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We have used the two-dimensional Ising model with a limited number of rows, but with the coordination
number of four for each site, to set up the transfer matrix for the model. From the solution of such a matrix,
the exact thermodynamic properties have been obtained for the model with a definite number of rows,n. We
have solved the matrix forn e 7 andn e 10 in the presence and absence of a magnetic field, respectively.
On the basis of such solutions, we have proposed an analytical expression for the partition function of the
model with any number of rows in the absence of a magnetic field. The proposed expression becomes more
accurate whenn is larger, in such a way that it becomes very accurate forn g 8 and is exact forn f ∞. Our
results show that the singularity of the specific heat occurs only for the model with infinite number of rows.
In the presence of a magnetic field, the solution to the matrixes is too complicated to propose a general
analytical expression for the partition function of the model with any number of rows. However, our exact
solution for the model withn ) 4, 5, 6, and 7 reveals an important point that such results are independent of
n when the field-spin interaction energy is almost equal to or larger than that of the spin-spin interaction.

Introduction

The equilibrium statistical physics of systems of noninter-
acting particles or elements with negligible interactions is not
essentially a complicated subject, and the treatment of these
systems can be reduced essentially to that of a single element.
The harmonically vibrating lattices have strong interactions
among particles, but they are ideal systems in view of normal
modes or phonons. In contrast to these ideal systems, systems
that are by no means reducible to ideal systems exist and thus
have strong interactions among constituent elements, which can
never be ignored. The equilibrium statistical physics of interact-
ing systems presents a vast sea of unsolved problems, based
not only in physics and chemistry, but also very much in
microbiology, macrobiology, ecology, sociology, economics,
and many-people problems in general.

Systems of interacting particles can exhibit correlations,
so-called cooperative phenomena, and phase transitions such
as condensation, crystallization, spontaneous magnetization
(a paramagnetic substance becomes ferromagnetic by cooling
below the Curie temperature), order-disorder transition, and
ferroelectricity. The Ising model can be adapted to all of these
contexts and solved exactly in one and two dimensions as well
as approximately in any number of dimensions.

There are several good histories of the Ising model, from the
original suggestion by Wilhelm Lenz, based on a paper he
published in 1920, to his doctoral student Ernst Ising, who
published his eponymic paper in 1925, and on the exact solution
in two-dimensional, first by Onsager in 1942, and later by others
with easier methods (Brush,1,2 Domb,3 Hurst and Green,4 and
McCoy and Wu5). Some of the more notable achievements
should be mentioned. The mathematician Balthus van der
Waerden6 showed in 1941 that the binary alloy problem of the
Bragg-Williams type7 could be solved exactly, in three

dimensions, by counting closed diagrams on a lattice. At about
the same time, H. A. Kramers and Wannier8 located the
transition temperature for the two-dimensional Ising lattice and
showed that the partition function corresponded to the largest
eigenvalue of a characteristic matrix (their method was extended
and generalized by others: Ashkin and Lamb,9 Potts10). Lars
Onsager’s 1942 exact solution of the two-dimensional Ising
problem, first published in 1944, was so complicated that few
people at the time understood it.11 His student, Bruria Kauf-
man,12,13 improved, extended, and clarified the calculations by
use of spinor notation, but they still remained abstruse.

Nowadays, the Ising model has very wide applications in
different scientific areas, for example, in adsorption isotherms,14

phase diagrams for the phase separation transition in ternary
system,15 neural networks,16-18 molecular biology,19,20and even
in sociology.21

To understand the phenomena associated with the sudden
changes in the material properties, which take place during a
phase transition, it has proven most useful to work with
simplified models that single out the essential aspects of the
problem. The Ising model is one of such models.22 A specific
transition, which has been investigated by the Ising model, is
spin glass transition. The first example of such transition was
found in a dilute alloy system such as Au1-xFex with x very
small.23 Experimentally, one sees a rather sharp maximum in
the zero field susceptibility, a broad maximum in the specific
heat, and an absence of any long-range order below this spin
glass transition temperature, although there is both hysteresis
and remanence. Many other materials have since been identified
as having a transition of the spin glass type.24-27

The techniques, which have been developed in scope and
power during the past two decades, are the simulation
methods,27-29 especially the Monte Carlo simulation. In such
method, model systems containing a relatively small number
of interacting spins (perhaps 1000) are activated kinetically and
the equilibrium, or nonequilibrium, property of interest is
estimated for the system. By varying the size of the system and
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extrapolating, it is possible to estimate bulk properties. Binder
gives a general introduction to the use of Monte Carlo methods
for spin systems in a review article;30 more recent developments
are described.31-34

Analytic solutions of the Ising model in three dimensions,
and for the model in two dimensions in an external magnetic
field, B, have remained beyond the abilities of everyone who
has tried. Here our goal is to introduce a new approach for
solving the two-dimensional square lattice of the Ising model,
from which the thermodynamic properties of the model can be
obtained analytically.

The Ising Problem

We assume that each lattice point in a crystal has an atom
with a spin. Let the spin in thejth lattice point besj; then the
Hamiltonian of this spin system in a magnetic fieldB applied
in the z-direction is35

where ∑ stands for the sum over the pairs of spins. The
quantitiessz, g, andµB are thez-components of the spin operator
s, Lande’s factor, and the Bohr magneton, respectively.Jij is
the exchange integral, which depends on the distance between
the ith and jth spins and can be assumed zero for pairs other
than the nearest ones.Jij > 0 for ferromagnetic andJij < 0 for
antiferromagnetic interactions. The scalar productsi‚sj expressed
in terms of their components as

If the magnitude ofs equals1/2, the components are expressed
by Pauli matrices as

This interaction is isotropic with respect to thex,y,z-components
of different spins. This is called the Hisenberg model. When
the x- andy-components of the interactions are negligible, the
Hamiltonian reduces to

In this case,si
z takes1/2 or -1/2 and quantum mechanical effect

of the commutation properties of the spin operators have no
longer to be taken into consideration. This model is called the
Ising model. On the other hand, whenz-components can be
ignored andx- andy-components have anisotropic contributions
to the Hamiltonian, then we have

Hereηij is a constant which depends on the distance between
the ith andjth spins. This is called the XY model.

No real system has been found which can be approximately
represented by an XY model, in contrast to the Ising model,
which can be applied to real system having a strong anisotropy
in one direction.

Solving the Ising Model for a Linear Chain

A general Ising lattice is a regular array of elements, each of
which can interact with other elements of the lattice and also
with an external magnetic field, such that the nonkinetic part
of the Hamiltonian given by eq 4 can be written as

where the cB term represents a magnetic dipole energy in the
applied field B, Jij/2 ) J if points i and j are the nearest
neighbors and zero otherwise,σi are spin variables, to which
two values of(1 can be assigned, the/ on the first summation
means that terms withi ) j are not allowed, and the1/2 factor
is to avoid the overcounting ofij pair.

Since the kinetic and nonkinetic parts of the partition function
are separated, and since the interesting behavior is exhibited
entirely by the nonkinetic factor, the kinetic factor will not be
carried along in the development to follow, and the term
partition functionwill be understood to mean the nonkinetic
term.

The partition function may be written as

wherej ) J/kT andb ) cB/kT. For simplicity, the sums in eq
7 will be denoted as∑{σi)(1}, which is taken over the set of
σi’s, each of which can be(1 independently.

The simple Ising problem in one dimension can be solved
by several ways. Let us first consider a chain of lengthN with
free ends and in the zero external field. Then for such a model,
the Hamiltonian and partition function are given by36

The free energy in the thermodynamic limit (N f ∞) is then

We can also obtain an expression for the free energy in the
presence of a magnetic field. To avoid the end effects, we
include the periodic boundary conditions, that is, to assume that
theNth spin is connected to the first spin so that the chain forms
a ring, in which the elements ofi andN + i are the same. Using
eq 6, the partition function may be written as

To solve eq 11 forZN, there are a few approaches. We shall
give only a brief introduction to the most convenient approach,
i.e., the transfer matrix method. It is convenient to introduce a
2 × 2 transfer matrixM1 as,

H ) -2∑
〈ij 〉

Jijsi‚sj - gµBB∑
i

si
z (1)

si‚sj ) si
xsj

x + si
ysj

y + si
zsj

z (2)

H ) -2∑
〈ij 〉

Jijsi
zsj

z - gµBB∑
i

si
z (4)

H ) -2∑
〈ij 〉

Jij[(1 + ηijsi
xsj

x) + (1 - ηijsi
ysj

y)] - gµBB∑
i

si
z (5)

H ) -1/2 ∑
i,j)1

N* Jij

2
σiσj - cB∑

i)1

N

σi (6)

ZN ) ∑
σ1)(1

∑
σ2)(1

... ∑
σN)(1

exp[j∑σiσj + b∑
i)1

N

σi] (7)

H ) -J∑
i)1

N-1

σiσi+1 (8)

ZN ) 2(2 coshj)N-1 (9)

A ) -NkT ln(2 coshj) (10)

ZN ) ∑
{σi}

∏
i)1

N

exp[jσiσi+1 +
b

2
(σi + σi+1)] (11)
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where

Then the partition function in terms of the trace of the transfer
matrix, Tr M1

N, is given as

SinceM1 is a real symmetric matrix, it may be diagonalized
by an ortogonal transformation

which preserves its trace. Then TrM1
N can be written as∑λi

N,
and eq 14 becomes

whereλ1 is the largest eigenvalue. The solution of eq 15 gives

Then the free energy is given by

Solving the Ising Model for the Square Lattice

Consider a model lattice ofN spin (N f ∞) in a plane
composed ofn rows andn′ columns (N ) n × n′). Each spin
can take either the state+1(a) or-1(b). The mutual spin-spin
and spin-external magnetic interactions are the same as those
of the one-dimensional model, which was explained before.
Furthermore, we assume that the interaction energy of two
vertical and horizontal neighboring spins are the same. Our goal
is to find the macroscopic properties of the model whenn and
n′ both approach infinity. Since solving such a problem is too
complicated, we shall use some simpler models in which the
number of rows are finite; then the results of such a simple
model will be extended to the case thatn f ∞. We start with
the simplest model, in whichn ) 3 andn′ ) N/3, as shown in
Figure 1. Except for the first and last columns, each spin in the
middle row has four neighbors, while those in the first and third
rows each have three neighboring spins. Therefore, the coor-
dination number of spins is different and depends on the position
of spin. However, in the actual model, in whichn andn′ are
both infinity, the side effects are negligible, and hence all spins
are identical; each has four nearest neighbors. In order to
eliminate such a difference between the simple model (with
n ) 3) and the actual model (withn f ∞), the former model
has to be modified in such a way that each spin has four nearest

neighbors. To carry out such a modification, we may treat the
spins on the first and third rows of each column as the nearest
neighbors. If we denote the interacting nearest neighbor spins
by a line connecting two spins to each other, our modified model
is that which is shown in Figure 2a. The periodic boundary
condition is taken into account by assuming that the states of
triangulari andN/3 + i in Figure 2a are the same. Since each
spin has two states, a or b, each triangular may have 8 states
shown in Table 1.

Now, it is possible to treat our model as the one-dimensional
Ising model. However, the following two differences have to
be taken into account:

(1) In the one-dimensional model each spin has only two
states while each triangular has eight states,

(2) Unlike a spin in the one-dimensional model, each
triangular has a configurational energy whose value is given in
Table 1.

By referring to Table 1, the partition function of our model
with N/3 triangulars may be written as

while the matrixM3b is

Since our aim is to diagonalize the matrixM3b and to obtain its
maximum eigenvalue, we may obtain such a maximum from
the following 4×4 matrix

Figure 1. Simplest two-dimensional Ising model with three rows and
infinitive columns.

M1 ) [hxm 1/xm

1/xm xm/h] (12)

m ) e2j, h ) eb (13)

ZN ) ∑
{σi)(1}

〈σ1|M1|σ2〉〈σ2|M1|σ3〉...〈σN|M1|σ1〉 ) Tr M1
N

(14)

|M1 - λI | ) 0 (15)

ZN ) λ1
N[1 + (λ2/λ1)

N] = λ1
N asN f ∞ (16)

λmax ) xm coshb + xm sinh2 b + 1/m (17)

A ) -NkT ln(xm coshb + xm sinh2 b + 1/m) (18)

Figure 2. Modified two-dimensional lattice model with (a) three rows
and (b) four rows. Each line connecting two spins shows the interacting
nearest neighbor spins.

ZN/3 ) ∑
{σi)A1toA8}

∏
i)1

N/3

exp[jσiσi+1 +
b

2
(σi + σi+1)]

) ∑
{σi}

〈σ1|M3b|σ2〉...〈σN/3|M3b|σ1〉 ) Tr M3b
N/3 (19)

M3b ) [m3h3 mh2 mh2 mh2 h h h 1

mh2 mh h/m h/m 1 1 1/m2 1/h

mh2 h/m mh h/m 1/m2 1 1 1/h

mh2 h/m h/m mh 1 1/m2 1 1/h

h 1 1/m2 1 m/h 1/mh 1/mh m/h2

h 1 1 1/m2 1/mh m/h 1/mh m/h2

h 1/m2 1 1 1/mh 1/mh m/h m/h2

1 1/h 1/h 1/h m/h2 m/h2 m/h2 m3/h2

]
(20)

7516 J. Phys. Chem. B, Vol. 103, No. 35, 1999 Ranjbar and Parsafar



In the absence of any magnetic field, the states A1 and A8 and
also the states A2 through A7 given in Table 1 have the same
configurational energies. In this case, the maximum eigenvalue
of the matrixM3a can be obtained from diagonalization of the
following matrix

By solving the secular determinant,|M3 - λI | ) 0, we may
obtain the maximum eigenvalueλmax ) Z3

3/N ) z3 as

where

in which z3 is the partition function for each spin in the three-
row model.

Now, we can add an additional row to the model shown in
Figure 1. Again, we face the problem that the number of nearest
neighbors of spins in such a four-row model is different,
depending on the location of spin. To eliminate such differences,
and having a model in which each spin has four nearest
neighbors, the model has to be modified. The modified model
is shown in Figure 2b, for which each square has 16 states
shown in Table 2. For this model, by including the periodic
boundary condition, the secular determinant has an order of 16.
However, its maximum eigenvalue may be obtained from the
following determinant

In the absence of any magnetic field, the maximum eigenvalue,
z4, can be obtained as

where

Adding another row to the former model and considering a
similar modification, the partition function per each spin,z5,
can be obtained as

where

The same approach can be used to calculate the partition
function for the model withn > 5. However, forn ) 6, 7, and
8 the secular determinant in the absence of any magnetic field
gives a polynomial with the order of 8, 9, and 18, respectively.
Such polynomials cannot be solved analytically. For this reason,
we have not been able to obtain a mathematical expression for
the partition function. However, the polynomials can be solved
numerically to obtain the partition functions and hence the free
energies (-A/NkT ) ln z). Also, we may use the polynomials
to find the first and second derivatives of the partition function,
from which the internal energies (-E/NJ ) ∂ ln z/∂j) and heat
capacities (C/Nk ) j2∂2 ln z/∂j2) can be obtained.

All calculations were carried out by a personal computer,
using well-known software called “maple”. Unfortunately, we
were not able to solve analytically the secular determinant for
n > 8, mainly due to a very long computational time. However,
the determinant was solved numerically only forn ) 9 and 10,
from which we have calculated the exact free energy. The results
of such calculations are given in Figures 3-5 for the reduced
free energy, internal energy, and heat capacity, respectively. The

TABLE 1: All Possible Configurations for Each Triangular of Figure 2a along with Its Configurational Energy

2 3group 1 4

state A1 A2 A3 A4 A5 A6 A7 A8

configuration

config energy -3J - 3cB J - cB J + cB -3J + 3cB

TABLE 2: Same as Table 1 for a Square

group 1 2 3 4 5 6

configuration

degeneracy 1 4 4 2 4 1
config energy -4J - 4cB -2cB 0 4J 2cB -4J + 4cB

M3a ) [m3h3 mh2 h 1

3mh2 mh+ 2h/m 2 + 1/m2 3/h

3h 2 + 1/m2 m/h + 2/mh 3m/h2

1 1/h m/h2 m3/h3 ] (21)

M3 ) [1 + m3 1 + m

3 + 3m 2 + m + 2/m + 1/m2] (22)

ln z3 ) ln 2 cosh 2j + 1
3

ln
1 + 1/m

1 + 1/m2
+ f3(p) (23)

f3(p) ) -ln 2 + 1
3

ln(4 - p + x(4 + p)(4 - 3p)) (24)

p ) 2 tanh 2j/cosh 2j (25)

| m4h4 - λ m2h3 mh2 h2 h 1

4m2h3 m2h2 + 3h2 - λ 2mh+ 2h/m 2h/m2 + 2h 3 + 1/m2 4/h

4mh2 2mh+ 2h/m 2 + m2 + 1/m2 - λ 4/m 2/mh+ 2m/h 4m/h2

2h2 h + h/m2 2/m 1 + 1/m4 - λ 1/m2h + 1/h 2/h2

4h 3 + 1/m2 2/mh+ 2m/h 2/m2h + 2/h m2/h2 + 3/h2 - λ 4m2/h3

1 1/h m/h2 1/h2 m2/h3 m4/h4 - λ
|

) 0 (26)

ln z4 ) ln 2 cosh 2j + f4(p) (27)

f4(p) ) -5/4 ln 2 +
1/4 ln(8 - p2 + R + 21/2 xR2 + (8 - p2)(2p2 + R)) (28)

R ) x(8 - p2)2 - 32p2

ln z5 ) ln 2 cosh 2j + 1
5

ln
1 + 1/m

1 + 1/m2
+ f5(p) (29)

f5(p) ) -6/5ln 2 +
1/5ln(Θ1 + Θ2 + 21/2xΘ2

2 + Θ1Θ2 + 64p2 - 16p3 - 6p4)
(30)

Θ1 ) 16 - p2 - 4p

Θ2 ) x256- 128p - 144p2 + 40p3 + 5p4
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thermodynamic properties for the square lattice (n f ∞) are
also shown in these figures.

Extension of the Results to the Square Lattice

By increasing one row to our model, the order of the transfer
matrix increases by a factor of 2. Therefore, whenn increases,
the solution of the secular determinant becomes more compli-
cated in such a way that we were able to solve it only forn e
10. It means that the model cannot be solved for the square
lattice (n f ∞), because of computer restrictions.

However, we may refer to the results of the model for which
the analytical expression for the free energy of the model is
obtained. The lnzn is given in eqs 23, 27, and 29 forn ) 3, 4,
and 5, respectively. These equations have a common term as
ln(2 cosh 2j), from which we may expect that lnzn includes
such a term regardless of the value ofn. The ln zn includes a
term as ln[(1+ 1/m)/(1 + 1/m2)]/n only for the cases thatn is
odd, otherwise it is zero. Because of the fact that this term
vanishes whenn f ∞, we may ignore such a term. Therefore,
we may propose the following expression for the free energy
of the model

Note that eq 31 is in accordance with the common intersection
point observed in Figure 4 for the internal energy, because of
the fact that

which is zero atjc ) J/kTc ) ln(1 + x2)2, the critical
temperature of the square lattice. At such a common point, eq
31 gives -E/NJ ) x2, which is exactly the same as that
shown in Figure 4.

Now, we have to propose a mathematical expression, for
f(n,p). Because of the fact that the extra term inf(3,p) andf(5,p)
vanishes for the case we are interested in (n f ∞), we may
assume that such a proposition is similar tof(4,p). The
expression forf4 given in eq 28 may be expanded as a power
series as

For the square lattice the exact free energy was obtained from

The results given in eqs 31 and 32 are in accordance with eq
33; more specifically, the first term of eq 31 is the same as that
of eq 33, and eqs 32 and 33 both have only the even powers of
p. From such results, it is possible to propose a polynomial for
the free energy of the model and assume that its degree depends
on n.

Taking into account such points, along with the exact
calculated free energy for the model withn e 10, we have found
that the following expression is appropriate for the partition
function

Figure 3. Exact reduced free energy,-A/NkT, for the models withn
) 3-10 compared to that for the square lattice (n f ∞). The top curve
(dashed) is forn ) 3, the bottom curve is forn f ∞, and the other
curves are forn ) 4-10 from top to the bottom, respectively.

ln zn ) ln 2 cosh 2j + f(n,p) (31)

∂f(p)
∂j

) ∂p
∂j

∂f
∂p

) 4
cosh 2j

(1 - 2 tanh2 2j)
∂f
∂p

Figure 4. Same as Figure 3, for the reduced internal energy (the results
for the model withn ) 9 and 10 are not included).

Figure 5. Same as Figure 4, for the reduced heat capacity.

f4 ) -0.0625p2 - 0.0166p4 - 0.0067p6 -

0.0032p8 - 0.0017p10 + O(p12) (32)

ln z ) ln 2 cosh 2j - 1
π ∫0

π/2
ln

1 + x1 - p2 sin2 θ
2

dθ

) ln 2 cosh 2j -
1

4
∑
t)1

∞ 1

t[(2t)!

(t!)2]2

(p/4)2t (33)
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where the upper bound of the summation,l, is given by

Equation 34 can be used to find the internal energy and heat
capacity of the model as

where

In order to investigate the accuracy of the proposed free
energy given by eq 34, we have compared the heat capacity
given by eq 37 with the exact value in Figure 6 for the lowest
and highest values ofn for which we had calculated the exact
specific heat, i.e.,n ) 3 and 8, respectively. As shown in this
figure, we may conclude that the heat capacity, and hence the
proposed free energy given by eq 34 becomes more accurate
whenn becomes larger, the case which we are more interested
in. In fact, for the square lattice model withn f ∞, the proposed
free energy is exact (compare eq 33 with eq 34 for the case
that l f ∞).

Equation 37 can be used to calculate the heat capacity, the
result of which is shown in Figure 7 forn ) 20, 50, andn f
∞. As shown in this figure, the singularity of heat capacity is
observed only forn f ∞ (Onsager transition37). Such a
conclusion is expected from eq 37, because of the fact that at
such point (jc ) ln(1 + x2)/2, p ) 1, p′ ) 0, p′′ ) -8)

is infinite only whenl f ∞. In other words, for the model with
a limited number of rows, we may expect to observe only a
diffuse transition37 or continuous transition.38

Solving the Model in Nonzero Magnetic Field

The exact approach given in the previous sections for solving
the model in the absence of any external magnetic field can be
used to obtain the exact thermodynamic properties of the model
in presence of a magnetic field. For example, eqs 21 and 26
can be used to obtain the exact partition function for the models
with n ) 3 and 4, respectively. As explained before for the
case thatB ) 0, we can set up a transfer matrix for the model
with larger values ofn as well. We have set up the matrix for
the model withn ) 3, 4, 5, 6, and 7 and found its maximum
eigenvalue. The calculated partition function is used to obtain
the thermodynamic properties of the model. For instance, the
results for the heat capacities are shown in Figure 8 for a given
number of rows of the model at specified magnetic field
strengths,b ) cB/kT. We have also used the exact partition
function of the model to calculate the magnetization per
spin, I

The results of such calculations are shown in Figure 9 for some
given number of rows at specified magnetic field strengths.

Conclusion

In order to solve 2-D Ising model, we have used a two-
dimensional model with a limited number of rows,n, in which

Figure 6. Comparison of the heat capacity calculated from eq 37,
dotted curve, with the exact value, solid curve, for the model with
n ) 3 and 8.

ln zn ) ln 2 cosh 2j -
1

4
∑
t)1

l 1

t((2t)!

(t!)2)2

(p/4)2t (34)

l ) n +
(n-2)(n-3)

2
(35)

-
E

NJ
) 2 tanh 2j - 2

p′

p
∑
t)1

l ((2t)!

(t!)2)2

(p/4)2t (36)

C

Nk
)

2j2{2(1 - tanh2 2j) + ∑
t)1

l ((2t)!

(t!)2)2

(p/4)2t(p′2

p2
(1 - 8t) -

p′′

p )}
(37)

p′ ) 4
cosh 2j

(1 - 2 tanh2 2j) (38)

p′′ ) 4p

cosh2 2j
(cosh2 2j - 6) (39)

Figure 7. Reduced heat capacity versus the inverse of the reduced
temperature,j/kT, calculated from eq 37 forn ) 20, 50, and∞ at
B ) 0.

C

Nk
) {1/2 + 4∑

t)1

l ((2t)!

(t!)2)2

(1/4)2t}(ln(1 + x2)2 (40)

I ) (∂ ln z
∂b )T
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the coordination number for each site is equal to four, regardless
of the value ofn. We have shown how one can set up the
transfer matrix for the model. The approach introduced in this
work can be used to write down the matrix for the model with
any number of rows. However, due to soft- and hardware
limitations, the matrix can only be solved for the model with a
limited number of rows, in our case forn e 7 andn e 10 in
the presence and absence of an external magnetic field,
respectively. Fortunately, the exact analytical expressions for
the model with a limited number of rows (given in this work)
along with that for the actual 2-D model, given in literature,
for B ) 0 guided us to propose an analytical expression for the
partition function of the model with any number of rows, eq
34. As a severe test, the second derivative of the proposed
partition function, namely the specific heat capacity, has been
compared with the exact value; as an example see Figure 6.
The difference in heat capacity becomes smaller whenn is
larger, in such a way that it becomes insignificant forn g 8
and is exact forn f ∞. Therefore, we may conclude that eqs
34-36 give very accurate results for the model withn g 8 and

becomes exact for the actual two-dimensional model, the square
lattice model, in the absence of any external magnetic field.

According to eq 40, a singular point for the heat capacity is
expected to be observed only for the model with an unlimited
number of rows (n f ∞).

We have shown how to set up the transfer matrix in the
presence of an external magnetic field; see eqs 21 and 26 for
n ) 3 and 4. Solution to such matrix gives the exact solution
for the partition function of the model. Again, the matrix can
be written for the model with any number of rows. However,
due to the mentioned limitations, it can be solved only for the
model with a limited number of rows. In fact, the expression
obtained in this case is more complicated than that for the case
in which B ) 0, for any value ofn. For this reason, unlike the
previous case, we have not been able to give a general analytical
expression for the partition function whenB * 0. However,
the exact heat capacity and magnetization given in Figures 8
and 9 reveal an important conclusion, according to which the
calculated results forn ) 3, 4, 5, and 6 are almost the same
whenb = j or b > j. To disclose this point more clearly, we
have plotted the exact values of heat capacity forn ) 6 against
that forn ) 5 in Figure 10 whenb ) j. From such results, we
conclude that our exact calculated values for the model with
n ) 4, 5, 6, or 7 are almost the same as those for the actual
2-D model (n f ∞), whenb = j or b > j. For the case that
B ) 0, the main difference between the thermodynamic
properties of the model with different values ofn appears around
the singular point of the heat capacity; see Figure 7. For the
case ofB * 0, for which there is no singularity, we may expect
that such differences become insignificant, specially for the
stronger magnetic fields. This is in accordance with our above
conclusion.

Finally, it is obvious that the approach given in this work
can even be used for the 3-D Ising model. However, in order
to get any significant result, we leave this task for the future,
when more sophisticated hard- and software is available.
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Figure 8. Exact reduced heat capacity versus the inverse of the reduced
temperature for given magnetic field forn ) 3 (‚‚‚), 4 (- ‚ -), 5 (- ‚‚ -),
6 (s).

Figure 9. Same as Figure 8, for the magnetization forn ) 4 (‚‚‚),
5 (- ‚ -), 6 (s).

Figure 10. Exact reduced heat capacity for the model withn ) 5
versus that forn ) 6 whenb ) j.
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