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To solve the controversy, regarding the existence of an analytic solution to the
1-D Ising model with nearest-neighbor (NN) and next-nearest-neighbor (NNN)
interactions in the presence of a magnetic field, we apply the transfer matrix
method to solve the 1-D Ising model in the presence of a magnetic field, taking
both NN and NNN interactions into account. We show that it is possible to write
a transfer matrix only if the number of sites is even. Even in such a case, it is
impossible to diagonalize the transfer matrix in an analytic form. Therefore, we
employ a numerical method to obtain the eigenvalues of the transfer matrix.
Moreover, the heat capacity, magnetization, and magnetic susceptibility versus
temperature for different values of the competition factor (the ratio of NNN to
NN interactions) are shown.

Keywords: Ising model; next-nearest interaction; heat capacity; transfer matrix

1. Introduction

1-D Ising models have attracted much interest for a long period of time because they are
much easier to be treated theoretically than 2- and 3-D ones [1–7]. Many quasi-1-D
magnetic materials have been discovered in recent years, most of them formed by
transition metal ions of the 3-D series. Their properties can generally be interpreted in
terms of nearest-neighbor (NN) interactions whose sign determines the type of short range
order: e.g., ferromagnetic in CsNiF3 and antiferromagnetic in (CH3)4 NMnCl3 [8]. In
recent years, more, complicated 1-D magnetic systems have been synthesized in organic, as
well as inorganic, solid state chemistry [9]. In particular, Gatteschi and co-workers
investigated a class of quasi-1-D molecular magnetic material [10] R(hfac)3 NITEt
(R¼Gd, Tb, Dy, Ho, Er) [11], whose magnetic properties are determined by rare earth ion
with spin s ¼ 1=2 and which turned out to be the first example of alternating spin magnetic
chains with dominant next-nearest-neighbor (NNN) interactions [12]. The first successful
attempt to solve exactly the Ising model with NNN interactions was done by Stephenson
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[13], who obtained the analytical expression for the zero-field static susceptibility in two

formal models: NNN interactions and both NN and NNN interactions. Stephenson [13]

used an artful contrivance, invented by Dobson [14], in which he reduced the problem

under discussion to another one, namely a problem in which the NNN interaction plays

the role of the NN interaction and the NN interaction plays the role of a certain ‘‘field’’

[15]. This artful contrivance allowed him to obtain the transfer matrix in the form of 2� 2

dimensions and facilitate its solution. Unfortunately, this approach is limited to the zero

external magnetic field. The genuine transfer matrix in the presence of a magnetic field

should be of 4� 4 dimensions, this has been obtained for the first time by Oguchi [16], who

also obtained the secular equation, but only in the approximation of zero-temperature.
Deriving the transfer matrix for the model with NN interactions only, both in the

presence and in the absence of a magnetic field, is an easy task [17,18]. Pini and Rettori [2]

mentioned that it is possible to write the transfer matrix for the model only with even

number of sites (N), in the presence of both NN and NNN interactions, but that its

analytical solution to find the eigenvalues in the presence of a magnetic field is an

impossible task. In a recent study, we have obtained an analytical expression for the

partition function of the model when 3 � N � 14 by using the Matlab software [19]. The

transfer matrix was numerically solved in the thermodynamic limit, to find its maximum

eigenvalues. The aim of this study is to write a correct transfer matrix for the model in the

thermodynamic limit and then to find its exact solution for non-zero temperature.

The results will be used to calculate the dependence of the heat capacity, the magnetization

and the magnetic susceptibility on temperature, magnetic field strength, and competition

factor (the ratio of NNN to NN interactions).

2. Solving the model via transfer matrix method

The Hamiltonian for the Ising model in the presence of a magnetic field, B, taking both

NN and NNN interactions into account, is:

H ¼
X
i

Jsisiþ1 þ
X
i

J1sisiþ2 þ B
X
i

si ð1Þ

where J and J1, are the NN and NNN interactions, respectively, si the state of ith spin, and

B the magnetic field.
In 2001, Ogly [15] claimed that the transfer matrix can be written as follows:

W¼

exp ðKþK1þH=TÞ exp ðK�K1þH=TÞ 0 0
0 0 expð�KþK1þH=TÞ exp ð�K�K1þH=TÞ
exp ð�K�K1�H=TÞ exp ð�KþK1�H=TÞ 0 0
0 0 expðK�K1�H=TÞ exp ðK�K1�H=TÞ

0
BB@

1
CCA
ð2Þ

where K � J=kBT, K1 � J1=kBT, T the absolute temperature, and kB the Bolzmann

factor. On the basis the Equation (2), he suggested that the partition function, Z, can

be given as [15]:

Z ¼ Tr½WN� ¼ �N1 þ �
N
2 þ � � � þ �

N
N

� �
¼ �N1 1þ

�N2
�N1
þ � � � þ

�NN
�N1

� �
� �Nmax ð3Þ
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in which,

�max ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4bþ 4y

p
4

� aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4bþ 4y

p
� a

4

 !2

�
y

2
�

2c� ya

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4bþ 4y

p
vuut

ð4Þ

where,

y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q

p
�
q

2
3

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

ffiffiffiffi
Q

p
�
q

2
3

r
þ
b

3
, Q ¼

p3

27
þ
q2

4
,

p ¼ �
b2

3
þ ac� 4d, q ¼ �

2b3

27
þ
bac

3
�
8bd

3
� a2d� c2,

a ¼ �2eJþJ
0=T coshðH=T Þ, b ¼ 2eJ

0=T sinh
2J

T

� �
,

c ¼ 4eJ
0�J=T sinh

2J 0

T
cos

H

T
, d ¼ �4 sinh2

2J 0

T
:

ð5Þ

Since he claimed that the partition function given in Equation (2) is exact for any

values of N, we may check such a claim for any arbitrary value of N. We do such

evaluation for N¼ 4. Based on the transfer matrix given in Equation (2), the partition

function for N¼ 4, Z(4), in terms of the reduced magnetic field h ¼ B=T and spin–spin

interaction energies K and K1, can be calculated by Mathematica. The result is as follows:

Zð4Þ ¼ TrðW 4Þ ¼ 4 expð2hÞ þ 4 expð�4K1Þ þ 4 exp �2ðhþ K1Þð Þ

þ exp �4ðh� Kþ K1Þð Þexp 4ðhþ Kþ K1Þð Þ þ 2expð�4Kþ 4K1Þ: ð6Þ

Using Equation (1) for the Hamiltonian, however, the exact partition function for

N¼ 4 can be obtained as,

Z½4� ¼ exp 4Kþ 4K1 � 4hð Þ þ 4 expð�2hÞ þ 4 expð�4K1Þ

þ 2 expð�4Kþ 4K1Þ þ 4 expð2hÞ þ expð4Kþ 4K1 þ 4hÞ ð7Þ

which is obviously different from that given in Equation (6), except for K1¼ 0.
It is worth mentioning that the element of the transfer matrix for the model is given by

Pini and Rettori [2] as follows,

T sz1 , s
z
2 ; s z3 s

z
4

� �
¼ exp 1=2�JRr s z1 s

z
2 þ 2s z2 s

z
3 þ s z3 s

z
4

� �� �
exp �Jrrs

z
2 s

z
4

� �
� exp �=2gr�BH sz2 þ s z4

� �� �
ð8Þ

from which the transfer matrix may be found as,

Ts1s2,s3s4 ¼

expð2Kþ 2K1þ 2hÞ expðKþ hÞ expð�Kþ hÞ expð�2K1Þ

expðh�KÞ expð�2Kþ 2K1Þ expð�2K1Þ expðK� hÞ
expðKþ hÞ expð�2K1Þ expð�2Kþ 2K1Þ expð�K� hÞ
expð�2K1Þ expð�K� hÞ expðK� hÞ expð2Kþ 2K1� 2hÞ

0
BB@

1
CCA
ð9Þ

then, the partition function may be given by,

Z ¼ Tr TN=2
� �

¼ �N=21 þ �N=22 þ �N=23 þ �N=24

	 

ð10Þ

which, for N¼ 4, gives the same result as Equation (7).
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When h¼ 0, there is an analytical solution for the transfer matrix, for which the
eigenvalues may be found as,

�1 ¼ 1=2 expð�2K� 4K1Þðexpð6K1Þ þ 2 expð2Kþ 2K1Þ þ expð4Kþ 6K1Þ

þ expð4K1Þ expð2KÞ þ 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 expð2KÞ þ expð4K1Þ � 2 expð2Kþ 4K1Þ þ expð4Kþ 4K1Þ

p
ð11aÞ

�2 ¼ 1=2 expð�2K� 4K1Þðexpð6K1Þ þ 2 expð2Kþ 2K1Þ þ expð4Kþ 6K1Þ

� expð4K1Þðexpð2K Þ þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 expð2KÞ þ expð4K1Þ � 2 expð2Kþ 4K1Þ þ expð4Kþ 4K1Þ

p
ð11bÞ

�3 ¼ 1=2expð�2K� 4K1Þ

h
expð6K1Þ � 2expð2Kþ 2K1Þ þ expð4Kþ 6K1Þ

� expð4K1Þ expð2K Þ � 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4expð2KÞ þ expð4K1Þ � 2expð2Kþ 4K1Þ þ expð4Kþ 4K1Þ

p i
ð11cÞ

�4 ¼ 1=2expð�2K� 4K1Þ

h
expð6K1Þ � 2expð2Kþ 2K1Þ þ expð4Kþ 6K1Þ

þ expð4K1Þ expð2KÞ � 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4expð2K Þ þ expð4K1Þ � 2expð2Kþ 4K1Þ þ expð4Kþ 4K1Þ

p i
ð11dÞ

however, if h 6¼ 0, there is no analytical solution for the matrix, as mentioned by Pini and
Rettori [2].

3. Results and discussion

We have solved the transfer matrix numerically for the model to obtain its largest
eigenvalue for 1-D Ising model, including both NN and NNN interactions. Based on a
numerical calculation of the partition function, the heat capacity, Cv, is obtained by using
the periodic boundary condition for the model in the presence of a magnetic field for
different values of the competition factor (ratio of the NNN to NN interaction energies)
n ¼ K1=K ¼ 0:2, 0:3, 0:4, 0:5, and 0:6. The results for the reduced heat capacity versus
temperature for given values of n and f¼ 0.15 (the ratio of magnetic field-spin interaction
to that of the NN spin–spin interaction energy) are shown in Figure 1. According to
Figure 1, on increasing the ratio n, the peak shifts to a higher temperature. Also, the
reduced heat capacity versus temperature for different values of magnetic field is shown in
Figure 2, when f¼ 0.15 and n¼ 0.20. We should note that, the heat capacity can be
analytically obtained when B¼ 0 and N!1, by taking into account that:

Z ¼ Tr½T �N=2 ¼ �N=21 þ �N=22 þ �N=23 þ �N=23

	 


¼ �N=21 1þ
�N=22

�N=21

þ
�N=23

�N=21

þ
�N=24

�N=21

 !
ð12Þ

For N!1, the partition function is approximately equal to

Z ¼ ð�1Þ
N
2 ð13Þ
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then

Cv

Nk
¼ �T

@2F

@T2
¼ �1=2T

@

@T

@

@T
�T lnð�1Þð Þ: ð14Þ

One can use the expression for �1 given in Equation (11a), to obtain an analytical

expression for Cv at B¼ 0. We notice that, according to Figure 2, the peak in the heat

capacity shifts to a higher temperature when B increases. Figure 2 of this study is quite

different from the corresponding result of reference [15] (see Figure 9 therein). Having the

partition function, one may simply use the formula

M ¼ �
@F

@H
ð15Þ

to calculate magnetization M. The calculated reduced magnetization is shown in Figure 3,

as a function of T for different values of B.
As shown in Figure 3, the magnetization goes to zero at a higher temperature when the

magnetic field is stronger. At a low temperature, the system is in an ordered state. By

raising temperature it becomes partially disordered. The extent of disorder depends on

both T and B, as shown in Figure 3. Magnetization versus magnetic field is plotted for

different values of n as shown in Figure 4.

Figure 2. Heat capacity vs. temperature for different magnetic fields B¼ 0, 0.15, 0.3, and 0.4.

Figure 1. Heat capacity vs. temperature for different values of the competition factor (ratio of NNN
to NN interaction energies) n¼ 0.2, 0.3, 0.4, 0.5, and 0.6.
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According to Figure 4, the magnetization is zero in zero magnetic field. Increasing the
magnetic field, the magnetization increases and the system goes into an ordered state.
For a strong magnetic field, the spins in the system do not respond further to the external
magnetic field and the magnetization remains constant. Moreover the thermal magnetic
susceptibility

� ¼ �
@2F

@2H
ð16Þ

versus temperature, which is given for different values of the competition factor
and f¼ 0.2, is shown in Figure 5.

4. Conclusions

A model consisting of a 1-D array of spins interacting through NN and NNN interactions
is studied in the thermodynamic limit in the presence of a magnetic field. It is shown that in
general there is no analytical solution for the model. Therefore, a numerical approach
must be used to solve the transfer matrix. The heat capacity versus temperature for

Figure 4. Reduced magnetization vs. magnetic field for different values of the competition factor
n¼ 0.2, 0.4, and 0.6.

Figure 3. Reduced magnetization vs. temperature for given values of the reduced magnetic field
B¼ 0.005, 0.1, and 0.4 (in units of tesla).
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different values of the competition factor and magnetic field are shown (Figures 1 and 2),
and it is shown that, by increasing the competition factor and the magnetic field, the peak
in the heat capacity shifts to a higher temperature. The magnetization is also calculated
versus the magnetic field and temperature (Figures 3 and 4). At low temperatures, the
magnetization is high and the system is typically in the ordered ferromagnetic phase, while
with increasing temperature the magnetization (order parameter) decreases and finally
approaches zero. The magnetization in weak magnetic fields is small, but it increases with
magnetic field, until it reaches a constant (saturated) state. The thermal magnetic
susceptibility is also presented for given values of the competition factor (Figure 5).
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