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ABSTRACT: Water inside carbon nanotubes as an example of
nanoconfined water has gained noticeable attention, in both
theoretical and applied aspects. Molecular simulation has played a
major role in the studies in this field. Yet, there is a need for
systematic study of simulation results and compilation of scientifi-
cally reliable predictive relations. Here we present Monte Carlo
simulations of water inside carbon nanotubes with different radii.
An equation of state which was derived on the basis of the extended
Lennard−Jones (12,6,3) as the effective pair potential is chosen for
the system of water inside the carbon nanotubes. The equation of state is modified to take the effects of anisotropic pressure
tensor into account. Using the simulation results, the applicability of this equation of state for water inside the carbon nanotubes
is studied and the parameters of the equation of state for this system are obtained.

1. INTRODUCTION
The physical behavior of the so-called nanoconfined water has
become of significant interest to researchers in recent years.
Nanoconfined water is defined as the water trapped in
nanosized geometries such as nanoslits, nanopores, and
nanotubes. The behavior of nanoconfined water is of major
importance in some specific areas of application, among which
the ion-channels in biological systems,1−4 lubrication of micro-
and nanosized devices,5,6 radioactive waste storage and heavy
ion diffusion,7−9 nanofluidic devices,10−14 protein folding,15−17

and water purification using nanotubes18−21 are worth
mentioning. Confinement of water in the nanosized spaces
changes its physical and thermodynamic behavior drastically.
Using X-ray diffraction (XRD) techniques, it has been shown
that water confined inside carbon nanotubes (CNTs) retains its
liquid state at temperatures far below its bulk freezing point.22

When frozen, the nanoconfined water forms spectacular quasi-
one-dimensional crystals known as ice nanotubes.22,23 Using
inelastic neutron scattering, it has also been observed that in
nanoconfined water the hydrogen bond energy is reduced and
the hydrogen bond network is weakened.24,25 This leads to the
softer dynamics of water molecules inside nanotubes.
Water has been the subject of computer simulation for more

than three decades.26 Simulation techniques have proven to be
useful tools in studying the physical and thermodynamic
behavior of water inside the nanotubes. In an early work,
Lynden-Bell and Rasaiah used molecular dynamics to study the
water confined in cylindrical nanopores with strictly repulsive
walls.27 They observed the formation of cylindrical water shells
inside carbon nanotubes. Also, they studied the mobility of ions
in this system and showed the different behavior of small and
large ions. In 2001, Hummer et al. reported molecular
dynamics simulations of water conduction through the
hydrophobic channel of carbon nanotubes.28 They observed
instantaneous filling of carbon nanotubes with single-file chains

of water molecules and pulse-like transmission of water through
the CNTs. Striolo et al. conducted research in water adsorption
in the nanopores using grand canonical Monte Carlo
simulations.29−32 By changing the chemical potential of the
system, they obtained the adsorption−desorption isotherms for
the nanotubes with different radii. They studied the effects of
temperature, pore wall hydrophobicity, and connectivity of the
pores on the water adsorption. In a more recent work, Lakatos
and Patey also used the grand-canonical Monte Carlo
simulation to study the adsorption of water in nanotubes.33

They studied the effect of ions inside nanotubes on the
adsorption behavior. Srivastava et al. used molecular dynamics
to study the phase transition of water in graphite and mica slit
pores.34 They observed that the vapor−liquid coexistence
occurs in different densities in the layers of the confined water.
Gordillo and Marti used molecular dynamics in the canonical
ensemble to study the hydrogen bonds of water inside carbon
nanotubes.35 Using conditions based on oxygen−hydrogen
separation and alignment, they calculated the mean number of
hydrogen bonds and showed that this number is smaller than
its corresponding value in the bulk water. In another work, they
also studied the hydrogen bonds of supercritical water inside
the carbon nanotubes and showed the more prominent
reduction in the number of hydrogen bonds.36 Koga et al.
used molecular dynamics simulation to study the freezing of
water inside the carbon nanotubes and the formation of the ice
nanotubes.23 Their simulations predicted the formation of four
different ice nanotubes with the square, pentagonal, hexagonal,
and heptagonal cross sections, depending on the radius of the
carbon nanotube. Using the simulation results, they studied the
phase transition in the thermodynamic space of the nanotube
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volume, temperature, and axial pressure. In a recent work,
Kyakuno et al. conducted an extensive study on the global
phase diagram of water confined inside carbon nanotubes.37

They performed molecular dynamics simulations on the water
confined inside CNTs with diameters ranging from 1.46 to 2.4
nm. Their results showed the wet−dry type transitions as well
as the formation of ice nanotubes. They also used a
combination of X-ray diffraction, nuclear magnetic resonance
(NMR), and electrical resistance measurements to verify their
simulation results.
Developing a general equation of state (EoS) for dense fluids

and solids has been the major goal of much research.38−46

Parsafar et al. employed an effective pair potential of the
Lennard−Jones (12,6) type (originally named the averaged
effective pair potential) to obtain an equation of state that
mimics the linear isotherm regularity (LIR) in some dense
fluids.44,47 Parsafar and Mason used the repulsive branch of a
universal expression for the binding energy of solids to obtain a
simple cubic function for the potential energy in terms of
density.42 The accuracy of the EoS was further enhanced by
considering an extended Lennard−Jones (12,6,3) interaction
model as the effective pair potential, and it was shown that the
new equation of state (EoS III) is applicable to a wide variety of
fluids, including nonpolar, polar, hydrogen-bonded, and
metallic, as well as all types of solids.45

In this paper, we first introduce a modified version of the EoS
III originally developed by Parsafar et al.45 As the pressure
tensor for water inside the CNTs is anisotropic, two pressure
components, axial and radial, are to be considered separately.
Thus, we have modified the EoS III to include the axial and
radial pressure components; hence, two separate equations of
state, one for the axial and the other for the radial
compressibility factors, are given. Using Monte Carlo
simulations in canonical ensemble, we have calculated the
thermodynamic parameters of water inside the CNTs with
different radii. The anisotropic pressure tensor in this system
has been calculated using the separated axial and radial virial
expressions. Simulations have been performed for the nano-
tubes with different radii, both at the filled and unfilled states,
with water. The parameters of the equations of state are
calculated based on the simulation results, and it is shown that
the EoS III is capable to model the water inside the CNTs with
very good accuracy.

2. PRESSURE TENSOR AND THE THERMODYNAMIC
EOS

For the water confined inside a nanotube, the radial and axial
forces are different. Thus, water inside the nanotube is an
anisotropic system for which the pressure tensor has to be used
instead of a scalar pressure. The pressure in the axial and radial
directions are denoted by pL and pR, respectively. The reversible
work done by the water molecules in an expansion of
cylindrical volume through the change in the radius, dR, and
the change in the length, dL, is given by

δ π π= +W RL p dR R p dL(2 ) ( )rev R
2

L (1)

Thus, at a constant number of particles, N, the Helmholtz
free energy change is as follows:

π π= − − −dA SdT RL p dR R p dL(2 ) ( )R
2

L (2)
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Similarly, at constant N and R, the Maxwell equation of eq 2
is as follows:
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From eq 2, the pressure components are given by
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Because the Helmholtz free energy is defined as A = U − TS,
at constant T and L,
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Substitution of (∂A/∂R)N,T,L from eq 5a and (∂S/∂R)N,T,L
from eq 3 in eq 6 would result in
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Because V = πR2L and (∂U/∂R)N,T,L = 2πRL(∂U/∂V)N,T,L, eq
7 may be rewritten as
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This is an exact thermodynamic EoS for the radial pressure.
Similar manipulations would give the EoS for the axial pressure
as
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Note that the internal energy, U, is the sum of kinetic energy
of particles and the configurational potential energy,
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in which u is the configurational energy per particle, kB is the
Boltzmann constant, and 6/2kBT is the mean kinetic energy of
one water molecule with six translational and rotational degrees
of freedom. Using eq 10, it is trivial to obtain (∂U/∂v)N,T =
N(∂u/∂v)N,T = (∂u/∂v)N,T where v = V/N is the molar volume.
Thus, eqs 8 and 9 may be rewritten as
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3. DENSITY DEPENDENCE OF CONFIGURATIONAL
ENERGY

To use eqs 11a and 11b to find the radial and axial components
of pressure tensor, it is necessary to know the density
dependence of the configurational energy, u. The nature of
intermolecular interactions, as well as the physical state of the
system, determines how the configurational energy varies with
density. For the system of water molecules inside the CNT, the
extended Lennard−Jones model, first introduced by Parsafar et
al., is used.45 The extended Lennard−Jones model consists of
two distinct parts, pertaining to short- and long-range
interactions. The first part is a conventional (12,6) Lennard−
Jones model that covers the short-range van der Waals
interactions, which, in the case of the system under study,
exists between water molecules as well as between water
molecules and the carbon atoms of the CNT wall. But water
molecules have permanent electric dipoles, and apart from van
der Waals interactions, dipole−dipole electric interactions are
also to be considered. Parsafar et al. extended the conventional
(12,6) Lennard−Jones interaction by adding a 1/r3 term to
account for long-range dipole−dipole interactions. In the case
of bulk systems, on the basis of the effective near-neighbor pair
interactions of an extended Lennard−Jones (12,6,3) type,
Parsafar et al. showed that for a wide variety of fluids and solids,
the average configurational energy per particle may be given
by45
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The temperature-dependent parameters kis depend on the
chemical species as well as the physical state of the system.
Equation 12 may be rearranged to
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where ρ = 1/v is the molar density. The applicability of eq 13 to
the system of water molecules inside the CNTs will be directly
verified using the simulation results.

4. EQUATION OF STATE III FOR THE ANISOTROPIC
SYSTEM

Following the notation used by Parsafar et al.42,45 and using eq
11a, the exact thermodynamic EoS for the radial component of
pressure tensor may be rewritten as
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where ZR = pRv/kBT is the radial compressibility factor and
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is the contribution from the nonideal thermal pressure.
Substituting the configurational energy per particle from eq
12, the equation of state 14 is rewritten as
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A similar equation is obtained for the axial compressibility
factor, ZL, as
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Equations 16 and 17 give the EoS III (as is named by
Parsafar et al.45) in the radial and axial directions for the
anisotropic system of water inside a nanotube, respectively.
These equations of state can be expressed as follows

ρ
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where f L = F6,L(T) + a2,L(T), f R = F6,R(T) + a2,R(T), gL =
F3,L(T), gR = F3,R(T), hL = F12,L(T), and hR = F12,R(T). The
parameters f, g, and h are nontrivial functions of temperature
and in general contain contributions from both the internal and
thermal pressures.

5. FILLED AND UNFILLED STATES
As will be shown on the basis of the simulation results, two
distinct regimes are observed in the thermodynamic behavior of
water confined in the CNTs. These two regimes correspond to
the filled and unfilled states and are differentiated based on the
density of water inside the CNTs. In the unfilled state, the
water molecules do not completely fill the cylindrical space
inside the CNT. Thus, the average distance among the nearest
neighbor of water molecules is larger than that of the bulk water
at the same temperature. Water molecules in this state form
separate clusters in the available volume inside the CNT. In the
unfilled state, the increase in the number of molecules increases
the effective density but does not change the packing of water
molecules. But in the filled state, the volume available to water
molecules is completely filled and the addition of extra
molecules leads to an extra packing. Thus, the density
dependence of the configurational energy as well as radial
and axial pressure components are expected to be different in
these two states.
The density of water inside the CNT should be calculated

based on the accessible volume corresponding to the effective
radius of the CNT. The definition of the effective radius of the
CNT is somewhat ad hoc. Here a definition based on the
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interaction potential which will be given in eq 20 is used. The
effective radius of a CNT is defined as the radial coordinate
which corresponds to one kBT of the water−wall interaction
potential. With this definition, the effective radii of 0.16, 0.26,
0.36, and 0.46 nm are obtained for the CNTs with the
geometric radii of 0.44, 0.54, 0.64, and 0.74 nm, respectively.
Considering the van der Waals radius of water molecules to

be 1/2σwt−wt, a value of 0.16 nm is obtained for this parameter
(see Table 1). It is seen that the 0.44 nm CNT with the

effective radius of 0.16 nm is filled with only a single array of
water molecules. Thus, it is the smallest CNT appropriate for
this study. Complete filling of the 0.44 nm CNT results in the
average number density of 3.16 water molecules per nanometer
length of the filled CNT, which corresponds to the molar
density of 67.75 mol/L. It will be shown, based on the
simulation results, that the transition from the unfilled state to
filled state begins at the molar density of about 75 mol/L. For
the CNTs with larger radii, calculating the filling density is not
straightforward, but it is expected that the filling density be
different for each CNT, especially when the radius of the CNT
is comparable to the van der Waals radius of the water
molecules.

6. SIMULATION DETAILS

Simulations are carried out using the Monte Carlo method in
the canonical ensemble. The simulation box consists of water
molecules placed inside a cylindrical volume representing a
carbon nanotube. The water−water interaction energy is
modeled using the well-established simple point charge/
extended (SPC/E) potential. The SPC/E potential employs a
three-point charge model of the water molecule with the
Columbic interactions among the concentrated charges on the
atoms of two molecules (qO on the oxygen and qH on the
hydrogen atoms). Also, a van der Waals interaction with
parameters σwt−wt and εwt−wtis considered between the oxygen
atoms of two water molecules. The parameters of the SPC/E
potential as well as the geometry of the water molecule used in
this model are given in Table 1.27,33,48

The interaction of water molecules with the CNT wall is
modeled using the (12,6) Lennard−Jones potential model. The
CNT wall is considered to be electrically neutral, and no
Columbic interactions exist between the molecules and the
CNT wall. The CNT wall is considered as an infinitely long
cylinder consisting of uniformly distributed van der Waals
interaction sites with the surface density of n. Integrating the
(12,6) Lennard−Jones potential on a smooth cylinder with an
infinite length yields the following potential function inside the
cylinder49
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in which σwt−wl and εwt−wl are the parameters of the Lennard−
Jones potential, r is the radial coordinate of particles inside the
cylinder, R is the radius of the cylinder, and F denotes the
standard hypergeometric function. The water−wall interaction
site on water molecules is set on the oxygen atoms. The
parameters of the water−wall Lennard−Jones potential, which
are given in Table 1, are calculated using the Lorentz−Berthelot
mixing rule.50 The surface density of interaction sites on the
CNT wall is taken to be n = 40 nm−2.33

As the water molecules are trapped inside the nanotube, the
periodic boundary conditions are applied only in the axial
direction of the CNT. The minimum image convention is used
to model the periodic boundary conditions in the simulation
box.50,51 Note that the minimum image convention does not
affect the water−wall interaction potential, because it is
obtained by using the integration on an infinite cylinder. But
water−water interactions are truncated for the distances larger
than the half of the simulation box length. The length of the
cubic simulation box is taken to be 4.0 nm, which corresponds
to a cutoff radius of 2.0 nm for water−water interactions. This
cutoff radius has been previously used for simulations of water
inside the CNTs and has successfully reproduced observed
behaviors in this system.37,52

Monte Carlo simulation in the canonical ensemble is
performed using the Metropolis algorithm.53 Independent
trial moves for the translation and rotation of water molecules
are used. Rigid-body rotations of water molecules are
implemented by using unit-norm quaternions. This is a
necessity to satisfy the symmetry requirements of the
underlying Markov chain.51 The magnitudes of the translational
and rotational moves are chosen so that the acceptance rate for
both translations and rotations fall in the vicinity of 50%.
Simulation of systems with different water densities is achieved
through changing the number of water molecules inside the
section of CNT which is bounded in the simulation box.
Simulations are carried out at the constant temperature of

298 K. In all simulations, the system is brought to equilibrium
in 107 steps before any data extraction. A minimum number of
necessary steps for equilibration is chosen by monitoring the
change of the total potential energy of the system versus the
number of steps. In about 107 steps, the variations of potential
energy are reduced to the random fluctuations about its mean
value. After reaching equilibrium, 3 × 107 steps are simulated
for the data collection. In evenly distributed sampling steps, the
water−water and water−wall interaction energies as well as the
axial and radial components of pressure are calculated. To
calculate the pressure components, the following virial
expressions are used:27,33

Table 1. Parameters of the Water−Water and Water−Wall
Potential Models

Water−Water (SPC/E)

σwt−wt
(nm)

εwt−wt
(kJ/mol)

qO (e) qH (e) rOH
(nm)

∠HOH
(deg)

0.3169 0.6502 −0.8476 0.4238 0.1 109.47
Water−Wall (L−J)

σwt−wl (nm) εwt−wt(kJ/mol)

0.3283 0.3891
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where f ij
x, f ij

y , and f ij
z are the components of intermolecular forces

between the ith and the jth water molecules in the x, y, and z
directions, respectively, and f i

wall is the force exerted by the ith
molecule on the CNT wall. The coordinates xij, yij, and zij are
the components of the intermolecular separation, and ri is the
radial coordinate of the ith molecule.
To produce more reliable results, in each specific simulation

case, a total of eight separate simulations are carried out in
parallel and the results are averaged out. As each simulation
starts with a random arrangement of water molecules and hence
a different point in the configurational phase space, using
parallel simulations increases the overall coverage of the phase
space.

7. RESULTS AND DISCUSSION
Before any discussions on the EoS, it is necessary to show the
difference of filled and unfilled states of water inside the CNTs.
The difference between the filled and unfilled states is best
recognized by studying the behavior of the radial and axial
pressure components. The Monte Carlo simulations are
performed on water inside four different CNTs with radii of
0.44, 0.54, 0.64, and 0.74 nm, respectively. For each CNT,
several simulations with a different number of water molecules
are performed. All simulations are carried out in the NVT
ensemble with the constant temperature of 298 K. The density
of water is calculated using the definition of effective radius
presented in the simulation details. The radial and axial
pressures are calculated using eqs 21a and 21b. Figures 1 and 2
show the results of these simulations as the mean radial
pressure (pR) and mean axial pressure (pL) versus the molar

density of water (ρ) inside the CNTs. These figures show that
the pressures follow two distinct regimes. In the case of each
CNT, the density dependence of pressures changes at a certain
density, which corresponds to the filling of the CNT with water
molecules. For densities below the filling density, the pressure−
density diagram is more or less linear. This behavior is a
reminder of the ideal gas with zero interactions between the gas
particles. In the case of water molecules inside the CNTs in the
unfilled state, water clusters behave as separate particles with
negligible interactions between the clusters. For densities above
the filling density, the water clusters are merged and the
pressure−density behavior deviates from the linear relation as
the intermolecular interactions become important. Before the
merging of the water clusters, the increase in density reduces
the separation of the water clusters. As the water clusters move
closer, the attractive interactions among the clusters cause a
sudden drop in the pressures before the filling occurs. The
filling densities are obtained as 75.14, 74.25, 62.39, and 55.82
mol/L for the 0.44, 0.54, 0.64, and 0.74 nm CNTs, respectively.
With the increase of the CNT radius, the filling density
converges to the molar density of the bulk water at 298 K
which is 55.5 mol/L.
To show the transition between the unfilled and filled

regimes more clearly, the Helmholtz free energy of water as a
function of density is also calculated from the simulations. The
free energy has been calculated using the particle addition
technique.50 Figure 3 shows the molar Helmholtz free energy
for water inside the CNTs with a radii of 0.44, 0.54, 0.64, and
0.74 nm. A change of slope occurs in the free energy diagram
versus density at the unfilled−filled transition. The dependency
of the filling density on the radius of the CNT is easily observed
in Figure 3, changing from 55.8 mol/L for R = 0.74 nm to 75.1
mol/L for R = 0.44 nm, respectively. Figure 4 shows the density
profiles of water inside the four CNTs in the axial direction
(along the length of the CNTs). For each CNT, density
profiles are depicted for two different densities, namely below
and above the filling density. In the unfilled state, the density
profile of separate water clusters are distinguished, whereas in
the filled state, approximate smooth density distribution can be
seen. Note that in case of the 0.44 nm CNT, only a single array
of water molecules is present inside the CNT and that gives rise
to the oscillating density profiles (see Figure 4a).
In obtaining the equations of state 19a and 19b, it was

assumed that the configurational energy of the fluid is

Figure 1. Mean axial pressure versus water density inside the CNTs
with the given radii at T = 298 K (the dash lines are shown to guide
the eye).

Figure 2. Mean radial pressure versus water density inside the CNTs
with the given radii at T = 298 K (the dash lines are shown to guide
the eye).
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calculated using the extended Lennard−Jones interactions and
is given by eq 12.45 To verify the validity of this assumption for
water inside the CNTs, the density dependence of the
configurational energy is to be studied. For this purpose, the
mean value of the quantity uv2 is calculated, based on the
Monte Carlo results, and its behavior is compared with the

relation given in eq 13. As was shown for the pressures, the
system of water inside the CNTs follows two distinct regimes
in the filled and unfilled states. Thus, the density dependence of
the configurational energy is studied for these two states,
separately. Figures 5 and 6 show the uv2 versus the molar

density of water inside the four CNTs with radii of 0.44, 0.54,
0.64, and 0.74 nm for both the filled and unfilled states,

Figure 3. Helmholtz free energy per mole of water inside the CNTs
with the given radii at T = 298 K (the dash lines are shown to guide
the eye).

Figure 4. Density profiles of water inside the CNTs for the unfilled and filled states, with a CNT radius of (a) 0.44 nm, (b) 0.54 nm, (c) 0.64 nm,
and (d) 0.74 nm.

Figure 5. Density dependence of the configurational energy for the
unfilled state of water inside the CNTs with the given radii at T = 298
K. Equation 13 is well fitted onto the simulation results for all CNTs.
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respectively. Solid lines are fitted curves based on the relation
given in eq 13. The parameters of the fitted curves and the R2

values of the least-squares method used for the regression are
given in Table 2. In general, the R2 values in both states show

very good correlation between the simulations results and the
predicted relation for the configurational energy. This verifies
the applicability of the assumption of the (12,6,3) extended
Lennard−Jones interactions. A more specific discussion
concerning the effect of the CNT radius on the density
dependence of the configurational energy may be presented.
Figures 5 and 6 show that the density dependence of the
configurational energy for water inside the 0.44 nm CNT is
different from that for water inside the larger CNTs, to some
extent. Also, unlike water inside the 0.44 nm CNT, uv2 for
water inside the CNTs with radii of 0.54, 0.64, and 0.74 nm
converges to the same value at large densities. This can be
related to the fact that inside a 0.44 nm CNT, water molecules
are arranged in a single-file fashion, due to the small radius.
Thus, the water−water interactions are restricted to the axial
direction, allowing the water−wall interactions to prevail,
especially for small molar densities.
To study the applicability of the EoS III given by eqs 19a and

19b for water inside the CNTs, the radial and axial
compressibility factors are to be calculated. The mean values
of (ZL − 1)v2 and (ZR − 1)v2 for the four CNTs in the unfilled
state are shown versus the molar density in Figures 7 and 8.
The parameters of the fit to the EoS III are given in Table 3. In

the unfilled state, water inside four different CNTs follows the
EoS III quite accurately.
For the filled state, the applicability of the EoS III is studied

by plotting the mean values of (ZL − 1)v2 and (ZR − 1)v2

versus the molar density, as shown in Figures 9 and 10. The
parameters of these fits, which are also given in Table 3, are

Figure 6. Density dependence of the configurational energy for the
filled state of water inside the CNTs with the given radii at T = 298 K.
Equation 13 is well fitted onto the simulation results for all CNTs

Table 2. Parameters of the Fit to the Configuration Energy
Relation Eq 13

radius
(nm)

k3
(kJ L mol−2)

102k6
(kJ L2 mol−3)

106k12
(kJ L4 mol−5) R2

Unfilled State
0.44 −2.137 3.349 −2.360 0.9991
0.54 −2.815 4.876 −3.860 0.9981
0.64 −3.096 5.992 −6.220 0.9992
0.74 −3.251 6.610 −7.760 0.9996

Filled State
0.44 −0.478 −0.192 0.233 0.9990
0.54 −1.314 1.132 −0.292 1.0000
0.64 −1.254 0.960 −0.188 0.9998
0.74 −1.376 1.153 −0.264 0.9998

Figure 7. Fits of eq 19a onto the calculated data of the unfilled state,
for the CNTs with the given radii.

Figure 8. Fits of eq 19b onto the calculated data of the unfilled state,
for the CNTs with the given radii.

Table 3. Parameters of the Fit to the Axial and Radial
Equations of State 19a and 19b

radius
(nm)

f
(L2/mol2)

10−4g
(L/mol)

102h
(L3/mol3) R2

Unfilled State
0.44 106(ZL − 1)v2 1161 −6.510 −9.140 0.9981

106(ZR − 1)v2 689.7 −4.270 −4.850 0.9995
0.54 106(ZL − 1)v2 1173 −6.360 −9.720 0.9973

106(ZR − 1)v2 935.6 −4.630 −8.320 0.9948
0.64 106(ZL − 1)v2 1305 −6.440 −14.10 0.999

106(ZR − 1)v2 1279 −5.970 −14.40 0.9987
0.74 106(ZL − 1)v2 1393 −6.470 −17.70 0.9995

106(ZR − 1)v2 1510 −6.580 −20.00 0.9991
Filled State

0.44 106(ZL − 1)v2 1674 −12.50 −4.960 0.9992
106(ZR − 1)v2 115.3 −2.200 0.502 0.9995

0.54 106(ZL − 1)v2 239.2 −2.960 −0.337 0.9994
106(ZR − 1)v2 244.5 −2.480 −0.427 0.9989

0.64 106(ZL − 1)v2 411.0 −4.060 −0.520 0.9995
106(ZR − 1)v2 317.2 −3.440 0.289 0.9991

0.74 106(ZL − 1)v2 354.5 −3.950 0.608 0.9991
106(ZR − 1)v2 190.5 −3.100 2.06 0.9996
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drastically different from those of the unfilled state. On the
basis of the R2 values of the fits given in Table 3, the EoS III
gives very accurate predictions for the filled state for all the
CNTs as well.
In the unfilled state, the radial and axial compressibility

factors of water inside the 0.44, 0.54, 0.64, and 0.74 nm CNTs
have small dependency on the CNT radius. But in the filled
state, the radius of the CNT has significant effect on the density
dependence of the compressibility factor and the parameters of
the equations of state in both radial and axial directions. Also
the compressibility factor of water inside the 0.54 nm CNT has
a significantly different behavior in the filled state. This
behavior can be related to the arrangement and ordering of
water molecules inside this CNT. Water molecules inside the
0.54 nm CNT are not in the single-file arrangement as in the
case for 0.44 nm CNT, but considering that the effective
diameter of this CNT is about 1.6 times the van der Waals
diameter of the water molecules, it is reasonable to believe that
water molecules are still strongly restricted in the radial
direction. A more detailed discussion of this case, which is
beyond the scope of this paper, is necessary and will be
addressed in future works.

8. CONCLUSION
We have presented a Monte Carlo study of water inside the
CNTs in the canonical ensemble and examined the predictive
power of the EoS III. By considering the anisotropic pressure
tensor for the water inside the CNTs, two separate equations of
state for the radial and axial directions have been derived. The
assumption of the nearest-neighbor extended Lennard−Jones

interactions has been used in the derivation of the equations of
state. Monte Carlo simulations are performed using a
simulation box consisting of water molecules inside the
cylindrical CNTs with the periodic boundary conditions in
the axial direction. The water−water and water−wall
interactions are modeled using the SPC/E and Lennard−
Jones potentials, respectively. The simulation results have
shown the difference in thermodynamic behavior of water
inside the CNTs in the filled and unfilled states. Calculation of
the interaction energies obtained from the Monte Carlo
simulations has verified the applicability of the extended
Lennard−Jones potential model for this system. Using the
simulation results, the compressibility factors in both radial and
axial directions in the unfilled and filled states have been
calculated. The EoS III in the radial and axial directions has
been fitted to these results with very good accuracies. The effect
of radius and the filling of the CNTs on the configurational
energy and the parameters of the equations of state have been
discussed.
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