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In this paper, we have derived two equations of state, one for the metallic and ionic solids and the other
for the remaining solids on the basis of the concept of the average effective pair potential (AEPP). Accord-
ing to the former EOS, (Z−1)�2 is linear with respect to 1/�, where Z is the compressibility factor and
� = 1/� is the molar volume for each isotherm. On the basis of the latter EOS, (Z−1)�2 is a linear function
in terms of �2 for each isotherm. As these EOSs suggest, the temperature dependencies of the internal
energy is separable from its density dependencies. Hence, the heat capacity of a solid is independent of
its density, interaction potential parameters and non-ideal thermal pressure. However, unlike the heat
capacity, the isothermal compressibility and isobaric thermal expansivity both depend on all of them.
The linear parameters of the EOSs are related to the average interaction coefficients at zero temperature
and also vibrational energy. Since the temperature dependencies of the parameters of both equations are

simple, they may, successfully, be applied to the study of the pVT behavior of solids at high temperatures.
Using only two parameters which are physically interpretable as well as being able to predict at least two
regularities in solids are the merits of the new equations of state. In short, these EOSs can open a new
window to investigate the EOSs in solids just like the LIR EOS in fluids.

© 2008 Elsevier B.V. All rights reserved.
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. Introduction

The equations of state (EOSs) of solids play an important fea-
ure in the condensed matter physics and geophysics. They provide
umerous information of non-linear compression of materials at
igh pressure, and have been widely applied to engineering and
ther scientific researches. Most of the EOSs depend on the three
ero-pressure parameters: the molar volume, v0, the isothermal
ulk modulus, B0, and its isothermal pressure derivative, B′

0. One
f the most successful isothermal EOSs is proposed by Vinet et al.
1] which is valid for all classes of solids in compression and in
he absence of phase transition. The basis of this EOS is a universal
elation for the binding energy in terms of the intermolecular dis-
ance. In derivation of this EOS the thermal pressure is neglected,
nd the volume derivative of the binding energy is used to approx-
mate the internal energy. Another well-known universal EOS for
ifferent solids was presented by Parsafar and Mason [2] only with
tting the rather featureless repulsive branch of the binding energy
urve into a cubic equation in terms of density. The final result is
hat p�2 is a quadratic in density for each isotherm which its scaling
arameters can be related to v0, B0 and B′

0 in the absence of phase
ransition.

On the other hand, in a series of works the linear isotherm reg-
larity (LIR) [3] originally devised for normal dense fluids, was

pplied to all kinds of fluids [4,5] and also dense fluid mixtures [6,7].
he LIR is able to predict many experimentally known regularities
or pure dense fluids and fluid mixtures [8–11]. According to the
IR EOS, (Z−1)�2 is linear with respect to �2 for each isotherm of a

n

p

378-3812/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
oi:10.1016/j.fluid.2008.07.009
uid for densities greater than the Boyle density and temperatures
ower than twice of the Boyle temperature.

In this study, we have extended LIR EOS for solids and investi-
ate its accuracy for different classes of solids including monatomic,
iatomic, metallic and ionic solids.

This paper is organized as follows: Section 2 presents how LIR
an be extended to the non-ionic and non-metallic solids. We fur-
her check the accuracy of the new EOS with the experimental data.
dditionally, the temperature dependencies of the parameters of

his EOS are examined. In Section 3, we do the same task for the
etallic and ionic solids. We will proceed with investigating the

emperature and density dependence of some physical properties
n Section 4. In Section 5, we compare the new EOSs with some
f the most successful EOSs proposed in the literature for solids.
n Section 6, two regularities predicted by the new EOSs for solids
e and Au are investigated. This is followed in the last section by a
iscussion and conclusion.

. Deriving linear isotherm for the non-ionic and
on-metallic solids

.1. Theoretical aspects

The LIR EOS was derived on the basis of the exact thermody-

amic expression,

= T

(
∂p

∂T

)
�

−
(

∂E

∂�

)
T

(1)

http://www.sciencedirect.com/science/journal/03783812
dx.doi.org/10.1016/j.fluid.2008.07.009
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Fig. 1. Fitting experimental data of given isotherm(s) into EOS I for (a

nd also the assumption that the average effective pair potential
AEPP) is a Lennard–Jones (12, 6) function; where p is pressure, T
s temperature, and E is internal energy. The AEPP is the average
ffective pair potential on which the medium effects and the long-
ange interactions are included. According to Eq. (1), there are two
ontributions to the pressure; the dominating one for solids is the
nternal pressure which is related to the binding or static-lattice
nergy (E0) and vibrational energy (Evib):

= E0 + Evib (2)

or a large number of fluids and solids, LJ (m–n) potential function
as been used for the pairwise interaction approximation between
toms or molecules as the major interaction [12,13]. In the case of
any-body systems in which many particles are interacting, this

ind of potential is considered to be the interaction of two nearest
eighbor molecules in which all of their longer range interactions
re added, and also the effect of the medium on the charge distri-
utions of two neighboring molecules is included [14]. Therefore
e may write:

0 = N

2
Cε

[(
�

r

)m

−
(

�

r

)n
]

= Km�m/3 − Kn�n/3 (3)
here N is the number of particles, C is coordination number which
s a constant for a given solid, r is the nearest-neighbor separation,

and ε are the potential parameters of the AEPP and Km and Kn are
onstants whose values depend on the lattice. On the other hand,

w
t

) Au, (c) NaCl. Note the significant nonlinearity of the last two cases.

ibrational energy may be given by the Einstein model, according
o which,

vib = 3 N k �E

{
1
2

+ 1
exp(�E/T) − 1

}
(4)

here �E is the Einstein characteristic temperature and k is the
oltzmann constant.

Although the binding energy has the largest contribution to the
nternal energy, the vibrational energy term usually determines
he stable high-temperature crystal structure and makes a non-
egligible contribution to the pressure and energy.

We now consider the Mie–Gruneisen equation which is widely
sed in the correlation shock-wave experiment as well as in gen-
rating the EOS from p–V–T measurements [15]. This equation
xpresses the pressure as a function of volume and temperature
s,

(v, T) = −
(

∂E0

∂v

)
+ �

v
Evib (5)

here � is known as the Gruneisen parameter. It is worth noting
hat Eq. (5) may be derived from Eqs. (1) and (4), in which,)
∂p

∂T
v

= �CV

v
(6)

here CV is the heat capacity at constant volume. Although here
he Einstein model was used for the vibrational energy, one may
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Table 1
The parameters of EOS I (a and b), coefficient of determination (R2), range of pressure data (	p) and calculated percent density deviation (	�/�) × 100 for some isotherms
of the given solids

Solid T (K) −a (×102 L2 mol−2) b (×105 L4 mol−4) R2 	p (kbar) 100 (|	�|/�)a

bAr 4 45.764 23.428 0.9995 0–21 0.13 (0.35)
20 9.0097 4.6253 0.9996 0–21 0.15 (0.2)
40 4.2401 2.2312 0.9999 0–21 0.09 (0.24)
60 2.6315 1.4340 0.9999 0–21 0.05 (0.14)
77 1.8996 1.0755 0.9997 0–21 0.15 (0.18)

bKr 4 93.020 68.692 0.9996 0–21 0.11 (0.15)
20 18.449 13.664 0.9999 0–21 0.05 (0.14)
40 8.7343 6.6085 1.0000 0–21 0.03 (0.10)
60 5.5202 4.2953 1.0000 0–21 0.01 (0.08)
77 4.1599 3.3101 0.9999 0–21 0.08 (0.14)
90 3.4039 2.7681 0.9998 0–21 0.11 (0.29)

100 2.9510 2.4474 0.9997 0–21 0.16 (0.43)
110 2.5816 2.1852 0.9996 0–21 0.19 (0.49)

bXe 4 216.49 262.37 0.9998 0–21 0.08 (0.25)
20 42.556 51.761 0.9997 0–21 0.09 (0.28)
40 20.764 25.588 0.9998 0–21 0.07 (0.18)
60 13.271 16.685 0.9999 0–21 0.07 (0.18)
80 9.7133 12.438 1.0000 0–21 0.01 (0.02)

100 7.4038 9.7059 1.0000 0–21 0.01 (0.03)
120 5.9258 7.9357 1.0000 0–21 0.01 (0.04)
140 4.8577 6.6597 0.9999 0–21 0.06 (0.16)
159 4.0142 5.6660 0.9997 0–21 0.12 (0.40)

cn-H2 4.2 3.1121 1.6885 0.9992 0–25 0.49 (2.56)
cn-D2 4.2 3.7321 1.5045 0.9995 0–25 0.33 (1.23)
dNe 4 4.2567 0.83045 0.9980 0–20 0.32 (0.97)
dN2 65 2.5728 2.1851 0.9985 0–10.2 0.36 (1.19)
ePolyethylene 329 1.9899 1.6024 0.9996 0.001–2 0.025 (0.04)

a The maximum percent deviation is given in the parentheses.
b Ref. [18].
c Ref. [20].
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e Ref. [21].

btain Eq. (5) for a harmonic solid regardless of the model used for
he vibrational energy [16].

As in a dense fluid with spherical molecules, in which each
olecule is surrounded with its nearest neighbor symmetrically,

t is reasonable to assume that the AEPP is given by an LJ (12, 6)
unction for a molecular solid. Substituting the LJ (12–6) potential
unction as the binding energy in Eq. (3) and making use of Eq. (5),
he final form of the EOS may be obtained as (hereafter referred to
s EOS I),

Z − 1)�2 = a + b�2 (7)

here Z is the compressibility factor, � = 1/� is the molar density
nd a and b are temperature-dependent parameters, as follows:

= a2 + a1

T
(8a)

nd

= b1

T
(8b)

here a1 and b1 are related to the attraction and repulsion terms of
he average effective pair potential, respectively, while a2 is equal
o,

2 = 1
2

[
1

�RT

(
�

v
Evib

)
− 1

]
(9)
�

owever, one may find different powers for � and v in Eq. (7) for
ense fluids. As explained in Ref. [3], the average molecular sep-
ration in a dense fluid is around the minimum of the interaction
otential function, which is a U-shape curve. Unlike the whole range

g
n
c
f
d

f interaction potential function (hence entire density range), the
-shape curve may be adequately expressed by a Lennard–Jones

m, n) function with different values for the (m, n) pair.
According to Eq. (9), a2 seems to be a complicated function in

erms of T and �. However, its corresponding expression known as
he non-ideal thermal pressure was found to be almost a small con-
tant for dense fluids [3,17]. Since the contribution of the thermal
ressure in solids is expected to be smaller than that of fluids at
he same temperature, one may expect that a2 is a constant. Such
n expectation will be checked by using experimental pVT data of
olids, later.

.2. Experimental test of EOS I for non-ionic and non-metallic
olids

To examine the accuracy of the derived EOS I, we serve Ar, Au
nd NaCl as atomic, metallic and ionic solids, respectively. Fig. 1a
hows that the experimental data [18] of Ar are well fitted into EOS
. However, Fig. 1b and c shows that EOS I is not suitable neither for
u nor for NaCl.

Observing the above results, some monatomic and diatomic
olids such as neon, argon, krypton, xenon, n-H2, n-D2, nitrogen
nd one semi-crystalline polymer are used as our experimental
est of solids. The results of fitting experimental data of the rare

ases solids including argon [18], krypton [18], xenon [18] and
eon [19] and n-H2 [20], n-D2 [20], nitrogen [19], and one semi-
rystalline polymer [21] into EOS I are summarized in Table 1
or which the scaled parameters, pressure range of experimental
ata, coefficient of determination (R2), and the average percent
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ig. 2. Temperature dependence of (a) the intercept a and (b) slope b parameters,
or Ar, Kr and Xe which all are well fitted into Eqs. (8a) and (8b).

eviation of the calculated density are given for some given
sotherms.

.3. Temperature dependencies of the parameters of EOS I

Having the temperature dependence of the parameters of an
OS, can, in turn, increase the power of our prediction from min-
mum input data. This is particularly important in geophysical
pplications, for instance, where knowledge of high pressure is
ften considered necessary.

In Section 2.1, we presented a model for the temperature depen-
encies of the scaled parameters of the EOS I. On the basis of
qs. (8a) and (8b), a is predicted to be linear in 1/T, and also
to be proportion to the reciprocal of temperature. Here, by

sing the values of the given parameters in Table 1, we evaluated
uch predictions for Ar, Kr and Xe to investigate the tempera-
ure dependencies of the scaled parameters, a and b. In Fig. 2a
nd b, the temperature dependencies of the scaling parameters
f Ar, Kr and Xe have been shown. These figures show perfect
inearity in the whole temperature range that experimental data

re reported. Also such results show that the parameter a2 is
ndependent of temperature and density in the range of given
xperimental data. As shown in Fig. 2b, each line has no intercept
nlike Fig. 2a which is expected. The values of a2 for Xe, Kr and
r are found to be 0.012403, 0.0069331 and 0.0039472 (L2 mol−2),
espectively.
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. Deriving linear isotherm for the ionic and metallic solids

.1. Theoretical aspects

In some fluids and solids, the species interact very much with an
ppreciable coulombic feature with each other that the long-range
ispersive interaction potential is underestimated if it is treated by
nly a simple sixth power of inverse of interatomic distance. Also,
he repulsive side of this potential for these kinds of fluids and solids
as been analyzed in terms of an inverse power law [22,23], and it is

ound that the interionic dipole–dipole interaction has an effect on
oftening the repulsive part of the pair potential [24,25]. From the
orgoing analysis of the experimental data and from the fact that
he range of fluid densities correspond to the interatomic distances

ainly located around the potential minimum (rm) and likely is
xtended to larger atomic distance than rm, Ghatee and Bahadori
upposed LJ (6, 3) for compressed liquid alkali metals, especially for
ompressed liquid cesium [26].

From the discussion mentioned above, we propose that the
otential function as binding energy comes from LJ (6, 3) for the
etallic and ionic solids.
In the case of LJ (6, 3) for ionic and metallic solids, the final form

f the new EOS can be derived which is the same as the Ghatee and
ahadori EOS, according to which (Z−1)�2 is linear with respect to
/� for each isotherm of a solid (hereafter referred to as EOS II),

Z − 1)�2 = c + d
(

1
�

)
(10)

here Z and � = 1/� have the same meaning as in EOS I, and c and
are temperature-dependent parameters, as follows:

= c2 + c1

T
(11a)

nd

= d1

T
(11b)

here d1 and c1 are related to the attraction and repulsion terms
f the average effective pair potential, respectively, while c2 like a2
n Eq. (9) is related to the vibrational energy effects. Again, we may
xpect that c2 becomes almost a constant, like a2.

.2. Experimental test of EOS II for metallic and ionic solids

To consider how EOS II works for the metallic, ionic, and also
on-ionic and non-metallic solids, we select the same solids as in
ig. 1 and the accuracy of EOS II is investigated diagrammatically in
ig. 3a–c. As may be seen in these figures, EOS II is suitable for Au
nd NaCl, but not for Ar. The results of such a fitting of the experi-
ental data for Au [27], Ag [27], Cu [28,29], NaF [30], LiF [30], CsCl

30], NaCl [31] and MgO [31] into EOS II, are summarized in Table 2.
s one may see from the correlation coefficients, the EOS II pre-
ented in this study works quite well for the ionic and metallic
olids over the whole range of pressure and temperature for which
he experimental data are reported.

.3. Temperature dependencies of the parameters of EOS II

Just like Eqs. (8a) and (8b), one may consider Eqs. (11a) and
11b), as temperature dependencies of the parameters of EOS II;
o be specific, it is expected that d be proportional to 1/T and c

aries linearly with respect to 1/T. Taking the values of the scaling
arameters from Table 2, our expectation for Au, NaF and LiF are

llustrated in Fig. 4a and b. As can be seen from Fig. 4a and b, c and d
re linear in 1/T as expected from Eqs. (11a) and (11b). In addition,
hese results may suggest that the parameter c2 is independent of
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Fig. 3. Fitting experimental data of given isotherm(s) into EOS II for

emperature and density in the range of given experimental data.
he values of c2 for Au, NaF and LiF are respectively −0.0018177,
0.0010710 and −0.00072837 (L2 mol−2) by the best fitting curve

hown in Fig. 4a.

. Temperature and density dependence of physical
roperties

On the basis of the EOSs proposed, we show that the temper-
ture dependencies of the internal energy is separable from its
ensity dependencies. Hence, the heat capacity of a solid is inde-
endent of its density, interaction potential parameters and also
on-ideal thermal pressure. Nevertheless, unlike the heat capacity,
he isothermal compressibility and the isobaric thermal expansiv-
ty both depend on all of them.

We may substitute Z = pv/kT into either EOS I or EOS II and solve
or the pressure to obtain,

p

kT
= I



+ J(T)


n′ + K(T)

m′ (12)

here n′ and m′ are positive integers and

J

(T) = J0 + 1

T
(13a)

(T) = K0 + K1

T
(13b)

here I, J0, J1, K0 and K1 are constants.

s

C

H
i

r, (b) Au, (c) NaCl. Note the significant nonlinearity of the first case.

We may then use Eq. (12) and (∂ ln Q/∂v)T = p/kT to derive an
xpression for the canonical partition function:

n Q = I ln 
 + J(T)
(1 − n′)
n′−1

+ K(T)
(1 − m′)vm′−1

+ f (T) (14)

here f(T) is a function of temperature.
Eq. (14) may be used to obtain an expression for the internal

nergy:

= k
[

J1
(n′ − 1)
n′−1

+ K1

(m′ − 1)
m′−1
+ T2f ′(T)

]
(15)

here

′(T) = df (T)
dT

ote that the first two terms of Eq. (15) is E0 and the last term is
vib of Eq. (4). Hence for the heat capacity at constant volume, CV,
e obtain,

V = k[T2f ′′(T) + 2Tf ′(T)] (16)

e do not know the functional form of f(T), but expect to depend on
he type of solid. For instance, it is a cubic function for a molecular

olid when T → 0 due to the well known T3-law:

V = a0T3 as T → 0 (17)

ence, we may expect that the proportionality constant a is
ndependent of density, the interaction potential parameters and
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Table 2
The parameters of EOS II (c and d), coefficient of determination (R2), range of pressure data (	p) and calculated percent density deviation (	�/�) × 100 for different ionic
and metallic solids at given temperatures

Solid T (K) c (×103 L2 mol−2) d (×10 L3 mol−3) R2 	p (kbar) 100 (|	�|/�)a

bAu 300 77.725 −76.560 0.9995 0–2160 0.21 (0.49)
500 46.161 −45.181 0.9993 14–2170 0.23 (0.55)

1000 22.490 −21.644 0.9990 50–2190 0.28 (0.69)
1500 14.598 −13.796 0.9989 86–2220 0.33 (0.84)
2000 10.656 −9.8755 0.9980 122–2250 0.39 (0.98)
2500 8.2864 −7.5187 0.9970 158–2270 0.45 (1.28)
3000 6.7086 −5.9496 0.9950 194–2300 0.51 (1.28)

cNaF 298 61.660 −40.968 1.0000 0–90 0.02 (0.03)
473 37.978 −24.804 0.9995 0–90 0.06 (0.12)
673 26.940 −17.261 0.9998 0–90 0.04 (0.08)
873 20.679 −12.972 1.0000 0–90 0.01 (0.04)

1073 15.977 −9.7581 0.9995 0–90 0.06 (0.14)

cLiF 298 23.263 −23.830 0.9994 0–90 0.16 (0.34)
573 11.785 −11.728 0.9988 0–90 0.09 (0.17)
873 7.6426 −7.3112 0.9992 0–90 0.07 (0.16)

1073 5.7674 −5.3343 0.9985 0–90 0.12 (0.24)

cCsCl 298 562.17 −133.65 1.0000 0–90 0.02 (0.06)
473 327.88 −76.080 1.0000 0–90 0.03 (0.06)
673 213.99 −48.072 1.0000 0–90 0.01 (0.051)
873 151.15 −32.778 1.0000 0–90 0.04 (0.09)

dNaCl 298 180.89 −66.911 0.9993 0–300 0.199 (0.54)
eCu 298 19.725 −27.821 1.0000 60–1000 0.03 (0.09)
fCu 298 20.234 −28.653 0.9991 60–7200 0.29 (0.68)
eAg 298 50.744 −49.839 0.9997 75–1000 0.114 (0.27)
gPb 298 99.997 −55.843 0.9988 900–10000 0.197 (0.33)
ePd 298 54.752 −61.760 1.0000 65–800 0.05 (0.06)
eMo 298 76.478 −80.964 0.9991 75–1000 0.157 (0.32)
dNb 298 76.853 −70.832 0.9988 0–500 0.16 (0.30)
dMgO 298 39.796 −46.973 0.9990 0–400 0.116 (0.27)

a The maximum percent deviation is given in the parentheses.
b Ref. [27].
c Ref. [30].
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Ref. [31].
e Ref. [28].
f The experimental data are taken from Refs. [28,29] reported by Nellis et al.
g Ref. [29].

on-ideal thermal pressure. However, for a metallic lattice at very
ow temperature,

V = a0T3 + b0T (18)

here the second term is the contribution of valance electrons in
V.

Making use of Eq. (12), one may derive the isothermal compress-
bility, kT, and isobaric thermal expansivity, ˛,

T =

[
I

 + n′J(T)


n′ + m′K(T)

m′

]−1

kT
(19)

=
[

I



+ J0

T
n′ + K0

T
m′

] [
I



+ n′J(T)


n′ + m′K(T)

m′

]−1

(20)

ased on Eqs. (19) and (20), ˛ and kT depend on T, v and the potential
arameters.

. Comparison with other EOSs

It is ordinary to express the EOS in solids in terms of the zero-
ressure density, �0, bulk modulus at zero pressure limit, B0, and
lso its first pressure derivative, B′

0. Therefore, we may express the

arameters of EOSs I and II in terms of �0 and B0. The final results
or EOS I is,

= −1

�2
0

(
2 + B0

2�0RT

)
, b = 1

�4
0

(
B0

2�0RT
+ 1

)
(21a)

o
P
V
[
G

nd for EOS II,

= 1

�2
0

(
1 + B0

�0RT

)
, d = −1

�0

(
B0

�0RT
+ 2

)
(21b)

qs. (21a) and (21b) show that the new EOSs have two parameters
hich may be given only in terms of �0 and B0. The values of �0

n Eqs. (21a) and (21b) are obtained by setting the pressure in Eqs.
7) and (10) equal to 0. Once obtaining the values of �0 at a given
emperature one can calculate the value of B0 at that temperature.
inally, the values of B′

0 may be obtained from Eqs. (7) and (10),
espectively, of course by using the definition of B′

0,

′
0 =

(
∂B

∂p

)
p=0

= 1 + 9a�2
0 + 25b�4

0

1 + 3a�2
0 + 5b�4

0

(22a)

′
0 =

(
∂B

∂p

)
p=0

= 1 + 9c�2
0 + 4d�0

1 + 3c�2
0 + 2d�0

(22b)

o investigate the accuracy of the new EOSs, we have compared
he calculated values of �0, B0 and B′

0 from EOS I for argon and
enon with the experimental values [18] in Table 3, and also the
alues of B0 and B′

0 for some solids with those obtained from

ther EOSs in Table 4, namely, Jiuxun et al. (SJX) [32], Sushil-
apiya (SP) [33], Huang-Chow (HC) [34], Parsafar–Mason (PM) [2],
inet et al. [1], Freund-Ingalls (FI) [35], Effective Rydberg (ER2)

36], Hozapfel (Hzp) [37], Kumari-Dass (KD) [38] and Modified
eneralized Lennard–Jones (mGLJ) [39]. The value of B′

0 obtained
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Table 3
Comparison of the calculated values of �0, B0 and B′

0 from EOS I with experimental values for argon and xenon

Solid T (K) v0 (exp) (cm3/mol) v0 (cal) (cm3/mol) B0 (exp) (kbar) B0 (cal) (kbar) B′
0 (exp) B′

0 (cal)

Ar 4 22.557 22.638 28.6 26.2 7.2 8.00
20 22.645 22.723 27.6 25.2 7.3 8.02
40 23.026 23.085 23.5 22.3 7.5 8.05
60 23.611 23.600 18.6 19.1 7.8 8.08
77 24.290 24.170 14.1 16.2 8.4 8.13

Xe 20 34.823 34.926 35.6 34.8 7.3 7.7
30.2 29.8 7.5 7.8
24.6 24.5 7.6 8.0
22.5 22.4 7.6 8.0
14.8 15.6 8.8 8.8

b
t
t
c
v

h
i
[
E
G
p
s

F
f

Table 4
Experimental values of B0 and B′

0 for some solids compared with those calculated
by using different EOSs, for given temperatures

Solids EOSs B0 (kbar) B′
0

n-H2 (T = 4.2 K) ER2 1.5185 7.690
Hzp 1.3975 8.371
KD 1.786 6.998
SJX 1.706 7.036
PM 2.10 5.85
SP 1.7 6.78
60 35.558 35.625
100 36.545 36.538
120 37.090 37.025
159 38.500 38.275

y EOS II is in better agreement with experimental value than
hat of the EOS I. Owing to the fact that B′

0 strictly depends on
he exponent of the binding energy in Eq. (3), one may con-
lude that exponent (12, 6) is slightly larger than the actual
alue.

In addition, the average percent error of pressure for some solids
as also been compared with those obtained from some other EOSs

n Table 5; Effective Rydberg (ER2) EOS [36], Hozapfel (Hzp) EOS
37], Kumari-Dass (KD) EOS [38], Baonza EOS [40], Marnaghan type

OS proposed by Jiuxun [41] (SMnh), Vinet EOS [1], and Modified
eneralized Lennard–Jones (mGLJ) EOS [39]. As can be seen, the
redictions of EOS II are comparable with other ones, even with its
implicity.

ig. 4. Temperature dependence of (a) the intercept c and (b) slope d parameters,
or Au, NaF and LiF in which all are well fitted onto Eqs. (11a) and (11b).

This study 1.614 8.073
Experimental value 1.70 (±0.006) 7.0 (±0.3)

n-D2 (T = 4.2 K) KD 3.46 5.32
SP 3.16 6.51
PM 3.69 5.75
This study 3.10 8.04
Experimental value 3.15 (±0.06) 6.7 (±0.3)

Au (T = 300 K) KD 1850 4.839
Hzp 1848.9 5.005
SJX 1845.9 5.024
mGLJ 1848.2 4.9877
This study 1841.8 5.003

Cu (T = 298 K) KD 1431.93 4.339
SP 1389 4.92
mGLJ 1416.0 4.652
This study 1356.3 5.005

NaCl (T = 298 K) HC 239.98 4.721
FI 239.19 4.745
KD 240.14 4.54
SP 236.8 4.90
PM 241 4.90

6
i

p
s
d

T
T
c

S

C
A
A
L
N
M

mGLJ 238.36 4.766
Vinet 235.0 5.35
This study 223.01 5.01
Experimental value 235.6 5.11 (±0.03)

. Investigation of some regularities using the linear
sotherms
The EOSs I and II may be used to derive the common compression
oint, �oz, as well as the common bulk modulus point, �OB, for
olids as LIR EOS was applied to dense fluids. By setting the partial
erivative of Z or (Z−1)�2 with respect to temperature equal to zero

able 5
he average percent error of pressure of EOS II for some solids, compared to those
alculated from other EOSs at 298 K

olids ER2 Hzp KD SMnh Vinet Baonza mGLJ This study

u 0.83 0.743 0.90 0.664 1.05 0.676 0.603 0.66
g 1.15 0.66 0.79 0.503 0.821 0.617 0.409 0.99
u 0.94 0.89 0.98 0.95 0.938 0.957 0.65 1.11
iF 0.48 0.482 0.45 0.35 0.571 0.38 0.337 0.60
aF 0.60 0.58 0.61 0.57 0.604 0.57 0.501 0.31
o 1.47 1.51 1.44 1.22 1.468 1.507 1.039 1.50
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ig. 5. Search for the linearity of (Br − 1)�2 vs. �2 for some isotherms of Xe; points
re obtained from experimental data [18], and all lines from Eq. (24a) and fitting
ata.

t � = �oz, we may obtain �oz for EOSs I and II, respectively as,

oz =
(

− a1

b1

)0.5
(23a)

oz =
(

−d1

c1

)
(23b)

s shown in Fig. 1a for argon and Fig. 3b for Au, all isotherms
ass through a common point which is the common compres-
ion point. The calculated value of �oz for Xe given by Eq. (23a)
s 28.35 mol L−1 which is comparable with experimental value
btained from isotherms, 28.94 mol L−1 in the range of 20–60 K.
oreover, the calculated value of �oz for Au obtained from Eq. (23b)

s 95.6 mol L−1 which has only a small deviation from the exper-
mental value obtained from the intersection point of isotherms
ower than 1000 K of Fig. 3b (≈99.10 mol L−1).

Using EOS I, the reduced bulk modulus, Br = B/�RT [B = −�
∂p/∂�)T], is obtained as

Br − 1)�2 = 3a + 5b�2 (24a)

nd from EOS II,

Br − 1)�2 = 3c + 2d
(

1
�

)
(24b)

n order to find the common bulk modulus point, �OB, one may set
∂Br/∂T)� equal to zero, for EOSs I and II, to obtain the following
esults;

2
OB = −0.6

a1

b1
(from EOS I) and �OB = −2

3
d1

c1
(from EOS II) (25)

he accuracy of Eq. (24a) for some isotherms of xenon is shown
n Fig. 5. Even though the isotherms do not intersect in the solid
ensity range, their extrapolations give a common point at a lower
ensity. The calculated value of �OB for Xe using Eq. (25) is about
2.34 mol L−1 which is below �0 of the isotherms.

. Discussions and conclusions

LIR, which was derived on the basis of the concept of the effec-
ive pair potential, has been applied well to most Lennard–Jones

uids which their interaction potential can be modeled rather accu-
ately by the (12-6) powers of inverse intermolecular distance.
his is because the nature of forces of Lennard–Jones fluids is well
escribed according to a definite dispersive interaction mechanism.
owever, the application of LIR to quite non-spherical molecules

R
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uch as long chain organic compounds [42], alkali metals liquids
uch as liquid cesium [26] and some complex mixtures [6] in which
he LJ (12-6) potential function is not appropriate, isotherms may,
ignificantly, deviate from the linear behavior. In different stud-
es in solids, Vinet et al. [1] derived a universal EOS for solids on
he basis of a universal relation for the binding energy of solids
n terms of intermolecular distances. Parsafar and Mason [2] later
erived another appropriate EOS for compressed solids using the

act that the repulsive branch of the binding energy curves can be
ell given by a simple cubic function of density. In this study, LIR

OS in which (Z−1)�2 is linear with respect to �2 has been tested for
ome ionic, metallic and molecular (non-ionic and non-metallic)
olids, and observed that it is suitable only for the last one, see
ig. 1a; nevertheless, for the ionic and metallic solids due to their
onic characteristic for which the repulsive part of their potential is
ofter than that of LJ (12, 6) and the attractive part has a longer range
han that of LJ (12, 6), the linearity of (Z−1)�2 exists in terms of 1/�
ather than �2, see Figs. 1b, c, and 2b, c. Therefore, we may con-
lude that EOS is sensitive to the functional form of the interaction
r binding energies.

In general, as long as the non-ideal thermal pressure is con-
tant or varies very slowly with temperature and density, all dense
ystems mimic the same pVT behavior and the form of EOS is not
nfluenced by the physical state of material, but the physical state
nly affects the scaling parameters. For instance, Marnaghan EOS
43] based on the empirical observation in which the isothermal
ulk modulus is a linear function of pressure has been wildly used
or both solids and liquids. In harmony, it was found that it is also
pplicable to dense supercritical fluids [9]. In this study, we have
lso shown that a condense matter obeys from the same mathemat-
cal expression for its EOS regardless of its physical state. However,
he values of its parameters depend on the physical state. Due to the
act the binding energy depends on the average molecular separa-
ion and the physical state of matter such a conclusion is expected.
dditionally, such dependencies show that the isobaric expansiv-

ty and isothermal compressibility are density and state dependent,
ee Eqs. (19) and (20). In solids, the vibrational contribution in EOS
ike the non-ideal thermal pressure in fluids may be temperature
nd density dependent with a complicated form [3,17]; nonethe-
ess, its constancy leads to a reasonable result for solids. By using
his approximation, EOSs I and II may, accurately, show the behav-
or of pVT in solids. We have also noticed that both EOSs mimic
he simple form of temperature dependencies which are shown in
igs. 2a, b and 4a and b for the molecular and non-molecular solids,
espectively.

As mentioned before, the parameters a0 and b0 in Eqs. (17) and
18) are expected to be independent of lattice density and the inter-
ction potential. Owing to the fact that such a contribution is due to
he long wavelength vibrational modes, in which the atomic nature
f solid becomes unimportant; in other words, the solid may be
ssumed to be an elastic medium; such a conclusion is reasonable.

By careful inspection of Tables 3–5, one may come to this
act that the new two-parameter EOSs are comparable with other
wo-parameter and three-parameter EOSs presented in literature.
owever, the advantages of these new EOSs over the previous ones
re (1) they have very simple temperature-dependent parameters;
2) the parameters have physical meaning; and finally, (3) they can,
t least, predict two solid regularities, which are in accordance with
xperiment.
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