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We investigate a one-dimensional (1-D) Ising model for finite-site systems. The
finite-site free energy and the surface free energy are calculated via the transfer
matrix method. We show that, at high magnetic fields, the surface free energy has
an asymptotic limit. The absolute surface energy increases when the value of f (the
ratio of magnetic field to nearest-neighbor interactions) increases, and for f� 10
approaches a constant value. For the values of f� 0.2, the finite-site free energy
also increases, but slowly. The thermodynamic limit in which physical properties
approach the bulk value is also explored.

Keywords: magnetic materials; nanostructures; surface free energy; finite-size free
energy

1. Introduction

Since the discovery of single-molecule magnets in 1993 [1,2], the synthesis and physical
characterization of molecular nanomagnets have been one of the most active fields in
molecular magnetism. Caneschi et al. observed a slow relaxation of the magnetization in
a magnetically isolated cobalt (II) nitronyl nitroxide chain [3] and described the main
experimental requirements to be fulfilled in the design of such 1-D nanomagnets. One-
dimensional (1-D) magnetic models have attracted much interest in recent years, because
they are much easier to be treated theoretically than 2-D and 3-D models [4–7], and several
quasi 1-D magnetic materials have been discovered. Critical behavior of the 2-D
Ising antiferromagnets K2 �CoF4 and Rb2CoF4 have been considered by Samuelsen [8].
Ising transition in a 1-D quarter-field electron system with dimerization has been
considered by Tsuchiizu and Orignac [9]. The critical temperature in ferroelectric films
described by a transverse spin-1/2 Ising model was studied using the effective field theory
along with a probability distribution technique by Htoutou et al. [10].

Most of these systems can be interpreted in terms of Ising models including a nearest-
neighbor (NN) exchange interaction whose sign determines the type of short-range
order: e.g., ferromagnetic in CsNiF3 and antiferromagnetic in (CH3)4NMnCl3 [3].

*Corresponding authors. Email: faridtaherkhani@gmail.com; parsafar@sharif.edu

ISSN 0141–1594 print/ISSN 1029–0338 online

� 2011 Taylor & Francis

DOI: 10.1080/01411594.2010.548755

http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
F
o
r
t
u
n
e
l
l
i
,
 
A
l
e
s
s
a
n
d
r
o
]
 
A
t
:
 
0
7
:
2
8
 
4
 
M
a
r
c
h
 
2
0
1
1



As a matter of fact, one may find a strong uniaxial Ising-type anisotropy and significant

difference between intra-(J) and inter-chain (J 0) magnetic interactions in some materials.
These magnetic nanowires are called single-chain magnets [11,12]. The dark-brown

crystals obtained by assembling [Mn(5-MeOsalen)(H2O)]þ and [(Tp)Fe(CN)3]
� afford the

1-D zigzag chain [(Tp)Fe(CN)3Mn(5-MeOsalen) � 2CH3OH]n [Tp�¼hydrotris(pyrazolyl)

borate, 5-MeOsalen2�¼N,N0 ethylenebis (5-methoxyysalicylideneiminate)]. An alternat-

ing topology was presented with Ja and Jb Mn(III)-Fe(III) coupling parameters [13]. The
anhydrous version of K-titanium alum, on the other hand, consists of layers of Ti3þ ions

coordinated and interlinked to SO2�
4 anions, and provides a good realization of an s¼ 1/2

Ising model on the triangular lattice [14]. KTi(SO4)2 �H2O is a frustrated chain with s¼ 1/2

with the NN interaction (J¼ 9.462 cm�1) and next-NN interaction J1 with
J1
J ¼ 0:291 [15].

Other real systems that map onto this model include Cu [2-(2-aminomethyl)] Br2
(J1/J¼ 0.2) [16], (N2H5)CuCl3 (J1/J¼ 4) [17,18], SrCuO2 (J1/J5�10) [19,20], LiCu2O2

(J1/J¼�1) [21,22], LiCuVO4 (J1/J¼�0.78) [23], and Li2CuZrO4 (J1/J¼�0.3) [24].
We have previously applied the transfer matrix method to solve the 1-D Ising model

in the presence of a magnetic field, taking both nearest and next-NN interactions into

account [25]. We employed a numerical method to obtain the eigenvalues of the transfer

matrix. Moreover, the heat capacity, magnetization, and magnetic susceptibility versus
temperature for different values of the competition factor (the ratio of next-NN to NN

interactions) were presented [25].
Surface and site effects are important in nanosystems and have a significant influence

on the energy which may not be extensive [26]. Exact solution for the thermodynamic

functions of the randomly diluted s¼ 1/2 NN Ising chain in a magnetic field was examined
by Wortis [27] in which both site and bond impurities were treated. The system behaves

nonanalytically at T¼ h¼ 0. The divergences of the pure-chain thermodynamics were

replaced at nonzero dilution by essential singularities of the Griffiths type at which all
functions are finite and infinitely differentiable [27]. Finite-size effect on the static

properties of a single-chain magnet was studied by Bogani et al. They investigated the role
of defects in the single-chain magnet CoPhOMe by inserting a controlled number of

diamagnetic impurities [28]. Finite-size effect in s¼ 1/2 Ising systems showing slow

dynamics of the magnetization was investigated by Bogani et al. [29] introducing
diamagnetic impurities in a Co2þ-radical chain.

In this study, we have explored how the physics of 1-D Ising models is affected by the

finite site of the system. We have specially studied effects of magnetic field on the surface
free energy and the finite-site free energy.

2. Calculation of surface energy and finite-site free energy

2.1. NN interactions in the presence of a magnetic field

The partition function, Z, for the 1-D Ising model with the NN interactions in the presence

of a magnetic field in free boundary condition may be written as (see [30] for more details):

Z ¼ �N1 sin2 2� sinhðKÞ 1�
�2
�1

� �� �
þ e�K

� �

þ �N1 sin2 2� sinhðKÞ 1�
�1
�2

� �� �
þ e�K

� �
�2
�1

� �N

, ð1Þ
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where

�1 ¼ eK coshðhÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2ðhÞ þ e�4K

q� �
, ð2Þ

and

�2 ¼ eK coshðhÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2ðhÞ þ e�4K

q� �
:

Therefore, the free energy, A, for the model in the presence of a magnetic field is

A ¼ �NkBT lnð�1Þ � kBT ln sin2 2� sinhðKÞ 1�
�2
�1

� �
þ e�K

� �

� kBT ln 1þ
sin2 2� sinhðKÞð1� �1

�2
Þ þ e�K

sin2 2� sinhðKÞð1� �2
�1
Þ þ e�K

�2
�1

� �N
 !

, ð3Þ

where K¼ J/kT, s, and h¼H/kT are the reduced spin–spin NN coupling energy, the spin

of a site, and the reduced magnetic field, respectively. Also, kB is the Boltzmann constant

and T the absolute temperature.
The Helmholtz free energy can be partitioned into three components: bulk Abulk,

surface Asurface, and finite-site Afinites size, which are given as [30]:

A
bulk
¼ �NkBT lnð�1Þ, ð4Þ

Asurface ¼ �kBT ln sin2 2� sinhðKÞ 1�
�2
�1

� �
þ e�K

� �
, ð5Þ

Afinite size ¼ �kBT ln 1þ
sin2 2� sinhðKÞ 1� �1

�2

� �
þ e�K

sin2 2� sinhðKÞ 1� �2
�1

� �
þ e�K

�2
�1

� �N
0
@

1
A, ð6Þ

where Equation (4) is the bulk free energy which scales linearly with the sites numbers of

system. Equation (5) is the surface free energy which is independent of site number.

Equation (6) (the finite-size free energy) does depend on the site number of the system.

If �2 5 �1, then, by defining the parameter a,

a ¼
sin2 2� sinhðKÞ 1� �1

�2

� �
þ e�K

sin2 2� sinhðKÞ 1� �2
�1

� �
þ e�K

, ð7Þ

the third term on the right-hand side of Equation (5) may be approximately written as:

� kBT ln 1þ
sin2 2� sinhðKÞ 1� �1

�2

� �
þ e�K

sin2 2� sinhðKÞ 1� �2
�1

� �
þ e�K

�2
�1

� �N
0
@

1
A � �kBTa �2

�1

� �N

¼ �kBTa 1�
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 hþ e�4K

p
cosh ðhÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2ðhÞ þ e�4K

q
0
B@

1
CA

N

¼ �kBTa 1�

2
sinð2�Þ

e2K coshðhÞ þ 1
sinð2�Þ

 !N

¼ �kBTa 1�
2

1þ e2K coshðhÞ sinð2�Þ

� �N

:

Phase Transitions 3

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
F
o
r
t
u
n
e
l
l
i
,
 
A
l
e
s
s
a
n
d
r
o
]
 
A
t
:
 
0
7
:
2
8
 
4
 
M
a
r
c
h
 
2
0
1
1



If N is large and also

1

1þ e2K coshðhÞ sinð2�Þ
! 0,

then

�kBTa 1�
2

1þ e2K coshðhÞ sinð2�Þ

� �N

� �kBTa exp �
2N

1þ e2K coshðhÞ sinð2�Þ

� �
:

Therefore,

Afinite size � �kBTa exp �
2N

1þ e2K coshðhÞ sinð2�Þ

� �
: ð8Þ

3. Results and discussion

3.1. Thermodynamic limit

The exact reduced Helmholtz free energy of 1-D Ising model in the presence of a magnetic
field considering the NN interactions can be obtained for any size of system in terms of the
parameter f (ratio of spin magnetic field interaction energy to spin-spin coupling energy).
Figure 1 indicates that the reduced free energy increases with N (system size) but the
increment slows down for larger values of N. As may be expected, the free energy
approaches the bulk value when N becomes large. In the thermodynamic limit, the reduced
free energy given by Equation (3) equals ln(�1). On the other hand, small eigenvalue of
transfer matrix is important in free energy calculation of the finite-size system. Such an
eigenvalue may give a significant contribution to the free energy; therefore, it could not be
ignored in our calculation. We can easily calculate the relative difference in total free
energy for the finite model and the bulk (DA) which is shown in Figure 2. Relative
difference in free energy is defined as DA ¼ ðAN�AbulkÞ

Abulk
for a finite Ising model. AN is free

energy per site for the finite spin chain. On the basis of Figure 2, the relative difference
increases with f, as expected for large values of N. On the basis of Figure 2, relative
difference (DA) in f¼ 0 for site N¼ 25 is 0.001. It increases by increasing the value of f and

0.718

0.716

0.714

0.712

0.710
-A

/N
k B

T

0.1 0.2 0.3 0.4 0.5

f

N=25

N=15

N=5

N=4

N=3

Figure 1. Reduced free energy vs. f (the ratio of magnetic-field/spin interaction energy over the
nearest-neighbor spin–spin coupling energy) for N¼ 3, 4, 5, 15, and 25 in the case of NN
interactions.
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becomes 0.003 in f¼ 2. When the number of sites constructing the system is limited,
finite-size effect seems important as the deviation of the free energy from the bulk value is
large. In fact, in such a case, edge effects have a significant impact in deviation of the free
energy from the bulk value. For spins at the boundary, the number of spin–spin
interactions is not the same as for the other spins in the chain. Increasing the number of
sites in the spin chain will result in a decrease of edge effect because of the decrease in the
ratio of the number of boundary spins to the total number of spins of the system.

3.2. Nonextensive thermodynamics

In spite of multifractal concepts, Tsallis [31] has proposed a generalization of the
Boltzmann–Gibbs (BG) statistical mechanics. He introduced an entropic expression
characterized by an index q which leads to a nonextensive statistics,

Sq ¼ k
1�

PW
i¼1 p

q
i

q� 1
, ð9Þ

where pi are the probabilities associated with the microscopic configurations and W is the
total number of the configurations. The value of q is a measure of the nonextensivity of
the system; q¼ 1 corresponds to the standard, extensive, BG statistics. Indeed, using
p
q�1
i � 1þ ðq� 1Þ lnð piÞ in the limit q! 1, Equation (9) is converted to

S1 ¼ k
XW
i¼1

pi lnð piÞ: ð10Þ

The novelty of the statistical entropy (9) is that it does not satisfy additivity, for
example for two systems A and B described by independent probability distributions [32]

SðAþ BÞ ¼ SðAÞ þ SðBÞ þ ð1� qÞSðAÞSðBÞ, ð11Þ

where ð1� qÞSðAÞSðBÞ is the nonextensivity term of calculation as for BG statistics is zero.
Let us consider a magnetic system with N spins following a d-D Ising model with
long-range interaction potential Hamiltonian [31]:

H ¼ J
X
i,j

J

r�i,j
sisj, ð12Þ

0.000

–0.005

–0.010

–0.015

–0.020

DA
0.0 0.5 1.0 1.5 2.0

f

N=25

N=15

N=5

N=4

N=3

Figure 2. Relative difference in free energy DA ¼ ðAN�AbulkÞ

Abulk
for a finite Ising model with N¼ 3, 4, 5,

15, and 25 with respect to the bulk as a function of the parameter f in the case of NN interactions.
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where J is the exchange coupling constant (J4 0), ri,j is the distance between the spins i

and j, si assumes the values �1, and � is the range of the interaction (0 � �51). The

internal energy per spin of the system is calculated by integrating Equation (12) over the

volume

E

N
ffi

Z N1=d

1

rd�1

r�
dr ¼

1

d

N1��d � 1

1� �
d

: ð13Þ

For large system, the energy per spin is given by (see [31] for more details):

E

N
ffi

ð�� d Þ, �d 4 1
lnðNÞ �d ¼ 1
N1��d �

d 5 1

9=
;

8<
: : ð14Þ

When 0 � �
d � 1 for N!1, energy per spin does not converge. Convergence of

energy can be achieved by introducing an auxiliary N* parameter in terms of E
NN	 [31].

For 1-D system, N* can be defined by the following equation [33]:

N	 ¼

N1��

1�� 0 � �5 1
lnðNÞ � ¼ 1
1
��1 �4 1

8<
:

9=
;: ð15Þ

To make the internal energy behave extensively and achieve its convergence in the

thermodynamic limit, we can write the internal energy as U(N)¼NN*U1. The extensive

property imposes observables to be a linear homogeneous function of N and

Uð�NÞ ¼ �UðNÞ. However, when long-range interactions are included, this property is

violated, and it is easy to show that thermodynamic functions are homogeneous of degree

1þ j�� 1j for �5 1 [33].
In addition, we expect that the internal energy of a magnetic system with long-range

interactions adopts to the following form: U(S, M, N)¼NN*U1(S/N, M/N), where U1 is

a function per particle of the entropy S and magnetization M [33].
By definition of some extensive quantity such as Gibbs free energy

(G	 ¼ G
NN	 ¼

U
NN	 �

T
N	

S
N

H
N	

M
N), internal energy (U	 ¼ U

N	), and some intensive quantities,

such as temperature (T	 ¼ T
N	) and magnetic field (H	 ¼ H

N	), thermodynamic quantities will

converge [33]. On the other hand, by such definitions, we will have extensive quantities,

such as internal energy, and free energy, behave extensively and intensive quantities, such

as temperature and magnetic field behave intensively.
The free energy for N¼ 3 shows a large deviation from bulk free energy even in zero

magnetic field. In fact, in finite-size system, the free energy per site (see Figure 1) is not the

same for each size and all graphs do not coincide. It means that the free energy in finite size

is not an extensive quantity with definition of some variables such as f, h, J, and T for

Hamiltonian which is defined as

H ¼
X
i

Jsisiþ1 þ h
X
i

si: ð16Þ

On the basis of Figure 1, deviation of the free energy from the bulk value in finite size is

large. It may be concluded that finite size has a significant effect on system that leads the

free energy to behave as a nonextensive quantity. On increasing the number of sites in

finite-size system, all the free energy per site coincides with each other and the free energy

becomes an extensive quantity. Nonextensivity of the free energy for finite-size Ising model

6 F. Taherkhani et al.
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in the presence of a magnetic field comes from some sources, such as the surface free
energy and the finite-size free energy. According to Equation (3), the total free energy of
finite spin chain has three terms. The first term is linearly scaled by number of spin in the
system (N). The second and third terms are the surface free energy and finite-size free
energy contributions. If we take into account just the first term of free energy and neglect
the other parts, we expect free energy of the system to become extensive. Such a conclusion
is on the basis that the first term is linearly scaled by the number of spins in the system (N)
and could be considered as the bulk free energy. Since the surface free energy and the
finite-size free energy of the system (the second and third parts of Equation (3)) do not
scale by number of spin, they give a significant contribution to the nonextensivity of the
system’s free energy.

3.3. Surface energy

Energy is needed to close the ends of 1-D spin chain. In periodic boundary condition, the
ends of spin chain are closed but there is no connection between the ends of spin chain in
free boundary condition. Difference of the free energy between the two mentioned cases
(closed and opened ends) is the surface free energy. The surface free energy depends on
magnetic field and spin coupling interaction. The surface energy increases by increasing
the magnetic field as well as spin coupling interaction. The reduced surface free energy,
Asurface/kBT, is given by Equation (4) for the model in the presence of a magnetic field,
considering only the NN interactions. On the basis of Equation (4), Asurface/kBT is
independent of N. Intuitively, the energy that is needed to connect the ends of chain does
not depend on the length of the spin chain. In 1-D of spin chain, there is just two spins in
the ends of the chain; therefore, the surface energy is completely independent of number of
spin in the chain. Figure 3 shows Asurface/kBT as a function of parameter f. It increases with
f and finally approaches a constant value. Increase in f means that interaction energy of
ending spins in the spin chain with magnetic field is going to be high; therefore, we can
conclude that the system is going to be more stable (�Asurface/kBT is increasing) and then,
it approaches an asymptotic limit. In fact, with increasing f, the surface free energy will
finally be saturated. On increasing f, all spins will be aligned parallel to the magnetic field,
after which the magnetic field will not change the surface free energy. As a matter of fact,
the surface free energy does not depend on the size of system in 1-D of Ising model. In zero
magnetic field, f¼ 0, the reduced surface free energy is small and its value is 0.01. On
increasing the magnetic field from f¼ 10, the reduced surface free energy becomes 0.20
without major changes after that. As a matter of fact, the surface free energy in high
magnetic field has a significant contribution to the nonextensivity of the free energy
(see Figure 3).

3.4. Finite-size free energy

There is one part in the free energy which depends on the size of the system. Such part is
independent of boundary condition and is the so-called finite-size free energy. Solving the
transfer matrix of 1-D Ising model, one has two eigenvalues. One of them is bigger than
the other one. In the thermodynamic limit, we can neglect the smaller one. But, in
finite-size systems, the two eigenvalues should be taken into account for computation of
the free energy. The finite-size free energy decreases by the size of system exponentially
and neglecting the smaller eigenvalue does not affect the validity of the free energy.
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The finite-size free energy is obtained analytically which is given by Equation (6). The
finite-size free energy, Afinite site, given by Equation (6), versus f is plotted in Figure 4 for
N¼ 3, 4, 5, and 6. According to Figure 4, Afinite site vanishes for large value of N. For small
values of N, the contribution of the finite-size free energy seems to be significant, which
becomes especially more important for stronger magnetic field. In fact, interaction energy
between spins and magnetic field energy of the system increases; therefore, the free energy
in finite size in high magnetic field approaches bulk properties in enormous sites.

4. Conclusion

A finite-size 1-D Ising model is investigated in the presence of a magnetic field. The
transfer matrix method is used for obtaining some physical properties, such as the surface
free energy, the finite-site free energy, and deviation of the free energy of finite system
from the bulk value as a function of size, analytically. The reduced total free energy per
site is plotted as a function of f; increasing size of system will result in reduction of
differences of free energy plots and let them be close to each other (Figure 1). Relative
difference in free energy DA ¼ ðAN�AbulkÞ

Abulk
for a finite Ising model with N¼ 3, 4, 5, 15, and 25

with respect to the bulk value as a function of the parameter f is also obtained (Figure 2).

–0.05

–0.10

–0.15

5 10 15 20

f

-A
su

rf
ac

e
/k

B
T

Figure 3. Reduced surface free energy as a function of the parameter f in the case of NN
interactions.
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Figure 4. Reduced finite-site free energy versus the parameter f when N¼ 2, 3, 4, and 5 in the case
of NN interactions. The free energy for N¼ 6 is so small that is not shown.
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On the basis of Figure 2, increasing size of the system will lead it to approach bulk value.

The surface energy in 1-D Ising model in the presence of a magnetic field is obtained

analytically as a function of f. Results of surface free energy as a function of the f

parameter are shown in Figure 3. According to Figure 3, in low magnetic field, the surface

free energy has a low value and it increases when the magnetic field increases and finally,

it approaches a constant value. Increasing the parameter f may lead the finite-size free

energy to increase (Figure 4). At small values of the parameter f, the finite-size free energy

has a low value and it increases by increasing the magnetic field. We have also shown that

the surface free energy and the finite-size free energy are the most important parts that lead

the free energy to be nonextensive in finite-size systems.
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