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Using molecular dynamic simulation data of calcite in a wide pressure range to calculate some

of its thermodynamic properties via some universal equations of state

Hamed Akbarzadeh, Mohammad Shokouhi and Gholam Abbas Parsafar*1

Department of Chemistry, Sharif University of Technology, Tehran, 1458881367, Iran

(Received 3 September 2008; final version received 30 October 2008)

Molecular dynamics, MD, simulation of calcite (CaCO3) is selected to compare the p-v-T behaviour of some
universal equations of state, UEOS, for the temperature range 100K�T� 800K, and pressures up to 3000 kbar.
The isothermal sets of p-v-T data generated by simulation were each fitted onto some three- and two-parameter
EOSs including Parsafar and Mason (PM), Linear Isotherm Regularity (LIR), Birch-Murnaghan (BM), Shanker,
Vinet, Baonza and Modified generalized Lennard–Jones (MGLJ) EOSs. It is found that the MD data
satisfactorily fit these UEOS with reasonable precision. Some features for a good UEOS criteria such as
temperature dependencies of coefficients, pressure deviation, isothermal bulk modulus and its derivative at the
zero pressure limit, isobaric thermal expansion, pressure spinodal values and divergence of pseudo critical
exponent either near to or far from the spinodal condition, and some regularities for calcite are investigated.

Keywords: molecular dynamic simulation; calcite; universal equation of state; intermolecular potential; linear
isotherm regularity

1. Introduction

Calcite is one of the most common minerals, making up

about 4% by weight of the Earth’s crust. It is a natural

crystal of calcium carbonate, with hexagonal-rhombo-

hedral structure. Calcite fulfils a variety of construction,

industrial, agricultural and optical needs. In construc-

tion, it makes the primary ingredient of cement. It may

also be used as a decorative building stone. In industry,

calcite is valuable because it facilitates removal of silica

and aluminum impurities of iron, it adjusts pH only

enough to reach a non-corrosive equilibrium when it

properly applied, and also it may aid in the manufacture

of paper and glass. In agriculture, calcite can reduce soil

acidity. It has been a popular choice for visible and near-

IR polarization optics. It plays a very important role in

many scopes across the whole field of the earth science

such as order–disorder phase transition at 1260K

[1] and also the use of the isotope fractionation

of calcite in geochemistry. A number of microscopic

interatomic potential models are reported for calcite in

the literature [2].
The purpose of the present work is to generate p-v-T

isotherm simulation data of calcite and thereby

investigate the precision of some universal EOSs and

to calculate some of its thermodynamic properties.

Molecular dynamics simulation technique was

employed to perform the relevant calculation.

Simulations have been performed for different iso-

therms (100, 200, 300, 400, 500, 600, 700 and 800K) and

pressures up to 3000 kbar.
This paper is organized as follows: Section 2

presents a summary of molecular dynamic trend

contained force field model, simulation details and

p-v-T simulation results. In Section 3, we summarize

some universal equations of state and their merits in

predicting the thermodynamic properties of calcite.

Then in Section 4, we further check the accuracy of the

universal EOSs with the simulation data, and compare

their accuracy. Additionally, the temperature depen-

dencies of the parameters of Linear Isotherm

Regularity (LIR) II equation of state (EOS) are

exclusively examined in Section 5. In Sections 6 and

7, we investigate some regularities in solids and

spinodal constraint, respectively. This is followed in

the final section by a discussion and conclusion.

2. Molecular dynamic simulation

2.1. Force field model

The force field of calcite used in this work is based on

the Morse, harmonic and Buckingham force fields. The

carbonate anion is handled as a flexible unit with
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Morse potential bonds and harmonic bond angles. The

Morse potential energy function is of the form

uðrÞ ¼ E0 1� expð�Krðr� r0ÞÞð Þ
2
�1

� �
; ð1Þ

where r is the bond distance of C–O, r0 is its

equilibrium value, E0 is the well depth (defined relative

to the dissociated atoms) and Kr controls the width of

the potential well. Intermolecular angle bending

motions are described by harmonic functions with

force constant K�. The potential has the functional

form

uð�Þ ¼
K�
2
ð� � �0Þ

2; ð2Þ

where � is the angle between C–O–O and O–C–O; �0 is
its equilibrium value.

The short-range interactions between Ca–C and

Ca–O are treated using simple parameterized equa-

tions, such as the Buckingham potential, which takes

the form

uðrÞ ¼ A exp �
r

�

� �
�

C

r6
; ð3Þ

where u(r) is the potential energy between two atoms

and A, �, C are parameters particular to the types of

atom interacting, with r being the separation between

two atoms.
The potential parameters used in this work were

first introduced by Pavese et al. [3].
Full details of these parameters are tabulated in [4].

The columbic long-range interactions were calculated

using Ewald’s method, [5–8] with a precision of

1� 10�6.

2.2. Simulation details

Constant pressure and temperature (NpT) molecular
dynamics simulations with 420 molecules were
performed using the DLPOLY2.18 [9]. The Verlet-
Leapfrog algorithm [10,11] with a time step of 2 fs,
was used to integrate the equations of motion; The
Nose’–Hoover anisotropic thermostat–barostat with
0.1, 0.1 (ps) relaxation times [12,13] was used to
control the temperature and pressure. All interatomic
interactions between the atoms in the
simulation box and the nearest image sites were
taken into account within a cutoff distance of
Rcutoff¼ 15 Å for the supercell, which cell vectors are
(in angstrom): A(0, 28.78, 0), B(0, 16.78, 29.07),
C(29.13,�11.99,�6.92). Partial charges on C, O,
and Ca are 1.135, �1.045, 2.

We performed MD calculations for the temperature
range 100–800K at different pressures (0–3000 kbar).
The system was equilibrated for 40 ps (20,000 time
steps), the averages were computed over the following
400 ps (200,000 time steps).

2.3. Results of simulation

We performed NpT simulations of the solid state of
calcite to verify the MD procedure and the accuracy
of the force field. The experimental [14] and calculated
densities for solid calcite at 293K and 1 bar are
respectively, 2.71 and 2.79 g/cm3. The agreement
between the two values is within 2.9%. Simulations
were carried out at temperatures ranging from 100K to
800K, in 100K increments, and under the pressure
range of 0–3000 kbar. The resulting p-v-T data are
given in Table 1.

Table 1. Calculated MD simulation of values at given pressures and temperatures. All data correspond to the volume.

T/K 100 200 300 400 500 600 800

p/kbar V/(Å)3

0 24799 24863 24941 25021 25111 25196 25416
0.01 24940

1 24906
10 24604
200 19988 20045 20105 20163 20185 20231 20362
300 18816 18826 18855 18926 18947 18993 19059
400 17881 17899 17934 17975 18021 18048 18085
500 17134 17159 17207 17230 17231 17259 17326
700 15991 16053 16072 16100 16127 16152
1000 14843 14860 14861 14889 14895 14923 14958
1200 14249 14270 14299 14314 14316 14336 14370
1500 13565 13579 13586 13608 13623 13626 13643
2000 12689 12707 12708 12715 12727 12744 12761
2500 12028 12036 12049 12059 12065 12074 12083
3000 11494 11506 11512 11526 11527 11535

2546 H. Akbarzadeh et al.
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In Figure 1, we have recorded the radial distribu-

tion functions (RDF) of calcite at two temperatures,

100K and 600K with p¼ 100 atm. The plots show that

as temperature increases, the vibrational motions of

the atoms broadens the peaks in the g(r) curves.

As temperature rises, the long range correlations are

lost and the positions of the maxima, which represent

the locations of the neighboring correlation shells, are

shifted relative to those of the lower temperature. The

results of p-v-T simulation data for each isotherm

summarize in Table 1. To obtain the derivative

quantities such as bulk modulus B0 and its isothermal

pressure derivative B00 for both sets of obtained

simulation data, by assuming that there isn’t any

phase transition in the whole temperature and pressure

range in this work, we have fitted p–v data for isotherm

300K as a reference temperature into the best equation

with a high correlation coefficient, R2
¼ 1.000000, as

a best fitting curve and whereby molar density, bulk

modulus, B, and its pressure derivation at zero

pressure, (@B/@p)T when p! 0, are obtained as

27.959mol/L, 704.080 kbar and 6.057, respectively. It

is worth noting that it has been shown that there are

two high temperature transitions for calcite at moder-

ate pressures in the temperature range 973–1073K and

around 1273K [15], which both are beyond the
temperatures of this work.

3. Some universal equations of state

The EOSs of solids play an important feature in the
condensed matter physics and geophysics. They
provide numerous information of non-linear compres-
sion of materials at high pressures, and have been
widely applied to engineering and other scientific
researches. Most EOSs expressed by three zero-
pressure parameters: the molar volume, v0, the
isothermal bulk modulus, B0, and its first isothermal
pressure derivative, B00. We shall use some well-known
universal EOSs below, which have a theoretical base in
some extent, to calculate some thermodynamic proper-
ties of calcite.

3.1. Vinet EOS

One of the most successful isothermal EOSs is that
proposed by Vinet et al. [16], which is valid for all
classes of solids in compression and in the absence of
phase transition. The basis of this EOS is a universal
relation for the binding energy in terms of the
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Figure 1. Atom–atom radial distribution functions of calcite at (a) T¼ 100K; and (b) T¼ 600K with p¼ 100 atm.
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intermolecular distance. In the derivation of this

EOS contribution of the thermal pressure is neglected,

and the volume derivative of the binding energy is used

to approximate the internal energy. Vinet EOS is

derived as,

p ¼ 3B0
1� x

x2

� �
exp

3

2

� �
B00 � 1
� 	

1� xð Þ

� �
ð4Þ

in which, x¼ (v/v0)
1/3.

3.2. Parsafar–Mason (PM) EOS

Another well-known universal EOS for different solids

was presented by Parsafar and Mason [17] only by

fitting the repulsive branch of the binding energy curve

into a cubic equation in terms of density. The final

result is that pv2 is a quadratic function in density for

each isotherm, for which it’s scaling parameters, can be

related to v0, B0 and B00 in the absence of phase

transition:

p

�
v

v0

�2

¼

�
1

2

�
B0

��
B00 � 7

�
� 2

�
B00 � 6

��
v

v0

�

þ

�
B00 � 5

��
v

v0

�2�
: ð5Þ

3.3. Birch–Murnaghan (BM) EOS

In terms of the so-called Birch–Murnaghan EOS

[18,19], the pressure as a function of volume behaves

as follows:

p ¼
3

2

� �
B0

v0
v


 �7=3
�

v0
v


 �5=3� �

� 1�
3

4

� �
4� B00
� 	 v0

v


 �2=3
�1

� �� 
: ð6Þ

3.4. Shanker EOS

Owing to the fact that the pressure and the isothermal

bulk modulus may be expressed as a function of the

lattice potential energy, p¼�dU/dv and B¼�v(dp/

dv)T¼ v(d2U/dv2), and also the derivatives of potential

energy with respect to volume may be expressed in

terms of the derivatives of U with respect to the

intermolecular separation, r, Shanker [20,21] intro-

duced a force constant, A, in terms of Laplacian

operator [22], and he found that A may be expressed as

a function of volume mentioned in references [20] and

[21] then with some mathematical manipulation he

obtained the following result known as Shanker EOS,

p ¼
B0ðv=v0Þ

�4=3

t

"�
1�

1

t
þ

2

t2

��
expðtyÞ � 1



þ y

�
1þ y�

2

t

�
exp

�
ty

�#
ð7Þ

where,

y ¼ 1� v=v0, t ¼ B00 � 8=3:

3.5. Baonza EOS

The basis of the Baonza EOS [23] is that the pressure

behavior of the isothermal compressibility and

thereby bulk modulus of molecular liquid and solid

can be characterized by the inverse power law,

B¼ (1/�*)( p� pSP)
� in which �*, � and pSP are

proportionality constant, spinodal exponent and

spinodal pressure, respectively. It was found that the

value of the exponent � is close to 0.85, the value which

will be used here, although Compagner [24] and

Speedy [25] have shown that, if the analyticity

condition is observed, the value of � should be 1/2,

thus this is a shortcoming of Baonza EOS. The

integrated equation for the volume which follows

proved successful in presenting isothermal data of

several liquids and solids,

v ¼ vSP exp �
��

1� �ð Þ
p� pSPð Þ

1��ð Þ

� �
; ð8Þ

where vSP is the volume where p¼ pSP, which is the

maximum volume to which the condenced phase can

be expanded and still be metastable. By regarding

p¼ 0, one may be able to find spinodal parameters,

�SP and pSP, in terms of measurable parameters at zero

pressure,

vSP ¼ v0 exp
�

B00 1� �ð Þ

� �
, �pSPð Þ ¼

�B0

B00
,

�� ¼
�pSPð Þ

�

B0
: ð9Þ

3.6. Modified generalized Lennard–Jones

(MGLJ) EOS

It is basically arisen from the generalized Lennard–

Jones cohesive energy [26] which has also a pivotal

2548 H. Akbarzadeh et al.
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expression in the Gilvarry EOS [27]. One may point

out the GLJ EOS as,

p ¼
3B0

m1 � n1ð Þ

v0
v


 �m1=3þ1

�
v0
v


 �n1=3þ1� �
; ð10Þ

which is a two-parameter EOS, and also it is a energy

analytic, U¼U(v), and pressure analytic, p¼ p(v), but

it is not volume analytic, v¼ v( p) for arbitrary values

of exponents m1 and n1. To obtain an EOS for which

the energy, pressure and volume are analytic simulta-

neously, and also it can satisfy the spinodal condition

[28], B/ ( p� pSP)
1/2 with B( p¼ pSP)¼ 0 in which pSP is

the spinodal pressure, Jiuxum has considered that the

exponents in Equation (10) should satisfy the condition

m1/3þ 1¼ 2(n1/3þ 1) [29]. By substituting the condi-

tion in Equation (10), and some algebraic manipula-

tion, he derived the MGLJ EOS as,

p ¼
3B0

B00

v0
v


 �2B0
0
=3

�
v0
v


 �B0
0
=3

� �
: ð11Þ

3.7. Linear isotherm regularity (LIR II)

In a series of works the LIR [30] originally derived for

normal dense fluids, was applied to all kinds of fluids

[31,32] and also dense fluid mixtures [33,34]. The LIR

is able to predict many experimentally known regula-

rities for pure dense fluids and fluid mixtures [35–38].

According to the LIR EOS, (Z� 1)�2 is linear with

respect to �2 (where Z is the compressibility factor and

�¼ 1/� is the molar volume) for each isotherm of

a fluid, for densities greater than the Boyle density

�B� 1.8�C and temperatures lower than twice of the

Boyle temperature TB� 2.5–2.7TC, where �C and TC

are the critical density and temperature, respectively.

Recently, we have extended LIR EOS to two classes of

solids [39], one for the metallic and ionic solids and the

other for the remaining solids on the basis of the

concept of the average effective pair potential (AEPP).

According to the former EOS, (Z� 1)v2 is linear with

respect to 1/� for each isotherm which will be referred

to LIR II from now on, and the other EOS is the same

as that for dense fluids, i.e. the original LIR.

4. Fitting p-v-T simulation data onto universal

equations of state

In this section, we apply some UEOSs to calcite to

check their abilities in predicting the p-v-T behavior or

compression data obtained from the MD simulation

and to investigate some of its thermodynamic

properties. There are two routes to study the compres-

sion data, either by using the exact measured values at

the zero pressure limit, v0, B0, B
0
0 and B000, as inputs in

which when the error-free compression and bulk

modulus data are available, it can show a perfect

well-behaved EOS, or by the curve-fitting trend in

which all zero pressure values are obtained as

adjustable parameters and can produce the ideal set

of zero pressure values. Owing to the fact the zero

pressure values obtained by the best fitting haven’t

high accuracy, both methods for the reference

temperature, T¼ 300K, are applied.
We have fitted all isothermal simulation data of

Table 1 into all UEOSs mentioned in the last section.

As shown in Figure 2, the simulation data for the

reference temperature well fit onto all UEOSs. The

values of �0, B0 and B00 for 300K isotherm obtained

from the best fitting for each EOS and also from the

simulation data accompany with the average percent

deviation of pressure are summarized in Table 2. As

may be seen from Table 2, PM and MGLJ EOSs show

the minimum average pressure deviation, and Shanker

EOS shows the maximum deviation. It is worth noting

that except for Baonza and LIR II, other EOSs used in

this work predict �0 exactly equal to the simulation

value.
As the second method, we have used the zero-

pressure simulation values as inputs to calculate

pressure as function of compression, v/v0. In Figure 3

pressure is plotted as a function of v/v0 for calcite at

300K, and the error curve of pressure for all EOSs are

shown in Figure 4, using the zero-pressure simulation

values in all EOSs. Although, in the literature [40] it

has been shown that Vinet EOS is accurate up to

v/v0¼ 0.3 for monatomic and diatomic solids, all EOSs

used in this work show reasonable results up to

v/v0¼ 0.85 for calcite, which is a polyatomic salt.

However, for high compressions, PM and MGLJ EOSs

show quite significant deviations compare to the other

EOSs, when the second method is applied. Despite, the

fact that LIR II has two parameters; in both methods

its prediction is reasonable, in comparison with the

other three-parameter EOSs, even with its simplicity.

As shown in Figure 4, Dodson EOS [41] has the best

agreement with the simulation data.
Using EOS, one can derive an expression for the

bulk modulus. With the scaling parameters obtained

from the curve-fitting at 300K, bulk modulus is

calculated by using all UEOSs, and its value is plotted

as a function of pressure in Figure 5. As may be seen

all EOSs show a reasonable behaviour in comparison

with simulation data, especially at low and medium

pressures.
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Figure 3. Comparison of the p-v isotherm for several EOSs with the zero pressure quantities as inputs.

Figure 2. Fitting simulation data of calcite into some universal equations of state at 300K.

Table 2. Zero pressure quantities of calcite obtained by fitting the simulation data into some UEOSs for reference temperature
T¼ 300K, and average percentage deviation of pressure.

Simulation MGLJ Baonza Vinet Shanker BM PM LIR II

�0 (mol/L) 27.959 27.959 28.015 27.959 27.959 27.959 27.959 27.971
B0 (kbar) 704.080 507.856 503.410 424.811 402.467 491.843 510.147 536.749
B00 6.057 5.078 5.250 6.334 6.444 5.305 5.121 5.003
ðj�pj=pÞaav � 100 . . . 1.23 (4.87) 1.78 (3.47) 2.92 (11.18) 3.72 (13.83) 1.53 (6.00) 1.17 (4.21) 1.38 (2.50)

aThe maximum pressure error is given in parentheses.

2550 H. Akbarzadeh et al.
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5. Temperature dependencies of q0, B0 and B00
The fitting method may be used for other tempera-
tures as well and thereby bulk modulus and its
derivative as well as density at the zero pressure as
adjustable parameters are obtained which the results
are listed in Table 3. As may be seen in Table 3, all
EOSs predict that both B0 and �0 decrease with
temperature. At high temperatures the lattice anhar-
monisity is significant, thereby it will have larger
volume and lower density. In a lattice with a larger

volume, the average nearest neighbor separation is

more, hence its compression at high temperatures is

easier, which means it has smaller bulk modulus.

Therefore the predictions of the EOSs are reason-

able. Based on the values of B00 in Table 3, all

the EOSs predict insignificant change of its value

with temperature. Due to the fact that B00 strictly

depends on the exponents of the binding energy, one

may expect that they vary with temperature,

insignificantly.

Figure 4. Deviation curve for pressure for some UEOSs in which the zero-pressure simulation values are used as input data.
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Figure 5. Isothermal bulk modulus for reference isotherm calculated using parameters given in Table 2, and UEOSs which are
compared with the simulation data.
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6. Investigation of some regularities using EOS

The purpose of this section is mainly to see how well

the simulation data predict some well-known regula-

rities. Although dense systems are usually considered

to be complicated on the molecular scale, all of them

show some experimentally well-known trends, known

as regularities. The Tait–Marnaghan equation is one

which has been known for many years. To investigate

some regularities predicted by an EOS, the temperature

dependencies of its parameters must be known in

advance [35,36]. We shall use LIR II because of its

simplicity, which may be given as,

Z� 1ð Þ�2 ¼ cþ d
1

�

� �
; ð12Þ

where c and d are temperature dependent parameters,

as follows:

c ¼ c2 þ
c1
T

ð13Þ

and

d ¼
d1
T
; ð14Þ

where c1 and d1 are related to the attraction and

repulsion terms of the average effective pair potential,

respectively, while c2 is related to the non-ideal thermal

pressure which it may be regarded as vibrational effect

in pressure for solids [39]. Note that pressure has two

contributions, the internal pressure which is due to the

intermolecular interactions and thermal pressure which

is due to the kinetic energy. The parameters c and d

may be given in terms of B0 and �0 as,

c ¼
1

�20
1þ

B0

�0RT

� �
, d ¼

�1

�0

B0

�0RT
þ 2

� �
: ð15Þ

By the best fitting curve shown in Figure 6 for the

solid, the values of c2, c1 and d1 parameters are

respectively �0.000487934 (L2mol�2), 297.44289

(L2mol�2K�1) and �8398.5101 (Lmol�1K�1) in

which the values of coefficient determination for

both curves are R2
¼ 1.0000, show that Equations (13)

and (14) have a good accuracy.
Like liquids and supercritical fluids, solids may be

usually consider to be complicated on the molecular

scale and difficult to predict their properties by

thermodynamic method and statistical mechanics due

to the complexity and many body interactions among

molecules. However, we may expect that solids show

a number of simple regularities, like dense fluids, which

we wish to investigate such expectation using the

simulation data and compare the ability of different

UEOSs in predicting these regularities analytically or

numerically.
The LIR II EOS may be used to derive analytically

the common compression point, �oz, as well as the

common bulk modulus point, �OB, for solids as it was

applied to dense fluids. By setting the partial derivative

of Z or (Z� 1)v2 with respect to temperature equal to

zero at �¼ �oz, we may obtain �oz for LIR II as,

�oz ¼ �
d1
c1

ð16Þ

Table 3. Zero pressure quantities of calcite obtained by fitting the simulation data into some UEOSs at several temperatures.

T (K) MGLJ Baonza Vinet Shanker BM PM LIR II

100 B0 (kbar) 513.364 504.15 429.991 407.703 496.612 515.300 559.197
B00 5.093 5.300 6.347 6.452 5.329 5.136 5.001

�0 (mol/L) 28.175 28.295
200 B0 (kbar) 511.980 504.14 427.354 404.339 495.406 514.354 554.853

B00 5.083 5.286 6.346 6.458 5.315 5.126 5.002
�0 (mol/L) 28.103 28.200

400 B0 (kbar) 504.174 500.7 421.411 399.051 488.507 507.578 540.600
B00 5.074 5.243 6.332 6.443 5.298 5.113 5.003

�0 (mol/L) 27.926 27.978
500 B0 (kbar) 498.779 492.871 416.160 393.624 483.182 501.197 534.492

B00 5.068 5.255 6.332 6.443 5.291 5.113 5.004
�0 (mol/L) 27.825 27.887

600 B0 (kbar) 495.466 489.581 413.039 390.401 480.244 497.697 528.206
B00 5.058 5.246 6.324 6.442 5.277 5.106 5.005

�0 (mol/L) 27.732 27.779
800 B0 (kbar) 483.305 483.967 410.945 392.553 471.037 486.510 504.453

B00 5.039 5.159 6.227 6.318 5.231 5.085 5.007
�0 (mol/L) 27.492 27.465

2552 H. Akbarzadeh et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
w
e
t
s
 
C
o
n
t
e
n
t
 
D
i
s
t
r
i
b
u
t
i
o
n
]
 
A
t
:
 
0
8
:
1
5
 
2
0
 
D
e
c
e
m
b
e
r
 
2
0
0
8



and, on the base of the LIR II, one may show that

Br � 1ð Þv2 ¼ 3cþ 2d
1

�

� �
; ð17Þ

where Br¼B/�RT is the reduced bulk modulus.

In order to find the common bulk modulus point,

�OB, one may set (@Br/@T )� equal to zero to obtain the

following result;

�OB ¼ �
2

3

d1
c1
ðfrom LIR II EOSÞ: ð18Þ

The common intersection point for the compressibility

factor is shown in Figure 7. The calculated values of

�oz and �OB for calcite using Equations (16) and (18)
are about 28.2mol/L and 18.8mol/L, respectively,
hence the second value is less than �0 of the isotherms.
It is worth noting that the reduced bulk modulus
common intersection point is laid a little upper than
spinodal density, 18.70mol/L, which means that under
some special condition one may be able to detect it
experimentally, simply by having experimental pVT
data at relatively low densities. The LIR II EOS may
be used to derive the new common intersection point
for solids. We have plotted 1/T�p for four different
isotherms of calcite, in which �p is the isobaric
expansion coefficient calculated by LIR II, in terms
of density which is shown in Figure 8. We can see that

1/T  (K−1)

0.000 0.002 0.004 0.006 0.008 0.010 0.012

c,
 d

−100

−80

−60

−40

−20

0

20

c (L2/mol2)

d (L /mol) 
Best fitting cure.
for both of them R 2=1.0000 

Figure 6. Data of Table 3 for LIR II used to plot the intercept, c, and the slope parameter, d, of Equation (12) for calcite.

1/r (L/mol)

0.010 0.015 0.020 0.025 0.030 0.035 0.040

(Z
–1

) 
v2  

(L
2 /

m
ol

2 )

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

T = 200 K
T = 400 K
T = 600 K
T = 800 K
Best fitting curve
for each isotherm 

Figure 7. Common intersection point for compressibility factor confirmed by the simulation data and LIR II.
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all isotherms intersect at ��0�19mol/L which is very

close to �OB. This may show correlation with some

common intersection points of some thermodynamic

quantities. To show this claim, we start from correla-

tion between isothermal bulk modulus and isobaric

expansion coefficient as,

Br ¼
@p=@Tð Þ�

RT��P
: ð19Þ

Owing to the fact that at the common bulk

modulus point, �OB, (@Br/@T )�OB
¼ 0, one may use

Equation (19) as,

@2p

@T2

� �
�OB

1

RT��p
þ

1

R�OB

@p

@T

� �
�OB

@ 1=T�p
� 	
@T

� �
�OB

¼ 0:

ð20Þ

By assuming that the thermal pressure of a solid is

almost a constant; one may show that the first term in

Equation (20) is zero; therefore the common intersec-

tion point for isotherms of 1/T�p is approximately the

same as that of the bulk modulus.

7. Investigation of spinodal constraint on EOSs using

calcite compression data

The spinodal is a locus in the p-v diagram, which is the

limit of metastability of a substance with respect to

a phase transition. By requiring that the Helmholtz

free energy should be analytic at the spinodal, one may

be able to derive the limiting behavior of thermo-

dynamic properties near the spinodal by a Taylor

series in V�VSP(T ), where VSP(T ) is the volume of

substance close to the spinodal point. The consequence

of this analysis is that along an isotherm, close enough

to the spinodal,

B / ��1 / C�1P / p� pSP Tð Þð Þ
� ð21Þ

where CP is the specific heat. As mentioned before, on

the basis of Compagner and Speedy’s work [24,25],

analytical value of � is 1/2. In order to investigate the

value of the exponent not only near the spinodal, one

may consider B¼ (1/�*)( p� pSP)
� in the form as

� ¼
@ lnðBÞ

@ ln p� pSPð Þ

� �
T

: ð22Þ

Substituting B¼�V(dp/dV) and B0 ¼ ð�V=BÞðdB=dVÞ
in Equation (19), one may write

� ¼
B0

B
p� pSPð Þ: ð23Þ

By using UEOS, the value of � can be calculated from

Equation (23) for any density. One may write MGLJ in

the following form [29]:

B ¼
2B00
3
�pSPð Þ

1=2
þ p� pSPð Þ

1=2
� �

p� pSPð Þ
1=2: ð24Þ

As may be seen from Equation (24), MGLJ EOS

analytically obeys the spinodal condition irrespective

of near or far from the spinodal point, but the Baonza

EOS, which is apparently based on the functional form

of thermodynamic properties near the spinodal, con-

tradicts the requirement and yields wrong results in the

spinodal zone. We have used four different EOSs to

calculate �, for which the results are shown in terms of

compression in Figure 9. As shown in Figure 9, except

r (mol / L)
14 16 18 20 22 24 26 28 30

(T
 α

P
)−1

−1000

0

1000

2000

3000

4000

5000

T = 100 K 
T = 200 K
T = 300 K
T = 400 K

Figure 8. Common intersection point for 1/�p of the isotherms of calcite versus density, which is approximately equal to �OB.
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BM which deviates significantly from the spinodal

condition for which �(vsp/v0)� 0.79, all three others,

(LIR II, PM and Vinet) obey the spinodal condition as
a universal equation of state, since for them �(vsp/
v0)� 0.5. The value of vsp/v0 for LIR II, PM, Vinet,

MGLJ, BM and Baonza are about 1.5, 1.5, 1.34, 1.5,

1.46 and 3.05, respectively, which it is too high for

Baonza to be physically reasonable [28,42]. It is worth

noting that the value of vsp and � are calculated by
spinodal condition, B/ ( p� pSP)

1/2 in which �¼ 0.5

and B( p¼ pSP)¼ 0.

8. Discussion and conclusion

In Table 1, the calculated p-v-T data of calcite

obtained by molecular dynamics simulation for

pressures up to 3000 kbar are given. We have

compared some universal equations of state of

solids; namely PM, LIR, BM, Shanker, Vinet,
Baonza and MGLJ EOSs; by fitting the simulation

data into them and also by using the zero pressure

quantities as input data. It is interesting to note that

PM gives the most accurate p-v-T presentation when

its parameters are considered as adjustable para-

meters (see Table 2). However, its presentation is

very poor especially at high compressions, when the
zero-pressure quantities are used as inputs, see

Figures 3 and 4. The reason for such a behaviour

arises from the fact that PM is based on the fitting

only the repulsive branch of the binding energy of

solids into a cubic equation in terms of density (see

Figures 1 and 2 of [17]), from which one may

conclude that higher order of density expansion is

needed for the zero pressure limit. Linear isotherm
regularity shows very good results in comparison

with other EOSs, despite of its simplicity and lower

number of parameters. Another merit of LIR is that
its adjustable parameters have physical meaning and

their temperature dependencies are known. By

knowing such temperature dependencies some reg-
ularities can be investigated. In Figure 6, we have

shown that both LIR II parameters obey the

theoretical model, and in Figures 7 and 8, the
compressibility factor and bulk modulus intersection

points are clearly shown by LIR II. Also, a new

regularity has been investigated according to which

all isotherms of 1/T�p intersect roughly at a common
point which is �OB. In Section 7, it is shown that

LIR II and PM numerically obey the spinodal

condition in which spinodal exponent is 1/2 near
the spinodal, which is confirmed by Figure 9. Four

different EOSs are used to show the compression

dependencies of � in Figure 9, according to which
for the medium and high compressions the value of

� is reasonable, 0.65��� 1. For Baonza EOS

�¼ 0.85, which makes it not applicable near the

spinodal.
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