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Ising models in nanosystems are studied in the presence of a magnetic field. For a one-dimensional (1-D) array of
spins interacting via nearest-neighbour and next-nearest-neighbour interactions we calculate the heat capacity,
the surface energy, the finite-size free energy and the bulk free energy per site. The heat capacity versus
temperature exhibits a common wide peak for systems of any size. A small peak also appears at lower
temperatures for small arrays when the ratio of magnetic field spin interaction energy over the nearest-neighbour
spin–spin interaction energy, f, is within 05 f � 0:10. The peak becomes smaller for longer array and eventually
vanishes for long arrays, disappearing when the number of spins, N, is greater than 25 when only nearest-
neighbour interactions are taken into account, and more than 14 when next-nearest-neighbour interactions are
included as well. Ising models in which the nearest-neighbour interactions are ferromagnetic, while the next-
nearest-neighbour interactions are either ferromagnetic or antiferromagnetic, are compared, and it is found that
the reduced free energy in the former case exhibits a larger deviation from the bulk value.

Keywords: Ising model; nanosystem; surface energy; heat capacity; size effect

1. Introduction

Since the discovery of single-molecule magnets in 1993
[1,2], the synthesis and physical characterization of
molecular nanomagnets have been one of the most
active fields in molecular magnetism. Several reasons
justify their importance: coexistence of classical prop-
erties attributed to bulk magnetic materials and
quantum effects such as quantum tunneling of the
magnetization [3,4] and phase interference [5], extre-
mely long relaxation time of their magnetic moment,
and potential use in molecular spintronics [6] and
quantum computing [7]. Single chain magnets (SCMs)
are an interesting class of molecular polymeric mate-
rials displaying slow relaxation of the magnetization.
They provide, at low temperatures, a magnetic hyster-
etic behaviour for a single polymeric chain [8]. In 2001
Caneschi et al. observed a slow relaxation of the
magnetization in a magnetically isolated cobalt (II)
nitronyl nitroxide chain [9] and described the main
experimental requirements to be fulfilled in the design
of such one-dimensional (1-D) nanomagnets. 1-D
magnetic models have attracted much interest in
recent years, both because they are much easier to be

treated theoretically than 2-D and 3-D models, and

because of the discovery of several quasi 1-D magnetic

materials. Most of these can be interpreted in terms of

Ising models including a nearest-neighbour exchange

interaction, whose sign determines the type of short

range order: e.g. ferromagnetic in CsNiF3 and antifer-

romagnetic in (CH3)4NMnCl3 [9]. As a matter of fact

one finds a strong uniaxial Ising-type anisotropy and

significant difference between intra-(J) and inter-chain

(J
0

) magnetic interactions in some materials. These

magnetic nanowires are called single chain magnets

[10,11]. The dark-brown crystals obtained by assem-

bling of [Mn(5-MeOsalen)(H2O)]þ and[(Tp)Fe(CN)3]
�

affords the 1-D zigzag chain [(Tp)Fe(CN)3Mn(5-

MeOsalen).2CH3OH]n [Tp�¼hydrotris (pyrazolyl)

borate, 5-MeOsalen2�¼N, N’ ethylenebis (5-methox-

yysalicylideneiminate)]. An alternating topology was

presented with Ja and Jb Mn-(III)–Fe(III) coupling
parameters [12]. The anhydrous version of K-titanium

alum, on the other hand, consists of layers of Ti3þ ions

coordinated and interlinked to SO2�
4 anions, and

provides a good realization of an s¼ 1/2 Ising model

on the triangular lattice [13]. KTi(SO4)2.H2O is a
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frustrated chain with s¼ 1/2 with nearest-neighbour
interaction (J ¼ 9:462 cm�1) and a next-nearest-
neighbour interaction J1 with J1

J ¼ 0:291 [14]. Other
real systems that map onto this model include Cu [2-
(2-aminomethyl)] Br2 (J1=J ¼ 0:2), [15] (N2H5)CuCl3
(J1=J ¼ 4), [16–17] SrCuO2 (J1=J5 � 10), [18–19]
LiCu2O2 (J1=J ¼ �1), [20,21] LiCuVO4 (J1=J ¼
�0:78), [22], and Li2CuZrO4 (J1=J ¼ �0:3) [23].

Many methods, such as renormalization group,
finite-size scaling, cluster variational calculation [24],
Monte Carlo method [25] and transfer matrix, have
been used to investigate Ising models. In a previous
study [26], a 2-D Ising model with a finite number of
rows, n, and with the coordination number 4 for each
site was investigated via transfer matrix techniques,
and the exact thermodynamic properties were
obtained. In this work the transfer matrix was solved
for n � 7 in the presence of a magnetic field, for n � 10
in the absence of a magnetic field, and an analytical
expression was obtained for the partition function [26].
The critical temperature of 2-D and 3-D Ising models
as well as a 2-D Potts model was calculated by Ghaemi
et al. [27]. The critical temperature for a 2-D Ising
model was obtained for different types of lattice such
as square, triangular and honeycomb lattices. [27]. The
finite-size scaling approach based on the transfer
matrix method was applied to calculate the critical
temperature of an anisotropic two-layer Ising ferro-
magnetic on strips of r-wide site of square lattice [28].
The reduced internal energy per site was accurately
calculated for the ferromagnetic case with nearest-
neighbour couplings kx, ky in the x� y plane and with
an interlayer coupling kz. The calculated configura-
tional energies for different lattice sizes intersect at
various points. The intersection point can be fitted to a
power series in terms of the lattice size. The power
series was used to obtain the critical temperature of the
infinite two-layer lattice [28].

Surface and size effects are important in nanosys-
tems and have a significant influence on the energy,
which may not be extensive [29]. Exact solution for the
thermodynamic functions of the randomly dilute
s ¼ 1=2 nearest-neighbour Ising chain in a magnetic
field was examined by Wortis [30], in which both site
and bond impurities were treated. The system behaves
non-analytically at T ¼ h ¼ 0. The divergence of the
pure-chain thermodynamics was replaced at non-zero
dilution by essential singularities of the Griffiths
type at which all functions are finite and infinitely
differentiable [30].

The 1-D random Ising system of higher spin s has
been considered in terms of power series of concentra-
tion of magnetic atoms, �. The specific heat and the
zero-field susceptibility for s¼ 1 and 3/2 and for

arbitrary � were obtained. The specific heat of the
random ternary system composed of two kinds of
magnetic atoms and non-magnetic atoms was also
obtained by Matsubara et al. [31]. Also the specific
heat and the susceptibilities of the 1-D binary mixture
and the binary Bethe lattice were given by Katsura and
Matsubara [32]. One-dimensional dilute systems with
nearest-neighbour interactions were studied in terms of
power series of the concentration of magnetic atoms by
Yoshimura and et al. [33] in which the recurrence
relations among coefficients of the power series of the
Ising systems were obtained. They studied systems with
s¼ 1/2, for which the specific heat, the susceptibility,
and the magnetization of the ferromagnets and anti-
ferromagnets were obtained. At low temperatures,
three steps in the magnetization of antiferromagnetic
systems were found. An Ising system of s¼ 1/2 with
nearest-neighbour (NN) and next-nearest neighbour
(NNN) interactions was also studied by an extension
of the method, and the specific heat was obtained at
the zero magnetic field [33].

The problem of finite-size effects in s¼ 1/2 Ising
systems showing slow dynamics of the magnetization
was investigated in presence of the diamagnetic
impurities in a Co2þ radical chain by Bogani
et al.[34]. The static magnetic properties have been
measured and analyzed considering the peculiarities
induced by the ferromagnetic character of the com-
pound. The dynamic susceptibility shows that an
Arrhenius law is observed with the same energy barrier
for the pure and the doped compounds while the
prefactor decreases, as theoretically predicted [34].

A study of finite-size effects on the static properties
of a single-chain magnet was made by Bogani et al.
[35]. The role of defects in the single-chain magnet
CoPhOMe by inserting a controlled number of dia-
magnetic impurities was investigated by Pini et al. [35].
In an external applied field the system shows an
unexpected behaviour, giving rise to a double peak
in the susceptibility. The static thermodynamics
properties of the randomly diluted Ising chain with
alternating g-values were then obtained exactly via the
transfer matrix approach. These results were compared
to the experimental data of CoPhOMe, showing a
qualitative agreement [35].

Also the Glauber dynamics was studied for 1-D
system of [Mn2(saltmen)2Ni(pao)2(py)2](ClO4)2,
(saltmen2� N,N� –(1,1,2,2-tetramethylethylene) bis
(salicylideneiminate); pao�¼ pyridine-2-aldoximate;
py¼4pyridine) by Coulon et al. [36]. Above 2.7K,
the thermally activated relaxation time is mainly
governed by the effect of magnetic correlations and
the energy barrier experienced by each magnetic unit.
Below 2.7K, a crossover towards a relaxation regime is
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observed that is interpreted as the manifestation of

finite-size effects [36].
Multiplicity distributions, P(n), for the 1-D Ising

model with NN interactions have been shown to

provide a successful and simple description of high-

energy multiparticle productions. Huang extended the

work to NNN interactions, and calculated the detailed

shape of P(n). He presented the numerical results for a

finite lattice [37].
The magnetic structure of the edge-sharing cuprate

compound Li2CuO2 was investigated with highly

correlated ab initio electronic structure calculations.

The NN- and NNN in chain magnetic interactions

were calculated to be 142 and 222K, respectively [38].
Measurement of the magnetic heat capacity,

susceptibility and magnetization for (CH3)4NCo

(NO2)3 (TMCON) which is an iso-structural com-

pound with the Haldane compound (CH3)4NNi(NO2)3
(TMNIN) was done by Mito et al. [39]. From the

analysis of these thermodynamic properties, they

found that TMCON is a one-dimensional s¼ 1/2

Ising system where the ferromagnetic NN interaction

J1 and the antiferromagnetic NNN interaction J2 are

competing. The value of J1 is estimated to be J1/k

B¼ 28.0� 4.0K (where kB is the Bolzmann factor). It is

confirmed that the results can be comprehensively

explained only when we take J25 0, although

J2¼�0.22 J1 estimated from the thermal analysis

differs from J2¼�0.46 J1 estimated from the magnetic

susceptibility for the powdered sample [39].
Despite the previous work mentioned, the

investigation of finite size effects in the case in which

both NN and NNN interactions are simultaneously

present has been rarely considered in the literature.

On the contrary, information on thermodynamic

quantities such as the heat capacity and the free

energy would be valuable in connection with frustra-

tion effects in nano magnetic materials. Finite-size

effects on the dynamics of the magnetization and the

static magnetic properties of s¼ 1/2 Ising systems were

investigated for diamagnetic impurities in a Co2þ

radical chain with NN interactions by Bogani et al.

[34]. The single-chain magnet CoPhOMe, containing

defects obtained by insertion of a controlled number of

magnetic impurities, shows an unexpected behaviour in

the presence of a magnetic field, giving rise to a double

peak in the susceptibility [35]. As a matter of fact an

impurity in a single chain magnet behaves as a

perturbation. It seems interesting to investigate frus-

tration effects in these systems and their connection

with the unexpected behaviour of finite-size systems

with NN and NNN interactions in small magnetic field

(as a perturbation).

In the present work, we thus explore how the

physics of 1-D Ising models is affected by the finite size

of the system. In detail, we investigate the dependence

of the heat capacity versus temperature as a function of

the size of the system. Both NN and NNN interactions

are included, and the effect of boundary conditions on

the thermodynamic limit of 1-D Ising models is also

investigated. For the case with only NN interactions,

we use the transfer matrix technique to obtain an

analytical solution for an array of any size. For an

array with both NN and NNN interactions we derive

analytical expressions for the partition function when

the number of sites, N, is within3 � N � 14, both in the

presence and in the absence of a magnetic field. If N is

even and larger than 14, we derive an analytical

expression for the partition function in the absence of

a magnetic field, including both NN and NNN

coupling interactions. However, in the presence of a

magnetic field we could not find an analytical expres-

sion for the eigenvalues of the transfer matrix neither

for a finite-size system nor for an infinite array.

Therefore, a numerical solution is only reported for the

infinite array at zero magnetic fields [40].

2. Calculation of surface energy and finite-size

free energy

2.1. Nearest-neighbour interactions in the presence
of a magnetic field

We start with the calculation of the partition function,

Z, for the 1-D Ising model with NN interactions in the

presence of a magnetic field:

Z ¼
X

s1,s2,s3...,sNf g

exp K s1s2 þ s2s3 þ . . .þ sN�1sN þ sNs1ð Þ
�

þh s1 þ s2 þ . . . sNð Þ
�

ð1Þ

where K ¼ J=kT, s,h ¼ H=kT are the reduced spin-spin

nearest neighbour coupling energy, the spin of a site,

and the reduced magnetic field, respectively. Equation

(1) may be written as:

Z ¼
X
sif g

exp Ks1s2 þ h s1 þ s2ð Þ
�

=2þ . . .þ KsNs1

þ h s1 þ sNð Þ=2þ KsNs1 1� 1ð Þ
�

ð2Þ

The partition function for this model can be computed

via the transfer matrix method. The matrix element

Tsi , sj of the transfer matrix may be written as:

Tsi, sj ¼ exp K sisj
� �

þ h si þ sj
� �

=2
� �

ð3Þ
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For free boundary conditions, the partition function in

Equation (2) can be written as

Z ¼
X
sif g

�
s1

				TN�1AT

				s1
 ð4Þ

where,

A ¼
e�Ks1 0
0 eKs1

� �
ð5Þ

By using the unitary matrix U, which diagonalizes T,

the partition function can be written as

Z ¼
X
fsig



s1
		TN�1AT

		s1
�

¼
X
fsig



si UU�1TN�1UU�1AUU�1TUU�1

				S1

�
ð6Þ

				
where U is

U ¼
cos� sin�
� sin� cos�

� �
ð7Þ

and ’ is defined as,

cotð2�Þ ¼ e2K sinhðhÞ ð8Þ

The inverse matrix of U, U�1, is

U�1 ¼
cos� � sin�
sin� cos�

� �
ð9Þ

The diagonalized matrix, T 0, is then given by

U�1TN�1U ¼ ðT 0Þ
N�1

¼
lN�11 0
0 lN�12

� �
ð10Þ

where

l1 ¼ eK
�
coshðhÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2ðhÞ þ e�4K

q �
ð11Þ

and

l2 ¼ eK
�
coshðhÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2ðhÞ þ e�4K

q �
ð12Þ

Operating the inverse of unitary matrix U�1 on spin up

(þ) gives,

U�1 þj i ¼
cos �
sin �

� �
ð13Þ

Similar to Equation (13), operating the unitary matrix

U�1 on spin (�) gives

U�1 �j i ¼
� sin�
cos�

� �
ð14Þ

We thus obtain

U�1AU ¼

e�Ks1 cos2 �

þeKs1 sin2 �

e�Ks1 cos� sin�

�eKs1 sin� cos�

e�Ks1 cos� sin�

�eKs1 sin� cos�

e�Ks1 sin2 �

þeKs1 cos2 �

0
BBBBB@

1
CCCCCA

ð15Þ

We may define the matrix B as

B ¼ UU�1TN�1UU�1AUU�1TUU�1 ð16Þ

The summation in Equation (6) on spin-up gives the

following result

þ B þjjh i¼ lN1 e
�Ks1 cos4�þðsin2�cos2�ÞeKs1

þl1l
N�1
2 sin2�cos2�e�Ks1

� eKs1 cos2�sin2�þlN�11 l2e�Ks1 cos2�sin
2�

�lN�11 l2eKs1 sin�cos2�

þlN2 e
�Ks1 sin3�þlN2 e

Ks1 cos2�sin� ð17Þ

and on spin-down gives

� B �jjh i ¼ lN1 e�Ks1 cos2 � sin2 �þ sin4 �eKs1
� �

� lN�11 l2e�Ks1 sin
2 � cos2 �

þ lN�11 l2eKs1 sin
2 � cos2 �

� l1l
N�1
2 ðcos2 � sin2 �e�Ks1

þeKs1 cos2 � sin2 �
�

þ lN2 e�Ks1 sin2 � cos2 �þ eKs1 cos4 �
� �

ð18Þ

Therefore, the sum of Equations (17) and (18) gives the

partition function as

Z ¼ þ B þjjh i þ � B �4jjh i ¼ e�K lN1 þ lN2
� �

þ sin2 2� sinhðKÞ lN1 þ lN2 � l1l
N�1
2 þ lN�11 l2

� �
ð19Þ

By some rearrangement, Equation (19) can be

written as

Z ¼ lN1 sin2 2� sinh Kð Þ 1�
l2
l1

� �� �
þ e�K

� �

þ lN1 sin2 2� sinh Kð Þ 1�
l1
l2

� �� �
þe�K

l2
l1

� �N

ð20Þ
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Therefore, the free energy, A, for the model in the
presence of magnetic field reads as [30]

A¼�NkBT lnðl1Þ�kBT ln sin2 2�sinhðKÞ 1�
l2
l1

� �
þe�K

� �

�kBT ln 1þ
sin2 2�sinhðKÞ 1� l1

l2

� �
þe�K

sin2 2�sinhðKÞ 1� l2
l1

� �
þe�K

l2
l1

� �N
0
@

1
A
ð21Þ

where kB is the Boltzmann constant and T is absolute
temperature.

From Equation (21), the Helmholtz free energy can
be partitioned into three components: bulk, Abulk,
surface, Asurface, and finite-size, Afinitessize, which are
given as

A
bulk
¼ �NkBT lnðl1Þ ð22Þ

Asurface ¼ �kBT ln sin2 2� sinhðKÞ 1�
l2
l1

� �
þ e�K

� �
ð23Þ

Afinitesize¼�kBT ln

� 1þ
sin2 2�sinhðKÞ 1� l1

l2

� �
þ e�K

sin2 2�sinhðKÞ 1� l2
l1

� �
þ e�K

l2
l1

� �N
0
@

1
A
ð24Þ

The first term is the bulk free energy which scales
linearly with the size of system, the second term is the
surface free energy which is independent of size, and
the third term (the finite-size free energy) is contribu-
tion which depends on the size of the system.
If l2 5 l1, then, defining the parameter a,

a ¼
sin2 2� sinhðKÞ 1� l1

l2

� �
þ e�K

sin2 2� sinhðKÞ 1� l2
l1

� �
þ e�K

ð25Þ

the third term on the right-hand-side of Equation (21)
may be approximately written as

� kBT ln 1þ
sin2 2� sinhðKÞð1� l1

l2
Þ þ e�K

sin2 2� sinhðKÞð1� l2
l1
Þ þ e�K

l2
l1

� �N
 !

� �kBTa
l2
l1

� �N

¼ �kBTa 1�
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 hþ e�4K

p
coshðhÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2ðhÞ þ e�4K

q
0
B@

1
CA

N

¼ �kBTa 1�

2
sinð2�Þ

e2K coshðhÞ þ 1
sinð2�Þ

 !N

¼ �kBTa 1�
2

1þ e2K coshðhÞ sinð2�Þ

� �N

If N is large and also 1
1þe2K coshðhÞ sinð2�Þ

! 0, then

� kBTa 1�
2

1þ e2K coshðhÞ sinð2�Þ

� �N

� �kBTa exp �
2N

1þ e2K coshðhÞ sinð2�Þ

� �

Therefore,

Afinitesize � �kBTa exp �
2N

1þ e2K coshðhÞ sinð2�Þ

� �
ð26Þ

We mention that Equations (21)–(24) were obtained by

Wortis [30].

2.2. Nearest-neighbour and next-nearest-neighbour
interactions

The Hamiltonian for the Ising model in the presence of

a magnetic field is

H ¼
X
i

Jsisiþ1 þ
X
i

J1sisiþ2 þ h
X
i

si ð27Þ

where J and J1 are the NN and NNN spin coupling

interaction energies, respectively. The partition func-

tion can be calculated by using a computer program

(Matlab software) for N � 14. For instance, for N ¼ 7,

the partition function is found to be

Zð7Þ ¼ expð7Kþ 7K1� 7hÞ þ 7expð3Kþ 3K1� 5hÞ

þ 7expð3K�K1� 3hÞ þ 7expð�Kþ 3K1�3hÞ

þ7expð3K�K1�hÞ þ 7expð�K�K1�3hÞ

þ14expð�K�K1�hÞþ7expð3K�K1þ hÞ

þ 7expð�K� 5K1� hÞ þ 7expð�5Kþ 3K1� hÞ

þ 14expð�K�K1þ hÞ þ 7expð�K� 5K1þ hÞ

þ 7expð3K�K1þ 3hÞ þ 7expð�5Kþ 3K1þ hÞ

þ 7expð�Kþ 3K1þ 3hÞ þ 7expð�K�K1þ 3hÞ

þ 7expð3Kþ 3K1þ 5hÞ þ expð7Kþ 7K1þ 7hÞ

For even values of N larger than 14, we may write the

transfer matrix as (note that the transfer matrix is
given in reference [40])

T sz1, s
z
2, s

z
3, s

z
4

� �
¼ exp

�J

2
sz1s

z
2 þ 2sz2s

z
3 þ sz3s

z
4

� �� �
� exp �J1 sz1s

z
3 þ sz2s

z
4

� �� �
� exp

�H

2
sz1 þ sz3 þ sz2 þ sz4
� �� �

ð28Þ

where � ¼ 1=kBT.
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Then, the transfer matrix in terms of K ¼ J
kBT

and

K1 ¼
J1
kBT

is

In the absence of a magnetic field, h ¼ 0, we can

diagonalize the matrix to obtain its eigenvalues as

follows:

l1 ¼1=2expð�2K� 4K1Þðexpð6K1Þ þ 2 expð2Kþ 2K1Þ

þ expð4Kþ 6K1Þ þ expð4K1Þðexpð2KÞ þ 1Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 expð2KÞ þ expð4K1Þ � 2 expð2Kþ 4K1Þ

þ expð4Kþ 4K1Þ

� �s

ð30� aÞ

l2 ¼1=2expð�2K� 4K1Þðexpð6K1Þ þ 2expð2Kþ 2K1Þ

þ expð4Kþ 6K1Þ � expð4K1Þðexpð2KÞ þ 1Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4expð2KÞ þ expð4K1Þ � 2expð2Kþ 4K1Þ

þ expð4Kþ 4K1Þ

� �s

ð30� bÞ

l3 ¼ 1=2 expð�2K� 4K1Þ½expð6K1Þ � 2 expð2Kþ 2K1Þ

þ expð4Kþ 6K1Þ � expð4K1Þðexpð2KÞ � 1Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4 expð2KÞ þ expð4K1Þ � 2 expð2Kþ 4K1Þ

þ expð4Kþ 4K1Þ

� �s

ð30� cÞ

l4 ¼ 1=2 expð�2K� 4K1Þ expð6K1Þ � 2 expð2Kþ 2K1Þ½

þ expð4Kþ 6K1Þ þ expð4K1Þðexpð2KÞ � 1Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4 expð2KÞ þ expð4K1Þ � 2 expð2Kþ 4K1Þ

þ expð4Kþ 4K1Þ

� �s

ð30� dÞ

Hence, the partition function is given as

Z ¼ Tr½T�N=2 ¼ lN=21 þ lN=22 þ lN=23 þ lN=24

� �

¼ lN=21 1þ
lN=22

lN=21

þ
lN=23

lN=21

þ
lN=24

lN=21

 !
ð31Þ

where l1 is the largest eigenvalue of the matrix. In the

thermodynamic limit N!1, we have

Z ¼ ðl1Þ
N
2 ð32Þ

Note that the diagonalization of the transfer matrix,

given in Equation (29), is impossible in the general

case. Therefore, we can only solve it numerically.

3. Results and discussion

3.1. Systems with only nearest-neighbour interactions

The exact reduced Helmholtz free energy of 1-D Ising

model in the presence of a magnetic field, considering

only NN interactions, can be obtained for any size in

terms of the ratio of magnetic field-spin interaction

energy to spin-spin coupling energy (f) Equation (21).

The reduced surface free energy,�Asurface=kBT, is given
by Equation (23) for the model in the presence of a

magnetic field, considering only the NN interactions,

and is independent of N. The finite-size free

energy,Afinitsize, is given in Equation (26). The heat

capacity for this model is plotted in Figure 1 versus

temperature for N¼ 3, 5, 7, 9, 15, and 25 when

f ¼ 0:01. In addition to a large peak, a small peak

appears at low temperatures when 05 f � 0:1 and

N � 25, as shown for f¼ 0.01 in Figure 1. In order to

see the reason for appearance of the small peak, we

have used the reduced Hamiltonian expression

Hreduce ¼
X
i

sisiþ1 þ f
X
i

si ð33Þ

to calculate the energy levels of the model. They are

compared in Figure 2(b) and (c) for two values of the

parameter f, whenN ¼ 3. As shown in this figure, when

f is within 0 and 0.1 and N is not large (N � 25), the

first exited state is very close to the ground state, a

small amount of heat can be absorbed to transit the

system between these two states. Such a transition

gives rise to the small peak. Figure 2(c) clearly reveals

the reason for the appearance of the small peaks in

Figure 1(a) for small values of f (N � 25).

Ts1s2,s3s4 ¼

expð2Kþ 2K1 þ 2hÞ expðKþ hÞ expð�Kþ hÞ expð�2K1Þ

expðh� KÞ expð�2Kþ 2K1Þ expð�2K1Þ expðK� hÞ

expðKþ hÞ expð�2K1Þ expð�2Kþ 2K1Þ expð�K� hÞ

expð�2K1Þ expð�K� hÞ expðK� hÞ expð2Kþ 2K1 � 2hÞ

0
BBB@

1
CCCA ð29Þ
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3.2. 1-D Ising model in the presence of a magnetic
field with nearest-neighbour and next-nearest-
neighbour interactions

3.2.1. Thermodynamic limit including periodic
boundary conditions

If periodic boundary conditions (PBC) are applied, the
finite-size free energy does not significantly depart

from the bulk free energy even for small values of N,
and rapidly approaches its bulk value. The calculated
reduced free energy versus K ¼ J

kBT
for N¼ 3, 4, and 5,

competition parameter J1=J ¼ 0:2 and f ¼ 0:2 is pre-
sented in Figure 3. Due to the fact that there is no

analytical solution for the transfer matrix of the model
in the presence of a magnetic field, to obtain the
thermodynamic limit we have solved the transfer
matrix given in Equation (28) numerically to find its

maximum eigenvalue. The calculated partition

function is used to calculate the free energy, which is
shown in Figure 3.

3.2.2. Heat capacity

When applying PBC in the presence of both NN and
NNN interactions, the analytical expression can be
used to calculate the heat capacity for given values of
N � 14, J1=J, and f. The calculated results when
J1
J ¼ 0:2 and h

J ¼ f ¼ 0:01 for the case of ferromagnetic
interactions with both NN and NNN are plotted in
Figure 4, for given values of N. According to Figure 4,
in addition to a wide peak, again there is a small peak
at low temperatures when 05 f � 0:1 and N � 14.
The small peak disappears for larger values of N. The
reason for appearance of the small peak is exactly the
same as that discussed in the case of NN interactions
only (see Figure 1). The energy levels may be calculated
from the reduced Hamiltonian expression:

Hreduce ¼
X
i

sisiþ1 þ J1=J
X
i

sisiþ2 þ f
X
i

si ð34Þ

The small peak disappears also in strong magnetic
field and/or for large antiferromagnetic NNN
interactions.

When N¼ 3, J ¼ 10 and f¼ 0.01, the heat capacity
versus temperature for given values of J1 (both positive
and negative values) is presented in Figure. 5.
As shown in this figure, the peak of heat capacity in
the case of antiferromagnetic interactions appears at a
lower temperature, compared to the case with ferro-
magnetic NNN interactions.

3.3. Thermodynamic limit for free boundary
condition with NN and NNN ferromagnetic
interactions

In the case of free boundary conditions, the effect of
the finite size of the system may be quite significant,
because both surface and finite-size components of the
free energy are sizeable. The reduced Helmholtz free
energy of 1-D Ising model in the presence of a
magnetic field has been calculated for different sizes
in terms of NN coupling energy (K), when
J1=J ¼ 0:2 ¼ f , Figure 6. This figure indicates that
the reduced free energy increases with N, but its
increase slows down for larger values of N. The free
energy approaches the bulk value when N becomes
large. In the thermodynamic limit, the reduced free
energy is determined by the largest eigenvalue of the
transfer matrix of Equation (29). The maximum
eigenvalue is calculated numerically when
J1=J ¼ 0:2 ¼ f , and this result is used to calculate the

Figure 1. Reduced heat capacity versus temperature for the
1-D Ising model in the presence of a magnetic field,
considering only nearest-neighbour interactions for (a)
N¼ 3, 5, 7, 9, 15, and 25 when f¼ 0.01, (b) N¼ 3 and
f¼ 0.3, and (c) N¼ 30 and f¼ 0.01.
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free energy in terms of K, as shown in Figure 6.
For small values of K, we can easily calculate the
relative difference in free energy for the finite model
and the bulk, (DA), which is shown in Figure 7.
The relative difference DA increases with K, but to a
lesser extent for large values of N.

3.4. Thermodynamic limit for NN ferromagnetic and
NNN antiferromagnetic interactions

Size effects on the free energy can be investigated when

NN and NNN interactions are ferromagnetic and

antiferromagnetic, respectively. In the thermodynamic

limit, the reduced free energy is determined by the

largest eigenvalue of the transfer matrix of Equation (29).

The maximum eigenvalue was numerically calculated for

Figure 2. Energy levels for the 1-D Ising model with NN interactions and N¼ 3 in the presence of a magnetic field:
(a) as a function of f and for (b) f¼ 1 and (c) f¼ 0.02.

K

–A
/N

k B
T

N=3
N=4
N=5
N˜∞

Figure 3. Reduced free energy versus K¼ J/kBT in the
presence of NNN interactions, when J1=J¼ 0.2 and f¼ 0.2,
for N¼ 3, 4, 5 and 1. Periodic boundary conditions are
applied.

C
v/

N
k

Figure 4. Reduced heat capacity versus temperature in the
presence of NNN interactions, when PBC are applied, for
J1=J¼ 0.2, f¼ 0.01, and given values of N.
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f¼ 0.20 and J1=J ¼ �0:20. The results are used to
calculate the free energy in terms of K. By comparing
Figuers 7 and 8, one can see that in the latter case the
system approaches the thermodynamic limit for much

smaller values of N, compared to the case in which both

interactions are ferromagnetic.

3.4.1. Heat capacity

Applying free boundary conditions in the presence of

both NN and NNN interactions, an analytical expres-

sion is used to calculate the heat capacity for given

values of N � 14, J1=J ¼ 0:2 and f ¼ 0:2, and the

results are shown in Figure 9. As can be seen from

Figure 9, one finds again a small peak at low

temperatures when 05 f � 0:1 and N � 14.

However, for larger values of N, the small peak

disappears, as well as for strong magnetic fields and for

large antiferromagnetic NNN interactions.

–C
v/

N
k B

Figure 9. Reduced heat capacity versus temperature for the
Ising model in the presence of NNN interactions, when free
boundary conditions are applied, for J1=J¼ 0.2, f¼ 0.01, and
given values of N.

–A
/N

k B
T

Figure 6. Reduced free energy in the presence of NNN
interactions as a function of the reduced NN interaction
energy (K) when f ¼ J1=J ¼ 0:2 and for given values of N,
in the case of free boundary conditions.

Figure 8. Relative difference in free energy of the finite-size
and bulk systems in the presence of NNN interactions
in terms of K, when f¼ 0.20 and J1=J ¼ �0:20 for given
values of N.

Figure 7. Relative difference in free energy of finite-size and
bulk systems in the presence of NNN interactions in terms of
the reduced NN interaction energy (K) for given values of N,
when f ¼ J1=J¼ 0.20.

C
v/

N
k B

Figure 5. Reduced heat capacity versus temperature in the
presence of NNN interactions when J1¼ 10, J2¼ 2, �2, 3,
�3, 4, �4, f¼ 0.01, and N¼ 3.
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4. Conclusions

A finite 1-D array of spins interacting via nearest-
neighbour and next-nearest-neighbour interactions was
considered in the present work. The heat capacity,
the surface energy, the finite-size free energy and the
bulk free energy per site have been calculated for
this system, and analyzed as function of the size of the
system, the relative strength of the applied
magnetic field and the ratio of nearest-neighbour to
next-nearest-neighbour interactions. The main
conclusions that can be drawn from such an analysis
are the following.

The heat capacity versus temperature exhibits a
common wide peak for systems of any size, but an
extra peak also appears for finite systems in the
presence of not too strong magnetic fields.
The appearance of this extra peak is due to the small
energy separation between the ground and the first
excited state, when the magnetic field and the size
of system are both small (as schematically illustrated in
Figure 2). The small peak arises because of the small
quantity of energy (heat) needed to transit the system
between the low-energy states. However, either for
large values of N or in strong magnetic fields the small
peak disappears (see Figure 1).

The use of PBC leads to a small size dependence
of the free energy as compared to the case with
free boundary conditions (compare Figures 3 and 6).
It is worthwhile to note that Ogly [41] presented an
analytical solution for the model in presence of a
magnetic field, when the NN and NNN interactions
are both taken into account. The accuracy of his
analytical solution has been recently questioned [42].
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