential minimization of this problem
according to the exterior penalty function approach are given below.



Starting Point for Unconstrained
Value of Minimization of Minimum of

k rk 0(X,r,) *(X,r*) = Xf /(X,*) = ft

1 1 (-0.4597,-5.0) (0.2361,-0.5) 0.1295
2 10 (0.2361,-0.5) (0.8322,-0.05) 2.0001

Estimate the optimum solution, X* and/*, using a suitable extrapola-
tion technique.

7.35 The results obtained in an exterior penalty function method of solution
for the optimization problem stated in Problem 7.15 are given below:

f-0.80975^)
rx = 0.01, Xf = j , </>f = -24.9650, / f = -49.9977

4 f 0.23607^)
r2 = 1.0, X 2 *= , </>2* = 0 . 9 6 3 1 , /2* = 0.1295

Estimate the optimum design vector and optimum objective function
using an extrapolation method.

7.36 The following results have been obtained during an exterior penalty
function approach:

- » - - • * • I D

Find the optimum solution, X*, using an extrapolation technique.

7.37 The results obtained in a sequential unconstrained minimization tech-
nique (using an exterior penalty function approach) from the starting

point X1 = ] 3 0 0 fare:

T - 1 0 - ° X * - f ° ' 6 6 l r - K r 9 X* 4 L 5 7 1r ' " 1 0 ' Xl " U . 6 y r 2"1 0 ' 2 ~ [ l 8 . 7 J '

r _ 1Q-8 X* _ f L861

r3 - 10 , X 3 - J ^ 8 8 j

Estimate the optimum solution using a suitable extrapolation technique.



Figure 7.26 Two-bar truss subjected to a parametric load.

7.38 The two-bar truss shown in Fig. 7.26 is acted by a varying load whose
magnitude is given by P(O) = P0 cos 20; 0° < 0 < 360°. The bars
have a tubular section with mean diameter d and wall thickness t. Using
P0 = 50,000 Ib, tfyieid = 30,000 psi, and E = 30 X 106 psi, formulate
the problem as a parametric optimization problem for minimum volume
design subject to buckling and yielding constraints. Assume the bars to
be pin connected for the purpose of buckling analysis. Indicate the pro-
cedure that can be used for a graphical solution of the problem.

7.39 Minimize/(X) = (JC, - I)2 + (Jt2 - 2)2

subject to

xx + 2JC2 - 2 = 0

using the augmented Lagrange multiplier method with a fixed value of
rp = 1. Use a maximum of three iterations.

7.40 Solve the following optimization problem using the augmented La-
grange multiplier method keeping rp = 1 throughout the iterative pro-
cess and X(1) = 0:

Min imize /= (JC1 - I)2 + (JC2 - 2)2

Section A-A

A

A
A

A

d



subject to

-X1 + Ix1 = I

7.41 Consider the problem:

Min imize /= (Jc1 - I)2 H- (JC2 - 5)2

subject to

jc, + x2 - 5 = 0

(a) Write the expression for the augmented Lagrange function with rp

= 1.
(b) Start with \\l) = 0 and perform two iterations.

(c) Find Xf \

7.42 Consider the optimization problem:

Minimize /= Jc1 — 6JC2 + HJC1 + Jc3

subject to

JC2 + JC2 - JC2 < 0, 4 - JC2 - jci - Xs < 0, Jc3 < 5,

X1 > 0, I = 1,2,3

f 0)
Determine whether the solution X = I \fl | is optimum by finding the

values of the Lagrange multipliers.

r o)
7.43 Determine whether the solution X = < 4l \ is optimum for the problem

considered in Problem 7.8 using a perturbation method with A*,- =
0.001, i = 1,2,3.

7.44 The following results are obtained during the minimization of

/ (X) = 9 - 8Jc1 - 6JC2 - 4JC3 + 2JC2 + 2x| + JC2 + 2Jc1Jc2 + 2Jc1Jc3

subject to

Jc1 + Jc2 + 2JC3 < 3

Xi > 0, / = 1,2,3

using the interior penalty function method.



Starting Point for
Minimization of Unconstrained Minimum

Value of Ti 4QL9T1) of +QL9T1) = X* /(Xf) = /*
("O.H f 0.8884 ̂ )

1 0.1 0.7188 0.7072
(OA) (^0.7260)

f 0.8884 ̂ ) fl.3313")
0.01 0.7188 0.7539 0.1564

^0.7260 J (^0.3710J

("1.3313") ("1.3478")
0.0001 0.7539 0.7720 0.1158

(̂ 0.3710 J (̂ 0.4293 J

Use an extrapolation technique to predict the optimum solution of the-
problem using the following relations.

(a) X(r) = A0 + TA1;/(r) = a0 + ^ 1

(b) X(r) = A0 + r 172A1 ; / ( r ) = a0 + rmax

\ 9 /Compare your results with the exact solution X* = ] \ \ a n d / ^ = \.

19 )

7.45 Find the extrapolated solution of Problem 7.44 by using quadratic re-
lations for X(r) and/(r) .

7.46 Give a proof for the convergence of exterior penalty function method.

7.47 Write a computer program to implement the interior penalty function
method with the DFP method of unconstrained minimization and the
cubic interpolation method of one-dimensional search.

7.48 Write a computer program to implement the exterior penalty function
method with the BFGS method of unconstrained minimization and the
direct root method of one-dimensional search.

7.49 Write a computer program to implement the augmented Lagrange mul-
tiplier method with a suitable method of unconstrained minimization.

7.50 Write a computer program to implement the sequential linear program-
ming method.



GEOMETRIC PROGRAMMING

8.1 INTRODUCTION

Geometric programming is a relatively new method of solving a class of non-
linear programming problems. It was developed by Duffin, Peterson, and
Zener [8.1]. It is used to minimize functions that are in the form of posyno-
mials subject to constraints of the same type. It differs from other optimization
techniques in the emphasis it places on the relative magnitudes of the terms of
the objective function rather than the variables. Instead of finding optimal val-
ues of the design variables first, geometric programming first finds the optimal
value of the objective function. This feature is especially advantageous in sit-
uations where the optimal value of the objective function may be all that is of
interest. In such cases, calculation of the optimum design vectors can be omit-
ted. Another advantage of geometric programming is that it often reduces a
complicated optimization problem to one involving a set of simultaneous linear
algebraic equations. The major disadvantage of the method is that it requires
the objective function and the constraints in the form of posynomials. We will
first see the general form of a posynomial.

8.2 POSYNOMIAL

In an engineering design situation, frequently the objective function (e.g., the
total cost)/(X) is given by the sum of several component costs IZ1-(X) as

/(X) = Ux + U2 + • . • + UN (8.1)

8



In many cases, the component costs U1 can be expressed as power functions
of the type

ui — ci x\ X2 xn KP.Z)

where the coefficients C1 are positive constants, the exponents atj are real con-
stants (positive, zero, or negative), and the design parameters X1, X2, . . • , Xn

are taken to be positive variables. Functions like / , because of the positive
coefficients and variables and real exponents, are called posynomials. For ex-
ample,

f(xux29x3) = 6 + 3*, - Sx2 + Ix3 + 2X1X2

- 3x{x3 + Ix2X3 + fxj - 9x2 + x3

is a second-degree polynomial in the variables X1, X2, and X3 (coefficients of
the various terms are real) while

2
g (X1, x2,x3) = X1X2X3 + X1X2 + 4x3 + + 5x3"l/2

X1X2

is a posynomial. If the natural formulation of the optimization problem does
not lead to posynomial functions, geometric programming techniques can still
be applied to solve the problem by replacing the actual functions by a set of
empirically fitted posynomials over a wide range of the parameters X1.

8.3 UNCONSTRAINED MINIMIZATION PROBLEM

Consider the unconstrained minimization problem:

rxA

X2

Find X =

Vxn J

that minimizes the objective function

N N i n \ N

/ ( X ) = S Uj(X) = S (cj n j c f ) = S (c, JC?" x f • • • JC**)

(8.3)

where c} > 0, X1 > 0, and the atJ are real constants.



The solution of this problem can be obtained by various procedures. In the
following sections, two approaches—one based on the differential calculus and
the other based on the concept of geometric inequality—are presented for the
solution of the problem stated in Eq. (8.3).

8.4 SOLUTION OF AN UNCONSTRAINED GEOMETRIC
PROGRAMMING PROGRAM USING DIFFERENTIAL CALCULUS

According to the differential calculus methods presented in Chapter 2, the nec-
essary conditions for the minimum of/are given by

M. - y. <Hk
dxk ; = i dxk

N

— LA (CJ XiJ X2
J *k-\ akjxk &k + \ xn ) ~ u>

7 = 1

k = 1,2,. . .,n (8.4)

By multiplying Eq. (8.4) by xk, we can rewrite it as

M N

Xk— - ZJ akJ(Cj Xx X2 Xk_x *k *k+\ xn )
axk j = \

N
= I j akjUj(X) = 0 , I c = 1 ,2 , . . . , n (8.5)

To find the minimizing vector

X2* (
X* =

Vx *J

we have to solve the n equations given by Eqs. (8.4), simultaneously. To
ensure that the point X* corresponds to the minimum of/(but not to the max-
imum or the stationary point of X), the sufficiency condition must be satisfied.
This condition states that the Hessian matrix of/is evaluated at X*:

Jx* [dxk dXl\x*



must be positive definite. We will see this condition at a latter stage. Since the
vector X* satisfies Eqs. (8.5), we have

N
S aqUjQL*) = 0, k = 1,2,. . .,w (8.6)

After dividing by the minimum value of the objective function/*, Eq. (8.6)
becomes

S A* aki = 0, k = 1,2,. . .,n (8.7)
j = \ J J

where the quantities Af are defined as

and denote the relative contribution of 7th term to the optimal objective func-
tion. From Eq. (8.8), we obtain

N

S Af = A* + A2* + • • • + A$
j = \ J

= y i ^ + tf? + • • • + tf£) = 1 (8.9)

Equations (8.7) are called the orthogonality conditions and Eq. (8.9) is called
the normality condition. To obtain the minimum value of the objective function
/* , the following procedure can be adopted. Consider

/ * = (Z*)1 = ( / * ) ^ = ' A ; = (/*)Ar(/*)A| • • • (/*)A^ (8.10)

Since

A1 A2 AN

from Eq. (8.8), Eq. (8.10) can be rewritten as



By substituting the relation

n

Uf = cj n (xf)a\ J = 1 , 2 , . . . J V
- 7 I = I

Eq. (8.12) becomes

f- Mf [k ^ f ] Mf № H i

- a (#)i [,?. <*•>*-•]
" ( c- \A/

since

S fliy A* = 0 for any i from Eq. (8.7)

Thus the optimal objective function/* can be found from Eq. (8.13) once
A* are determined. To determine A* (j = 1,2,. . .,N), Eqs. (8.7) and (8.9)
can be used. It can be seen that there are n + 1 equations in Af unknowns. If
N = n + 1, there will be as many linear simultaneous equations as there are
unknowns and we can find a unique solution.

Degree of Difficulty. The quantity N — n — 1 is termed a degree of difficulty
in geometric programming. In the case of a constrained geometric program-
ming problem, N denotes the total number of terms in all the posynomials and
n represents the number of design variables. If N — n — 1 = 0 , the problem
is said to have a zero degree of difficulty. In this case, the unknowns A7* (j =
1,2,. . .,N) can be determined uniquely from the orthogonality and normality
conditions. If N is greater than n + 1, we have more number of variables
(A7*s) than the equations, and the method of solution for this case will be dis-
cussed in subsequent sections. It is to be noted that geometric programming is
not applicable to problems with negative degree of difficulty.



Sufficiency Condition. We can see that A7* are found by solving Eqs. (8.7)
and (8.9), which in turn are obtained by using the necessary conditions only.
We can show that these conditions are also sufficient.

Finding the Optimal Values of Design Variables. Since / * and A7* (j =
1,2,. . .,Af) are known, we can determine the optimal values of the design
variables from the relations

n

Uf = A * / * = Cj I I (x*)aij, j = 1,2,. . .,N (8.14)

The simultaneous solution of these equations will yield the desired quantities
jcf (i = 1,2,. . .,n). It can be seen that Eqs. (8.14) are nonlinear in terms of
the variables jcf, JC*, . . . , JC*, and hence their simultaneous solution is not
easy if we want to solve them directly. To simplify the simultaneous solution
of Eqs. (8.14), we rewrite them as

££- = Qcfr(x2*r • • • (*„*)*", j = 1,2,. . .,N (8.15)
cj

By taking logarithms on both the sides of Eqs. (8.15), we obtain

A*/*
In — = aXj In JC* + dfy In Jt* + • • • + anj ^

n x*»
cj

J = 1 , 2 , . . . J f (8.16)

By letting

wf = lnjc*, i = 1,2,. . .,n (8.17)

Eqs. (8.16) can be written as

/* Af
G11W1 + a21w2 + • • • + anXwn = In

/ * A2*
G12W1 + G22W2 + • • • + an2wn = In

Cl (8.18)

alNwx + % w 2 + • • • + anNwn = In
CN



These equations, in the case of problems with a zero degree of difficulty, give
a unique solution tow, ,w 2 , . . . , % . Once wt are found, the desired solution
can be obtained as

xf = eWi, i = 1,2,. . .,/i (8.19)

In a general geometric programming problem with a nonnegative degree of
difficulty, Af > n + 1, and hence Eqs. (8.18) denote N equations in n un-
knowns. By choosing any n linearly independent equations, we obtain a set of
solutions w( and hence xf .

The solution of an unconstrained geometric programming problem is illus-
trated with the help of the following zero-degree-of-difficulty example [8.1].

Example 8.1 It has been decided to shift grain from a warehouse to a factory
in an open rectangular box of length Jc1 meters, width x2 meters, and height X3

meters. The bottom, sides, and the ends of the box cost, respectively, $80,
$10, and $20/m2. It costs $1 for each round trip of the box. Assuming that the
box will have no salvage value, find the minimum cost of transporting 80 m3

of grain.

SOLUTION The total cost of transportation is given by:

total cost = cost of box + cost of transportation

= (cost of sides + cost of bottom + cost of ends of the box)

+ (number of round trips required for transporting the grain

x cost of each round trip)

r so i
/ (X) = [(2X1JC3)IO + (JC1JC2)SO + (2x2x3)20] + (1)

Lx1X2X3 j

= $( 8OX1JC2 + 4Ox2X3 + 2Ox1X3 + ) (E1)
\ X1X2X3/

where X1, X2, and X3 indicate the dimensions of the box, as shown in Fig. 8.1.
By comparing Eq. (E1) with the general posynomial of Eq. (8.1), we obtain

cx = 80, c2 = 40, C3 = 20, c4 = 80

( au al2 al3 au\ /1 0 1 - 1 \

a2l a 2 2 a 2 3 a 2 4 \ = l l 1 0 - 1 J
#31 #32 #33 #34/ \ 0 1 1 - 1 /



Figure 8.1 Open rectangular box.

The orthogonality and normality conditions are given by

~1 0 1 - 1 ~ | A A /^0>v

1 1 0 - 1 A2 _ 0 ,

0 1 1 - 1 A3 0

_i i i l J VA4^ v iy

that is,

A1 + A3 - A4 = 0 (E2)

A1 + A2 - A4 = 0 (E3)

A2 + A3 - A4 = 0 (E4)

A1 + A2 + A3 + A4 = 1 (E5)

From Eqs. (E2) and (E3), we obtain

A4 = A1 + A3 = A1 + A2 or A2 = A3 (E6)

Similarly, Eqs. (E3) and (E4) give us

A4 = A1 + A2 = A2 + A3 or A1 = A3 (E7)

Equations (E6) and (E7) yield

A1 = A2 = A3

Bottom

• End

Sides



while Eq. (E6) gives

A4 = A1 + A3 = 2A1

Finally, Eq. (E5) leads to the unique solution

Af = Aj = A3* = | and A* = §

Thus the optimal value of the objective function can be found from Eq. (8.13)
as

/ 8 O \ l / 5 / 4 0 \ 1 / 5 / 2 0 \ 1 / 5 / 8 0 \ 2 / 5

' • - y u ) u ) u )

= (4 x 102)1/5(2 x 102)1/5(l x 102)"5(4 x IO4)1'5

= (32 x 1010)"5 = $200

It can be seen that the minimum total cost has been obtained before finding
the optimal size of the box. To find the optimal values of the design variables,
let us write Eqs. (8.14) as

Uf = 8OxM = Af/* = ± (200) = 40 (E8)

U* = 40x2*x3* = A*/* = 7 (200) = 40 (E9)

f/3* = 20xfx3* = A3*/* = I (200) = 40 (E10)

80 2
Ut = i ^ V = Atf* = 5 (200) = 8° (Ell)

X \ A 2 A 3 J

From these equations, we obtain

^2 ~ 5 x f ~ X3*'
 X l - 2 ' ^2 ~x3*

A 1 A2 X 3 A 3 A 3

Therefore,

JC* = 1 m, x* = \ m, x* = 2 m (E12)

It is to be noticed that there is one redundant equation among Eqs. (E8) to
(E11), which is not needed for the solution of xf (i = 1 to n).



The solution given in Eq. (E12) can also be obtained using Eqs. (8.18). In
the present case, Eqs. (8.18) lead to

200 X ^ 1
1 W1 + 1 W2 + 0 W3 = In 8 Q

 5 = In - (E13)

200 X ^
0 W1 + 1 w2 + 1 W3 = In — — - = In 1 (E14)

900 v -
1 W1 + 0 w2 + 1 w3 = In 2 Q ~5 = In 2 (E15)

200 X I
- 1 W1 - 1 w2 - 1 w3 = In — — — = In 1 (E16)

oU

By adding Eqs. (E13), (E14), and (E16), we obtain

W2 = In 5 + In 1 + In 1 = In (5 • 1 • 1) = In I = In Jc2*

or

x* — 2

Similarly, by adding Eqs. (E13), (E15), and (E16), we get

W1 = In 5 + In 2 + In 1 = In 1 = In x*

or

*r = 1

Finally, we can obtain Jt* by adding Eqs. (E14), (E15), and (E16) as

W3 = In 1 + In 2 + In 1 = In 2 = In JC *

or

X3* = 2

It can be noticed that there are four equations, Eqs. (E13) to (E16) in three
unknowns wuw2, and W3. However, not all of them are linearly independent.
In this case, the first three equations only are linearly independent, and the
fourth equation, (E16), can be obtained by adding Eqs. (E13), (E14), and (E15),
and dividing the result by —2.



8.5 SOLUTION OF AN UNCONSTRAINED GEOMETRIC
PROGRAMMING PROBLEM USING ARITHMETIC-GEOMETRIC
INEQUALITY

The arithmetic mean-geometric mean inequality (also known as the arith-
metic-geometric inequality or Cauchy's inequality) is given by [8.1]

A1M1 + A2M2 + • • • + ANuN > u$lu%2 • • • UN" (8.20)

with

A1 + A2 + • • • + AN = 1 (8.21)

This inequality is found to be very useful in solving geometric programming
problems. Using the inequality of (8.20), the objective function of Eq. (8.3)
can be written as (by setting U1 = M1-A1-, i = 1,2,. . .,AO

where U1 = U1(S), i = 1,2,. . .,N9 and the weights A1, A2, . . . , A N , satisfy
Eq. (8.21). The left-hand side of the inequality (8.22) [i.e., the original func-
tion/(X)] is called the primal Junction. The right side of inequality (8.22) is
called the predual function. By using the known relations

n

Uj = cj I I x?, j = l,2,...,N (8.23)
I = 1

the predual function can be expressed as

( n \ Ai / n W2 / \ A N

r TT Yan \ / r TT yai2 \ / n TT va'N \
1 _ l 2 _ ' I N _ Xi

Â  / \ A2 / " " " \ A^ /

• • • ( s ''T]
( \ Ai / \ A2 / \ AN r

ci)Ct) •••(£) K - ) ^ - )
• • • (X^- '""^)] (8-24)



If we select the weights A7 so as to satisfy the normalization condition, Eq.
(8.21), and also the orthogonality relations

N

S atjAj = 0, i = 1,2,. . .,n (8.25)
7 = 1

Eq. (8.24) reduces to

U J u ; " U J - U J U J U J ( 8 - 2 6 )

Thus the inequality (8.22) becomes

( \ Ai / \ A2 / \ AN

f ) ( % ) • • • ( £ ) (8-27>
In this inequality, the right side is called the dual function, v (A1, A2,. . .,A^).
The inequality (8.27) can be written simply as

f>v (8.28)

A basic result is that the maximum of the dual function equals the minimum
of the primal function. Proof of this theorem is given in the next section. The
theorem enables us to accomplish the optimization by minimizing the primal
or by maximizing the dual, whichever is easier. Also, the maximization of the
dual function subject to the orthogonality and normality conditions is a suffi-
cient condition for/, the primal function, to be a global minimum.

8.6 PRIMAL DUAL RELATIONSHIP AND SUFFICIENCY
CONDITIONS IN THE UNCONSTRAINED CASE

If/* indicates the minimum of the primal function and v* denotes the maxi-
mum of the dual function, Eq. (8.28) states that

/> /* > v* > v (8.29)

In this section we prove tha t /* = v* and also tha t /* corresponds to the
global minimum of/(X). For convenience of notation, let us denote the ob-
jective function/(X) by X0 and make the exponential transformation

eWi = X1 or W1 = InJc1, 1 = 0,1,2,. . .,n (8.30)

where the variables wt are unrestricted in sign. Define the new variables A7,
also termed weights, as



n

c TT raiJ

AJ = ^ = - ^ , j = 1,2,. . .,JV (8.31)
XQ XQ

which can be seen to be positive and satisfy the relation

N

S Aj: = 1 (8.32)
j=1

By taking logarithms on both sides of Eq. (8.31), we obtain

n

In Aj = In Cj + ZI atj In Jt1- - In X0 (8.33)

or

A w

In ^ = S C17W1- - W0, j = 1,2,. . .,JV (8.34)
Cj « = 1

Thus the original problem of minimizing /(X) with no constraints can be re-
placed by one of minimizing W0 subject to the equality constraints given by
Eqs. (8.32) and (8.34). The objective function JC0 is given by

N n

Xo = e»o = 2 Cj I I e°ijWi

7 = 1 i = l

N

= S Cje^^Wi (8.35)

Since the exponential function (eaijWi) is convex with respect to wt, the objective
function X0, which is a positive combination of exponential functions, is also
convex (see Problem 8.15). Hence there is only one stationary point for x0 and
it must be the global minimum. The global minimum point of W0 can be ob-
tained by constructing the following Lagrangian function and finding its sta-
tionary point:

L(w,\,k) = W0 + X0 ( S A1- - U

N / n . \

+ S X, ( S OyW1 - W 0 - I n - M (8.36)
7—1 \ / - 1 Cj /

where



i w0 ] I 1 I I °
W1 A 2 A1 i

w = . , A = . , X = . > (8.37)

V w n y ^ A ^ y ^ x ^

with X denoting the vector of Lagrange multipliers. At the stationary point of
L, we have

dL
— = O, I = 0,1,2,. . .,/i
dwt

^ - = O, y = 1,2,. . .JV (8.38)
dAj

^ = O, I = 0,1,2,. . .,Af

These equations yield the following relations:

N N

1 - S X, = 0 or S X; = 1 (8.39)
.7=1 7 = !

S A,^ = 0, i = 1,2,. . .,n (8.40)

X0 - ^ = 0 or A0 = ^ , J= 1,2,. . .,iV (8.41)

N N

S A, - 1 = 0 or S A = I (8.42)
7=1 7=1

A n

- I n -^ + S C17W1- - w0 = 0, j = 1,2,. . .,/V (8.43)
C7 z' = *

Equations (8.39), (8.41), and (8.42) give the relation

N N N

E X, = 1 = S X0 A1, = X0 E Ay = X0 (8.44)

Thus the values of the Lagrange multipliers are given by

Cl for ; = 0
X. = (8.45)

; IAj for j = 1,2,. . .,N



By substituting Eq. (8.45) into Eq. (8.36), we obtain

N A / N \ n / N \
L(A,w) = - S A7- In -1 + (1 - W0) ( S A7- - 1 ) + S wA S a,,A,)

(8.46)

The function given in Eq. (8.46) can be considered as the Lagrangian func-
tion corresponding to a new optimization problem whose objective function
v(\) is given by

N
 A r N / \A y i

t>(A) = - S A / l n J = ln I I [ -^ J (8.47)
j = i Cj IJ = I V V J

and the constraints by

N

Ti A; - I = 0 (8.48)
7 = 1

N

S^-A,- = 0, I = 1,2,... ,n (8.49)

This problem will be the dual for the original problem. The quantities
(1 — W0), W1, W2, . . . , wn can be regarded as the Lagrange multipliers for the
constraints given by Eqs. (8.48) and (8.49).

Now it is evident that the vector A which makes the Lagrangian of Eq.
(8.46) stationary will automatically give a stationary point for that, of Eq.
(8.36). It can be proved that the function

A , h A J = 1,2,... ,JV

is convex (see Problem 8.16) since A7 is positive. Since the function £>(A) is
given by the negative of a sum of convex functions, it will be a concave func-
tion. Hence the function v(\) will have a unique stationary point which will
be its global maximum point. Hence the minimum of the original primal func-
tion is same as the maximum of the function given by Eq. (8.47) subject to
the normality and orthogonality conditions given by Eqs. (8.48) and (8.49)
with the variables A7 constrained to be positive.

By substituting the optimal solution A*, the optimal value of the objective
function becomes

v* = £>(A*) = L(w*,A*) = w£ = L(w*, A*, Ji*)

N A*
= - S Af In =L (8.50)

J=I Cj



By taking the exponentials and using the transformation relation (8.30), we
get

N / c \ A ;

/•=n(i) ,8.5!)

Primal and Dual Problems. We saw that geometric programming treats the
problem of minimizing posynomials and maximizing product functions. The
minimization problems are called primal programs and the maximization prob-
lems are called dual programs. Table 8.1 gives the primal and dual programs
corresponding to an unconstrained minimization problem.

Computational Procedure. To solve a given unconstrained minimization
problem, we construct the dual function v(A) and maximize either ^(A) or In
v(\), whichever is convenient, subject to the constraints given by Eqs. (8.48)

TABLE 8.1 Primal and Dual Programs Corresponding to an Unconstrained
Minimization Problem

Primal Program Dual Program

Find X = j X} > Find A = j *2 >

0 0 W
so that so that

/(X) = J 1 c}tf>j& • • • x? V(A) = LI. (^j '

—*- minimum
or

x{ > 0, x2 > 0, . . . , xn > 0
In v(A) = In II ( -M —>- maximum

(8.47)

subject to the constraints

S A. = 1 (8.48)

N

S atjAj = 0, i = 1,2 n (8.49)



and (8.49). If the degree of difficulty of the problem is zero, there will be a
unique solution for the A7*'s.

For problems with degree of difficulty greater than zero, there will be more
variables A7 (j = 1,2,. . .,N) than the number of equations (n + 1). Some-
times, it will be possible for us to express any (n + 1) number of Ay's in terms
of the remaining (N — n — 1) number of Ay's. In such cases, our problem will
be to maximize ^(A) or In v(\) with respect to the (N - n - 1) independent
A/s. This procedure is illustrated with the help of the following one-degree-
of-difficulty example.

Example 8.2 In a certain reservoir pump installation, the first cost of the pipe
is given by (100D + 50Z)2), where D is the diameter of the pipe in centimeters.
The cost of the reservoir decreases with an increase in the quantity of fluid
handled and is given by 20/ Q, where Q is the rate at which the fluid is handled
(cubic meters per second). The pumping cost is given by (30OQ1ZD5). Find the
optimal size of the pipe and the amount of fluid handled for minimum overall
cost.

SOLUTION

/ ( A S ) = 100D1C?0 + 50D2Q0 + 20D0Q1 + 30OD-5Q1 (E1)

Here we can see that

C1 = 100, C2 = 50, C3 = 20, C4 = 300

Zan an an aH\ / l 2 0 - 5 \

Ka2I a22 a23 a 2 j \ 0 0 - 1 2 /

The orthogonality and normality conditions are given by

/ 1 2 0 - 5 \ ) ro^

( 0 0 - 1 2 | 2 J = O

\ . . i . / M L i
V A 4 y

Since N > (n + 1), these equations do not yield the required A, (j = 1 to 4)
directly. But any three of the A7's can be expressed in terms of the remaining
one. Hence by solving for A1, A2, and A3 in terms of A4, we obtain

A1 = 2 - HA4

A2 = 8A4 - 1 (E2)

A3 = 2A4



The dual problem can now be written as:

Maximize i;(A1,A2,A3,A4)

VA1/ U 2 / VA3/ VA4/

= ( 1Q0 V"nA4 / 50 Y^" 1 /^o_\2A4 /3oo\A4

" U - H A 4 ; V s A 4 - I / V2A4/ V A 4 /

Since the maximization of v is equivalent to the maximization of In v, we will
maximize In v for convenience. Thus

In v = (2 - HA4) [In 100 - In (2 - HA4)] H- (8A4 - 1)

• [In 50 - In (8A4 - I)] + 2A4 [In 20 - In (2A4)]

+ A4 [In 300 - In (A4)]

Since In v is expressed as a function of A4 alone, the value of A4 that maxi-
mizes In v must be unique (because the primal problem has a unique solution).
The necessary condition for the maximum of In v gives

-^- (In v) = - H [ I n 100 - ln(2 - HA4)] + (2 - HA4) "
c/A4 2 — H A 4

+ 8 [In 50 - ln(8A4 - I)] + (8A4 - 1) ( - A
 8 J

+ 2 [In 20 - 111(2A4)] + 2 A / - ^ | - j

+ 1 [In 300 - In(A4)] + A4 ( - — ) = 0

V A 4 /
This gives after simplification

(2 - HA 4 ) " (100)"

" (8A4 - 1)8(2A4)
2 A4 " (50)8(20)2(3O0)

i.e.,

Q - HA 4 ) " = (IQQ)" =

(8A4 - 1)8(2A4)
2 A4 (50)8(20)2(300) l 3'



from which the value of A* can be obtained by using a trial-and-error process
as follows:

Value of Left-Hand Side of
Value of A? Eq. (E3)

2/11 = 0.182 0.0

° ' 1 5 (0.2)8(0.3)2(0.15) " 2 8 4

0 147 (Q-385)11 _
U i 4 / (0.175)8(0.294)2(0.147) " ZZ U

(0.39)11

0 1 4 6 (0.169)8(0.292)2(0.146) ~ 4 5 ° °

Thus we find that Aj - 0.147, and Eqs. (E2) give

Af = 2 - 11 Aj = 0.385

A2* = 8A? - 1 = 0.175

A* = 2A* = 0.294

The optimal value of the objective function is given by

, = / J O O _ \ 0 3 8 5 / _ 5 0 _ \ a i 7 S / _ 2 0 _ \ a 2 * / 300 \ 0 1 4 7

V * V0.385/ V0.175/ \ 0 - 2 9 4 / V0.147/

= 8.5 X 2.69 X 3.46 X 3.06 = 242

The optimum values of the design variables can be found from

U* = Af /* = (0.385) (242) = 92.2

U* = A2*/* = (0.175) (242) = 42.4 ( E

U* = A * / * = (0.294) (242) = 71.1

Ut = A4*/* = (0.147) (242) = 35.6

From Eqs. (E1) and (E4), we have

Uf = 100D* = 92.2



Ui = 5OD*2 = 42.4

« - ^ - 33-6

These equations can be solved to find the desired solution D* = 0.922 cm,
0* = 0.281 m3/s.

8.7 CONSTRAINED MINIMIZATION

Most engineering optimization problems are subject to constraints. If the ob-
jective function and all the constraints are expressible in the form of posyno-
mials, geometric programming can be used most conveniently to solve the
optimization problem. Let the constrained minimization problem be stated as:

Xx

X2

Find X = . ;

Vxn J

which minimizes the objective function

M) n

/(X) = S cOj n xf* (8.52)

and satisfies the constraints

Nk n

ft(X) = S ckj I I xTij S l , * = 1,2,. . . ,m (8.53)

where the coefficients CQ7 ( j = 1,2,. . .,N0) and c^ (fc = 1,2,. . .,m; j =
1,2,. . .,Nk) are positive numbers, the exponents aOij (i = 1,2,. . .,n;

j = 1,2,. . .,N0) and afay (k = 1,2,. . .,m; i = 1,2,. . .,n; j = 1,2,
. . . , Nk) are any real numbers, w indicates the total number of constraints,
N0 represents the number of terms in the objective function, and Â  denotes
the number of terms in the &th constraint. The design variables Jc1, X2, . . . , Xn

are assumed to take only positive values in Eqs. (8.52) and (8.53). The solu-
tion of the constrained minimization problem stated above is considered in the
next section.



8.8 SOLUTION OF A CONSTRAINED GEOMETRIC
PROGRAMMING PROBLEM

For simplicity of notation, let us denote the objective function as

M) n

X0 = So(X) = / (X) = S cOj II xf (8.54)
1 = 1 J J = I

The constraints given in Eq. (8.53) can be rewritten as

fk = < * [ ! - fo(X)] > 0, * = 1,2,. . .,m (8.55)

where ak, the signum Junction, is introduced for the &th constraint so that it
takes on the value +1 or —1, depending on whether gk (X) is < 1 or > 1,
respectively. The problem is to minimize the objective function, Eq. (8.54),
subject to the inequality constraints given by Eq. (8.55). This problem is called
the primal problem and can be replaced by an equivalent problem (known as
the dual problem) with linear constraints, which is often easier to solve. The
dual problem involves the maximization of the dual function, v(k), given by

m Nk / Nk \a^J

V(X) = n n P S x J (8.56)
k = 0 J= 1 \\kjl=\ )

subject to the normality and orthogonality conditions

M)
S X0,- = 1 (8.57)

m Nk

S S okakij\kj = 0, / = 1,2,. . .,n (8.58)
k = 0 j = 1

If the problem has zero degree of difficulty, the normality and orthogonality
conditions [Eqs. (8.57) and (8.58)] yield a unique solution for X* from which
the stationary value of the original objective function can be obtained as

m Nk / Nk \okhkj

/ •= ,0* = „(*•)= n n ( ^ s to) (8.59)
* = 0 y = l \ A ^ / = 1 /

If the function/(X) is known to possess a minimum, the stationary value/*
given by Eq. (8.59) will be the global minimum of/since, in this case, there
is a unique solution for X*.

The degree of difficulty of the problem (D) is defined as

D = N - n - 1 (8.60)



where Af denotes the total number of posynomial terms in the problem:

m

N = S Nk (8.61)
k = 0

If the problem has a positive degree of difficulty, the linear Eqs. (8.57) and
(8.58) can be used to express any (n + 1) of the X*/s in terms of the remaining
D of the Afc/s. By using these relations, v can be expressed as a function of
the D independent X^'s. Now the stationary points of v can be found by using
any of the unconstrained optimization techniques.

If calculus techniques are used, the first derivatives of the function v with
respect to the independent dual variables are set equal to zero. This results in
as many simultaneous nonlinear equations as there are degrees of difficulty
(i.e., Af — n — 1). The solution of these simultaneous nonlinear equations
yields the best values of the dual variables, X*. Hence this approach is occa-
sionally impractical due to the computations required. However, if the set of
nonlinear equations can be solved, geometric programming provides an elegant
approach.

Optimum Design Variables. For problems with a zero degree of difficulty, the
solution of X,* is unique. Once the optimum values of X^ are obtained, the
maximum of the dual function v* can be obtained from Eq. (8.59), which is
also the minimum of the primal function, / * . Once the optimum value of the
objective function/* = Jc* is known, the next step is to determine the values
of the design variables xf (i = 1,2,. . .,n). This can be achieved by solving
simultaneously the following equations:

cOj u (x*rij

&*j = Ag- ̂  t = 1 * , j = 1,2,. . .,Af0 (8.62)
X0

A l = "AT*- = ckj . J (xfT\ j = 1,2,. . .,Nk (8.63)

2 X*/ k = 1,2,. . .,m

8.9 PRIMAL AND DUAL PROGRAMS IN THE CASE OF
LESS-THAN INEQUALITIES

If the original problem has a zero degree of difficulty, the minimum of the
primal problem can be obtained by maximizing the corresponding dual func-
tion. Unfortunately, this cannot be done in the general case where there are
some greater than type of inequality constraints. However, if the problem has



all the constraints in the form of gk(X) < 1, the signum functions ok are all
equal to + 1, and the objective function go(X) will be a strictly convex function
of the transformed variables W1, W2, . . . , wn, where

JC. = e
Wi, i = 0,1,2,. . .,/i (8.64)

In this case, the following primal-dual relationship can be shown to be valid:

/ (X) > / * = * ; * > v(k) (8.65)

Table 8.2 gives the primal and the corresponding dual programs. The follow-
ing characteristics can be noted from this table.

1. The factors ckj appearing in the dual function v(X) are the coefficients of
the posynomials gk(X), k = 0,1,2,. . .,m.

2. The number of components in the vector X, is equal to the number of
terms involved in the posynomials g0, gu g2, . . • , gm- Associated with
every term in gk(X), there is a corresponding Akj.

3. Each factor (E^A1 \ki)
Xkj of v(X) comes from an inequality constraint

gk(X) < 1. No such factor appears from the primal function go(X) as
the normality condition forces Ef£ x Xq7 to be unity.

TABLE 8.2 Corresponding Primal and Dual Programs

Primal Program Dual Program

TS TM
Find X = { x} \ :

W

so that X12

S0(X) ^ / ( X ) - minimum F i n d * = | x ^ >

subject to the constraints

*• > ; K1

*} > ° X m 2

^i(x) ^ 1 so that
&(X) ^ ! « Afc / Nk v ^

: t KX) = n n ( ^ E xJ
Sm(X) < 1, ^ = O y-i \X^/=i /

-* maximum



Primal Program

with

M)

S0(X) = S c0jA
0XjA02j - - • <OnJ

7 = 1

Ni

g,(X) = S c^'W • • • W
7 = 1

N2

S2(X) = S c2y-4
21y^22y • • • 4 T

Nm

gm(X) = S cmj^
ljxT2J • • • <mnj

7 = 1

the exponents ^ are real numbers, and the
coefficients ckj are positive numbers.

Dual Program

subject to the constraints

X0, > 0

X11 > 0

Xw1 ^ 0

xm2 > o

K»m * o
No

,?, * -'
m N*

S S akih \kj = 0, I = 1,2,. . .,n
k=Oj=\

the factors ckj are positive, and the
coefficients akij are real numbers.

Terminology

g0 — f' ~ primal function
Jc1, Jc2, . . . , xn = primal variables
gk < 1 are primal constraints

(it = 1,2,. . .,m)

JC/ > 0, i = 1,2,. . .,« positive restrictions,
fl = number of primal variables
m = number of primal constraints
Af = Af0 + N1 + • • • + Nm = total number

of terms in the posynomials
N — n — 1 = degree of difficulty of the

problem

v = dual function
X01, X02, . . . , XmMn = dual variables

A7O

2 X0, = 1 is the normality constraint
7 = 1

m Nk

S S akij\kj = 0 i = 1,2,. . .,n are the
k = o y = i

orthogonality constraints

X^ > OJ = 1,2,...,Af,;

A: = 0,1,2,. . .,m

are nonnegativity restrictions
N = Af0 + Af1 + • • • + Nm

= number of dual variables
n + 1 number of dual constraints

TABLE 8.2 (Continued)



4. The coefficient matrix [akij] appearing in the orthogonality condition is
same as the exponent matrix appearing in the posynomials of the primal
program.

The following examples are considered to illustrate the method of solving
geometric programming problems with less-than inequality constraints.

Example 8.3: Zero-Degree-of-Difficulty Problem Suppose that the problem
considered in Example 8.1 is restated in the following manner. Minimize the
cost of constructing the open rectangular box subject to the constraint that a
maximum of 10 trips only are allowed for transporting the 80 m3 of grain.

SOLUTION The optimization problem can be stated as:

Find X = < X2 I so as to minimize

L x 3 J

/(X) = 2OJC1JC3 + 4OJC2JC3 + 8OJC1JC2

subject to

80 8
< 10 or < 1

XxX2X3 XiX2X3

Since n = 3 and Af = 4, this problem has zero degree of difficulty. As N0 =
3, Ni = 1, and m = 1, the dual problem can be stated as follows:

Find A. = to maximize

V x ny

1 Nk / Nk \XkJ

v(X) = n n № S Xkl)
* = 0 j=l \\kjl=l )

N0 = 3 / No = 3 \ X«J! Ni = \ / Ni = I v X U

= n (cf s O n № S X11)
= L S ( X o 1 + ̂ 2 + ̂ J L S ( X o 1 + ̂ 2 + ^ J
• [ S ( X o 1 + Xo2 + X ° 3 ) ] feXu) (Ei)



subject to the constraints

X0I + X02 + \)3 = 1

#01l\)l + ^012^)2 + ^013^)3 + ^111^11 = 0

#02l\)l + ^022^02 + ^023^03 + a\2\^\\ = 0

^03l\)l + ^032^02 + ^033^)3 + #131^11 = 0 (E2)

Xq, > 0, y = 1,2,3

X11 > 0

In this problem, C01 = 20, C02 = 40 , C03 = 80, C11 = 8, aou = 1, a02l = 0,

#031 = I 9 ^012 = 0 , <2022 = 1, «032 = 1 ? #013 = *> ^023 = 1» «033 = 0 , O111 =
— 1, ^121 = — 1, and <2131 = — 1. Hence Eqs. (E1) and (E2) become

[20 lX°T40 f02

V(I) = — (X0I + X02 + X03) — (X01 + X02 + X03) I

[80 f°V 8 \Xn

• [^(X01 +X0 2^X0 3)J ^ X 1 1 J (E3)
subject to

XOi + X02 + X03 = 1

X0I + X03 — X11 = 0 ,g s

X02 + X03 — X11 = 0

XOi + X02 — X11 = 0

X01 > 0, X02 > 0, X03 > 0, X n > 0

The four linear equations in Eq. (E4) yield the unique solution

\ * _ \ * _ \ * _ i \ * _ 2

N)I — A02 — ^ 3 — 3' A l l — 3

Thus the maximum value of v or the minimum value of X0 is given by

v* = x* = (60)1/3(120)1/3(240)1/3(8)2/3

= [(60)3]1/3(8)1/3(8)2/3 = (60)(8) = 480

The values of the design variables can be obtained by applying Eqs. (8.62)
and (8.63) as



C0, (X tr" ( x 2 * r ' ( x ? r '
*oi - *

X0

, _ 20(Xf)(X3*) _ x f x f
5 ~ 480 " 24 ( E s )

. * C02 ( x * r " ( x 2 * r 2 ( x 3 * r 2

Xo

, _ 40(Xl)Ot3*) _ x2*x3*
5 " 480 " ~VT (E f i )

, * C03 (x r r 1 3 ( x ? r 3 (x3*r33

X0

, _ 80(Xf)(X2*) _ xfx2*
5 " 480 ~ ~6~ ( E 7 )

^ l = e n ( * f r ' ( * 2 * r ' ( * 3 T 3 1

i = 8(xf)-'(x2*)-1(^3*)"1 = -Ar^ (E8)

Equations (E5) to (E8) give

v* — 1 v* — 1 v* — AX\ — Z, X 2 - I , X3 — 4

Example 8.4: One-Degree-of-Difficulty Problem

M i n i m i z e / = X1X2X3"
1 + 2Xf1X2

- 3X4 + 1Ox1X3

subject to

3Xf1X3X4"2 + 4x3x4 < 1

5X1X2 < 1

SOLUTION Here N0 = 3 , N1 = 2 , N2 = 1, JV = 6, n = 4 , m = 2 , and the
degree of difficulty of this problem is J V - n — 1 = 1. The dual problem can
be stated as follows:

m Nk / Nu \XkJ

Maximize v(k) = II II ^ S X J
*=o 7 = 1 \\kj i = \ )



subject to

N0

, ? > - '

m Nk

S S akij \kj = 0, i = 1,2,. . .,/i (E1)

Nk

S X^ > 0, A: = 1,2,. . .,m

As C0I = 1, C02 = 2, C03 = 10, C11 = 3 , C12 = 4 , C21 = 5, O011 = 1, a021 =

2, «031 = ~~1> «041 = 0, «012 = " I , «022 = ~ 3 , tfO32 = 0, ^0 4 2 = 1, Cl0n =
1, a023 = 0, «033 = 1> «043 = 0, « 1 U = - 1 , a12i = 0, am = 1, am = - 2 ,
«112 = 0, «122 = 0, a132 = 1, a142 = 1, a 2 U = 1, G221 = 1, O23X = 0, and ^241

= 0, Eqs. (E1) become

r -iXoi r -|Xo2

Maximize v(X) = I ̂ - (X01 + X02 + X03)J I ^ (X01 + X02 + X03)J

^ ( X 0 1 + X 0 2 + X03)J ^ (X11 +X 1 2 ) J

[ ~|̂ 12 / \ X21

S^ + H (S^)
subject to

\)1 "+" \)2 + ^03 = 1

«01l\)l + «012^)2 + «013^)3 + «111^11 + «112^12 + «211^21 = 0

«02l\)l "*" «022^)2 "*" «023^)3 + «121^11 "*" «122^12 "*" «221^21 ~ 0

«03l\)l + «032^)2 + «033^)3 + «131^11 + «132^12 + «231^21 = 0

«04l\)l + «042^02 + «043\)3 + «141^11 + «142^12 + «241^21 = 0

X11 + X12 > 0

X21 > 0

or
/ 1 \Xo1 / 2 X^2 /1O\X°3 f 3 lXn

r 4 iXl2

• ^ - (Xn + X12) (5)X2! (E2)
LAl2 J



subject to

\)\ + \)2 + \)3 = 1

\)1 ~~ \)2 + \ )3 ~" ^H + ^21 = 0

2X01 - 3X02 + X21 = 0 (E3)

~~XOi •+• X03 -h X 1 1 + X ] 2 = 0

X02 - 2 X 1 I -I- X12 = 0

X11 + X12 > 0

X21 > 0

Equations (E3) can be used to express any five of the X's in terms of the re-
maining one as follows: Equations (E3) can be rewritten as

\)2 + \)3 = 1 ~~ \)1 (E4)

\)2 ~ \)3 + ^H "" 2̂1 = 0̂1 (E5)

3X0 2 — X21 = 2X0 1 (E 6 )

^12 = ^01 "" \)3 ~ ^H (E7)

X12 = 2X11 — X02 (E8)

From Eqs. (E7) and (E8), we have

^12 = \)\ ~ \)3 ~ ^n = 2X11 — X02

3X11 — X02 + X03 = X01 (E9)

Adding Eqs. (E5) and (E9), we obtain

X21 = 4X11 - 2X01 (E10)

= 3X02 - 2X01 from Eq. (E6)

^ n = 4^02 (En)

Substitution of Eq. (E11) in Eq. (E8) gives

^12 = 2^)2 ~~ ^02 = 2^)2 (Ei2)

Equations (E11), (E12), and (E7) give

\ )3 = ^01 ~~ ^H ~" ^12 = \)\ ~ 4^02 ~" 2^)2 = \)\ ~ 4"X02 (E 13)



By substituting for X03, Eq. (E4) gives

X02 = 8X01 - 4 (E14)

Using this relation for X02, the expressions for X03, X11, X12, and X21 can be
obtained as

\ )3 = \ )1 ~~ 4^02 = ~9X0 1 + 5 (E15)

^ n = 4^02 = 6X01 — 3 (E16)

^12 = 2^)2 = 4X01 — 2 (E17)

X21 = 4X11 - 2X01 = 22X01 - 12 (E18)

Thus the objective function in Eq. (E2) can be stated in terms of X01 as

(
j \ Xoi / j \ 8Xoi-4 / ^ Q \ 5-9Xoi

xj W^) U^xJ
/30X0, - 15\6X°'-3 /40X 0 1 -20 \ 4 X ° ' - 2

 2

V 6X01 - 3 J \ 4X01 - 2 / l '

_ / 1 X^1 / 1 \ 8 X o ' " 4 / 10 \5~9Xo1

" 1VX0T/ U\ ) . - 2 / \5 - 9X01/

* f5^^°'~^ (KV^ 0 '~^ /c\22Xoi - 12

/ , \ Xoi / , \ 8X01 - 4 / 1 Q v 5-9X 0 .

= (^r) [JT1-^) [T-^r) (5)3^-17(2)4X01-2

VX01/ \4Xoi - 2 / \ 5 ~ 9X01/

To find the maximum of f, we set the derivative of v with respect to X01 equal
to zero. To simplify the calculations, we set d (In V)IdK0x = 0 and find the
value of X01. Then the values of X02, X03, Xf1, Xf2, and X21 can be found from
Eqs. (E14) to (E18). Once the dual variables (X|) are known, Eqs. (8.62) and
(8.63) can be used to find the optimum values of the design variables as in
Example 8.3.

8.10 GEOMETRIC PROGRAMMING WITH MIXED
INEQUALITY CONSTRAINTS

In this case the geometric programming problem contains at least one signum
function with a value of ak = —1 among k = 1,2,. . .,ra. (Note that a0 = +1
corresponds to the objective function.) Here no general statement can be made
about the convexity or concavity of the constraint set. However, since the
objective function is continuous and is bounded below by zero, it must have a



constrained minimum provided that there exist points satisfying the con-
straints.

Example 8.5

M i n i m i z e / = JC1JC2JC^1 + 2JCf1X2
-3JC4 + 1OJC1X3

subject to

3JC1JC3
-1Jc4 4- 4JC3

-1Jc4"
1 > 1

5Jc1JC2 < 1

SOLUTION In this problem, m = 2, N0 = 3, N1 = 2, N2 = 1, N = 6, n =
4, and the degree of difficulty is 1. The signum functions are CT0 = 1,CT1 =
— 1, and CT2 = 1. The dual objective function can be stated, using Eq. (8.56),
as follows:

2 Nk i Nk xa^J

Maximize v (k) = II II P S X J

* = o ;=i \\kji=i )

^ (X01 +X02 + X03)J ^ (X01 + X02 + X03)J

^ ( X 0 1 + ^ + X03)J

• [^(X11 + X 1 2 )P]^(X 1 1 + x12)l"X'Y^ X21)"
2'

LX11 J LX12 J \A21 /
VX01/ VX0 2/ VX03/ L X11 J
. [4(X11 + X 1 2 ) ] - X " ,

L X12 J ^ (E1)

The constraints are given by (see Table 8.2):

/Vo

, ? , * • " '

m Nk

S S cfkakij\kj = 0, . i = 1,2,. . .,n

Nit

S Xfo- > 0, A: = 1,2,. . .,m
7=1



i.e.

^0^01l\)l + °(A)12\)2 + ^0^013^)3 + ^ l^ l lA l l + ^1^112^12 + ^2^211^21 = 0

a0^02l\)l "+" <J0^022\)2 + ^0^023^)3 "̂ " °"lfl121^11 "̂ " (J1(^122^12 + ^2^221^21 = 0

^0^03l\)l + <*(A)32\)2 + ^0^033^)3 + ^1^131^11 + ^1^132^12 + °"2«231^21 = 0

^0^04l\)l + ^0^042^)2 + ^0^043^)3 + °"l^l41^11 + ^1^142^12 + ^2^241^21 = 0

X11 + X12 > 0

X21 > 0

i.e.

Xoi + XQ2 + XQ3 = 1

Xoi ~~ XQ2 + XQ3 "X 1 1 +X 2 1 = 0

2X01 - 3X02 + X21 = O (E2)

-X0 1 + X03 H- X11 + X12 = O

\)2 ~" 2X11 + X12 = O

X11 + X12 > O

X21 > O

Since Eqs. (E2) are same as Eqs. (E3) of the preceding example, the equality
constraints can be used to express X02, X03, X11, X12, and X21 in terms of X01 as

X02 = 8X01 - 4

X03 = -9X01 + 5

X11 = 6X01 - 3 (E3)

1̂2 = 4X01 — 2

X21 = 22X01 - 12

By using Eqs. (E3), the dual objective function of Eq. (E1) can be expressed
as



xj U^i) (-9X01 + 5)
F 3 ( I O X 0 1 - S ) I ^ 1 + 3 F 4 ( I O X 0 1 - 5 ) ] - 4 X o i + 2

2

L 6X01 - 3 J L 4X01 - 2 J w

. /^22Xoi-12

(
' 1 \Xoi / t \ 8Xoi-4 / i r | \5-9Xoi

X0J Ux0 1 - 2V1 \5-9\oJ (5) (2)

To maximize v, set t/ (In V)ZdX01 = O and find XQI- Once XQI is known, X^ can
be obtained from Eqs. (E3) and the optimum design variables from Eqs. (8.62)
and (8.63).

8.11 COMPLEMENTARY GEOMETRIC PROGRAMMING

Avriel and Williams [8.4] extended the method of geometric programming to
include any rational function of posynomial terms and called the method com-
plementary geometric programming.1' The case in which some terms may be
negative will then become a special case of complementary geometric pro-
gramming. While geometric programming problems have the remarkable prop-
erty that every constrained local minimum is also a global minimum, no such
claim can generally be made for complementary geometric programming prob-
lems. However, in many practical situations, it is sufficient to find a local
minimum.

The algorithm for solving complementary geometric programming problems
consists of successively approximating rational functions of posynomial terms
by posynomials. Thus solving a complementary geometric programming prob-
lem by this algorithm involves the solution of a sequence of ordinary geometric
programming problems. It has been proved that the algorithm produces a se-
quence whose limit is a local minimum of the complementary geometric pro-
gramming problem (except in some pathological cases).

Let the complementary geometric programming problem be stated as fol-
lows:

Minimize Ro(K)
subject to

Rk(X) < 1, k = 1,2,. . . ,m

fThe application of geometric programming to problems involving generalized polynomial func-
tions was presented by Passy and Wilde [8.2].



where

*«-£%:£%• *-̂ -2 - <866>
where /4* (X), B* (X), Q(X) , and D* (X) are posynomials in X and possibly
some of them may be absent. We assume that /Jo(X) > 0 for all feasible X.
This assumption can always be satisfied by adding, if necessary, a sufficiently
large constant to R0(X).

To solve the problem stated in Eq. (8.66), we introduce a new variable X0

> 0, constrained to satisfy the relation x0 > R0(X) [i.e., R0(X)Ix0 < 1], so
that the problem can be restated as:

Minimize X0 (8.67)

subject to

^ H H >• * - • • " • • • • - *•«>

where

A0(X) = R0(X)9 C0(X) = X0, B0(X) = 0, and D0(X) = 0

It is to be noted that the constraints have meaning only if Q(X) — D^(X) has
a constant sign throughout the feasible region. Thus if Q(X) — D^(X) is pos-
itive for some feasible X, it must be positive for all other feasible X. Depend-
ing on the positive or negative nature of the term Q(X) — Dk(X), Eq. (8.68)
can be rewritten as

Ak(X) + Dk(X) <

Bk(X) + Q(X) "

or (8.69)

Bk(X) + Q(X) <

Ak(X) + Dk(X) ~

Thus any complementary geometric programming problem (CGP) can be stated
in standard form as:

Minimize X0 (8.70)

subject to

^ g < 1 , k=\,2,...,m (8.71)



Xx

X = Jc2 > O ( 8 . 7 2 )

Vxn J

where P* (X) and G* (X) are posynomials of the form

n

Pk(X) = S ckj n (X1)^ = S^-(X) (8.73)
j i = 0 j

n

&(X) = 2 4/ n (Xi)
b* = S ^7(X) (8.74)

j i = o j

Solution Procedure

1. Approximate each of the posynomials G(X)1 by a posynomial term. Then
all the constraints in Eq. (8.71) can be expressed as a posynomial to be
less than or equal to 1. This follows because a posynomial divided by a
posynomial term is again a posynomial. Thus with this approximation,
the problem reduces to an ordinary geometric programming problem. To
approximate Q(X) by a single-term posynomial, we choose any X > 0
and let

Uj = qj(X) (8.75)

A, - | §

where #, denotes theyth term of the posynomial G(X). Thus we obtain,
by using the arithmetic-geometric inequality, Eq. (8.22),

[a /Xx -|<0(X)/G(X)
G(X) = S ^(X) > n P ^ G(X) (8.77)

By using Eq. (8.74), the inequality (8.77) can be restated as

/ \ Lj[bijqj(X)/Q(X)]

G(X) > G(X9X) = G(X) n M (8.78)
' YS/

1TlIe subscript k is removed for Q(X) for simplicity.



where the equality sign holds true if xt = xt. We can take Q(X9X) as an
approximation for Q(X) at X.

2. At any feasible point X(1), replace Qk(X) in Eq. (8.71) by their approx-
imations <2fc(X,X(1)), and solve the resulting ordinary geometric pro-
gramming problem to obtain the next point X(2).

3. By continuing in this way, we generate a sequence {X(a)}, where X(a +1}

is an optimal solution for the ath ordinary geometric programming prob-
lem (OGPJ:

Minimize X0

subject to

X= x2 > O (8.79)

Vxn J

It has been proved [8.4] that under certain mild restrictions, the sequence
of points {X(a)} converges to a local minimum of the complementary
geometric programming problem.

Degree of Difficulty. The degree of difficulty of a complementary geometric
programming problem (CGP) is also defined as:

degree of difficulty = N — n — 1

where Af indicates the total number of terms appearing in the numerators of
Eq. (8.71). The relation between the degree of difficulty of a CGP and that of
the OGPa, the approximating ordinary geometric program, is important. The
degree of difficulty of a CGP is always equal to that of the approximating
OGPa, solved at each iteration. Thus a CGP with zero degree of difficulty and
an arbitrary number of negative terms can be solved by a series of solutions to
square systems of linear equations. If the CGP has one degree of difficulty, at
each iteration we solve an OGP with one degree of difficulty, and so on. The
degree of difficulty is independent of the choice of X(a) and is fixed throughout
the iterations. The following example is considered to illustrate the procedure
of complementary geometric programming.



Example 8.6

Minimize Jc1

subject to

-4x2
x + 4JC2 < 1

JC1 + X2 >: 1

Jc1 > 0 , Jc2 > 0

SOLUTION This problem can be stated as a complementary geometric pro-
gramming problem as:

Minimize JC1 (E1)

subject to

1 * ' _, ^ 1 (E3)
1 H- JC! JC2

Xx > 0 (E4)

JC2 > 0 (E 5 )

Since there are two variables (Jc1 and JC2) and three posynomial terms [one
term in the objective function and one term each in the numerators of the
constraint Eqs. (E2) and (E3)], the degree of difficulty of the CGP is zero. If
we denote the denominators of Eqs. (E2) and (E3) as

G1(X) = 1 + Ax\

Q2(X) = 1 +JCf1Jc2

they can each be approximated by a single-term posynomial with the help of
Eq. (8.78) as:

/x X8^1+4*?)
Q1(X9X) = (1 + 4s?) ( ^ j

/ r \ /r X-^(Si+Sz) / y W^i+*2)



Let us start the iterative process from the point X ( l ) = J . [, which can be seen

to be feasible. By taking X = X(1), we obtain

e,(x, x(i)> = 5*f5

&(x, x<->) = 2*r1/2*f
and we formulate the first ordinary geometric programming problem (OGP1)
as:

Minimize Jc1

subject to

4 Y-8/5 < i
5 * 1 X2 ^ 1

K1 / 2*2~1 / 2 ^ i
Jc1 > O
Jc2 > O

Since this (OGP1) is a geometric programming problem with zero degree of
difficulty, its solution can be found by solving a square system of linear equa-
tions, namely

X1 = 1
O I

^l ~ 5 ^2 ~ 2^3 = O

A2 2 X3 == O

The solution is Xf = 1, X2 = ^ , X* = |f. By substituting this solution into
the dual objective function, we obtain

v(k*) = (|)5/13 ( i ) l o m = 0.5385

From the duality relations, we get

Jc1 ^ 0.5385 and Jc2 = f (Jc1)
8715 = 0.4643

Thus the optimal solution of OGP1 is given by

°pt [o.4643J



The optimal values of the variables for the CGP are JC* = 0.5 and x* = 0.5.
It can be seen that in three iterations, the solution of the approximating geo-
metric programming problems OGPa is correct to four significant figures.

8.12 APPLICATIONS OF GEOMETRIC PROGRAMMING

Example 8.7: Determination of Optimum Machining Conditions [8.9,8.10]
Geometric programming has been applied for the determination of optimum
cutting speed and feed which minimize the unit cost of a turning operation.

Formulation as a Zero-Degree-of-Difficulty Problem
The total cost of turning per piece is given by

f0 (X) = machining cost + tooling cost + handling cost

= Kmtm + Y (Kmtc + Kt) + Kmth (E1)

where Km is the cost of operating time ($/min), Kt the tool cost ($/cutting
edge), tm the machining time per piece (min) = TTDL/(12VF), T the tool life
(min/cutting edge) = (a/VFh)l/c, tc the tool changing time (minutes/work-
piece), th the handling time (min/workpiece), D the diameter of the workpiece
(in), L the axial length of the workpiece (in.), V the cutting speed (ft/min), F
the feed (in./revolution), a, b, and c are constants in tool life equation, and

- C J - B
Since the constant term will not affect the minimization, the objective function

Iteration
Number,

a

0
1
2
3

X o p t

Xx

1.0
0.5385
0.5019
0.5000

X2

1.0
0.4643
0.5007
0.5000

Next we choose X(2) to be the optimal solution of OGP1 [i.e., X ^ ] and
approximate Qx and Q2 about this point, solve OGP2, and so on. The sequence
of optimal solutions of OGPa as generated by the iterative procedure is shown
below.



can be taken as

/ (X) = C 0 1 F- 1 F" 1 + C02V
Vc- lFb/c~l (E2)

where

KnTDL 7rDL(Kmtc + Kt)
= —12~~ = — 12 aVc

If the maximum feed allowable on the lathe is Fmax, we have the constraint

C11F < 1 (E4)

where

C11 = F m ' x (E5)

Since the total number of terms is three and the number of variables is two,
the degree of difficulty of the problem is zero. By using the data

Km = 0.10, Kt = 0.50, tc = 0.5, th = 2.0, D = 6.0,

L = 8.0, a = 140.0, b = 0.29, c = 0.25, Fmax = 0.005

the solution of the problem [minimize / given in Eq. (E2) subject to the con-
straint (E4)] can be obtained as

/ * = $1.03 per piece, F* = 323 ft/min, F * = 0.005 in./rev

Formulation as a One-Degree-of-Difficulty Problem
If the maximum horsepower available on the lathe is given by Pmax, the power
required for machining should be less than Pmax. Since the power required for
machining can be expressed as ax V

bxFc\ where Ci1, bu and C1 are constants,
this constraint can be stated as follows:

C2{V
bxFcx < 1 (E6)

where

C21 = ^ 1 P " 1 , (E7)

If the problem is to minimize/given by Eq. (E2) subject to the constraints (E4)
and (E6), it will have one degree of difficulty. By taking Pmax = 2.0 and the



values Of(Z1, bx, and C1 as 3.58, 0.91, and 0.78, respectively, in addition to
the previous data, the following result can be obtained:

/ * = $1.05 per piece, F* = 290.0 ft/min, F * = 0.005 in./rev

Formulation as a Two-Degree-of-Difficulty Problem
If a constraint on the surface finish is included as

a2V*Fn < 5max

where a2, b2, and C2 are constants and Smax is the maximum permissible surface
roughness in microinches, we can restate this restriction as

C31 V
b2F^ < 1 (E8)

where

C3I = O 2 Sj x (E9)

If the constraint (E8) is also included, the problem will have a degree of
difficulty two. By taking a2 = 1.36 X 108, b2 = - 1 . 5 2 , C2 = 1.004, Smax =
100 ptin., Fmax = 0.01, and Pmax = 2.0 in addition to the previous data, we
obtain the following result:

/ * = $1.11 per piece, F* = 311 ft/min, F * = 0.0046 in./rev

Example 8.8: Design of a Hydraulic Cylinder [8.11] The minimum volume
design of a hydraulic cylinder (subject to internal pressure) is considered by
taking the piston diameter (d), force ( / ) , hydraulic pressure (/?), stress (s),
and the cylinder wall thickness (t) as design variables. The following con-
straints are considered:

Minimum force required is F, that is,

f = p?f>F (E1)

Hoop stress induced should be less than 5, that is,

s = Pft * S (E2)

Side constraints:

d + It < D (E3)



p < P (E4)

t ^ T (E5)

where D is the maximum outside diameter permissible, P the maximum pres-
sure of the hydraulic system and T the minimum cylinder wall thickness re-
quired. Equations (E1) to (E5) can be stated in normalized form as

-Fp-'d'2 < 1

\S~xpdTx < 1

D~xd + 2D~lt < 1

P~lp < 1

Tt'1 < 1

The volume of the cylinder per unit length (objective) to be minimized is given
by irt(d + 0-

Example 8.9: Design of a Cantilever Beam Formulate the problem of de-
termining the cross-sectional dimensions of the cantilever beam shown in Fig.
8.2 for minimum weight. The maximum permissible bending stress is oy.

SOLUTION The width and depth of the beam are considered as design vari-
ables. The objective function (weight) is given by

/(X) = P M 2 (Ei)

where p is the weight density and / is the length of the beam. The maximum
stress induced at the fixed end is given by

Mc x2 1 6Pl
o = —= Pl^ i 3 = — (E2)

/ 2 12 X1X2 X1X2

Figure 8.2 Cantilever beam of rectangular cross section.



and the constraint becomes

— Xf1X2"
2 < 1 (E3)

Example 8.10: Design of a Cone Clutch [8.23] Find the minimum volume
design of the cone clutch shown in Fig. 1.18 such that it can transmit a spec-
ified minimum torque.

SOLUTION By selecting the outer and inner radii of the cone, Ri and R2, as
design variables, the objective function can be expressed as

/(R19R2) = I Th(Ri + R1R2 + R\) (E1)

where the axial thickness, h, is given by

* = ^ ^ (E2)

tan a

Equations (E1) and (E2) yield

/(RuR2) = *,(*? - R3
2) (E3)

where

3 tan a

The axial force applied (F) and the torque developed (T) are given by [8.37]

S r*R\ ^ j

p dA sin a = \ p ^ sin a = irp(R\ - RJ) (E5)
J/?2 sin a

T= \rjpdA= f tf 2*L dr = £&-(fi - Sfr (E6)
J J/?2 sin a 3 sin a

where p is the pressure, / t h e coefficient of friction, and A the area of contact.
Substitution ofp from Eq. (E5) into (E6) leads to

_ Ic2(Rj + R1R2 + Rj)
T ~ R^R2

 ( E ? )

where

IF/



Since kx is a constant, the objective function can be taken a s / = R] — Rl. The
minimum torque to be transmitted is assumed to be 5k2. In addition, the outer
radius R} is assumed to be equal to at least twice the inner radius R2. Thus the
optimization problem becomes:

Minimize/(Ri9R2) = R] - R3
2

subject to

I -

This problem has been solved using complementary geometric programming
[8.23] and the solution was found iteratively as shown in Table 8.3. Thus the
final solution is taken as Rf = 4.2874, /?2* = 2.1437, and/* = 68.916.

Example 8.11: Design of a Helical Spring Formulate the problem of mini-
mum weight design of a helical spring under axial load as a geometric pro-
gramming problem. Consider constraints on the shear stress, natural fre-
quency, and buckling of the spring.

SOLUTION By selecting the mean diameter of the coil and the diameter of
the wire as the design variables, the design vector is given by

- B - C )

The objective function (weight) of the helical spring can be expressed as

/(X) = — (TrD)P (n + Q) (E2)

where n is the number of active turns, Q the number of inactive turns, and p
the weight density of the spring. If the deflection of the spring is 5, we have

x SPC3H Gdb
6 = -Gd- ° f " = SP^ (Ed

where G is the shear modulus, P the axial load on the spring, and C the spring
index (C = Did). Substitution of Eq. (E3) into (E2) gives



Solution of
OGP

JC1 = 162.5
X2 = 5.0
Jc3 = 2.5

Jc1 = 82.2
Jc2 = 4.53
Jc3 = 2.265

Jc1 = 68.916
Jc2 = 4.2874
Jc3 = 2.1437

Ordinary Geometric Programming
Problem

Minimize JCJJC2JC3

subject to
0.507JC1-

0597JC^3-
1 2I < 1

1.667(JC2-
1 + JC3"

1) < 1

Minimize JCJJC2JC°

subject to

0.744jcr0-912Jc|jc3-°-2635 < 1
3.05(JC2-

04V0-571 + X2iA3x°3
429) < 1

2JC2-
1Jc3 < 1

Minimize JC]JC°JC°

subject to

0.687JC1-
0^876JC2V

0-372 ^ 1
1.924XV0429JC3-

0-571 +

1.924JcV1 -49V429 ^ 1
2JC2-

1Jc3 < 1

Starting
Design

xx = R0 = 40
x2 = R, = 3
X3 = R2 = 3

Jc1 = R0 = 162.5
X2 = R1 = 5.0
X3= R2 = 2.5

X1 = R0 = 82.2
X2= R1 = 4.53
X3 = R2 = 2.265

Iteration
Number

1

2

3

TABLE 8.3 Results for Example 8.10



If the maximum shear stress in the spring (r) is limited to rmax, the stress
constraint can be expressed as

SKPC SKPC
r = —jT ^ rmax or —2 < 1 (E5)

wdz Trd rmax

where K denotes the stress concentration factor given by

K * -^T5 (E6)

The use of Eq. (E6) in (E5) results in

16P Dm

~ZT~ -^nU S 1 (E7)
" ' m a x "

To avoid fatigue failure, the natural frequency of the spring (/„) is to be re-
stricted to be greater than {fn)m\n. The natural frequency of the spring is given
by

f - ^ (G§\'2 (E)

where g is the acceleration due to gravity. Using g = 9.81 m/s2, G = 8.56 X
1010 N/m2, and (/n)min = 13, Eq. (E8) becomes

mfn)min8Gd3 ^
288,80OP D ~ K 9>

Similarly, in order to avoid buckling, the free length of the spring is to be
limited as

Using the relations

*' " Wi
L = nd(l+ Z) (E12)



and Z = 0.4, Eq. (E10) can be expressed as

0 . 0 5 2 7 ^ ) ^ < 1 (E13)

It can be seen that the problem given by the objective function of Eq. (E4) and
constraints of Eqs. (E7), (E9), and (E13) is a geometric programming problem.

Example 8.12: Design of a Lightly Loaded Bearing [8.29] A lightly loaded
bearing is to be designed to minimize a linear combination of frictional mo-
ment and angle of twist of the shaft while carrying a load of 1000 Ib. The
angular velocity of the shaft is to be greater than 100 rad/s.

SOLUTION

Formulation as a Zero-Degree-of-Difficulty Problem
The frictional moment of the bearing (M) and the angle of twist of the shaft
(</>) are given by

M = -^L= ^fL (E1)
Vl - n2 c

* - % <E->

where /x is the viscosity of the lubricant, n the eccentricity ratio (= e/c), e the
eccentricity of the journal relative to the bearing, c the radial clearance, Q the
angular velocity of the shaft, R the radius of the journal, L the half-length of
the bearing, Se the shear stress, / the length between the driving point and the
rotating mass, and G the shear modulus. The load on each bearing (W) is given
by

W= c f i ^ 1 ^ ' 1 ^ (E3)

For the data W = 1000 Ib, clR = 0 .0015, n = 0 .9 , / = 10 in. , Se = 30,000
psi, /x = 10~6 lb-s/in2, and G=Hx 106 psi, the objective function and the
constraint reduce to

/(R9L) = aM + bct> = 0.03SQR2L + 0.025/?"l (E4)

QZr1L3 = 11.6 (E5)

Q > 100 (E6)

where a and b are constants assumed to be a = b = 1. Using the solution of



Eq. (E5) gives

Q = \\.6RL~3 (E7)

the optimization problem can be stated as

Minimize f(R,L) = 0A5R3L~2 + 0.025/T1 (E8)

subject to

8.62/T1L3 < 1 (E9)

The solution of this zero-degree-of-difficulty problem can be determined as R*
= 0.212 in., L* = 0.291 in., and/* = 0.17.

Formulation as a One-Degree-of-Difficulty Problem
By considering the objective function as a linear combination of the frictional
moment (M), the angle of twist of the shaft (</>), and the temperature rise of
the oil (T), we have

f=aM + b<t> + cT (E10)

where a, b, and c are constants. The temperature rise of the oil in the bearing
is given by

T = 0.045 fR (E11)
cln V(I - nz)

By assuming that 1 in.-Ib of frictional moment in bearing is equal to 0.0025
rad of angle of twist, which, in turn, is equivalent to 1°F rise in temperature,
the constants a, b, and c can be determined. By using Eq. (E7), the optimi-
zation problem can be stated as

Minimize /(/?,L) = OMR3L'2 + 10/T1 + 0.592RL'3 (E12)

subject to

8.62/T1L3 < 1 (E13)

The solution of this one-degree-of-difficulty problem can be found as R* =
1.29, L* = 0.53, and/* = 16.2.

Example 8.13: Design of a Two-Bar Truss [8.33] The two-bar truss shown
in Fig. 8.3 is subjected to a vertical load 2P and is to be designed for minimum
weight. The members have a tubular section with mean diameter d and wall



Figure 8.3 Two-bar truss under load.

thickness t and the maximum permissible stress in each member (a0) is equal
to 60,000 psi. Determine the values of h and d using geometric programming
for the following data: P = 33,000 Ib, t = 0.1 in., b = 30 in., a0 = 60,000
psi, and p (density) = 0 . 3 lb/in3.

SOLUTION The objective function is given by

f(d,h) = Ip-K(It y/b2 + h2

= 2 (0 .3 )TTJ(0 .1 )V900 + h2 = OASSd V900 + h2 (E1)

The stress constraint can be expressed as

P V900 + h2

izdt h

or

or

V900 + h2

US—^- ^ 1 (E2)

Section A-A

A

A

A

A

h

b b

d



It can be seen that the functions in Eqs. (E1) and (E2) are not posy normals,

due to the presence of the term N/900 + h2, The functions can be converted to

posynomials by introducing a new variable y as

y = N/900 + h2 or y2 = 900 + h2

and a new constraint as

900 + h2

2 ^ 1 (E3)

Thus the optimization problem can be stated, with X1 = y, x2 = h, and JC3 =
d as design variables, as:

Minimize / = 0 . 1 SSyd (E4)

subject to

USyh~ld-1 < 1 (E5)

90Oy"2 + y~2h2 < 1 (E6)

For this zero-degree-of-difficulty problem, the associated dual problem can be
stated as

Maximize v(K0I,Xn,\2\9X22)

. (o^\ t a №Y?»r(«\\, + X z 2 ) t e . t e (E?1

\ N)I / \ An / \A2i/ \A22/

subject to

X01 = 1 (E8)

\)i "*" ^ n ~" ^X2I ~ 2X22 = 0 (E9)
-X 1 1 + 2X22 = 0 (E1 0)

X01 " X11 = 0 (E1 1)

The solution of Eqs. (E8) to (E1 1) gives XQ1 = 1, Xf1 = 1, X21 = 5, and X22 =
\. Thus the maximum value of v and the minimum value of/is given by

,. = (^)\,75),(^(_Lyv5+0,,s^ = 1,8=/.



The optimum values of JC, can be found from Eqs. (8.62) and (8.63):

_ 0.1SSy*d*
~ 19^8

\ = 90Oy*-2

\ = y*~2h*2

These equations give the solution: y* = 42.426, h* = 30 in., and d* = 2.475
in.

Example 8.14: Design of a Four-Bar Mechanism [8.24] Find the link
lengths of the four-bar linkage shown in Fig. 8.4 for minimum structural error.

SOLUTION Let a, b, c, and d denote the link lengths, 6 the input angle, and
</> the output angle of the mechanism. The loop closure equation of the linkage
can be expressed as

lad cos 6 - led cos <t> + (a2 - b2 + c2 + d2)

- lac cos(0 -<l>)=0 (E1)

In function-generating linkages, the value of 0 generated by the mechanism is
made equal to the desired value, <j>d, only at some values of 6. These are known
as precision points. In general, for arbitrary values of the link lengths, the
actual output angle (</>,) generated for a particular input angle (0t) involves
some error (e,) compared to the desired value (</><#), so that

</>/ = <t>di + C/ (E2)

where e,- is called the structural error at O1. By substituting Eq. (E2) into (E1)
and assuming that sin e,- ~ e, and cos C1- « 1 for small values of E1-, we obtain

Figure 8.4 Four-bar linkage.



_ K + lad cos O1 - led cos 0̂ - - lac cos 0, cos(</>^ - 0,)
£/ ~ - 2 a c s i n ( ^ - 0/) - 2cJ sin ^ s )

where

K = a2 - b2 + c2 + d2 (E4)

The objective function for minimization is taken as the sum of squares of struc-
tural error at a number of precision or design positions, so that

n

f = S c? (E5)
/= 1

where n denotes the total number of precision points considered. Note that the
error C1- is minimized when / i s minimized (C1- will not be zero, usually).

For simplicity, we assume that a « d and that the error e( is zero at 0O.
Thus C0 = 0 at O1 = O0, and Eq. (E3) yields

K = led cos (j>di H- lac cos O0 cos(0^o — 0o) — lad cos O0 (E6)

In view of the assumption a « d, we impose the constraint as (for conve-
nience)

7 '- '
where any larger number can be used in place of 3. Thus the objective function
for minimization can be expressed as

Y <z2(cos 0t — cos O0)
2 — lac(cos O1 — cos 0O) (cos 4>dt ~ c o s 0do)

/= i c2 sin2 ^

(E8)

Usually, one of the link lengths is taken as unity. By selecting a and c as the
design variables, the normality and orthogonality conditions can be written as

Af + A2* = 1 (E9)

2Af + A2* = 0 (E10)

2Af + 0.5A2* + A3* = 0 (E11)

These equations yield the solution Af = — 1, A* = 2, and A* = 1, and the
maximum value of the dual function is given by



( \ A* / \ A2 / \ A3

S) (S) (S)
where C1, C2, and C3 denote the coefficients of the posynomial terms in Eqs.
(E7) and (E8).

For numerical computation, the following data are considered:

Precision point, i 1 2 3 4 5 6

Input, B1 (deg) 0 10 20 30 40 45

Desired output, <j>di (deg) 30 38 47 58 71 86

By selecting the precision point 4 as the point where the structural error is zero
(0O = 30°, (^0 = 58°), Eq. (E8) gives

/ = 0 . 1 5 6 3 ^ - ^ (E13)

subject to

Noting that C1 = 0.1563, C2 = 0.76, and C3 = 3/d, Eq. (E12) gives

Noting that

^4=(-2-?y-»=2-¥
-0.76 5 = - ^ 2 ) = - * * *

cd d
and using a = 1, we find that c* = 0.41 and d* = 3.0. In addition, Eqs. (E6)
and (E4) yield

a2 - b2 + c2 + d2

= 2cd cos (t>dQ + 2ac cos O0 cos((j)d0 - O0) - lad cos O0

or ft* = 3.662. Thus the optimal link dimensions are given by a* = 1, b* =
3.662, c* = 0.41, and d* = 3.0.
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REVIEW QUESTIONS

8.1 State whether each of the following functions is a polynomial, posyno-
mial, or both.
(a) / = 4 - x] + 6Jc1Jt2 + 3x1

(b) / = 4 + 2x] + 5JC1Jc2 + Jc2
1

(c) / = 4 + 2JĈJC2-
1 + 3JC2"

4 + 5JCf1JcI

8.2 Answer true or false.
(a) The optimum values of the design variables are to be known before

finding the optimum value of the objective function in geometric
programming.

(b) Af denotes the relative contribution of the jth term to the optimum
value of the objective function.

(c) There are as many orthogonality conditions as there are design vari-
ables in a geometric programming problem.

(d) If/is the primal and v is the dual, / < v.
(e) The degree of difficulty of a complementary geometric programming

problem is given by (N — n — 1), where n denotes the number of
design variables and Af represents the total number of terms appear-
ing in the numerators of the rational functions involved.

(f) In a geometric programming problem, there are no restrictions on
the number of design variables and the number of posynomial terms.

8.3 How is the degree of difficulty defined for a constrained geometric pro-
gramming problem?

8.4 What is arithmetic-geometric inequality?

8.5 What is normality condition in a geometric programming problem?

8.6 Define a complementary geometric programming problem.



PROBLEMS

Using arithmetic mean-geometric mean inequality, obtain a lower bound v for
each function [/Qc) > v, where v is a constant].

8.1 / 0 0 = ^ + 2 , - 3 + 4 ^

8.2 /(jc) = 1 + JC + - + - j

8.3 /(JC) = jx~3 + JC2 + 2x

8.4 An open cylindrical vessel is to be constructed to transport 80 m3 of
grain from a warehouse to a factory. The sheet metal used for the bot-
tom and sides cost $80 and $10 per square meter, respectively. If it
costs $1 for each round trip of the vessel, find the dimensions of the
vessel for minimizing the transportation cost. Assume that the vessel
has no salvage upon completion of the operation.

8.5 Find the solution of the problem stated in Problem 8.4 by assuming that
the sides cost $20 per square meter, instead of $10.

8.6 Solve the problem stated in Problem 8.4 if only 10 trips are allowed for
transporting the 80 m3 of grain.

8.7 An automobile manufacturer needs to allocate a maximum sum of $2.5
XlO6 between the development of two different car models. The profit
expected from both the models is given by JC{ 5Jc2, where JC, denotes the
money allocated to model i (i = 1,2). Since the success of each model
helps the other, the amount allocated to the first model should not ex-
ceed four times the amount allocated to the second model. Determine
the amounts to be allocated to the two models to maximize the profit
expected. {Hint: Minimize the inverse of the profit expected.)

8.8 Write the dual of the heat exchanger design problem stated in Problem
1.12.

8.9 Minimize the following function:

/ (X ) = JC1Jc2JC3"
2 + 2JcT1JC2

-1JC3 + 5JC2 + 3JC1JC2"
2

8.10 Minimize the following function:

/(X) =\x\ + X2 +IxT1X2-1

8.11 Minimize/(X) = 2Ox2X3X^ + 2Ox2X3"
1 + 5x2x2



subject to

5Jt2
-5JC3-

1 < 1

IOJC T 1 J t ^ 1 ^ 1

X1 > 0, i = 1 to 4

8.12 Minimize/(X) = jcf2 + \x\x^

subject to

4 Jt1X2 + g X2X3 < 1

xt > 0, I = 1,2,3

8.13 Minimize/(X) = Xf3X2 + X^2X3"
1

subject to

x]x2l + 5 jcf2jc| < 1

X1 > 0, X2 > 0, X3 > 0

8.14 Minimize/= Xf1X2
-2X3"

2

subject to

x] + X2 + X3 < 1

Jc1. > 0, I = 1,2,3

8.15 Prove that the function y = cxe
axxx + c2e

avc2 + • • • + cne
a>lX\ ct > 0,

/ = 1,2,. . .,n, is a convex function with respect to X1, X2, . . . , xn.

8.16 Prove that/ = In x is a concave function for positive values of x.

8.17 The problem of minimum weight design of a helical torsional spring
subject to a stress constraint can be expressed as [8.27]

subject to

14.5M
»2.885 n0.115^ — 1



where d is the wire diameter, D the mean coil diameter, p the density,
E is Young's modulus, </> the angular deflection in degrees, M the tor-
sional moment, and Q the number of inactive turns. Solve this problem
using geometric programming approach for the following data: E = 20
X 1010 Pa, amax = 15 X 107 Pa, </> = 20°, Q = 2, M = 0.3 N-m, and
P = Ux 104 N/m3.

8.18 Solve the machining economics problem given by Eqs. (E2) and (E4) of
Example 8.7 for the given data.

8.19 Solve the machining economics problem given by Eqs. (E2), (E4), and
(E6) of Example 8.7 for the given data.

8.20 Determine the degree of difficulty of the problem stated in Example 8.8.

8.21 A rectangular area of dimensions A and B is to be covered by steel plates
with supporting beams as shown in Fig. 8.5. The problem of minimum
cost design of the floor subject to a constraint on the maximum deflec-
tion of the floor under a specified uniformly distributed live load can be
stated as [8.36]:

Minimize /(X) = cost of plates + cost of beams

= kfyABt + kbyAkxnZ213 (1)

subject to

where W is the live load on the floor per unit area, Ay and kb are the unit
costs of plates and beams, respectively, y the weight density of steel, t
the thickness of plates, n the number of beams, kxZ

m the cross-sec-
tional area of each beam, k2Z

4/3 the area moment of inertia of each

Live load,
W per unit
area

n Beams, equally spaced

Figure 8.5 Floor consisting of a plate with supporting beams [8.36].



beam, kx and k2 are constants, Z the section modulus of each beam, and
E the elastic modulus of steel. The two terms on the left side of Eq. (2)
denote the contributions of steel plates and beams to the deflection of
the floor. By assuming the data as^4 = 10 m, B = 50 m, W= 1000
kgf/m

2, kb = $0.05/kgf, kf = $0.06/kgf, y = 7850 kgf/m
3, E = 2.1

X 105 MN/m2, kx = 0.78, and k2 = 1.95, determine the solution of
the problem (i.e., the values of t*, n*, and Z*).

8.22 Solve the zero-degree-of-difficulty bearing problem given by Eqs. (E8)
and (E9) of Example 8.12.

8.23 Solve the one-degree-of-difficulty bearing problem given by Eqs. (E12)
and (E13) of Example 8.12.

8.24 The problem of minimum volume design of a statically determinate truss
consisting of n members (bars) with m unsupported nodes and subject
to q load conditions can be stated as follows [8.14]:

n

Minimize/= S /,JC1 (1)
/ = i

subject to

— 4 < 1, i = l , 2 , . . . , / i , * = 1 , 2 , . . . , ^ (2)
X1O1

n E{k) I
S ~FTi sij ^ h J= U , . • .,m, k = 1,2,. . . , 9 (3)

I = 1 X1H, ZX;

where Ff} is the tension in the /th member in the fcth load condition, X1

the cross-sectional area of member /, I1 the length of member /, E is
Young's modulus, of the maximum permissible stress in member /, and
A7* the maximum allowable displacement of node j . Develop a suitable
transformation technique and express the problem of Eqs. (1) to (3) as
a geometric programming problem in terms of the design variables X1.



DYNAMIC PROGRAMMING

9.1 INTRODUCTION

In most practical problems, decisions have to be made sequentially at different
points in time, at different points in space, and at different levels, say, for a
component, for a subsystem, and/or for a system. The problems in which the
decisions are to be made sequentially are called sequential decision problems.
Since these decisions are to be made at a number of stages, they are also
referred to as multistage decision problems. Dynamic programming is a math-
ematical technique well suited for the optimization of multistage decision prob-
lems. This technique was developed by Richard Bellman in the early 1950s
[9.2,9.6].

The dynamic programming technique, when applicable, represents or de-
composes a multistage decision problem as a sequence of single-stage decision
problems. Thus an N-variable problem is represented as a sequence of N sin-
gle-variable problems that are solved successively. In most cases, these Af sub-
problems are easier to solve than the original problem. The decomposition to
Af subproblems is done in such a manner that the optimal solution of the orig-
inal Af-variable problem can be obtained from the optimal solutions of the N
one-dimensional problems. It is important to note that the particular optimi-
zation technique used for the optimization of the N single-variable problems is
irrelevant. It may range from a simple enumeration process to a differential
calculus or a nonlinear programming technique.

Multistage decision problems can also be solved by direct application of the
classical optimization techniques. However, this requires the number of vari-
ables to be small, the functions involved to be continuous and continuously
differentiable, and the optimum points not to lie at the boundary points. Fur-

9



ther, the problem has to be relatively simple so that the set of resultant equa-
tions can be solved either analytically or numerically. The nonlinear program-
ming techniques can be used to solve slightly more complicated multistage
decision problems. But their application requires the variables to be continuous
and prior knowledge about the region of the global minimum or maximum. In
all these cases, the introduction of stochastic variability makes the problem
extremely complex and renders the problem unsolvable except by using some
sort of an approximation such as chance constrained programming.f Dynamic
programming, on the other hand, can deal with discrete variables, nonconvex,
noncontinuous, and nondifferentiable functions. In general, it can also take
into account the stochastic variability by a simple modification of the deter-
ministic procedure. The dynamic programming technique suffers from a major
drawback, known as the curse of dimensionality. However, despite this dis-
advantage, it is very suitable for the solution of a wide range of complex prob-
lems in several areas of decision making.

9.2 MULTISTAGE DECISION PROCESSES

9.2.1 Definition and Examples

As applied to dynamic programming, a multistage decision process is one in
which a number of single-stage processes are connected in series so that the
output of one stage is the input of the succeeding stage. Strictly speaking, this
type of process should be called a serial multistage decision process since the
individual stages are connected head to tail with no recycle. Serial multistage
decision problems arise in many types of practical problems. A few examples
are given below and many others can be found in the literature.

Consider a chemical process consisting of a heater, a reactor, and a distil-
lation tower connected in series. The objective is to find the optimal value of
temperature in the heater, the reaction rate in the reactor, and the number of
trays in the distillation tower such that the cost of the process is minimum
while satisfying all the restrictions placed on the process. Figure 9.1 shows a
missile resting on a launch pad that is expected to hit a moving aircraft (target)
in a given time interval. The target will naturally take evasive action and at-
tempts to avoid being hit. The problem is to generate a set of commands to
the missile so that it can hit the target in the specified time interval. This can
be done by observing the target and from its actions, generate periodically a
new direction and speed for the missile. Next, consider the minimum cost
design of a water tank. The system consists of a tank, a set of columns, and a
foundation. Here the tank supports the water, the columns support the weights
of water and tank, and the foundation supports the weights of water, tank, and
columns. The components can be seen to be in series and the system has to be
treated as a multistage decision problem. Finally, consider the problem of

fThe chance constrained programming is discussed in Chapter 11.



Figure 9.1 Ground-radar-controlled missile chasing a moving target.

loading a vessel with stocks of TV items. Each unit of item i has a weight W1

and a monetary value C1. The maximum permissible cargo weight is W. It is
required to determine the cargo load that corresponds to maximum monetary
value without exceeding the limitation of the total cargo weight. Although the
multistage nature of this problem is not directly evident, it can be posed as a
multistage decision problem by considering each item of the cargo as a separate
stage.

9.2.2 Representation of a Multistage Decision Process

A single-stage decision process (which is a component of the multistage prob-
lem) can be represented as a rectangular block (Fig. 9.2). A decision process
can be characterized by certain input parameters, S (or data), certain decision
variables (X), and certain output parameters (T) representing the outcome ob-

Missile
Target (jet plane)

Missle tracking
radar

Radio
command

line

Target-
tracking

radar

Computer

Return, # = r(X, S)

Output TInput S

Decision X

Stage
transformation

T = t(X, S)

Figure 9.2 Single-stage decision problem.



tained as a result of making the decision. The input parameters are called input
state variables, and the output parameters are called output state variables.
Finally, there is a return or objective function R, which measures the effec-
tiveness of the decisions made and the output that results from these decisions.
For a single-stage decision process shown in Fig. 9.2, the output is related to
the input through a stage transformation function denoted by

T = t(X,S) (9.1)

Since the input state of the system influences the decisions we make, the return
function can be represented as

R = r(X,S) (9.2)

A serial multistage decision process can be represented schematically as
shown in Fig. 9.3. Because of some convenience, which will be seen later,
the stages n, n — 1 , . . . , / , . . . , 2 , 1 are labeled in decreasing order. For the
ith stage, the input state vector is denoted by s /+1 and the output state vector
as S1-. Since the system is a serial one, the output from stage i + 1 must be
equal to the input to stage i. Hence the state transformation and return functions
can be represented as

S1- = tfa+l9Xi) (9.3)

R( = ^-(Sf+,,X1-) (9 .4 )

where X1- denotes the vector of decision variables at stage i. The state transfor-
mation equations (9.3) are also called design equations.

The objective of a multistage decision problem is to find X1, X2 . . . , Xn so
as to optimize some function of the individual statge returns, say,
/(R19R29. . ,Rn) and satisfy Eqs. (9.3) and (9.4). The nature of the rc-stage
return function,/, determines whether a given multistage problem can be solved
by dynamic programming. Since the method works as a decomposition tech-
nique, it requires the separability and monotonicity of the objective function.

Stage n
xw-l

Stage n - 1
Xi

Stage i
X2

Stage 2
X l

Stage 1

Figure 9.3 Multistage decision problem (initial value problem).



To have separability of the objective function, we must be able to represent
the objective function as the composition of the individual stage returns. This
requirement is satisfied for additive objective functions:

n n

/ = S/?(. = S^.(x,-,s,+.) (9-5)
1 = 1 I = I

where X1- are real, and for multiplicative objective functions,

n n

/ = n R1=U Rt(xhsi+l) (9.6)
/=1 i=\

where x,- are real and nonnegative. On the other hand, the following objective
function is not separable:

/ = [Ri(XuS2) + R2(X29S3)UR3(X39S4) + R4(x4,s5)] (9.7)

Fortunately, there are many practical problems that satisfy the separability con-
dition. The objective function is said to be monotonic if for all values of a and
b that make

R1(Xi = a, s/+1) > Zi1-(X1- = b, s/+1)

the following inequality is satisfied:

f(xn> Xn^i, . . . , X/ + i , X/ = a, X/_i, . . . , X1, Sn + 1)

— / ( x n > xn-i, . . . , x / + 1 , X1- = b , X/_i, . . . , X1, S n + 1 ) , / = 1 ,2 , . . .,n

(9.8)

9.2.3 Conversion of a Nonserial System to a Serial System

According to the definition, a serial system is one whose components (stages)
are connected in such a way that the output of any component is the input of
the succeeding component. As an example of a nonserial system, consider a
steam power plant consisting of a pump, a feedwater heater, a boiler, a super-
heater, a steam turbine, and an electric generator, as shown in Fig. 9.4. If we
assume that some steam is taken from the turbine to heat the feedwater, a loop
will be formed as shown in Fig. 9.4a. This nonserial system can be converted
to an equivalent serial system by regrouping the components so that a loop is
redefined as a single element as shown in Fig. 9.4b and c. Thus the new serial
multistage system consists of only three components: the pump, the boiler and
turbine system, and the electric generator. This procedure can easily be ex-



Figure 9.4 Serializing a nonserial system.

tended to convert multistage systems with more than one loop to equivalent
serial systems.

9.2.4 Types of Multistage Decision Problems

The serial multistage decision problems can be classified into three categories
as follows.

1. Initial Value Problem. If the value of the initial state variable, Sn+1, is
prescribed, the problem is called an initial value problem.

2. Final Value Problem. If the value of the final state variable S1 is pre-
scribed, the problem is called a final value problem. Notice that a final
value problem can be transformed into an initial value problem by re-
versing the directions of S1-, i = 1, 2, . . . , n + 1. The details of this
are given in Section 9.7.

3. Boundary Value Problem. If the values of both the input and output
variables are specified, the problem is called a boundary value problem.
The three types of problems are shown schematically in Fig. 9.5, where
the symbol +> is used to indicate a prescribed state variable.

Pump Boiler and turbine system
Electric
gener-
ator

Pump
Feed
water
heater

Boiler Super
heater

Steam
turbine

Electric
gener-
ator

Pump
Feed
water
heater
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Figure 9.5 Types of multistage problems: (a) initial value problem; Qy) final value
problem; (c) boundary value problem.

9.3 CONCEPT OF SUBOPTIMIZATION AND PRINCIPLE OF
OPTIMALITY

A dynamic programming problem can be stated as follows.f Find Jc1, Jc2, . . . ,
JCn, which optimizes

n n

/(Xi9X29. . ^9Xn) = S Rf = S ^(S1+X9X1)

and satisfies the design equations
•*/ = ^i+I9Xi)9 I = 1,2,. . .,/!

The dynamic programming makes use of the concept of suboptimization and
the principle of optimality in solving this problem. The concept of subopti-
mization and the principle of optimality will be explained through the follow-
ing example of an initial value problem.

Example 9.1 Explain the concept of suboptimization in the context of the
design of the water tank shown in Fig. 9.6a. The tank is required to have a

1In the subsequent discussion, the design variables X1 and state variables s, are denoted as scalars
for simplicity, although the theory is equally applicable even if they are vectors.



Figure 9.6 Water tank system.

capacity of 100,000 liters of water and is to be designed for minimum cost
[9.10].

SOLUTION Instead of trying to optimize the complete system as a single
unit, it would be desirable to break the system into components which could
be optimized more or less individually. For this breaking and component
suboptimization, a logical procedure is to be used; otherwise, the procedure
might result in a poor solution. This concept can be seen by breaking the
system into three components: component / (tank), component j (columns),
and component k (foundation). Consider the suboptimization of component j
(columns) without a consideration of the other components. If the cost of steel
is very high, the minimum cost design of component./ may correspond to heavy
concrete columns without reinforcement. Although this design may be accept-
able for columns, the entire weight of the columns has to be carried by the
foundation. This may result in a foundation that is prohibitively expensive.
This shows that the suboptimization of component j has adversely influenced
the design of the following component k. This example shows that the design
of any interior component affects the designs of all the subsequent (down-
stream) components. As such, it cannot be suboptimized without considering
its effect on the downstream components. The following mode of suboptimi-
zation can be adopted as a rational optimization strategy. Since the last com-
ponent in a serial system influences no other component, it can be subopti-

Water tank to carry 100,000 liters
of water (rectangular or circular)

Columns (RCC or steel)

Foundation (Mat or pile)

Weight of
water

(Ri)
(cost)

Weight of
water +
tank +

i Tank j Columns

(Rj)
(cost)

Weight of
water +
tank +
columns

(Rk)
(cost)

k Foundation

Weight of
water + tank +

columns +
foundation



mized independently. Then the last two components can be considered together
as a single (larger) component and can be suboptimized without adversely in-
fluencing any of the downstream components. This process can be continued
to group any number of end components as a single (larger) end component
and suboptimize them. This process of suboptimization is shown in Fig. 9.7.
Since the suboptimizations are to be done in the reverse order, the components
of the system are also numbered in the same manner for convenience (see Fig.
9.3).

The process of suboptimization was stated by Bellman [9.2] as the principle
of optimality:

An optimal policy (or a set of decisions) has the property that whatever the
initial state and initial decision are, the remaining decisions must constitute an
optimal policy with regard to the state resulting from the first decision.

Suboptimize components kj and i (complete system)

Figure 9.7 Suboptimization (principle of optimality).

Components
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Recurrence Relationship. Suppose that the desired objective is to minimize
the n-stage objective function / which is given by the sum of the individual
stage returns:

Minimize /= Rn(xn,sn+l) + Rn_x(xn^x,sn) + • • • + Rx(xx,s2) (9.9)

where the state and decision variables are related as

Si = t,isi+l9Xi)9 i = 1 , 2 , . . . , / i (9.10)

Consider the first subproblem by starting at the final stage, i = 1. If the input
to this stage S2 is specified, then according to the principle of optimality, Xx

must be selected to optimize Rx. Irrespective of what happens to the other
stages, Xx must be selected such that Rx(xx,s2) is an optimum for the input S2.
If the optimum is denoted a s / * , we have

ft(s2) = OPt[Rx(X1 ,S2)] (9.11)
X1

This is called a one-stage policy since once the input state S2 is specified, the
optimal values of Rx, Xx, and S1 are completely defined. Thus Eq. (9.11) is a
parametric equation giving the optimum/* as a function of the input parameter
S2.

Next, consider the second subproblem by grouping the last two stages to-
gether. If/* denotes the optimum objective value of the second subproblem
for a specified value of the input S3, we have

/J(J 3) = opt[R2(x2,s3) + JJ1(JC1^2)] (9.12)
•*!,-*2

The principle of optimality requires that Jc1 be selected so as to optimize Rx for
a given S2. Since S2 can be obtained once JC2 and S3 are specified, Eq. (9.12)
can be written as

/2*(s3) = OPt[K2(X29J3) +/T(S2)] (9.13)
Xl

Thus /* represents the optimal policy for the two-stage subproblem. It can be
seen that the principle of optimality reduced the dimensionality of the problem
from two [in Eq. (9.12)] to one [in Eq. (9.13)]. This can be seen more clearly
by rewriting Eq. (9.13) using Eq. (9.10) as

/2*(s3) = opt[R2(x2,s3) + ff{t2(x2,s3)}] (9.14)
X2

In this form it can be seen that for a specified input S3, the optimum is deter-
mined solely by a suitable choice of the decision variable JC2. Thus the optim-



ization problem stated in Eq. (9.12), in which both X1 and Jc1 are to be simul-
taneously varied to produce the optimum/*, is reduced to two subproblems
defined by Eqs. (9.11) and (9.13). Since the optimization of each of these
subproblems involves only a single decision variable, the optimization is, in
general, much simpler.

This idea can be generalized and the /th subproblem defined by

fT(si+l) = opt [Rt(xhsi+l) + Ri-^x1-USd + • • • + R1(X19S2)] (9.15)
Xi,Xi-\,...,X\

can be written as

/T(S1+1) = opt[RfychSi+l) + /T-i(Si)] (9.16)

where/*_! denotes the optimal value of the objective function corresponding
to the last / — 1 stages, and st is the input to the stage / — 1. The original
problem in Eq. (9.15) requires the simultaneous variation of i decision vari-
ables, JCi, JC2, . . . , JC/, to determine the optimum value of/ = T,lk=x Rk for any
specified value of the input si+x. This problem, by using the principle of op-
timality, has been decomposed into i separate problems, each involving only
one decision variable. Equation (9.16) is the desired recurrence relationship
valid for i = 2,3,. . .,n.

9.4 COMPUTATIONAL PROCEDURE IN DYNAMIC
PROGRAMMING

The use of the recurrence relationship derived in Section 9.3 in actual com-
putations is discussed in this section [9.10]. As stated, dynamic programming
begins by suboptimizing the last component, numbered 1. This involves the
determination of

/T(S2) = opt[Rx(xl9s2)] (9.17)
x\

The best value of the decision variable Jc1, denoted as JC*, is that which makes
the return (or objective) function R1 assume its optimum value, denoted by
ff. Both JC* and/* depend on the condition of the input or feed that the com-
ponent 1 receives from the upstream, that is, on s2- Since the particular value
S2 will assume after the upstream components are optimized is not known at
this time, this last-stage suboptimization problem is solved for a "range" of
possible values of S2 and the results are entered into a graph or a table. This
graph or table contains a complete summary of the results of suboptimization
of stage 1. In some cases, it may be possible to express/* as a function of S2.



(a) (b) Summary of stage 1

Figure 9.8 Suboptimization of component 1 for various settings of the input state

variable s2.

If the calculations are to be performed on a computer, the results of subopti-
mization have to be stored in the form of a table in the computer. Figure 9.8
shows a typical table in which the results obtained from the suboptimization
of stage 1 are entered.

Next we move up the serial system to include the last two components. In
this two-stage suboptimization, we have to determine

/*(*>) = OPt[R2(X29S3) + R1(XuS2)] (9.18)
Xl, Xl

Since all the information about component 1 has already been encoded in the
table corresponding t o / * , this information can then be substituted for R1 in
Eq. (9.18) to get the following simplified statement:

/J(S3) = OPt[R2(X29S3) +If(S2)] (9.19)
Xl

Thus the number of variables to be considered has been reduced from two (Jc1

and X2) to one (x2). A range of possible values of s3 must be considered and
for each one, X2 must be found so as to optimize [R2 + ff(s2)]. The results
(x2 and / * for different S3) of this suboptimization are entered in a table as
shown in Fig. 9.9.

Assuming that the suboptimization sequence has been carried on to include
i — 1 of the end components, the next step will be to suboptimize the i end
components. This requires the solution of

fT(si+i) = opt [J?f. + /?,_, + • • • + R1] (9.20)
JCIVCI-I , ,JCl

However, again, all the information regarding the suboptimization of i — 1
end components is known and has been entered in the table corresponding to



For each setting of s3, draw
a graph as shown above to
obtain the following:

(b) Summary of stages 2 and 1

Figure 9.9 Suboptimization of components 1 and 2 for various settings of the input
state variable S3.

/J1L1. Hence this information can be substituted in Eq. (9.20) to obtain

fT(si+l) = OPt[^(Jc1-A+1) +/T-I(Sd] (9.21)
Xi

Thus the dimensionality of the /-stage suboptimization has been reduced to 1,
and the equation st = ti(si+ux^) provides the functional relation between xt and
J1-. As before, a range of values of si+l are to be considered, and for each one,

Opt [R2 + f\ (S2)) = f*(s3)
X2

s3 = Fixed at some value



xf is to be found so as to optimize [R1 + / *_ i ] . A table showing the values of
JC* and /* for each of the values of si+l is made as shown in Fig. 9.10.

The suboptimization procedure above is continued until stage n is reached.
At this stage only one value of sn+{ needs to be considered (for initial value
problems), and the optimization of the n components completes the solution
of the problem.

O p t [R1+K-1 (S1)] =/T(Si + I)
xi

For each se t t ing of st + l f consider a graph as shown below:

si + i Fixed at some value

And obta in the fo l l ow ing

(b) Summary of stages i, 1-I1 ...2, and 1

Figure 9.10 Suboptimization of components 1, 2, . . . , / for various settings of the
input state variable st + x.



The final thing needed is to retrace the steps through the tables generated,
to gather the complete set of JC* (i = 1,2,. . .,ri) for the system. This can be
done as follows. The nth suboptimization gives the values of JC* and /* for the
specified value of sn+\ (for initial value problem). The known design equation
Sn = tn(sn+ux*) can be used to find the input, s1*, to the (n — l)th stage. From
the tabulated results for f*_x(sn), the optimum values/*_} and JC*_! corre-
sponding to s* can readily be obtained. Again the known design equation sn_{

= tn_\(sn,x*-{) can be used to find the input, s*_u to the (n — 2)th stage. As
before, from the tabulated results of/*_2(sn_i), the optimal values JC*_2 and
/*_2 corresponding to s^-\ can be found. This procedure is continued until the
values JC * and / f corresponding to s* are obtained. Then the optimum solution
vector of the original problem is given by (JC*,JC*,. . .,JC*) and the optimum
value of the objective function b y / * .

9.5 EXAMPLE ILLUSTRATING THE CALCULUS METHOD OF
SOLUTION

Example 9.2 The four-bar truss shown in Fig. 9.11 is subjected to a vertical
load of 2 X 105 Ib at joint A as shown. Determine the cross-sectional areas of
the members (bars) such that the total weight of the truss is minimum and the
vertical deflection of joint A is equal to 0.5 in. Assume the unit weight as 0.01
lb/in3 and the Young's modulus as 20 X 106 psi.

SOLUTION Let xt denote the area of cross section of member i (i = 1,2,3,4).
The lengths of members are given by Z1 = I3 = 100 in., I2 = 120 in., and Z4

= 60 in. The weight of the truss is given by

/(JC19JC29Jc39JC4) = 0.01(10OJC1 + 120JC2 + 100JC3 + 60JC4)

= Jc1 + 1.2JC2 + Jc3 + 0.6JC4 (E1)

From structural analysis [9.5], the force developed in member i due to a unit
load acting at joint A{pt), the deformation of member i (dj), and the contribu-

Figure 9.11 Four-bar truss.



tion of member / to the vertical deflection of A (6, = P1Ci1) can be determined
as follows:

= (stress,)/, = Pp1Ij

Member ' E X1E ht = ptdt

i P1 (in.) (in.)

1 - 1 . 2 5 - 1 . 2 5 / J C , 1.5625/JC,

2 0.75 0.9/JC2 0.6750/JC2

3 1.25 1.25/JC3 1.5625/x3

4 - 1 . 5 0 -0.9/jc4 1.3500/jc4

The vertical deflection of joint A is given by

4i 1.5625 0.6750 1.5625 1.3500
dA = S S1. = + H- + (E2)

J = I X\ X2 X3 X4

Thus the optimization problem can be stated as:

Minimize/(X) = Jc1 H- 1.2JC2 H- JC3 H- 0.6LX4

subject to

1.5625 0.6750 1.5625 1.3500 ^
H- + — + = 0.5 (E3)

X\ X2 J^3 X4

Xx > 0, Jc2 > 0, Jc3 > 0, X4 > 0

Since the deflection of joint A is the sum of contributions of the various mem-
bers, we can consider the 0.5 in. deflection as a resource to be allocated to the
various activities Jc1- and the problem can be posed as a multistage decision
problem as shown in Fig. 9.12. Let ^2 be the displacement (resource) available
for allocation to the first member (stage 1), S1 the displacement contribution
due to the first member, and / f (s2) the minimum weight of the first member.

Stage 4
(member 4)

Stage 3
(member 3)

Stage 2
(member 2)

Stage 1
(member 1)

Figure 9.12 Example 9.2 as a four-stage decision problem.



Then

/T(S2) = HIm[R1 = X1] = - (E4)

such that

1.5625
O1 = and JC1 > 0

Xx

since S1 = S2, and

* i ( b 5 )
^2

Let S3 be the displacement available for allocation to the first two members,
52 the displacement contribution due to the second member, and Z * ^ ) the
minimum weight of the first two members. Then we have, from the recurrence
relationship of Eq. (9.16),

/?( j 3) = min[fl2 +Zf(J2)] (E6)
JC2>0

where s2 represents the resource available after allocation to stage 2 and is
given by

. 0.6750
S2 = S3 - O2 = S3

X2

Hence, from Eq. (E4), we have

Thus Eq. (E6) becomes

/2*(53) = min [ 1.2JC2 + 1 ^ n . 1 (E8)
«>o L S3- 0.6750/X2J

Let

^ 1 ^ 1.5625 , „ 1.5625x2
F ( S ^ = L2X> + S3 - 0.6750/x2 = I2X> + ^ 2 - 0.6750



For any specified value of S3, the minimum of F is given by

dF (1.5625) (0.6750) # 1.6124
— = 1-2 - 2 = 0 or x2* = (E9)
dx2 (̂ 3̂ 2 — 0.6750) S3

. * , x * „ * 1 5 6 2 5 L 9 3 4 9 2 - 6 8 2 0 4 - 6 1 6 9 ^ x

^ = L 2*' + ,3 - 0.6750/,? = — + — = — (El0>

Let S4 be the displacement available for allocation to the first three members.
Let S3 be the displacement contribution due to the third member and/*Cs4) the
minimum weight of the first three members. Then

/?(54) = min [x3 + fi(s3)] (E11)
JC3>0

where S3 is the resource available after allocation to stage 3 and is given by

1.5625
S3 = S4 - 53 = S4

X3

From Eq. (E10) we have

f ^ = S4 - 4 l 65625/ ,3 ( E l 2 )

and Eq. (E11) can be written as

/J(J4) = min x3 +
 4 6 1f*' (E13)

JC3>O L S4*3 ~ 1 .5625 J

As before, by letting

K Y X • 4-6 1 6 9*3 m ,

F(S49X3) = X3 + — — - (E14)

S4X3 — 1.5625

the minimum of F, for any specified value of ^4, can be obtained as

dF (4.6169) (1.5625) # 4.2445
T - = 1.0 - 2 = 0 or x* = (E15)
dx3 (s4x3 - 1.5625) S4

rs|B # 4.6169x3* 4.2445 7.3151 11.5596 ^ x
h M = X" + S4X? - 1.5625 = " ^ T + ~ ^ ~ = " ^ T " ( 16>

Finally, let S5 denote the displacement available for allocation to the first four
members. If S4 denotes the displacement contribution due to the fourth mem-



ber, and ff (S5) the minimum weight of the first four members, then

f J(S5) = min [0.6x4 +/*(*4)] (E17)
X4 2:0

where the resource available after allocation to the fourth member O4) is given
by

_ 1.3500
S4 — S5 ~ O4 — S5 (^18J

X4

From Eqs. (E16), (E17), and (E18), we obtain

ft(s5) = min 0.6*4 + " ' 5 ^ l , (Ei9)

JC4>O L S5- 1.3500/X4J

By setting

11.5596
FCs59X4) = 0.6x4 +

S5 - 1.3500/JC4

the minimum of F(s5,X4), for any specified value of s5, is given by

dF (11.5596) (1.3500) * 6.44
T— = 0.6 - - 2 = 0 or X4* = (E20)
dx4 (S5X4 - 1.3500) ^5

^ x ^r* 11.5596 3.864 16.492 20.356
f M = °-&* + ,5 - 1.3500/x? = — + ^ T = ^ T (E21>

Since the value of S5 is specified as 0.5 in., the minimum weight of the struc-
ture can be calculated from Eq. (E21) as

ft(s5 = 0.5) = ̂ p = 40.712 Ib (E22)

Once the optimum value of the objective function is found, the optimum values
of the design variables can be found with the help of Eqs. (E20), (E15), (E9),
and (E5) as

Jt4* = 12.88 in2

S4 = S5 '-^r- = 0.5 - 0.105 = 0.395 in.
X4



* 4.2445 „ . 2
JC? = = 10.73 in2

S4

S3 = s4 - l'56?5 = 0.3950 - 0.1456 = 0.2494 in.
X3

* 1.6124 , An . 2;tf = = 6.47 in2

^2 = j 3 - ° ' 6 ^ 5 0 = 0.2494 - 0.1042 = 0.1452 in.
X2

* 1.5625 ^ ^ . 2xf = = 10.76 in2

9.6 EXAMPLE ILLUSTRATING THE TABULAR METHOD
OF SOLUTION

Example 9.3 Design the most economical reinforced cement concrete (RCC)
water tank (Fig. 9.6a) to store 100,000 liters of water. The structural system
consists of a tank, four columns each 10m high, and a foundation to transfer
all loads safely to the ground [9.10]. The design involves the selection of the
most appropriate types of tank, columns, and foundation among the seven types
of tanks, three types of columns, and three types of foundations available. The
data on the various types of tanks, columns, and foundations are given in Ta-
bles 9.1, 9.2, and 9.3, respectively.

TABLE 9.1 Component 3 (Tank)

Type of Tank

(a) Cylindrical RCC tank
(b) Spherical RCC tank
(c) Rectangular RCC tank
(d) Cylindrical steel tank
(e) Spherical steel tank
(f) Rectangular steel tank
(g) Cylindrical RCC tank with

hemispherical RCC dome

Load
Acting
on the

Tank, S4

(kgf)

100,000
100,000
100,000
100,000
100,000
100,000

100,000

R3

Cost
($)

5,000
8,000
6,000
9,000

15,000
12,000

10,000

Self-Weight
of the

Component
(kgf)

45,000
30,000
25,000
15,000
5,000

10,000

15,000

S3 = S4 +

Self-Weight
(kgf)

145,000
130,000
125,000
115,000
105,000
110,000

115,000



TABLE 9.2 Component 2 (Columns)

R2 S2 = S3 +

s3 Cost Self-Weight Self-Weight
Type of Columns (kgf) ($) (k&) (kgf)

(a) RCC columns 150,000 6,000 70,000 220,000
130,000 5,000 50,000 180,000
110,000 4,000 40,000 150,000
100,000 3,000 40,000 140,000

(b) Concrete columns 150,000 8,000 60,000 210,000
130,000 6,000 50,000 180,000
110,000 4,000 30,000 140,000
100,000 3,000 15,000 115,000

(c) Steel columns 150,000 15,000 30,000 180,000
130,000 10,000 20,000 150,000
110,000 9,000 15,000 125,000
100,000 8,000 10,000 110,000

TABLE 9.3 Component 1 (Foundation)

R] S1 = S2 +
s2 Cost Self-Weight Self-Weight

Type of Foundation (kgf) ($) (kgf) (kgf)

(a) Mat foundation 220,000 5,000 60,000 280,000
200,000 4,000 45,000 245,000
180,000 3,000 35,000 215,000
140,000 2,500 25,000 165,000
100,000 500 20,000 120,000

(b) Concrete pile foundation 220,000 3,500 55,000 275,000
200,000 3,000 40,000 240,000
180,000 2,500 30,000 210,000
140,000 1,500 20,000 160,000
100,000 1,000 15,000 115,000

(c) Steel pile foundation 220,000 3,000 10,000 230,000
200,000 2,500 9,000 209,000
180,000 2,000 8,000 188,000
140,000 2,000 6,000 146,000
100,000 1,500 5,000 105,000

SOLUTION The structural system can be represented as a multistage deci-
sion process as shown in Fig. 9.13. The decision variables Jt1, Jt2,

 aru* X3 rep-
resent the type of foundation, columns, and the tank used in the system, re-
spectively. Thus the variable Jt1 can take three discrete values, each
corresponding to a particular type of foundation (among mat, concrete pile,



Figure 9.13 Example 9.3 as a three-stage decision problem.

and steel pile types). Similarly the variable X2 is assumed to take three discrete
values, each corresponding to one of the columns (out of RCC columns, con-
crete columns, and steel columns). Finally the variable X3 can take seven dis-
crete values, each corresponding to a particular type of tank listed in Table
3.1.

Since the input load, that is, the weight of water, is known to be 100,000
kgf, S4 is fixed and the problem can be considered as an initial value problem.
We assume that the theories of structural analysis and design in the various
materials provide the design equations

S1 = ti(xhsi + l)

which yield information for the various system components as shown in Tables
9.1 to 9.3 (these values are given only for illustrative purpose).

Suboptimization of Stage 1 (Component 1)
For the suboptimization of stage 1, we isolate component 1 as shown in Fig.
9.14« and minimize its cost Rx(Xi9s2) for any specified value of the input state
S2 to obtain f*(s2) as

ff(S2) = min [Ri(Xi9S2)]
x\

Since five settings of the input state variable S2
 a r e given in Table 9.3, we

obtain/* for each of these values as shown below:

Specific Value xf Corresponding Value
of S2 (Type of Foundation ff of sr

(kgf) for Minimum Cost) ($) (kgf)

220,000 (C) 3,000 230,000
200,000 (c) 2,500 209,000
180,000 (C) 2,000 188,000
140,000 (b) 1,500 160,000
100,000 (a) 500 120,000

Weight
of water

3
Tank

2
Columns

1
Foundation



Figure 9.14 Various stages of suboptimization of Example 9.3: (a) suboptimization
of component 1; (b) suboptimization of components 1 and 2; (c) suboptimization of
components 1,2, and 3.



Suboptimization of Stages 2 and 1 (Components 2 and 1)
Here we combine components 2 and 1 as shown in Fig. 9.14Z? and minimize
the cost (R2 + R\) for any specified value S3 to obtain/*(s3) as

/J(J 3) = min [R2(X29S3) + R{(xus2)] = min [R2(X29S3) +/T(S2)]
X2,X\ Xl

Since four settings of the input state variable S3 are given in Table 9.2, we can
find/* for each of these four values. Since this number of settings for s3 is
small, the values of the output state variable S2 that result will not necessarily
coincide with the values of S2 tabulated in Table 9.3. Hence we interpolate
linearly the values of s2 (if it becomes necessary) for the purpose of present
computation. However, if the computations are done on a computer, more
settings, more closely spaced, can be considered without much difficulty. The
suboptimization of stages 2 and 1 gives the following results:

Specific
Value
of S3

(kgf)

150,000

130,000

110,000

100,000

Value of
X2 (Type

of
Columns)

(a)
(b)
(C)

(a)

(b)
(C)

(a)

(b)
(C)

(a)
(b)
(C)

Cost of
Columns,

R2

($)

6,000
8,000

15,000

5,000

6,000
10,000

4,000
4,000
9,000

3,000
3,000
8,000

Value of
the

output
state

variable
S2

(kgf)

220,000
210,000
180,000

180,000

180,000
150,000

150,000
140,000
125,000

140,000
115,000
110,000

*t
(Type of

Foundation)

(C)

(C)

(C)

(C)

(C)

(b)

(b)
(b)
(b)

(b)
(a)
(a)

/I
($)

3,000
2,750**
2,000

2,000

2,000
1,625**

1,625**
1,500
1,125**

1,500
875**
750**

*2+/r
($)

19,0001
10,750
17,000

[7,000]

8,000
11,625

5,625
15,5001
10,125

4,500
13,8751
8,750

Notice that the double starred quantities indicate interpolated values and the
boxed quantities the minimum cost solution for the specified value of s3. Now
the desired quantities (i.e., / * and X2) corresponding to the various discrete
values of s3 can be summarized as follows:



Suboptimization of Stages 3, 2, and 1 (Components 3, 2, and 1)

For the suboptimization of stages 3,2, and 1, we consider all three components
together as shown in Fig. 9.14c and minimize the cost (R3 + R2 + R1) for any
specified value of ^4 to obtain/*Cy4). However, since there is only one value
of s4 (initial value problem) to be considered, we obtain the following results
by using the information given in Table 9.1.

/3*Cy4) = min [R3(X3,S4) + R2(x2,s3) + Rx(X1 ,S2)]

= min [R3(X^s4) + /?(s3)]
X3

Specified
Value of

«*3

(kgf)

150,000
130,000
110,000
100,000

Type of Columns
Corresponding to
Minimum Cost

of Stages 2 and 1,

(a)
(a)
(b)
(b)

Minimum Cost
of Stages 2 and 1,

ft
($)

9,000
7,000
5,500
3,875

Value of the
Corresponding

State
Variable,

(kgf)

220,000
180,000
140,000
115,000

Specific
Value
of,s4

(kgf)

100,000

Type
of

Tank
(X3)

(a)
(b)
(C)

(d)
(e)
(f)
(g)

Cost
of

Tank
R3

($)

5,000
8,000
6,000
9,000

15,000
12,000
10,000

Corresponding
Output State,

*3

(kgf)

145,000
130,000
125,000

115,000
105,000
110,000
115,000

A
(Type of
Columns

for
Minimum

Cost)

(a)
(a)
(a)
(b)
(b)
(b)
(b)

/ *
($)

8,500**
7,000
6,625**
5,875**
4,687^**
5,500
5,875**

($)

13,500
15,000

112,6251
14,875
19,687^
17,500
15,875

Here also the double-starred quantities indicate the interpolated values and the
boxed quantity the minimum cost solution. From the results above, the mini-
mum cost solution is given by



S4 = 100,000 kgf

x* = tyPe (c) tank

ff(s4 = 100,000) = $12,625

J3 = 125,000 kgf

Now, we retrace the steps to collect the optimum values of JC*, JC*, and xf and
obtain

Jc3* = type (c) tank, ^3 = 125,000 kgf

x* = tyPe (a) columns, S2
 = 170,000 kgf

JC* = type (c) foundation, S1 = 181,000 kgf

and the total minimum cost of the water tank is $12,625. Thus the minimum
cost water tank consists of a rectangular RCC tank, RCC columns, and a steel
pile foundation.

9.7 CONVERSION OF A FINAL VALUE PROBLEM INTO AN
INITIAL VALUE PROBLEM

In previous sections the dynamic programming technique has been described
with reference to an initial value problem. If the problem is a final value prob-
lem as shown in Fig. 9.15a, it can be solved by converting it into an equivalent
initial value problem. Let the stage transformation (design) equation be given
by

Si = ^Si + 19Xi)9 i = 1,2,. . .,n (9.22)

Assuming that the inverse relations exist, we can write Eqs. (9.22) as

si + l = Us19Xi)9 i = 1,2,. . .,n (9.23)

where the input state to stage i is expressed as a function of its output state
and the decision variable. It can be noticed that the roles of input and output
state variables are interchanged in Eqs. (9.22) and (9.23). The procedure of
obtaining Eq. (9.23) from Eq. (9.22) is called state inversion. If the return
(objective) function of stage i is originally expressed as

Ri = T1(Si+19X1), i = 1 ,2 , . . . , / i (9.24)



Eq. (9.23) can be used to express it in terms of the output state and the decision
variable as

Ri = nUiiShXi)^] = rfciJi)9 i = 1,2,. . .,n (9.25)

The optimization problem can now be stated as follows:

Find JC15Jc2,. . .,JCW so that

n n

/(PC1J2,. . .,Xn) = S R1 = S T1(StSd (9-26)
I = I 1 = 1

will be optimum where the s( are related by Eq. (9.23)
The use of Eq. (9.23) amounts to reversing the direction of the flow of

information through the state variables. Thus the optimization process can be
started at stage n and stages n — I, n — 2 , . . . , 1 can be reached in a se-
quential manner. Since S1 is specified (fixed) in the original problem, the prob-
lem stated in Eq. (9.26) will be equivalent to an initial value problem as shown
in Fig. 9.15b. This initial value problem is identical to the one considered in
Fig. 9.3 except for the stage numbers. If the stage numbers 1,2,. . .,n are
reversed t o n , n — 1, . . . , 1, Fig. 9A5b will become identical to Fig. 9.3.

Starting
point

Starting
point

Figure 9.15 Conversion of a final value problem to an initial value problem: (a) final
value problem; (b) initial value problem.



Once this is done, the solution technique described earlier can be applied for
solving the final value problem shown in Fig. 9.15a.

Example 9.4 A small machine tool manufacturing company entered into a
contract to supply 80 drilling machines at the end of the first month and 120
at the end of the second month. The unit cost of manufacturing a drilling
machine in any month is given by $(50JC + 0.2Jt2), where x denotes the number
of drilling machines manufactured in that month. If the company manufactures
more units than needed in the first month, there is an inventory carrying cost
of $8 for each unit carried to the next month. Find the number of drilling
machines to be manufactured in each month to minimize the total cost. Assume
that the company has enough facilities to manufacture up to 200 drilling ma-
chines per month and that there is no initial inventory. Solve the problem as a
final value problem.

SOLUTION The problem can be stated as follows:

Minimize/(JC19JC2) = (5OJC1 + 0.2JC2) + (50JC2 + 0.2JC2) + 8(JC1 - 80)

subject to

Jc1 > 80

Jc1 + x2 = 200

X1 > 0, Jc2 > 0

where Jc1 and X2 indicate the number of drilling machines manufactured in the
first month and the second month, respectively. To solve this problem as a
final value problem, we start from the second month and go backwards. If I2

is the inventory at the beginning of the second month, the optimum number of
chairs to be manufactured in the second month is given by

x$ = 120 - I2 (E1)

and the cost incurred in the second month by

Ri(XiJi) = 8/2 + 5Qx2* + 0.2xf

By using Eq. (E1), R2 can be expressed as

R2(I2) = 8/2 + 50(120 - I2) + 0.2(120 - I2)
2 = 0.2I2

2 - 90/2 + 8880

(E2)



Since the inventory at the beginning of the first month is zero, the cost involved
in the first month is given by

R1(X1) = 5OJC1 + 0.2*?

Thus the total cost involved is given by

fikh*\) = (5OJC1 + 0.2JC2) + (0 .2/ | - 90/2 + 8880) (E3)

But the inventory at the beginning of the second month is related to Jc1 as

I2=X1- 80 (E4)

Equations (E3) and (E4) lead to

/ = /2(Z2) = (5OJC1 + 0.2JC2) + 0.2(Jc1 - 80)2 - 90(Jc1 - 80) + 8880

= 0.4JC2 - 72Jc1 + 17,360 (E5)

Since/is a function OfJC1 only, the optimum value OfX1 can be obtained as

^- = 0.8Jc1 - 72 = 0 or jcf = 90

As d2f(x*)/dx2
x = 0.8 > 0, the value of x* corresponds to the minimum of/.

Thus the optimum solution is given by

/min = / ( * ? ) = $14,120

jc? = 90 and JC2* = 110

9.8 LINEAR PROGRAMMING AS A CASE OF DYNAMIC
PROGRAMMING

A linear programming problem with n decision variables and m constraints can
be considered as an n-stage dynamic programming problem with m state vari-
ables. In fact, a linear programming problem can be formulated as a dynamic
programming problem. To illustrate the conversion of a linear programming
problem into a dynamic programming problem, consider the following linear
programming problem:

n

Maximize/( jc 1 ? jc 2 , . . .,Jcn) = ZI C7JC7



subject to

n

2 ciijXj < bh i = 1,2,. . .,m
J~l (9.27)

Xj > 0, J= 1,2,. . .,AZ

This problem can be considered as an n-stage decision problem where the value
of the decision variable x}- must be determined at stagey. The right-hand sides
of the constraints, bh i = 1,2,. . .,m, can be treated as m types of resources
to be allocated among different kinds of activities Xj. For example, bx may
represent the available machines, b2 the available time, and so on, in a work-
shop. The variable JC1 may denote the number of castings produced, X2 the
number of forgings produced, x3 the number of machined components pro-
duced, and so on, in the workshop. The constant c, may represent the profit
per unit of jcy. The coefficients atj represent the amount of ith resource bt needed
for 1 unit of yth activity Xj (e.g., the amount of material required to produce
one casting). Hence when the value of the decision variable Xj at the yth stage
is determined, aXJXj units of resource 1, a2jXj units of resource 2, . . . , am]x}-
units of resource m will be allocated tojth activity if sufficient unused resources
exist. Thus the amounts of the available resources must be determined before
allocating them to any particular activity. For example, when the value of the
first activity Xx is determined at stage 1, there must be sufficient amounts of
resources bt for allocation to activity 1. The resources remaining after alloca-
tion to activity 1 must be determined before the value of x2 is found at stage
2, and so on. In other words, the state of the system (i.e., the amounts of
resources remaining for allocation) must be known before making a decision
(about allocation) at any stage of the n-stage system. In this problem there are
m state parameters constituting the state vector.

By denoting the optimal value of the composite objective function over n
stages a s / * , we can state the problem as:

Find

ft = ^bxJb29. . .,bj = max ( E CJXJ) (9.28)
X\,X2,. . .,Xn \J'~ 1 /

such that

n

E ayXj < bh i = 1,2,. . .,m (9.29)

Xj > 0, j = 1,2,. . .,« (9.30)



The recurrence relationship (9.16), when applied to this problem yields

ff 08,,/S2,. . .,j8B) = max [ c,x, + //L1C1S1 - «„•*„
0 < JC/ < /3
/32 - O21-JT1-, . . . , /3m - amiXi)], i = 2 , 3 , . . .,n

(9.31)

where /J1, /32, . . ., /3m are the resources available for allocation at stage /;
auxh . . . , amiXi are the resources allocated to the activity Jc1-, /J1 — auxh (52 ~
a2ixh . . . , (3_m — amiXj are the resources available for allocation to the activity
/ — 1, and /3 indicates the maximum value that Jc1- can take without violating
any of the constraints stated in Eqs. (9.29). The value of (3 is given by

0 = m i n ( ^ , ^ , . . . , — ) (9.32)
\au a2i ami/

since any value larger than /3 would violate at least one constraint. Thus at the
/th stage, the optimal values JC* a n d / f can be determined as functions of /S1,

02, . . - P m .
Finally, at the nth stage, since the values of JS1, j82, . . ., j8w are known to

be bu b2, . . . , bm, respectively, we can determine x* a n d / * . Once x* is
known, the remaining values, JC*_1? JC*_2, . . . , jcf can be determined by re-
tracing the suboptimization steps.

Example P.5f

Maximize f(x{,x2) = 5Ox1 + 10Ox2

subject to

1Ox1 + 5x2 < 2500

4X1 + 1Ox2 < 2000

X1 + 1.5x2 < 450

X1 > 0, X2 > 0

SOLUTION Since n = 2 and m = 3, this problem can be considered as a
two-stage dynamic programming problem with three state parameters. The first-
stage problem is to find the maximum value of / i :

maxZ1 (j3,,/^,03,X1) = max _ (5Qx1)

0<JCI </S

1TMs problem is the same as the one stated in Example 3.2.



here jSj, /32, and j33 are the resources available for allocation at stage 1, and
Xx is a nonnegative value that satisfies the side constraints 1OJC1 < ^1, 4Jc1 <
j82, and Jc1 < j33. Here 1S1 = 2500 - 5x2± P2 = 2000 - 10JC2, and |83 = 450
- 1.5*2, and hence the maximum value |8 that Xx can assume is given by

- # [2500 - 5JC2 2000 - 10JC2 1
P=Xf = mm Î  ?, ?, 450 - 1.5JC2J (E1)

Thus

/ f ( ? ^ ^ , ^ ^ ^ , 450-1 W ) =50,f

The second-stage problem is to find the maximum value of /2:

max/2(/J,,/52,/33) = max [l00^2 + / f ( 2 5 0 ° ~ 5^2,

2000 - 10JC2 \ 1
,̂ 450 - 1.5JC2JJ (E2)

where JS1, /32, and j83 are the resources available for allocation at stage 2, which
are equal to 2500, 2000, and 450, respectively. The maximum value that Jc2

can assume without violating any constraint is given by

/2500 2000 450\

* = DB11(—'10-'15J-200

Thus the recurrence relation, Eq. (E2), can be restated as:

max/2(2500,2000,450)

C /2500 - 5x2 2000 - 1Ox2 \")
= max 100x2 + 50min — -, - , 450 -1 .5x 2

Since

. /2500 - 5x2 2000 - IQx2 \
m n ( 10^—' 4 ' 45° ~ 1^J

r^^oo^x, if o ^ ^ l 2 5

= [ 2 0 0 ° ; 1Q* if 1 2 5 . X 2 , 200



we obtain

[ /2500 - 5x2 2000 - 1Ox2 X]
max 100JC2 + 50 min — - , - , 450 - 1.5JC2

0<JC2<200L \ 10 4 / J

TlOOx2 + 50 (*5OO
w

 5 ^ if 0 < Jt2 < 125

= max { / \

(^10Ox2 + 50 ( 2 0 0 ° ~ l0X2) if 125 ^ 2 ^ 200

ClSx2 + 12,500 if 0 < X2 < 125
= max]

^25,000 - 25;c2 if 125 < X2 < 200

Now,

max(75;c2 + 12,500) = 21,875 at X2 = 125

max(25,000 - 25JC2) = 21,875 at X2 = 125

Hence

/2*(2500,2000,450) = 21,875 at JC2* = 125.0

From Eq. (E1) we have

# . /2500 - 5JC2* 2000 - 10JC2* ACn 1 c A
jtf = minf — - , - , 450 - 1.5x2*J

= min(187.5,187.5,262.5) = 187.5

Thus the optimum solution of the problem is given by Jt* = 187.5, Jt* =
125.0, and/max = 21,875.0, which can be seen to be identical with the one
obtained earlier.

Problem of Dimensionality in Dynamic Programming. The application of dy-
namic programming for the solution of a linear programming problem has a
serious limitation due to the dimensionality restriction. The number of calcu-
lations needed will increase very rapidly as the number of decision variables
and state parameters increases. As an example, consider a linear programming
problem with 100 constraints. This means that there are 100 state variables.
By the procedure outlined in Section 9.4, if a table of/* is to be constructed
in which 100 discrete values (settings) are given to each parameter, the table
contains 100100 entries. This is a gigantic number, and if the calculations are
to be performed on a high-speed digital computer, it would require 10096 sec-



onds or about 10092 years* merely to compute one table of/*. Like this, 100
tables have to be prepared, one for each decision variable. Thus it is totally
out of the question to solve a general linear programming problem of any rea-
sonable size* by dynamic programming.

These comments are equally applicable for all dynamic programming prob-
lems involving many state variables, since the computations have to be per-
formed for different possible values of each of the state variables. Thus this
problem causes not only an increase in the computational time, but also re-
quires a large computer memory. This problem is known as the problem of
dimensionality or the curse of dimensionality, as termed by Bellman. This pre-
sents a serious obstacle in solving medium- and large-size dynamic program-
ming problems.

9.9 CONTINUOUS DYNAMIC PROGRAMMING

If the number of stages in a multistage decision problem tends to infinity, the
problem becomes an infinite stage or continuous problem and dynamic pro-
gramming can still be used to solve the problem. According to this notion, the
trajectory optimization problems, defined in Section 1.5, can also be consid-
ered as infinite-stage or continuous problems.

An infinite-stage or continuous decision problem may arise in several prac-
tical problems. For example, consider the problem of a missile hitting a target
in a specified (finite) time interval. Theoretically, the target has to be observed
and commands to the missile for changing its direction and speed have to be
given continuously. Thus an infinite number of decisions have to be made in
a finite time interval. Since a stage has been defined as a point where decisions
are made, this problem will be an infinite-stage or continuous problem. An-
other example where an infinite-stage or continuous decision problem arises is
in planning problems. Since large industries are assumed to function for an
indefinite amount of time, they have to do their planning on this basis. They
make their decisions at discrete points in time by anticipating a maximum profit
in the long run (essentially over an infinite period of time). In this section we
consider the application of continuous decision problems.

We have seen that the objective function in dynamic programming formu-
lation is given by the sum of individual stage returns. If the number of stages
tends to infinity, the objective function will be given by the sum of infinite
terms, which amounts to having the objective function in the form of an inte-
gral. The following examples illustrate the formulation of continuous dynamic
programming problems.

1ThC computer is assumed to be capable of computing 108 values of/* per second.
*As stated in Section 4.7, LP problems with 150,000 variables and 12,000 constraints have been
solved in a matter of a few hours using some special techniques.



Example 9.6 Consider a manufacturing firm that produces a certain product.
The rate of demand of this product (p) is known to be p = p[x(t),t], where t
is the time of the year and x(f) is the amount of money spent on advertisement
at time t. Assume that the rate of production is exactly equal to the rate of
demand. The production cost, c, is known to be a function of the amount of
production (p) and the production rate (dp/dt) as c = c(p,dp/dt). The problem
is to find the advertisement strategy, x(t), so as to maximize the profit between
tx and t2. The unit selling price (s) of the product is known to be a function of
the amount of production as s = s(p) = a + b/p, where a and b are known
positive constants.

SOLUTION Since the profit is given by the difference between the income
from sales and the expenditure incurred for production and advertisement, the
total profit over the period tx to t2 is given by

' - I H " * D-c("'*')~ H * (Ei)

where p = p{x(i)j}. Thus the optimization problem can be stated as follows:
Find JC(O, tx < t < t2, which maximizes the total profit,/given by Eq. (E1).

Example 9.7 Consider the problem of determining the optimal temperature
distribution in a plug-flow tubular reactor [9.1]. Let the reactions carried in
this type of reactor be shown as follows:

X1 =*=* X2 — Z3

h.

where X1 is the reactant, X2 the desired product, and X3 the undesired product,
and it], Jt2, and Jt3 are called rate constants. Let Jc1 and JC2 denote the concentra-
tions of the products X1 and X2, respectively. The equations governing the rate
of change of the concentrations can be expressed as

— — h AJ1JCI = ^2X2 (E x )

dy
dx2
— + k2 X2 + fc3x2 = kxxx (E2)
dy

with the initial conditions JC1(J = 0) = C1 and jc2(y = 0) = C2, where y is the
normalized reactor length such that 0 < y < 1. In general, the rate constants
depend on the temperature (t) and are given by

jfc. = aie-{m, i = 1,2,3 (E3)

where at and bt are constants.



If the objective is to determine the temperature distribution £(y), 0 < y <
1, to maximize the yield of the product X2, the optimization problem can be
stated as follows:

Find t(y), 0 < y < 1, which maximizes

*2(1) - *2(0) = 1 dx2 = \ (Ic1Xx - k2x2 - Ic3X2) dy
Jj=O JO

where X1(V) and x2(y) have to satisfy Eqs. (E1) and (E2). Here it is assumed
that the desired temperature can be produced by some external heating device.

The classical method of approach to continuous decision problems is by the
calculus of variations.1" However, the analytical solutions, using calculus of
variations, cannot be obtained except for very simple problems. The dynamic
programming approach, on the other hand, provides a very efficient numerical
approximation procedure for solving continuous decision problems. To illus-
trate the application of dynamic programming to the solution of continuous
decision problems, consider the following simple (unconstrained) problem.
Find the function y(x) that minimizes the integral

' - L K l - * * ) * (9-33)
subject to the known end conditions y(x = a) = a, and y(x = b) = /3. We
shall see how dynamic programming can be used to determine y(x) numeri-
cally. This approach will not yield an analytical expression for y(x) but yields
the value of y(x) at a finite number of points in the interval a < x < b. To
start with, the interval (a,b) is divided into n segments each of length Ax (all
the segments are assumed to be of equal length only for convenience). The
grid points defining the various segments are given by

X1 = a, X2 = a + Ax, . . . ,

xt = a + (i — I)Ax, . . . , xn + i = a + nAx = b

If Ax is small, the derivative dy/dx at Jt1- can be approximated by a forward
difference formula as

fSee Section 12.4 for additional examples of continuous decision problems and the solution tech-
niques using calculus of variations.



where yt = y(xt), i = 1,2,. . .,n + 1. The integral in Eq. (9.33) can be ap-
proximated as

/ - _S R ^ (X1), V(Xi)9 *;] Ax (9.35)

Thus the problem can be restated as:

Find y(x2), y(x3),. . .,y(xn) which minimizes

n C ^
=• Ax It^ R\ — , yh X1 (9.36)

subject to the known conditions yx = a. and yn + j = (3.
This problem can be solved as a final value problem. Let

ffid) = min \ S R (yk + \~yk, yk, x) Ax] (9.37)
yi+ i,yi + 2,.. .,yn ^k=I \ ZlX / J

where 6 is a parameter representing the various values taken by yh Then
/*(0) can also be written as

ff(O) = min [*[yi '+^~g, ^ ^ ] A* + //ViOUi)] (9.38)

This relation is valid for i = 1,2,. . .,/i — 1, and

/n*(0) = / ? ( ^ ^ ' ^ ' ^ ) ^ (9-39)

Finally the desired minimum value is given by/*(0 = a).
In Eqs. (9.37) to (3.39), 6 oryt are continuous variable. However, for sim-

plicity, we treat 6 or yt as a discrete variable. Hence for each value of /,
we find a set of discrete values that 6 or y( can assume and find the value of
/*(0) for each discrete value of 6 or yt. Thus/f(0) will be tabulated for only
those discrete values that 6 can take. At the final stage, we find the values of
f*(a) and y*. Once yf is known, the optimal values of y2, y^, . . . , yn can
easily be found without any difficulty, as outlined in the previous sections.

It can be seen that the solution of a continuous decision problem by dynamic
programming involves the determination of a whole family of extremal trajec-
tories as we move from b toward a. In the last step we find the particular
extremal trajectory that passes through both points (a,a) and (fr,j3). This pro-
cess is illustrated in Fig. 9.16. In this figure,/*(0) is found by knowing which
of the extremal trajectories that terminate at xi+x pass through the point (Jt1-,0).



Figure 9.16 Solution of a continuous dynamic programming problem.

If this procedure is followed, the solution of a continuous decision problem
poses no additional difficulties. Although the simplest type of continuous de-
cision problem is considered in this section, the same procedure can be adopted
to solve any general continuous decision problem involving the determination
of several functions, V1(X), V2OO, . . . 9yN(x) subject to m constraints (m < N)
in the form of differential equations [9.3].

9.10 ADDITIONAL APPLICATIONS

Dynamic programming has been applied to solve several types of engineering
problems. Some representative applications are given in this section.

9.10.1 Design of Continuous Beams

Consider a continuous beam that rests on n rigid supports and carries a set of
prescribed loads P1 , P2, . . , P n as shown in Fig. 9.17 [9.11]. The locations
of the supports are assumed to be known and the simple plastic theory of beams
is assumed to be applicable. Accordingly, the complete bending moment dis-

Support
number

span 2span 1 span i span n

Figure 9.17 Continuous beam on rigid supports.



tribution can be determined once the reactant support moments mu m2, . . . ,
mn are known. Once the support moments are known (chosen), the plastic limit
moment necessary for each span can be determined and the span can be de-
signed. The bending moment at the center of the ith span is given by -P1IiIA
and the largest bending moment in the ith span, M1, can be computed as

TiA T l I I I m / - l + mi Pili 1 - I O

M1- = max K - ! ! , Im1-I, — j , i = 1,2,. . .,n

(9.40)

If the beam is uniform in each span, the limit moment for the ith span should
be greater than or equal to M1. The cross section of the beam should be selected
so that it has the required limit moment. Thus the cost of the beam depends
on the limit moment it needs to carry. The optimization problem becomes:

n

Find X = {mum2,. . . ,mn}7 which minimizes S Rj(S)
i = 1

while satisfying the constraints m,- > M1-, i = 1,2,. . .,n, where R1 denotes the
cost of the beam in the ith span. This problem has a serial structure and hence
can be solved using dynamic programming.

9.10.2 Optimal Layout (Geometry) of a Truss

Consider the planar, multibay, pin-jointed cantilever truss shown in Fig. 9.18
[9.11, 9.12, 9.22]. The configuration of the truss is defined by the x and y
coordinates of the nodes. By assuming the lengths of the bays to be known
(assumed to be unity in Fig. 9.18) and the truss to be symmetric about the x
axis, the coordinates ^1, ^2, . . . , yn define the layout (geometry) of the truss.
The truss is subjected to a load (assumed to be unity in Fig. 9.18) at the left
end. The truss is statically determinate and hence the forces in the bars be-
longing to bay i depend only on yt_} and yt and not on other coordinates J1,
J2, . . . , yj-2, yi +1, • • • , yn • Once the length of the bar and the force devel-
oped in it are known, its cross-sectional area can be determined. This, in turn,
dictates the weight/cost of the bar. The problem of optimal layout of the truss
can be formulated and solved as a dynamic programming problem.

For specificness, consider a three-bay truss for which the following rela-
tionships are valid (see Fig. 9.18):

yi + i =yt + di9 i = 1,2,3 (9.41)

Since the value of yx is fixed, the problem can be treated as an initial value
problem. If the y coordinate of each node is limited to a finite number of



Figure 9.19 Possible designs of the cantilever truss.

alternatives which can take one of the four values 0.25, 0.5, 0.75, 1 (arbitrary
units are used), there will be 64 possible designs, as shown in Fig. 9.19. If
the cost of each bay is denoted by R1, the resulting multistage decision problem
can be represented as shown in Fig. 9.5a.

9.10.3 Optimal Design of a Gear Train

Consider the gear train shown in Fig. 9.20, in which the gear pairs are num-
bered from 1 to n. The pitch diameters (or the number of teeth) of the gears
are assumed to be known and the face widths of the gear pairs are treated as

Figure 9.18 Multibay cantilever truss.

Bay 1 Bay 2 Bay 3



Figure 9.20 Gear train.

design variables [9.19, 9.20]. The minimization of the total weight of the gear
train is considered as the objective. When the gear train transmits power at any
particular speed, bending and surface wear stresses will be developed in the
gears. These stresses should not exceed the respective permissible values for
a safe design. The optimization problem can be stated as:

n

Find X = {xux2,. . .,xn}
T which minimizes S Ri(X) (9.42)

/ = i

subject to

(Tbi(X) < (7fcmax, <TM(X) < ffwmax* * = 1,2,. . . ,«

where x{ is the face width of gear pair /, R1 the weight of gear pair /, abi (awi)
the bending (surface wear) stress induced in gear pair /, and abmax (awmax) the
maximum permissible bending (surface wear) stress. This problem can be con-
sidered as a multistage decision problem and can be solved using dynamic
programming.

9.10.4 Design of a Minimum-Cost Drainage System

Underground drainage systems for stormwater or foul waste can be designed
efficiently for minimum construction cost by dynamic programming [9.14].
Typically, a drainage system forms a treelike network in plan as shown in Fig.
9.21. The network slopes downward toward the outfall, using gravity to con-

Gear pair 4

Gear pair 3

Gear pair 2

Gear pair 1



Figure 9.22 Representation of a three-element pipe segment [9.14]. (Reprinted with
permission of Gordon and Breach Science Publishers).

D3

Element 3

D2

Element 2

Di
Element 1

Outfall

Figure 9.21 Typical drainage network.

Manholes



vey the wastewater to the outfall. Manholes are provided for cleaning and
maintenance purposes at all pipe junctions. A representative three-element pipe
segment is shown in Fig. 9.22. The design of an element consists of selecting
values for the diameter of the pipe, the slope of the pipe, and the mean depth
of the pipe (D1 , /*; _ i, and ht). The construction cost of an element, R1, includes
cost of the pipe, cost of the upstream manhole, and earthwork related to ex-
cavation, backfilling, and compaction. Some of the constraints can be stated
as follows:

1. The pipe must be able to discharge the specified flow.
2. The flow velocity must be sufficiently large.
3. The pipe slope must be greater than a specified minimum value.
4. The depth of the pipe must be sufficient to prevent damage from surface

activities.

The optimum design problem can be formulated and solved as a dynamic pro-
gramming problem.
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REVIEW QUESTIONS

9.1 What is a multistage decision problem?

9.2 What is the curse of dimensionality?



9.3 State two engineering examples of serial systems that can be solved by
dynamic programming.

9.4 What is a return function?

9.5 What is the difference between an initial value problem and a final value
problem?

9.6 How many state variables are to be considered if an LP problem with
n variables and m constraints is to be solved as a dynamic programming
problem?

9.7 How can you solve a trajectory optimization problem using dynamic
programming?

9.8 Why are the components numbered in reverse order in dynamic pro-
gramming?

9.9 Define the following terms.
(a) Principle of optimality
(b) Boundary value problem
(c) Monotonic function
(d) Separable function

9.10 Answer true or false.
(a) Dynamic programming can be used to solve nonconvex problems.
(b) Dynamic programming works as a decomposition technique.
(c) The objective function,/ = (R1 + R2W3, is separable.
(d) A nonserial system can always be converted to an equivalent serial

system by regrouping the components.
(e) Both the input and the output variables are specified in a boundary

value problem. N

(f) The state transformation equations are same as the design equa-
tions.

(g) The principle of optimality and the concept of suboptimization are
same.

(h) A final value problem can always be converted into an initial value
problem.

PROBLEMS

9.1 Four types of machine tools are to be installed (purchased) in a produc-
tion shop. The costs of the various machine tools and the number of
jobs that can be performed on each are given below.



Machine Tool Cost of Machine Tool Number of Jobs
Type ($) That Can Be Performed

1 3500 9
2 2500 4
3 2000 3
4 1000 2

If the total amount available is $10,000, determine the number of ma-
chine tools of various types to be purchased to maximize the number of
jobs performed. (Note: The number of machine tools purchased must
be integers.)

9.2 The routes of an airline, which connects 16 cities (A9B,. . .,P)9 are
shown in Fig. 9.23. Journey from one city to another is possible only
along the lines (routes) shown, with the associated costs indicated on

Figure 9.23 Possible paths from A to P.

the path segments. If a person wants to travel from city A to city P with
minimum cost, without any backtracking, determine the optimal path
(route) using dynamic programming.

9.3 A system consists of three subsystems in series, with each subsystem
consisting of several components in parallel, as shown in Fig. 9.24.



Figure 9.24 Three subsystems connected in series.

The weights and reliabilities of the various components are given be-
low.

Weight of Each
Component, wt Reliability of Each

Subsystem, / (Ib) Component, rt

1 4 0.96
2 2 0.92
3 6 0.98

The reliability of subsystem i is given by R1 = 1 — (1 — rt)
ni, i = 1,

2, 3, where H1 is the number of components connected in parallel in
subsystem /, and the overall reliability of the system is given by R0 =
R1R2R3. It was decided to use at least one and not more than three
components in any subsystem. The system is to be transported into space
by a space shuttle. If the total pay load is restricted to 20 Ib, find the
number of components to be used in the three subsystems to maximize
the overall reliability of the system.

9.4 The altitude of an airplane flying between two cities A and F, separated
by a distance of 2000 miles, can be changed at points B, C, D, and E
(Fig. 9.25). The fuel cost involved in changing from one altitude to
another between any two consecutive points is given in the following
table. Determine the altitudes of the airplane at the intermediate points
for minimum fuel cost.

Subsystem 3Subsystem 2Subsystem 1

Components of
type 1

Components of
type 2

Components of
type 3



9.5 Determine the path (route) corresponding to minimum cost in Problem
9.2 if a person wants to travel from city D to city M.

9.6 Each of the n lathes available in a machine shop can be used to produce
two types of parts. If z lathes are used to produce the first part, the
expected profit is 3z and if z of them are used to produce the second
part, the expected profit is 2.5z. The lathes are subject to attrition so
that after completing the first part, only z/3 out of z remain available
for further work. Similarly, after completing the second part, only 2z/3
out of z remain available for further work. The process is repeated with
the remaining lathes for two more stages. Find the number of lathes to
be allocated to each part at each stage to maximize the total expected
profit. Assume that any nonnegative real number of lathes can be as-
signed at each stage.

9.7 A minimum-cost pipe line is to be laid between points (towns) A and
E. The pipe line is required to pass through one node out of Bu B2 and
B3, one out of C1, C2, and C3, and one out OfD1, D2, and D3 (see Fig.

From Altitude
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320
0
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2680
800
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4000
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6720
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4640
3040
1600
240

Figure 9.25 Altitudes of the airplane in Example 9.4.
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Figure 9.26 Pipe network.

9.26). The costs associated with the various segments of the pipe line
are given below:

For the segment starting at A: For the segment ending at E:
A-Bx 10 Dx-E 9
A-B2 15 D2-E 6
A-B3 12 D3-E 12

For the segments B1 to Cy and C1 to Dj

From Node
i

1
2
3

To Nodej

1

8
9
7

2

12
11
15

3

19
13
14

Find the solution using dynamic programming.

9.8 Consider the problem of controlling a chemical reactor. The desired
concentration of material leaving the reactor is 0.8 and the initial con-
centration is 0.2. The concentration at any time f, x(t), is given by

dx 1 -x / x

Jt = YT-xu(t)

where u(t) is a design variable (control function).



Find u(i) which minimizes

/ = ( (WO -O.8 ] 2 + u\t)}dt
Jo

subject to

0 < u(t) < 1

Choose a grid and solve u(t) numerically using dynamic programming.

9.9 It is proposed to build thermal stations at three different sites. The total
budget available is 3 units (1 unit = $10 million) and the feasible levels
of investment on any thermal station are 0, 1, 2, or 3 units. The electric
power obtainable (return function) for different investments are given
below.

Return Function,
R1(X)

R1(O)

R1?(2)
*/(3)

Thermal Station, i

1

0
2
4
6

2

0
1
5
6

3

0
3
5
6

Find the investment policy for maximizing the total electric power gen-
erated.

9.10 Solve the following LP problem by dynamic programming:

Maximize/(X1, X2) = 1Ox1 + Sx2

subject to

2X1 + X2 < 25

3X1 + 2x2 < 45

X2 < 10

X1 > 0, x2 > 0

Verify your solution by solving it graphically.



9.11 A fertilizer company needs to supply 50 tons of fertilizer at the end of
the first month, 70 tons at the end of second month, and 90 tons at the
end of third month. The cost of producing x tons of fertilizer in any
month is given by $(4500* + 20JC2). It can produce more fertilizer in
any month and supply it in the next month. However, there is an in-
ventory carrying cost of $400 per ton per month. Find the optimal level
of production in each of the three periods and the total cost involved by
solving it as an initial value problem.

9.12 Solve Problem 9.11 as a final value problem.

9.13 Solve the following problem by dynamic programming:

3
Maximize ZJ d\

subject to

d{ = xi + l - xh i = 1,2,3

X1 = 0, 1, 2, . . . , 5, / = 1,2

Jc3 = 5, X4 = 0



INTEGER PROGRAMMING

10.1 INTRODUCTION

In all the optimization techniques considered so far, the design variables are
assumed to be continuous, which can take any real value. In many situations
it is entirely appropriate and possible to have fractional solutions. For example,
it is possible to use a plate of thickness 2.60 mm in the construction of a boiler
shell, 3.34 hours of labor time in a project, and 1.78 Ib of nitrate to produce
a fertilizer. Also, in many engineering systems, certain design variables can
only have discrete values. For example, pipes carrying water in a heat ex-
changer may be available only in diameter increments of ^ in. However, there
are practical problems in which the fractional values of the design variables
are neither practical nor physically meaningful. For example, it is not possible
to use 1.6 boilers in a thermal power station, 1.9 workers in a project, and
2.76 lathes in a machine shop. If an integer solution is desired, it is possible
to use any of the techniques described in previous chapters and round off the
optimum values of the design variables to the nearest integer values. However,
in many cases, it is very difficult to round oif the solution without violating
any of the constraints. Frequently, the rounding of certain variables requires
substantial changes in the values of some other variables to satisfy all the con-
straints. Further, the round-off solution may give a value of the objective func-
tion that is very far from the original optimum value. All these difficulties can
be avoided if the optimization problem is posed and solved as an integer pro-
gramming problem.

When all the variables are constrained to take only integer values in an
optimization problem, it is called an (all)-integer programming problem. When
the variables are restricted to take only discrete values, the problem is called

10



a discrete programming problem. When some variables only are restricted to
take integer (discrete) values, the optimization problem is called a mixed-
integer (discrete) programming problem. When all the design variables of an
optimization problem are allowed to take on values of either zero or 1, the
problem is called a zero-one programming problem. Among the several tech-
niques available for solving the all-integer and mixed-integer linear program-
ming problems, the cutting plane algorithm of Gomory [10.7] and the branch-
and-bound algorithm of Land and Doig [10.8] have been quite popular. Al-
though the zero-one linear programming problems can be solved by the gen-
eral cutting plane or the branch-and-bound algorithms, Balas [10.9] developed
an efficient enumerative algorithm for solving those problems. Very little work
has been done in the field of integer nonlinear programming. The generalized
penalty function method and the sequential linear integer (discrete) program-
ming method can be used to solve all integer and mixed-integer nonlinear pro-
gramming problems. The various solution techniques of solving integer pro-
gramming problems are summarized in Table 10.1. All these techniques are
discussed briefly in this chapter.

INTEGER LINEAR PROGRAMMING

10.2 GRAPHICAL REPRESENTATION

Consider the following integer programming problem:

Maximize/(X) = 3X1 H- 4x2

TABLE 10.1 Integer Programming Methods

Linear programming problems Nonlinear programming problems

All-integer
problem

Mixed-integer
problem

Zero-one
problem

Polynomial
programming
problem

General nonlinear
problem

Cutting plane method
Branch-and-bound method

Cutting plane method
Branch-and-bound method
Balas method

All-integer
problem

Mixed integer
problem

Generalized penalty function
method

Sequential linear integer
(discrete) programming
method



subject to

3Jc1 - X1 < 12

3Jc1 + 1Ix2 < 66

X1 > 0 (10.1)

jc2 > 0

JC1 and Jc2 are integers

The graphical solution of this problem, by ignoring the integer requirements,
is shown in Fig. 10.1. It can be seen that the solution is Jc1 = 5^, X2 = 4^ with
a value of / = 34^. Since this is a noninteger solution, we truncate the frac-
tional parts and obtain the new solution as Jc1 = 5, JC2 = 4, a n d / = 31. By
comparing this solution with all other integer feasible solutions (shown by dots
in Fig. 10.1), we find that this solution is optimum for the integer LP problem
stated in Eqs. (10.1).

It is to be noted that truncation of the fractional part of a LP problem will
not always give the solution of the corresponding integer LP problem. This
can be illustrated by changing the constraint 3JC1 + Hx2 < 66 to 7JC1 + 1Ix2

< 88 in Eqs. (10.1). With this altered constraint, the feasible region and the

Figure 10.1 Graphical solution of the problem stated in Eqs. (10.1).



Figure 10.2 Graphical solution with modified constraint.

solution of the LP problem, without considering the integer requirement, are
shown in Fig. 10.2. The optimum solution of this problem is identical with
that of the preceding problem: namely, Jt1 = 5|, x2 = 4^, and/ = 34^. The
truncation of the fractional part of this solution gives X1 = 5, X2 = 4 , and/ =
31. Although this truncated solution happened to be optimum to the corre-
sponding integer problem in the earlier case, it is not so in the present case.
In this case the optimum solution of the integer programming problem is given
by xf = 0, Jc2* = 8, and/* = 32.

10.3 GOMORY'S CUTTING PLANE METHOD

10.3.1 Concept of a Cutting Plane

Gomory's method is based on the idea of generating a cutting plane. To illus-
trate the concept of a cutting plane, we again consider the problem stated in
Eqs. (10.1). The feasible region of the problem is denoted by ABCD in Fig.
10.1. The optimal solution of the problem, without considering the integer
requirement, is given by point C. This point corresponds to Jc1 = 5\, X2 = 4^,
and / = 34^, which is not optimal to the integer programming problem since
the values of Jt1 and X2 are not integers. The feasible integer solutions of the



problem are denoted by dots in Fig. 10.1. These points are called the integer
lattice points.

In Fig. 10.3, the original feasible region is reduced to a new feasible region
ABEFGD by including the additional (arbitrarily selected) constraints. The idea
behind adding these additional constraints is to reduce the original feasible
convex region ABCD to a new feasible convex region (such as ABEFGD) such
that an extreme point of the new feasible region becomes an integer optimal
solution to the integer programming problem. There are two main considera-
tions to be taken while selecting the additional constraints: (1) the new feasible
region should also be a convex set, and (2) the part of the original feasible
region that is sliced off because of the additional constraints should not include
any feasible integer solutions of the original problem.

In Fig. 10.3, the inclusion of the two arbitrarily selected additional con-
straints PQ and P1Q1 gives the extreme point F(Jc1 = 5, x2 = 4, / = 31) as
the optimal solution of the integer programming problem stated in Eqs. (10.1).
Gomory's method is one in which the additional constraints are developed in
a systematic manner.

Additional (secondary) constraints

Figure 10.3 Effect of additional constraints.



10.3.2 Gomory's Method for All-Integer Programming Problems

In this method the given problem [Eqs. (10.1)] is first solved as an ordinary
LP problem by neglecting the integer requirement. If the optimum values of
the variables of the problem happen to be integers, there is nothing more to be
done since the integer solution is already obtained. On the other hand, if one
or more of the basic variables have fractional values, some additional con-
straints, known as Gomory constraints, which will force the solution toward
an all-integer point will have to be introduced. To see how the Gomory con-
straints are generated, let the tableau corresponding to the optimum (non-
integer) solution of the ordinary LP problem be as shown in Table 10.2. Here
it is assumed that there are a total of m + n variables (n original variables plus
m slack variables). At the optimal solution, the basic variables are represented
as xt (i = 1,2,. . .,ra) and the nonbasic variables as j , (j = 1,2,. . .,n) for
convenience.

Gomory's Constraint. From Table 10.2, choose the basic variable with the
largest fractional value. Let this basic variable be xt. When there is a tie in the
fractional values of the basic variables, any of them can be taken as xt. This
Variable can be expressed, from the ith equation of Table 10.2, as

n

X1 = I1 - S aijyj (10.2)

where bt is a noninteger. Let us write

bt = b( + JS1. (10.3)

atj = dtj + ay (10.4)

wherej?, and dtj denote the integers obtained by truncating the fractional parts
from bt and aij9 respectively. Thus /3, will be a strictly positive fraction (0 <
jSj < 1) and OL1J will be a nonnegative fraction (0 < a,-,- < 1). With the help

TABLE 10.2 Optimum Noninteger Solution of Ordinary LP Problem

Basic
Variables

Xx

X2

* /

f

Coefficient Corresponding to:

Xx

1
0

0

0
0

X2"

0
1

0

0
0 "

'Xi'

0
0

1

0
•0-

• -Xn

0
0

0

1
••0

y\

axx

yi-

aX2

a22

"i2

"ml

- % •

av

*ij

amj
CJ

' -yn

a2n

"in

Cn

Objective
Function

0
0

0

0
1

Constants

b,
b2

b,

K
f



of Eqs. (10.3) and (10.4), Eq. (10.2) can be rewritten as

n n

ft - S ayyj = xt - S1 + S aijyj (10.5)

Since all the variables X1 and J7 must be integers at an optimal integer solution,
the right-hand side of Eq. (10.5) must be an integer. Thus we obtain

n

ft - Ti a^yj = integer (10.6)
J = I

Notice that a^ are nonnegative fractions and J7 are nonnegative integers. Hence
the quantity E"=1 a^yj will always be a nonnegative number. Since ft is a
strictly positive fraction, we have

(ft - .2 ayy/J < ft < 1 (10.7)

As the quantity (ft - E"= { a^yf) has to be an integer [from Eq. (10.6)], it can
be either a zero or a negative integer. Hence we obtain the desired constraint
as

n

+ft - S atjyj < 0 (10.8)
J = I

By adding a nonnegative slack variable st, the Gomory constraint equation
becomes

n

Si - S aijyj = - f t (10.9)
J = I

where S; must also be an integer by definition.

Computational Procedure. Once the Gomory constraint is derived, the coef-
ficients of this constraint are inserted in a new row of the final tableau of the
ordinary LP problem (i.e., Table 10.2). Since all y} = 0 in Table 10.2, the
Gomory constraint equation (10.9), becomes

Sj = — ft = negative

which is infeasible. This means that the original optimal solution is not satis-
fying this new constraint. To obtain a new optimal solution that satisfies the
new constraint, Eq. (10.9), the dual simplex method discussed in Chapter 4



can be used. The new tableau, after adding the Gomory constraint, is as shown
in Table 10.3.

After finding the new optimum solution by applying the dual simplex
method, test whether the new solution is all-integer or not. If the new optimum
solution is all-integer, the process ends. On the other hand, if any of the basic
variables in the new solution take on fractional values, a new Gomory con-
straint is derived from the new simplex tableau and the dual simplex method
is applied again. This procedure is continued until either an optimal integer
solution is obtained or the dual simplex method indicates that the problem has
no feasible integer solution.

Remarks:

1. If there is no feasible integer solution to the given (primal) problem, this
can be detected by noting an unbounded condition for the dual problem.

2. The application of the dual simplex method to remove the infeasibility
of Eq. (10.9) is equivalent to cutting off the original feasible solution
towards the optimal integer solution.

3. This method has a serious drawback. This is associated with the round-
off errors that arise during numerical computations. Due to these round-
off errors, we may ultimately get a wrong optimal integer solution. This
can be rectified by storing the numbers as fractions instead of as decimal
quantities. However, the magnitudes of the numerators and denomina-
tors of the fractional numbers, after some calculations, may exceed the
capacity of the computer. This difficulty can be avoided by using the all-
integer integer programming algorithm developed by Gomory [10.10].

4. For obtaining the optimal solution of an ordinary LP problem, we start
from a basic feasible solution (at the start of phase II) and find a sequence
of improved basic feasible solutions until the optimum basic feasible
solution is found. During this process, if the computations have to be

TABLE 10.3 Optimal Solution with Gomory Constraint

Basic
Variables

Xx

X2

Xj

*m

f
Si

Coefficient Corresponding to:

Xx

1
0

0

0

0

0

X2"

0
1

0

0

0

0

0
0

1

0

0

0

'Xm

0
0

0

1

0

0

y\

«11

a2X

*n

amX

yi -

aX2

a22

am2

C2

- a / 2

'• Jj "

av

amj

- yn

<*2n

"in

Cn

-Oi in

f
0

0

0

0
1
0

S1

0
0

0

0

0

1

Constants

h
b2

bi

K
1

-ft



terminated at any stage (for some reason), the current basic feasible so-
lution can be taken as an approximation to the optimum solution. How-
ever, this cannot be done if we apply Gomory's method for solving an
integer programming problem. This is due to the fact that the problem
remains infeasible in the sense that no integer solution can be obtained
until the whole problem is solved. Thus we will not be having any good
integer solution that can be taken as an approximate optimum solution
in case the computations have to be terminated in the middle of the pro-
cess.

5. From the description given above, the number of Gomory constraints to
be generated might appear to be very large, especially if the solution
converges slowly. If the number of constraints really becomes very large,
the size of the problem also grows without bound since one (slack) vari-
able and one constraint are added with the addition of each Gomory
constraint. However, it can be observed that the total number of con-
straints in the modified tableau will not exceed the number of variables
in the original problem, namely, n + m. The original problem has m
equality constraints in n + m variables and we observe that there are n
nonbasic variables. When a Gomory constraint is added, the number of
constraints and the number of variables will each be increased by one,
but the number of nonbasic variables will remain n. Hence at most n
slack variables of Gomory constraints can be nonbasic at any time, and
any additional Gomory constraint must be redundant. In other words, at
most n Gomory constraints can be binding at a time. If at all a (n H- l)th
constraint is there (with its slack variable as a basic and positive vari-
able), it must be implied by the remaining constraints. Hence we drop
any Gomory constraint once its slack variable becomes basic in a feasible
solution.

Example 10.1

Minimize /= -3Jc1 — 4x2

subject to

3X1 - X2 + X3 = 12

3X1 -I- Hx2 + X4 = 66

Xi > 0, i = 1 to 4

all JC1- are integers.

This problem can be seen to be same as the one stated in Eqs. (10.1) with the
addition of slack variables X3 and X4.



Since all the cost coefficients are nonnegative, the last tableau gives the
optimum solution as

Y - I l Y - 9 r - 0 V - O f - 6 9

which can be seen to be identical to the graphical solution obtained in Sec-
tion 10.2.

Step 2: Generate a Gomory constraint. Since the solution above is noninteger,
a Gomory constraint has to be added to the last tableau. Since there is a tie
between Xx and X2, let us select Xx as the basic variable having the largest
fractional value. From the row corresponding to Xx in the last tableau, we

SOLUTION

Step 1: Solve the LP problem by neglecting the integer requirement of the
variables xi9 i = 1 to 4, using the regular simplex method as shown below.

Basic
Variables

X3

X4

~f

Coefficients of Variables

Xx

3

3

- 3

X2

- 1

nn
Pivot

element
- 4

1
0

0

X4

0
1

0

0
0

1

bt

12

66

0

b( lais for ais > 0

6 <-

T
Most negative C7

Result of pivoting:

X3

X2

-f

I ii I
Pivot

element
3
11
21

0

1
0

1

0
0

1
11

1
11
4
11

0

0

1

18

6
24

Y «- Smaller
one

22

T
Most negative Cj

Result of pivoting:

X2

1
0
0

0
1
0

36
1
12
7
12

1
36
1
12
5
12

0
0
1

ii
2
9
2

69
2



can write

* i = T - 5 5 3 > i " 3 5 ^ ( E 1 )

where ^1 and y2 are used in place of X3 and X4 to denote the nonbasic vari-
ables. By comparing Eq. (E1) with Eq. (10.2), we find that

i = 1, bx = 1J, Sx = 5, fr = 5, S1 1 = 55,

d n = 0, a u = 55, S1 2 = 33, an = 0, and an = 36

From Eq. (10.9), the Gomory constraint can be expressed as

^i - <x\\y\ - anyi = - f t (E2)

where ^1 is a new nonnegative (integer) slack variable. Equation (E2) can
be written as

s\ - M y\ - i6 yi = -\ №3)

By introducing this constraint, Eq. (E3), into the previous optimum tableau,
we obtain the new tableau shown below.

-j . Coefficients of variables bt /ais
JD3.S1C ~ ^.

AT - ui r T for ais > 0
Variables Jc1 x2 yx y2 ~f S\ bt

X1 1 0 £ ± 0 0 xi
x2 0 1 - £ ± 0 0 1
- / o o ^ ^2 i o f

Step 3: Apply the dual simplex method to find a new optimum solution: For
this, we select the pivotal row r such that br = min (Jb1 < 0) = — \ corre-
sponding to S1 in this case. The first column s is selected such that

cs . ( Cj \
—zr = min I —tr )
-ars arj<o \-arjJ

Here

c; 1 36 21
_ = TX x TT = 77 for column ^1

—arj 12 11 11

= — X — = 1 5 for column y2.



The solution given by the present tableau is Jc1 = 5, X1 = 4-pj-, J1 = l-jj,
a n d / = — 33 yy, in which some variables are still nonintegers.

Step 4: Generate a new Gomory constraint. To generate the new Gomory
constraint, we arbitrarily select X1 as the variable having the largest frac-
tional value (since there is a tie between X1 and J1). The row corresponding
to X1 gives

X2 ~ TT ~ T\ yi + TT s\

From this equation, the Gomory constraint [Eq. (10.9)] can be written as

2̂ "" TT yi + TT s\ = ~u

When this constraint is added to the previous tableau, we obtain the follow-
ing tableau:

Since fj is minimum out of yy and 15, the pivot element will be ( — -^).
The result of pivot operation is given in the following tableau.

Basic
Variables

X1

X2

-f

Coefficients of Variables

1
0
0
0

X2

0
1
0
0

y\

0
0
0
1

yi

0
i

ii
4
11
1
11

" /

0
0
1
0

S\

1
_3_

11

36

5
51
11

369
11
18
11

btlais

forais > 0

Basic
Variables

X2

y\
-f

Coefficients of Variables

* i

1
0
0
0
0

X2

0
1
0
0
0

Jl

0

0

1

0

0

J2

0

J_

TT

i_

0
0
0
1
0

Sl

1
3
11
36
11
21
11
3

S2

0
0
0
0
1

bi

5
H
_18

369
11
1_
11

Step 5: Apply the dual simplex method to find a new optimum solution: To
carry the pivot operation, the pivot row is selected to correspond to the most
negative value of bt. This is the S1 row in this case.

Since only arj corresponding to column y2 is negative, the pivot element
will be (—1/11) in the S2

 r o w - The pivot operation on this element leads to



The solution given by this tableau is Xx = 5, X2 = 4, yx = 1, y2 = 7,
and/ = —31, which can be seen to satisfy the integer requirement. Hence
this is the desired solution.

10.3,3 Gomory's Method for Mixed-Integer Programming Problems

The method discussed in Section 10.3.2 is applicable to solve all integer pro-
gramming problems where both the decision and slack variables are restricted
to integer values in the optimal solution. In the mixed-integer programming
problems, only a subset of the decision and slack variables are restricted to
integer values. The procedure for solving mixed-integer programming prob-
lems is similar to that of all-integer programming problems in many respects.

Solution Procedure. As in the case of an all-integer programming problem,
the first step involved in the solution of a mixed-integer programming problem
is to obtain an optimal solution of the ordinary LP problem without considering
the integer restrictions. If the values of the basic variables, which were re-
stricted to integer values, happen to be integers in this optimal solution, there
is nothing more to be done. Otherwise, a Gomory constraint is formulated by
taking the integer-restricted basic variable, which has the largest fractional
value in the optimal solution of the ordinary LP problem.

Let xt be the basic variable which has the largest fractional value in the
optimal solution (as shown in Table 10.2), although it is restricted to take on
only integer values. If the nonbasic variables are denoted as yj9j = 1,2,. . .,n,
the basic variable X1 can be expressed as (from Table 10.2)

n

X1 = bf - S a^yj (10.2)
j — i

We can write

h = bt + ft (10.3)

the following tableau:

Basic
Variables

X1

X2

£

yi

Coefficients of Variables

*\

1
0
0
0
0

X2

0
1
0
0
0

y\

0
0
i
0
0

y-i

0
0
0
0
1

- /

0
0
0
1
0

1
0

-3
3

0
1
1
4

-11

5
4
1

31
7



where b( is the integer obtained by truncating the fractional part of bt and /3,- is
the fractional part of b{. By defining

atj = 4 +a^ (10.10)

where

Ca(j if atj > 0

4 = 00-")
tO if ^- < 0
(0 if a;.- > O

a~ =) (10.12)

Eq. (10.2) can be rewritten as

n

S (flj + ^ ) j y = ft + (£,. - X;) (10.13)

Here, by assumption, xt is restricted to integer values while bt is not an integer.
Since 0 < ft < 1 and ^1 is an integer, we can have the value of ft + (bt —
X1) either > 0 or < 0. First, we consider the case where

ft + (bt -x{) > 0 (10.14)

In this case, in order for xt to be an integer, we must have

ft + (bt - X1) = ft or ft + 1 or ft + 2,. . . (10.15)

Thus Eq. (10.13) gives

n

S {atj + aTj)yj > ft (10.16)

Since atj are nonpositive and y, are nonnegative by definition, we have

n n

SaJy7- > S « -^ ) J 7 - (10.17)

and hence

A l

Sflj^ft (10.18)



Next, we consider the case where

ft + ibt-Xi) < 0 (10.19)

For JC/ to be an integer, we must have (since 0 < ft < 1)

ft + (bt - xt) = - 1 + ft or - 2 + ft or - 3 + ft,. . . (10.20)

Thus Eq. (10.13) yields

n

S (a£ + a~)yj < ft - 1 (10.21)

Since

n n

S fl,7^ < S (4 + ^)J,-
J = I 7 = 1

we obtain

n

S a,^v. < /3,- - 1 (10.22)

Upon dividing this inequality by the negative quantity (/3, - 1), we obtain

^ 7 1 £ W *1 (10.23)

Multiplying both sides of this inequality by ft > 0, we can write the inequality
(10.23) as

j ^ - x i a^yj > ft (10.24)

Since one of the inequalities in (10.18) and (10.24) must be satisfied, the fol-
lowing inequality must hold true:

n n

2 <*$% + ̂ r H s <«* ty - ft (10-25)

7 = 1 P / ~ I ) = I

By introducing a slack variable s(, we obtain the desired Gomory constraint as

Si = S ajyj + -r^— S auyj - /3, (10.26)
7 ~~ * P / A 7 — 1



This constraint must be satisfied before the variable Jt1- becomes an integer. The
slack variable s, is not required to be an integer. At the optimal solution of the
ordinary LP problem (given by Table 10.2), all vy = 0 and hence Eq. (10.26)
becomes

st = —@i = negative

which can be seen to be infeasible. Hence the constraint Eq. (10.26) is added
at the end of Table 10.2, and the dual simplex method applied. This procedure
is repeated the required number of times until the optimal mixed integer so-
lution is found.

Discussion. In the derivation of the Gomory constraint, Eq. (10.26), we have
not made use of the fact that some of the variables (y,) might be integer vari-
ables. We notice that any integer value can be added to or subtracted from the
coefficient of aik (= a^ + a^) of an integer variable yk provided that we sub-
tract or add, respectively, the same value to Jt1- in Eq. (10.13), that is,

n

S ayyj + (aik ± 8)yk = ft + S1 - (x( T 8) (10.27)

From Eq. (10.27), the same logic as was used in the derivation of Eqs. (10.18)
and (10.24) can be used to obtain the same final equation, Eq. (10.26). Of
course, the coefficients of integer variables yk will be altered by integer amounts
in Eq. (10.26). It has been established that to cut the feasible region as much
as possible (through the Gomory constraint), we have to make the coefficients
of integer variables yk as small as possible. We can see that the smallest pos-
itive coefficient we can have for vy in Eq. (10.13) is

and the largest negative coefficient as

1 -OC1J= 1 - atj + dij

where dtj is the integer obtained by truncating the fractional part of atj and a(j

is the fractional part. Thus we have a choice of two expressions, (atj — dtj)
and (1 - atj + dtj), for the coefficients of y, in Eq. (10.26). We choose the
smaller one out of the two to make the Gomory constraint, Eq. (10.26), cut
deeper into the original feasible space. Thus Eq. (10.26) can be rewritten
as



s, = S ajyj + -T—|— S (+ a0 )% + E {atj - d^
J Hi * J J

for nonimerger variables y, Indtf"^?

+ j^tj ^ 1 - su + d>j)yj - ft-
^ , —̂

for integer variables >>y

and for atj - ai} > ft

where the slack variable S1 is not restricted to be an integer.

Example 10.2 Solve the problem of Example 10.1 with X2 only restricted to
take integer values.

SOLUTION

Step 1: Solve the LP problem by simplex method by neglecting the integer
requirement. This gives the following optimal tableau:

The noninteger solution given by this tableau is

x\ = 5^ x2 = 4 , V1 = v2 = 0 and /min = - 3 4 |

Step 2: Formulate a Gomory constraint. Since X2 is the only variable that is
restricted to take integer values, we construct the Gomory constraint for x2.
From the tableau of step 1, we obtain

X2 = I2- a2Xyx - a22y2

where

t>2 = 2> ^21 = —12» a I K * ^22 = 12

According to Eq. (10.3), we write b2 as b2 = b2 + j82 where B2 = 4 and j32

Basic
Variables

* t

X2

£

Coefficients of Variables

X1

1
0
0

X2

0
1
0

Vi

36

7
12

V2

1
36
1
12
5
12

0
0
1

ii
2
9
2
69
2



= \. Similarly, we write from Eq. (10.10)

a2l = a2l + a2l

a22 = a22 + a22

where

a2l = 0, a2~\ = — J2 (since a2{ is negative)

a22 = TI> ai2 — 0 (since a22 is nonnegative)

The Gomory constraint can be expressed as [from Eq. (10.26)]:

2 2 .

S2- S ^ + ^ S a ^ - = ^

where S2 is a slack variable which is not required to take integer values. By
substituting the values of a}- , cijj , and /J1-, this constraint can be written as

*2 + Tiy\ - Tiyi = -l2

When this constraint is added to the tableau above, we obtain the following:

Basic
Variables

X2

~f

Coefficients of Variables

* i

1
0
0
0

X2

0
1
0
0

36
1
12
7
12
1
12

y2

i
36
1
12
5
12
1
12

0
0
1
0

S2

0

0

0

1

bt

ii
2

9
2
69
2
1
2

Step 3: Apply dual simplexmethod to find a new optimum solution. Since
—\ is the only negative bt term, the pivot operation has to be done in S2

row. Further, a(j corresponding to V2 column is the only negative coefficient
in S2 row and hence pivoting has to be done on this element, -J2. The result
of pivot operation is shown in the following tableau.

Basic
Variables

X2

-f
y2

Coefficients of Variables

Xx

1
0
0
0

X2

0
1
0
0

yi
i
3

0

1
- 1

y2

0

0

0
1

- /

0
0

1

0

^2
1
3
1

5

- 1 2

bi
16
3

4

32

6



This tableau gives the desired integer solution as

xx = 5|, x2 = 4, y2 = 6, yx = 0, ^2 = 0, and /min = - 3 2

10.4 BALAS' ALGORITHM FOR ZERO-ONE PROGRAMMING
PROBLEMS

When all the variables of a LP problem are constrained to take values of 0 or
1 only, we have a zero-one (or binary) LP problem. A study of the various
techniques available for solving zero-one programming problems is important
because of the following reasons.

1. As we shall see later in this chapter (Section 10.5), a certain class of
integer nonlinear programming problems can be converted into equiva-
lent zero-one LP problems,

2. A wide variety of industrial, management, and engineering problems can
be formulated as zero-one problems. For example, in structural control,
the problem of selecting optimal locations of actuators (or dampers) can
be formulated as a zero-one problem. In this case, if a variable is zero
or 1, it indicates the absence or presence of the actuator, respectively,
at a particular location [10.31].

The zero-one LP problems can be solved by using any of the general integer
LP techniques like Gomory's cutting plane method and Land and Doig's
branch-and-bound method by introducing the additional constraint that all the
variables must be less than or equal to 1. This additional constraint will restrict
each of the variables to take a value of either zero (0) or one (1). Since the
cutting plane and the branch-and-bound algorithms were developed primarily
to solve a general integer LP problem, they do not take advantage of the special
features of zero-one LP problems. Thus several methods have been proposed
to solve zero-one LP problems more efficiently. In this section we present an
algorithm developed by Balas (in 1965) for solving LP problems with binary
variables only [10.9].

If there are n binary variables in a problem, an explicit enumeration process
will involve testing 2n possible solutions against the stated constraints and the
objective function. In Balas method, all the 2n possible solutions are enumer-
ated, explicitly or implicitly. The efficiency of the method arises out of the
clever strategy it adopts in selecting only a few solutions for explicit enumer-
ation.

The method starts by setting all the n variables equal to zero and consists
of a systematic procedure of successively assigning to certain variables the
value 1, in such a way that after trying a (small) part of all the 2n possible
combinations, one obtains either an optimal solution or evidence of the fact



that no feasible solution exists. The only operations required in the computa-
tion are additions and subtractions, and hence the round-off errors will not be
there. For this reason the method is some times referred to as additive algo-
rithm.

Standard Form of the Problem. To describe the algorithm, consider the fol-
lowing form of the LP problem with zero-one variables:

Xx

*2 I T

Find X = . such that/(X) = C X -> minimum

subject to (10.28)

AX + Y = B

xt = 0 or 1

Y > 0

where

C= ^Lo, Y= ? , B= V
KcnJ v j m y vfowy

au an • • • aXn

a2\ a22 • • • a2n
A =

-am\ dm! ' ' ' amn-

where Y is the vector of slack variables and C1- and atj need not be integers.

Initial Solution. An initial solution for the problem stated in Eqs. (10.28) can
be taken as

/o = O

x, = 0, / = 1,2,. . .,n (10.29)

Y<0) = B



If B > O9 this solution will be feasible and optimal since C > 0 in Eqs.
(10.28). In this case there is nothing more to be done as the starting solution
itself happens to be optimal. On the other hand, if some of the components bj
arc negative, the solution given by Eqs. (10.29) will be optimal (since C >
0) but infeasible. Thus the method starts with an optimal (actually better than
optimal) and infeasible solution. The algorithm forces this solution toward fea-
sibility while keeping it optimal all the time. This is the reason why Balas
called his method the pseudo dual simplex method. The word pseudo has been
used since the method is similar to the dual simplex method only as far as the
starting solution is concerned and the subsequent procedure has no similarity
at all with the dual simplex method. The details can be found in Ref. [10.9].

INTEGER NONLINEAR PROGRAMMING

10.5 INTEGER POLYNOMIAL PROGRAMMING

Watters [10.2] has developed a procedure for converting integer polynomial
programming problems to zero-one LP problems. The resulting zero-one LP
problem can be solved conveniently by the Balas method discussed in Section
10.4. Consider the optimization problem:

Xx

X2

Find X = . which minimizes /(X)

Kxn J

subject to the constraints (10.30)

gj(X) < 0, j= 1,2,. . .,m

X1 = integer, / = 1,2,. . .,«
w h e r e / a n d gj9j = 1,2,. . .,ra, are polynomials in the variables X1, X2, . . . ,
xn. A typical term in the polynomials can be represented as

nk

c*II (X1)*" (10.31)

where ck is a constant, akl a nonnegative constant exponent, and nk the number
of variables appearing in the kth term. We shall convert the integer polynomial
programming problem stated in Eq. (10.30) into an equivalent zero-one LP
problem in two stages. In the first stage we see how an integer variable, Jt1-,



can be represented by an equivalent system of zero-one (binary) variables. We
consider the conversion of a zero-one polynomial programming problem into
a zero-one LP problem in the second stage.

10.5.1 Representation of an Integer Variable by an Equivalent System
of Binary Variables

Let xt be any integer variable whose upper bound is given by U1 so that

X1 < U1 < oo (10.32)

We assume that the value of the upper bound ut can be determined from the
constraints of the given problem.

We know that in the decimal number system, an integer/? is represented as

p = P0 + 101 /?, + 102p2 + . . . , 0 < P1 < (10 - 1 = 9)

for i = 0,1,2,. . .

and written as p = • • • P2PXPQ by neglecting the zeros to the left. For ex-
ample, we write the number/? = 008076 as 8076 to represent/? = 6 + (101)
7 + (102) (0) + (1O3)8 + (104)0 + (105)0. In a similar manner, the integer/?
can also be represented in binary number system as

p = q0 + 21^1 + 22^2 + 23^3 + • • •

where 0 < 1̂- < (2 - 1 = 1) for i = 0,1,2,. . ..
In general, if yf\ y^\ yf\ . . . denote binary numbers (which can take a

value of 0 or 1), the variable xt can be expressed as

Ni

X1 = S 2kyp (10.33)
k = 0

where N1 is the smallest integer such that

^ p < 2N- (10.34)

Thus the value of Nt can be selected for any integer variable xt once its upper
bound ut is known. For example, for the number 97, we can take U1 = 97 and
hence the relation

U-^ = f = 49 ^ 2"<



is satisfied for N1- > 6. Hence by taking Nt = 6, we can represent ut as

97 = q0 + 21^1 + 22<?2 + 23<?3 + 24^4 + 25<?5 + 26<?6

where q0 = 1, ^1 = g2
 = <?3 = <?4 = 0? and g5 = ^6 = 1. A systematic method

of finding the values of q0, ql9 q2, . . . is given below.

Method of Finding q0, qu q2, . . . . Let M be the given positive integer. To
find its binary representation qnqn _, • • • qx q0, we compute the following
recursively:

b0 = M

, _ b0 - q0

bk = bk~x ~ qk~x (10.35)

where qk = 1 if bk is odd and qk = 0 if &* is even. The procedure terminates
when bk = 0.

Equation (10.33) guarantees that Jt1- can take any feasible integer value less
than or equal to U1. The use of Eq. (10.33) in the problem stated in Eq. (10.30)
will convert the integer programming problem into a binary one automatically.
The only difference is that the binary problem will have Nx H- N2 + • * • H-
Nn zero-one variables instead of the n original integer variables.

10.5.2 Conversion of a Zero-One Polynomial Programming Problem
into a Zero-One LP Problem

The conversion of a polynomial programming problem into a LP problem is
based on the fact that

jcf* = X1 (10.36)

if Jt/ is a binary variable (0 or 1) and aki is a positive exponent. \faki = 0, then
obviously the variable X1 will not be present in the fcth term. The use of Eq.
(10.36) permits us to write the &th term of the polynomial, Eq. (10.31), as

nk nk

ck II (x,r = ck II X1 = ck (Xl,x2,. . .^nk) (10.37)



Since each of the variables Jc1, JC2, . . . can take a value of either 0 or 1, the
product (X1 X2 • • • JC^) also will take a value of 0 or 1. Hence by defining
a binary variable yk as

nk

yk = xxx2 • • ' xnk= n X1 (10.38)

the kth term of the polynomial simply becomes ckyk. However, we need to
add the following constraints to ensure that yk = 1 when all xt = 1 and zero
otherwise:

yk > ( S ^ j - (nk - 1) (10.39)

yk < - ( S X1) (10.40)

It can be seen that if all Jc1- = 1, EJl1 Jt1- = n*, and Eqs. (10.39) and (10.40)
yield

yk ^ i (io.4i)

yk < 1 (10.42)

which can be satisfied only \fyk= 1. If at least one JC, = 0, we have EfL j Jc1-
< nk, and Eqs. (10.39) and (10.40) give

yk > -(nk - 1) (10.43)

yk < 1 (10.44)

Since nk is a positive integer, the only way to satisfy Eqs. (10.43) and (10.44)
under all circumstances is to have yk = 0.

This procedure of converting an integer polynomial programming problem
into an equivalent zero-one LP problem can always be applied, at least in
theory.

10.6 BRANCH-AND-BOUND METHOD

The branch-and-bound method is very effective in solving mixed-integer linear
and nonlinear programming problems. The method was originally developed
by Land and Doig [10.8] to solve integer linear programming problems and
was later modified by Dakin [10.23]. Subsequently, the method has been ex-
tended to solve nonlinear mixed-integer programming problems. To see the



basic solution procedure, consider the following nonlinear mixed-integer pro-
gramming problem:

Minimize/(X) (10.45)

subject to

gj(X) > 0, J = 1,2,. . :,m (10.46)

hk(X) = 0, k = 1,2,. . .,/> (10.47)

Xj = integer, j = 1,2,. . .,n0 (n0 < n) (10.48)

where X = (Jc1 X2 • • • Jcn }
r . Note that in the design vector X, the first n0

variables are identified as the integer variables. If n0 = n, the problem becomes
an all-integer programming problem. A design vector X is called a continuous
feasible solution if X satisfies constraints (10.46) and (10.47). A design vector
X that satisfies all the constraints, Eqs. (10.46) to (10.48), is called an integer
feasible solution.

The simplest method of solving an integer optimization problem involves
enumerating all integer points, discarding infeasible ones, evaluating the ob-
jective function at all integer feasible points, and identifying the point that has
the best objective function value. Although such an exhaustive search in the
solution space is simple to implement, it will be computationally expensive
even for moderate-size problems. The branch-and-bound method can be con-
sidered as a refined enumeration method in which most of the nonpromising
integer points are discarded without testing them. Also note that the process
of complete enumeration can be used only if the problem is an all-integer pro-
gramming problem. For mixed-integer problems in which one or more vari-
ables may assume continuous values, the process of complete enumeration
cannot be used.

In the branch-and-bound method, the integer problem is not directly solved.
Rather, the method first solves a continuous problem obtained by relaxing the
integer restrictions on the variables. If the solution of the continuous problem
happens to be an integer solution, it represents the optimum solution of the
integer problem. Otherwise, at least one of the integer variables, say JC, , must
assume a nonintegral value. If X1 is not an integer, we can always find an
integer [JC,] such that

[JC1-] < Xt < [JC1] + 1 (10.49)

Then two subproblems are formulated, one with the additional upper bound
constraint

Xt < [Xi] (10.50)



and another with the lower bound constraint

X1 > [JC1-] + 1 (10.51)

The process of finding these subproblems is called branching.
The branching process eliminates some portion of the continuous space that

is not feasible for the integer problem, while ensuring that none of the integer
feasible solutions are eliminated. Each of these two subproblems are solved
again as a continuous problem. It can be seen that the solution of a continuous
problem forms a node and from each node two branches may originate.

The process of branching and solving a sequence of continuous problems
discussed above is continued until an integer feasible solution is found for one
of the two continuous problems. When such a feasible integer solution is found,
the corresponding value of the objective function becomes an upper bound on
the minimum value of the objective function. At this stage we can eliminate
from further consideration all the continuous solutions (nodes) whose objective
function values are larger than the upper bound. The nodes that are eliminated
are said to have been fathomed because it is not possible to find a better integer
solution from these nodes (solution spaces) than what we have now. The value
of the upper bound on the objective function is updated whenever a better
bound is obtained.

It can be seen that a node can be fathomed if any of the following conditions
are true:

1. The continuous solution is an integer feasible solution.
2. The problem does not have a continuous feasible solution.
3. The optimal value of the continuous problem is larger than the current

upper bound.

The algorithm continues to select a node for further branching until all the
nodes have been fathomed. At that stage, the particular fathomed node that
has the integer feasible solution with the lowest value of the objective function
gives the optimum solution of the original nonlinear integer programming
problem.

Example 10.3 Solve the following LP problem using the branch-and-bound
method:

Maximize /= 3Jc1 H- 4JC2

subject to (E1)

7Jc1 + 11JC2 < 88, 3Jc1 - Jc2 < 12, Jc1 > 0, JC2 > 0

xt = integer, i = 1,2 (E2)



SOLUTION The various steps of the procedure are illustrated using graphi-
cal method.

Step 1: First the problem is solved as a continuous variable problem [without
Eq. (E2)] to obtain:

Problem (E1): Fig. 10.2; (jcf = 5.5, x$ = 4 . 5 , / * = 34.5)

Step 2: The branching process, with integer bounds on Jc1, yields the problems:

Maximize /= 3Jt1 4- 4x2

subject to (E3)

7Jc1 + Ux1 < 88, 3Jc1 - Jc2 < 12, Jc1 < 5, JC2 > 0

Figure 10.4 Graphical solution of problem (E3).



Figure 10.5 Graphical solution of problem (E4).

and

Maximize /= 3Jc1 + Ax2

subject to (E4)

7Jc1 + ILc2 < 88, 3Jc1 - Jc2 < 12, X1 > 6, JC2 > 0

The solutions of problems (E3) and (E4) are given by:

Problem (E3): Fig. 10.4; (jcf = 5, Jc2* = 4 .8182 , /* = 34.2727)

Problem (E4): Fig. 10.5; no feasible solution exists.

Step 3: The next branching process, with integer bounds on JC2, leads to the
following problems:

Maximize /= 3Jc1 + 4JC2

No feasible
solution



Figure 10.6 Graphical solution of problem (E5).

subject to (E5)

7X1 + 1Ix2 < 88, 3X1 - X2 < 12, X1 < 5, X2 < 4

and

Maximize /= 3X1 + 4x2

subject to (E6)

7X1 + Hx2 < 88, 3X1 - X2 < 12, X1 < 5, X2 > 5

The solutions of problems (E5) and (E6) are given by:

Problem (E5): Fig. 10.6; (xf = 5, JCJ = 4 , / * = 31)

Problem (E6): Fig. 10.7; (xf = 0, X2* = 8 , / * = 32)



Figure 10.7 Graphical solution of problem (E6).

Since both the variables assumed integer values, the optimum solution of
the integer LP problem, Eqs. (E1) and (E2), is given by ( j c f=0 ,x* = 8,
f* = 32).

Example 10.4 Find the solution of the welded beam problem of Section
7.22.3 by treating it as a mixed-integer nonlinear programming problem by
requiring X3 and X4 to take integer values.

SOLUTION The solution of this problem using the branch-and-bound method
was reported in Ref. [10.25]. The optimum solution of the continuous variable
nonlinear programming problem is given by

X* = {0.24,6.22,8.29,0.24}T, / * = 2.38



Figure 10.8 Solution of the welded beam problem using branch-and-bound method.
[10.25] (Reprinted with permission from ASME).

Next, the branching problems, with integer bounds on X3, are solved and the
procedure is continued until the desired optimum solution is found. The results
are shown in Fig. 10.8.

10.7 SEQUENTIAL LINEAR DISCRETE PROGRAMMING

Let the nonlinear programming problem with discrete variables be stated as
follows:

Minimize/(X) (10.52)

subject to

gj(X) < 0, J = 1,2,. . . ,m (10.53)

M X ) = 0, k = 1,2,. . .j> (10.54)

Continuous solution:
x* = {0.24, 6.22, 8.29, 0.24}T, f = 2.38

Continuous solution:
X* = {0.24, 5.75, 9, 0.24F1 f* = 2.417

Continuous solution:
x* = {0.26, 5.89, 89, 0.26}T, f* = 2.46

Not feasible x Not feasible x

Optimum solution

Not feasible x



X1 e {diUda,. . .,diq), i = 1,2,. . .,W0 (10.55)

JC}/} < JC1- < JC?0, i = /i0 + 1, W0 + 2, . . . , /i (10.56)

where the first W0 design variables are assumed to be discrete, dtj is the 7th
discrete value for the variable 1, and X = (Jc1 JC2

 # • • Xn } T . It is possible
to find the solution of this problem by solving a series of mixed-integer linear
programming problems.

The nonlinear expressions in Eqs. (10.52) to (10.54) are linearized about a
point X0 using a first-order Taylor's series expansion and the problem is stated
as:

Minimize/(X) « / (X0) + V/(X0) SX (10.57)

subject to

gj(X) * g,(X°) + Vg7(X
0) SX < 0, j = 1,2,. . .,m (10.58)

A*(X) « MX 0 ) + VA4(X
0) SX = 0, * = 1,2,. . .,p (10.59)

JC° + SJC, 6 {</n, da, . . . , diq}, i = 1,2,. . . , ^ (10.60)

jcf} < JC° + SJC,- < JC<W), i = /I0 + 1, /I0 + 2, . . . , n (10.61)

SX = X - X0 (10.62)

The problem stated in Eqs. (10.57) to (10.62) cannot be solved using mixed-
integer linear programming techniques since some of the design variables are
discrete and noninteger. The discrete variables are redefined as [10.26]

q

Xt = yndiX + yi2di2 + • • • + yiqdiq = S yi}dih i = 1,2,. . .,n0

(10.63)

with
q

yn + ya + • • • + yiq = S ytj = 1 (10.64)

y.. = 0 or 1, 1 = 1,2,. . .,W0, j = 1,2,. . . , 9 (10.65)

Using Eqs. (10.63) to (10.65) in Eqs. (10.57) to (10.62), we obtain

no g f / q \

Minimize/(X) « /(X0) + S / S y^0- - JC°
1 = 1 dXi V=I /

+ S ^ (jc, - JC°) (10.66)
1 = no + 1 OJC1-



subject to

no r, / no \ n «

gj(X) = g,(X°) + S ^ E yudu - x ? ) + S J S (t , - x?) < 0,

j=l,2,...,m (10.67)

MX)-MX0) + Z ? E ^ - x f U S p <*,. - ̂  = o,
i = l OX/ \ / = l / i = no+l CU;

* = 1,2,. . .,p (10.68)

S ^ = I, i = 1,2,. . .,AZ0 (10.69)

y(, = 0 or 1, / = 1,2,." . .,AZ0, y = 1,2,. . .,q (10.70)

.xf < JC? + 5JC, < JC|W), i = H0 + 1, H0 + 2, . . . , n (10.71)

The problem stated in Eqs. (10.66) to (10.71) can now be solved as a mixed-
integer LP problem by treating both ytj (i — 1,2,. . .,no,j = 1,2,. . .,q) and*,
(i = n0 + 1, Az0 + 2, . . . , « ) as unknowns.

In practical implementation, the initial linearization point X0 is to be se-
lected carefully. In many cases the solution of the discrete problem is expected
to lie in the vicinity of the continuous optimum. Hence the original problem
can be solved as a continuous nonlinear programming problem (by ignoring
the discrete nature of the variables) using any of the standard nonlinear pro-
gramming techniques. If the resulting continuous optimum solution happens
to be a feasible discrete solution, it can be used as X0. Otherwise, the values
of JC/ from the continuous optimum solution are rounded (in a direction away
from constraint violation) to obtain an initial feasible discrete solution X0. Once
the first linearized discrete problem is solved, the subsequent linearizations can
be made using the result of the previous optimization problem.

Example 10.5 [10.26]

Minimize/(X) = 2x2
{ + 3xj

subject to

g(X) = -J- + ± - 4 < 0
Xx X2

X1 6(0.3,0.7,0.8,1.2,1.5,1.8}

jc2 e{0.4,0 .8 , l . l ,1 .4 ,1 .6}

SOLUTION In this example, the set of discrete values of each variable is
truncated by allowing only three values—its current value, the adjacent higher



value, and the adjacent lower value—for simplifying the computations. Using

X0 = j j - j J, we have

/(X0) = 6.51, g(X°) = -2.26

L6x2)xo U-6J / _ I \ I -0.83J
V X2

2Jx"

Now

JC, = yn(0.8) + y,2(1.2) + y13(1.5)

X2 = y21(0.8) + 3̂ 22(1.1) + ^23(1-4)

&c, = y,,(0.8 - 1.2) + y12(1.2 - 1.2) + y13(1.5 - 1.2)

Sx2 = y2l(O.S - 1.1) + J22(Ll - 1.1) + jfed.4 - 1.1)

f -0 .4y n + 0.3jl3")
/ * 6.51 + {4.8 6.6}

l-0.3y2l +0.Iy23)

C-OAyn + 0.3yu~)
g * -2.26 + {-0.69 -0.83}

C-OJy21 +0.3^23J

Thus the first approximate problem becomes (in terms of the unknowns yn,
yn, y\3, y2\, yn, and y23):

Minimize/= 6.51 - 1.92yn + 1.44y13 - 1.98y21 + 1.98y23

subject to

-2.26 + 0.28^11 + 0.2Iy13 + 0.25y21 - 0.25y23 < 0

yw + yn + J B = i

y21 + y22 + y23 = 1

y,-, = Oor 1, i = 1,2, j = 1,2,3

In this problem, there are only nine possible solutions and hence they can all
be enumerated and the optimum solution can be found as

Jn = 1. ?i2 = 0, y13 = 0, y21 = 1, y22 = 0, y23 = 0



Thus the solution of the first approximate problem, in terms of original vari-
ables, is given by

Jc1 = 0.8, x2 = 0.8,/(X) = 2.61, and g(X) = -1 .5

This point can be used to generate a second approximate problem and the
process can be repeated until the final optimum solution is found.

10.8 GENERALIZED PENALTY FUNCTION METHOD

The solution of an integer nonlinear programming problem, based on the con-
cept of penalty functions, was originally suggested by Gellatly and Marcal in
1967 [10.5]. This approach was later applied by Gisvold and Moe [10.4] and
Shin et al. [10.24] to solve some design problems that have been formulated
as nonlinear mixed-integer programming problems. The method can be con-
sidered as an extension of the interior penalty function approach considered in
Section 7.13. To see the details of the approach, let the problem be stated as
follows:

Find X = . = j \ which minimizes /(X)

KxnJ

subject to the constraints (10.72)

gj(X) > 0, j = 1,2,. . .,m

X c e S c and XdeSd9

where the vector of variables (X) is composed of two vectors X^ and Xc, with
Xd representing the set of integer variables and Xc representing the set of con-
tinuous variables. Notice that Xe will not be there if all the variables are con-
strained to take only integer values and X^ will not be there if none of the
variables is restricted to take only integer values. The sets Sc and Sd denote the
feasible sets of continuous and integer variables, respectively. To extend the
interior penalty function approach to solve the present problem, given by Eq.
(10.72), we first define the following transformed problem.

Minimize <j>k(X,rk ,sk)

where
m

<t>k(X,rk,sk) = / (X) + rt S Gj[gj(X)] + skQk(Xd) (10.73)



In this equation, rk is a weighing factor (penalty parameter) and

m

rk S Gj[gj(X)]

is the contribution of the constraints to the <f>k function, which can be taken as
YYl YYl ^

rk S Gj[gj(X)] = +rk S — — (10.74)
J = I j=\ gj(X)

It can be noted that this term is positive for all X satisfying the relations gj(X)
> 0 and tends to + oo if any one particular constraint tends to have a value of
zero. This property ensures that once the minimization of the <\>k function is
started from a feasible point, the point always remains in the feasible region.
The term skQk(Xd) can be considered as a penalty term with sk playing the role
of a weighing factor (penalty parameter). The function Qk(Xd) is constructed
so as to give a penalty whenever some of the variables in Xd take values other
than integer values. Thus the function Qk(Xd) has the property that

TO if XdeSd

Qk(Xd) = \ . ^ ^ v (1 0-7 5)

We can take, for example,

Qk(Xd) = S U^Ji) (i - Z^l)T (10.76)

where yt < X1, zt > X1, and &k > 1 is a constant. Here 1̂- and Z1 are the two
neighboring integer values for the value xt. The function Qk(Xd) is a normal-
ized, symmetric beta function integrand. The variation of each of the terms
under summation sign in Eq. (10.76) for different values of (3k is shown in Fig.
10.9. The value of f3k has to be greater than or equal to 1 if the function Qk is
to be continuous in its first derivative over the discretization or integer points.

The use of the penalty term defined by Eq. (10.76) makes it possible to
change the shape of the 4>k function by changing (3k, while the amplitude can
be controlled by the weighting factor sk. The <j>k function given in Eq. (10.73)
is now minimized for a sequence of values of rk and sk such that for k -• oo,
we obtain

Min cl>k(X,rk,sk) -> Min/(X)

gj(X) > 0, J = 1,2,. . .,m (10.77)



Figure 10.9 Contour of typical term in Eq. (10.62). [10.4] (Reprinted with permis-
sion from ASME.)

In most of the practical problems, one can obtain a reasonably good solution
by carrying out the minimization of <j>k even for 5 to 10 values of k. The method
is illustrated in Fig. 10.10 in the case of a single-variable problem. It can be
noticed from Fig. 10.10 that the shape of the </> function (also called the re-
sponse function) depends strongly on the numerical values of rk, sk9 and (}k.

Min fa Min (j)2

Min $3

Min/

Figure 10.10 Solution of a single-variable integer problem by penalty function
method. X1, discrete variable; xJ

u jth value of X1. [10.4] (Reprinted with permission
from ASME.)



Choice of the Initial Values ofrk> sk, and pfc. The numerical values of rk, sk,
and fik have to be chosen carefully to achieve fast convergence. If these values
are chosen such that they give the response surfaces of <j> function as shown in
Fig. 10.10c, several local minima will be introduced and the risk in finding
the global minimum point will be more. Hence the initial value of sk (namely,
S1) is to be chosen sufficiently small to yield a unimodal response surface. This
can be achieved by setting

skQ'k « Pk (10.78)

where Q'k is an estimate of the maximum magnitude of the gradient to the Qk

surface and P'k is a measure of the gradient of the function Pk defined by

m

Pk =/(X) + rk S Gj\gj(X)] (10.79)
7 = 1

Gisvold and Moe [10.4] have taken the values of Qj1 and P'k as

Qk=I- 4 f t f t ( f t - D f t - ' ( 2 & - l)m-0k (10.80)

P, . (^)" 2 (10.81)

where

rdpkidx{\

dPk/dx2

VPk= . > (10.82)

The initial value of S1, according to the requirement of Eq. (10.78), is given
by

Pi(X1,r,)
Sl = Cl ovxrJ7> <ia83)

where X1 is the initial starting point for the minimization of ^1 , X ^ the set of
starting values of integer-restricted variables, and C1 a constant whose value is
generally taken in the range 0.001 and 0.1.

To choose the weighting factor ru the same consideration as discussed in
Section 7.13 are to be taken into account. Accordingly, the value of rx is cho-
sen as

rx = C2
 / ( y (10.84)



with the value of C2 ranging between 0.1 and 1.0. Finally, the parameter fik

must be taken greater than 1 to maintain the continuity of the first derivative
of the function <j*k over the discretization points. Although no systematic study
has been conducted to find the effect of choosing different values for fik, the
value Of]S1 — 2.2 has been found to give satisfactory convergence in some of
the design problems.

Once the initial values of rk, sk, and (3k (for Ic= 1) are chosen, the subse-
quent values also have to be chosen carefully based on the numerical results
obtained on similar formulations. The sequence of values rk are usually deter-
mined by using the relation

rk+l = c3rk9 k = 1 , 2 , . . . (10.85)

where C3 < 1. Generally, the value of C3 is taken in the range 0.05 to 0.5. To
select the values of sk, we first notice that the effect of the term Qk(Xd) is
somewhat similar to that of an equality constraint. Hence the method used in
finding the weighting factors for equality constraints can be used to find the
factor Sfc +1- F°r equality constraints, we use

- ^ = \ - (10.86)
sk rk+l

From Eqs. (10.85) and (10.86), we can take

sk+\ = cAsk (10.87)

with c4 approximately lying in the range Vl/0.5 and Vl/0.05 (i.e., 1.4 and
4.5). The values of ftk can be selected according to the relation

Pk+I = c5pk (10.88)

with c5 lying in the range 0.7 to 0.9.
A general convergence proof of the penalty function method, including the

integer programming problems, was given by Fiacco [10.6]. Hence the present
method is guaranteed to converge at least to a local minimum if the recovery
procedure is applied the required number of times.

Example 10.6 [10.24] Find the minimum weight design of the three-bar truss
shown in Fig. 10.11 with constraints on the stresses induced in the members.
Treat the areas of cross section of the members as discrete variables with per-
missible values of the parameter AtamSiX/P given by 0.1, 0.2, 0.3, 0.5, 0.8,
1.0, and 1.2.

SOLUTION By defining the nondimensional quantities/and xt as

/ - - ^ 7 - , * , - -p- , I = 1A3



Figure 10.11 Three-bar truss.

where W is the weight of the truss, amax the permissible (absolute) value of
stress, P the load, p the density, / the depth, and A1 the area of cross section
of member i (i = 1,2,3), the discrete optimization problem can be stated as
follows:

Minimize/ = 2JC1 H- X2 + v2 X3

subject to

V3JC2 + 1.932JC3

Si(X) = 1 == > 0
1.5X1JC2 + V2 Jc2JC3 + 1.319JC1Jc3

= , 0.634,, + 2 . 8 2 ^ ^ Q

1.5JC1Jc2 + V2 JC2Jc3 + 1.319JC1Jc3

ft(X) = i 0 ^ 1 " 2X2 ^ o
1.5Jc1JC2 + V 2 JC2Jc3 + 1.319JC1Jc3

S4(X) = i + °-5;' ~2X2 ^ o
1.5JC1Jc2 + V 2 JC2Jc3 + 1.319JC1Jc3

JC, e {0.1,0.2,0.3,0.5,0.8,1.0,1.2}, / = 1,2,3

The optimum solution of the continuous variable problem is given by / * =
2.7336, JCf = 1.1549, JC| = 0.4232, and Jc3* = 0.0004. The optimum solution

Bar 1,
area Ai

Bar 2,
area A2

Bar 3,
area A3

/

P

P



of the discrete variable problem is given b y / * = 3.0414, x* = 1.2, JC* =
0.5, and Jc3* = 0.1.
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REVIEW QUESTIONS

10.1 Answer true or false.
(a) The integer and discrete programming problems are one and the

same.
(b) Gomory's cutting plane method is applicable to mixed-integer pro-

gramming problems.



(c) Balas method was developed for the solution of all-integer pro-
gramming problems.

(d) The branch-and-bound method can be used to solve zero-one pro-
gramming problems.

(e) The branch-and-bound method is applicable to nonlinear integer
programming problems.

10.2 Define the following terms.
(a) Cutting plane
(b) Gomory's constraint
(c) Mixed-integer programming problem
(d) Additive algorithm

10.3 Give two engineering examples of a discrete programming problem.

10.4 Name two engineering systems for which zero-one programming is ap-
plicable.

10.5 What are the disadvantages of truncating the fractional part of a contin-
uous solution for an integer problem?

10.6 How can you solve an integer nonlinear programming problem?

10.7 What is a branch-and-bound method?

10.8 Match the following methods.
(a) Land and Doig Cutting plane method
(b) Gomory Zero-one programming method
(c) Balas Generalized penalty function method
(d) Gisvold and Moe Branch-and-bound method
(e) Reiter and Rice Generalized quadratic programming method

PROBLEMS

Find the solution for each of the following problems using a graphical proce-
dure.

10.1 Minimize/= Axx + 5x2

subject to

3JC, + X2 > 2

x{ + Ax2 > 5

3JC1 + 2x, > 7
Jc1, X2 > 0, integers



10.2 Maximize /= Axx + 8x2

subject to

4Jc1 + 5x2 < 40

X1 + 2x2 < 12

Jc1, Jc2 > 0, integers

10.3 Maximize / = 4Jc1 + 3JC2

subject to

3x, + 2JC2 < 18

JC1, X2 > 0, integers

10.4 Max imize /= 3X1 — X2

subject to

3X1 - 2x2 < 3

-5X1 - 4x2 < - 1 0

X1, X2 > 0, integers

10.5 Maximize /= 2X1 + X2

subject to

8X1 + 5x2 < 15

X1, x2 >: 0, integers

10.6 Solve the following problem using Gomory's cutting plane method:

Maximize /= 6X1 + 7x2

subject to

7X1 + 6x2 < 42

5X1 + 9x2 < 45

X1 - X2 < 4

X1 > 0 and integer, / = 1,2



10.7 Solve the following problem using Gomory's cutting plane method:

Maximize /= X1 + 2x2

subject to

X1 + X2 < 7

2Jc1 < 11, Ix2 < 7

JC/ > 0 and integer, i = 1,2

10.8 Express 187 in binary form.

10.9 Three cities A, B, and C are to be connected by a pipeline. The dis-
tances between A and 5 , B and C, and C and A are 5, 3, and 4 units,
respectively. The following restrictions are to be satisfied by the pipe-
line:

1. The pipes leading out of A should have a total capacity of at
least 3.

2. The pipes leading out of B or of C should have total capacities
of either 2 or 3.

3. No pipe between any two cities must have a capacity exceeding
2.

Only pipes of an integer number of capacity units are available and the
cost of a pipe is proportional to its capacity and to its length. Deter-
mine the capacities of the pipe lines to minimize the total cost.

10.10 Convert the following integer quadratic problem into a zero-one linear
programming problem:

Minimize/ = 2Jc1 + 3x2 + 4JC1JC2 - 6Jc1 - 3JC2

subject to

X1 + X2 < 1

2JC, + 3x2 < 4

X1, X2 > 0, integers

10.11 Convert the following integer programming problem into an equiva-
lent zero-one programming problem:

Min imize /= 6Jc1 — JC2



subject to

3Jt1 - X2 > 4

2X1 + X2 > 3

-xx - x2 > - 3

X1, Jc2 nonnegative integers

10.12 Solve the following zero-one programming problem using an exhaus-
tive enumeration procedure:

Maximize /= -1OJC1 — 5JC2 — 3JC3

subject to

Jc1 + 2JC2 + Jc3 > 4

2Jc1 H- X2 H- X3 < 6

X1 = O o r 1, i = 1,2,3

10.13 Solve the following binary programming problem using an exhaustive
enumeration procedure:

Min imize /= — 5X1 + 7x2 H- 1Ox3 — 3x4 + X5

subject to

X1 + 3x2 — 5x3 H- X4 + 4x5 < 0

2X1 + 6x2 - 3x3 H- 2x4 + 2x5 > 4

X2 — 2x3 — x4 + X5 < —2

X1 = Oor 1, i = 1,2,. . .,5

10.14 Find the solution of Problem 10.1 using the branch-and-bound method
coupled with the graphical method of solution for the branching prob-
lems.

10.15 Find the solution of the following problem using the branch-and-bound
method coupled with the graphical method of solution for the branch-
ing problems:

Maximize/ = X1 — 4x2



subject to

Xx — X2 ^ —4, Axx + 5x2 < 45

5Jc1 - Ix2 < 20, 5Jc1 + 2JC2 > 10

JC/ >: 0 and integer, / = 1,2

10.16 Solve the following mixed integer programming problem using a
graphical method:

Minimize /= 4Jc1 + 5JC2

subject to

1OJC1 + Jc2 > 10, 5Jc1 + 4JC2 > 20

3JC, + Ix2 > 21, X1 + 12JC2 > 12

Jc1 > 0 and integer, JC2 >: 0

10.17 Solve Problem 10.16 using the branch-and-bound method coupled with
a graphical method for the solution of the branching problems.

10.18 Convert the following problem into an equivalent zero-one LP prob-
lem:

Maximize/ = xxx2

subject to

jc^ + jc2 < 25, JC7 > 0 and integer, i = 1,2

10.19 Consider the discrete variable problem:

Maximize / = JC1Jc2

subject to

Jc1 + Jc2 < 4

Jc1 e {0.1,0.5,1.1,1.6,2.0}

jc2e {0.4,0.8,1.5,2.0}

Approximate this problem as a zero-one LP problem at the vector,
A — 10.8/-



10.20 Find the solution of the following problem using a graphical method
based on the generalized penalty function approach:

Minimize f = x

subject to

x - 1 > 0 with x = {1,2,3, . . .}

Select suitable values of rk and sk to construct the <j>k function.



STOCHASTIC PROGRAMMING

11.1 INTRODUCTION

Stochastic or probabilistic programming deals with situations where some or
all of the parameters of the optimization problem are described by stochastic
(or random or probabilistic) variables rather than by deterministic quantities.
The sources of random variables may be several, depending on the nature and
the type of problem. For instance, in the design of concrete structures, the
strength of concrete is a random variable since the compressive strength of
concrete varies considerably from sample to sample. In the design of mechan-
ical systems, the actual dimension of any machined part is a random variable
since the dimension may lie anywhere within a specified (permissible) toler-
ance band. Similarly, in the design of aircraft and rockets the actual loads
acting on the vehicle depend on the atmospheric conditions prevailing at the
time of the flight, which cannot be predicted precisely in advance. Hence the
loads are to be treated as random variables in the design of such flight vehicles.

Depending on the nature of equations involved (in terms of random vari-
ables) in the problem, a stochastic optimization problem is called a stochastic
linear, geometric, dynamic or nonlinear programming problem. The basic idea
used in stochastic programming is to convert the stochastic problem into an
equivalent deterministic problem. The resulting deterministic problem is then
solved by using familiar techniques such as linear, geometric, dynamic and
nonlinear programming. A review of the basic concepts of probability theory
that are necessary for understanding the techniques of stochastic programming
is given in Section 11.2. The stochastic linear, nonlinear, geometric, and dy-
namic programming techniques are discussed in subsequent sections.

ii



11.2 BASIC CONCEPTS OF PROBABILITY THEORY

The material of this section is by no means exhaustive of probability theory.
Rather, it provides the basic background necessary for the continuity of pre-
sentation of this chapter. The reader interested in further details should consult
Parzen [11.1], Ang and Tang [11.2], or Rao [11.3].

11.2.1 Definition of Probability

Every phenomenon in real life has a certain element of uncertainty. For ex-
ample, the wind velocity at a particular locality, the number of vehicles cross-
ing a bridge, the strength of a beam, and the life of a machine cannot be
predicted exactly. These phenomena are chance dependent and one has to re-
sort to probability theory to describe the characteristics of such phenomena.

Before introducing the concept of probability, it is necessary to define cer-
tain terms such as experiment and event. An experiment denotes the act of
performing something the outcome of which is subject to uncertainty and is
not known exactly. For example, tossing a coin, rolling a die, and measuring
the yield strength of steel can be called experiments. The number of possible
outcomes in an experiment may be finite or infinite, depending on the nature
of the experiment. The outcome is a head or a tail in the case of tossing a coin,
and any one of the numbers 1, 2, 3, 4, 5, and 6 in the case of rolling a die.
On the other hand, the outcome may be any positive real number in the case
of measuring the yield strength of steel. An event represents the outcome of a
single experiment. For example, realizing a head on tossing a coin, getting the
number 3 or 5 on rolling a die, and observing the yield strength of steel to be
greater than 20000 psi in measurement can be called events.

The probability is defined in terms of the likelihood of a specific event. If
E denotes an event, the probability of occurrence of the event E is usually
denoted by P(E). The probability of occurrence depends on the number of
observations or trials. It is given by

P(E) = lim - (11.1)
«-><» n

where m is the number of successful occurrences of the event E and n is the
total number of trials. From Eq. (11.1) we can see that probability is a non-
negative number and

0 < P(E) < 1.0 (11.2)

where P(E) = 0 denotes that the event is impossible to realize while P(E) =
1.0 signifies that it is certain to realize that event. For example, the probability
associated with the event of realizing both the head and the tail on tossing a



coin is zero (impossible event), while the probability of the event that a rolled
die will show up any number between 1 and 6 is 1 (certain event).

Independent Events. If the occurrence of an event Ex in no way affects the
probability of occurrence of another event E2, the events Ex and E2 are said to
be statistically independent. In this case the probability of simultaneous oc-
currence of both the events is given by

P(E1E2) = P(Ex)P(E2) (11.3)

For example, if P(Ex) = P(raining at a particular location) = 0 . 4 and P(E2)
= P(realizing the head on tossing a coin) = 0 . 7 , obviously Ex and E2 are
statistically independent and

P(ExE2) = P(Ex)P(E2) = 0.28

11.2.2 Random Variables and Probability Density Functions

An event has been defined as a possible outcome of an experiment. Let us
assume that a random event is the measurement of a quantity X, which takes
on various values in the range — oo to oo. Such a quantity (like X) is called a
random variable. We denote a random variable by a capital letter and the
particular value taken by it by a lowercase letter. Random variables are of two
types: (1) discrete and (2) continuous. If the random variable is allowed to take
only discrete values Xx, X2, . . . , Xn, it is called a discrete random variable.
On the other hand, if the random variable is permitted to take any real value
in a specified range, it is called a continuous random variable. For example,
the number of vehicles crossing a bridge in a day is a discrete random variable,
whereas the yield strength of steel can be treated as a continuous random vari-
able.

Probability Mass Function (for Discrete Random Variables). Corresponding
to each xt that a discrete random variable X can take, we can associate a prob-
ability of occurrence P(xt). We can describe the probabilities associated with
the random variable X by a table of values, but it will be easier to write a
general formula that permits one to calculate P(xt) by substituting the appro-
priate value of Xi. Such a formula is called the probability mass function of the
random variable X and is usually denoted as fx(xt), or simply as/(Jt,). Thus
the function that gives the probability of realizing the random variable X = xt

is called the probability mass function fx(xt). Therefore,

f(Xi) =fx(xd = P(X = X1) (11.4)

Cumulative Distribution Function (Discrete Case). Although a random vari-
able X is described completely by the probability mass function, it is often



convenient to deal with another, related function known as the probability
distribution function. The probability that the value of the random variable X
is less than or equal to some number JC is defined as the cumulative distribution
Junction Fx (x).

Fx(X) = P(X < jc) = 1Lfx(X1) (11.5)

where summation expends over those values of / such that xt < x. Since the
distribution function is a cumulative probability, it is also termed as the cu-
mulative distribution function.

Example 11.1 Find the probability mass and distribution functions for the
number realized when a fair die is thrown.

SOLUTION Since each face is equally likely to show up, the probability of
realizing any number between 1 and 6 is \.

P(X = 1) = P(X = 2) = • • • = P(X = 6) = i

A(D =fx(2) = • • • =fx(6) =\

The analytical form of Fx(x) is

Fx(x) = 7 for 1 < x < 6
6

It can be seen that for any discrete random variable, the distribution function
will be a step function. If the least possible value of a variable X is S and the
greatest possible value is T, then

FX(X) = o for all JC < 5 and Fx(x) = 1 for all x > T

Probability Density Function (Continuous Case). The probability density
function of a random variable is defined by

fx(x) dx = P(x < X < x + dx) (11.6)

which is equal to the probability of detecting X in the infinitesimal interval (JC,
x + dx). The distribution function of X is defined as the probability of detect-
ing X less than or equal to JC, that is,

Fx(X) = f Mx') dx' (11.7)
J —oo

where the condition F^-oo) = O has been used. As the upper limit of the



Figure 11.1 Probability density and distribution functions of a continuous random
variable X: (a) density function; (b) distribution function.

integral goes to infinity, we have

( fx(x) dx = Fx(Cx) = 1 (11.8)
J —00

This is called the normalization condition. A typical probability density func-
tion and the corresponding distribution functions are shown in Fig. 11.1.

11.2.3 Mean and Standard Deviation

The probability density or distribution function of a random variable contains
all the information about the variable. However, in many cases we require only
the gross properties, not entire information about the random variable. In such
cases one computes only the mean and the variation about the mean of the
random variable as the salient features of the variable.

Mean. The mean value (also termed the expected value or average) is used to
describe the central tendency of a random variable.

Discrete Case. Let us assume that there are n trials in which the random vari-
able X is observed to take on the value Xx (nx times), X2 (n2 times), and so on,
and nx + n2 + • • * + nm = n. Then the arithmetic mean of X, denoted as X,
is given by

- Lk=x xknk y nk y n n Q x
X = = ZJ Xk— - ZJ XkJx(Xk) (IU.V)

n fc=i n k=\

where nkln is the relative frequency of occurrence of xk and is same as the
probability mass function fx(xk). Hence, in general, the expected value, E(X),



of a discrete random variable can be expressed as

X = E(X) = H Xjx(X1), sum over all i (11.10)
i

Continuous Case. lffx(x) is the density function of a continuous random vari-
able, X, the mean is given by

J OO

Xfx(X) dX (11.11)
- O O

Standard Deviation. The expected value or mean is a measure of the central
tendency, indicating the location of a distribution on some coordinate axis. A
measure of the variability of the random variable is usually given by a quantity
known as the standard deviation. The mean-square deviation or variance of a
random variable X is defined as

o\ = Var(X) = E[(X - ^x)
2]

= E[X2 - 2X^x + £]

= E(X2) - 2IxxE(X) + E(jil)

= E(X2) - & (11.12)

and the standard deviation as

ox = + VVar(X) = ylE(X2) - ^x (11.13)

The coefficient of variation (a measure of dispersion in nondimensional form)
is defined as

standard deviation ox
coefficient of variation of X = yx = = — (11.14)

mean JXX

Figure 11.2 shows two density functions with the same mean \xx but with dif-
ferent variances. As can be seen, the variance measures the breadth of a den-
sity function.

Example 11.2 The number of airplane landings at an airport in a minute (X)
and their probabilities are given by

xt 0 1 2 3 4 5 6

Px(X1) 0.02 0.15 0.22 0.26 0.17 0.14 0.04

Find the mean and standard deviation of X.



Figure 11.2 Two density functions with same mean.

SOLUTION

6

Z = H XiPx(X1) = 0(0.02) + 1(0.15) + 2(0.22) + 3(0.26)

/ = o

+ 4(0.17) + 5(0.14) + 6(0.04)

= 2.99
6

X2 = S X2Px(X1) = 0(0.02) + 1(0.15) + 4(0.22) + 9(0.26)
i = 0

+ 16(0.17) + 25(0.14) + 36(0.04)

= 11.03

Thus

O2X = X2 - (X)2 = 11.03 - (2.99)2 = 2.0899 or ox = 1.4456

Example 11.3 The force applied on an engine brake (X) is given by

MX) = ] l 2 - X

Determine the mean and standard deviation of the force applied on the brake.



SOLUTION

xfx(x) dx = I x ̂ r dx + \ x — - ^ dx = 6.6667

Zs[X2]= ( 4 W * = \* X2^dX+ Cx2 l~^dx

J-(X Jo 48 J8 24

= 21.3333 + 29.3333 = 50.6666

O2X = E[X2] - (E[X])2 = 50.6666 - (6.6667)2

= 6.2222 or ox = 2.4944

11.2.4 Function of a Random Variable

If X is a random variable, any other variable Y defined as a function of X will
also be a random variable. If fx(x) and Fx(x) denote, respectively, the prob-
ability density and distribution functions of X, the problem is to find the density
function fY(y) and the distribution function FY(y) of the random variable Y.
Let the functional relation be

Y= g(X) (11.15)

By definition, the distribution function of Y is the probability of realizing Y
less than or equal to y:

FY(y) = P(Y < y) = P(g < y)

= \ fx(x) dx (11.16)

where the integration is to be done over all values of x for which g(x) < y.
For example, if the functional relation between y and x is as shown in Fig.

11.3, the range of integration is shown as Ax1 + Ax2 + Ax3 + • • • . The

Figure 11.3 Range of integration in Eq. (11.16).



probability density function of Y is given by

fr(y) = | " [FYW (11.17)
dy

If Y = g(X), the mean and variance of 7 are defined, respectively, by

E(Y) = I g(x)fx(x)dx (11.18)
J —oo

J OO

[g(x) - E(Y)]2Mx) dx (11.19)
- O O

11.2.5 Jointly Distributed Random Variables

When two or more random variables are being considered simultaneously, their
joint behavior is determined by a joint probability distribution function. The
probability distributions of single random variables are called univariate dis-
tributions and the distributions that involve two random variables are called
bivariate distributions. In general, if a distribution involves more than one
random variable, it is called a multivariate distribution.

Joint Density and Distribution Functions. We can define the joint density
function of n continuous random variables X1, X2, . . . , Xn as

fxu...,xn (*i>- • -,*„) dxx - • • dxn = P(xx < Xx < X1 + dxu

X2 < X2 < x2 + dx2, . . . , xn < Xn < xn + dxn) (11.20)

If the random variables are independent, the joint density function is given
by the product of individual or marginal density functions as

/x,,...,*„(*!,...,*„) =/*,(*i) • • •/*(*„) (11.21)

The joint distribution function

Fx\,X2,. ..,Xn (*lr*2>- ' 'rXn)

associated with the density function of Eq. (11.20) is given by

FxU ...,Xn (X\>- ' -Jn)

= P[X1 < xl9 . . . , Xn < Xn]

J xi ^xn

•— \ fx,,..,xn (X[Xi,- • -x'n) dx[ dx'2 • • • dx'n (11.22)
— 00 J - O O



If X1, X2, . . . , Xn are independent random variables, we have

FXu...,Xn (*i>- • -Sn) = Fx1(X1) Fx2(X2) • • • FXn(xn) (11.23)

It can be seen that the joint density function can be obtained by differentiating
the joint distribution function as

fxu...,Xn(X19. . -,Xn) = ^ ^ ^ F x , ...,Xn (X1,. . .,xn) (11.24)

Obtaining the Marginal or Individual Density Function from the Joint Den-
sity Function. Let the joint density function of two random variables X and Y
be denoted by f(x,y) and the marginal density functions of X and Yby fx(x)
and/y(y), respectively. Take the infinitesimal rectangle with corners located
at the points (x,y), (X + dx, y), (x, y + dy), and (x + dx, y + dy). The
probability of a random point (x',yf) falling in this rectangle is/^y(x,y) dx dy.
The integral of such probability elements with respect to y (for a fixed value
of x) is the sum of the probabilities of all the mutually exclusive ways of
obtaining the points lying between x and x + dx. Let the lower and upper
limits of y be ax(x) and bx(x). Then

r rb\(x) -,
P[x < x' < x + dx] = /x,r(*,y) rfy Uc = / x « <&

L Jai(*) J

fx.r<*,y)dy (11.25)
J l = (Zl(X)

Similarly, we can show that

S
xi = bi{y)

fx,Y(x,y)dx (11.26)
*i =ai(y)

11.2.6 Covariance and Correlation

If X and Fare two jointly distributed random variables, the variances of X and
Y are defined as

S OO

(X - X)2Mx) dx (11.27)
— oo

E[(Y - Y)2] = Var[F] = ( (y - Y)2fr(y) dy (11.28)
J —oo



and the covariance of X and Y as

E[(X -X)(Y- Y)] = Cov(X,Y)

J OO n OO

(x - X.) (y - Y) fXtY(x,y) dx dy
- O O J - O O

= °X,Y (11.29)

The correlation coefficient, px Y> f ° r the random variables is defined as

Cov(X,Y)
Px Y = (11.30)

OX(JY

and it can be proved that — 1 < px, Y — 1 •

11.2.7 Functions of Several Random Variables

If Y is a function of several random variables X1, X2, . . . , Xn, the distribution
and density functions of Y can be found in terms of the joint density function
of X1, X29 . . . , Xn as follows:

Let

Y=g(Xl9X29...9Xn) (11.31)

Then the joint distribution function FY(y), by definition, is given by

Fyiy) = P(Y < y)

= ( ( • ' • ( fxux2,.. .,Xn(XuX2,. ..,Xn)CIx1 dx2dxn (11.32)

where the integration is to be done over the domain of the ^-dimensional (X1,
X2, . . . , Xn) space in which the inequality g(xu X2, . . . , Xn) < y is satisfied.
By differentiating Eq. (11.32), we can get the density function of y,fY(y).

As in the case of a function of a single random variable, the mean and
variance of a function of several random variables are given by

J OO /» OO

• • • S(X1J2,...,Xn) f X u X 2 _ . , X I I
- O O *) - O O

• (X1 ,Xj,. . .,X11) Ck1 dx2 • • • dxn (11 .33)



and

J oo poo

• • • IgQc1J2,. . .,xn) - Yf
- O O J - O O

* fxuxi...xn (XxJC29. . -,Xn) dxx dx2 • • • dxn (11.34)

In particular, if Y is a linear function of two random variables X1 and X2,
we have

Y = Ci1X1 + Ci2X2

where O1 and O2 are constants. In this case

J OO r» OO

\ (^1Jf1 + a2x2) fXuXl (X19X2) dx\ dx2
— oo J —oo

J OO /» OO

XJx1(Xi) dxx + a2 \ X2Zx2(X2) dx2
- O O J - O O

= H1E(X1) + a2£(X2) (11.35)

Thus the expected value of a sum is given by the sum of the expected values.
The variance of Y can be obtained as

Var(K) = E[(axXx + O2X2) - (O1X + O2X2)]
2

= E[O1(X1 - X1) + O2(X2 - X2)]
2

= E[a](Xx - X1)
2 + 2O1O2 (X1 - X1) (X2 - X2) + a\ (X2 - X2)

2]

(11.36)

Noting that the expected values of the first and the third terms are variances,
whereas that the middle term is a covariance, we obtain

Var(F) = o 2 VaT(X1) + a\ Var(X2) + 2O1O2 CoV(X1 ,X2) (11.37)

These results can be generalized to the case when Y is a linear function of
several random variables. Thus if

n

Y = S a,X, (11.38)
I = 1

then



n

E(Y) = S O1E(X1) (11.39)
I = 1

n n n

WaT(Y) = S aj WaI(Xi) + S S a,a. Cov(X,,X), i ±j (11.40)
1=1 Z=Iy=I

Approximate Mean and Variance of a Function of Several Random Vari-
ables. IfY= g(Xu . . . , Zn), the approximate mean and variance of Ycan be
obtained as follows. Expand the function g in a Taylor series about the mean
values X1, X2, . . . , Xn to obtain

n ~

Y = g(XuX2,. . .,Xn) + S (X,- - X1) -f:
z = i oXi

+ - S S (X1 - X1) (Xj - Xj) —j- + • • • (11.41)
L Z = I y = I UAf GA;

where the derivatives are evaluated at (X1, X2, . . . , Xn). By truncating the
series at the linear terms, we obtain the first-order approximation to Fas

ft r,
Y - g(Xl9 X2, . . . ,Xn) + E (X1- - X1) -f: (11.42)

The mean and variance of Y given by Eq. (11.42) can now be expressed as
[using Eqs. (11.39) and (11.40)]

E(Y) - S(X19X29 ... , X n ) (11.43)
n n n

Var(F) ^ S C]WdS(X1) 4- S S C1C7CoV(X^X,), i * j (11.44)
Z = I Z = I y = I

where c{ and c, are the values of the partial derivatives SgIdX1 and dg/dXj,
respectively, evaluated at (X1, X2, . . . , Xn).

It is worth noting at this stage that the approximation given by Eq. (11.42)
is frequently used in most of the practical problems to simplify the computa-
tions involved.

11.2.8 Probability Distributions

There are several types of probability distributions (analytical models) for de-
scribing various types of discrete and continuous random variables. Some of
the common distributions are given below:



Discrete Case Continuous Case

Discrete uniform distribution Uniform distribution
Binomial Normal or Gaussian
Geometric Gamma
Multinomial Exponential
Poisson Beta
Hypergeometric Rayleigh
Negative binomial (or Pascal's) Weibull

In any physical problem, one chooses a particular type of probability dis-
tribution depending on (1) the nature of the problem, (2) the underlying as-
sumptions associated with the distribution, (3) the shape of the graph between
f(x) or F(x) and x obtained after plotting the available data, and (4) the con-
venience and simplicity afforded by the distribution.

Normal Distribution. The best known and most widely used probability dis-
tribution is the Gaussian or normal distribution. The normal distribution has a
probability density function given by

fx(x) = -jl— e-i/2to-w)/oxP9 _O0 < x < Q0 (11.45)
V 2 TT Ox

where \xx and ox are the parameters of the distribution, which are also the mean
and standard deviation of X, respectively. The normal distribution is often
identified as N(JJLX,(JX).

Standard Normal Distribution. A normal distribution with parameters }ix =
O and ox = 1, called the standard normal distribution, is denoted as Af(0,1).
Thus the density function of a standard normal variable (Z) is given by

fz(z) = —= e~(z2/2\ - e x < z < ex (11.46)
V27T

The distribution function of the standard normal variable (Z) is often desig-
nated as </>(z) so that, with reference to Fig. 11.4,

</>(zO = p and Z1 = <t>~\p) (11.47)

wherep is the cumulative probability. The distribution function Af(0,1) [i.e.,
</>(z)] is tabulated widely as standard normal tables. For example, Table 11.1,
gives the values of z, / ( z ) , and </>(z) ft>r positive values of z. This is because
the density function is symmetric about the mean value (z = 0) and hence

/(-z) =f(z) (11.48)



Figure 11.4 Standard normal density function.

<K~Z) = 1 - 4>(z) (11.49)

By the same token, the values of z corresponding to p < 0.5 can be obtained
as

z = <t>~\p) = -<t>~\\ -P) (11.50)

Notice that any normally distributed variable (X) can be reduced to a standard
normal variable by using the transformation

Z = * - ^ (11.51)

For example, if P(a < X < b) is required, we have

P(a < X < b) = - ^ = f e-Wto-rtW2 dx (11.52)

By using Eq. (11.51) and dx = Ox dz, Eq. (11.52) can be rewritten as

P(a < X < b) = -r= \ e~z2n dz (11.53)
V 2 TT J (a-fix)/ax

This integral can be recognized to be the area under the standard normal den-
sity curve between (a — iix)l<Jx and (b — iix)l°x a n d hence

P(a < X * b) = Jb-^) - J"-^) (11.54)

Probability
= p = <j>(ei)



TABLE 11.1 Standard Normal Distribution Table

_Z /(Z) </>(£)

0.0 0.398942 0.500000
0.1 0.396952 0.539828
0.2 0.391043 0.579260
0.3 0.381388 0.617912
0.4 0.368270 0.655422
0.5 0.352065 0.691463
0.6 0.333225 0.725747
0.7 0.312254 0.758036
0.8 0.289692 0.788145
0.9 0.266085 0.815940
1.0 0.241971 0.841345
1.1 0.217852 0.864334
1.2 0.194186 0.884930
1.3 0.171369 0.903199
1.4 0.149727 0.919243
1.5 0.129518 0.933193
1.6 0.110921 0.945201
1.7 0.094049 0.955435
1.8 0.078950 0.964070
1.9 0.065616 0.971284
2.0 0.053991 0.977250
2.1 0.043984 0.982136
2.2 0.035475 0.986097
2.3 0.028327 0.989276
2.4 0.022395 0.991802
2.5 0.017528 0.993790
2.6 0.013583 0.995339
2.7 0.010421 0.996533
2.8 0.007915 0.997445
2.9 0.005952 0.998134
3.0 0.004432 0.998650
3.5 0.000873 0.999767
4.0 0.000134 0.999968
4.5 0.000016 0.999996
5.0 0.0000015 0.9999997

Example 11.4 The width of a slot on a duralumin forging is normally dis-
tributed. The specification of the slot width is 0.900 ± 0.005. The parameters
IJL = 0.9 and a = 0.003 are known from past experience in production process.
What is the percent of scrap forgings?

SOLUTION If X denotes the width of the slot on the forging, the usable
region is given by

0.895 < x < 0.905



and the amount of scrap is given by

scrap = P(x < 0.895) + P(x > 0.905)

In terms of the standardized normal variable,

Jr7 -0 .9 + 0.895\ / -0 .9 + 0.905\
SCraP = P{Z * 0.003 ) + P{Z * 0.003 )

= P(Z < -1.667) -f P(Z > + 1.667)

= [1 - P(Z < 1.667)] + [1 - P(Z < 1.667)]

= 2.0 - 2P(Z < 1.667)

= 2.0 - 2(0.9525) = 0.095

= 9.5%

Joint Normal Density Function. If X 1 , X2, . . . ,Xn fo l low n o r m a l d i s t r ibu-
tion, any linear function, Y = ^1X1 + a2X2 + • • • + anXn, also follows
normal distribution with mean

Y = Ci1X1 + U2X2 + • • • + anXn (11.55)

and variance

Var(F) = a\ VaT(X1) + a\ Var(X2) + • • • + a\ Var(XJ (11.56)

if X1, X2, . . . , Xn are independent. In general, the joint normal density func-
tion for ^-independent random variables is given by

f x u x 2 , . . . , x n (XuX2,. . . , X n ) = - = = exp - - 2J I — I
V(27r)n (JJa2 ' ' ' C J n L 2 *=i \ ok J]

= A1(^i)Zx2(X2) • • • /* (*«) (11.57)

where O1 = oXi. If the correlation between the random variables Xk and X7 is
not zero, the joint density function is given by

fx\,Xi,. . .,Xn (*lr*2>« • ->xn)

' W l i f e x p [ " 1 I . . ? • { r ' ^ * » " * ' * f e " * ' ] ( " ' 5 8 )

where



Km = Kjk = El(Xj - Xj) (xk - Xk)]

J OO /tOO

(Xj - Xj) (xk - Xk)fXj,xk (Xj9Xk) dXj dxk
- O O J - O O

= covariance between Xj and Xk

K\\ Ki2 ' ' * Kin

K2\ K22 ' * ' K2n

K = correlation matrix = . (11.59)

-KnI Kn2 # * # Knn-

and (K-1J7* = jkth element of K"1. It is to be noted that KXjxk = Ofovj^k
and = 0Xj for j = A: in case there is no correlation between Xj and Xk.

11.2.9 Central Limit Theorem

If X1, X2, . . . , Xn are n mutually independent random variables with finite
mean and variance (they may follow different distributions), the sum

n

Sn = S X1 (11.60)
/= 1

tends to a normal variable if no single variable contributes significantly to the
sum as n tends to infinity. Because of this theorem, we can approximate most
of the physical phenomena as normal random variables. Physically, Sn may
represent, for example, the tensile strength of a fiber-reinforced material, in
which case the total tensile strength is given by the sum of the tensile strengths
of individual fibers. In this case the tensile strength of the material may be
represented as a normally distributed random variable.

11.3 STOCHASTIC LINEAR PROGRAMMING

A stochastic linear programming problem can be stated as follows:

n

Minimize/(X) = C7X = S c.x (11.61)
j= 1

subject to
n

AjX = S U1JXj < bt, i = 1,2,. . .,m (11.62)



Xj > O, J = 1,2,...,/i (11.63)

where Cj, ai}, and bt are random variables (the decision variables Xj are assumed
to be deterministic for simplicity) with known probability distributions. Sev-
eral methods are available for solving the problem stated in Eqs. (11.61) to
(11.63). We consider a method known as the chance-constrained program-
ming technique, in this section.

As the name indicates, the chance-constrained programming technique can
be used to solve problems involving chance constraints, that is, constraints
having finite probability of being violated. This technique was originally de-
veloped by Charnes and Cooper [11.5]. In this method the stochastic program-
ming problem is stated as follows:

n

Minimize/(X) = S CJXJ (11.64)

subject to

p\ S art < bA > Pi, i = 1,2,. . .,m (11.65)

Xj > 0, J = 1,2,...,« (11.66)

where cj9 atj, and bt are random variables and pt are specified probabilities.
Notice that Eqs. (11.65) indicate that the Hh constraint,

n

. J aUXj ^ bi

has to be satisfied with a probability of at least pt where 0 < pt < 1. For
simplicity, we assume that the design variables Xj are deterministic and Cj, a(j,
and bt are random variables. We shall further assume that all the random vari-
ables are normally distributed with known mean and standard deviations.

Since cy are normally distributed random variables, the objective function
/(X) will also be a normally distributed random variable. The mean and vari-
ance of/are given by

n

f= Z eft (11.67)

Var(/) = X7VX (11.68)

where c, is the mean value of c, and the matrix V is the covariance matrix of
Cj defined as



VaKc1) CoV(C17C2) • • • CoV(C19Cn)

CoV(C29C1) Var(c2) • • • Cov(c2,cn)
V = . (11.69)

_Cov(cn,Cj) Cov(cn,c2) • • • Var(cn) _

with VaT(C7) and Cow(chCj) denoting the variance of c, and covariance between
C1 and Cj, respectively. A new deterministic objective function for minimization
can be formulated as

F(X) = kj + *2VVar(/) (11.70)

where k{ and k^ are nonnegative constants whose values indicate the relative
importance o f / and standard deviation o f / f o r minimization. Thus k2 = O
indicates that the expected value o f / i s to be minimized without caring for the
standard deviation of/. On the other hand, if kx = O, it indicates that we are
interested in minimizing the variability of/about its mean value without both-
ering about what happens to the mean value of/. Similarly, if kx = k2 = 1, it
indicates that we are giving equal importance to the minimization of the mean
as well as the standard deviation of/. Notice that the new objective function
stated in Eq. (11.70) is a nonlinear function in X in view of the expression for
the variance of/.

The constraints of Eq. (11.65) can be expressed as

P[A1- ^ 0] ^ ph i = l , 2 , . . . ,m (11.71)

where A, is a new random variable defined as

n n+l

h( = S aijXj - b( = I ] qikyk (11.72)

where

qtk = <*ik> k = 1,2,. . .,n qUn+x = bt

yk = xk, k = 1,2,. . .,n, yn+l = - 1

Notice that the constant yn+x is introduced for convenience. Since A1- is given
by a linear combination of the normally distributed random variables qik, it will
also follow normal distribution. The mean and the variance of A1- are given by

n+l n

hi = S qikyk = S OijXj - bt (11.73)
k—1 j—1

Vai(A,) = Y7V1Y (11.74)



where

Cyi ^)
Y = ^2 > (11.75)

VaKqn) Cov(qiUqi2) • • • Cov(qiUqin+l)

_ Cov(qa,qn) Var(fe) • • • Co\(qi2,qin+i)
Vj . v A 1 . / O )

-Cov(qitn+l,qn) Cov(^-n+uq i2) • ' ' Var(^>+1>) _

This can be written more explicitly as

n+l |- « + 1 -i

WaKh1) = S lyj V a r ( ^ ) + 2 S yky, Cov(qik,qn)

n r n i
= S y? Var(^) + 2 S ^ J^J/ Cov(qik,qn)

+ y5+i Var(^>+1) + 2j^+ 1 Cov(^-n+1,^>+1)

n r n i
= S *£ Var(a^) + 2 S ^X/ CoV(^9O17)

A:= 1 L /= i t+ l J

n

+ Var(fe,) - 2 S x 4 Cov(attA) (H-77)

Thus the constraints in Eqs. (11.71) can be restated as

P \hLL^L < ^L-] > /,,, i = 1,2,. . .,m (11.78)
LVVar(fc,) VVar(A,)J

where [(A, - A,)]/VVar(/i,) represents a standard normal variable with a mean
value of zero and a variance of 1.

Thus if st denotes the value of the standard normal variable at which

4>(sd=Pi (11.79)



the constraints of Eq. (11.78) can be stated as

<t> ( , ~ki ) ^ 0(Jf), i = 1,2,. . .,m (11.80)
\ V VaT(A1-)/

These inequalities will be satisfied only if the following deterministic non-
linear inequalities are satisfied:

/ ^ si9 i = 1,2,. . .,ra
VVaT(A1-)

or

A, + 5/ VVaI(A1-) < 0, I = 1,2,. . .,m (11.81)

Thus the stochastic linear programming problem of Eqs. (11.64) to (11.66)
can be stated as an equivalent deterministic nonlinear programming problem
as:

n

Minimize F(X) = Jt1 S C.JC, + k2 Vx7VX, kx ^ 0, k2 ^ 0,

subject to

A1- + .S1- VVaT(A1-) < 0, / = 1,2,. . .,m

X7 ^ 0, y = 1,2,. . . ,/i (11.82)

Example 11.5 A manufacturing firm produces two machine parts using lathes,
milling machines, and grinding machines. If the machining times required,
maximum times available, and the unit profits are all assumed to be normally
distributed random variables with the following data, find the number of parts
to be manufactured per week to maximize the profit. The constraints have to
be satisfied with a probability of at least 0.99.

Type of
Machine

Lathes
Milling

machines
Grinding

machines

Profit per unit

Machining Time Required per Unit (min)

Parti

Mean

an = 10
O21 = 4

a3l = 1

C1 = 50

Standard
Deviation

°an = 6

^21 = 4

^31 = 2

acx = 20

Part II

Mean

al2 = 5
a22 = 10

a32 = 1.5

c2 = 100

Standard
Deviation

*«12 = 4

^a 2 2 = 7

<7«32 = 3

aC3 = 50

Maximum time
available per week

(min)

Mean

Ix = 2500
b2 = 2000

b3 = 450

Standard
Deviation

abx = 500

ob2 = 400

ab3 = 50



SOLUTION By defining new random variables ht as

n

ht = S UijXj - bh

we find that ht are also normally distributed. By assuming that there is no
correlation between at/s and £,'s, the means and variances of ht can be obtained
from Eqs. (11.73) and (11.77) as

Jix = 1̂1JC1 + ^12Jc2 - b\ = 1Ox1 + 5x2 - 2500

Jt1 = 2̂1JC1 + a22jc2 - b2 = 4Jc1 + 1Ox2 - 2000

h3 = 3̂1JC1 H- ^32X2 — b3 = JC1 + 1.5JC2 — 450

<*\x = xWan + ^ka1 2 + <^, = 36x? + 16x^ + 250,000

ol2 = x\o2
a2X + XIaIn + a2*= \6x\ + A9x\ + 160,000

<*l, = x\a\x + JC^^32 + a|3 = Ax\ + 9x^ + 2500

Assuming that the profits are independent random variables, the covariance
matrix of c, is given by

1"VaT(C1) 0 1 T400 0 1

L 0 Var(c2)J L 0 2500 J

and the variance of the objective function by

Var(/) = X7VX = 400JC? + 250Ox2
1

Thus the objective function can be taken as

F = ^(5OJC1 + 10OJC2) + £2V400JC? + 250OJC2
1

The constraints can be stated as

P[h( < 0] ^ Pi = 0.99, i = 1,2,3

As the value of the standard normal variate (̂ 1-) corresponding to the probability
0.99 is 2.33 (obtained from Table 11.1), we can state the equivalent deter-
ministic nonlinear optimization problem as follows:

Minimize F = ^(5OJC1 + 100JC2) + ^ 4 0 O J C 1 + 2500JC2



subject to

1OJC1 + 5x2 + 2.33 V36*? + 16JC| H- 250,000 - 2500 ^ 0

Axx + IQx2 + 2.33 Vl6jc? + A9x\ + 160,000 - 2000 ^ 0

Jc1 + 1.5JC2 + 2.33 V4JC? + 9JC^ + 2500 - 450 ^ 0

Jc1 ^ 0, Jc2 > 0

This problem can be solved by any of the nonlinear programming techniques
once the values Of^1 and k2 are specified.

11.4 STOCHASTIC NONLINEAR PROGRAMMING

When some of the parameters involved in the objective function and con-
straints vary about their mean values, a general optimization problem has to
be formulated as a stochastic nonlinear programming problem. For the present
purpose we assume that all the random variables are independent and follow
normal distribution. A stochastic nonlinear programming problem can be stated
in standard form as:

Find X which minimizes / (Y) (11.83)

subject to

PIgJY) > 0] ^Pj9 j = 1,2,. . .,HI (11.84)

where Y is the vector of TV random variables J19J2,. . .,)># and it includes the
decision variables Jt15Jt2,. . .,Jtn. The case when X is deterministic can be ob-
tained as a special case of the present formulation. Equations (11.84) denote
that the probability of realizing gJY) greater than or equal to zero must be
greater than or equal to the specified probability Pj. The problem stated in Eqs.
(11.83) and (11.84) can be converted into an equivalent deterministic nonlinear
programming problem by applying the chance constrained programming tech-
nique as follows.

11.4.1 Objective Function

The objective function/(Y) can be expanded about the mean values of yh yh

as

N I df \
/(Y) = /(Y) + S ( - ^ - ) (yt - yt) + higher-order derivative terms

i=i \dyt Y/

(11.85)



If the standard deviations of yh ayi, are small, / (Y) can be approximated by
the first two terms of Eq. (11.85):

/(Y) - (Y) " I ( H Y ) * + I ( H Y ) ^ *™ (11"86)

If all y( (/ = 1,2,. . .,AO follow normal distribution, ^(Y), which is a linear
function of Y, also follows normal distribution. The mean and the variance of
\J/ are given by

* = ^(Y) (11.87)

Var(^) = o\ = S / - o2
yi (11.88)

since all 1̂- are independent. For the purpose of optimization, a new objective
function F(Y) can be constructed as

F(Y) = k$ + k2o+ (11.89)

where k{ ^ 0_and k2 ^ 0, and their numerical values indicate the relative
importance of \{/ and o^ for minimization.

Another way of dealing with the standard deviation of \p is to minimize \[/
subject to the constraint o^ ^ k3\j/, where k3 is a constant, along with the other
constraints.

11.4.2 Constraints

If some parameters are random in nature, the constraints will also be proba-
bilistic and one would like to have the probability that a given constraint is
satisfied to be greater than a certain value. This is precisely what is stated in
Eqs. (11.84) also. The constraint inequality (11.84) can be written as

f8j(gj)dgj >Pj (11.90)
JO

where fgj(gj) is the probability density function of the random variable gj (a
function of several random variables is also a random variable) whose range
is assumed to be — oo to oo. The constraint function g/Y) can be expanded
around the vector of mean values of the random variables, Y, as

gj(Y) = g,(Y) + S ( J I I Y ) (y,- - yd (11.91)



From this equation, the mean value, gj, and the standard deviation, a^, of gj
can be obtained as

ft = ft<Y) (11.92)

C N /a \ 2 V /2

°«-[?,(||v)«»] <»•»>
By introducing the new variable

6 = 8j ~ ^" (11.94)

and noting that

( -^= e~t2/2 dt = I (11.95)

J-OO V2TT

Eq. (11.90) can be expressed as

f -±= *"*2/2 dfl > r ^ L e~t2/2 dt (11.96)

where </>//?;) is the value of the standard normal variate corresponding to the
probability Pj. Thus

or

-ft" + ^ M ) < O (11.97)

Equation (11.97) can be rewritten as

r N i(S \2 ~i1/2

gj - ^iPj) ^ S ^ - j 4 J > O, ; = 1,2,. . .,m (11.98)

Thus the optimization problem of Eqs. (11.83) and (11.84) can be stated in its
equivalent deterministic form as: minimize F(Y) given by Eq. (11.89) subject
to the m constraints given by Eq. (11.98).

Example 11.6 Design a uniform column of tubular section shown in Fig.
11.5 to carry a compressive load P for minimum cost. The column is made up
of a material that has a modulus of elasticity E and density p. The length of
the column is /. The stress induced in the column should be less than the



Figure 11.5 Column under compressive load.

buckling stress as well as the yield stress. The mean diameter is restricted to
lie between 2.0 and 14.0 cm, and columns with thickness outside the range
0.2 to 0.8 cm are not available in the market. The cost of the column includes
material costs and construction costs and can be taken as 5W + 2d, where W
is the weight and d is the mean diameter of the column. The constraints have
to be satisfied with a probability of at least 0.95.

The following quantities are probabilistic and follow normal distribution
with mean and standard deviations as indicated:

Compressive load = (P,aP) = (2500,500) kg

Young's modulus = (E,oE) = (0.85 X 106, 0.085 X 106) kgf/cm2

Density = (p,<rp) = (0.0025,0.00025) kgf/cm3

Yield stress = (fy,afy) = (500,50) kgf/cm2

Mean diameter of the section = (d,od) = (d,0.0ld)

Column length = (/,a,) = (250,2.5) cm

Section A-A

A A

P

d

d0

dt

t



SOLUTION This problem, by neglecting standard deviations of the various
quantities, can be seen to be identical to the one considered in Example 1.1.
We will take the design variables as the mean tubular diameter (d) and the
tube thickness (f):

- B - a

Notice that one of the design variables (d) is probabilistic in this case and we
assume that d is unknown since od is given in term of (d). By denoting the
vector of random variables as

y2 E

Y = \ f = 1 f
^4 Jy

V^J I d J
the objective function can be expressed as/(Y) = 5W + 2d = 5plir dt + 2d.
Since

[ > ] T2500 ^
E 0.85 X 106

T = p M 0.0025 y

/y I 500

/ 250

V d J V d J

/(Y) = Splirdt + Id = 9.8175Jr + Id

-M. _ = M- _ = -^ _ = 0
ay, Y dy2 Y 3y4 Y

— ^7 = 5ir/df = 3927. Odt
dy3 Y

- ^ - = 5irpHf = 0.03927i#

M_
8y6 Y = 5Trplt + 2 = 9.8175? + 2.0



Equations (11.87) and (11.88) give

^(Y) = 9.S\15dt H- TA (E1)

a\ = (3927.0dt)2a2
p + (0.03927 dt)2 a j + (9.8175* H- 2.O)2^

= 0.98353V + 0.000432 + 0.00392732f (E2)

Thus the new objective function for minimization can be expressed as

F(d,t) = Jk1^ + Iz2O4,

= jfc!(9.81753r H- 23) H- *2(0.98353¥ + 0.000432 H- 0.00392732r)1/2

(E3)

where kx ^ 0 and A:2 ^ 0 indicate the relative importances of \p and o^ for
minimization. By using the expressions derived in Example 1.1, the con-
straints can be expressed as

PfeiOO < 0] = P ( ^ - £ < o ) > 0.95 (E4)

P[Si(Y) < 0] = P ^ - ^ f (J2 + Z2) ^ 0 j ^ 0.95 (E5)

P[g3W < 0] = P [ - J + 2.0 ^ 0] ^ 0.95 (E6)

Pb4OO < 0] = P[d - 14.0 ^ 0] ^ 0.95 (E7)

PlgsW < 0] = P [ - / + 0.2 ^ 0] > 0.95 (E8)

P[^6(Y) ^ 0] = P[r - 0.8 ^ 0] ^ 0.95 (E9)

The mean values of the constraint functions are given by Eq. (11.92) as

P - 2500

_ = J^ _ ^r2g(^2 + f2) = 2500 _ 7T2(0.85 x IQ6) (d2 + t2)
82 vdt 8/2 irdt 8(250)2

13 = ~d + 2.0

14 = d - 14.0

15 = -t + 0.2

16 = t - 0.8



The partial derivatives of the constraint functions can be computed as follows:

dgi _ = dg\ _ = dg\ _ = 0

dy2 Y dy3 Y dy5 Y

3gi 1_
3^1 Y -K dt

3y 4 Y

9£, P_ _ 2500
dy6 Y ~ 7r52f ~ Trd2t

9g2_ = 9 | 2 _ = 0

dy3 Y 3>-4 Y

fly, Y Trrff

3|2 _ TT 2(^2 + f2) _ T2(J2 + f2)
^y2 Y ~ 8/2 " 500,000

^ k " " ^ - ™ * * ? + *

^ - _ _ L _ ^(2d) _ _2500 _ 2 -
dy6\~ TTd1I Sl2 ird2t T(iA)d

df\- = 0 f o r / = l t o 5

^ Y = - 1 0

— - = 0 for J = 1 to 5
9y/ Y

^ - = 1 . 0
3y6Y

^ ^ o f o r / = l t o 6
dy, Y 3y, Y

Since the value of the standard normal variate fyiPj) corresponding to the prob-
ability Pj = 0.95 is 1.645 (obtained from Table 11.1), the constraints in Eq.



(11.98) can be expressed as follows:

For; = I+:

795 /25,320 63.3\1 / 2

- = - - 500 - 1.645f ~ " + 2500 + -=^\ < 0 (E10)

For 7 = 2:

2500 -Ii F °2p *4(d2 + ^)2O2E
S - 16J*" + f) - '••«№ + 25 X 10-

(2500 - \ 2 l " 2

- = j - + 3.47T2Jj O2A < 0

^ P - 16.78(52 + f2) - 1 . 6 4 5 [ ? | ^ + 2.82(52 + ??
at [_ a r

+ 0.113(52 + r2)2 + ^ ^ + 0.112654 + ^ ^ < 0 (E11)a r t J

For7 = 3:

- 5 + 2.0 - 1.645[(10"4)52]1/2 < 0

-1.016453 + 2.0 < 0 (E12)

For 7 = 4:

d - 14.0 - 1.645[(10~4)32]1/2 < 0

0.983353 - 14.0 < 0 (E13)

For7 = 5:

-t + 0.2 ^ 0 (E14)

For 7 = 6:

t - 0.8 ^ 0 (E15)
1ThC inequality sign is different from that of Eq. (11.98) due to the fact that the constraints are
stated as P[gj(Y) ^ 0] ^ pjt



Thus the equivalent deterministic optimization problem can be stated as:

Minimize F(d,t) given by Eq. (E3) subject to the constraints given by Eqs.
(E10) to (E15). The solution of the problem can be found by applying any of
the standard nonlinear programming techniques discussed in Chapter 7. In the
present case, since the number of design variables is only two, a graphical
method can also be used to find the solution.

11.5 STOCHASTIC GEOMETRIC PROGRAMMING

The deterministic geometric programming problem has been considered in
Chapter 8. If the constants involved in the posynomials are random variables,
the chance-constrained programming methods discussed in Sections 11.3 and
11.4 can be applied to this problem. The probabilistic geometric programming
problem can be stated as follows:

Find X = {x{ X2 • • • xn}
T which minimizes/(Y)

subject to (11.99)

P[gj(Y) > 0] >: pj9 j = 1,2,. . .,m

where Y = { ̂ 1 y2 • • • yis/}T is the vector of Af random variables (may
include the variables Jt1, Jc2,. . .,Jtn), and/(Y) and g/Y), j = 1,2,. . .,m, are
posynomials. By expanding the objective function about the mean values of
the random variables 1̂-, yh and retaining only the first two terms, we can
express the mean and variance of/(Y) as in Eqs. (11.87) and (11.88). Thus
the new objective function, F(Y), can be expressed as in Eq. (11.89):

F(Y) = krf + Jkcty (11.100)

The probabilistic constraints of Eq. (11.99) can be converted into deterministic
form as in Section 11.4:

r w / o \ 2 -i 1/2

gj - WPj) [ S ( J j Y ) 4 ] - 0 ' 7 = l,2,...,m (11.101)

Thus the optimization problem of Eq. (11.99) can be stated equivalently as:
Find Y which minimizes F(Y) given by Eq. (11.100) subject to the constraints
of Eq. (11.101). The procedure is illustrated through the following example.

Example 11.7 Design a helical spring for minimum weight subject to a con-
straint on the shear stress (r) induced in the spring under a compressive load
P.



SOLUTION By selecting the coil diameter (D) and wire diameter (d) of the
spring as design variables, we have Xx = D and X2 = d. The objective function
can be stated in deterministic form as [11.14,11.15]:

/(X) = ^ P (Nc + Q)p (E1)

where Nc is the number of active turns, Q the number of inactive turns, and p
the weight density. Noting that the deflection of the spring (5) is given by

where P is the load, C = Did, and G is the shear modulus. By substituting the
expression of Nc given by Eq. (E2) into Eq. (E1), the objective function can
be expressed as

/ m _ ! W + I^1 ,

The yield constraint can be expressed, in deterministic form, as

SKPC
T = —jT ^ Tmax (E4)

where rmax is the maximum permissible value of shear stress and K the shear
stress concentration factor given by (for 2 < C < 12):

K = -^T5 (E5)

Using Eq. (E5), the constraint of Eq. (E4) can be rewritten as

16P D075

^ - ^ 7 5 < 1 (E6)
'• ' max u

By considering the design variables to be normally distributed with (d,ad) =
5(1,0.05) and (59aD) = 5(1,0.05), kx = 1 and Jc2 = 0 in Eq. (11.100) and
using Pj = 0.95, the problem [Eqs. (11.100) and (11.101)] can be stated as
follows:

Minimize F(X) = - — — — =5 + 0.27Sir2pQd2D (E7)



subject to

12.24P D0J5

7r 'max u

The data is assumed as P = 510 N, p = 78,000 N/m3, 5 = 0.02 m, rmax =
0.306 x 109 Pa, and Q = 2. The degree of difficulty of the problem can be
seen to be zero and the normality and orthogonality conditions yield

S1 + <52 = 1

6S1 + Ib2 - 2.75S3 = 0 (E9)

-2S 1 + S2 + 0.75S3 = 0

The solution ofEqs. (E9) gives_5, = 0.81, S2 = 0.19, and S3 = 1.9, which
corresponds to d = 0.0053 m, D = 0.0358 m, and/min = 2.266 N.

11.6 STOCHASTIC DYNAMIC PROGRAMMING

11.6.1 Optimality Criterion

As stated in Chapter 9, dynamic programming can be applied for the optimi-
zation of deterministic or stochastic, continuous or discontinuous, linear or
nonlinear systems having a serial structure. In this section we consider dy-
namic programming when some of the parameters in the return and state trans-
formation functions are random instead of deterministic. First we consider a
stochastic return function (of an initial value problem)

R1 = Rfa+^yd (11.102)

where si+l is the input state variable to stage /, xt the decision variable, and yt

a random variable. Notice that yt will not be there in the case of a deterministic
return function. Let the random variable 1̂- be discrete with a probability mass
function of pt( yt). For a fixed value of ^ + 1 and xh we would expect to receive,
on the average, a return of

Ri(S1+UX1) = Zp^y1)Ri(S1+UX1J1) (11.103)

where the summation extends over all the values of yt. On the other hand, if
yt is a continuous random variable with a probability density function of ft( yt),
the expected value of the return or simply the expected return is given by

R(si+l ,X1) = J M ydRfa+x ,xhyt) dyt (11.104)



We shall be using the expected return as a criterion of optimization in this
section. For a fixed input state si+], the decision policy (or variable) xf will
be considered globally optimal (maximal) if and only if

Ri(si+Uxf) ^ Rfa+ijd (11.105)

for all feasible values of the decision variable xt.

11.6.2 Multistage Optimization

We use the expected return as a criterion for optimization and find that the
solution of a stochastic dynamic programming problem will be no more diffi-
cult than that of a deterministic DP, at least in theory. For this, consider an
Af-stage stochastic system shown in Fig. 11.6. It can be seen that this system
is similar to an Af-stage deterministic system except that there is a random
variable at each stage. Since the random variable yt affects the stage return (R1)
and transformation (tt), we can write

R1 = R1(S1+1^y1) (11.106)

St = ti(si+uxhyi) (11.107)

We assume that the random variables V15V2,. . .,Vn are statistically independent
with probability mass functions/?!(V1)^2(V2),. . ,pn(yn), respectively. If the
objective function to be optimized (F) is given by the sum of individual stage
returns, we have

n

F(X1 ,X2,...,Xn) = S R1(S1+,,xi,yi) (11.108)
I = I

where

Si = ^s1+19Xi9Vi)9 i = 1 ,2 , . . . , n (11.109)

Figure 11.6 Multistage optimization.



Since the input state variable si+x to stage i is a function of all upstream state
variables, the return function R1 of stage / depends not only on the random
variable 1̂- but also on the random variables yi+x,yi+2,. • -Jn- I n the case of a
deterministic system, it is sufficient to specify the values of sn+x and
Xx,X2,. . .,Xn to describe the behavior of the system completely. However, in
the case of a stochastic system, the input state variables depend on the up-
stream decision variables, the initial input state sn+x and previously observed
random variables. For this reason, even if a decision policy is given, the input
to stage i (i =̂ n) will not be known before specific values of the random
variables yi+x,yi+2,. . .,yn affecting the upstream stages have been realized.

To compute the objective function F (given by the sum of the expected stage
returns), the expected value of a function of several random variables is to be
found. From Section 11.2 we find that if the random variables y\,y2,. . .,yn are
independent with probability mass (density) functionspx( yx),p2{ y2),. • • ,P«( yn),
respectively, the expected value of the total system return F =
F(sn+Uxux2,. . .,Xn) is given by

F = S S • • • S [F(sn+Uyl9y2,. . -9yn)P\(y I)Pi^i)' ' 'Pn(yn)]
y\ yi yn

r n n i
= S £ • • • S I I />,<)>/) S RJ(SJ+1 jcj9yj)

y\ n yn u=i y=i J

if y\,y2,. . .,yn are discrete (11.110)

F = \ \ ' * - \ [F(sn+\,y\J2>- • ',yn)P\(y\)' • mPn(yn) dyx dy2- • -dyn

• • • I I Piiyd S Rj(Sj+uXj,yj) dyx dy2- • -dyn
*Jy\ Jn Jyn L1'=1 J=x J

if yx,y2,. . .,yn are continuous (11.111)

Since the ith stage return R1 is independent of the random variables
>>;_!,^2,- . .,yx, we have

F(sn+Uxx,x2,. . .,Xn)

= S Pn(yn)Rn(sn+\Sn>yn) S " ' * S I I P1O1-)
yn L yn-i yi i = i J

+ Ti\pn(yJ S \ pn-X(yn-X)Rn-X(sn,xn_x,yn-X) S • • •
yn (^ yn-\ L yn-2

• s n A(Jz)I] + • • • + s (Pn(^n) s )pn-i(yn-i) • • •

• S [px(yx)Rx(s2,xx,yx)] ) (11.112)
yi J/



This can be rewritten as

F(Sn+1,*!,. . .,Xn)= S pn(yn)Rn(sn+l9xn9yn) S pn-\(yn-\) ' ' '
yn L yn~\

' S p2(y2) S px(yx) ( • • '

+ S pn(yn) S ( /?w_l( Jn-l)^-lfe^n-l?Jn-l)

• ̂ S \pn-2(yn-2) • • • S ̂ 2 ( J 2 ) S p 1 ( ^ 1 ) J • • • ] ) ]

+ • • • + S Pn(Jn) S / pw-i(%_i) S Pn-2(yn-2.' ' '

yn L y«-i \ y«-2 (̂

• S U2(J2) SpKy^ite^i^i)] " • ] ) ] (H-113)

Since

^Piiyd = 1, I = 1,2,. . . , / i (11.114)
JV

Equation (11.113) reduces to

F(Sn+15X19X2,. . .,Xn) = S [Pn(yn)Rn(Sn+lfXn,yn)]
yn

+ S pn(yn) S /?„_,(jn_,)/?n_!^,Xn-!,J^1)
>»n L yn-l C JJ

+ • • • + S Ln(Jn) 2 Jpn^(Jn-O • • • S

• ^p2(J2) Sp 1 (J 1 ) R1(S29XUyx) M j (11.115)

Notice that the state transformation equations

S1 = J1-(S1-+!,*;,#), i = 1,2,. . .,/i (11.116)

relate the various state variables in Eq. (11.115). By assuming that the objec-
tive is to be maximized, let Fn(sn+X) be the maximum expected return as a
function of the input state Sn+1. Thus

F n ( S n + 1 ) = max F(sn+X,xn,xn_x,. . .,X1) (11.117)
XnJn-I,. • -,X]



By substituting Eq. (11.115) into Eq. (11.117), we obtain

Ff(Sn+O = max E [pn(yn)Rn(sn+x,xn,yn)\

Xn,Xn-\,...,X\ L yn

+ T pn(yn) S {Pn-l(yn-l)K-\(Sn,Xn-\,yn-l)} + ' * '
yn \_ yn-\ J

+ T \PniyJ S pn-\(yn-\) • • • S Zp2(J2) Sp1(^1)

• /?ite^i^i))jjj (11.H8)

Factoring out Zynpn( yn) which is common to every term, we obtain

Fn(Sn+O = max Tpn(yn)\ Rn(sn+Uxn,yn) + S \ pn-\(yn-X)
JCn ,Jt1,-1,...,JCI > L n̂-I L

• Rn_x(SnJCn-Uyn-X) + ^ Pn-l(yn-l) S
J y«-i L >-2

' (pn-2(yn-2) ' • ' ^p 1 ( J 1 ) JJ1(J2^19J1) ^ ] J (11.119)

By proceeding as in the case of the derivation of the deterministic recurrence
relation [Eq. (9.16)], we can write

max [F(sn+Uxn,xn_u. . .,X1)]
Xn,Xn-\,...,Xl

= max { max [F(Sn+\,xn,xn_,,. . .,X1)]) (11.120)
Xn Xn-\,Xn-I,...,X\

and then remove the nth stage return from the inner maximization since it is
not a function of jcn_1,xn_2,. . .,Xx. This yields

K(sn+\) = m^x S p n ( J j Rn(sn+Xjcn,yn)
Xn iyn i

+ max T pn-X(yn_x)Rn_x(sn,xn_x,yn_x) + • • •
*/i-I,.*«-2,...,*l L>"1

+ Zl / Pn-I(Jn-O • • • S p2( J2) S

• [/>,(3^1(S2,*,,J1)]] • • • ^)]Jj (H.121)



But

F^1(Sn) = F^tn[Sn+19XnJn])

max S / pn-l(yn-lWn-\(Sn,Xn-\>^-l)\
Xn-l,Xn-2,...,X\ \_yn-l \ /

+ • • • + S /pn-l(yn-l) ' • • S

• ^ 2 ( J 2 ) S [Px(Vi)Ri(S29XUyi))\ " • " ) ] (H.122)

By combining the expression for F*_, with that of F*, we obtain the relation

^?(*»+i) = max T* pn(yn)[Rn(sn+l9xnjn) + F^tn(Sn+19XnJn)]] (11.123)
Xn yn

By induction, we can derive the fundamental stochastic recurrence relations
as:

Ff(S1+1) = max YJPi(y^Qi(si+x,xhy^ \ < i < n
Xi yt

where

Q1(Si+19XiJi) = Ri(si+Uxhyi) + F*_x(ti{Si+l9Xiji})9 2 < i < n

Qi(s2Si,y\) = Ri(S2^1J1) (11.124)

The following points are worth noting at this stage.

1. The introduction of random variables causes no increase in the state vari-
ables.

2. Since Q1 is a function of only one random variable (^1-), only one random
parameter at a time is introduced into the optimization procedure. This
reduces considerably the formidable difficulties involved in optimizing
functions of several random variables.

11.6.3 Stochastic Nature of the Optimum Decisions

Stochastic dynamic programming yields an optimal decision policy that is self-
stochastic, except for the first optimal decision xn(sn+l). The remaining opti-
mal decisions, obtained in the form Xn^1(Sn),. . .,x*(s2) by using the recur-
rence relations, cannot be expressed deterministically in terms of Xn until the
random variables that precede them are revealed.

Thus, by substituting Xn (sn+x) into the relation

sn = tn(sn+X9XnJn) (11.125)



For $3 x 106

Investment
(X3 = 3 x 106)

For $2 X 106

Investment
(x2 = 2 X 106)

For$l x 106

Investment
(X1 = 1 x 106)

Probability
of Realizing
the Profit,

0.10
0.60
0.30

0.25
0.60
0.15

0.15
0.55
0.30

Profit
yt

1.5 x 106

1.0 x 106

0.0

3.5 x 106

2.0 x 106

0.0

1.5 x 106

0.5 x 106

-0.5 x 106

Probability
of Realizing

the Profit
p(yd

0.15
0.65
0.20

0.25
0.65
0.10

0.15
0.60
0.25

Profit
yi

1.5 x 106

0.7 x 106

-0.1 x 106

1.7 x 106

1.0 x 106

-0.5 x 106

2.0 x 106

1.0 x 106

0.0

Probability
of Realizing

the Profit
p(yd

0.20
0.50
0.30

0.15
0.60
0.25

0.10
0.70
0.20

Profit
yt

1.0 x 106

0.5 x 106

0.0

0.8 x 106

0.4 x 106

-0.1 x 106

1.5 x 106

0.5 x 106

-0.2 x 106

Type of
Investment
i

i = 1
Cranes

i = 2
Machine tools

i = 3
Crushing machines

^Negative values indicate loss.

TABLE 11.2 Probabilities of Realizing Profits0



we obtain

s* = tn[sn+u x t(sn+Ojn] = tn(xn+uyn) (11.126)

This equation indicates that the optimal value of s* is known only probabilist-
ically. Then the same must be valid for the optimum value of xn_x since

xn-x{st) = Xn-Atn(Sn+UyJ] = Xn^1(Sn+Uyn) (11.127)

Thus the rc-stage stochastic optimization gives incomplete results in a sense
since only the first decision is obtained from the solution procedure. The re-
maining optimal decisions xn-w • •,** are determined one by one, as the sto-
chastic process unfolds. Of course, this is not to be considered as a deficiency
of dynamic programming; rather, it is an intrinsic property of the stochastic
multistage decision system itself.

Example 11.8 A machine building industry can invest a maximum amount
of $3 X 106 in manufacturing cranes, machine tools, and crushing machines.
The industry can invest any amount between $0 and $3 x 106 in increments
of $106 (i.e., it may invest $0 or $1 x 106 or $2 X 106 or $3 X 106). The
profit and the probabilities of realizing these profits for various investments are
given in Table 11.2. Assuming that the profit is zero for zero investment,
determine the optimal investment plan for the industry.

SOLUTION This problem can be stated as a three-stage initial value problem
as shown in Fig. 11.7, where xu X2, and X3 indicate the amount invested in
manufacturing cranes, machine tools, and crushing machines respectively, S4

is the (specified) total available investment and s( is the amount remaining after
investing in stage i, i = 1,2,3.

We start with the suboptimization of stage 1. Applying Eq. (11.124), we
obtain

Ff(S2) = max ?> p(yOQi(s2,xuyd (E1)
jci L ̂ i J

3
Crushing
machines

2
Machine

tools

1
Cranes

Figure 11.7 Three-stage decision problem of Example 11.8.



Next we proceed to the suboptimization of stages 2 and 1. For this, Eq.
(11.124) can be written as

FUs3) = max ^p2(y2)Q2(s39x2j2) (E2)
x2 iyi J

where

Qi(s3,x2j2) = R2(S39X2J2) + F?[t2(s3,x2j2)]

S2 = t2(s3,x2j2) = S3 - X2 in this case

where

Q\(s2,xuy{) = R1(S29X1J1)

Equation (E1) gives the following results:

Value
of S2

3 x 106

2 x 106

1 x 106

0

Xx

0
1 x 106

2 x 106

3 x 106

0
1 x 106

2 x 106

0
1 x 106

0

3 x 106

2 x 106

1 x 106

0

2 x 106

1 x 106

0

1 x 106

0

0

0
1.0 x 106(0.2) + 0.5 x 106

(0.5) + 0.0(0.3)
= 0.45 x 106

1.5 x 106(0.15) + 0.7 x 106

(0.65) + ( -0 .1 x 106)(0.2)
= 0.66 x 106

1.5 x 106(0.1) + 1.Ox 106

(0.6) + 0.0(0.3)
= 0.75 x 106

0
1.0 x 106(0.2) + 0.5 x 106

(0.5) + 0.0(0.3)
= 0.45 x 106

1.5 x 106(0.15) + 0.7 x 106

(0.65) + ( -0 .1 x 106)(0.2)
= 0.66 x 106

O
1.0 x 106(0.2) + 0.5 x 106

(0.5) + 0.0(0.3)
= 0.45 x 106

O

Ft(S2) = opt

[ E P 1 ( J , ) * , ]

0.75 x 106

0.66 x 106

0.45 x 106

O



Finally, we consider the suboptimization of stages 3, 2, and 1. Equation
(11.124) gives

Ft(S4) = max ^p3(J3)Q3(S49X3J3) (E3)
JC3 L w J

where

Qs(^x3J3) = R3(S^3J3) + F^[t3(s4,x3,y3)]

S3 = t3(s49X3,y3) = S4 - X3

Equation (E3) gives the following results:

The application of Eq. (E2) yields the following results:

Value
of s3

3 x 106

2 x 106

1 x 106

0

X2

0
1 x 106

2 x 106

3 x 106

0
1 x 106

2 x 106

0
1 x 106

0

3 x 106

2 x 106

1 x 106

0

2 x 106

1 x 106

0

1 x 106

0

0

0.75 x 106

0.66 x 106

0.45 x 106

0

0.66 x 106

0.45 x 106

0

0.45 x 106

0

0

Sp2C 3V2)G2

0.75 x 106

(0.8 x 106 + 0.66 x 106)(0.15)
+ (0.4 x 106 + 0.66 X 106)(0.60)
+ ( -0 .1 x 106 + 0.66 x 106)(0.25)
= 0.995 x 106

(1.7 x 106 + 0.45 X 106)(0.25)
+ (1.0 x 106 + 0.45 x 106)(0.65)
+ ( -0 .5 x 106 + 0.45 x 106)
(0.1) = 1.475 x 106

(3.5 x 106 + O)(0.25)
+ (2.0 x 106 + O) (0.60) + (O + O)
(0.15) = 2.075 x 106

0.66 x 106

(0.8 x 106 + 0.45 X 106)(0.15)
+ (0.4 x 106 + 0.45 X 106)(0.60)
+ ( -0 .1 x 106 + 0.45 x 106)
(0.25) = 0.785 x 106

(1.7 x 106 + O) (0.25)
+ (1.0 x 106 + O) (0.65)
+ (-0.5O x 106 + O) (0.10)
= 1.025 x 106

0.45 x 106

(0.8 x 106 + O)(0.15)
+ (0.4 x 106 + O) (0.60)
+ (-0.1O x 106 + O)
(0.25) = 0.335 x 106

O

FUs3)

2.075 x 106

1.025 x 106

0.45 x 106

O



This table gives the maximum profit as Ff(S4) = 2.075 X 106 with the
corresponding values of JC* = 0 and s* = 3 x 106. By retracing the steps
back, we find that F*(s*) = 2.075 x 106, x* = 3 X 106, S2* = 0, and
Ff(S*) = 0, jc* = 0, sf = 0. Hence the optimum solution is given by

JC f = investment in cranes = 0

JC* — investment in machine tools = $3 X 106

JC* = investment in crushing machines = 0

expected profit = $2,075 x 106

It is to be remembered that this figure of $2,075 x 106 is only the expected
profit and the actual profit will be known only after the occurrence of all the
events.
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REVIEW QUESTIONS

11.1 Define the following terms.
(a) Mean



(b) Variance
(c) Standard deviation
(d) Probability
(e) Independent events
(f) Joint density function
(g) Covariance
(h) Central limit theorem
(i) Chance constrained programming

11.2 Match the following terms and descriptions.
(a) Marginal density function Describes sum of several random

variables
(b) Bivariate distribution Described by probability density

function
(c) Normal distribution Describes one random variable
(d) Discrete distribution Describes two random variables
(e) Continuous distribution Described by probability mass

function

11.3 Answer true or false.
(a) The uniform distribution can be used to describe only continuous

random variables.
(b) The area under the probability density function can have any pos-

itive value.
(c) The standard normal variate has zero mean and unit variance.
(d) The magnitude of the correlation coefficient is bounded by one.
(e) Chance constrained programming method can be used to solve

only stochastic LP problems.
(f) Chance constrained programming permits violation of constraints

to some extent.
(g) Chance constrained programming assumes the random variables

to be normally distributed.
(h) The design variables need not be random in a stochastic program-

ming problem.
(i) Chance constrained programming always gives rise to a two-part

objective function.
(j) Chance constrained programming converts a stochastic LP prob-

lem into a determinstic LP problem.
(k) Chance constrained programming converts a stochastic geometric

programming problem into a deterministic geometric program-
ming problem.



(1) The introduction of random variables increases the number of state
variables in stochastic dynamic programming.

.11.4 Explain the notation Af(/x,a).

11.5 What is a random variable?

11.6 Give two examples of random design parameters.

11.7 What is the difference between probability density and probability dis-
tribution functions?

11.8 What is the difference between discrete and continuous random vari-
ables?

11.9 How does correlation coefficient relate two random variables?

11.10 Identify possible random variables in a LP problem.

11.11 How do you find the mean and standard deviation of a sum of several
random variables?

11.12 How is stochastic return function handled in stochastic dynamic pro-
gramming?

PROBLEMS

11.1 A contractor plans to use four tractors to work on a project in a remote
area. The probability of a tractor functioning for a year without a break-
down is known to be 80%. If X denotes the number of tractors operating
at the end of a year, determine the probability mass and distribution
functions of X.

11.2 The absolute value of the velocity of a molecule in a perfect gas (V)
obeys the Maxwell distribution

fy(v) = ^ , V 2 " 2 , V > 0
VTT

where h2 = (m/2kT) is a constant (m is the mass of the molecule, k is
Boltzmann's constant, and Tis the absolute temperature). Find the mean
and the standard deviation of the velocity of a molecule.

11.3 Find the expected value and the standard deviation of the number of
tractors operating at the end of one year in Problem 11.1.

11.4 Mass-produced items always show random variation in their dimensions
due to small unpredictable and uncontrollable disturbing influences.



Suppose that the diameter, X, of the bolts manufactured in a production
shop follow the distribution

fx(x) = a(x - 0.9)(l.l - jc) for 0.9 < x < 1.1

0 elsewhere

Find the values of a, /xx and o\.

11.5 (a) The voltage V across a constant resistance R is known to fluctuate
between 0 and 2 volts. If V follows uniform distribution, what is
the distribution of the power expended in the resistance?

(b) Find the distribution of the instantaneous voltage (V) given by V
= A cos(otf + </>), where A is a constant, co the frequency, t the
time, and (j> the random phase angle uniformly distributed from 0
to 2TT radians.

11.6 The hydraulic head loss (H) in a pipe due to friction is given by the
Darcy-Weisbach equation,

IgD

where/is the friction factor, L the length of pipe, V the velocity of flow
in pipe, g the acceleration due to gravity, and D the diameter of the
pipe. If V follows exponential distribution,

f ± e-i>m for v > 0

fv(y) = °
(̂ O for v < 0

where V0 is the mean velocity, derive the density function for the head
loss H.

11.7 The joint density function of two random variables X and Y is given by

(3x2y 4- 3y2x for 0 < x < 1, 0 < y < 1

(̂ O elsewhere

Find the marginal density functions of X and Y.

11.8 Steel rods, manufactured with a nominal diameter of 3 cm, are consid-
ered acceptable if the diameter falls within the limits of 2.99 and 3.01
cm. It is observed that about 5% are rejected oversize and 5% are re-
jected undersize. Assuming that the diameters are normally distributed,
find the standard deviation of the distribution. Compute the proportion
of rejects if the permissible limits are changed to 2.985 and 3.015 cm.



11.9 Determine whether the random variables X and Y are dependent or in-
dependent when their joint density function is given by

(4xy for 0 < x < 1, 0 < y < 1
fx,A*>y) = j n . u

(̂ O elsewhere

11.10 Determine whether the random variables X and Y are dependent or in-
dependent when their joint density function is given by

fxAx>y)

2 [1 ~ S i n ( * + y)] for -TT < X < TT, -TT < y < TT
47T

0 elsewhere

11.11 The stress level at which steel yields (X) has been found to follow
normal distribution. For a particular batch of steel, the mean and stan-
dard deviation of X are found to be 4000 and 300 kgyVcm2, respectively.
Find:
(a) The probability that a steel bar taken from this batch will have a

yield stress between 3000 and 5000kg^/cm2

(b) The probability that the yield stress will exceed 4500kg//cm2

(c) The value of X at which the distribution function has a value of
0.10

11.12 An automobile body is assembled using a large number of spot welds.
The number of defective welds (X) closely follows the distribution

P(X = d) = — — , d = 0,1,2,. . .
a\

Find the probability that the number of defective welds is less than or
equal to 2.

11.13 The range (R) of a projectile is given by

V2

R = —- sin20
g

where V0 is the initial velocity of the projectile, g the acceleration due
to gravity, and <j> the angle from the horizontal as shown in Fig. 11.8.
If the mean and standard deviations of V0 and <j> are given by V0 = 100



Figure 11.8 Range of a projectile.

ft/s, aVo = 10 ft/s, (j> = 30°, and o^ = 3°, find the first-order mean and
standard deviation of the range R assuming that V0 and <j> are statistically
independent. Evaluate also the second-order mean range. Assume that
g = 32.2 ft/s2.

11.14 Maximize /= 4JC1 + 2x2 + 3JC3 4- C4JC4

subject to

x} + X3 + X4 < 24

3Jc1 + Jc2 + 2JC3 + 4JC4 < 48

2Jc1 + 2JC2 + 3JC3 + 2JC4 < 36

Xi > 0, i = 1 to 4

where C4 is a discrete random variable that can take values of 4, 5, 6,
or 7 with probabilities of 0 .1, 0.2, 0.3, and 0.4, respectively. Using
the simplex method, find the solution that maximizes the expected value
of/

11.15 Find the solution of Problem 11.14 if the objective is to maximize the
variance of/.

11.16 A manufacturing firm can produce 1, 2, or 3 units of a product in a
month, but the demand is uncertain. The demand is a discrete random
variable that can take a value of 1, 2, or 3 with probabilities 0.2, 0.2,
and 0.6, respectively. If the unit cost of production is $400, unit reve-
nue is $1000, and unit cost of unfulfilled demand is $0, determine the
output that maximizes the expected total profit.

11.17 A factory manufactures products A, B, and C Each of these products
is processed through three different production stages. The times re-
quired to manufacture 1 unit of each of the three products at different
stages and the daily capacity of the stages are probabilistic with means
and standard deviations as indicated below.



Assuming that all amounts produced are absorbed by the market, de-
termine the daily number of units to be manufactured of each product
for the following cases.
(a) The objective is to maximize the expected profit.
(b) The objective is to maximize the standard deviation of the profit.
(c) The objective is to maximize the sum of expected profit and the

standard deviation of the profit.
Assume that all the random variables follow normal distribution and
the constraints have to be satisfied with a probability of 0.95.

11.18 In a belt-and-pulley drive, the belt embraces the shorter pulley 165°
and runs over it at a mean speed of 1700 m/min with a standard de-
viation of 51 m/min. The density of the belt has a mean value of 1 g/
cm3 and a standard deviation of 0.05 g/cm3. The mean and standard
deviations of the permissible stress in the belt are 25 and 2.5 kg^/cm2,
respectively. The coefficient of friction O) between the belt and the
pulley is given by JL = 0.25 and O11 = 0.05. Assuming a coefficient of
variation of 0.02 for the belt dimensions, find the width and thickness
of the belt to maximize the mean horsepower transmitted. The mini-
mum permissible values for the width and the thickness of the belt are
10.0 and 0.5 cm, respectively. Assume that all the random variables
follow normal distribution and the constraints have to be satisfied with
a minimum probability of 0.95. [Hint: Horsepower transmitted =
(T1- T2)vn5, where Tx and T2 are the tensions on the tight side and
slack sides of the belt in kg^ and v is the linear velocity of the belt in
m/s.

The profit per unit is also a random variable with the following data:

Product

A
B
C

Profit ($)

Mean

6
4

10

Standard Deviation

2
1
3

Stage

1
2
3

Time per Unit (min) for Product:

A

Mean

4
12
4

Standard
Deviation

1
2
2

B

Mean

8
0

16

Standard
Deviation

3
0
4

C

Mean

4
8
0

Standard
Deviation

4
2
0

Stage Capacity
(mins/day)

Mean

1720
1840
1680

Standard
Deviation

172
276
336



2 rp
T1 = rmax -T0 = 7max - — and -± = f*

8 T2

where Tmax is the maximum permissible tension, Tc the centrifugal ten-
sion, w the weight of the belt per meter length, g the acceleration due
to gravity in m/s, and 6 the angle of contact between the belt and the
pulley.]

11.19 An article is to be restocked every three months in a year. The quar-
terly demand U is random and its law of probability in any of the
quarters is as given below.

U Probability Mass Function, Pv(u)

0 0.2
1 0.3
2 0.4
3 0.1

>3 0.0

The cost of stocking an article for a unit of time is 4, and when the
stock is exhausted, there is a scarcity charge of 12. The orders that are
not satisfied are lost, in other words, are not carried forward to the
next period. Further, the stock cannot exceed three articles, owing to
the restrictions on space. Find the annual policy of restocking the ar-
ticle so as to minimize the expected value of the sum of the cost of
stocking and of the scarcity charge.

11.20 A close-coiled helical spring, made up of a circular wire of diameter
d9 is to be designed to carry a compressive load P. The permissible
shear stress is amax and the permissible deflection is 5max. The number
of active turns of the spring is n and the solid height of the spring has
to be greater than h. Formulate the problem of minimizing the volume
of the material so as to satisfy the constraints with a minimum prob-
ability of p. Take the mean diameter of the coils (D) and the diameter
of the wire (d) as design variables. Assume d, D, P, amax, 8max, h, and
the shear modulus of the material, G, to be normally distributed ran-
dom variables. The coefficient of variation of d and D is k. The max-
imum shear stress, a, induced in the spring is given by

SPDK
-wd5

where K is the Wahl's stress factor defined by

_ AD - d 0.6\5d

~ A(D - d)* D



and the deflection (8) by

8PD3n

Formulate the optimization problem for the following data:

G = #(840,000, 84,000) kg/cm2, 5max = #(2,0.1) cm,

<jmax = #(3000,150) kg//cm2,

P = #(12,3) kg/? n = 8, h = #(2.0,0.4) cm, k = 0.05,

p = 0.99

11.21 Solve Problem 11.20 using a graphical technique.



FURTHER TOPICS IN OPTIMIZATION

12.1 INTRODUCTION

In this chapter we give a brief introduction to the following techniques of
optimization:

1. Separable programming
2. Multiobjective optimization
3. Calculus of variations
4. Optimal control theory
5. Optimality criteria methods
6. Genetic algorithms
7. Simulated annealing
8. Neural-network-based methods
9. Optimization of fuzzy systems

In some practical optimization problems, the objective and constraint functions
are separable in the design variables. The separable programming techniques
are useful for solving such problems. If an optimization problem involves the
minimization of several objective functions simultaneously with a specified
constraint set, the multiobjective optimization methods can be used for its so-
lution.

If an optimization problem involves the minimization (or maximization) of
a functional subject to the constraints of the same type, the decision variable
will not be a number, but it will be a function. The calculus of variations can

12



be used to solve this type of optimization problems. An optimization problem
that is closely related to the calculus of variations problem is the optimal con-
trol problem. An optimal control problem involves two types of variables: the
control and state variables, which are related to each other by a set of differ-
ential equations. Optimal control theory can be used for solving such prob-
lems. In some optimization problems, especially those related to structural
design, the necessary conditions of optimality, for specialized design condi-
tions, are used to develop efficient iterative techniques to find the optimum
solution. Such techniques are known as optimality criteria methods.

In recent years, some optimization methods that are conceptually different
from the traditional mathematical programming techniques have been devel-
oped. These methods are based on certain biological, molecular, and neuro-
logical phenomena. Methods known as genetic algorithms are based on the
principles of natural genetics and natural selection. Simulated annealing is
based on the simulation of thermal annealing of critically heated solids. Both
genetic algorithms and simulated annealing are stochastic methods that can find
the global minimum with a high probability and are naturally applicable for
the solution of discrete optimization problems. In neural-network-based meth-
ods, the problem is modeled as a network consisting of several neurons and
the network is trained suitably to solve the optimization problem efficiently.
In many practical systems, the objective function, constraints, and the design
data are known only in vague and linguistic terms. Fuzzy optimization methods
can be used for solving such problems.

12.2 SEPARABLE PROGRAMMING

As stated in Section 1.5, the objective and constraint functions of a separable
programming problem are separable in the variables X1 so that the inequality
constrained problem can be stated as:

Xx

x I n

Find X = .2 > which minimizes/(X) = S fi(x() (12.1)
/ = i

subject to

n

gj(X) = S gjfad < 0, j = 1,2,. . .,m

The assumption of separability of/(X) and g/X), j = 1,2,. . .,m, in the ap-
plication of separable programming method may seem, at first, to be a serious



limitation in practical design problems. However, many nonlinear functions
can be transformed to the separable type by appropriate substitutions.

12.2.1 Transformation of a Nonlinear Function to Separable Form

Consider an objective function of the type

f=xxx2 (12.2)

By defining two new variables yx and y2 as

_ X1 + X2

2 (12.3)

yi 2

we find that

X1X2 = 1(X1 + X2)
2 - 1(X1 - X2)

2 = y 2 - y \ (12.4)

Thus/can be expressed in separable form as

S=y\-y\ 02.5)

Unfortunately, this approach cannot be generalized to products of three or more
variables. An approach which is applicable to products of three or more vari-
ables involves replacement of a product, say, X1Xj, by a new variable y. Thus
if/ = JC1Jc2, we consider

f=y (12.6)

along with the constraint

In j = In jc, + In JC2 (12.7)

Equation (12.7) assumes that Jc1 and JC2 are positive variables.
If the original variables Jc1 and JC2 are permitted to take zero values (i.e., Jc1

> 0, Jc2 > 0), we define two new variables ^1 and y2 as

yx = X1 + A1 ( 1 2 g )

y2 = X2 + A2

where A1 and A2 are arbitrary positive numbers. This means that yx and y2 are



strictly positive. Equation (12.8) gives

*i = yx - A1 ( 1 2 9 )

x2 = J2 - A2

and hence

*i*2 = (Ji ~ A1)(J2 - A2) = yxy2 - A2J1 - A1J2 + A1A2 (12.10)

We define a new variable z as

z = yxy2 (12.11)

and obtain the final problem, in separable form, as

Min imize /= z — A1J2 — A2J1 + A1A2

subject to (12.12)

In z = In J1 4- In J2

Other functions that can be made separable include/ = exl+X2 a n d / = (Jc1/
2.

Example 12.1 Convert the following problem into separable form:

Min imize /= 5^1+"2 + 10JC|

subject to

1Ox1Jt2 + 15*2 = 100 (E1)

Jc1 > 0
Jc2 > 0

SOLUTION To convert the first term of the objective function to separable
form, we define

y, = e^> (E2)

so that

In J1 = 4^1 + x2 (E3)

Similarly, to convert the first term of the equality constraint to separable form,
we define

yi = XxX2 (E4)



so that

In y2 = In JCj + In X2 (E5)

With these substitutions, the problem can be stated in separable form as fol-
lows:

Min imize /= 5^1 H- 10x1

subject to

1Oj2 H- 15*2 = 100

In yl - Axx - X2 = 0 (E6)

In y2 — In X1 — In X2 = 0

jc, > 0

x2 > 0

Note that the original problem, (E1), had two variables and one constraint
while the equivalent separable problem, (E6), has four variables and three con-
straints. This type of increase in problem size is characteristic of the process
of conversion to separable form.

12.2.2 Piecewise Linear Approximation of a Nonlinear Function

Any nonlinear function/(JC) can be approximated by a piecewise linear func-
tion. This means that, geometrically, a curve is represented by a set of con-
nected line segments as shown in Fig. 12.1. In this figure the continuous func-
tion/(JC) is approximated by a set of four line segments in the interval Jc1 to JC5.
It can be seen that/(jc) = /(JC) at the endpoints of each of the line segments.

The approximating function/(JC) can be found in terms of the values of /a t the
endpoints of the interval as

fix) = f(xt) + / ( X / + l ) ~ / ( X ) (JC - JC1), JC, < JC < JC/+1, i = 1,2,3,4
xi + \ xi

(12.13)

To represent/(x) over some interval, Jc1 to JC5, we first notice that the fraction
(JC — JCz)Z(JCz+1- JC/) in Eq. (12.13) is a number between 0 and 1 for any value
of JC between Jt1- and xi+l. By denoting this fraction as A, Eq. (12.13) can be



Figure 12.1 Piecewise linear approximation of a nonlinear function.

expressed as

/(*) =/(*/) + Hf(Xi+O -/to)] = \f(xi+l) + (1 - X)f(xt),

X1 < x < * / + 1 (12.14)

By introducing X1 = 1 — X and X1+1 = X, we obtain

/(•*) = X//(*/) + \+]f(xi+l)9 X1; < x < x /+1

X1- + X/+1 = 1 (12.15)

X1 > 0, X/+1 > 0

Since X/+1 = X = (x - xt)/(xi+l - Jt1-), we can write

x = X1 + \(xi+i ~ Xi) = (1 - X)X1 + Xxi+l = X1Xi + X1-+,*;+, (12.16)

Thus we can express x in the interval xt to x m as

x = X1Xi + X/+1*1+1

with

X1- + \ - + I = 1 (12.17)

Xi > 0, X/+i > 0



Instead of expressing each interval by Eq. (12.17) separately, we can express
x in a general manner as

X = \\X\ ~\~ A 2 X 2 ~̂~ X3X3 ~̂~ X 4 X 4

with

X1 + X2 + A3 + X4 = 1, X\ < x < X5 Q2 jg\

X1, X2, X3, X4 > 0

Equation (12.18) is valid for representing any x in the interval Jc1 to X5 provided
that (1) we will not permit more than two X's to be greater than zero, and (2)
these nonzero X's are always associated with adjacent points. Equation (12.18)
can be generalized to any number of (r) intervals as

r

x = S XjXj

with

S x, = 1
J=1 (12.19)

X, > 0, J= 1 ,2 , . . . , r

12.2.3 Formulation of a Separable Nonlinear Programming Problem

Equation (12.19) can be applied to formulate a nonlinear programming prob-
lem in separable form. For this we assume that the lower and upper bounds of
each variable x( are known to be 0 and uh i = 1,2,. . .,n. Further we assume
that each variable x{ is subdivided into/?, intervals. Thus if xik is the value of
Xi at the kth point of the subdivision, we have

0 = xi0 < xn < xi2 < - ' • < xik < - • - < xipi = ut (12.20)

We now approximate each function /-(Jt1-) of the objective by a piecewise linear
function/ (JC,) and each function gji(xt) of theyth constraint by gji{xt).

Thus for the general formulation, we write

P'

Xi = 2 J \kxih i = 1>2,. . .,n

Pi

S \k = 1
*=° (12.21)

X1* > 0, 1 = 1,2,. . .,rc, k = 0,1,2,. . .,Pi



Pi P'

Mx1) = S Mxik)\ik = S fik\k, i = 1,2,. . .,n (12.22)
Ic=O Jc=O

Pl Pl

gjtixi) = S gji(xlk)\lk = Ti gjik\ik, / = 1,2,. . .,n (12.23)

where

fik=fi(Xik) (12-24)

$tt = £,/(•%) (12-25>

Finally, the general separable nonlinear programming problem of Eq. (12.1)
can be expressed as follows:

n pi

Minimize/= S H fik\k
I = I k=0

subject to

n pi

J 1 J ^ a ^ 0, J= 1,2,...,in

H X1* = 1, i = 1,2,. . .,w (12.26)

\ k > 0, fc = 0,1, . . . , A , i = 1,2,. . .,/i

where, in addition, we impose the conditions that for each / no more than two
X1* can be positive and only adjacent X1* (i.e., X7 ̂ 1 and X1* or X1* and X1-̂ +O
can be positive.

Notes:

1. The design variables in the problem of Eq. (12.26) are the X1*. The val-
ues offik and gjlk are obtained by evaluating the functions/(Jt1-) and gji(xt)
at a set of fixed points Jc1* and xlk.

2. Except for the requirement on the number and the way in which X1* can
be positive, the problem of Eq. (12.26) is a linear programming (LP)
problem. The number of constraints is m + n and the number of vari-
ables is (n + E"=1 Pi) plus the number of slack variables required.
The problem of Eq. (12.26) is called the approximating LP problem to
the original nonlinear programming problem of Eq. (12.1).

3. The approximating LP problem of Eq. (12.26) can be solved by a mod-
ified simplex method. The modification to the simplex method involves
adopting a policy of restricting what vectors may enter the basis in any



iteration depending upon which vectors are already in the basis. This
process can be called a restricted basis condition. More specifically, the
restricted basis condition will never allow more than two \ik to be posi-
tive for any given i. Further, two \ik can be positive only if they are
adjacent. The procedure of implementing the restricted basis condition
is illustrated with the help of the following example.

Example 12.2

M i n i m i z e / = x2
x — 3Jc1 — 2x2 (E1)

subject to

2x2 + 3xj ^ 30 (E2)

0 < X1 < 4 (E3)

0 < X2 < 4 (E4)

SOLUTION The problem is already in separable form and hence we can
write (E1) and (E2) as

/ = AOc1) + Z2(X2) (E5)

«i = «n(*i) + gn(xd ^ 30 (E6)

where

Z1 = x j - 3*, (E7)

fi = ~2x2 (E8)

«11 =2x2
l (E9)

«12 = ^l (E10)

The domains of interest OfJC1 and X2 are given by (E3) and (E4) to be [0,4]. Let
us choose to divide the domains of interest into four equal segments of 1 unit
each for the purpose of piecewise approximation of/(*/) and Sji(xi)- The dis-
crete values of JC/ and the corresponding values of fik and gJ[k are given in the
following table.

^ -*U X2k f\k flk S\\k 8\2k

0 0 0 0 0 0 0
1 1 1 - 2 - 2 2 3
2 2 2 - 2 - 4 8 12
3 3 3 0 - 6 18 27
4 4 4 4 - 8 32 48



The approximating LP problem, Eq. (12.26), can be stated as follows:

4
Minimize /= S (flk\{k +/^X2*)

= - 2 X n - 2X21 - 2X12 - 4X22 - 6X23 + 4X14 - 8X24 (E11)

subject to

4

^S CgHJtX1Jt + gi2*x2*) - 3 0

that is,

2X11 + 3X21 + 8X12 + 12X22 + 18X13 + 27X23 + 32X14 + 48X24 < 30

(E12)

S Xa = 1, I = 1 ,2

£=0

that is,

X10 + X11 + X12 + X13 + X14 = 1 (E13)
X2o + X21 + X22 + X23 + X24 = 1 (E14)

X* > 0, k = 0,1,2,. . .,ph i = 1,2 (E15)

Thus the LP problem involves ten variables and three constraints.
If we add a slack variable^, the inequality constraint (E12) can be converted

to an equality. The first simplex tableau, with the coefficients of X1* in the
objective function indicated in the last row, is shown below:

X10 X n X12 X13 X14 X20 X2i X22 X23 X24 X3 bj

0 2 8 18 32 0 3 12 27 48 1 30
1 1 1 1 1 0 0 0 0 0 0 1
0 0 0 0 0 1 1 1 1 1 0 1

0.0 -2.0 -2.0 0.0 4.0 0.0 -2 .0 -4 .0 -6 .0 -8 .0 0.0

An examination of the table shows that an initial basic feasible solution can be
obtained as

X3 = 30, X10 = 1, X20 = 1 ^ ^

all other variables = 0



with the corresponding value of /as 0. According to the usual simplex criteria,

X24 should enter the next basis since the corresponding cost coefficient has the
most negative value (i.e., —8.0) and X3 should leave the basis since the ratio
bt/ais = 30/48 is the smallest. Thus X10, X20, and X24 will be in the next basis.
But according to the restricted basis entry rule, the two nonzero \2k must have
adjacent subscripts k. Hence we try the variable with the next-most-negative
cost coefficient (i.e., X23) for entering the basis. According to the simplex
criteria, X23 should enter the next basis and X20 should leave the basis. This
means that X3, X10, and X23 will be in the next basis. Since this is permitted,
we obtain the new simplex tableau as

Aio X11 Xj2 X13 Xj4 X2O X2I X22 X23 X24 JC3 bj

0 2 8 18 32 -27 -24 -15 0 21 1 3
1 1 1 1 1 0 0 0 0 0 0 1
0 0 0 0 0 1 1 1 1 1 0 1

0 - 2 - 2 0 4 6 4 2 0 - 2 0

The new solution is given by

^io = 1> X3 = 3, X23 = 1, / = —6 .g .

all other variables = 0

To obtain the next basic solution, we find that the cost coefficients of X11, X12,
and X24 have the most negative value (i.e., —2). We choose X24 arbitrarily as
the variable to enter the next basis. The simplex criteria shows that X3 leaves
the basis. Thus X10, X23, and X24 will be in the next basis. Since this is per-
mitted, we can proceed to the next simplex tableau and continue the process
until the optimum solution is found as

^H = 1? ^33 = 2T> ^24 = 2~T> / = ~%2\ / g \

all other variables = 0

Since all the cost coefficients are nonnegative, the present solution will be the
optimum solution.

The optimum values of the original variables X1 and X2 are given by

p\

X1 = Z J \\kX\k = X10X10 + X11X11 + X12X12 + X13X13 + X14X14
fc=0

= 0 x 0 + 1 x 1 + 0 x 2 + 0 x 3 + 0 x 4 = 1 (E19)
pi

x 2 = 2 J X2J-X2J. = X20X20 + X21X21 + X22X22 + X23X23 + X24X24

= 0 x 0 + 0 x l + 0 x 2 + f j l x 3 + 2
J

1 x 4 = f[ = 32
J
r (E20)



and the optimum value of the original objective function by

f* = xf - 3xf - 2xf

= 1 - 3 - 6 t̂ = - 8 £ (E21)

It is to be noted that in this example, the optimum values of/and/happen to
be same by coincidence. In general,/* will be slightly different from/* since
/ i s only an approximating function for/.

12.3 MULTIOBJECTIVE OPTIMIZATION

A multiobjective optimization problem with inequality constraints can be stated
as (equality constraints, if they exist, can also be included in the formulation
of the problem)

Xx

Find X = *2 (12.27)

which minimizes/(X)9Z2(X), . . . ,/fc(X) (12.28)

subject to

g/X) < O, j = 1,2,. . .,m (12.29)

where k denotes the number of objective functions to be minimized. Any or
all of the functions /(X) and g/X) may be nonlinear. The multiobjective op-
timization problem is also known as a vector minimization problem.

In general, no solution vector X exists that minimizes all the k objective
functions simultaneously. Hence a new concept, known as the Pareto optimum
solution, is used in multiobjective optimization problems. A feasible solution
X is called Pareto optimal if there exists no other feasible solution Y such that
/(Y) < /(X) for i = 1, 2, . . . , k with Jj-(Y) < /(X) for at least one / In other
words, a feasible vector X is called Pareto optimal if there is no other feasible
solution Y that would reduce some objective function without causing a simul-
taneous increase in at least one other objective function. For example, if the
objective functions are given b y / = (JC — 3)4 and/2 = (x — 6)2, their graphs
are shown in Fig. 12.2. For this problem, all the values of x between 3 and 6
(points on the line segment PQ) denote Pareto optimal solutions.

Several methods have been developed for solving a multiobjective optimi-



Figure 12.2 Pareto optimal solutions.

zation problem. Some of these methods are briefly described in the following
paragraphs. Most of these methods basically generate a set of Pareto optimal
solutions and use some additional criterion or rule to select one particular Par-
eto optimal solution as the solution of the multiobjective optimization problem.

12.3.1 Utility Function Method

In the utility function method, a utility function Ui(Z1) is defined for each ob-
jective depending on the importance of/ compared to the other objective func-
tions. Then a total or overall utility function U is defined, for example, as

k
U=T UW (12.30)

/= 1

The solution vector X* is then found by maximizing the total utility U sub-
jected to the constraints gj(X) < O9 j = 1,2,. . .,m. A simple form of Eq.
(12.30) is given by

k k
U = T U1= - T WJi(X) (12.31)

i=\ i=\

where W1- is a scalar weighting factor associated with the /th objective function.
This method [Eq. (12.31)] is also known as the weighting function method.



12.3.2 Inverted Utility Function Method

In the inverted utility function method, we invert each utility and try to mini-
mize or reduce the total undesirability. Thus if U^f1) denotes the utility func-
tion corresponding to the ith objective function, the total undesirability is ob-
tained as

k k

U~x = S Ur1 = S — (12.32)
;=i /=i U1

The solution of the problem is found by minimizing U~x subject to the con-
straints g/X) < 0,7 = 1,2,. . .,m.

12.3.3 Global Criterion Method

In the global criterion method the optimum solution X* is found by minimizing
a preselected global criterion, F(X), such as the sum of the squares of the
relative deviations of the individual objective functions from the feasible ideal
solutions. Thus X* is found by minimizing

J T O - s C Z ( X f ) - Z ( X ) T
F(X) - ZJ — —

subject to (12.33)

gj(X) < 0, J= 1,2,...,m

where/? is a constant (an usual value ofp is 2) and Xf is the ideal solution for
the ith objective function. The solution Xf is obtained by minimizing /(X)
subject to the constraints gj(X) < 0, j = 1,2,. . .,m.

12.3.4 Bounded Objective Function Method

In the bounded objective function method, the minimum and the maximum
acceptable achievement levels for each objective function ft are specified as
L{l) and l/l\ respectively, for / = 1,2,. . .,Ic. Then the optimum solution X* is
found by minimizing the most important objective function, say, the rth one,
as follows:

Minimize /r(X)

subject to

gj(X) < 0, j = 1,2,. . .,m (12.34)

L(0 < / . < U{i\ i = 1,2,. . .X i * r



12.3.5 Lexicographic Method

In the lexicographic method, the objectives are ranked in order of importance
by the designer. The optimum solutoin X* is then found by minimizing the
objective functions starting with the most important and proceeding according
to the order of importance of the objectives. Let the subscripts of the objectives
indicate not only the objective function number, but also the priorities of the
objectives. ThUsZ1(X) and/*(X) denote the most and least important objective
functions, respectively. The first problem is formulated as

Minimize Z1(X)

subject to (12.35)

gj(X) < 0, J= 1,2,...,m

and its solution Xf and/f = Z1(Xf) is obtained. Then the second problem is
formulated as

Minimize f2(&)

subject to

gj(X) < 0, j = 1,2,. . .,ra (12.36)

/,(X) = ft

The solution of this problem is obtained as X* and Z* = ̂ (Xf). This procedure
is repeated until all the k objectives have been considered. The /th problem is
given by

Minimize Z(X)

subject to

gj(X) < 0, j = 1,2,. . .,m ^12 37)

/ / (X)=/f , / = 1 ,2 , . . . , / - 1

and its solution is found as Xf andZ* = Z(Xf). Finally, the solution obtained
at the end (i.e., Xf) is taken as the desired solution X* of the original mul-
tiobjective optimization problem.

12.3.6 Goal Programming Method

In the simplest version of goal programming, the designer sets goals for each
objective that he or she wishes to attain. The optimum solution X* is then



defined as the one that minimizes the deviations from the set goals. Thus the
goal programming formulation of the multiobjective optimization problem leads
to:

r * -.1/P

Minimize S {dj + dj)p , p > 1

subject to

gj(X) < 0, J = 1,2,...9m

t i n + dj -dj = bj9 j = 1,2,...,k

dj > 0, J= 1,2,. . .,* (12.38)

dj > 0, j = 1,2,. . .,Jk

rf/</r = 0 , J = 1,2,. . .,A;

where fy is the goal set by the designer for the jth objective and dj and dj
are, respectively, the underachievement and overachievement of the7th goal.
The value of p is based on the utility function chosen by the designer. Often
the goal for the7th objective, bj, is found by first solving the problem:

Minimize .//(X)

subject to (12.39)

gj(X) < 0, j = 1,2,. . . ,m

If the solution of the problem stated in Eq. (12.39) is denoted by Xj \ then bj
is taken as bj = Jj-(X7*).

12.4 CALCULUS OF VARIATIONS

12.4.1 Introduction

The calculus of variations is concerned with the determination of extrema
(maxima and minima) or stationary values of functionals. A functional can be
defined as a function of several other functions. Hence the calculus of vari-
ations can be used to solve trajectory optimization problems^ The subject of
calculus of variations is almost as old as the calculus itself. The foundations
of this subject were laid down by Bernoulli brothers and later important con-
tributions were made by Euler, Lagrange, Weirstrass, Hamilton, and Bolzane.

1SeC Section 1.5 for the definition of a trajectory optimization problem.



The calculus of variations is a powerful method for the solution of problems
in several fields, such as statics and dynamics of rigid bodies, general elastic-
ity, vibrations, optics, and optimization of orbits and controls. We shall see
some of the fundamental concepts of calculus of variations in this section.

12.4.2 Problem of Calculus of Variations

A simple problem in the theory of the calculus of variations with no constraints
can be stated as follows:

Find a function u(x) that minimizes the functional (integral)

A = I F(X9U9U'9u") dx (12.40)

where A and F can be called functional (functions of other functions). Here x
is the independent variable,

, du(x) „ (I2U(X)
u — U(X)9 u = —-—, and u = ——j-

dx dx

In mechanics, the functional usually possesses a clear physical meaning.
For example, in the mechanics of deformable solids, the potential energy (TT)
plays the role of the functional (TT is a function of the displacement components
u, v, and w, which, in turn, are functions of the coordinates x, v, and z).

The integral in Eq. (12.40) is defined in the region or domain [Jc15Jc2]. Let
the values of u be prescribed on the boundaries as M(Jc1) = ux and W(JC2) = U2.
These are called the boundary conditions of the problem.

One of the procedures that can be used to solve the problem in Eq. (12.40)
will be as follows:

1. Select a series of trial or tentative solutions u(x) for the given problem
and express the functional A in terms of each of the tentative solutions.

2. Compare the values of A given by the different tentative solutions.

3. Find the correct solution to the problem as that particular tentative so-
lution which makes the functional A assume an extreme or stationary
value.

The mathematical procedure used to select the correct solution from a num-
ber of tentative solutions is called the calculus of variations.

Stationary Values of Functional. Any tentative solution u(x) in the neigh-
borhood of the exact solution u(x) may be represented as (Fig. 12.3)



Figure 12.3 Tentative and exact solutions.

u(x) = u(x) + 8u(x) (12.41)

tentative exact variation
solution solution of u

The variation in u (i.e., 8u) is defined as an infinitesimal, arbitrary change in
u for a fixed value of the variable x (i.e., for 8x = 0). Here 5 is called the
variational operator (similar to the differential operator d). The operation of
variation is commutative with both integration and differentiation, that is,

8 M Fdx J = J (8F) dx

• ( I ) - >

Also, we define the variation of a function of several variables or a functional
in a manner similar to the calculus definition of a total differential:

SF = E K + * & +Ww+^&c (12.42)
du du' du" dx

t
0

(since we are finding variation of F for a fixed value of x, i.e., 8x = 0).
Now, let us consider the variation in A(SA) corresponding to variations in

the solution (8u). If we want the condition for the stationariness of A9 we take
the necessary condition as the vanishing of first derivative of A (similar to
maximization or minimization of simple functions in ordinary calculus).

c IbF dF dF \ r
SA= \ ( — 8u + — Su' + — 8u" )dx = \ 8F dx = 0 (12.43)

JjC1 \ 3 J C du' du" J JJC,

Tentative
solution

Exact
solution'



Integrate the second and third terms by parts to obtain

p d F * , ^ n a F
 s / a « \ , n 3F a

Jjti d« JJCI 3a \3JT/ JXI du dx

= T-, 6« - \ — ( T-7 UM dx (12.44)
3«' 1̂ Jx1 dx \du' /

.L1 etc V3M"/

+ r^(^) 6 ^ (i2-45>
Thus

C\dF d /8F\ d2 /dF\]
dA = \Ayu-dx{^) + d?{-^)\dudx

Since 6M is arbitrary, each term must vanish individually:

I ^ 6«' = 0 (12.49)

Equation (12.47) will be the governing differential equation for the given prob-
lem and is called Euler equation or Euler-Lagrange equation. Equations (12.48)
and (12.49) give the boundary conditions.

The conditions

T3F _d_ (dF\\C
[du' dx\du")\\xl



are called natural boundary conditions (if they are satisfied, they are called
free boundary conditions). If the natural boundary conditions are not satisfied,
we should have

5M(JC1) = 0, SM(JC2) = 0

bu'{xx) = 0, 5M'(JC2) = 0

in order to satisfy Eqs. (12.48) and (12.49). These are called geometric or
forced boundary conditions.

Example 12.3: Brachistochrone Problem In June 1696, Johann Bernoulli
set the following problem before the scholars of his time. "Given two points
A and B in a vertical plane, find the path from A to B along which a particle
of mass m will slide under the force of gravity, without friction, in the shortest
time" (Fig. 12.4). The term brachistochrone derives from the Greek brach-
istos (shortest) and chronos (time).

If s is the distance along the path and v the velocity, we have

ds {dx2 + dy2)m [1 + (y')2]m

v = — = =. fa
dt dt dt

dt = - [1 + (y')2]m dx
v

Since potential energy is converted to kinetic energy as the particle moves
down the path, we can write

\mv2 = mgx

Hence

ri + (/)2i1/2

' ' - H i n * <Ei)

Figure 12.4 Curve of minimum time
of descent.



and the integral to be stationary is

r * n + (v')2l1/2

t = \ \ 0
KV) dx (E2)

Jo L 2gx J

The integrand is a function of x and y' and so is a special case of Eq. (12.40).
Using the Euler-Lagrange equation,

dx \dy'J dy L 2gx J

we obtain

* ({41 +V)2}"2) = °
Integrating yields

, Jy / C1X \ m

Jx \ 1 - C1JC/

where C1 is a constant of integration. The ordinary differential equation (E3)
yields on integration the solution to the problem as

y(x) = C1 SiIT1OcZC1) - (2C1* - x2)m + C2 (E4)

Example 12.4: Design of a Solid Body of Revolution for Minimum
Drag Next we consider the problem of determining the shape of a solid body
of revolution for minimum drag. In the general case, the forces exerted on a
solid body translating in a fluid depend on the shape of the body and the rel-
ative velocity in a very complex manner. However, if the density of the fluid
is sufficiently small, the normal pressure (p) acting on the solid body can be
approximately taken as [12.3]

p = 2pv2 sin2 6 (E1)

where p is the density of the fluid, v the velocity of the fluid relative to the
solid body, and 6 the angle between the direction of the velocity of the fluid
and the tangent to the surface as shown in Fig. 12.5.

Since the pressure (p) acts normal to the surface, the jc-component of the
force acting on the surface of a slice of length dx and radius y(x) shown in Fig.
12.6 can be written as

dP = (normal pressure) (surface area) sin 6

= (2pp2 sin2 0)(27ry Vl + {y'f dx) sin 0 (E2)



Figure 12.5 Solid body of revolution translating in a fluid medium.

where yf = dy/dx. The total drag force, P, is given by the integral of Eq. (E2)
as

P = 4irpv2y sin30 Vl + (y')2 dx (E3)
Jo

where L is the length of the body. To simplify the calculations, we assume
that y' « 1 so that

sin 0 = , y - y' (E4)
Vl + (y'f

Figure 12.6 Element of surface area acted on by
the pressure p.

L

P

R



Thus Eq. (E3) can be approximated as

P = Airpv2 \ (y')3y dx (E5)
Jo

Now the minimum drag problem can be stated as follows.
Find y(x) which minimizes the drag P given by Eq. (E5) subject to the

condition that y(x) satisfies the end conditions

y(x = 0) = 0 and y(x = L) = R (E6)

By comparing the functional P of Eq. (E5) with A of Eq. (12.40), we find that

F(x9y9y', y") = 4Tcpv2(y')3y (E7)

The Euler-Lagrange equation, Eq. (12.47), corresponding to this functional
can be obtained as

(y)3"3 £[y(yf)2] = ° (Es)

The boundary conditions, Eqs. (12.48) and (12.49), reduce to

Vy(y')2] dy =0 (E9)
JCi=O

Equation (E8) can be written as

(y')3 - 3[y'(y')2 + y(2)y'y"] = 0

or

(y')3 + lyy'y" = 0 (E10)

This equation, when integrated once, gives

y(y')3 = *? (E11)

where k\ is a constant of integration. Integrating Eq. (E11), we obtain

y(x) = (M + k2f
4 (E12)



The application of the boundary conditions, Eqs. (E6), gives the values of the
constants as

JR43

kx = and k2 = 0
Li

Hence the shape of the solid body having minimum drag is given by the equa-
tion

/ \3/4

* > - R ( ! )

12.4.3 Lagrange Multipliers and Constraints

If the variable x is not completely independent but has to satisfy some condi-

tion^) of constraint, the problem can be stated as follows:

Find the function y(x) such that the integral

F (X9 y, — ) dx -* minimum

xi \ dx/

subject to the constraints (12.50)

where g may be an integral function. The stationary value of a constrained
calculus of variations problem can be found by the use of Lagrange multipliers.
To illustrate the method, let us consider a problem known as isoperimetric
problem given below.

Example 12.5: Optimum Design of a Cooling Fin The cooling fins are used
on radiators to increase the rate of heat transfer from a hot surface (wall) to
the surrounding fluid. Often, we will be interested in finding the optimum
tapering of a fin (of rectangular cross section) of specified total mass which
transfers the maximum heat energy.

The configuration of the fin is shown in Fig. 12.7. IfT0 and T00 denote the
wall and the ambient temperatures, respectively, the temperature of the fin at
any point, T(x), can be nondimensionalized as

« - f^ (E.)
so that t(0) = 1 and r(oo) = 0.



Figure 12.7 Geometry of a cooling fin.

To formulate the problem, we first write the heat balance equation for an
elemental length, dx, of the fin:

heat inflow by conduction = heat outflow by conduction and convection

that is,

I -kA f) = (-kA ^) + hS (t - U (E2)

where k is the thermal conductivity, A the cross-sectional area of the fin =
2y(x) per unit width of the fin, h the heat transfer coefficient, S the surface area
of the fin element = 2 Vl + (y')2 dx per unit width, and 2y(x) the depth of
the fin at any section x. By writing

and noting that J00 = 0, Eq. (E2) can be simplified as

Assuming that y' « 1 for simplicity, this equation can be written as

The amount of heat dissipated from the fin to the surroundings per unit time
is given by

Ambient temperature = T00Or I00 = 0

Heat overflow
by convection

Temperature
of wall = T0

J 0 = I Heat inflow
by conduction

Heat outflow
by conduction

L



H = 2 \ htdx (E6)
Jo

by assuming that the heat flow from the free end of the fin is zero. Since the
mass of the fin is specified as ra, we have

2 1 pydx - m = 0 (E7)
Jo

where p is the density of fin.
Now the problem can be stated as follows: Find t(x) that maximizes the

integral in Eq. (E6) subject to the constraint equation (E7). Since y(x) in Eq.
(E7) is also not known, it can be expressed in terms of t(x) using the heat
balance equation (E5). By integrating Eq. (E5) between the limits x and L, we
obtain

-ky(x) — (x)=h\ t(x) dx (E8)
dx Jx

by assuming the heat flow from the free end to be zero. Equation (E8) gives

*x)=-idkit(x)dx (E»>
By substituting Eq. (E9) in (E7), the variational problem can be restated as:

Find y(x) that maximizes

H = 2h\ t(x) dx (E10)
Jo

subject to the constraint

g(x,t,t') =2pj\ - J - I 1 t(x)dx\dx + m = 0 (E11)
K Jo atldx L J* J

This problem can be solved by using the Lagrange multiplier method. The
functional / to be extremized is given by

/ = ( (H + \g) dx = 2h \ \t(x) + ^ - J - f t(x) dx] dx (E12)
Jo Jo L k dtldx JJC J

where X is the Lagrange multiplier.



By comparing Eq. (E12) with Eq. (12.40) we find that

F(x,t,t') = 2ht + ^ j [ t(x) dx (E13)

The Euler-Lagrange equation, Eq. (12.47), gives

- t [ £ J > * * g - E ? ] " <E->
This integrodifferential equation has to be solved to find the solution t(x). In
this case we can verify that

/X \ 1 / 2

Kx) = 1 - x (-£) (E15)

satisfies Eq. (E14). The thickness profile of the fin can be obtained from Eq.
(E9) as

= C1 + c2x + C3X
2 (E16)

where

h (\p\ h

^ = 2 O B ^ F V T J = ^ (Ei9)

The value of the unknown constant X can be found by using Eq. (E7) as

fL / L2 L3\
m = 2p J0 y{x) dx = 2p( CxL + C2 y + C3 y j

that is,

m L L2 _ hL 1 /iL2

o r ~~ C l + C2 ^" + C3 "T "" ^ / 7 x x 1/2 ~ o ^ ~ (E20)
2pL 2 3 2(kpX) 3 &



Equation (E20) gives

1/2 hL 1
K ~ (kpf2 {mlpL) + § QiL2Ik) ( b 2 l )

Hence the desired solution can be obtained by substituting Eq. (E2O in Eq.
(E16).

12 A A Generalization

The concept of including constraints can be generalized as follows. Let the
problem be to find the functions u\(x,y,z), u2(x,y,z), . . . , un(x,y,z) that make
the functional

\yf(X^9Z9U19U29. . .,un, ^ , . . A dV (12.51)

stationary subject to the m constraints

g A x 9 y 9 z 9 u l 9 u 2 9 . • -,Un, — , . . . J = O
\ CfX /

I (12.52)

/ bux \
gm[ XJ9Z9U19U29. • . , M n , — , . . . 1 = 0

\ OX J

The Lagrange multiplier method consists in taking variations in the functional

A = f ( / + X,g, + A2S2 + • • • + KgJ dV (12.53)
JV

where X1- are now functions of position. In the special case where one or more
of the gi are integral conditions, the associated X1- are constants.

12.5 OPTIMAL CONTROL THEORY

The basic optimal control problem can be stated as follows:

U2 I

Find the control vector u = . ('

v M m y



which minimizes the functional, called the performance index,

J = I /0(x,u,0 dt (12.54)
Jo

where x = j } > is called the state vector, t the time parameter, T the terminal

Vr J

time, and/o is a function of x, u, and t. The state variables xt and the control
variables M1 are related as

-jt = Mx19X29- . .,xn;uuu2. . .,Mm;0, i = 1,2,. . .,rc

or

x = f(x,u,0 (12.55)

In many problems, the system is linear and Eq. (12.55) can be stated as

x = [A]x + [B]u (12.56)

where |/1] is an n X n matrix and [B] is an n X m matrix. Further, while
finding the control vector u, the state vector x is to be transferred from a known
initial vector X0 at t = 0 to a terminal vector xT at t = T, where some (or all
or none) of the state variables are specified.

12.5.1 Necessary Conditions for Optimal Control

To derive the necessary conditions for the optimal control, we consider the
following simple problem:

Find u which minimizes / = I fo(x,u,t) dt (12.57)
Jo

subject to

x = f (x,u9t) (12.58)

with the boundary condition JC(O) = kx. To solve this optimal control problem,
we introduce a Lagrange multiplier X and define an augmented functional / *
as

J* = \ {M*,u9t) + \[f(x9u9t) - x]} dt (12.59)
Jo



Since the integrand

F=fo + Mf~ x) (12.60)

is a function of the two variables x and w, we can write the Euler-Lagrange
equations [with W1 = x, u[ = dx/dt = x, U2 = u and U2 = du/dt = u in Eq.
(12.47)] as

*±-±(*)=0 (12.61)
dx dt \dx/ v '

dw Jr \ 3 M /

In view of relation (12.60), Eqs. (12.61) and (12.62) can be expressed as

f0 + X ^ + X = O (12.63)
dx dx

I^ + \ | ^ = 0 (12.64)

OU OU

A new functional H, called the Hamiltonian, is defined as

H=fo + \f (12.65)

and Eqs. (12.63) and (12.64) can be rewritten as

dH
- T - = X (12.66)

dx
f = 0 (12.67)
du

Equations (12.66) and (12.67) represent two first-order differential equations.
The integration of these equations leads to two constants whose values can be
found from the known boundary conditions of the problem. If two boundary
conditions are specified as JC(O) = kx and x(T) = k2, the two integration con-
stants can be evaluated without any difficulty. On the other hand, if only one
boundary condition is specified as, say, JC(O) = ^1, the free-end condition is
used as dF/dx = 0 or X = 0 at t = T.

Example 12.6 Find the optimal control u that makes the functional

J = \ (x2 + u2) dt (E1)
Jo



stationary with

x = u (E2)

and x(0) = 1. Note that the value of x is not specified at t = 1.

SOLUTION The Hamiltonian can be expressed as

H = /o + Xw = x1 + w2 + Xw (E3)

and Eqs. (12.66) and (12.67) give

~2x = X (E4)

2w + X = 0 (E5)

Differentiation of Eq. (E5) leads to

2w + X = 0 (E6)

Equations (E4) and (E6) yield

u=x (E7)

Since x = u [Eq. (E2)], we obtain

X = U=X

that is,

x~x = Q (E8)

The solution of Eq. (E8) is given by

x(i) = Cx sinh t + C2 cosh t (E9)

where C1 and C2 are constants. By using the initial conditions JC(O) = 1, we
obtain C2 = \. Since x is not fixed at the terminal point t = T = 1, we use the
condition X = 0 at t = 1 in Eq. (E5) and obtain u(t = 1) = 0. But

u = x = cx cosh t + sinh t (E10)

Thus

w(l) = 0 = cx cosh 1 + sinh 1



or

— sinh 1
Cl = ^ T (Ell)

and hence the optimal control is

-s inh 1
u(t) = ' cosh t 4- sinh t

cosh 1
__ —sinh 1 • cosh t + cosh 1 • sinh t _ —sinh (1 — t)

= cosh 1 = cosh 1 ( ll)

The corresponding state trajectory is given by

. cosh(l - t)

x(t) = u = — — (E13)
cosh 1

12.5.2 Necessary Conditions for a General Problem

We shall now consider the basic optimal control problem stated earlier:

Find the optimal control vector u that minimizes

J = \ Mx,u,t) dt (12.68)
Jo

subject to

X1 = Mx9UJ)9 i = 1 , 2 , . . . ,/i (12.69)

Now we introduce a Lagrange multiplier pt, also known as the adjoint vari-
able, for the /th constraint equation in (12.69) and form an augmented func-
tional J* as

/ * = f |"/o + S Pi{fi - X1)) dt (12.70)
Jo L '=i J

The Hamiltonian functional, H, is defined as

n

H=f0+ S Pj1 (12.71)

such that

7* = f (H - S P1-JC1-) dt (12.72)
Jo \ i=\ /



Since the integrand

n

F = H - S Pix{ (12.73)
/ = i

depends on x, u, and t, there are n + m dependent variables (x and u) and
hence the Euler-Lagrange equations become

?-7,(T) = 0' '-!A....- 02-74)
dxt dt \dxj

£ < ( « £ ) _ o. j - u „ (12.75)
duj dt \dujj

In view of relation (12.73), Eqs. (12.74) and (12.75) can be rewritten as

-IT=Pi* i = U,...,/i (12.76)
OJCj

dH
— = O, J= 1,2,. . .,/n (12.77)

Equations (12.76) are knowns as adjoint equations.
The optimum solutions for x, u, and p can be obtained by solving Eqs.

(12.69), (12.76), and (12.77). There are totally In + m equations with rcc/'s,
HPi9S9 and WM/S as unknowns. If we know the initial conditions X1(O), i =
1,2,. . .,n, and the terminal conditions Xj(T)9J = 1,2,. . .,/, with / < n, we
will have the terminal values of the remaining variables, namely Xj(T)9 j =
I + I, I + 2, . . . , n, free. Hence we will have to use the free end conditions

Pj(T) = 0 , j = / + 1, / + 2, . . . 9n (12.78)

Equations (12.78) are called the transversality conditions.

12.6 OPTIMALITY CRITERIA METHODS

The optimality criteria methods are based on the derivation of an appropriate
criteria for specialized design conditions and developing an iterative procedure
to find the optimum design. The optimality criteria methods were originally
developed by Prager and his associates for distributed (continuous) systems
[12.14] and extended by Venkayya, Khot, and Berke for discrete systems
[12.15-12.18]. The methods were first presented for linear elastic structures
with stress and displacement constraints and later extended to problems with

Next Page
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other types of constraints. We will present the basic approach using only dis-
placement constraints.

12.6.1 Optimality Criteria with a Single Displacement Constraint

Let the optimization problem be stated as follows:

n

Find X which minimizes/(X) = S c^ (12.79)

subject to

n

2 - = ymM (12.80)
i = 1 Xj

where C1 are constants, ;ymax is the maximum permissible displacement, and at

depends on the force induced in member i due to the applied loads, length of
member i, and Young's modulus of member i. The Lagrangian function can
be defined as

n / n \

L(X9X) = S C1-JC1- + Xl £ ^ - > w ) (12.81)

At the optimum solution, we have

! ^ = C - X V X S - ^ = O, *= 1,2,..,n (12.82)
OXk Xk i=\ Xt OXk

It can be shown that the last term in Eq. (12.82) is zero for statically deter-
minate as well as indeterminate structures [12.16] so that Eq. (12.82) reduces
to

ck - X^ | = 0, k= l ,2,. . . ,n (12.83)
xk

or

X = — (12.84)
ak

Equation (12.84) indicates that the quantity ckx\lak is the same for all the
design variables. If all the design variables are to be changed, this relation can
be used. However, in practice, only a subset of design variables are involved
in Eq. (12.82). Thus it is convenient to divide the design variables into two



sets: active variables [those determined by the displacement constraint of Eq.
(12.84)] and passive variables (those determined by other considerations). As-
suming that the first Ti variables denote the active variables, we can rewrite
Eqs. (12.79) and (12.80) as

n

f = f + S ciXi (12.85)
i= 1

2 - = ymax - y = y* (12.86)
i = l X1

where /and y denote the contribution of the passive variables to/and y, re-
spectively. Equation (12.84) now gives

xk = >fcjf> * = 1,2,...,/i (12.87)

Substituting Eq. (12.87) into Eq. (12.86), and solving for X, we obtain

VX = — S 4cuck (12.88)
y * *=i

Using Eq. (12.88) in Eq. (12.87) results in

xk = — p S VS^, A: = 1,2,. . .,n (12.89)
y* ^ Q i = i

Equation (12.89) is the optimality criteria that must be satisfied at the optimum
solution of the problem stated by Eqs. (12.79) and (12.80). This equation can
be used to iteratively update the design variables xk as

^ + 1) = ( ^ > g j . ? 1 ^ J , *=l ,2 , . . ,n (12.90)

where the superscript j denotes the iteration cycle. In each iteration, the com-
ponents ak and ck are assumed to be constants (in general, they depend on the
design vector).

12.6.2 Optimality Criteria with Multiple Displacement Constraints

When multiple displacement constraints are included, as in the case of a struc-
ture subjected to multiple-load conditions, the optimization problem can be



stated as follows:

Find a set of active variables X = (Jc1 X2 • • • X71)
7 which minimizes

/(X) = / 0 + ^c1X1 (12.91)

subject to
n

yy = I ! ^ = J / , J = 1,2,...,/ (12.92)

where 7 denotes the number of displacement (equality) constraints, yf the
maximum permissible value of the displacement J7, and ajt is a parameter that
depends on the force induced in member i due to the applied loads, length of
member i, and Young's modulus of member /. The Lagrangian function cor-
responding to Eqs. (12.91) and (12.92) can be expressed as

n J / n \

L(X9X19. . .,X7) = /o + S C1X1 + S X; ( S ^ - y / ) (12.93)

and the necessary conditions of optimality are given by

— = c* - S Xy2§ = 0, k= 1,2,. . .,n (12.94)

Equations (12.94) can be rewritten as

L J / \ -i 1/2

S U-^ j J , *= 1,2,...,n (12.95)

Note that Eq. (12.95) can be used to iteratively update the variable xk as

4'-+1> = [[ .£ (A; I ) ] ' / 2 ] 0 ) , * = 1,2, . .,n (12.96)
where the values of the Lagrange multipliers X7 are also not known at the
beginning. Several computational methods can be used to solve Eqs. (12.96)
[12.17,12.18].
12.6.3 Reciprocal Approximations

In some structural optimization problems, it is convenient and useful to con-
sider the reciprocals of member cross-sectional areas (I/Ai) as the new design



variables fc). If the problem deals with the minimization of weight of a stat-
ically determinate structure subject to displacement or stress constraints, the
objective function and its gradient can be expressed as explicit functions of the
variables Z1- and the constraints can be expressed as linear functions of the
variables Z1. If the structure is statically indeterminate, the objective function
remains a simple function of z,- but the constraints may not be linear in terms
of Zi; however, a first-order Taylor series (linear) approximation of the con-
straints denote a very high quality approximation of these constraints. With
reciprocal variables, the optimization problem with a single displacement con-
straint can be stated as follows:

Find Z = {zx Z2 • • ' zn}
T which minimizes/(Z) (12.97)

subject to

g(Z) = 0 (12.98)

The necessary condition of optimality can be expressed as

?f + X ^ = O, / = 1,2,. . . , / i (12.99)
dZi dzt

Assuming / to be linear in terms of the areas of cross section (original vari-
ables, Xi = A1) and g to be linear in terms of zf-, we have

S L . £ f . - \ f <12,oo,

OZ1 °xi °Zi Z1 OXi

and Eqs. (12.99) and (12.100) yield

« 4 H t ) ' * - ' - 1 - 2 -

To find X we first find the linear approximation of g at a reference point (trial
design) Z0 (or X0) as

g(Z) * g(Z0) + S / (Z1 - Zoi) « go + 2 / Zi (12.102)
i = l 6^i Z0

 / = 1 °Zi Zo

where

g0 = g(Z0) - S / zoi = S(X0) + S / X0,- (12.103)



and Zoi is the ith component of Z0 with xOi = l/z0/- By setting Eq. (12.102)
equal to zero and substituting Eq. (12.101) for Jt1-, we obtain

Ig0 i=\ \dXi dzi/ J

Equations (12.104) and (12.101) can now be used iteratively to find the opti-
mal solution of the problem. The procedure is explained through the following
example.

Example 12.7 The problem of minimum weight design subject to a constraint
on the vertical displacement of node S(U\) of the three-bar truss shown in Fig.
12.8 can be stated as follows:

(xl
Find X = ! which minimizes

Ix2)
/ (X) = p(2 y/2 l)xx + plx2 = 80.0445Jc1 + 28.3JC2 (E.I)

subject to

^ max

Bar 1
(JCl)

Bar 2
(X2)

B a r 3

U 1 )

Figure 12.8 Three-bar truss.



or

8(X) = ^ = 1 < 0 (E.2)
X1 + SJIX1

where p is the weight density, E is Young's modulus, f/max the maximum
permissible displacement, X1 the area of cross section of bars 1 and 3, X2 the
area of cross section of bar 2, and the vertical displacement of node S is given
by

^ = T l~FT (R3)

E xx + V2 ^2

Find the solution of the problem using the optimality criteria method.

SOLUTION The partial derivatives of/and g required by Eqs. (12.101) and
(12.104) can be computed as

$L = 80.0445, ^f- = 28.3
OXx OX2

dZt dxt dZj dxt

dg = - 1 dg = -Ji

oxx (xx + V 2 x 2 ) 2 ' 3x2 (X1 + V 2 x 2 ) 2

At any design X1 , Eq. (12.103) gives

dg dg
go = S(X1-) + — x n + — x /2

Sx1 9x2
1 Xi Z Xi

= 1 _ j fji Ji Xn
xiX + V2 x/2 (xn + V2 jca)2 (xn + Jl xi2f

Thus the values of X and (X1,X2) can be determined iteratively using Eqs.
(12.104) and (12.101). Starting from the initial design (X1,X2) = (2.0,2.0) in2,
the results obtained are shown in Table 12.1.

12.7 GENETIC ALGORITHMS

12.7.1 Introduction

Many practical optimum design problems are characterized by mixed contin-
uous-discrete variables, and discontinuous and nonconvex design spaces. If



Solution from Eq. (12.101)

X2

0.58579E+00
0.65886E+00
0.69115E+00
0.70102E+00
0.70117E+00
0.70117E+00
0.70117E+00

0.29289E+00
0.16472E+00
0.86394E-01
0.50714E-01
0.50011E-01
0.50000E-01
0.50000E-01

[Eq.
(12.104)]

go
[Eq. (12.103)]

Starting Values

0.40022E+02
0.31830E+02
0.26475E+02
0.23898E+02
0.23846E+02
0.23845E+02
0.23845E+02

-0.10000E+01
-0.10000E+01
-0.10000E+01
-0.10000E+01
-0.10000E+01
-0.10000E+01
-O.lOOOOE-fOl

X2

0.20000E+01
0.58579E+00
0.65886E+00
0.69115E+00
0.70102E+00
0.70117E + 00
0.70117E+00

0.20000E+01
0.29289E+00
0.16472E+00
0.10000E+00
0.10000E+00
0.10000E+00
0.10000E+00

TABLE 12.1 Results for Example 12.7f

fWith lower bounds on JCJ and X2 as 0.1.



standard nonlinear programming techniques are used for this type of problem
they will be inefficient, computationally expensive, and in most cases, find a
relative optimum that is closest to the starting point. Genetic algorithms (GAs)
are well suited for solving such problems, and in most cases they can find the
global optimum solution with a high probability. Although GAs were first pre-
sented systematically by Holland [13.19], the basic ideas of analysis and de-
sign based on the concepts of biological evolution can be found in the work of
Rechenberg [13.20]. Philosophically, GAs are based on Darwin's theory of
survival of the fittest.

Genetic algorithms are based on the principles of natural genetics and nat-
ural selection. The basic elements of natural genetics—reproduction, cross-
over, and mutation—are used in the genetic search procedure. GAs differ from
the traditional methods of optimization in the following respects:

1. A population of points (trial design vectors) is used for starting the pro-
cedure instead of a single design point. If the number of design variables
is n, usually the size of the population is taken as 2n to An. Since several
points are used as candidate solutions, GAs are less likely to get trapped
at a local optimum.

2. GAs use only the values of the objective function. The derivatives are
not used in the search procedure.

3. In GAs the design variables are represented as strings of binary variables
that correspond to the chromosomes in natural genetics. Thus the search
method is naturally applicable for solving discrete and integer program-
ming problems. For continuous design variables, the string length can
be varied to achieve any desired resolution.

4. The objective function value corresponding to a design vector plays the
role of fitness in natural genetics.

5. In every new generation, a new set of strings is produced by using ran-
domized parents selection and crossover from the old generation (old set
of strings). Although randomized, GAs are not simple random search
techniques. They efficiently explore the new combinations with the
available knowledge to find a new generation with better fitness or ob-
jective function value.

12.7.2 Representation of Design Variables

In GAs, the design variables are represented as strings of binary numbers, 0
and 1. If each design variable X1, i = 1,2,. . .,n is coded in a string of length
q, a design vector is represented using a string of total length nq. For example,
if a string of length 5 is used to represent each variable, a total string of length
20 describes a design vector with n = 4. For example, the following string of
20 binary digits denote the vector (Jc1 = 18, X2 = 3, X3 = 1, X4 = 4):



In general, if a binary number is given by bqbq_x • • • b2bxb$, where bk = O
or I9 k = 0,1,2, ...,<?, then its equivalent decimal number y (integer) is given
by

q

y = S 2kbk (12.105)

This indicates that a continuous design variable x can only be represented by
a set of discrete values if binary representation is used. If a variable x (whose
bounds are given by x(l) and x{u) is represented by a string of q binary numbers,
as shown in Eq. (12.105), its decimal value can be computed as

Y(u) _ (/) 9

*=*(<)+
 2 « - l S o 2 ^ (12-106)

Thus if a continuous variable is to be represented with high accuracy, we need
to use a large value of q in its binary representation. In fact, the number of
binary digits needed (q) to represent a continuous variable in steps (accuracy)
of Ax can be computed from the relation

2q > + 1 (12.107)
Ax

For example, if a continuous variable JC, with bounds 1 and 5 is to be repre-
sented with an accuracy of 0.01, we need to use a binary representation with
q digits where

2q > ~ - ^ + 1 = 401 or q = 9 (12.108)

Equation (12.106) shows why GAs are naturally suited for solving discrete
optimization problems.

12.7.3 Representation of Objective Function and Constraints

The GAs basically find the maximum of an unconstrained problem [12.21].
To solve a constrained minimization problem, we need to make two transfor-
mations. The first transformation transforms the original constrained problem

String of length 20



into an unconstrained problem, using the concept of penalty function, as

m

Minimize/(X) + R S $(gy(X)) (12.109)

subject to

x{P < Jt1. < xf\ i = 1,2,. . .,n (12.110)

where $ is a penalty function defined as

$(Z) = <Z>2 (12.111)

where

(Z if Z > 0
<Z> = (12.112)

to if Z < 0
and R is a constant, known as the penalty parameter. The second transfor-
mation accomplishes the minimization of/(X) through the maximization of a
fitness function, F(X), defined as

F(X) = Fmax - (/(X) + R .E 4HgJ(X))) = ^W - / ' ( X ) (12.113)

where Fmax is chosen to be greater than the largest value of/'(X) in the pop-
ulation and F(X) denotes the fitness of the string (design vector, X).

12.7.4 Genetic Operators

The basic operations of natural genetics—reproduction, crossover, and muta-
tion—are implemented as follows during numerical optimization. Reproduc-
tion is a process in which the individuals are selected based on their fitness
values relative to that of the population. In this process, each individual string
(design vector) is assigned a probability of being selected for copying as / /
Ef= i fi > where/ is the fitness or objective function value of the ith individual
(design vector, X1-) and K is the size of population. Thus designs (individuals)
with higher fitness values have a greater chance of being selected for mating
and subsequent genetic action. Consequently, highly fit individuals live and
reproduce, and less fit individuals die (survival of the fittest). After reproduc-
tion, the crossover operation is implemented in two steps. First, two individual
strings (designs) are selected at random from the mating pool generated by the
reproduction operator. Next, a crossover site is selected at random along the
string length, and the binary digits (alleles) are swapped between the two strings



following the crossover site. For example, if two design vectors (parents), each
with a string length of 10, are given by

(Parent 1) X1 = {0 1 0 j 1 0 1 1 0 1 1}

(Parent 2) X2 = (I 0 OjO 1 1 1 1 0 0}

the result of crossover, when the crossover site is 3, is given by

(Offspring 1) X3 = {0 1 0 j 0 1 1 1 1 0 0}

(Offspring 2) X4 = {1 0 0 j 1 0 1 1 0 1 1}

The new strings obtained from crossover (offsprings) are placed in the new
population and the process is continued. Finally, the mutation operator is ap-
plied to the new string with a specified mutation probability. A mutation is the
occasional random alteration of a binary digit (allele's value). Thus in mutation
a 0 is changed to 1, and vice versa, at a random location. When used sparingly
with the reproduction and crossover operators, mutation serves as a safeguard
against a premature loss of important genetic material at a particular position.

12.7.5 Numerical Results

The welded beam problem described in Section 7.22.3 (Fig. 7.23) was con-
sidered by Deb [12.38] with the following data: population size = 100, total
string length = 40, substring length for each design variable = 10, probability
of crossover = 0.9, and probability of mutation = 0.01. Different penalty
parameters were considered for different constraints in order to have the con-
tribution of each constraint violation to the objective function be approximately
the same. Nearly optimal solutions were obtained after only about 15 genera-
tions with approximately 0.9 x 100 X 15 = 1350 function evaluations. The
optimum solution was found to be JC* = 0.2489, JC* = 6.1730, JC* = 8.1789,
JC* = 0.2533, and/* = 2.43, which can be compared with the solution ob-
tained from geometric programming, JC* = 0.2455, JC* = 6.1960, JC* =
8.2730, JC? = 0.2455, and/* = 2.39 [12.39]. Although the optimum solution
given by the GAs corresponds to a slightly larger value of/*, it satisfies all
the constraints (the solution obtained from geometric programming violates
three constraints slightly).

12.8 SIMULATED ANNEALING

Simulated annealing is a combinatorial optimization technique based on ran-
dom evaluations of the objective function in such a way that transitions out of
a local minimum are possible. Although the method usually requires a large
number of function evaluations to find the optimum solution, it will find the



global optimum with a high probability even for ill-conditioned functions with
numerous local minima. The name of the method is derived from the simula-
tion of thermal annealing of critically heated solids. A slow and controlled
cooling of a heated solid ensures proper solidification with a highly ordered,
crystalline state that corresponds to the lowest internal energy. Rapid cooling,
on the other hand, causes defects inside the material.

Let the optimization problem be stated as follows:

Minimize/(X) (12.114)

subject to

x{P < Xi < x?\ / = 1,2,. . .,/i (12.115)

Starting from an initial vector X1, the algorithm generates successively im-
proved points X2, X3, . . . moving toward the global minimum solution. IfX1-
denotes the current point, random moves are made along each coordinate di-
rection, in turn. The new coordinate values are uniformly distributed around
the corresponding coordinate of X,-. One-half of these intervals along the co-
ordinates are stored as the step vector S,-. If the point falls outside the range
given by Eqs. (12.115), a new point satisfying Eq. (12.115) is found. A can-
didate design vector X is accepted or rejected according to a criterion, known
as the metropolis criterion [12.31]:

If A/ < 0, accept the new point and set X1 + 1 = X. Otherwise, accept the new
point with a probability of

P(A/) = e~Af/kT (12.116)

where A/ = /(X1 + {) — /(X1-), k is a scaling factor called Boltzmann 's constant,
and Tis a parameter called temperature.

The value ofk influences the convergence characteristics of the method. Var-
ious cooling schedules, defining the variations of k and T, have been studied
in the literature [12.30].

The simulated annealing algorithm starts with a "high" temperature, T0. A
sequence of design vectors is then generated until equilibrium is reached; that
is, the average value of/reaches a stable value as / increases. During this
phase, the step vector S is adjusted periodically to better follow the function
behavior. The best point reached is recorded as Xopt. Once thermal equilibrium
is reached, the temperature T is reduced and a new sequence of moves is made
starting from Xopt until thermal equilibrium is reached again. This process is
continued until a sufficiently low temperature is reached, at which stage no
more improvement in the objective function value can be expected. The basic
algorithm is shown as a flow diagram in Fig. 12.9. Some of the features of
simulated annealing are as follows:



Figure 12.9 Simulated annealing procedure.
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1. The quality of the final solution is not affected by the initial guesses,
except that the computational effort may increase with worse starting
designs.

2. Because of the discrete nature of the function and constraint evaluations,
the convergence or transition characteristics are not affected by the con-
tinuity or differentiability of the functions.

3. The convergence is also not influenced by the convexity status of the
feasible space.

4. The design variables need not be positive.
5. The method can be used to solve mixed-integer, discrete, or continuous

problems.
6. For problems involving behavior constraints (in addition to lower and

upper bounds on the design variables), an equivalent unconstrained func-
tion is to be formulated as in the case of genetic algorithms.

Numerical Results. The welded beam problem of Section 7.22.3 (Fig. 7.23)
is solved using simulated annealing. The solution is given by xf = 0.2471,
JC* = 6.1451, Jc3* = 8.2721, x% = 0.2495, and/* = 2.4148. This solution
can be compared with the solutions obtained by genetic algorithms (xf =
0.2489, JC2 = 6.1730, JC3* = 8.1789, x% = 0.2533, and/* = 2.4331) and
geometric programming (JC* = 0.2536, JC* = 7.1410, JC* = 7.1044, JC* =
0.2536, and/* = 2.3398). Notice that the solution given by geometric pro-
gramming [12.39] violated three constraints slightly, while the solutions given
by the genetic algorithms [12.38] and simulated annealing satisfied all the con-
straints.

12.9 NEURAL-NETWORK-BASED OPTIMIZATION

The immense computational power of nervous system to solve perceptional
problems in the presence of massive amount of sensory data has been associ-
ated with its parallel processing capability. The neural computing strategies
have been adopted to solve optimization problems in recent years [12.41,
12.42]. A neural network is a massively parallel network of interconnected
simple processors (neurons) in which each neuron accepts a set of inputs from
other neurons and computes an output that is propagated to the output nodes.
Thus a neural network can be described in terms of the individual neurons, the
network connectivity, the weights associated with the interconnections be-
tween neurons, and the activation function of each neuron. The network maps
an input vector from one space to another. The mapping is not specified but is
learned.

Consider a single neuron shown in Fig. 12.10. The neuron receives a set of
n inputs, Jc1-, i = 1,2,. . .,/i, from its neighboring neurons and a bias whose
value is equal to 1. Each input has a weight (gain) wt associated with it. The



Figure 12.10 Single neuron and its output. [12.41] (Reprinted with permission of
Gordon and Breach Science Publishers).

weighted sum of the inputs determines the state or activity of a neuron, and is
given by a = E^1

1 W1-Jt1- = W 7 X, where X = {JC, X2 • • • Xn 1 } T . A
simple function is now used to provide a mapping from the ^-dimensional
space of inputs into a one-dimensional space of the output, which the neuron
sends to its neighbors. The output of a neuron is a function of its state and can
be denoted as f(a). Usually, no output will be produced unless the activation
level of the node exceeds a threshold value. The output of a neuron is com-
monly described by a sigmoid function as

/(a) = r r ^ (12117)

which is shown graphically in Fig. 12.10. The sigmoid function can handle
large as we as small input signals. The slope of the function/(a) represents
the available gain. Since the output of the neuron depends only on its inputs
and the threshold value, each neuron can be considered as a separate processor
operating in parallel with other neurons. The learning process consists of de-
termining values for the weights W1- which lead to an optimal association of the
inputs and outputs of the neural network.

Several neural network architectures, such as the Hopfield and Kohonen
networks, have been proposed to reflect the basic characteristics of a single
neuron. These architectures differ one from the other in terms of the number
of neurons in the network, the nature of the threshold functions, the connec-
tivities of the various neurons, and the learning procedures. A typical archi-

(Bias)
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Figure 12.11 Multilayer feedforward network. [12.41] (Reprinted with permission
of Gordon and Breach Science Publishers).

tecture, known as the multilayer feedforward network, is shown in Fig. 12.11.
In this figure the arcs represent the unidirectional feedforward communication
links between the neurons. A weight or gain associated with each of these
connections controls the output passing through a connection. The weight can
be positive or negative depending on the excitatory or inhibitory nature of the
particular neuron. The strengths of the various interconnections (weights) act
as repositories for knowledge representation contained in the network.

The network is trained by minimizing the mean-squared error between the
actual output of the output layer and the target output for all the input patterns.
The error is minimized by adjusting the weights associated with various inter-
connections. A number of learning schemes, including a variation of the stee-
pest descent method, have been used in the literature. These schemes govern
as to how the weights are to be varied to minimize the error at the output nodes.
For illustration, consider the network shown in Fig. 12.12. This network is to
be trained to map the angular displacement and angular velocity relationships,
transmission angle, and the mechanical advantage of a four-bar function-gen-
erating mechanism (Fig. 12.13). The inputs to the five neurons in the input
layer include the three link lengths of the mechanism (r2, r3, and r4) and the
angular displacement and velocities of the input link (02 and co2). The outputs

Outputs

Output
layer

Hidden
layer

Input
layer



Figure 12.12 Network used to train relationships for a four-bar mechanism. [12.41]
(Reprinted with permission of Gordon and Breach Science Publishers).

of the six neurons in the output layer include the angular positions and veloc-
ities of the coupler and the output links (03, co3, 04, and co4), the transmission
angle (7), and the mechanical advantage (77) of the mechanism. The network
is trained by inputting several possible combinations of the values of r2, r3, r4,
02, and co2 and supplying the corresponding values of 03, 04, a>3, a>4, 7, and rj.
The difference between the values predicted by the network and the actual
output is used to adjust the various interconnection weights such that the mean-
squared error at the output nodes is minimized. Once trained, the network
provides a rapid and efficient scheme that maps the input into the desired output
of the four-bar mechanism. It is to be noted that the explicit equations relating
r2, r3, r4, 02, and co2 and the output quantities 03, O4, oo3, co4, 7, and rj have not
been programmed into the network; rather, the network learns these relation-

Figure 12.13 Four-bar function generating mechanism.



ships during the training process by adjusting the weights associated with the
various interconnections. The same approach can be used for other mechanical
and structural analyses that might require a finite-element-based computations.

Numerical Results. The minimization of the structural weight of the three-bar
truss described in Section 7.22.1 (Fig. 7.21) was considered with constraints
on the cross-sectional areas and stresses in the members. Two load conditions
were considered with P = 20,000 Ib, E = 10 X 106 psi, p = 0.1 lb/in3, H =
100 in., amin = -15,000 psi, amax = 20,000 psi, Af = 0.1 in2 (i = 1, 2),
and A^u) = 5.0 in2 (/ = 1,2). The solution obtained using neural-network-
based optimization is [12.41]: xf = 0.788 in2, x$ = 0.4079 in2, and/* =
26.3716 Ib. This can be compared with the solution given by nonlinear pro-
gramming: x? = 0.7745 in2, *? = 0.4499 in2, and/* = 26.4051 Ib.

12.10 OPTIMIZATION OF FUZZY SYSTEMS

In traditional designs, the optimization problem is stated in precise mathemat-
ical terms. However, in many real-world problems, the design data, objective
function, and constraints are stated in vague and linguistic terms. For example,
the statement, "This beam carries a load of 1000 Ib with a probability of 0.8"
is imprecise because of randomness in the material properties of the beam. On
the other hand, the statement, "This beam carries a large load" is imprecise
because of the fuzzy meaning of "large load." Similarly, in the optimum de-
sign of a machine component, the induced stress (a) is constrained by an upper
bound value (amax) as o < <rmax. If amax = 30,000 psi, it implies that a design
with a = 30,000 psi is acceptable whereas a design with a = 30,001 psi is
not acceptable. However, there is no substantive difference between designs
with a = 30,000 psi and a = 30,001 psi. It appears that it is more reasonable
to have a transition stage from absolute permission to absolute impermission.
This implies that the constraint is to be stated in fuzzy terms. Fuzzy theories
can be used to model and design systems involving vague and imprecise in-
formation [12.40, 10.44, 10.45].

12.10.1 Fuzzy Set Theory

Let X be a classical crisp set of objects, called the universe, whose generic
elements are denoted by x. Membership in a classical subset A of X can be
viewed as a characteristic function \iA from X to [0,1] such that

Cl if x e A
^ W = L .f dA (12.H8)

(̂ O if JC f. A

The set [0,1] is called a valuation set. A set A is called a fuzzy set if the
valuation set is allowed to be the whole interval [0,1]. The fuzzy set A is



characterized by the set of all pairs of points denoted as

A = {x,fjiA(x)}, x e X (12.119)

where fiA(x) is called the membership Junction of x in A. The closer the value
of \kA (x) is to 1, the more x belongs to A. For example, let X = { 62 64 66
68 70 72 74 76 78 80 } be possible temperature settings of the ther-
mostat (0F) in an air-conditioned building. Then the fuzzy set A of "comfort-
able temperatures for human activity" may be defined as

A = {(62, 0.2) (64,0.5) (66,0.8) (68,0.95) (70,0.85) (72,0.75)

(74,0.6) (76,0.4) (78,0.2) (80,0.1)} (12.120)

where a grade of membership of 1 implies complete comfort and 0 implies
complete discomfort. In general, if X is a finite set, {xux2,. . .,Xn} the fuzzy
set on X can be expressed as

n

A = ft4(*i)L + I^A(X2)\X2 + • • • + /^(Xn)L = 2 VLA(X,)\XI (12.121)
/= 1

or in the limit, we can express A as

A = f iiA(x)\x (12.122)
Jx

Crisp set theory is concerned with membership of precisely defined sets and
is suitable for describing objective matters with countable events. Crisp set
theory is developed using binary statements and is illustrated in Fig. 12.14«,
which shows the support for yl with no ambiguity. Since fuzzy set theory is
concerned with linguistic statements of support for membership in imprecise
sets, a discrete fuzzy set is denoted as in Fig. 12.14b, where the degree of
support is shown by the membership values, /X1, /x2, • • • , Atn, corresponding
to y\, )>2, . . • , yn J respectively. The discrete fuzzy set can be generalized to a
continuous form as shown in Fig. 12.14c.

The basic crisp set operations of union, intersection, and complement can
be represented on Venn diagrams as shown in Fig. 12.15. Similar operations
can be defined for fuzzy sets, noting that the sets A and B do not have clear
boundaries in this case. The graphs of \LA and \KB can be used to define the set-
theoretic operations of fuzzy sets. The union of the fuzzy sets A and B is
defined as

PA\JB(y) = V-A(y) V iiB(y) = max[^(y),/xfl(y)]

= H y ) lf K > "B (12.123)
LfiBiy) l f HA < HB



Figure 12.14 Crisp and fuzzy sets: (a) crisp set; (b) discrete fuzzy set; (c) continuous
fuzzy set. [12.40]. (With permission of ASME.)

The result of this operation is shown in Fig. 12.16«. The intersection of the
fuzzy sets A and B is defined as

PACiBiy) = t*A(y) A fiB(y) = min[nA(y),iiB(y)]

= № l f "A < "B (12.124)
ifiA(y) if fiA > \iB

Figure 12.15 Basic set operations in crisp set theory: (a) A or B or both: AUB; (b)
A and B: A C\ B; (c) not A: A. [12.40] (With permission of ASME.)



Figure 12.16 Basic set operations in fuzzy set theory: (a) union; (b) intersection; (c)
complement. [12.40] (With permission of ASME.)

This operation is shown in Fig. \2A6b. The complement of a fuzzy set A is
shown as A in Fig. 12.16c, in which for every \x.A(y)9 there corresponds
I1A (y) = 1 ~~ VA (y)> which defines the complement of the set A, A.

12.10.2 Optimization of Fuzzy Systems

The conventional optimization methods deal with selection of the design vari-
ables that optimizes an objective function subject to the satisfaction of the
stated constraints. For a fuzzy system, this notion of optimization has to be
revised. Since the objective and constraint functions are characterized by the
membership functions in a fuzzy system, a design (decision) can be viewed as
the intersection of the fuzzy objective and constraint functions. For illustration,
consider the objective function: "The depth of the crane girder (x) should be
substantially greater than 80 in." This can be represented by a membership
function, such as

(O if JC < 80 in.
fif(x) = ) (12.125)

J ( J l +(x- 80)"2]"1 if x > 80 in.

Let the constraint be: "The depth of the crane girder (x) should be in the
vicinity of 83 in." This can be described by a membership function of the type

N(x) = [1 + (JC - 8 3 ) V (12.126)

Then the design (decision) is described by the membership function, fiD(x), as

/Zz)Cx) = /*/(*) A tig(x)

CQ X < 80 in.

= min{[l +(X- 8O)-2]"1, [1 + (JC - 8 3 ) V } (12.127)

(̂  if x > 80 in.

This relationship is shown in Fig. 12.17.



Figure 12.17 Concept of fuzzy decision. [12.40]. (With permission of ASME.)

The conventional optimization problem is usually stated as follows:

Find X which minimizes/(X)

subject to

g)l) < gj(X) < gjM), j = 1,2,. . .,m (12.128)

where the superscripts / and u denote the lower and upper bound values, re-
spectively. The optimization problem of a fuzzy system is stated as follows:

Find X which minimizes/(X)

subject to

gjQQeGj, J= 1,2, . . . 9m (12.129)

where G7 denotes the fuzzy interval to which the function gj(S) should belong.
Thus the fuzzy feasible region, 5, which denotes the intersection of all G7 is
defined by the membership function

/is(S) = min {pqlgjOI)]} (12.130)
j= 1,2,. . .,m

Since a design vector X is considered feasible when /^(X) > 0, the optimum
design is characterized by the maximum value of the intersection of the objec-
tive function and the feasible domain:

Constraint
Objective function

Design (decision)



^ D ( X * ) = max M X ) , X e D (12.131)

where

MD(X) = minj M/(X), min M Q [ $ ( X ) ] j (12.132)
(^ 7 = 1 , 2 , . . . , m J

12.10.3 Computational Procedure

The solution of a fuzzy optimization problem can be determined once the mem-
bership functions of/and gj are known. In practical situations, the construc-
tions of the membership functions is accomplished with the cooperation and
assistance of experienced engineers in specific cases. In the absence of other
information, linear membership functions are commonly used, based on the
expected variations of the objective and constraint functions. Once the mem-
bership functions are known, the problem can be posed as a crisp optimization
problem as

Find X and X which maximize X

subject to

X < M/(X)

^ ^ HgpCX)> j = \,2,. . .,m

X < ngf\x), j = 1,2,. . .,m (12.133)

Numerical Results. The minimization of the error between the generated and
specified outputs of the four-bar mechanism shown in Fig. 12.13 is considered.
The design vector is taken as X = {a b c Q (3}T. The mechanism is
constrained to be a crank-rocker mechanism so that

a - b < 0, a - c < 0, a < 1

d = [(a + c) - (b + l)][(c - a)2 -Qb- I)2] < 0

The maximum deviation of the transmission angle (M) from 90° is restricted
to be less than a specified value, fmax = 35°. The specified output angle is

f20° + - , 0° < </> < 240°
0,(*) = 3

(^unspecified, 240° < <j> < 360°

Linear membership functions are assumed for the response characteristics
[12.40]. The optimum solution is found to be X = {0.2537



0.8901 0.8865 -0.7858 - 1 . 0 } r w i t h / * = 1.6562 and X* = 0.4681.
This indicates that the maximum level of satisfaction that can be achieved in
the presence of fuzziness in the problem is 0.4681. The transmission angle
constraint is found to be active at the optimum solution [12.40].
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REVIEW QUESTIONS

12.1 Answer true or false.
(a) Linear programming problem is a separable programming prob-

lem.
(b) Any nonlinear function can be transformed into a separable form.
(c) Separable programming problems can always be solved through

piecewise linearization and regular simplex method.
(d) All multiobjective optimization method find only a Pareto opti-

mum solution.
(e) All multiobjective optimization techniques convert the problem

into a single objective problem.
(f) A variational operator is similar to a differential operator.
(g) Calculus of variations can be used only for finding the extrema

of functionals with no constraints.
(h) Optimality criteria methods can be used to solve any optimization

problem.
(i) Genetic algorithms basically maximize an unconstrained func-

tion.
(j) Simulated annealing basically solves an unconstrained optimiza-

tion problem.
(k) GAs seek to find a better design point from a trial design point.
(1) GAs can solve a discrete optimization problem with no additional

effort.
(m) SA is a type of random search technique.



(n) GAs and SA can find the global minimum with high probability.
(0) GAs are zeroth-order methods.
(p) Discrete variables need not be represented as binary strings in

GAs.
(q) SA will find a local minimum if the feasible space is nonconvex.

(r) The expressions relating the input and output are to be pro-
grammed in neural-network-based methods.

(s) Several networks architectures can be used in neural-network-
based optimization.

(t) A fuzzy quantity is same as a random quantity.

12.2 Define the following terms.
(a) Pareto optimal point
(b) Utility function method

(c) Weighting function method

(d) Global criterion function method
(e) Bounded objective function method
(f) Lexicographic method

(g) Functional
(h) Hamiltonian
(1) Fuzzy parameter
(j) Annealing

12.3 Match the following terms and descriptions.

(a) Calculus of variations Linguistic data can be used

(b) Lexicographic method Analysis equations need not be pro-
grammed

(c) Optimal control theory Discrete optimization
(d) Fuzzy optimization Hamiltonian used
(e) Genetic algorithms Optimization of functionals
(f) Neural network method Multiobjective optimization

12.4 How are the goals determined in the goal programming method?

12.5 What are Euler-Lagrange equations?

12.6 Which method can be used to solve a trajectory optimization problem?

12.7 What is an optimality criteria method?

12.8 What is the basis of optimality criteria methods?

12.9 What are the advantages of using reciprocal approximations in struc-
tural optimization?



12.10 What are the basic operations used in GAs?

12.11 What is a fitness function in GAs?

12.12 Can you consider SA as a zeroth-order search method?

12.13 How do you select the length of the binary string to represent a design
variable?

12.14 Construct the objective function to be used in GAs for a minimization
problem with mixed equality and inequality constraints.

12.15 How is the crossover operation performed in GAs?

12.16 What is the purpose of mutation? How is it implemented in GAs?

12.17 What is the physical basis of SA?

12.18 What is metropolis criterion, and where is it used?

12.19 What is a neural network?

12.20 How is a neuron modeled in neural-network-based models?

12.21 What is a sigmoid function?

12.22 How is the error in the output minimized during network training?

12.23 What is the difference between a random quantity and a fuzzy quan-
tity?

12.24 Give two examples of design parameters that can be considered as
fuzzy.

12.25 What is a valuation set?

12.26 What is the significance of membership function?

12.27 Define the union of two fuzzy sets A and Bl

12.28 How is the intersection of two fuzzy sets A and B defined?

12.29 Show the complement of a fuzzy set in Venn diagram.

12.30 How is the optimum solution defined in a fuzzy environment?

12.31 How is the fuzzy feasible domain defined for a problem with inequality
constraints?

PROBLEMS

12.1 Express the following problem in separable form:

Minimize/(X) = 2x\ + x\ + (X1 + X2)
2 - 1Ox1 - Sx2 + 10



subject to

X1 H- X2 < 6

Jc1 > 0, X2 > 0

12.2 State the following problem as a separable programming problem:

Minimize/(X) = 2(JC1 - 4)2 + (x2 - 6)2 - 2Ox1X2

subject to

x2 H- X2 < 16

X1 > 0, x2 > 0

12.3 Find the curve connecting two points A(0,0) and #(2,0) such that the
length of the line is a minimum and the area under the curve is w/2.

12.4 Prove that the shortest distance between two points is a straight line.
Show that the necessary conditions yield a minimum and not a maxi-
mum.

52.S Find the function x(t) that minimizes the functional

<• - n * 1 + * • + ( D >
with the condition that x(0) = 2.

12.6 Convert the following problems to separable form.

(a) Maximize/ = 1Ox1 H- 8X1X2 — 5X1^
1 H- 2x2 cos X2

with X1 > 0 and X2 > 0.

(b) Maximize /= 20e3xi+X2 H- 5x2

subject to

4X1X2 H- 5x2 = 60

with X1 > 0 and X2 > 0.

12.7 Find the solution of the following separable programming problem:

Maximize /= 2X1 H- X2



subject to

2Jc1 + 3xj <: 9

with Jc1 > 0 and JC2 > 0.

12.8 Find Jc1 and Jc2 which minimize the objective functions

/ i = 5*1 + x\

h = kx\ - i)2 + lte - i)2

12.9 Find the minimum of

/ i = x i + x |
/2 = (X1 - 2)2 + x\

subject to

Jc1 - Jc2 - 1 < 0

12.10 Find the closed plane curve of length L that encloses a maximum area.

12.11 The potential energy of an elastic circular annular plate of radii r{ and
r2 shown in Fig. 12.18 is given by

r r /J2VtA2 i /dw\2 ^ dw d2wi

C [ dw 1
- 2w 1 qrw dr + 2ir \ rM — rQw

where D is the flexural rigidity of the plate, w the transverse deflection
of the plate, v the Poisson's ratio, M the radial bending moment per

q{r) - Axisymmetric load

Figure 12.18 Circular annular plate under load.



unit of circumferential length, and Q the radial shear force per unit of
circumferential length. Find the differential equation and the boundary
conditions to be satisfied by minimizing 7T0.

12.12 Consider the design of the two-bar truss shown in Fig. 12.19 with the
location of nodes 1 and 2(x) and the area of cross section of bars (4)
as design variables. If the weight and the displacement of node 3 are
to be minimized with constraints on the stresses induced in the bars
along with bounds on the design variables, the problem can be stated
as follows [12.12]:

Find X = (JC1 X2 }
T which minimizes

Z1(X) = 2phx2 Vl +x]

__ Ph(I + JC?)1-5 Vl + x\

fl~ 2 V2 Ex]x2

subject to

P(I + X1) Vl + x\
S1(X) = " - O0 < 0

2 V2 X1JC2

Figure 12.19 Two-bar truss.



P(X1 - 1) Vl + X\
g2(X) = \ - - G0 < O

2 V2 JC1Jc2
Xi > xf\ I = 1,2

where Jc1 = x/h, X2 = A/AKf, h the depth, E is Young's modulus, p
the weight density, a0 the permissible stress, and xP the lower bound
on xt. Find the optimum solutions of the individual objective functions
subject to the stated constraints using a graphical procedure. Data: P
= 10,000 Ib, p = 0.283 lb/in3, E = 30 X 106 psi, A = 100 in., ,4ref

= 1 in.2, a0 = 20,000 psi, jcf = 0 . 1 , and JC^ = 1.0.

12.13 Solve the two-objective optimization problem stated in Problem 12.12
using the weighting method with equal weights to the two objective
functions. Use a graphical method of solution.

12.14 Solve the two-objective optimization problem stated in Problem 12.12
using the global criterion method with/? = 2. Use a graphical method
of solution.

12.15 Formulate the two-objective optimization problem stated in Problem
12.12 as a goal programming problem using the goals of 30 Ib and
0.015 in. for the objectives/! and/2, respectively. Solve the problem
using a graphical procedure.

12.16 Consider the two-bar truss shown in Fig. 12.20. For the minimum-
weight design of the truss with a bound on the horizontal displacement

Bar 1
(area, x\)

Bar 2
(area, #2)

Figure 12.20 Two-bar truss subjected to horizontal load.



of node S, we need to solve the problem:

Find X = (Jc1 X2 }
 T which minimizes

/ (X) = y/2 /(JC1 + Jc2) = V2 60(Jc1 + Jc2)

subject to

= 10"3 (- + - ) - 10-2 < 0
Vx1 X1)

0.1 in.2 < Jt1- < 1.0 in.2, 1 = 1,2

Find the solution of the problem using the optimality criteria method.

12.17 In the three-bar truss considered in Example 12.7 (Fig. 12.8), if the
constraint is placed on the resultant displacement of node S, the opti-
mization problem can be stated as:

Find X = ] l [ which minimizes

/ ( X ) = 80.0445.K1 + 28.3x2

subject to

, p / r 1 1 i l / 2

^ATul = ̂ - I +
 l \ ^umax

z L*i (Jc1 + V2 Jc2) J
or

*(x) = I?+1 Jri J - ^-
L̂ i (Jc1 + V2 Jc2) J

where the vertical and horizontal displacements of node S are given
by

n Pl l A TT Pl l

£• X1 + V2 X2 £ -Xi

Find the solution of the problem using the optimality criteria method.



12.18 The problem of the minimum-weight design of the four-bar truss shown
in Fig. 1.31 (Problem 1.31) subject to a constraint on the vertical dis-
placement of joint A and limitations on design variables can be stated
as follows:

Find X = (JC1 x2}
T which minimizes

/ (X) = 0.IJC1 + O.O5773JC2

subject to

0 ^ 0 3 4 6 4 ^ ^

Xx X2

X1 > 4 , I = 1,2

where the maximum permissible vertical displacement of joint A is
assumed to be 0.01 in. Solve the problem using the optimality criteria
method.

12.19 Consider the following two strings denoting the vectors X1 and X2:

X1: {1 0 0 0 1 0 1 1 0 1}

X2: {0 1 1 1 1 1 0 1 1 0}

Find the result of crossover at location 2. Also, determine the decimal
values of the variables before and after crossover if each string denotes
a vector of two variables.

12.20 Two discrete fuzzy sets, A and B are defined as follows:

,4 = 1(60,0.1) (62,0.5) (64,0.7) (66,0.9) (68,1.0) (70,0.8)}

B ={(60, 0.0) (62,0.2) (64,0.4) (66,0.8) (68,0.9) (70,1.0)}

Determine the union and intersection of these sets.



PRACTICAL ASPECTS OF
OPTIMIZATION

13.1 INTRODUCTION

Although the mathematical techniques described in Chapters 3 to 12 can be
used to solve all engineering optimization problems, the use of engineering
judgment and approximations help in reducing the computational effort in-
volved. In this chapter we consider several types of approximation techniques
that can speed up the analysis time without introducing too much error [13.1].
In addition, the practical computation of the derivatives of static displace-
ments, stresses, eigenvalues, eigenvectors, and transient response of mechan-
ical and structural systems is presented. The concept of decomposition, which
permits the solution of a large optimization problem through a set of smaller,
coordinated, subproblems is presented. Finally, the use of parallel processing
and computation in the solution of large-scale optimization problems is dis-
cussed.

13.2 REDUCTION OF SIZE OF AN OPTIMIZATION PROBLEM

13.2.1 Reduced Basis Technique

In the optimum design of certain practical systems involving a large number
of (n) design variables, some feasible design vectors X1, X2, . . . , Xr may be
available to start with. These design vectors may have been suggested by ex-
perienced designers or may be available from the design of similar systems in
the past. We can reduce the size of the optimization problem by expressing
the design vector X as a linear combination of the available feasible design

13



vectors as

X = C1X1 + C2X2 + • • • + c rX r (13.1)

where C1, C2, . . . , cr are the unknown constants. Then the optimization prob-
lem can be solved using C1, C2, . . . , cr as design variables. This problem will
have a much smaller number of unknowns since r « n. In Eq. (13.1), the
feasible design vectors X1, X2, . . . , Xr serve as the basis vectors. It can be
seen that, if C1 = C2 = • • • = cr = 1/r, then X denotes the average of the
basis vectors.

13.2.2 Design Variable Linking Technique

When the number of elements or members in a structure is large, it is possible
to reduce the number of design variables by using a technique known as design
variable linking [13.25]. To see this procedure, consider the 12-member truss
structure shown in Fig. 13.1. If the area of cross section of each member is
varied independently, we will have 12 design variables. On the other hand, if
symmetry of members about the vertical (Y) axis is required, the areas of cross
section of members 4, 5, 6, 8, and 10 can be assumed to be the same as those

Figure 13.1 Concept of design variable linking.

Y

X



of members 1, 2, 3, 7, and 9, respectively. This reduces the number of inde-
pendent design variables from 12 to 7. In addition, if the cross-sectional area
of member 12 is required to be three times that of member 11, we will have
six independent design variables only:

X2 A2

X=I \ = < \ (13.2)
X4 A1

X5 A9

Once the vector X is known, the dependent variables can be determined as A4

= Ax, A5 = A2, A6 = A3, A% = A1, A10 = A9, and A12 = 3An. This procedure
of treating certain variables as dependent variables is known as design variable
linking. By defining the vector of all variables as

TJ= (Z1 Z2 " ' Zl2}
T = {A, A2 • • • AnY

the relationship between Z and X can be expressed as

Z = [T] X
12xl 12x66x1 UJ .J )

where the matrix [T] is given by

~1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

^ = 0 0 0 1 0 0 ( 1 3 4 )

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 3_



The concept can be extended to many other situations. For example, if the
geometry of the structure is to be varied during optimization (configuration
optimization) while maintaining (1) symmetry about the Y axis and (2) align-
ment of the three nodes 2, 3, and 4 (and 6, 7, and 4), we can define the
following independent and dependent design variables:

Independent variables: X5, X6, Y6, Y7, Y4

Dependent variables:

Y Y
X\ — -X5, X2 = -X6, Y2 = Y6, Y3 = Y7, X7 = — — X6,

X3 = -X7, X4 = 0, Yx=O, Y5 = O

Thus the design vector X is

I *2 X6

X = Jc3 ^ Y6 (13.5)

X4 Y7

Kx5J KY4J

The relationship between the dependent and independent variables can be de-
fined more systematically, by defining a vector of all geometry variables, Z,
as

Z = {z{ Z2 • • • Z14Y

= [Xx Yx X2 Y2 X3 Y3 X4 Y4 X5 Y5 X6 Y6 X7 Y7}
T

which is related to X through the relations

Z1 = / - (X) , i = 1 ,2 , . . . ,14 (13.6)

where,/; denotes a function of X.

13.3 FAST REANALYSIS TECHNIQUES

13.3.1 Incremental Response Approach

Let the displacement vector of the structure or machine, Y0, corresponding to
the load vector, P0 , be given by the solution of the equilibrium equations

[JT0]Y0 = P 0 (13.7)



or

Y0 = [JT0F1P0 (13.8)

where [K0] is the stiffness matrix corresponding to the design vector, X0. When
the design vector is changed to X0 H- AX, let the stiffness matrix of the system
charige to [JT0] + [AJT], the displacement vector to Y0 H- AY, and the load
vector to P0 H- AP. The equilibrium equations at the new design vector, X0 H-
AX, can be expressed as

([K0] + [AK])(Y0 + AY) = P0 + AP (13.9)

or

[/T0]Y0 + [AJT]Y0 + [^0]AY + [AJT]AY = P0 H- AP (13.10)

Subtracting Eq. (13.7) from Eq. (13.10), we obtain

([K0] H- [AZiT])AY = AP - [AZT]Y0 (13.11)

By neglecting the term [AJT]AY, Eq. (13.11) can be reduced to

[JT0]AY * AP - [AJT]Y0 (13.12)

which yields the first approximation to the increment in displacement vector
AY as

AY1 = [K0]-\AP - [AJT]Y0) (13.13)

where [AT0]"
1 is available from the solution in Eq. (13.8). We can find a better

approximation of AY by subtracting Eq. (13.12) from Eq. (13.11):

([K0] H- [AJT])AY - [JT0]AY1 = AP - [AJT]Y0 - (AP - [AiT]Y0)

(13.14)

or

([K0] + [AJT]) (AY - AY1) = -[AJT]AY1 (13.15)

By defining

AY2 = AY - AY1 (13.16)

Eq. (13.15) can be expressed as



([K0] + [A^])AY2 = -[AiT]AY1 (13.17)

Neglecting the term [A^f]AY2, Eq. (13.17) can be used to obtain the second
approximation to AY, AY2, as

AY2 = -[AbI-1C[AiT]AY1) (13.18)

From Eq. (13.16), AY can be written as

2
AY = S AY,- (13.19)

i = i

This process can be continued and AY can be expressed, in general, as

oo
AY = S AY1- (13.20)

/ = i

where AY, is found by solving the equations

[K0]AYi = - [AAT]AY1. _! (13.21)

Note that the series given by Eq. (13.20) may not converge if the change in
the design vector, AX, is not small. Hence it is important to establish the
validity of the procedure for each problem, by determining the step sizes for
which the series will converge, before using it. The iterative process is usually
stopped either by specifying a maximum number of iterations and/or by pre-
scribing a convergence criterion such as

" ^ " s e (13.22)

I.?, AxJ
where HAY11| is the Euclidean norm of the vector AY, and e is a small number
on the order of 0.01.

Example 13.1 Consider the crane (planar truss) shown in Fig. 13.2. Young's
modulus of member e is equal to Ee = 30 X 106 psi (e = 1, 2, 3, 4), and the
other data are shown in Table 13.1. Assuming the base design as Ax = A2 =
2 in.2 and A3 = A4 = 1 in.2, and perturbations as AzI1 = AA2 = 0.4 in.2 and
AA3 = AA4 = 0.2 in.2, determine (a) the exact displacements of nodes 3 and
4 at the base design, (b) the displacements of nodes 3 and 4 at the perturbed



Figure 13.2 Crane (planar truss).

design using the exact procedure, and, (c) the displacements of nodes 3 and 4
at the perturbed design using the approximation method.

SOLUTION The stiffness matrix of a typical element e is given by

hj hjmij ~hj ~hmij

(e) AeEe IiJm1J ml - I ^ -m\

Ie -I1J -Ujniij ltj I1Jm1J

--IiJm1J -ml lijniij m]j

where A6 is the cross-sectional area, Ee is Young's modulus, le the length, and
(lij,m{j) are the direction cosines of member e. Equation (E1) can be used to
compute the stiffness matrices of the various members using the data of Table
13.1. When the member stiffness matrices are assembled and the boundary
conditions (y{ = y2 = 3̂3 = ^ = 0) are applied, the overall stiffness matrix
becomes:



[K] = (30 x 106)

/ 0.8,4, + 0.SA2 + 0.8/I3 \ / 0.4/1, _ 0.4 /I2 0.4/I3 \ / -0.8 A3 \ / -0.4 /43 \
V55.9017 55.9017 167.7051/ \55.9017 55.9017 167.7051/ \ 167.7051/ \ 167.7051/

/ 0-2/1, + 0.2/I2 + 0.2/I3 \ / -0.4 /I3 \ / -0.2 /<3 \
\55.9017 55.9017 167.7051/ \ 167.70501/ V 167.7051/

symmetric I ° 8 * + ° 5 ^ ^ f °"4 ̂  + ° 5 * \
V167.7051 141.4214/ \167.7051 141.4214/

/ 0.2/I3 0.5^4 \
V 167.7051 141.4214/

(E2)

Thus the equilibrium equations of the structure can be expressed as

[^]Y = P (E3)

where

V ^ ( A P ^ 6 O l ,

Y = / and P = =
yi \ Pi o j

v y 8 y M ? 8 ^ v - i o o o ^
(a) At the base design, Ax = A2 = 2 in.2, A3 = A4 = \ in.2, and the exact

solution of Eqs. (E3) gives the displacements of nodes 3 and 4 as

Ay5A r 0.001165^

J6 / ) 0.002329
Ybase = / = < in.

y7 I 0.05147

Vy8ybase V-0.07032 J

(b) At the perturbed design, Ax = A2 = 2.4 in.2, ^3 = ^4 = 1.2 in.2, and

TABLE 13.1

Member,
e

1
2
3
4

Area of
Cross

Section,
Ae

A2

A3

A4

Length,
K

(in.)

55.9017
55.9017

167.7051
141.4214

Global Node of:

Corner
1,
i

1
3
3
2

Corner
2,
j
3
2
4
4

Direction Cosines of Member:

X, - X1

0.8944
0.8944
0.8944
0.7071

Yj ~ Y1

"1U = ,

0.4472
-0.4472

0.4472
0.7071



the exact solution of Eq. (E3) gives the displacements of nodes 3 and 4 as

fys") ( 0.0009705A

y6 I 0.001941 /
Ypertu* = yA = 0.04289 ^

V j 8 y perturb V-0 .05860 J

(c) The values OfA1 -A2 = 2.4 in.2 and A3 = A4 — 1.2 in.2 at the perturbed
design are used to compute the new stiffness matrix as [K]^^ = [K] + [AA'],
which is then used to compute AY1, AY2, . . . using the approximation pro-
cedure, Eqs. (13.13) and (13.21). The results are shown in Table 13.2. It can
be seen that the solution given by Eq. (13.20) converged very fast.

TABLE 13.2

r 0.116462E-02>i r 0.970515E-03A

\ 0.232923E-02 ( \ 0.194103E-02 (
Exact Y0 = < } Exact (Y0 + AY) = < >

) 0.514654E-01 I ) 0.428879E-01 I

V -0.703216E-01 J V -0.586014E-01 J

Value of/ AY, Y ' = Y ° + S1 ^

/^-0.232922E-03>j r 0.931695E-03A

\ -0.465844E-03 / \ 0.186339E-02 /

J -0.102930E-01 ( J 0.411724E-01 I

V 0.140642E-OlJ V -0.562573E-OlJ

r 0.465842E-04^ r 0.978279E-03>i

\ 0.931683E-04 / \ 0.195656E-02 /

) 0.205859E-02 ( ) 0.432310E-01 (

V -0.281283E-02y V -0.590702E-01 )

r -0.931678E-OS^ r 0.968962E-03^

\ -0.186335E-04 / \ 0.193792E-02 /

) -0.411716E-03 ( ) 0.428193E-01 (

V 0.562563E-03J ^-0 .585076E-OlJ

r 0.186335E-05A r 0.970825E-03>j

\ 0.372669E-05 / \ 0.194165E-02 /

) 0.823429E-04 ( ) 0.429016E-01 (

V-0.112512E-03y V-0.586201E-OlJ



13.3.2 Basis Vector Approach

In structural optimization involving static response, it is possible to conduct
an approximate analysis at modified designs based on a limited number of
exact analysis results. This results in a substantial saving in computer time
since, in most problems, the number of design variables is far smaller than the
number of degrees of freedom of the system. Consider the equilibrium equa-
tions of the structure in the form

[in Y = P (13.23)
mxm mx1 mX 1

where [K] is the stiffness matrix, Y the vector of displacements, and P the
load vector. Let the structure have n design variables denoted by the design
vector

Xx

x = ? •

Kxn J

If we find the exact solution at r basic design vectors X1, X2, . . . , X r, the
corresponding solutions, Y1-, are found by solving the equations

[K1]Y1 = P, i= 1,2,. . .,r (13.24)

where the stiffness matrix, [Kt], is determined at the design vector X1-. If we
consider a new design vector, XN, in the neighborhood of the basic design
vectors, the equilibrium equations at X^ can be expressed as

[^ ]Y* = P (13.25)

where [KN] is the stiffness matrix evaluated at XN. By approximating YN as a
linear combination of the basic displacement vectors Y1-, i = 1,2,. . .,r, we
have

YN * C1Y1 + C2Y2 + • • • + crYr = [Y]c (13.26)

where [Y] = [Y1 Y2 • • • Yr] is a n X r matrix and c =
Jc1 C2 • • • cr}

T is an r-component column vector. Substitution of Eq.
(13.26) into Eq. (13.25) gives

[KN] [Y]C = P (13.27)



By premultiplying Eq. (13.27) by [Y]T we obtain

[K] c = P (13.28)
rXr rX 1 rX 1

where

[K] = [Y]T[KN] [Y] (13.29)

P = [Y]7P (13.30)

It can be seen that an approximate displacement vector Y^ can be obtained by
solving a smaller (r) system of equations, Eq. (13.28), instead of computing
the exact solution YN by solving a larger (n) system of equations, Eq. (13.25).
The foregoing method is equivalent to applying the Ritz-Galerkin principle in
the subspace spanned by the set of vectors Y1, Y2, . . . , Y r . The assumed
modes Y,, / = 1,2,. . .,r, can be considered to be good basis vectors since
they are the solutions of similar sets of equations.

Fox and Miura [13.3] applied this method for the analysis of a 124-member,
96-degree-of-freedom space truss (shown in Fig. 13.3). By using a 5-degree-
of-freedom approximation, they observed that the solution of Eq. (13.28) re-
quired 0.653 s while the solution of Eq. (13.25) required 5.454 s without
exceeding 1 % error in the maximum displacement components of the struc-
ture.

Figure 13.3 Space truss [13.3]. (Copyright © 1971, AIAA. Reprinted with permis-
sion.)

40 in.



13.4 DERIVATIVES OF STATIC DISPLACEMENTS AND
STRESSES

The gradient-based optimization methods require the gradients of the objective
and constraint functions. Thus the partial derivatives of the response quantities
with respect to the design variables are required. Many practical applications
require a finite-element analysis for computing the values of the objective func-
tion and/or constraint functions at any design vector. Since the objective and/
or constraint functions are to be evaluated at a large number of trial design
vectors during optimization, the computation of the derivatives of the response
quantities requires substantial computational effort. It is possible to derive ap-
proximate expressions for the response quantities. The derivatives of static
displacements, stresses, eigenvalues, eigenvectors, and transient response of
structural and mechanical systems are presented in this and the following two
sections. The equilibrium equations of a machine or structure can be expressed
as

[^]Y = P (13.31)

where [K] is the stiffness matrix, Y the displacement vector, and P the load
vector. By differentiating Eq. (13.31) with respect to the design variable xi9

we obtain

f > V + m f = f (13.32,
OX1 OXj OX1

where 3[K]IdX1 denotes the matrix formed by differentiating the elements of
[K] with respect to X1. Usually, the matrix is computed using a finite-difference
scheme as

d[K] ^ A[K] = [K]n^ ~ [K]

dx{ Ax1 Ax;

where LK]new is the stiffness matrix evaluated at the perturbed design vector X
4- AX/, where the vector AX, contains Ax1 in the /th location and zero every-
where else:

AX1- = {0 0 • • • 0 Ax1- 0 • • • 0}T (13.34)

In most cases the load vector P is either independent of the design variables
or a known function of the design variables, and hence the derivatives, 3YIBx1,
can be evaluated with no difficulty. Equations (13.32) can be solved to find
the derivatives of the displacements as

£-™-(I-^*)



Since [K] l or its equivalent is available from the solution of Eqs. (13.31),
Eqs. (13.35) can readily be solved to find the derivatives of static displace-
ments with respect to the design variables.

The stresses in a machine or structure (in a particular finite element) can be
determined using the relation

a = [R]Y (13.36)

where [R] denotes the matrix that relates stresses to nodal displacements. The
derivatives of stresses can then be computed as

£ = IR] Y- (13.37)
dXi dxt

where the matrix [R] is usually independent of the design variables and the
vector dY/dxi is given by Eq. (13.35).

13.5 DERIVATIVES OF EIGENVALUES AND EIGENVECTORS

Let the eigenvalue problem be given by [13.4, 13.6, 13.10]

[K] Y = X [M] Y (13.38)
mXm mX\ mXm mX 1

where X is the eigenvalue, Y the eigenvector, [K] the stiffness matrix, and [M]
the mass matrix corresponding to the design vector X = {Jc1 X2 * * * XnY-
Let the solution of Eq. (13.38) be given by the eigenvalues Xf and the eigen-
vectors Y/, / = 1,2,. . .,m:

[PiWi = 0 (13.39)

where [P1] is a symmetric matrix given by

[P1] = [K] - \[M] (13.40)

13.5.1 Derivatives of ^1

Premultiplication of Eq. (13.39) by Yf gives

Yf[PJY, = 0 (13.41)

Differentiation of Eq. (13.41) with respect to the design variable Xj gives

YJj[Pi]Yi + Yf ^P- Y1- + Yf[P1]Y,,, = 0 (13.42)
OXj



where YtJ = 3Y1IdXj. In view of Eq. (13.39), Eq. (13.42) reduces to

YT^\p}Y=0 (13.43)
OXj

Differentiation of Eq. (13.40) gives

ffii.sa.^fia.ft,,,, „3.44,
OXj OXj OXj OXj

where d[K]/dXj and d[M]/dXj denote the matrices formed by differentiating the
elements of [K] and [M] matrices, respectively, with respect to Jt7. If the eigen-
values are normalized with respect to the mass matrix, we have [13.10]

Yf[Af]Y1- = 1 (13.45)

Substituting Eq. (13.44) into Eq. (13.43) and using Eq. (13.45) gives the de-
rivative of X1- with respect to Jt7- as

^ V f P - ^ l » : (.3.46,
OXj L OXj OXj J

It can be noted that Eq. (13.46) involves only the eigenvalue and eigenvector
under consideration and hence the complete solution of the eigenvalue problem
is not required to find the value of d\ /dXj.

13.5.2 Derivatives of Y1-

The differentiation of Eqs. (13.39) and (13.45) with respect to Jt7 results in

IP1] ? • - - ^ v 1 (.3.47,
OXj OXj

2 Y f [ M ] ^ = -Yf ^ Y1. (13.48)
dXj dXj

where 8[P1]ZdXj is given by Eq. (13.44). Equations (13.47) and (13.48) can be
shown to be linearly independent and can be written together as

~d[P,]
[[Pi) IaY,- dxj

Ynmhr- , , w Yl <1349)

( n + l ) x n n x l ( n + l ) x n n x l



By premultiplying Eq. (13.49) by L/ r j l f l , we obtain

[[Pi] [Pt] + 2[M]Y1Yf[M]] ^ = - [[Pi] ^ - + [M] Y 1 Y f ^ ] Y1

nxn n x l nxn nx 1

(13.50)

The solution of Eq. (13.50) gives the desired expression for the derivative of
the eigenvector, 3Y1VSJC7-, as

^ T = -K p ' J Ip'J + 2 ^ Y1Yf[M]]-'
ClJC7

. [ [ P 1 1 S l + [ M 1 V 1 V r ^ I v , (13.51,

Again it can be seen that only the eigenvalue and eigenvector under consid-
eration are involved in the evaluation of the derivatives of eigenvectors.

For illustration, a cylindrical cantilever beam is considered [13.4]. The beam
is modeled with three finite elements with six degrees of freedom as indicated
in Fig. 13.4. The diameters of the beam are considered as the design variables,
JC/, i = 1,2,3. The first three eigenvalues and their derivatives are shown in
Table 13.3 [13.4].

Figure 13.4 Cylindrical cantilever beam.



TABLE 13.3 Derivatives of Eigenvalues [13.4]

Eigenvalue, 1 0 -9 ^ i 1 Q-9 <!h w~2 ^i l0-2 dI*L
i \ d*\ dx3 dxx dx}

1 24.66 0.3209 -0.1582 1.478 -2.298
2 974.7 3.86 -0.4144 0.057 -3.046
3 7782.0 23.5 21.67 0.335 -5.307

13.6 DERIVATIVES OF TRANSIENT RESPONSE

The equations of motion of an n-degree-of-freedom mechanical/structural sys-
tem with viscous damping can be expressed as [13.10]

[M]Y + [C]Y + [/HY = F(O (13.52)

where [M], [C], and [K] are the n X n mass, damping, and stiffness matrices,
respectively, F(O is the n-component force vector, Y is the ^-component dis-
placement vector, and a dot over a symbol indicates differentiation with respect
to time. Equations (13.52) denote a set of n coupled second-order differential
equations. In most practical cases, n will be very large and Eqs. (13.52) are
stiff; hence the numerical solution of Eqs. (13.52) will be tedious and produces
an accurate solution only for low-frequency components. To reduce the size
of the problem, the displacement solution, Y, is expressed in terms of r basis
functions O1, <D2, . . . , and <Dr (with r « n) as

r
Y = [*]q or yj = ^S *jkgk(t), j = 1,2,. . .,n (13.53)

where

[*] = [O 1 O 2 • • • <Dr]

is the matrix of basis functions, $jk the element in row j and column k of the
matrix [$], q a r-component vector of reduced coordinates, and qk(t) the kth
component of the vector q. By substituting Eq. (13.53) into Eq. (13.52) and
premultiplying the resulting equation by [<i>]r, we obtain a system of r differ-
ential equations:

[M]q + [C]q + [K]q = F(O (13.54)

where

[M] = № r[M][*] (13.55)



[C] = [Sf[C][S] (13.56)

[K] = [Qf[K][Q] (13.57)

F(O = [S]7F(Z) (13.58)

Note that if the undamped natural modes of vibration are used as basis func-
tions and if [C] is assumed to be a linear combination of [M] and [K] (called
proportional damping), Eqs. (13.54) represent a set of r uncoupled second-
order differential equations which can be solved independently [13.10]. Once
q(0 is found, the displacement solution Y(O can be determined from Eq.
(13.53).

In the formulation of optimization problems with restrictions on the dynamic
response, the constraints are placed on selected displacement components as

|v,-(X,0| < ymax, j = 1,2,. . . (13.59)

where v, is the displacement at location j on the machine/structure and ymax is
the maximum permissible value of the displacement. Constraints on dynamic
stresses are also stated in a similar manner. Since Eq. (13.59) is a parametric
constraint in terms of the parameter time (t), it is satisfied only at a set of peak
or critical values of yj for computational simplicity. Once Eq. (13.59) is sat-
isfied at the critical points, it will be satisfied (most likely) at all other values
of t as well [13.11, 13.12]. The values of yt at which dyj/dt = 0 or the values
of yt at the end of the time interval denote local maxima and hence are to be
considered as candidate critical points. Among the several candidate critical
points, only a select number are considered for simplifying the computations.
For example, in the response shown in Fig. 13.5, peaks a9b9c, . . . ,j qualify
as candidate critical points. However, peaks a, b,f, and./ can be discarded as
their magnitudes are considerably smaller (less than, for example, 25%) than
those of other peaks. Noting that peaks d and e (or g and h) represent essen-
tially a single large peak with high-frequency undulations, we can discard peak
e (or g), which has a slightly smaller magnitude than d (or h). Thus, finally,
only peaks C9 d, h, and i need to be considered to satisfy the constraint, Eq.
(13.59).

Once the critical points are identified at a reference design X, the sensitivity
of the response, yy(X,0 with respect to the design variable xt at the critical
point t = tc can be found using the total derivative of yj as

- ^ - = -r1 + - 1 — , i = 1,2,. . .,n (13.60)
dxt dxt dt dXi

The second term on the right-hand side of Eq. (13.60) is always zero since
dyj/dt = 0 at an interior peak (0 < tc < rmax) and dtc/dxi = 0 at the boundary



lmax

Figure 13.5 Critical points in a typical transient response.

(tc = fmax). The derivative, dyj/dxi9 can be computed using Eq. (13.53) as

^ = S * ^ , i=l,2,..,n (13.61)
OX1 k=\ ax i

where, for simplicity, the elements of the matrix [<£] are assumed to be con-
stants (independent of the design vector X). Note that for higher accuracy, the
derivatives of $jk with respect to X1 (sensitivity of eigenvectors, if the mode
shapes are used as the basis vectors) obtained from an equation similar to Eq.
(13.51) can be included in finding dy)i'3X1.

To find the values of dqk/dxi required in Eq. (13.61), Eq. (13.54) is differ-
entiated with respect to xt to obtain

_m__m m m ,. = u,...,n (13.62)
OXi OX1 OXt OX1

The derivatives of the matrices appearing on the right-hand side of Eq. (13.62)
can be computed using formulas such as

&l.mrmm (,3.63,
OX1 OX1



where, for simplicity, [$], is assumed to be constant and d[M]/dxi is computed
using a finite-difference scheme. In most cases the forcing function F(O will
be known_to be independent of X or an explicit function of X. Hence the
quantity SVIdX1 can be evaluated without much difficulty. Once the right-hand
side is known, Eqs. (13.62) can be integrated numerically in time to find the
values of dq/dxi9 dq/dxi9 and dq/dxt. Using the values of dq/dx( = {dqkldxt}
at the critical point tc, the required sensitivity of transient response can be
found from Eq. (13.61).

13.7 SENSITIVITY OF OPTIMUM SOLUTION TO PROBLEM
PARAMETERS

Any optimum design problem involves a design vector and a set of problem
parameters (or preassigned parameters). In many cases, we would be interested
in knowing the sensitivities or derivatives of the optimum design (design vari-
ables and objective function) with respect to the problem parameters [13.25,
13.26]. As an example, consider the minimum weight design of a machine
component or structure subject to a constraint on the induced stress. After
solving the problem, we may like to find the effect of changing the material.
This means that we would like to know the changes in the optimal dimensions
and the minimum weight of the component or structure due to a change in the
value of the permissible stress. Usually, the sensitivity derivatives are found
by using a finite-difference method. But this requires a costly reoptimization
of the problem using incremented values of the parameters. Hence it is desir-
able to derive expressions for the sensitivity derivatives from appropriate equa-
tions. In this section we discuss two approaches: one based on the Kuhn-
Tucker conditions and the other based on the concept of feasible direction.

13.7.1 Sensitivity Equations Using Kuhn-Tucker Conditions

The Kuhn-Tucker conditions satisfied at the constrained optimum design X*
are given by [see Eqs. (2.73) and (2.74)]

^ ) + S X ^ = O, , . , A . . . - 03.64)
dxt jeJi OX1

SJ(X)=O, JeJx (13.65)

Xj > 0, JeJx (13.66)

where Jx is the set of active constraints and Eqs. (13.64) to (13.66) are valid
with X = X* and X7 = X/. When a problem parameter changes by a small
amount, we assume that Eqs. (13.64) to (13.66) remain valid. Treating/, gj9

X, and X7 as functions of a typical problem parameter/?, differentiation of Eqs.



(13.64) and (13.65) with respect top leads to

£ fa2/(X) + s x 32
g/(X)l a^ + s a\; ag/(X) + a2/(X)

k=\ ldxt dxk jeJi j dxtdxk\ dp jeJ\ dp dx( dx( dp

+ S \j ^ ^ = 0, i = 1,2,. . .,n (13.67)

«|ffi+ £ &»**_„, j e J | ( 1 3 . 6 8 ,

d/7 i=\ OXi ^p

Equations (13.67) and (13.68) can be expressed in matrix form as

(_3X_-\

L[G]Jxn [0 ] , x , J _i>L_ Cb?x,3 K x J

where q denotes the number of active constraints and the elements of the ma-
trices and vectors in Eq. (13.69) are given by

, . . f i f f i + S ^ „3.70)
OXi OXk Je^x OXi OXk

Qy = ̂ p , j e 7, (13.71)

32/(X) y ^(X)
ai i;—^ •" *-> h 3 a (13.72)

OX, dp jeJi OX1 dp

b> = §SaT' j e J > (13-73)

, dp ^P

ap ' \ dp
dxn d\q

VJp/ V dp J
The following can be noted in Eqs. (13.69):

1. Equations (13.69) denote (n + q) simultaneous equations in terms of the
required sensitivity derivatives, dxt/dp (i = 1,2,. . .,n) and 3X7/dp (j =



1,2,. . .,<?)• Both X* and X* are assumed to be known in Eqs. (13.69).
If X,* are not computed during the optimization process, they can be
computed using Eq. (7.263).

2. Equations (13.69) can be solved only if the system is nonsingular. One
of the requirements for this is that the active constraints be independent.

3. Second derivatives of/and g,- are required in computing the elements of
[P] and a.

4. If sensitivity derivatives are required with respect to several problem
parameters p{, p2, . . . , only the vectors a and b need to be computed
for each case and the system of Eqs. (13.69) can be solved efficiently
using the techniques of solving simultaneous equations with different
right-hand-side vectors.

Once Eqs. (13.69) are solved, the sensitivity of optimum objective value with
respect to p can be computed as

df(X) 3/(X) " 3/(X) ax,-
—j ~~ —^ "•" *-* ~~^ T~ (13. /3)

dp dp / = i OX1 op

The changes in the optimum values of Jt1- and/necessary to satisfy the Kuhn-
Tucker conditions due to a change Ap in the problem parameter can be esti-
mated as

Ax1 = ^1Ap, Af=J-Ap (13.76)
op dp

The changes in the values of Lagrange multiplier X, due to Ap can be estimated
as

AA, = ^ Ap (13.77)
dp

Equation (13.77) can be used to determine whether an originally active con-
straint becomes inactive due to the change, Ap. Since the value of X, is zero
for an inactive constraint, we have

X7 + AX, = X, + ^ A/? = 0 (13.78)

from which the value of Ap necessary to make the 7th constraint inactive can
be found as

A " = - a V V JeJi (13?9)



Similarly, a currently inactive constraint will become critical due to Ap if the
new value of gj becomes zero:

ft.(X) + ^ Ap = ft(X) + ( S ^ ^ ) Ap (13.80)

Thus the change Ap necessary to make an inactive constraint active can be
found as

Ap= - n

g№ (13.81)
y dgj dXj

i = \ dXj dp

13.7.2 Sensitivity Equations Using the Concept of Feasible Direction

Here we treat the problem parameter p a s a design variable so that the new
design vector becomes

X= [X1 X2 • • • xn p}T (13.82)

As in the case of the method of feasible directions (see Section 7.7), we for-
mulate the direction finding problem as

Find X which minimizes - ST V/(X)

subject to

S r V g , < 0 , JeJx (13.83)

S rS < 1

where the gradients of/and ft (j e Jx) can be evaluated in the usual manner.
The set Jx can include nearly active constraints also (along with the active
constraints) so that we do not violate any constraint due to the change, Ap.
The solution of the problem stated in Eqs. (13.83) gives a usable feasible
search direction, S. A new design vector along S can be expressed as

Xnew = Xcurrent + XS = Xcurrent + AX (13.84)

where X is the step length and the components of S can be considered as

f t - '-••* •
Si = { (13.85)

( 1 ' = » + '



so that

Ap
Ap = Xsn + 1 or X = —— (13.86)

sn + \

If the vector S is normalized by dividing its components by .Sn + 1, Eq. (13.86)
gives X = Ap and hence Eq. (13.85) gives the desired sensitivity derivatives
as

< ; = S (13.87)
sn + 1

Thus the sensitivity of the objective function with respect top can be computed
as

ffi> = Vf(Xf- (13.88)
dp s n + ]

Note that unlike the previous method, this method does not require the values
of k* and the second derivatives o f /and gj to find the sensitivity derivatives.
Also, if sensitivities with respect to several problem parameters pu p2, . . . are
required, all we need to do is to add them to the design vector X in Eq. (13.82).

13.8 MULTILEVEL OPTIMIZATION

13.8.1 Basic Idea

The design of practical systems involving a large number of elements or sub-
systems with multiple-load conditions involves excessive number of design
variables and constraints. The optimization problem becomes unmanageably
large, and the solution process becomes too costly and can easily saturate even
the largest computers available. In such cases the optimization problem can be
broken into a series of smaller problems using different strategies. The multi-
level optimization is a decomposition technique in which the problem is refor-
mulated as several smaller subproblems (one for each subsystem) and a coor-
dination problem (at system level) to preserve the coupling among the
subproblems (subsystems). Such approaches have been used in linear and dy-
namic programming also. In linear programming, the decomposition method
(see Section 4.4) involves a number of independent linear subproblems cou-
pled by limitations on the shared resources. When an individual subsystem is



solved, the cost of the shared resources is added to its objective function. By
a proper variation of the costs of the shared resources, the proposed optimal
strategies of the various subproblems are sent to the master program, which,
in turn, is optimized so that the overall cost is minimized. In dynamic pro-
gramming, the problem is treated in stages with an optimal policy determined
in each stage (see Chapter 9). This approach is particularly useful when the
problem has a serial structure.

For nonlinear design optimization problems, several decomposition meth-
ods have been proposed [13.14-13.16]. In the following section we consider
a two-level approach in which the system is decomposed into a number of
smaller subproblems, each with its own goals and constraints. The individual
subsystem optimization problems are solved independently in the first level
and the coordinated problem is solved in the second level. The approach is
known as the model-coordination method.

13.8.2 Method

Let the optimization problem be stated as follows:

Find X = [X1 X2 • • • xn}
T which minimizes/(X) (13.89)

subject to

gj(X) < 0, J= 1,2,. . .,m (13.90)

hk(X) = 0, * = 1,2,... 9p (13.91)

x\l) < xt < x\u\ i = 1,2,. . .,n (13.92)

where JC-Z) and JC-M) denote the lower and upper bounds on xt. Most systems
permit the partitioning of the vector X into two subvectors Y and Z:

X = (13.93)

where the subvector Y denotes the coordination or interaction variables be-
tween the subsystems and the subvector Z indicates the variables confined to
subsystems. The vector Z, in turn, can be partitioned as

Z = Zk > (13.94)



where Zk represents the variables associated with the fcth subsystem only and
A'denotes the number of subsystems. The partitioning of variables, Eq. (13.94),
permits us to regroup the constraints as

f s K X A f%m (Y, Z1) A

• fc№ = <* {Y.; *> L « ,13 95,

Vgm(X)J Vg^ (Y, ZK)J

^ I1(X) *\ /^ /<» (Y, Z1) >

/2(X) ( / ( 2 )(Y, Z 2)
< . > = . = 0 (13.96)

H ( X ) J VF> (Y, ZK)J

where the variables Y may appear in all the functions while the variables Zk

appear only in the constraint sets g(k) < 0 and h(k) = 0. The bounds on the
variables, Eq. (13.92), can be expressed as

Y(/) < Y < Y(M)

Z^ < Zk < Z[M), k = 1,2,. . .,K (13.97)

Similarly, the objective function/(X) can be expressed as

K

/(X) = S /<*> (Y,Zt) (13.98)

where/(A:) (Y,Z^) denotes the contribution of the kth subsystem to the overall
objective function. Using Eqs. (13.95) to (13.98), the two-level approach can
be stated as follows.

First-Level Problem. Tentatively fix the values of Y at Y* so that the problem
of Eqs. (13.89) to (13.92) [or Eqs. (13.95) to (13.98)] can be restated (decom-
posed) as K independent optimization problems as follows:

Find Zk which minimizes f(k) (Y,Z*)

subject to

V^(Y5Z,) < 0

h{k) (Y,Z*) = 0 (13.99)

Zf < Zk < Z[w ); k = 1,2, ... ,K



It can be seen that the first-level problem seeks to find the minimum of the
function

K

/(Y,Z) = S/<*>(Y,Z*) (13.100)

Ic= 1

for the (tentatively) fixed vector Y*.

Second-Level Problem. The following problem is solved in this stage:
K

Find a new Y* which minimizes/(Y) = S f{k) (Y,Z*)

k=\

subject to

Y(0 < Y < Y(M) (13.101)
where Z*, k = 1,2,. . . ,K, are the optimal solutions of the first-level problems.
An additional constraint to ensure a finite value of/(Y*) is also to be included
while solving the problem of Eqs. (13.101). Once the problem is solved and
a new Y* found, we proceed to solve the first-level problems. This process is
to be continued until convergence is achieved. The iterative process can be
summarized as follows:

1. Start with an initial coordination vector, Y*.
2. Solve the Kfirst-level optimization problems, stated in Eqs. (13.99), and

find the optimal vectors Z* (Jc = 1,2,. . .,K).
3. Solve the second-level optimization problem stated in Eqs. (13.101) and

find a new vector Y*.
4. Check for the convergence of/* and Y* (compared to the value Y* used

earlier).
5. If the process has not converged, go to step 2 and repeat the process until

convergence.

The following example illustrates the procedure.

Example 13.2 Find the minimum-weight design of the two-bar truss shown
in Fig. 13.6 with constraints on the depth of the truss (y = h), cross-sectional
areas of the members (Z1 = Ax) and fe = ^2)» and the stresses induced in the
bars. Treat the depth of the truss (y) and the cross-sectional areas of bars 1
and 2 (Z1 and z-i) as design variables. The permissible stress in each bar is a0

= 105 Pa, unit weight is 76,500 N/m3, h is constrained as 1 m < h < 6 m,
and the cross-sectional area of each bar is restricted to lie between 0 and 0.1
m2.



Figure 13.6 Two-bar truss.

SOLUTION The stresses induced in the bars can be expressed as

P Vy2 + 36 6P Vy2 + 1
<*\ — n > °2 — ~

7yzi lyz2

and hence the optimization problem can be stated as follows:

Find X = {y Z1 Z2 }
r which minimizes

/(X) = 76,50Oz1 Vy2 + 36 + 76,50Oz2 V y 2 T T

subject to

P Vy2 + 36 6P Vj2 + 1
—£ i ^ o , -—1 i < o

7(j0yz\ 7^yz2

1 < y < 6, 0 < Zi < 0.1, 0 < z2 < 0.1

We treat the bars 1 and 2 as subsystems 1 and 2, respectively, with y as the
coordination variable (Y = {y }) and Z\ and z2 as the subsystem variables (Z1

= {zi } and Z2 = {z2}). By fixing the value of y at y*, we formulate the first-
level problems as follows.

Subproblem 1
Find Z1 which minimizes

/ (1 ) (J*, Z1) = 76,500 Z1 V(y*)2 + 36 (E1)
snhiect to

Bar 1
(area, A1 =z{)

Bar 2
(area, A2 = ̂ 2)

P
Q



(1428.5714 x 10~6) V(J*)2 + 36
gty*,zi) = ^ " 1 ^ 0 (E2)

0 < Z1 < 0.1 (E3)

Subproblem 2
" Find Z2 which minimizes

/ (2 ) (y*,z2) = 76,500 z2 V(y*)2 4- 1 (E4)

subject to

(8571.4285 x 10~6) V(y*)2 + 1
g2(y*,z2) = — 1 < 0 (E5)

0 < Z2 < 0.1 (E6)

We can see that in order to minimize/(1), we need to make Z1 as small as
possible without violating the constraints of Eqs. (E2) and (E3). This gives the
solution of subproblem 1, z*, (which makes ^1 active) as

(1428.5714 X 10"6) V(y*)2 + 36
Z\ = 1 (E7)

Similarly, the solution of subproblem 2, z*, (which makes g2 active) can be
expressed as

(8571.4285 X 10"6) V(y*)2 + 1

Now we state the second-level problem as follows:

Find y which minimizes/ = / (1 ) (y,z*) + / (2 ) (y,z2)

subject to

1 < y < 6 (E9)

Using Eqs. (E7) and (E8), this problem can be restated as (using y for y*):

Find y which minimizes

/ = 76,500zf Vy2 + 36 + 76,50Oz2* Vy
2 + 1

y2 + 36 y2 + 1
= 109.2857 + 655.7143 (E10)

y y



Figure 13.7 Graphical solution of the second-level problem.

subject to

1 < y < 6 and /must be defined

The graph of/, given by Eq. (E10), is shown in Fig. 13.7 over the range 1 <
y < 6 from which the solution can be determined a s / * = 3747.7 N, y* =
h* = 2.45 m, z* = Af = 3.7790 x 10~3 m2, and z* = A$ = 9.2579 x
Kr3 m2.

13.9 PARALLEL PROCESSING

Large-scale optimization problems can be solved efficiently using parallel com-
puters. Parallel computers are simply multiple processing units combined in
an organized fashion such that multiple independent computations for the same
problem could be performed simultaneously or concurrently, thereby increas-
ing the overall computational speed. Optimization problems involving exten-



sive analysis, such as a finite-element analysis, can be solved on parallel com-
puters using the following schemes:

1. A multilevel (decomposition) approach with the subproblems solved in
parallel

2. A substructures approach with substructure analyses performed in par-
allel

3. By implementing the optimization computations in parallel

If a multilevel (decomposition) approach is used, the optimization of various
subsystems (at different levels) can be performed on parallel processors while
the solution of the coordinating optimization problem can be accomplished on
the main processor. If the optimization problem involves an extensive analysis,
such as a finite-element analysis, the problem can be decomposed into subsys-
tems (substructures) and the analyses of subsystems can be conducted on par-
allel processors with a main processor performing the system-level computa-
tions. Such an approach was used by El-Sayed and Hsiung [13.17,13.20]. The
procedure can be summarized as follows:

1. Initialize the optimization process. The current (related) design variables
are sent to the various processors.

2. The finite-element analyses of the substructures are performed on differ-
ent (associated) processors.

3. The main processor collects the stiffness and force contribution matrices
from the various processors, solves for the displacements at the shared
(common) boundary nodes of substructures, and sends the data to vari-
ous processors.

4. The associated processors perform the detailed calculations to find the
displacements and stresses needed for the evaluation of the constraints.

5. The main processor collects the constraint-related data from the associate
processors and checks the convergence of the optimization process. If
convergence is not achieved, it performs the computations of the opti-
mization algorithm and the procedure is repeated from step 1 onward.

Numerical examples were solved on Cray X-MP four processor supercom-
puter [13.17]. For a 200-member planar truss, the weight was minimized with
constraints on stresses using four substructures. It was reported [13.17] that
the parallel computations required 10.585 s of CPU time while the sequential
computations required a CPU time of 13.518 s (with a speedup factor of 1.28).

For most mechanical and structural problems, parallel computers with
MIMD (multiple instruction multiple data) architecture are better suited. Ati-
qullah and Rao [13.21] presented a procedure for the parallel implementation
of the simulated annealing algorithm. In this method, certain design variables
assigned to each processor perform the variable specific optimization. This



information is later combined to complete one cycle of optimization. Since the
entire (variable-specific) optimization process is repeated on each processor,
all processors will be equally busy most of the time, except for any input/
output done by the specific processors. Thus the "divide and conquer" strat-
egy of optimization needs a "communicate and combine" process, which
should be kept to a minimum. The detailed procedure is shown as a flow dia-
gram in Fig. 13.8.

Figure 13.8 Flow diagram of parallel simulated annealing on a single node. S(0, set
of design variables assigned to node i; node i = processor i.

Initialize node i

Data from the host node

Randomly perturb one variable out of S(1)

Change the design

Exchange updated information
from other nodes

All variable perturbed
out of $""'? No

Yes

Globally assemble all
updated design

variables

All cycles done?
No

Yes

Final design, stop



The minimum-weight design of a 128-bar planar truss was considered with
stress and buckling constraints. A speedup factor of 10.2569 was achieved
using the eight-node configuration of an iPSC/860 computer.
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REVIEW QUESTIONS

13.1 What is a reduced basis technique?

13.2 State two methods of reducing the size of an optimization problem.

13.3 What is design variable linking? Can it always be used?

13.4 Under what condition(s) is the convergence of the quantity E1- AY1- in
the fast reanalysis method ensured?

13.5 How do you compute the derivatives of the stiffness matrix with respect
to a design variable, d[K]/dxt?

13.6 What is a MIMD computer?



13.7 Indicate various ways by which parallel computations can be performed
in a large-scale optimization problem.

13.8 Answer true or false.

(a) The computation of the derivatives of a particular X,- requires other
eigenvalues besides X1-.

(b) The derivatives of the /th eigenvector can be found without knowl-
edge of the eigenvectors other than Y1-.

(c) There is only one way to derive expressions for the sensitivity of
optimal objective function with respect to problem parameters.

(d) Multilevel optimization is same as decomposition.
(e) In multilevel optimization, the suboptimization problems are to be

solved iteratively.

PROBLEMS

13.1 Consider the minimum-volume design of the four-bar truss shown in
Fig. 13.2 subject to a constraint on the vertical displacement of node
4.LetX, = {l 1 0.5 0.5 }T and X2 = {0.5 0.5 1 l} 7betwo
design vectors with Jt1- denoting the area of cross section of bar i (i =
1,2,3,4). By expressing the optimum design vector as X = C1X1 +
C2X2, determine the values of C1 and C2 through graphical optimization
when the maximum permissible vertical deflection of node 4 is re-
stricted to a magnitude of 0.1 in.

13.2 Consider the configuration (shape) optimization of the 10-bar truss
shown in Fig. 13.9. The (X,Y) coordinates of the nodes are to be

Figure 13.9 Design variable linking of a 10-bar truss.



varied while maintaining (a) symmetry of the structure about the X
axis, and (b) alignment of nodes 1,2, and 3 (4, 5, and 6). Identify the
independent and dependent design variables and derive the relevant
design variable linking relationships.

13.3 For the four-bar truss considered in Example 13.1 (shown in Fig.
13.2), a base design vector is given by X0 = { ^ 1 A2 A3 A4}

T =
{2.0 1.0 2.0 1.0 }T in2. If AX is given by AX =
{0.4 0.4 - 0 . 4 - 0 . 4 } T i n 2 , determine:
(a) The exact displacement vector Y0 = {y5 y6 y7 ys}

T at X0

(b) The exact displacement vector (Y0 + AY) at (X0 + AX)
(c) The displacement vector (Y0 4- AY) where AY is given by Eq.

(13.20) with five terms

13.4 Consider the 11-member truss shown in Fig. 5.1 with loads Q =
-1000 Ib, R = 1000 Ib, and S = 2000 Ib. If 1̂- = xt denotes the area
of cross section of member /, and W1, U2, . . . , W10 indicate the dis-
placement components of the nodes, the equilibrium equations can be
expressed as shown in Eqs. (E1) to (E10) of Example 5.1. Assuming
that E = 30 x 106 psi, / = 50 in, xt = 1 in2 (i = 1,2,. . .,11), Ax{ =
0.1 in2 (i = 1,2,. . .,5), and Ax1 = - 0 . 1 in2 (/ = 6,7,. . .,11), deter-
mine:
(a) Exact displacement solution U0 at X0

(b) Exact displacement solution (U0 + AU) at the perturbed design,
(X0 + AX)

(c) Approximate displacement solution, (U0 + AU), at (X0 at AX)
using Eq. (13.20) with four terms for AU

13.5 Consider the four-bar truss shown in Fig. 13.2 whose stiffness matrix
is given by Eq. (E2) of Example 13.1. Determine the values of the
derivatives of yt with respect to the area A1, dytldxx {i = 5,6,7,8)
at the reference design X0 = [Ax A2 A3 A4}

T =
{2.0 2.0 1.0 1.0} rin2.

13.6 Find the values of dyt/dx2 (i = 5,6,7,8) in Problem 13.5.

13.7 Find the values of Sy^dX3 (i = 5,6,7,8) in Problem 13.5.

13.8 Find the values of dyt/dx4 (i = 5,6,7,8) in Problem 13.5.

13.9 The equilibrium equations of the stepped bar shown in Fig. 13.10 are
given by

[K]Y = P (1)



Figure 13.10 Stepped bar.

with

AxEx A2E2 A2E2

A2E2 A2E2

If i4, = 2 in.2, A2 = 1 in.2, Ex = E2 = 30 x 106 psi, 2 Z1 = I2 = 50
in., P1 = 100 Ib, and P2 = 200 Ib, determine:

(a) Displacements, Y
(b) Values of 3YZdA1 and 3YZdA2 using the method of Section 13.4
(c) Values of daZdAx and 3G/3A2, where a = {ox o2}

Tdenotes the
vector of stresses in the bars and ox = ExYxIlx and G2 = E2(Y2 -
Yx)Il2

13.10 The eigenvalue problem for the stepped bar shown in Fig. 13.10 can
be expressed as [AT]Y = X[M]Y with the mass matrix, [M], given by

[(2pxAxlx + ,M2Z2) P2A2I2I
[M] =

L PiA2I2 PiA2I2]

where p,, A1, and I1 denote the mass density, area of cross section, and
length of the segment i, and the stiffness matrix, [A^], is given by Eq.
(2) of Problem 13.9. If^, =2 in.2, A2 = 1 in.2, Ex = E2 = 30 X
106 psi, 2Z1 = Z2 = 50 in., and pxg = p2g = 0.283 lb/in.3, determine:
(a) Eigenvalues X1 and the eigenvectors Y1-, i = 1,2

Area, Ai
Area, A2



(b) Values of d\/dAh i = 1,2, using the method of Section 13.5

(c) Values of 3Y1IdY1, i = 1,2, using the method of Section 13.5

13.11 For the stepped bar considered in Problem 13.10, determine the fol-
lowing using the method of Section 13.5.

(a) Values of 3\IdA2, i = 1,2

(b) Values of 3Y1ZdA29 i = 1,2

13.12 A cantilever beam with a hollow circular section with outside diameter
d and wall thickness t (Fig. 13.11) is modeled with one beam finite
element. The resulting static equilibrium equations can be expressed
as

/3 L -3 / 2/2J U J U J

where / is the area moment of intertia of the cross section, £ i s Young's
modulus, and / the length. Determine the displacements, Yi9 and the
sensitivities of the deflections, 3Y1Id(I and dYi/dt (i = 1,2), for the
following data: E = 30 X 106 psi, / = 20 in., d = 2 in., t = 0.1 in.,
P1 = 100 Ib, and P2 = 0.

x

Section A-A

Figure 13.11 Hollow circular cantilever beam.

13.13 The eigenvalues of the cantilever beam shown in Fig. 13.11 are gov-
erned by the equation

2E[[ 6 -3/1 (YxI = \pA[[ 156 -22/1 CY1I

I3 L-3/ 2 / 2 JU 2 J 420 L-22/ 4/2J [ y j

where E is Young's modulus, / the area moment of inertia, / the length,
p the mass density, A the cross-sectional area, X the eigenvalue, and



Y = { Y1 Y2Y = eigenvector. If E = 30 X 106 psi, d = 2 in., t =
0.1 in., / = 20 in., and pg = 0.283 lb/in3, determine:
(a) Eigenvalues X1- and eigenvectors Y1- (i = 1,2)

(b) Values of d\/dd and d\/dt (i = 1,2)

13.14 In Problem 13.13, determine the derivatives of the eigenvectors SY1I
ddanddYt/dtii = 1,2).

13.15 The natural frequencies of the spring-mass system shown in Fig. 13.12
are given by (for k{ — k, i = 1,2,3 and mt = m, i = 1,2)

k 2 3k 2
A1 = — = COi, Ao = — = C02

m m

where Co1 and co2 are the natural frequencies of vibration of the system
and C1 and C2 are constants. If the stiffness of each helical spring is
given by

Figure 13.12 Two-degree-of-freedom spring-mass system.



where d is the wire diameter, D the coil diameter, G the shear modu-
lus, and n the number of turns of the spring. Determine the values of
3O)1IdD and 3Y1IdD for the following data: d = 0.04 in., G = 11.5
X 106 psi, D = 0.4 in., n = 10, and m = 32.2 Ib-s2/in. The stiffness
and mass matrices of the system are given by

13.16 Find the minimum volume design of the truss shown in Fig. 13.13
with constraints on the depth of the truss (y), cross-sectional areas of
the bars (^1 and A2), and the stresses induced in the bars ((T1 and a2).

Figure 13.13 Two-bar truss.

Treat y, A1, and A2 as design variables with ot < 105 Pa (i = 1,2),
1 m < y < 4 m, and 0 < A1 < 0.2 m2 (i = 1,2). Use multilevel
optimization approach for the solution.

13.17 Find the sensitivities of jcf, X2, and/* with respect to Young's mod-
ulus of the tubular column considered in Example 1.1.

13.18 Consider the two-bar truss shown in Fig. 1.14. The problem of design
of the truss for minimum weight subject to stress constraints can be
stated as follows:

Find Jc1, A1, and A2 which minimize

/ = 28.30 A1 Vl +jc2 + 14.15 A2 Vl + JC2

Bar'2
(area =A2)

Bar 1
(area = Ai)



subject to

0.1768(1 + x) Vl + JC2

« • - Aj 1 S°
0.1768(JC - 1) Vl + x2

* - — ^ i s o

0.1 < x < 2.5, 1.0 < At < 2.5 (i = 1,2)

where the members are assumed to be made up of different materials.
Solve this optimization problem using the multilevel approach.



CONVEX AND CONCAVE FUNCTIONS

Convex Function A function /(X) is said to be convex if for any pair of
points

Xj Aj

r 0 ) r(2) j

X1 = . and X2 =

L j 1 J L ? J

and all X, 0 < X < 1,

/[XX2 + (1 - X) X1] < X/(X2) + (1 - X)Z(X1) (A.I)

that is, if the segment joining the two points lies entirely above or on the graph
ofZ(X).

Figures A.I (a) and A.2(a) illustrate a convex function in one and two di-
mensions, respectively. It can be seen that a convex function is always bending
upward and hence it is apparent that the local minimum of a convex function
is also a global minimum.

Concave Function A function Z(X) is called a concave function if for any
two points X1 and X2, and for all O < X < 1,

Z[XX2 + (1 - X)X1] > Xf(X2) + (1 - X)Z(X1) (A.2)

APPENDIX A



Figure A.I Functions of one variable: (a) convex function in one variable; (b) con-
cave function in one variable.

that is, if the line segment joining the two points lies entirely below or on the
graph of/(X).

Figures AAb and A.2b give a concave function in one and two dimensions,
respectively. It can be seen that a concave function bends downard and hence
the local maximum will also be its global maximum. It can be seen that the
negative of a convex function is a concave function, and vice versa. Also note
that the sum of convex functions is a convex function and the sum of the
concave functions is a concave function. A function/(X) is strictly convex or
concave if the strict inequality holds in Eqs. (A.I) or (A.2) for any X1 ^ X2.
A linear function will be both convex and concave since it satisfies both in-
equalities (A.I) and (A.2). A function may be convex within a region and
concave elsewhere. An example of such a function is shown in Fig. A.3.

Figure A.2 Functions of two variables: (a) convex function in two variables; (Jb)
concave function in two variables.



Figure A.3 Function that is convex over certain region and concave over certain
other region.

Testing for Convexity or Concavity. In addition to the definition given, the
following equivalent relations can be used to identify a convex function.

Theorem A.I A function/(X) is convex if for any two points X1 and X2,
we have

/(X2) > / (X 1) + V / r (X1) (X2 - X1)

Proof: If /(X) is convex, we have by definition

/[XX2 + (1 - X)X1] < X/(X2) + (1 - X)Z(X1)

that is,

/ [X 1 + X(X2 - X1)] < /(X1) + X[Z(X2) - Z(X1)] (A.3)

This inequality can be rewritten as

/(X2) - /(X1) , I * * 1 * * * - ? ' - " * ' ' ! (X, - X1, (A.4)

By defining AX = X(X2 - X1), the inequality (A.4) can be written as

/(X2) - Z(Xi) > — (X2 - X1) (A.5)

By taking the limit as AX -• 0, inequality (A.5) becomes

Z(X2) - Z(X1) > VZ7^(X1) (X2 - X1) (A.6)



which can be seen to be the desired result. If/(X) is concave, the opposite
type of inequality holds true in (A.6).

Theorem A.2 A function /(X) is convex if the Hessian matrix H(X) =
[d2f(X)/dXi dxj] is positive semidefinite.

Proof: From Taylor's theorem we have

/(X* + h) = /(X*) + S f c , . / (X*)
i = 1 OXi

+ i S S hihj - ^ - (AJ)

where 0 < 6 < 1. By letting X* = X1, X* + h = X2 and h = X2 - X1, Eq.
(A.7) can be rewritten as

/(X2) = /(X1) + V/ r(X0 (X2 - X1) + ^(X2 - X1)7

• H(X1 +0(X2 -X 1 ) J (X 2 - X 1 ) (A.8)

It can be seen that inequality (A.6) is satisfied [and hence/(X) will be convex]
if H(X) is positive semidefinite. Further, if H(X) is positive definite, the func-
tion/(X) will be strictly convex. It can also be proved that if/(X) is concave,
the Hessian matrix is negative semidefinite.

The following theorem establishes a very important relation, namely, that
any local minimum is a global minimum for a convex function.

Theorem A.3 Any local minimum of a convex function /(X) is a global
minimum.

Proof: Let us prove this theorem by contradiction. Suppose that there exist
two different local minima, say, X1 and X2, for the function/(X). Let/(X2)
< /(X1). Since/(X) is convex, X1 and X2 have to satisfy the relation (A.6),
that is,

/(X2) - /(X1) > VfT(Xx) (X2 - X1) (A.6)

or

V/r(Xi) S < 0 (A.9)

where S = (X2 — X1) is a vector joining the points X1 to X2. Equation (A.9)
indicates that the value of the function/(X) can be decreased further by mov-
ing in the direction S = (X2 — X1) from point X1. This conclusion contradicts



the original assumption that X1 is a local minimum. Thus there cannot exist
more than one minimum for a convex function.

Example A.I Determine whether the following functions are convex or con-
cave.

(a) /(*) = ex

(b) /(*) = Sx2

(C) / (J t 1 , X2) = 3x] -6x2
2

(d) /(JC1, Jc2, Jc3) = 4*2 + 3JC2 + 5Jc3
2 + 6Jc1JC2 + Jc1JC3 - 3Jc1 - 2JC2 + 15

SOLUTION

(a) f{x = e*\ Hix) = d2f Idx2 = e* > 0 for all real values of*. Hence/(jc)
is strictly convex.

(b) /(jc) = -8JC2: Hix) = d2f/dx2 = -16 < 0 for all real values of*.
Hence/(JC) is strictly concave.

ic)f=2x]-6x2
2:

I" Pflbx] Pf/bxxbx2l [12Jc1 O l

"VPfIdX1 3*2 d2f/dx2
2 J L O - 1 2 J

Here Pflbx] = YIxx < 0 for*! < 0 and > 0 for*! > 0, and

H(X) = -144*! > 0 for*! < 0 and < 0 for*j > 0

Hence H(X) will be negative semidefinite and/(X) is concave for*! —
0.

(d) / = 4*2 4- 3*2 + 5*3 + 6*!*2 + *1*3 - 3*! - 2*2 + 15:

~d2f/dx2 b2flbxx 3*2 d2fldxx dxf

H(X) = d2//d*! a*2 Pflbx\ PfIbX1 bx3

_Pf/bxx bx3 PfIbX2 bx3 Pflbx]

"8 6 1"

= 6 6 0

_1 0 10_

Here the principal minors are given by

|8| = 8 > 0



8 6
= 12 > O

6 6

8 6 1

6 6 O = 114 > O

1 O 10

and hence the matrix H(X) is positive definite for all real values of X1,
Jc2, and JC3. Therefore,/(X) is a strictly convex function.



SOME COMPUTATIONAL ASPECTS
OF OPTIMIZATION

Several methods were presented for solving different types of optimization
problems in Chapters 3 to 12. This appendix is intended to give some guidance
to the reader in choosing a suitable method for solving a particular problem
along with some computational details. Most of the discussion is aimed at the
solution of nonlinear programming problems.

B.I CHOICE OF METHOD

Several factors are to be considered in deciding a particular method to solve a
given optimization problem. Some of them are:

1. The type of problem to be solved (general nonlinear programming prob-
lem, geometric programming problem, etc.).

2. The availability of a ready-made computer program.
3. The calender time required for the development of a program.
4. The necessity of derivatives of the functions/and gj9j = 1,2,. . .,m.
5. The available knowledge about the efficiency of the method.
6. The accuracy of the solution desired.
7. The programming language and quality of coding desired.
8. The robustness and dependability of the method in finding the true op-

timum solution.
9. The generality of the program for solving other problems.

10. The ease with which the program can be used and its output interpreted.

APPENDIX B



B.2 COMPARISON OF UNCONSTRAINED METHODS

A number of studies have been made to evaluate the various unconstrained
minimization methods. More, Garbow, and Hillstrom [B.I] provided a collec-
tion of 35 test functions for testing the reliability and robustness of uncon-
strained minimization software. The performance of eight unconstrained min-
imization methods was evaluated by Box [B. 2] using a set of test problems
with up to 20 variables. Straeter and Hogge [B.3] compared four gradient-
based unconstrained optimization techniques using two test problems. A com-
parison of several variable metric algorithms was made by Shanno and Phua
[B.4]. Sargent and Sebastian presented numerical experiences with uncon-
strained minimization algorithms [B.5]. On the basis of these studies, the fol-
lowing general conclusions can be drawn.

If the first and second derivatives of the objective function ( / ) can be eval-
uated easily (either in closed form or by a finite-difference scheme), and if the
number of design variables is not large (n < 50), Newton's method can be
used effectively. For n greater than about 50, the storage and inversion of the
Hessian matrix at each stage becomes quite tedious and the variable metric
methods might prove to be more useful. As the problem size increases (beyond
n = 100 or so), the conjugate gradient method becomes more powerful.

In many practical problems, the first derivatives of/can be computed more
accurately than the second derivatives. In such cases, the BFGS and DFP
methods become an obvious choice of minimization. Of these two, the BFGS
method is more stable and efficient. If the evaluation of the derivatives of/is
extremely difficult or if the function does not possess continuous derivatives,
Powell's method can be used to solve the problem efficiently.

With regard to the one-dimensional minimization required in all the uncon-
strained methods, the Newton's and cubic interpolation methods are most ef-
ficient when the derivatives of/are available. Otherwise, the Fibonacci or the
golden section method has to be used.

B.3 COMPARISON OF CONSTRAINED METHODS

The comparative evaluation of nonlinear programming techniques was con-
ducted by several investigators. In Ref. [B.6], Colville compared the efficien-
cies of 30 codes using eight test problems that involve 3 to 16 design variables
and 0 to 14 constraints. However, the codes were tested at different sites on
different computers and hence the study was not considered reliable. Eason
and Fenton [B.7] conducted a comparative study of 20 codes using 13 prob-
lems that also included the problems used by Colville. However, their study
was confined primarily to penalty function type methods. Sandgren and Rags-
dell [B.8] studied the relative efficiencies of the leading nonlinear program-
ming methods of the day more systematically. They studied 24 codes using 35
problems, including some of those used by Colville and Eason and Fenton.



The number of design variables varied from 2 to 48 and the number of con-
straints ranged from 0 to 19; some problems involved equality constraints, too.
They found the GRG method to be most robust and efficient followed by the
exterior and interior penalty function methods.

Schittkowski published the results of his study of nonlinear programming
codes in 1980 [B.9]. He experimented with 20 codes on 180 randomly gen-
erated test problems using multiple starting points. Based on his study, the
sequential quadratic programming was found to be most efficient followed by
the GRG, method of multipliers and penalty function methods, in that order.
Similar comparative studies of geometric programming codes were also con-
ducted in the literature [B.10-B.12]. Although the studies above were quite
extensive, the conclusion may not be of much use in practice since the studies
were limited to relatively few methods and further they are limited to specially
formulated test problems that are not related to real-life problems. Thus each
new practical problem has to be tackled almost independently based on past
experience. The following guidelines are applicable for a general problem.

The sequential quadratic programming approach can be used for solving a
variety of problems efficiently. The GRG method and Zoutendijk's method of
feasible directions, although slightly less efficient, can also be used for the
efficient solution of constrained problems. The ALM and penalty function
methods are less efficient but are robust and reliable in finding the solution of
constrained problems.

B.4 AVAILABILITY OF COMPUTER PROGRAMS

Many computer programs are available to solve nonlinear programming
problems. Notable among these is the book by Kuester and Mize [B. 13], which
gives Fortran programs for solving linear, quadratic, geometric, dynamic, and
nonlinear programming problems. During practical computations, it is impor-
tant to note that a method which works well for a given class of problems may
work poorly for others. Hence it is usually necessary to try more than one
method to solve a particular problem efficiently. Further, the efficiency of any
nonlinear programming method depends largely on the values of adjustable
parameters such as starting point, step length, and convergence requirements.
Hence a proper set of values to these adjustable parameters can be given only
by using a trial-and-error procedure or through experience gained in working
with the method for similar problems. It is also desirable to run the program
with different starting points to avoid local and false optima. It is advisable to
test the two convergence criteria stated in Section 7.21 before accepting a point
as a local minimum.

More and Wright present information on the current state of numerical op-
timization software in [B. 16].

Several software systems such as IMSL, MATLAB, and ACM contain pro-
grams to solve optimization problems. The relevant addresses are:



IMSL
7500 Bellaire Boulevard
Houston, TX 77036
MATLAB
The Math Works, Inc.
24 Prime Park Way
Natick, MA 01760

ACM Distribution Service
c/o International Mathematics and Statistics Service
7500 Bellaire Boulevard
Houston, TX 77036

In addition, the commercial structural optimization packages listed in Table
B. 1 are available in the market [B. 14, B. 15]. Most of these softwares are based

TABLE B.I Summary of Some Structural Optimization Packages

Software System
(Program)

ASTROS
(Automated STRuctural

Optimization System)

ANSYS

MSC/NASTRAN
MacNeal Schwendler

Corporation/NAsa
STRuctural
ANalysis)

NISAOPT

GENESIS

Source
(Developer)

Air Force Wright Laboratories
FIBRA
Wright-Patterson Air Force

Base, OH 45433-6553

Swanson Analysis Systems, Inc.
P.O. Box 65
Johnson Road
Houston, PA 15342-0065

MacNeal-Schwendler
Corporation

15 Colorado Boulevard
Los Angeles, CA 90041

Engineering Mechanics Research
Corporation

P.O. Box 696
Troy, MI 48099

VMA Engineering Inc.
Manderin Avenue, Suite F
Goleta, CA 93117

Capabilities and
Characteristics

Structural optimization with
static, eigenvalue, modal
analysis, and flutter
constraints;
approximation concepts;
compatibility with
NASTRAN; sensitivity
analysis

Optimum design based on
curve-fitting technique to
approximate the response
using several trial design
vectors

Structural optimization
capability based on
static, natural frequency,
and buckling analysis;
approximation concepts
and sensitivity analysis

Minimum-weight design
subject to displacement,
stress, natural frequency
and buckling constraints;
shape optimization

Structural optimization;
approximation concepts
used to tightly couple the
analysis and redesign
tasks



on a finite-element-based analysis for objective and constraint function evalu-
ations and use several types of approximation strategies.

B.5 SCALING OF DESIGN VARIABLES AND CONSTRAINTS

In some problems there may be an enormous difference in scale between vari-
ables due to difference in dimensions. For example, if the speed of the engine
(n) and the cylinder wall thickness (t) are taken as design variables in the
design of an IC engine, n will be of the order of 103 (revolutions per minute)
and t will be of the order of 1 (cm). These differences in scale of the variables
may cause some difficulties while selecting increments for step lengths or cal-
culating numerical derivatives. Sometimes the objective function contours will
be distorted due to these scale disparities. Hence it is a good practice to scale
the variables so that all the variables will be dimensionless and vary between
0 and 1 approximately. For scaling the variables, it is necessary to establish
an approximate range for each of the variables. For this we can take some
estimates (based on judgment and experience) for the lower and upper limits
on jc, (;t™in and x™x), i = 1,2,. . .,n. The values of these bounds are not critical
and there will not be any harm even if they span partially the infeasible do-
main. Another aspect of scaling is encountered with constraint functions. This
becomes necessary whenever the values of the constraint functions differ by
large magnitudes. This aspect of scaling (normalization) of constraints was
discussed in Section 7.13.
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ANSWERS TO SELECTED PROBLEMS

CHAPTER 1

1.1 M i n . / = 5JC4 - 8OJCB + 160JCC + 15JCD, 0 . 0 5 ^ + 0.05JCB + 0.1JCC +
0.15JCD < 1000, O.IJC^ + 0A5xB + 0.2xc + 0.05JCD < 2000, 0 . 0 5 ^ +
OAx8 + 0.1JCC + 0.15JCD < 1500, xA > 5000, xB > 0, xc > 0, xD > 4000
1.2(a) X* = {0.65, 0.53521} (b) X* = {0.9, 2.5}
(c) X* = {0.65, 0.53521} 1.5 jcf = JC£ = 300
1.9(a) Rf = 4.472, R$ = 2.236 (b) Rf = 3.536, R% = 3.536
(c) Rf = 6.67, R% = 3.33
l . l l (a ) J1 = In xu y2 = In x2, I n / = 2 ^1 + 3 y2

(b) / = 10^ 2 , X1 = 10^2, In ( log1 0 /) = In (log10 X1) + In x2

1.14 JCy = 1 if city j is visited immediately after city i, and = O otherwise.
n n n

Find {*„} to minimize/ = S 2 ^J t 0 subject to S JC« = 1 (i = 1,2,
i = l y = l i = 1

. . . , n) , i ^ j and S ^ = l ( i = 1 , 2 , . . . , n) , j =̂ i

b < 2rf. 1.25 Min. / = \tm + | ^ , rm + rrf < 40 , td > 1.25rm,
0 < tm < 24, 0 < td < 20. 1.29 M i n . / = TTX3[X\ - (X1 - X2)

2] +

\-K[X\ - (Jc1 - JC4)
3], TTJC3(JC1 - Jc2)

2 + ITT(JC1 - JC4)
3 - 4 ,619,606 < 0, JC2 -

PR0 < O r PR° < O



CHAPTER 2

2.1 r* = R 2.3 x* = 1.5 (inflection point)
/D5Y'4

2.5 JC = - 1 (not min, not max), x = 2 (min) 2.9 d = ( — I

2.10 35.36 m 2.11(a) 79.28° (b) 0.911 from end of stroke
2.13 positive semidefinite 2.15 positive definite
2.17 negative definite 2.19 indefinite
2.21 xf = 0.2507 m, X2* = 5.0879 X 10"3 m
2.23 a = 328, b = -376 2.26 x* = 27, y* = 21
2.27 x* = 100 2.28(a) minimum (b) minimum
(c) saddle point (d) none 2.30 saddle point at (0, 0)
2.33 dx{ = arbitrary, dx2 = 0 2.36 radius = 2r/3, length = A/3

2.38 length = (a2/3 + bmf12 2.40 h* = (—), r* = —
\ TT / 2

2.41 xf = xf = (S/3)1'2, X2* = (S/12)1'2

2.43 d* = g{(a + b) - Va2 - ab + b2} 2.47 200 mm X 250 mm
2.50 X* = {4, 2, 2} 2.53 198.43 ft X 113.39 ft
2.55(a) /*ew = 15*- (b) / * w = 18ir 2.57(a) / * = 1/3
(b) / * = —1/9 2.59 none optimum 2.61 X2 is local minimum
2.63(a) Kuhn-Tucker conditions satisfied
(b) X1 = 0.4, X2 = 0.2, X3 = 0 2.65(a) S = {1, - 3 } (b) none
2.67 optimum 2.69 x* =\,x* = 4 ^ 2.73 convex

CHAPTER 3

3.3 Xi = 1, X2 = 2, x3 = 3 3.5 X1 = 2, x2 = 4, x3 = 6
3.7 xf = 1/3, xi = 4/3 3.9 xf = 2§, X2* = l |
3.12 x* = 3ff,j* = 3 ^ 3.15 x* = 5 i > * = l ^
3.17 all points on line joining (2, 10) and (7.4286, 15.4286)
3.18 x* = 10, y* = 18 3.20 x* = 9/7, y* = 40/7
3.23 x* = 6, y* = 1 3.25 x* = 6, y* = 0
3.27 x* = 75/8, y* = 27/8 3.29 x* = 3, y* = -2 .5
3.31 x* = 4, y* = 0 3.33 unbounded 3.35 x* = 4/7, y* = 30/7
3.37 x* = 36/7, y* = 15/7 3.39 x* = 16/5, y* = 1/5
3.41 infeasible 3.43 unbounded
3.48 xf = 3000.0, x2* = 416.7, x3* = 1200.0
3.50 xf (barley) = 40, x2* = X3* = x% = 0, x5* (leased) = 160
3.55 jtf = 1.5, x | = 0 3.57 x* = 16, xj = 20
3.60 x* = 36/11, y* = 35/11
3.66 all points on the line joining (7.4286, 15.4286) and (10, 18)
3.71 x* = 3.6207, y* = 8.4483 3.75 x* = 2/7, y* = 30/7



3.79 x* = 56/23, y* = 45/23 3.85 x* = - 4 / 3 , y* = 7
3.89 Jt* = O, j * = 3
3.92 (Jt1, Jt2) = amounts of mixed nuts (A, B) used, Ib. Jtf = 80/7,
Jt2* = 120/7 3.94 Jt^ = 62.5, Jt* = 31.25
3.96 Jt, = number of units of P1 produced per week, xf = 100/3,
Jt2* = 250/3
3.99 (Jt1, Jt2) = number of units of (A, B) sold per month. Jtf = 19.17,
Jt2* = 45
3.102 Jt, = number of days used in a month for process type i (i =
1, 2, 3, 4). Jtf = 30, Jt2* = Jt3* = Jt4* = 0

CHAPTER 4

4.1 X* = {2.333, 1.333,0,0}
4.3 Jtf = 0, i = 1, 2, 3, Jt4* = 2/5, Jt* = 4/5 4.5 solution unbounded
4.9 Jt* = 0, i = 1, 2, 5, 6, 7, Jt3* = 0.5, Jt$ = 1.5
4.12 Jtf = 2.35, Jt2* = 0.1, Jt3* = 2.7, Jt4* = 1.2
4.15 Jtf = Jt2* = Jt3* = Jt* = 0, xf = 120, Jt5* = 100
4.17 optimum solution remains same,/*ew = —27,600/3
4.19 (Jt1, Jt2, Jt3, Jt4) = number of units of products (A, B, C, D) produced.
xf = 4000/3, Jt2* = x3* = 0, Jt4* = 200/3
4.23 Jtf = 1000/3, Jt2* = Jt* = 0, Jt4* = 800/3
4.29 Jtf = 0, Jt2* = 0.5 4.31 jtf = 0, Jt2* = 0.5
4.33 infinite solutions 4.35 Jtf = 0, Jt* = 0.5
4.37 X(2) = {0.3367, 0.3112, 0.3250}
4.40 Jtf = 0.9815, Jt2* = 1.2323, Jt3* = 0.4471

CHAPTER 5

5.2 0.484 5.3 0.481 5.4 0.49 5.6 0.8 5.9 0.7817
5.11(a) 0.786151 (b) 0.786142 (c) 0.786192 5.14(a) 999
(b) 20 (c) 19 (d) 14 (e) 14 5.17(a) 2.7814
(b) 2.7183 5.18(a) 2.7183 (b) 2.7289 (c) 2.7183
5.20 0.25 5.21 0.001257 5.22 0.00126 5.24 0.00125631

CHAPTER 6

6.1 M i n . / = P0(O-SM1 + 0.5M2 - U1U2 - M2)

6.2 Z1 = 7.0751,/2 = 74.8087 where/= ^L
Eh



6.4 X1 = 65.567, X2 = 52.974 6.5 xf = 4.5454, X2* = 5.4545
6.7 / = 425Ox? - 100Ox1X2 - 250Oc1 x3 + 1500x1 - 50Ox2X3 + 575Ox3

1

- 100Ox1 - 200Ox2 - 300Ox3, X* = {0.3241, 0.8360, 0.3677}
6.9 X* « {1, 1} 6.12 X* = {0.9465, 2.0615, 2.9671}
6.14 /(Z1, z2) = - 5 + 1.0429zi - 0.7244z2 + 0.5z? + 0.5z2

6.16(a) yes (b) no 6.19(a) 60,002.0 (b) 241.3729
6.30 X1 = {2, - 1 , - 8 } X2 = {2, -0 .7 , - 8 } X3 = {2.26, -0.85, -8}
X4 = {2.15, -0.74, -7.755} 6.35 X2 = {5.57, 0 } , / 2 > / ,
6.38 xf = l,x2* = 1 6.45 X5 = {2.0869, 1.7390},/s = -8.3477
6.47 X* = {-2, 1, 4} 6.48 x* = 1.1423, y* = 0.8337
6.50 xf = 1.698105, X2* = 0.883407 6.52 X* = {5, - 8 }
6.55(a) no (b) yes

CHAPTER 7

7.1 X* = { 2 , 3 } , / * = -50
7.6(a) M i n . / = 12x? + 3Ox2

1 - 8X1X2 - 22X1 + 6Ox2 - 78,
X2 + 2 = 0, X1 + X2 < 0
(b) Min. / = 18x, - 68x2 - 70, X2 + 2 = 0, X1 + X2 < 0
7.8 X* = {1.74558, 1.95265},/* = -9.23478
7.11 Max . /= 3.5483rf4w, 2.2227 x 10~6rf4 - 1 < 0, 0.2223d2w - 150
< 0, d < 25 7.13 -8s , + As2 < 0, S1 + Is2 < 0, -Sx < 0
7.15 X* = {0.75, 4.56249},/* = 0.25391
7.18 X* = {3, 3 } , / * = 18 7.21 xf = 24 cm, x* = x* = 12 cm

7.23» • , . 2 , - ^ ( ^ + J ^ J 5 ) .

(b) 4>k = 2x + r t « 2 - x>2 + <x - 10>2)
7.27 xf = 0.989637, X2* = 1.979274
7.29 | x , + -fix* - 1 < 0, x,/5 + x2/3 - 1 < 0, r, = 1.5
7.31 xf = 4.1,X2* = 5.9 7.34 X* « {0.8984, 0 } , / * « 2.2079
7.36 X* « {1.671, 17.6} 7.39 X1 = 0.4028, X2 = 0.8056

7.42 optimum, X1 = X2 = —j=, X3 = 11
4v2

7.45 X* * {1.3480, 0.7722, 0.4299},/* * 0.1154

CHAPTER 8

8.1 / > 2 .268866 8 . 2 / > 3 .464102 8 .3 / > 3
8.5 radius = 0.4174 m, height = 1.6695 m
8.6 radius = 0.3633 m, height = 2.9067 m
8.7 xf = 1.5 X 106, X2* = 1.0 X 106



8.9 xf = 5.7224, X2* = 0.8737, Jt3* = 7.2813
8.10 xf = 1.0845, X2* = 1.1761
8.11 xf = 8.6365, X2* = 0.9397, xf = 6.8219, X4* = 0.9609
8.12 xf = 1.1262, X2* = 1.1945, X3* = 1.6575
8.13 xf = 2.2629, X2* = 7.1689, X3* = 4.5850
8.14 xf = 0.3780, X2* = 0.5345, X3* = 0.5714
8.17 d* = 0.002808 m, D* = 0.02935 m
8.18 V* = 323.3201 ft/min, F* = 0.005 in/rev 8.20 2
8.22 R* = 0.2118, L* = 0.2907
8.23 R* = 1.2821, L* = 0.5266,/* = 16.2056

CHAPTER 9

9.1 xf = 2, X2* = X3* = 0, X4* = 3 9.2 A-B-F-J-K-L-P
9.3 n, = 2, /I2 = 3, n-i = 1 9.4 24,000 ft at B, C, D, and £
9.5 D-H-L-K-J-I-M
9.6 stage 1 (0, n), stage 2 (0, 2«/3), stage 3 (4«/9, 0)
9.7 A B1 C1 D1 E 9.9 units invested in stations 1, 2, 3: (0, 2, 1)
9.10 xf = 7.5, X2* = 10.0 9.11 xf = 60, xf = 70, X3* = 80
9.13 xf = 5, x2* = 0, X3* = 5, X4* = 0

CHAPTER 10

10.1 X* = {2, 1} , /* = 13 10.3 X* = {0, 9 } , / * = 27
10.4 X* = {1,0},/* = 3 10.5 X* = {0, 3 } , / * = 3
10.6 X* = {3, 3} , / * = 39 10.7 X* = {4, 3 } , / * = 10
10.8 187 = 10 1 1 1 0 1 1 10.9 X* = {1,2, 0 } , / * = 3
10.12 X* = {1, 1, 1 } , / * = 18 10.13 X* = {1, 1, 1, 1 , 0 } , / * = 9
10.15 X* = {4, 0 } , / * = 4 10.16 X* = {2, 2 .5} , /* = 20.5

CHAPTER 11

11.2 V=^,av = Ul - - 11.3 Z =3.2, ox = 0.8
Vx/l « \ 8 TT

11.4 a = 769.2308, Hx= 1, ax = 0.048038
11.7 Mx) = x + I.5x2,fy(y) =y+ 1 . 5 /
11.8 ox = 0.006079 cm, rejects = 1.32% 11.9 independent
11.10 dependent l l . l l (a) 0.99904, (b) 0.0475,
(c) 3,616 kgf/cm2 11.12 0.6767



11.13 R = 268.9520 ft, aR = 56.1941 ft, /?secondotder = 270.1673 ft
11.15 X* = {0,0,0, 12} , /* = 12
11.17(8) X* = {0.0, 36.93, 174.40},/* = 1,891.72

(b) X* = same as in (a), of = 524.50
(c) X* = same as in (a), (J + of)* = 2,416.22

CHAPTER 12

12.1 Min./ = 2x] - 10.X1 + x\ - Sx2 + x\ + 10, X1 + X2 < 6, JE, + X2

- JC3 = 0, x{ > 0, / = 1, 2, 3
12.5 x(t) = C^e' + (2 — Ci)e~' — t where C1 is a constant
12.6(a) use X1X2 = y\ — $ with yt = ( 1̂ + x2)/2 and y2 = (X1 — x2)/2
(b) use y, = e3*1 +X2 and y2 = xxx2 12.10 circle of radius L/(2TT)
12.13 X* = {0.7635, 1.0540},/* = 187.5670 wi th /= 0.625/, +
1061.0/, 12.14 X* = {0.8, 1.1}, F* = 3.1267
12.15 X* = {0.75, 1.25} 12.16 X* = {0.2, 0.2}
12.17 X* = {1.2169,0.3805}
12.19 X1 = {17, 13}, X2 = {15, 22}, X3 = {23, 22}, X4 = {9, 13}

CHAPTER 13

13.1 cf = 0.04, C2* = 0.81
13.3(a) {0.001165,0.002329,0.03949, -0.05635},
(b) {0.0009705, 0.001941, 0.05273, -0.084102},
(c) {0.0009704, 0.001941, 0.05265, -0.08395}

13.5 1—I = {-0.000582, -0.001165, -0.002329,0.002329}

13.7 [ ^ ] = {0.4693 X 10~7, 0.9477 X 10"7, -0.027948, 0.027947}
LdXi)

ro.000125") r-o.ooo229^ ro.o )̂
13.9(a) 0>)

C0.000458J C. -0.000229) (.0.000333J

r-275^) (0 -)< c ) lo Ri00I
13.11 ^ - 2.28840, ̂  - 46.8649, % J~»™™ * " f l

8A2 8A2 M2 U.391666 X 10~6 J



9Y2 _ f 0.698492 x 10"h

9A2 ~ C0.883790 X 10"2J

13.15 ^p- = -1.584664, ^ 2 - = -2.744719
oD oD

13.16 y* = 3, Af = 0.316228 X 1(T7, A2* = 0.948683 X 10" 7 , /* = 0.6
X 10~6 13.18 y* = 0.25, Af = 1.0, A2* = 1.0,/* = 43.7565
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Duality theorems 214 
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applications 653 
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problem of dimensionality 648 
recurrence relation 625 
tabular method of solution 635 



902 
Index terms Links 

 This page has been reformatted by Knovel to provide easier navigation.  

E 
Electrical bridge network 52 

Elementary operations 146 

Elimination methods 277 279 

Engineering applications of optimization 4 

Engineering optimization literature 39 

Equality constraints 5 

Euler equation 786 

Euler-Lagrange equation 786 

Evaluation of gradient 379 

Event        716 
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