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Sl 0 ulisl (Trust Region Methods)

Trust-Region
Methods

Line search methods and trust-region methods both generate steps with the help of a
quadratic model of the objective function, but they use this model in different ways. Line
search methods use it to generate a search direction, and then focus their efforts on finding
a suitable step length « along this direction. Trust-region methods define a region around
the current iterate within which they trust the model to be an adequate representation of the
objective function, and then choose the step to be the approximate minimizer of the model
in this trust region. In effect, they choose the direction and length of the step simultanecusly.
If a step is not acceptable, they reduce the size of the region and find a new minimizer. In
general, the step direction changes whenever the size of the trust region is altered.

The size of the trust region is critical to the effectiveness of each step. If the region is
too small, the algorithm misses an opportunity to take a substantial step that will move it
much closer to the minimizer of the objective function. If too large, the minimizer of the
model may be far from the minimizer of the objective function in the region, so we may have
to reduce the size of the region and try again. In practical algorithms, we choose the size of
the region according to the performance of the algorithm during previous iterations. If the
model is generally reliable, producing good steps and accurately predicting the behavior of
the objective function along these steps, the size of the trust region is steadily increased to
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Figure 4.1 Trust-region and line search steps.

allow lomger, more ambdtions, steps to be taken. On the other hand, a failed step indicates
that our maodel is an inadequate representation of the objactive function over the current
trust region, s we reduce the size of the region and try again.

Figure 4.1 illustrates the trust-region approach on a function F of two wariables in
which the current point lies at one end of a curved valley while the minimizer x* lies at the
other end. The quadratic model function mg, whaose elliptical contours are shown as dashed
lines, is based on fanction and derivative information at 3 and possibly also on information
accumnulated from previous iterations and steps. & line search method based on this model
searches along the step to the mindmizer of me (shown), but this direction allows only a
small reduction in f ewven if an optimal step is taken. A trust-region methaod, on the other
hand, steps to the minimizer of mg within the dotted circle, which yizlds a more significant
reduction in 7 and a better step.

We will assume that the first two terms of the quadratic model functions my at sach
iterate 1y are identical to the Arst teo temmns of the Taylor-series expansion of f around xg.

Specifically, we have

melpl =+ ViR p+3pT Bep. (4.1}
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where fi = flxi), Vi = Vfix), and By is some symmetric matrix. Since by (2.6) we
have

fle+p) =i+ VA p+1p" P rln +1p)p. (4.2)

for some scalar ¢ & (0, 1), and since me(p) = fi + VFI p + O (| p|*), the difference
between my(p) and f(xi + p)is O (|| p||*), so the approximation error is small when p is
small.

When B is equal to the true Hessian ¥ f(xv;), the model function actually agrees
with the Taylor series to three terms. The approximation error is @ (||p|*) in this case,
so this model is especially accurate when | p|| is small. The algorithm based on setting

. o o - = = B e
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negative, the new objective value fix; + pi) is greater than the current value f(x;), so the
step must be rejected.

On the other hand, if p; is close to 1, there is good agreement between the model m;
and the function f over this step, so itis safe to expand the trustregion for the nextiteration.
If py. is positive but not close to 1, we do not alter the trust region, but if it is close to zero or
negative, we shrink the trust region. The following algorithm describes the process.

Algorithm 4.1 (Trust Region).
Given A = 0, Ay £ (0, A),and n & [[I, L
fork=0,1,2....
Obtain pe by (approximately) solving (4.3);
Evaluate gy from (4.4);
if o = %
Mgy = 7l pel
else
if o > § and || pell = Ax
Mgy = min{2A;, A)

else
Appr = Ay
if op = 7
Xpp) = Xp + M
else
el = Xk
end (for).

Here A is an overall bound on the step lengths. Note that the radius is increased only if || p||
actually reaches the boundary of the trust region. If the step stays strictly inside the region,
we infer that the current value of A is not interfering with the progress of the algorithm,
sowe leave its value unchanged for the next iteration.

To turn Algorithm 4.1 into a practical algorithm, we need to focus on solving (4.3).
We first describe three strategies for finding approximate solutions, which achieve at least as
much reduction in my as the reduction achieved by the so-called Cauchy point. This pointis
simply the minimizer of m; along the steepest descent direction —V fi, subject to the trust-
region bound. The firstapproximate strategy is the dogleg method, which is appropriate when
the model Hessian By is positive definite. The second strategy, known as two-dimensional
subspace minimization, can be applied when By is indefinite, though it requires an estimate
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the trust-region radius A; and performs additional calculations in the special case in which
the resulting modified Hessian (B + AT) is nonsingular. Details are given below.

4.1 THE CAUCHY POINT AND RELATED ALGORITHMS

THE CAUCHY POINT

As we saw in the previous chapter, line search methods do not require optimal step
lengths to be globally convergent. In fact, only a crude approximation to the optimal step
length that satisfies certain loose criteria is needed. A similar situation applies in trust-region
methods. Although in principle we are seeking the optimal solution of the subproblem (4.3},
it is enough for global convergence purposes to find an approximate solution p; that lies
within the trust region and gives a sufficient reduction in the model. The sufficient reduction
can be quantified in terms of the Cauchy point, which we denote by pf and define in terms
of the following simple procedure:

Algorithm 4.2 (Cauchy Poirt Calculation)
Find the vector pj that solves a linear version of (4.3), that is,

pi=argmin fi + Vi p st |pl = A (4.5)
PE

Calculate the scalar 7z = 0 that minimizes m(t pf) subject to
satisfying the trust-region bound, that is,

T = arg min m(T p;) st |tpill = A i4.6)
=0

Set pf = wpj.
In fact, it is easy to write down a closed-form definition of the Cauchy point. The solution
of (4.5) is simply

Ay
I¥ rell

5

=

V.

To obtain . explicitly, we consider the cases of V fif BiV fi = 0and V f7 ByV fi, = 0 sepa-
rately. For the former case, the function m( 7 pj) decreases monotonically with ¢ whenever
Vi #£ 0, s0 1 is simply the largest value that satisfies the trust-region bound, namely,
7. = 1. For the case ?ffﬂ;ﬁ_‘r}( = 0, m(tp}) is a convex guadratic in 7, so 7 is either
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Figure 4.2 The Cauchy point.

the unconstrained minimizer of this quadratic, |V £ |*/{ A V fif BiV fi.), or the boundary
value 1, whichever comes first. In summary, we have
Ay o

p'; = —T3 —T_.h (4.?)
R T

where

1 if VBV fi < 0;

4.8
min (||Vfil*/ (A VAT BV ). 1) otherwise. (4.8)

Figure 4.2 illustrates the Canchy point for a subproblem in which B ispositive definite.
In this example, pf lies strictly inside the trust region.

The Cauchy step pf is inexpensive to calculate—no matrix factorizations are
required—and is of crucial importance in deciding if an approximate solution of the
trust-region subproblem is acceptable. Specifically, a trust-region method will be globally
convergent if its steps py attain a sufficient reduction in m; that is, they give a reduction in
the model m; that is at least some fixed multiple of the decrease attained by the Cauchy step
at each iteration.

IMPROVING ON THE CAUCHY POINT

Since the Cauchy point p§ provides sufficient reduction in the model function m to
vield global convergence, and since the cost of calculating it is so small, why should we look
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any further for a better approximate solution of (4.2)7 The reason is that by always taking
the Cauchy point as our step, we are simply implementing the steepest descent method with
a particular choice of step length. As we have seen in Chapter 3, steepest descent performs
poorly even if an optinal step length is used at each iteration.

The Cauchy point does not depend very strongly on the matrix By, which is used only
in the calculation of the step length. Rapid convergence (superlinear, for instance) can be
expected only if By plays a role in determining the direction of the step as well as its length.

A number of algorithms for generating approximate solutions py to the trust-region
problem (4.3) start by computing the Cauchy point and then try to improve on it. The
improvement strategy is often designed so that the full step pf = —B'V fi is chosen
whenever By is positive definite and || p}|| = Ag. When By is the exact Hessian V¥ f{xzJor a
quasi-Newton approximation, this strategy can be expected to yield superlinear convergence.

We now consider three methods for finding approximate solutions to (4.3) that have
the features just described. Throughout this section we will be focusing on the internal
workings of a single iteration, so we drop the subscript “£” from the quantities Ay, py, and
#y. to simplify the notation. With this simplification, we restate the trust-region subproblem
(4.3) as follows:

m%}ml{pj = f+ep+ipTap st. |lp|l = Al i4.9)
peR® -
We denote the solution of (4.9) by p*{A), to emphasize the dependence on A.

THE DOGLEG METHOD

We start by examining the effect of the trust-region radius A on the solution p*(A)
of the subproblem (4.9). When B is positive definite, we have already noted that the uncon-
strained minimizer of m is the full step p* = —B~'z. When this point is feasible for (4.9),
it is obviously a solution, so we have

plia) = pb, when A = || p®. (4.10)

When A is tiny, the restriction || p|| = A ensures that the quadratic terminm has little effect
on the solution of (4.9). The true solution p{A) is approximately the same as the solution
we would obtain by minimizing the linear function f 4+ g7 p over || p|| = A, that is,

pria) = —iﬁ, when A is small. (411}
g

For intermediate values of A, the solution p*(A) typically follows a curved trajectory like
the one in Fignre 4.3.

The dogleg method finds an approximate solution by replacing the curved trajectory
for p*(A) with a path consisting of two line segments. The first line segment runs from the
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Figure 4.3  Exact trajectory and dogleg approximation.

origin to the unconstrained minimizer along the steepest descent direction defined by

T
. E'g .
=———5, i4.12)
8" Bg
while the second line segment runs from p" to p® (see Figure 4.3). Formally, we denote this
trajectory by p(t) for v & [0, 2], where
5

TpY, l=1t=1

4,13
(=D —pY), l=t=<2. (4.13)

pir) =

The dogleg method chooses p to minimize the model m along this path, subject to
the trust-region bound. In fact, it is not even necessary to carry out a search, because the
dogleg path intersects the trust-region boundary at most once and the intersection point
can be computed analytically. We prove these claims in the following lemma.

Lemma 4.1.
Let B be positive definite. Then

(i) || ple)| is an increasing function of T, and

(i) mipit)) is a decreasing function of T.
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Proor.  Itiseasy to show that (i) and (i) both hold for v € [0, 1], s0 we restrict our attention
to the case of T £ [1, 2].
For (i), define h{w) by

hig) = %||ﬁl:l +|:z']I||2
= Hp" +alp® — p")I°
Ly P + ep T (p® — pU) + Le? | — pU)IR.

Our result is proved if we can show that b'{@) = 0 for « = (0, 1). Now,
Wia) = —p""(p" - p*) +allp’ — pI’

p _pL']"l:Pu _ paj

T r

zg r( £E -1
="' |-—F—¢+8B g)

gTBg g’ Bg

r gB'g (g7l
=EE 7 l—— T po1

g’ Bg (gT Bgl(gT B~'g)

=,

where the final inequality follows from Exercise 2.
For (ii), we define h{e) = mip(l + «)) and show that #'{x) = 0 for e = (0, 1).
Substitution of (4.13) into (4.9) and differentiation with respect to the argument leads to

hiw) = (p" — p"i (g + Bp") + al(p®— p*)T Bip® — p")
= (p"—p") (g + Bp" + B(p"— p"))
=(p"—p"VW g+ BpY =0,

giving the result. O

It follows from this lernma that the path p(r) intersects the trust-region boundary
[Pl = A at exactly one point if | p*|| = A, and nowhere otherwise. Since m is decreasing
along the path, the chosen value of p will be at p® if || p*|| = A, otherwise at the point of
intersection of the dogleg and the trust-region boundary. In the latter case, we compute the
appropriate value of t by solving the following scalar quadratic equation:

llp" + iz — 1)(p® — p")II* = A

The dogleg strategy can be adapted to handle indefinite B, but there is not much
point in doing so because the full step p® is not the unconstrained minimizer of m in this
case. Instead, we now describe another strategy, which aims to include directions of negative
curvature (that is, directions d for which dT Bd - 0) in the space of candidate trust-region
steps.
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TWO-DIMENSIONAL SUBSPACE MINIMIZATION

When B is positive definite, the dogleg method strategy can be made slightly more
sophisticated by widening the search for p to the entire two-dimensional subspace spanned
by p" and p® (equivalently, g and —B'g). The subproblem (4.9) is replaced by

minm(p)=f+g p+ %prﬂp st ||pll = A, p espan[g, B 'g]. (4.14)

This is a problem in two variables that can be solved without much effort (see the exercises).
Clearly, the Cauchy point p© is feasible for (4.14 ), s0 the optimal solution of this subproblem
vields at least as much reduction in m as the Cauchy point, resulting in global convergence
of the algorithm. The two-dimensional subspace minimization strategy is obviously an
extension of the dogleg method as well, since the entire dogleg path lies in span[g, B™'g].

An advantage of this strategy is that it can be modified to handle the case of indefinite
B in a way that is intuitive, practical, and theoretically sound. We mention just the salient
points of the handling of the indefiniteness here, and refer the reader to papers by Byrd,
Schnabel, and Schultz (see [39] and [226]) for details. When B has negative eigenvalues, the
two-dimensional subspace in (4.14) is changed to

span[g, (B + urﬂ“lg], forsomew £ (—Ay, —241], (4.15)

where 4 denotes the most negative eigenvalue of B. (This choice of & ensures that B+ [ is
positive definite, and the flexibility in this definition allows us to use a numerical procedure
such asthe Lanczos method to compute an acceptable value of ce.) When || ( B+l |7 g|| = 4,
we discard the subspace search of (4.14), (4.15) and instead define the step to be

p=—(B+ol) g+, (4.16)

where v is a vector that satisfies vT (B + cf i~'g = 0. (This condition ensures that v does
not move p back toward zero, but instead continues to move roughly in the direction of
—(B+al) gl

When B has zero eigenvalues but no negative eigenvalues, the Cauchy step p = p©is
used as the approximate solution of (4.9).

The reduction in model function m achieved by the two-dimensional minimization
strategy often is close to the reduction achieved by the exact solution of (4.9). Most of the
computational effort lies in a single factorization of B or B + w/ (estimation of « and
solution of (4.14) are less significant), while strategies that find nearly exact solutions of

(4.9) typically require two or three such factorizations.

oot mdige 3 (ol sl )
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STEIHAUG'S APPROACH

Both methods described above require the solution of a single linear system involving
B or (B + al). When B is large, this operation may be quite costly, so we are motivated to
consider other techniques for finding an approximate solution of (4.9) that do not require
exact solution of a linear system but still produce an improvement on the Cauchy point.
Steithang [231] proposed a technique with these properties. Steihaug’s implementation is
based on the conjugate gradient algorithm, an iterative algorithm for solving linear systems
with symmetric positive definite coefficient matrices. The conjugate gradient {CG) algorithm
is the subject of Chapter 3, and the interested reader should look ahead to that chapter for
further details. Our comments in this section focus on the differences between standard CG
and Steihang's approach, which are essentially that the algorithm terminates when it either
exits the trust region ||p|| = A or when it encounters a direction of negative curvature in B.

Steihaug’s approach can be stated formally as follows:

Algorithm 4.3 (CG-Steihaug)
Givene = 0
Setpy =0, = g, dy = —ra}
if |ral| < €
return p = pg;
forj=10,1,2,...
ifdTBd; <0
Find 7 such that p = p; + vd; minimizes m(p) in (4.9)
and satisfies || p|| = A;
return p;
Seta; = rjrrj.a"djr Bd;;
Set piy1 = pj +ajdy;
if|pjall = A
Find © = Osuch that p = p; + vd; satisfies | p|| = 4;
return p;
Setripq =r; +o; B
if ||rjall = ellrall
return p = piy1;
Set B = r}-r_Hr_,-H_.f'rJ-rrj:
Setd; ) = rip + Binds
end ifor).

To connect this algorithm with Algorithm CG of Chapter 5, we note that m (. ) takes
the place of ¢ (-}, p takes the place of x, B takes the place of A, and —g takes the place of b.
The change of sign in the substitution b — —g propagates through the algorithm.

Algorithm 4.3 differs from standard CGin thattwo extra stopping criteriaare present—
the first two if statements inside the for loop. The first if statement stops the method if its



VY

current search direction d; is a direction of zero curvature or negative curvature along B.
The second one causes termination if p;, violates the trust-region bound. In both cases,
a final point p is found by intersecting the current search direction with the trust-region
boundary.
The initialization of p, to zero is a crucial feature of the algorithm. After the first
iteration (assuming ||ry|; = <), we have
rlr & — el
dTBdy "~ gTBg

P = tpdy = £,
which is exactly the Cauchy point! Since each iteration of the conjugate gradient method
reduces m(-), this algorithm fulfills the necessary condition for global convergence.
Another crucial property of the method is that each iterate p; is larger in norm than
its predecessor. This property is another consequence of the initialization py = 0. Its main
implication is that it is acceptable to stop iterating as soon as the trust-region boundary is
reached, because no further iterates giving a lower value of ¢ will be inside the trust region.
We state and prove this property formally in the following theorem. { The proof makes use
of the expanding subspace property of the CG algorithm, which we do not describe until
Chapter 5, so it can be skipped on the first pass.)

Theorem 4.2.

The sequence of vectors generated by Algorithm 4.3 satisfies

O=lpollz = -+ < pillz < Ipjwillz = - < lIpll: = A.

Proof. We first show that the sequences of vectors generated by Algorithm 4.3 satisfy
pfrj = 0for j = 0 and p_r-rdj = Oforj = L

Algorithm 4.3 computes p; 4, recursively in terms of p;, butwhen all the terms of this
recursion are written explicitly, we see that

fid fimd
pi=pat Zﬂ’sdi = Z'-Tidh
=0 =i
since py = 0. Multiplying by r; and applying the expanding subspace property of CG gives
il
p_];.l"_r' = Zl:r,;dr-rr_r' =0.
=i

An induction proof establishes the relation p_rrﬂ'j = 0. By applying the expanding
subspace property again, we obtain

prdy = (2oda)” (ry + Prda) = 2oy dy dy = 0. (4.17)

oot mdige 3 (ol sl )
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We now make the inductive hypothesis that p_r-rdj = Dand show that thisimplies PLJ djy1 =
0. From (4.17), we have p_r-rﬂr_r-_,_l = 0, and therefore we have

Ff+]dj+l = F'}-+Jf"j+l + |Sj+1'dj:'
= ﬁjHPLJJJ‘
= B (p; +a;d;)" d;
= Binp; d; +a;find) d;.

Because of the inductive hypothesis, the last expression is positive.

We now prove thetheorem. If the algorithm stops becausedJrij =0or|pipll: = A,
then the final point p is chosen to make ||p|| = A, which is the largest possible length
any point can have. To cover all other possibilities in the algorithm we must show that
l7illz = lpisillz when piyy = pj + a;d; and j = 1. Observe that

Ipi+illl = (py +e;d ) (p; +ajd;) = Ip;iI3 + 2a,pld; + allld; |13

It follows from this expression and our intermediate result that | p;llz < ||pisallz. so our
proof is complete. O

From this theorem we see that the iterates of Algorithm 4.3 sweep out points p; that
move on somme interpolating path from py to p, a path in which every step increases its total
distance from the start point. When F is positive definite, this path may be compared to the
path of the dogleg method, because both methods move from the Cauchy step p* to the full
step p®, until the trust-region boundary intervenes.

A Newton trust-region method chooses B to be the exact Hessian V2 f(x ), which may
be indefinite during the course of the iteration (hence our focus on the case of indefinite B).
This method has excellent local and global convergence properties, as we see in Chapter 6.

4.2 USING NEARLY EXACT SOLUTIONS TO THE SUBPROBLEM

CHARACTERIZING EXACT SOLUTIONS

The methods discussed above make no serious attempt to seek the exact solution of
the subproblem (4.9). They do, however, make some use of the information in the Hessian
B, and they have advantages of low cost and global convergence, since they all generate a
point that is at least as good as the Cauchy point.

When the problem is relatively small (that is, » is not too large), it may be worthwhile
to exploit the model more fully by looking for a closer approximation to the solution of
the subproblem. In the next few pages we describe an approach for finding a good approxi-
mation at the cost of about three factorizations of the matrix B, as compared with a single
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factorization for the dogleg and two-dimensional subspace minimization methods. This
approach is based on a convenient characterization of the exact solution of (4.9) {we need to
be able to recognize an exact solution when we see it, after all) and an ingenious application
of Mewton's method in one variable. Essentially, we see that a solution p of the trust-region
problem satisfies the formula

(B+M)p*=—¢

for some A = 0, and ouralgorithm for finding p* aims to identify the appropriate value of A.
The following theorem gives the precise characterization of the solution of (4.9).

Theorem 4.3.
The vector p* is a global solution of the trust-region problem

minm(p) = f +g'p+1pTBp. st |pl = A, (4.18)
PE

if and only if p* is feasible and there is a scalar & = 0 such thar the following conditions are

satisfied:

(B4 Ailp*=—pg, (4.19a)
Ma—1p'n =0, {4.19b)
(B + Al ispositive semidefinite. (4.19¢)

We delay the proof of this result until later in the chapter, and instead discuss just its
key features here with the help of Figure 4.4. The condition (4.19b) is a complementarity
condition that states that at least one of the nonnegative quantities A and (A — || p*|| ) must be
zero. Hence, when the solution lies strictly inside the trust region (asitdoeswhen A = A in
Figure 4.4 ), we must have & = 0 and so Bp* = —g with B positive semidefinite, from (4.1%)
and (4.19¢), respectively. In the other cases A = A; and A = Aj, we have ||p*|| = A, and
so A is allowed to take a positive value. Note from (4.19a) that

ip* = —Bp* — g = —Vm(p*),

thatis, the solution p* is collinear with the negative gradient of m and normal to its contours.
These properties can be seen clearly in Figure 4.4

CALCULATING MEARLY EXACT SOLUTIONS

The characterization of Theorem 4.3 suggests an algorithm for finding the solution p
of (4.18). Either ) = 0 satisfies (4.19a) and (4.19c) with ||p|| = A, or else we define

pid)=—(B+ i7"

oot mdige 3 (ol sl )
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contours of m I

Figure 4.4 Solution of trust-region subproblem for different radii A, A, As.

for & sufficiently large that B + AT is positive definite (see the exercises), and seek a value

A = 0 such that
(4.20)

|20 = A

This problem is a one-dimensional root-finding problem in the variable A.
To see that a value of A with all the desired properties exists, we appeal to the eigende-

composition of B and use it to study the properties of || piL ). Since B is symmetric, there
is an orthogonal matrix @ and a diagonal matrix A such that B = oAQT, where
JJ'L :L‘I.iﬂg“-.l,)-.g ..... .-'..,:|

= A are the eigenvalues of B; see (Ad6). Clearly, B + Af = QiA +

PLllL'I.)-.l = A =

A1OT, and for & &£ 4, we have
n T
. R q; 8
pli) = —Q(A+AI) lQrg:—E ——g;. (4.21)
RO

Vo
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where g; denotes the jth column of Q. Therefore, by orthonormality of gy, gz, . .., g, we
have

T W 2
oo (de) ﬁ
p(A))* = ;—uj v (4.22)

This expression tells us a lot about ||p(A)). If & = —A,, we have L; + L = 0 for all
j=1,2,....,nand so ||p(L)] is a continuous, nenincreasing function of & on the interval
(—&y, 020 In fact, we have that
lim Al =0 4.23
lim [Ip(A)] (423)

Moreover, we have when g Jrg # 0 that

, lim || p(A}] = oo. (4.24)

These features can be seen in Figure 4.5. Itis clear that the graph of || p(L) || attains the
value A atexactly one pointin the interval (—i |, o0}, which is denoted by A* in the figure. For
the case of B positive definite and ||B~'g|| = A, the value A = 0 satisfies (4.19), so there

Mliel

Figure 4.5 | p(A)|| as a function of 4.
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is no need to carry out a search. When B is positive definite but | B™'g|| = A, thereisa
strictly positive value of A for which | p{d}|| = A, so we search for the solution to (4.20) in
the interval (0, o0).

For the case of B indefinite and qug # 0, (4.23) and (4.24) guarantee that we can find
a solution in the interval (—A,, 00). We could use the root-inding Newton's method (see
the Appendix) to find the value of & = X, that solves

d(2) = pla)) —A=0. (4.25)

The disadvantage of this approach can be seen by considering the form of || p(4)|| when A is
greater than, but close to, —,. We then have

1
=] Ca,
@il d) P +C:

where C; = 0 and C; are constants. For these values of A the function is highly nonlinear,
and therefore the root-finding Newton’s method will be unreliable or slow. Better results will
be obtained if we reformulate the problem (4.23) so that it is nearly linear near the optimal
L. By defining

11
A eIl

dald) =

we see that for A slightly greater than —A, we have from (4.22) that

1 i+

A L

dald) =

for some C3 = 0. Hence @; is nearly linear in the range we consider, and the root-finding
Newton's method will perform well, provided that it maintains & = —2; (see Figure 4.6). The
root-finding Mewton's method applied to ¢, generates a sequence of iterates &' by setting

:_‘l_l'+J_l — 2 Ii’- ] (4.26)

# 0

After some elementary manipulation (see the exercises), this updating formula can be
implemented in the following practical way.

Algorithm 4.4 (Exact Trust Region)
Given '™, A = (O
fori=10,1,2,...

Factor B + A'"'f = RTR;
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Figure 4.6 1/||p(d)| as a function of A.

Solve RTRpy = —g, RT g1 = pis
Set

2

L) 4 () ||P€||) (IIPfII—i‘-) -

A =A +( : (4.27)
llgell A

end (for).

Safegnards must be added to this algorithm to malke it practical; for instance, when A'Y =
— iy, the Cholesky factorization B +A'"¥'1 = RT R will not exist. A slightly enhanced version
of this algorithm does, however, converge to a selution of (4.20) in most cases.

The main work in each iteration of this method is, of course, the Cholesky factorization.
Practical versions of this algorithm do not iterate until convergence to the optimal A is
obtained with high accuracy, but are content with an approximate solution that can be
obtained in two or three iterations.

THE HARD CASE

Recall that in the discussion above, we assumed that g{ g # 0 in dealing with the case
of indefinite B. In fact, the approach described above can be applied even when the most

YA
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Figure 4.7 The hard case: |pii)|| = A forallk e (—h), o0

negative eigenvalue is a multiple eigenvalue (thatis, 0 = A, = A; = ...}, provided that
q_r-rg # 0 for at least one of the indices j for which A ; = J;. When this condition does not
hold, the sitnation becomes a little complicated, because the limit {4.24) does not hold for
4; = A, and so there may not be a value A £ (—4,, o0) such that ||p(1}|| = A {see Figure
4.7). Moré and Sorensen [170] refer to this case as the hard case. At first glance, it is not
clear how p and A can be chosen to satisfy (4.19) in the hard case. Clearly, our root-finding
technique will not work, since there is no solution for & in the open interval (—i,, o). But
Theorem 4.3 assures us that the right value of 4 lies in the interval [—A4, ©0), so there is only
one possibility: A = —A;. To find p, it is not enough to delete the terms for which 4; = 4,
from the formula (4.21) and set

T
4; 8
P= E 1
g AT A
Instead, we note that (B — A7) is singular, so there is a vector z such that ||z = 1 and

(B — i)z = 0.1In fact, £ is an eigenvector of B corresponding to the eigenvalue A4, so by
orthogonality of @ we have q‘}; = 0 for &; # A,. It follows from this property that if we set

p= Z q-?-_g.g'+?" i4.28)
Y
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for any scalar t, we have

Ts)
E |:;‘_ +‘j‘:|2 2'

Jih

so it is always possible to choose T to ensure that ||p|| = A. It is easy to check that (4.19)
holds for this choice of pand A = —4,

PROOF OF THEOREM 4.3

We now give a formal proof of Theorem 4.3, the result that characterizes the exact
solution of (4.9). The proof relies on the following technical lemma, which deals with the
unconstrained minimizers of quadratics and is particularly interesting in the case where the
Hessian is positive semidefinite.

Lemma 4.4.
Letm be the quadratic function defined by

mip)=g p+1p’ Bp. (4.29)

where B is any syrmmetric matrix. Then
(i) m attains a minimum if and only if B is positive semidefinite and g is in the vange of B;
(i) m has a unique minimizer if and only if B is positive definite;

(iii) if B is positive senidefinite, then every p satisfying Bp = —g isa global minimizer ofm.

Procr. We prove each of the three claims in turn.

(1) We start by proving the “if” part. Since g is in the range of B, there is a p with Bp = —g.
Forall w = R™, we have

m(p+w)=gT(p+w)+ ip+wTBlp+w)
=(g"p+1p"Bp)+g w+ (Bp) w+ tuw"Bu
=mip) + iw’ Bw
= m(p),

since B is positive semidefinite. Hence p is a minimum of m.

For the “only if " part, let p be a minimizer of m. Since Vim(p) = Bp + g = 0, we
have that g isin the range of B. Also, we have V*m{p) = B positive semidefinite, giving the
result.
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(ii) For the “if" part, the same argument as in (i) suffices with the additional point that
w? Bw = 0 whenever w # 0. For the “only if” part, we proceed as in (i) to deduce that B is
positive semidefinite. If B is not positive definite, there is a vector w £ 0 such that Bw = 0.
Hence from the logic above we have m{p + w) = mip), so the minimizer is not unique,
giving a contradiction.

(1ii) Follows from the proof of (i). O
To illustrate case (i), suppose that

"l 0
BE=| 0 0
0

0

o .
J

which has eigenvalues 0, 1, 2 and is therefore singular. If g is anv vector whose second

%]

component iszero, then g will be in the range of B, and the quadratic will attain a minimum.
But if the second elementin g is nonzero, we can decrease m(-) indefinitely by moving along
the direction (0, —g2. 0)7 asa& 1 0.

We are now in a position to take account of the trust-region bound ||p|| = A and
hence prove Theorem 4.3.

Proor. (Theorem 4.3)
Assume first that there is A = 0 such that the conditions (4.19) are satisfied.
Lemma 4.4(iii) implies that p* is a global minimum of the quadratic function

r?a(pi=grp+%prf3+u)p=mfp)+;prp- (4.30)
Since Ml p) = m(p*), we have
m(p) = m(p") + 30" p* = pT ) (431)
Because A{A — ||p*||) = 0 and therefore A(A% — (p*)7 p*) = 0, we have
m(p) = m(p*) + %Iﬁiﬁ -p'p).

Hence, from & = 0, we have m(p) = mip*) for all p with |p|| = A. Therefore, p* is a
global minimizer of (4. 18).

For the converse, we assume that p* is a global solution of (4.18) and show that there
isa & = 0 that satisfies (4.19).
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In the case ||p*|| = A, p* is an unconstrained minimizer of m, and so
Vmip*) = Bp* +g =10, Vmip') = R positive semidefinite,
and so the properties (4.19) hold for x = 0.
Assume for the remainder of the proof that ||p*|| = A. Then (4.19b) is immediately
satisfied, and p* also solves the constrained problem

minmip] subjectto ||p| = A.

By applyingoptimality conditions for constrained optimization to this problem (see {12.30)),
we find that there is a A such that the Lagrangian function defined by

Lip. A =mip)+ ;prrp — A%
has a stationary point at p*. By setting ¥, £(p*, L) to zero, we obtain
Bp' +g+ip'=0 = (B+Alp' =—g. (432)

so that (4.19a) holds. Since m(p) = m(p*) for any p with p¥ p = (p*)T p* = A2, we have
for such vectors p that

mip) =m(p*i+ fT ((p")T p* = pTp).

If we substitute the expression for g from (4.32) into this expression, we obtain after some
rearrangement that

Hp—p" T (B+aDip—p*i =0 (4.33)
Since the set of directions

ok
w::l:p—p*
e — Pl

i , for some p with |p]| = A

is dense on the unit sphere, (4.33) suffices to prove (4.19¢).

It remains to show that A = 0. Because (4.19a) and (4.19¢) are satisfied by p*, we have
from Lemma4.4{i) that p* minimizes i, so (4.31) holds. Suppose that there are only negative
values of & that satisfy (4.1%a) and (4.19c). Then we have from (4.31) that m(p) = m(p*)
whenever | p|| = | p*|| = A. Since we already know that p* minimizes m for ||p|| = A,
it follows that m is in fact a global, unconstrained minimizer of m. From Lemma 4.4(i) it
tollows that Bp = —g and F is positive semidefinite. Therefore conditions (4.19a) and
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i4.19¢) are satisfied by & = 0, which contradicts our assumption that only negative values
of A can satisfy the conditions. We conclude that & = 0, completing the proof. O

4.3 GLOBAL CONVERGENCE

REDUCTION OBTAIMED BY THE CAUCHY POINT

In the preceding discussion of algerithms for approximately solving the trust-region
subproblem, we have repeatedly emphasized that global convergence depends on the approx-
imate solution obtaining at least as much decrease in the model function m as the Cauchy
point. In fact, a fixed fraction of the Cauchy decrease suffices, as we show in the next few
pages. We start by obtaining an estimate of the decrease in m achieved by the Cauchy point,
and then use this estimate to prove that the sequence of gradients {V fi} generated by Algo-
rithm 4.1 either has an accumulation peint at zero or else converges to zero, depending on
whether we choose the parameter 5 to be zero or strictly positive in Algorithm 4.1. Finally,
we state a convergence result for the version of Algorithm 4.1 that uses the nearly exact
solutions calculated by Algorithm 4.4 above.

We start by proving that the dogleg and two-dimensional subspace minimization
algorithms and Algorithm 4.3 produce approximate solutions pg of the subproblem (4.3)
that satisfy the estimate

i4.34)

mpl0) —me(pe) = ||V fi || min (i.:.. IV fil ) .

N

for some constant ¢; € (0, 1]. The presence of an alternative given by the minimum in
(4.34) is typical of trust-region methods and arises because of the trust-region bound. The
usefulness of this estimate will become clear in the following two sections. For now, we note
that when A is the minimum value in (4.24), the condition is slightly reminiscent of the
first Wolfe condition: The desired reduction in the model is proportional to the gradient
and the size of the step.

We show now that the Cauchy point pf satisfies (4.34), with ¢; = 1.
Lemma 4.5.
The Cauchy point p satisfies (4.34) withc, = 1, that is,
? A
mp(0) — mg(pp) = %" W fi || min (i.'c, ”" fo”" ) . (4.35)

Proor. We consider first the case of ‘C"_f}ch;c‘F_ﬁ, = (. Here, we have

mp(pp) —me(0) = me( ALV /I 1l
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= VAl+i-2 vipvs
||?f|| : II?ﬂH
= AV £l
(. IVA
= —||¥ fi || min (ih ) )
| Bell

and so (4.33) certainly holds.
For the next case, consider V 7 B,V fi = 0 and

7 3
IV fil = 1. (4.38)
AV [T BV fi

We then have r = |V fi|*/ (ii?ffﬂ.:..?_,r}c], and so

VAR g orpon VALY
VBV (VT BV fi)?
1 IV AN
VT BV fi
VA
TNBENIV fell?
VAR
* B

1 IV fel
= —5||'¥ fi || min (_’\
: I Bl

mplpi) — m(0) =

| A

so (4.35) holds here too.
In the remaining case, (4.36) does not hold, and therefore

Rk
VAIBVfA < IV AN (4.37)
Ag

From the definition of py, we have r = 1, so using this fact together with (4.37), we obtain

3

my(pf) —m(0) = IV fell® +7 VAL BV fi
) : II‘?J’lII ’ ||"7"fr|| o
LA IVAIF
= =8Vl + 5
2IVAIR A
= —3 ALV fill
! : ¥ fil
—= ||V fi|| min (1— .
’ B
vielding the desired result (4.25) once more. O
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To satisty (4.34), our approximate solution p; has only to achieve a reduction that is
at least some fixed fraction o of the reduction achieved by the Cauchy point. We state the
observation formally as a theorem.

Theorem 4.6.
Let py. beany vector such that || pell = Ap andmi(0)—me(pe) = 2 (me(0) —meil pp)).
Then py. satisfies (4.34) with ¢, = c2/2. In particular, if py is the exact solution pf of (4.3),

then it satisfies (4.34) with ¢, = 1.

Proor.  Since ||pe|| = Ag, we have from (4.35) that

Vi
mi(0) — me(pr) = 2 (me(0) — me(pf)) = 1c2||V ficll min (ig. H) .
{3

giving the result. O

Note that the dogleg and two-dimensional subspace minimization algorithms and
Algorithm 4.3 all satisfy (4.34) with ¢; = 1, because they all produce approximate solutions
pi: for which mp(pe) = melpp).

CONVERGENCE TO STATIONARY POINTS

Global convergence results for trust-region methods come in two varieties, depending
on whether we set the parameter 5 in Algorithm 4.1 to zero or to some small positive value.
When n = 0 (that is, the step is taken whenever it produces a lower value of f), we can
show that the sequence of gradients {V fi} has a limit peint at zero. For the more stringent
acceptance test with i = 0, which requires the actual decrease in f to be at least some small
fraction of the predicted decrease, we have the stronger result that ¥V fi — 0.

In this section we prove the global convergence results for both cases. We assume
throughout that the approximate Hessians By are uniformly bounded in norm, and that the
level set

{x| flx) = flxo)} (4.38)
is bounded. For generality, we also allow the length of the approximate solution py of (4.3)
to exceed the trust-region bound, provided that it stays within some fixed multiple of the
bound; that is,

Ipell = yAe,  for some constant p = 1. (4.30)

The first result deals with the case of n = 0.
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Theorem 4.7.

Let n = 0 in Algorithm 4.1. Suppose that ||By|| = B for some constant 8, that f is
continuously differentiable and bounded below on the level ser (4.38), and that all approximate
solutions of (4.3) satisfy the inequalities (4.34) and (4.39), for some positive constants ¢ and
. We then have

lim inf |V fi]| = 0. (4.40)
k—oa

Proor. We first perform some technical manipulation with the ratio g from (4.4). We have

‘ (f () = Flae + pud) — (me(0) — e pe))
e — 1] =

i (0) — mpl )
miplpe) — flae+ pe)
me(0) —meipe) |

Since from Taylor’s theorem ( Theorem 2.1) we have that

1
Fla+p) = F) + V) p+ L [V o +tpa) — V £ | pu

it follows from the definition (4.1) of my that

1
melpe) — Flx+ pe)l = [LpT Bupe — f [V £ (re + tpe) — V£ ()17 py di|

= (B/2)pel* + Cal pi)ll el (4.41)

where we can make the scalar Cy{ pi) arbitrarily small by restricting the size of pg.
Suppose for contradiction that there is ¢ = 0 and a positive index K such that

VAl =e  foralk = K. (4.42)

From (4.24), we have for & = K that

mi(0) — mi(pe) = e |V fil| min (ai

VA ) > r:]smin(:l;, i). (4.43)
I B |l f
Using (4.43), (4.41), and the bound (4.39), we have

lor — 1| = Y A By Ar/2 + Culp))
£ T 2opeminiAg, /)

i4.44)

We now derive a bound on the right-hand-side that holds for all sufficiently small values of
Mg, that is, for all Ay = A, where A is to be determined. By choosing A to be small enough
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and noting that | pz]| = yA:z = yA, we can ensure that the term in parentheses in the
numerater of (4.44) satisfies the bound

o€

. 4.45
3 (4.45)

By &/2 4 Culpe) =

By choosing A even smaller, if necessary, to ensure that Ay = A = &/ §, we have from (4.44)
that

lox — 1] < rhce/Qy) 1
i Ry VIR

Therefore, pp = % and so by the workings of Algorithm 4.1, we have Apyy = Ap whenever
Ay falls below the threshold A. It follows that reduction of Ay |:b}-' a factor of H Can occur
in our algorithm only if

Ay A,

I

and therefore we conclude that
Ap=min (Ag, Ajd4)  forallk = K. {4.46)

Suppose now that there is an infinite subsequence X such that g = I for k & K If
ke K andk = K, we have from (4.43) that

Fla)— Flagp) = flag) — floe + pe)
= 4 [mi(0) —m(pe]

%c‘le mini Ay, e /).

i

IV

Since f is bounded below, it follows from this inequality that

lim Ap =0,

kell, k—oa

contradicting (4.46). Hence no such infinite subsequence £ can exist, and we must have
pi <  for all k sufficiently large. In this case, A will eventually be reduced by a factor of
at every iteration, and we have lim— ., A; = 0, which again contradicts (4.46). Hence, our
original assertion (4.42) must be false, giving (4.40). O

Our second global convergence result, for the case nj = 0, borrows much of the analysis
trom the proot above. Our approach here follows that of Schultz, Schnabel, and Byrd [226].
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Theorem 4.8.

Letn € (0, 1) in Algorithm 4.1 . Suppose that | By|| = B for some constant f, that f
is Lipschitz continuously differenciable and bounded below on the level ser (4.38), and thar all
approximate solutions py of (4.3) satisfy the inequalities (434) and (4.39) for some positive
constants ¢y and . We then have

Jim V fi = 0. (4.47)

Procr.  Consider any index m such that ¥V f, # 0. If we use # to denote the Lipschitz
constant for ¥ f on the level set (4.38), we have

IVFix) = Vial = Fillx — xmll.

for all x in the level set. Hence, by defining the scalars

Viml e
_yvhy, k=¥l _ =
9 ful =
and the ball

Blxm. R) = {x||x — x|l = R}
we have

% € Blam, R) = |V = IV ful = IV F(x) =Vl = 31V full = €.

If the entire sequence {14} stays inside the ball B(x,,. B), we would have |V fi| =€ = 0
for all & = mi. The reasoning in the proof of Theorem 4.7 can be used to show that this
scenario does not occur. Therefore, the sequence {11}, eventually leaves Bix,,, R).

Let the index { = m be such that xi41 is the first iterate after xm outside 5{xm, R).
Since |[Vfi|| = cfork=m.m+ 1, ..., 1, we can use (4.43) to write

]
Flrm) = flo) = flxe) — flaa)
k=m

= . nlmei0) — md e

b=, g FErpag
= i M £
- b=, g g fjc1€ min e 'ﬂ '
where we have limited the sum to the iterations & for which xp # x4, that is, those iterations
on which a step was actually taken. If Ay = e/F forallk =m, m+ 1,..., I, we have

I
1
Flag) = flan) = neje Z Ap = noieR = ??C]vézE. (4.48)

b=m,
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Otherwise, we have Ay = </f forsomek =m,. m+ 1, ... [, and so
. . €
Flag)— Flxip) = i;lc'JeE. (4.49)
Since the sequence { f(xz)}i2,, is decreasing and bounded below, we have that
FEA R (4.50)
for some f* = —o0. Therefore, using (4.48) and (4.49), we can write
fl:--rml:l - ff.'t’,l+]:|
/11y 1 f11 ,
nepe” min (—, —) = —nqep min (—, —) IV fll”-
B B 4 [

By rearranging this expression, we obtain

Jﬂ:-rle _f*

v

IV

- ))_l (f (m) — £,

. 1
Vil = (—.i;lc' min (—, —
A e

so from (4.50) we conclude that ¥V f; — 0, giving the result. O

CONVERGENCE OF ALGORITHMS BASED ON HEARLY EXACT SOLUTIONS

As we noted in the discussion of Algorithm 4.4, the loop to determine the optimal
values of A and p for the subproblem (4.9) does not iterate until high accuracy is achieved.
Instead, it is terminated after two or three iterations with a fairly loose approximation to
the true solution. The inexactness in this approximate solution is, however, measured in a
different way from the dogleg and subspace minimization algorithms and Algorithm 4.3,
and this difference affects the nature of the global convergence results that can be proved.

More and Sorensen [ 170] describe a safeguarded version of the root-finding Newton
method that adds features for handling the hard case. Its termination criteria ensure that
their approximate solution p satisfies the conditions

m(0) —m(p) = c1(m(0) —m(p*)), {4.51a)
el = yaA {4.51b)

iwhere p* is the exact solution of (4.3)), for some constants ¢; € (0, 1] and = 0. The
condition (4.51a) ensures that the approximate solution achieves a significant fraction of
the maximum decrease possible in the model function m. Of course, it is not necessary to
know p* to enforce this condition; it follows from practical termination criteria. One major
difference between (4.51) and the earlier criterion (4.34) is that (4.51) makes better use of
the second-order part of m(.), that is, the p¥ Bp term. This difference is illustrated by the

AP e sl B e kel ml g Al (GGluang T Jad



Y

case in which g = 0 while B has negative eigenvalues, indicating that the current iterate
xj is a saddle point. Here, the right-hand-side of {4.34) is zero (indeed, the algorithms we
described earlier would terminate at such a point). The right-hand-side of (4.51) is positive,
indicating that decrease in the model function is still possible, so it forces the algorithm to
move away from xg.

The close attention that near-exact algorithms pay to the second-order term is war-
ranted only if this term closely reflects the actual behavior of the function f—in fact, the
trust-region Newton method, for which B = W2 f(x), is the only case that has been treated
in the literature. For purposes of global convergence analysis, the use of the exact Hessian
allows us to say more about the limit points of the algorithm than merely that they are
stationary points. In fact, second-order necessary conditions (Theorem 2.3) are satisfied at
the limit points. The following result establishes this claim.

Theorem 4.9.

Suppose Algorithm 4.1 is applied with By = V? fix), constant n in the open interval
(0, 1), and the approximate solution p; at each iteration satisfring (4.51) for some fixed y = 0.
Then limp—. |V fi|| = 0.

If, in addition, the level set {x | f(x) = fixg)} is compact, then either the algorithm
terminates at a point xp at which the second-order necessary conditions (Theorem 2.3) for a
local smindmum hold, or else {xi} has a limit point x* in the level set at which the necessary
conditions held.

We omit the proof, which can be found in Moré and Sorensen [ 170, Section 4].

4.4 OTHER ENHANCEMENTS

SCALING

Aswenoted in Chapter 2, optimization problems are often posed with poor scaling—
the objective function f is highly sensitive to small changes in certain components of the
vector x and relatively insensitive to changes in other components. Topologically, a symptom
of poor scaling is that the minimizer x* lies in a narrow valley, so that the contours of
the objective f(-) near x* tend towards highly eccentric ellipses. Algorithms can perform
poorly unless they compensate for poor scaling; see Figure 2.7 for an illustration of the poor
performance of the steepest descent approach.

Recalling our definition of a trust region—a region around the current iterate within
which the model my(-) is an adequate representation of the true objective f(-J—it is easy to
see that a spherical trust region is not appropriate to the case of poorly scaled functions. We
can trust our model my to be reasonably accurate only for short distances along the highly
sensitive directions, while it is reliable for longer distances along the less sensitive directions.
Since the shape of our trust region should be such that our confidence in the model is more
or less the same at all points on the boundary of the region, we are led naturally to consider
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elliprical trust regions in which the axes are short in the sensitive directions and longer in
the less sensitive directions. Elliptical trust regions can be defined by

[|Dp| = A, (4.52)

where D is a diagonal matrix with positive diagonal elements, yielding the following scaled
trust-region subproblem:

min m(p) Y Aa+ViTp+1p"Bp st |Dpll = Aw. (4.53)

When f(x) is highly sensitive to the value of the ith component x;, we set the corresponding
diagonal element d; of I to be large. The value of 4; will be closer to zero for less-sensitive
components x;.

Information to construct the scaling matrix I} can be derived reliably from the second
derivatives 8° f/3x7. We can allow D) to change from iteration to iteration, as long as all
diagonal elements d;; stay inside some predetermined range [dy,, dy], where 0 = 4, =
dpy = 00. Of course, we do not need I to be a precisereflection of the scaling of the problem,
s0 it is not necessary to devise elaborate heuristics or to spend a lot of computation to get it
just right.

All algorithms discussed in this chapter can be modified for the case of elliptical trust
regions, and the convergence theory continues to hold, with numerous superficial modifica-
tions. The Cauchy point calculation procedure { Algorithm 4.2), for instance, changes only in
the specifications of the trust region in (4.5) and (4.6). We obtain the following generalized

Version.

Algorithm 4.5 (Gereralized Cauchry Point Calculation)
Find the vector p] that solves

pi =arg min f+V fIp st |Dp| = Ag (4.54)
-

Calculate the scalar 7z = 0 that minimizes mg(z p;) subject to satisfying the trust-region
bound, that is,

T = arg m_iéi mplTp;) st |t Dpi|l = Aw i4.55)
Pi = WPy

For this scaled version, we find that

Y
s __ ol —2t7 £ 5,
L REL St
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and that the step length 7 is obtained from the following modification of (4.8):

1 iV D BD TV <0

= min 107V £l
min T St
i«.,—c‘?f,c D ZBch‘ "-T-Jr;c

(4.57)

1 ) otherwise.

( The details are left as an exercise.)

A simpler alternative for adjusting the definition of the Cauchy point and the various
algorithms of this chapter to allow for the elliptical trust region is simply to rescale the
variables p in the subproblem (4.53) so that the trust region is spherical in the scaled
variables. By defining

g

P = Dp.

and by substituting into (4.53), we obtain

min 7ig( ) Y a+VAD 5+ "D BD ™ st 5] < A
peb® -

The theory and algorithms can now be derived in the usual way by substituting p for p,
D7V i for W fi, D7V By D7 for By, and so on.

HON-EUCLIDEAN TRUST REGIONS

Trust regions may also be defined in terms of norms other than the Euclidean norm.
For instance, we may have

el = Aw or IPlle = A,
or their scaled counterparts
I1Dpl = Ag or 1 Dplle = Az,

where I} is a positive diagonal matrix as before. Norms such as these offer no obvious
advantages for unconstrained optimization, but they may beuseful forconstrained problems.
For instance, for the bound-constrained problem

min fix), subjectto x = 0,

xsR”
the trust-region subproblem may take the form

ll]El mlp) =ﬁc+?ﬁrp+éprﬂ.-¢p st xp+p=0,|pl = A i4.58)
pe -
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When the trust region is defined by a Euclidean norm, the feasible region for {4.38) consists of
the intersection of a sphere and the nonnegative orthant—an awkward object, geometrically
speaking. When the oo-norm is used, however, the feasible region is simply the rectangular

box defined by
n+p=0, pz=—Awe, p=he,

where e = (1, 1, ..., 1)7, so the solution of the subproblem is easily calculated by standard
techniques for quadratic programming.

NOTES AMD REFEREMCES

The influential paper of Powell [199] proves a result like Theorem 4.7 for the case of
i = 0, where the algorithm takes a step whenever it decreases the function value. Powell uses
a weaker assumption than ours on the matrices || B||, but his analysis is more complicated.
Moré [167] summarizes developments in algorithms and software before 1982, paving par-
ticular attention to the importance of using a scaled trust-region norm. Much of the material
in this chapter on methods that use nearly exact solutions to the subproblem (4.3) is drawn
from the paper of Moré and Sorensen [170].

Byrd, Schnabel, and Schultz [226], [39] provide a general theory for inexact trust-
region methods; they introduce the idea of two-dimensional subspace minimization and
also focus on proper handling of the case of indefinite B to ensure stronger local convergence
results than Theorems 4.7 and 4.8. Dennis and Schnabel [70] survey trust-region methods as
partof their overview of unconstrained optimization, providing peinters to many important
developments in the literature.



