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a b s t r a c t

We present an approach for constant-pressure molecular dynamics simulations. This approach is
especially designed for finite systems, for which no periodic boundary condition applies. A molecular
dynamics (MD) simulation for Ni nanoclusters is used to calculate their pressure–volume–temperature
(p–v–T ) data for the temperature range 200 K ≤ T ≤ 400 K, and pressures up to 600 kbar. Isothermal sets
of p–v–T data were generated by the simulation; each set was fitted by three equations of state (EoSs):
Linear Isotherm Regularity-II (LIRII), Birch–Murnaghan (BM), and EOS III. It is found that the MD data
are satisfactorily reproduced by the EoSs with reasonable precision. Some features of the EoSs criteria,
such as the temperature dependences of the coefficients, the isothermal bulk modulus and its pressure
derivative at the zero-pressure limit, and isobaric thermal expansion for Ni nanoclusters, are investigated.
We have found that same EoSs are valid for both bulk Ni and Ni nanoclusters, but with different values
of the parameters, which depend on the cluster size and temperature. An increase in bulk modulus with
decrease of cluster size can be observed. Also, an increase in isobaric expansion coefficient with decrease
of cluster size has been found.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Nickel is a transition ferromagnetic 3d metal that is widely
used as a catalyst [1–3]. Xiaogang et al. [4] studied the equation
of state (EoS) of nanosize and bulk nickel powders up to 50 GPa,
and suggested that nanonickel is more compressible than bulk
nickel, whereas Chen et al. [5] measured the compressibility
of nanocrystalline nickel particles with size of 20 nm under
quasihydrostatic pressures up to 55 GPa and reported that the bulk
modulus did not vary with the particle size when compared to
the theoretical results [6]. Also, Rekhi et al. [7] and Raju et al. [8]
measured the compressibility of nanosized nickel particles of size
20 nm and 62 nm, respectively, under pressures up to 61.5 GPa
and 56 GPa, respectively, and reported that the bulk modulus
varies with the particle size. The grain-size dependence of the bulk
modulus of nanocrystalline Ni has recently been investigated using
molecular dynamics (MD) simulation [9].

Three methods to apply pressure to nanosystems (using an
auxiliary pressure transmitting medium) have been reported.
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1. Martonak et al. [10–13] immersed a cluster into a model
classical liquid, described by a soft-sphere potential,which acts as a
pressure reservoir. The pressure is varied by tuning the parameter
of the liquid potential.

2. The nanocrystals are embedded in a hydrostatic pressure
medium for which a Lennard-Jones (LJ) liquid was chosen [14–16].

3. Grunwald and Dellago [17] used an ideal gas flow through a
surface to apply pressure on CdSe nanoparticles in their computer
simulations.

Also, Sun and Gong [18] presented a method for constant-
pressure molecular dynamics simulation which is parameter free
for finite systems.

We have used a variation of the methodology proposed by
Grunwald and Dellago, consisting of filling the simulation box
with idealized particles that interact with the Ni atoms via a
soft core repulsive potential (ideal gas). One of the variations
proposed consists of assuming that some of the gas atoms
interact with the Ni atoms via a Lennard-Jones potential, thus
introducing an attractive component as well. This is justified as a
means to improve convergence in the calculated pressure. Another
variation consists of fixing the number of gas atoms, while, in
the Grunwald–Dellago method, they allow for the gas particles to
enter or leave the simulation box through a surface. Our approach
allows controlling the pressure. (Note that having a nanocluster
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surrounded by ideal particles, only interacting via repulsive forces,
is expected to generate a pressure gradient.)

The purpose of the present work is to generate realistic
pressure–volume–temperature (p–v–T ) isotherm simulation data
for Ni nanoclusters and thereby to investigate the precision
of some equations of state (EoSs) and calculate some of their
thermodynamic properties.

2. Molecular dynamics simulation

In our simulations, the pressure medium consists of particles
that do not interact with each other, but do interact with the Ni
atoms in the crystal via a soft-sphere potential of the form

U(r) = ε
σ

r

12
, (1)

where r denotes the distance between two particles, σ the
interaction range, and ε the interaction strength [17]. We may use
argon (or any other ideal gas) as the pressure medium in these
simulations. However, if onemerely takes the interaction potential
of Eq. (1) between each Ar atom and the nanocluster, the desired
pressure would not be achieved. To overcome this problem, we
may assume that a small number of argon atoms interact with the
nanocluster as follows, instead of Eq. (1).

VLJ = 4ε
[σ

r

12
−

σ

r

6
]

. (2)

Note that, unlike Eq. (1), in which the potential parameters are
arbitrary, the Lennard-Jones potential parameters for nickel–argon
(ε = 8.642 kJ/mol, σ = 2.84 Å [9,19]) are used in Eq. (2).
The fraction of Ar atoms that interact through Eq. (2) may be
found by trial and error, in such a way that leads to the desired
pressure. To obtain the equilibrium position with the desired
pressure, the potential parameters have significant influences on
the pressure. However, by fixing the potential parameters, the
pressure value changes by variation of the number of particles. For
example, when our goal is to achieve a pressure equal to 1 bar,
considering the repulsive potential alone, we cannot exactly reach
this pressure. Therefore, we consider a very small fraction of the
gas atoms interacting through Eq. (2). This very small fraction is
determined by trial and error. The system at low temperatures can
be developed by considering the potential parameters between
liquid Ar and the nanoclusters. Incidentally there are other ways
to apply pressure without the pressure transmitting medium, as
described in [18,20,21] and the references therein, depending on
the definition of the volume.

We have used Quantum Sutton–Chen (QSC) potential for the
Ni–Ni interactions. The QSC parameters for Ni are listed in
Table 1 [22,23].

The MD simulations are carried out in an NpT ensemble
with periodic boundary conditions, for the system including the
nanocluster and argon gas. The temperature and pressure are
controlled by aNose–Hoover thermostat and barostat [24]. In order
to have an isotropic constant pressure on the cluster, the number
of gas particles and the gas volume should be much larger than
those of the cluster. In these simulations, we have used 32000 gas
particles. The equations of motion are integrated using the Verlet
Leapfrog algorithm [9] with a time step of 0.001 ps. The system
was equilibrated for 500 ps, the averages were computed over
the following 1 ns. The cutoff length is chosen to be 8 Å in the
simulations.

In the present study, we have used the DL-POLY-2.20 pro-
gram [25]. Also, the results for bulk Ni were obtained from differ-
ent MD simulations for some isotherms. The experimental [26,27]
and calculated densities for solid Ni at 300 K and zero pressure are,
Table 1
Potential parameters used in MD simulation for the Ni nanoclus-
ters.

n m ε (eV) c a (Å)

QSC 10 5 7.3767×10−3 84.745 3.5157

Fig. 1. Snapshot of a Ni nanocluster with 336 atoms immersed in an ideal gas
pressure bath with 1 kbar pressure at 300 K.

respectively, 151.805 and 147.279 mol/L. The agreement between
the two values is within 2.98%.

We have removed some Ar atoms from the cube center, to
replace the Ni nanocluster in the center of the ideal gas pressure
bath (center of cube). Fig. 1 shows a Ni nanocluster with 336 atoms
immersed in an ideal gas pressure bath with 1 kbar pressure at
300 K.

After the simulations are done, we have to define the volume
of the nanocluster. The volume of the cluster was obtained using a
volume definition based on a Wigner–Seitz primitive cell [18].

Simulations have been performed under different isothermal
conditions (200–400 K) and for pressures up to 60 GPa for different
sizes of the Ni nanocluster (with 336, 484, 736, 1004, and 1956 Ni
atoms).

3. Some universal equations of state

The equations of state (EoSs) of solids play an important role
in condensed matter physics and geophysics. They provide much
information about the nonlinear compression of materials at high
pressures, and have been widely applied in engineering and other
branches of science. Most EoSs are expressed by three zero-
pressure parameters: molar volume, v0, isothermal bulk modulus,
B0, and its first isothermal pressure derivative, B′

0.

3.1. Birch–Murnaghan (BM) EoS

In terms of the so-called Birch–Murnaghan EoS [28,29], the
pressure as a function of volume behaves as follows:

p = (3/2)B0

[v0

v

7/3
−

v0

v

5/3
]

×


1 − (3/4)


4 − B′

0

 [v0

v

2/3
− 1

]
, (3)

where v and v0 are the volume at p and zero pressure, respectively.
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Fig. 2. Fitting three EoSs onto the simulation data of a Ni nanocluster with 336
atoms at 300 K (note that the fitting curves are superimposed on a single curve).

3.2. Linear isotherm regularity-II (LIR II)

According to the linear isotherm regularity (LIR) [30] EoS,
(Z − 1) υ2 is linear with respect to ρ2 for each isotherm of a fluid.

Shokouhi et al. have extended the LIR EoS separately to two
classes of solids [31], one formetallic and ionic solids and the other
for the remaining solids, on the basis of the concept of the average
effective pair potential. For the formermaterials, (Z−1)v2 is linear
with respect to v = 1/ρ, which will be referred to as LIR II (Eq. (4))
from now on, for each isotherm, and for the latter materials, the
EoS is the same as that for fluids.

(Z − 1) υ2
= c + d (1/ρ) , (4)

where Z =
p

ρRT , and c and d are temperature-dependent parame-
ters. This EOS was originally proposed for liquid metals.

3.3. Parsafar–Spohr–Patey (EoS III)

Recently, Parsafar et al. [32] have developed an EoS that gives
a good description for all types of fluid, including nonpolar, polar,
hydrogen-bonded, andmetallic, for temperatures ranging from the
triple point to the highest temperature for which experimental
data are reported. For solids, the EoS is very accurate for all
types considered, including covalent,molecular,metallic, and ionic
systems. According to this equation, (Z − 1)v2 in terms of ρ may
be given as

(Z − 1)v2
= e +

f
ρ

+ gρ2, (5)

where e, f , and g are temperature-dependent parameters.

4. Results and discussions

There are two ways to study the compression data: either (i) by
using the exact measured values at the zero-pressure limit; then,
B0 and B′

0 are used as inputs which, when error-free compression
and bulk moduli data are available, can result in a perfect well-
behaved EoS; or (ii) by a curve-fitting method, in which all zero-
pressure values are treated as adjustable parameters and can
reproduce the ideal set of zero-pressure values as inputs. Since the
zero-pressure values obtained by the best fitting do not have high
accuracies, we have fitted all isothermal simulation data to all EoSs
mentioned in the last section. For example, as shown in Fig. 2, for
336 Ni atoms at 300 K, the simulation data are well fitted by all
EoSs with a high accuracy (R2, for each case, is 1.0).

The values of B0 and B′

0 for each isotherm of nanoclusters of
different sizes are obtained from each EoS, whose parameters are
Fig. 3. Comparison of the p–v curves obtained from the three EoSs, when the
zero-pressure quantities are used as inputs for a Ni nanocluster with 336 atoms
at 300 K.

obtained from the fitting. The dependences of B0 and B′

0 on the
parameters of EOS III are as follows:

B0(T ) = RTρ0(3eρ2
0 + 2f ρ0 + 5gρ4

0 + 1) (6)

B′

0(T ) =
9eρ2

0 + 4f ρ0 + 25gρ4
0 + 1

3eρ2
0 + 2f ρ0 + 5gρ4

0 + 1
. (7)

Also, the dependences of B0 and B′

0 on the parameters of LIR II are
as follows:

B0(T ) = RTρ0(3cρ2
0 + 2dρ0 + 1) (8)

B′

0(T ) =
9cρ2

0 + 4dρ0 + 1
3cρ2

0 + 2dρ0 + 1
, (9)

where ρ0 = 1/v0 is the cluster density at zero pressure. The calcu-
lated values of B0 and B′

0 given by the three EoSs are summarized
in Table 2.

The experimental values of B0 and B′

0 (B0 = 1850 kbar and
B′

0 = 5 [24], B0 = 1800 kbar and B′

0 = 4 [25]) for bulk Ni at 300 K
and zero pressure are in agreement with our results (see Table 2).
However, the value of B0 given by EOS III (1854 kbar) is the closest
value to experimental value reported in [24].

It is worth noting that all EoSs used in this work predict
the same value for ρ0 as that obtained from our simulations.
As shown in Table 2, an increase in bulk modulus with number
of particles can be observed. The hardness and yield stress of
some materials increase with decreasing cluster size according
to the Hall–Petch effect [33,34]. However, the reverse Hall–Petch
effect, which is related to the softening of materials for very small
cluster size, has also been reported [35,36]. According to our results
given in Table 2, the bulk modulus of a Ni nanocluster increases
when the nanocluster becomes smaller, i.e., there is a reverse
Hall–Petch effect. Such behavior is expected, because of the fact
that, as the cluster size reduces, proportionally more atoms are on
the surface of the cluster. Since surface atoms have less binding
energy, compared to the bulk atoms, with a decrease in number of
particles, the compressibility is expected to decrease. A latticewith
a larger binding energy needs a stronger force to be compressed
by a certain amount, because the potential energy with respect to
displacement of amolecule from its equilibriumposition is greater.
Such behavior, the reverse Hall–Petch effect, is expected to be valid
so long as the geometry of the nanocluster remains unchanged.
In fact, as shown in Fig. 1, the Ni nanoclusters investigated in this
work are all spherical.

In the secondmethod, we used zero-pressure simulation values
as inputs and expressed the behavior of the pressure as a function
of compression, v/v0. In Fig. 3, the pressure is plotted as a function
of v/v0 for aNi nanoclusterwith 336 atoms at 300K. The three EoSs
are well fitted onto the simulation data (R2 for each fitting is 1.0).

The parameters c and d of LIR II are almost linear versus 1/T for
the largest nanocluster, like that for bulk systems [37]. However,
the deviations from linearity become significant for the smaller
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Table 2
The calculated values of B0 and B′

0 obtained from the three different EoSs at given temperatures, for both nanoclusters and bulk Ni.

BM BM LIR II LIR II EoS III EoS III
N T (K) B0 (kbar) B′

0 B0 (kbar) B′

0 B0 (kbar) B′

0

336 200 2651 3.91 2439 4.98 2599 4.15
484 200 2413 3.86 2178 4.99 2360 4.12
736 200 2302 3.79 2058 4.99 2249 4.08
1004 200 2231 3.71 1975 4.99 2178 4.02
1956 200 2172 3.64 1911 4.99 2117 3.97
Bulk 200 1807 3.58 1721 5.0 1799 3.97
336 250 2680 3.96 2461 4.99 2629 4.18
484 250 2451 3.90 2227 4.99 2400 4.15
736 250 2342 3.83 2109 4.99 2290 4.10
1004 250 2261 3.75 2015 4.99 2209 4.05
1956 250 2213 3.70 1961 4.99 2158 4.02
Bulk 250 1843 3.63 1812 4.99 1823 4.01
336 300 2711 4.02 2495 5.00 2660 4.23
484 300 2490 3.96 2279 4.99 2441 4.19
736 300 2384 3.89 2156 5.00 2331 4.15
1004 300 2302 3.81 2064 4.99 2250 4.09
1956 300 2240 3.74 1990 4.99 2189 4.04
Bulk 300 1889 3.69 1841 5.02 1854 4.03
336 350 2752 4.07 2543 5.00 2700 4.27
484 350 2542 4.00 2326 5.00 2491 4.22
736 350 2421 3.92 2202 4.99 2371 4.17
1004 350 2333 3.84 2092 5.00 2280 4.11
1956 350 2280 3.77 2043 4.99 2229 4.06
Bulk 350 1893 3.74 1879 4.99 1882 4.05
336 400 2802 4.11 2608 4.99 2751 4.29
484 400 2580 4.03 2374 5.00 2531 4.24
736 400 2461 3.96 2248 4.99 2411 4.20
1004 400 2383 3.89 2161 4.99 2331 4.15
1956 400 2331 3.80 2087 5.00 2279 4.08
Bulk 400 1897 3.79 1888 5.01 1893 4.07
Fig. 4. Temperature dependence of the intercept, c, for different sizes of Ni
nanoclusterswhich are obtained from fitting Eq. (4) (LIR II) to the simulation results.

nanoclusters. Also, the slopes in Figs. 4 and 5 are the largest (in
magnitude) for the smallest nanocluster, which means that the
parameters of the effective pair potential are the biggest for this
nanocluster.

The size dependences of the parameters of LIR II are shown in
Figs. 6 and 7, at five different temperatures. As may be expected,
their absolute values become smaller for bigger nanoclusters, due
to the smaller fraction of atoms on the surface.

The temperature dependences of the parameters of EOS III are
presented in Figs. 8–10.

Each parameter of EOS III has two contributions: one is related
to the thermal pressure and other to the internal pressure, and
they have opposite signs [32]. Therefore, it is generally impossible
to predict their signs. However, in the case of metals, f and
e are related to the attraction and repulsion interaction of the
effective pair potential, respectively. The term gρ2 is a small
repulsion contribution, whose contribution is insignificant, except
at extremely high pressures.
Fig. 5. The same as Fig. 4 for parameter d of LIR II.

Fig. 6. Size dependence of parameter c of LIR II for different isotherms of a Ni
nanocluster.
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Fig. 7. The same as Fig. 6 for parameter d of LIR II.

Fig. 8. Temperature dependence of parameter e for different Ni nanoclusters,
obtained from fitting Eq. (5) (EOS III) to the simulation results.

Fig. 9. The same as Fig. 8 for parameter f.

The size dependences of the parameters of EOS III are shown
in Figs. 11–13 at five different temperatures. As for the case of
the parameters of LIR II, the size dependences of the e, f, and g
parameters become smaller (in magnitude) for larger nanoclusters
for the same reason given for LIR II.

Also, we have calculated the isobaric expansion coefficient for
different cluster sizes at different temperatures via LIR II, assuming
linear dependences for its parameters with 1/T. The values of
the isobaric expansion coefficient for each isotherm with given
cluster sizes (and bulk) are summarized in Table 3. As shown
in this table, an increase in isobaric expansion coefficient with
decrease in number of particles can be observed. Since a smaller
Fig. 10. The same as Fig. 8 for parameter g.

Fig. 11. Size dependence of parameter e for different isotherms of EOS III for a Ni
nanocluster (the dotted lines are shown to guide the eye).

Fig. 12. The same as Fig. 11 for parameter f of EOS III.

nanocluster has less binding energy per atom, on average, we may
expect that it can be expanded more easily than a bigger cluster
with temperature; hence, it has a larger value of the isothermal
expansion coefficient, which is in accordance with the data of
Table 3. Since the isothermal expansion coefficient is related to
the lattice anharmonicity, we may conclude that it decreases with
the cluster size, as shown in Table 3. Note that a smaller cluster
has a larger fraction of surface atoms, which experience more
asymmetric interactions, compared to the atoms in the bulk.
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Fig. 13. The same as Fig. 11 for parameter g of EOS III.

Table 3
The calculated isobaric expansion coefficient at zero pressure for
the bulk and nanoclusters of Ni with given sizes at five different
temperatures, calculated from LIR II.

T (K) N Isobaric expansion
coefficient (K−1)∗104

200 336 2.71284
250 336 2.27412
300 336 2.11479
350 336 1.94861
400 336 1.85805
200 484 2.62027
250 484 2.25281
300 484 2.03625
350 484 1.86503
400 484 1.79033
200 736 2.47332
250 736 2.13094
300 736 1.93786
350 736 1.83855
400 736 1.68546
200 1004 2.19085
250 1004 1.90248
300 1004 1.75170
350 1004 1.58582
400 1004 1.57314
200 1956 1.73582
250 1956 1.57973
300 1956 1.45583
350 1956 1.38511
400 1956 1.29196
200 Bulk 0.178700
250 Bulk 0.160900
300 Bulk 0.146700
350 Bulk 0.134100
400 Bulk 0.125800

5. Conclusions

We have presented a method for applying pressure in the
computer simulation of nanoparticles, using an ideal gas as the
pressure medium. This method is especially suitable for finite
systems. We have compared the accuracy of three EoSs of solids,
namely the Linear IsothermRegularity-II (LIR II), Birch–Murnaghan
(BM), and EOS III, by fitting their expressions into the simulation
data and also with zero-pressure quantities used as input data.
Since the density range of our data is limited to less than 20%
change, we have not been able to compare the predictive power
of the three EoSs. However, one could do such a comparison if the
density range is large enough. For instance, it was found that EOS III
is very accurate even for very large pressure ranges [32].

The values of B0 and B′

0 for each isotherm with different
cluster sizes are calculated via the EoSs, for which the results
are summarized in Table 2. An increase in bulk modulus with
decrease in number of particles of the cluster has been observed.
As the cluster size decreases, proportionallymore atoms are on the
cluster surface. Surface atoms have less binding energy, compared
to the bulk atoms; therefore, when the number of particles
decreases, the compressibility is expected to decrease. Also, we
have calculated the isobaric expansion coefficient for different
cluster sizes at different temperatures via LIR II (see Table 3).
An increase in isobaric expansion coefficient with decrease in
number of particles has been observed, which may mean that the
anharmonicity increases when the cluster size reduces. Also, a
decrease in isobaric expansivity with increase in temperature has
been found.
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