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We have used the two-dimensional Ising model with a limited number of rows, but with the coordination
number of four for each site, to set up the transfer matrix for the model. From the solution of such a matrix,
the exact thermodynamic properties have been obtained for the model with a definite number of kes,

have solved the matrix fan < 7 andn < 10 in the presence and absence of a magnetic field, respectively.
On the basis of such solutions, we have proposed an analytical expression for the partition function of the
model with any number of rows in the absence of a magnetic field. The proposed expression becomes more
accurate whenm is larger, in such a way that it becomes very accurate far8 and is exact fon — c. Our

results show that the singularity of the specific heat occurs only for the model with infinite number of rows.
In the presence of a magnetic field, the solution to the matrixes is too complicated to propose a general
analytical expression for the partition function of the model with any number of rows. However, our exact
solution for the model wittn = 4, 5, 6, and 7 reveals an important point that such results are independent of
n when the field-spin interaction energy is almost equal to or larger than that of the-spin interaction.

Introduction dimensions, by counting closed diagrams on a lattice. At about
Th ilibri istical ohvsi f ¢ . the same time, H. A. Kramers and Wanfidocated the
he equilibrium statistical physics of systems of noninter- . ngition temperature for the two-dimensional Ising lattice and

acting particles or elements with negligible interactions is not showed that the partition function corresponded to the largest

essentially a complicated subject, and the treatment of thesegigonyaiue of a characteristic matrix (their method was extended
systems can be reduced essentially to that of a single elementand generalized by others: Ashkin and LatPottd?). Lars

The harmonically vibrating lattices have strong interactions Onsager's 1942 exact solution of the two-dimensional Ising
among particles, but they are ideal systems in view of normal , \hiem first published in 1944, was so complicated that few
modes or phonons. In contrast to these ideal systems, system eople 6’“ the time understoodlirtHis student. Bruria Kauf-
that are by no means reducible to ideal systems exist and thu anl2B3improved, extended, and clarified thé calculations by
have strong interactions among constituent elements, which can o ;)f spinor nota’tion, but tr;ey still remained abstruse.

never be ignored. The equilibrium statistical physics of interact- Nowadays, the Ising model has very wide applications in

ing systems presents a vast sea of unsolved problems, based. o . A
gsy P P ! 8lﬁerent scientific areas, for example, in adsorption isothéfims,

not only in physics and chemistry, but also very much in phase diagrams for the phase separation transition in ternary
mlgroblology, mlacrobtlj?logy,.ecology,ISOCIoIogy, economics, systemt® neural network3%-18 molecular biology??°and even
and many-people problems in general. ; S n ' '

. . h - . in sociology?

Systems of interacting particles can exhibit correlations, T dgyt d the ph iated with th 4d
so-called cooperative phenomena, and phase transitions suchh oun _er?han te'pl enometna asiqc;]atek WII 259 en
as condensation, crystallization, spontaneous magnetizationchangef’ In 't'e ma_te?]a properues, Wt'c a]l((letpace kurln_?ha
(a paramagnetic substance becomes ferromagnetic by coolingg. ase transition, it ‘has proven most USEIUl 1o work: wi
below the Curie temperature), ordetisorder transition, and implified mode!s that S|ngle out the essential aspect.s.of the
ferroelectricity. The Ising model can be adapted to all of these problem. The Ising model is one of such mod&i# specific

contexts and solved exactly in one and two dimensions as well tra_nsn:on, \;vh|ch_t_has _tla_ﬁenf_ln}[/estlgattled bfy thehlflng TOdel' IS
as approximately in any number of dimensions. spin glass transition. The first example of such transition was

S . found in a dilute alloy system such as AuFe with x ver
_T_here are sevt_aral good .h'StO”es of the Ising model, from the smallZ3 Experimentall);/ (})/ne sees a rather sharp maximzm in
O”g:.n?: Zuggig['z%n f’y thIZeIn; L?nzt, é)aste(i: onte} paper r?e the zero field susceptibility, a broad maximum in the specific
Eﬂbl;:hgd t:?s epon;/m?c plzpe(r)(i:nolrg%S l:jmtzlnon tLréSexasllcr:%omtignheat’ and an absence of any long-range order below this spin
in two-dimensional, first by Onsager in’1942 and later by others glass transition temperature, although there is both hysteresis
with easier methods (Br8|/§+? Domb? Hurst and Gree ;nd and remanence. Many other materials have since been identified

. " ; 7
McCoy and W3§). Some of the more notable achievements as f:1avmg:1 FranS|t|onhlofhthhe Splg glas(sj t%Tz' di d
should be mentioned. The mathematician Balthus van der 'he techniques, which have been developed in scope an

Waerdefi showed in 1941 that the binary alloy problem of the powherdgzgj_régg the p”asth twl\(;l deczca:dels, are lth_e s:mulatlrc])n
Bragg—Williams typ€ could be solved exactly, in three methods; especially the Monte Carlo simulation. In suc
method, model systems containing a relatively small number
T Permanent address: Chemistry Department, Science College, RaziOf |ntera(':F|ng Spins (perhapsll'OQO) are activated klpetlcally .and
University, Kermanshah, Iran. the equilibrium, or nonequilibrium, property of interest is
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Solving the Two-Dimensional Ising Model

extrapolating, it is possible to estimate bulk properties. Binder

J. Phys. Chem. B, Vol. 103, No. 35, 19986515

No real system has been found which can be approximately

gives a general introduction to the use of Monte Carlo methods represented by an XY model, in contrast to the Ising model,

for spin systems in a review articlmore recent developments
are described!34
Analytic solutions of the Ising model in three dimensions,

which can be applied to real system having a strong anisotropy
in one direction.

and for the model in two dimensions in an external magnetic Solving the Ising Model for a Linear Chain

field, B, have remained beyond the abilities of everyone who
has tried. Here our goal is to introduce a new approach for

solving the two-dimensional square lattice of the Ising model
obtained analytically.

The Ising Problem

We assume that each lattice point in a crystal has an atom

with a spin. Let the spin in thgh lattice point bes; then the
Hamiltonian of this spin system in a magnetic fi@dapplied
in the z-direction is®

H= _2; Jiss — gﬂBBZSZ
[} 1

where Y stands for the sum over the pairs of spins. The
quantitiess, g, andug are thez-components of the spin operator
s, Lande’s factor, and the Bohr magneton, respectivéjyis

@)

A general Ising lattice is a regular array of elements, each of
which can interact with other elements of the lattice and also

' with an external magnetic field, such that the nonkinetic part
from which the thermodynamic properties of the model can be g P

of the Hamiltonian given by eq 4 can be written as
N

=—/Z i ) 0

|]l

(6)

where the B term represents a magnetic dipole energy in the
applied field B, Jj/2 = J if points i and | are the nearest
neighbors and zero otherwise, are spin variables, to which
two values oft1 can be assigned, theon the first summation
means that terms with= j are not allowed, and th¥, factor
is to avoid the overcounting of pair.

Since the kinetic and nonkinetic parts of the partition function
are separated, and since the interesting behavior is exhibited
entirely by the nonkinetic factor, the kinetic factor will not be

the exchange integral, which depends on the distance betweercarried along in the development to follow, and the term
the ith andjth spins and can be assumed zero for pairs other partition functionwill be understood to mean the nonkinetic

than the nearest one¥. > 0 for ferromagnetic and; < 0 for
antiferromagnetic interactions. The scalar prodiistexpressed
in terms of their components as

S'§=S9 +59 +s5 @)

If the magnitude of equals!/,, the components are expressed
by Pauli matrices as

~
01

S;= 1/2(0)c)_/= l/2[1 0 ;

y 0 —i
g=twey ="l o' @

J

10
=0, = 1/2[0 _1 ]

v

This interaction is isotropic with respect to tkig,z-components

of different spins. This is called the Hisenberg model. When
the x- andy-components of the interactions are negligible, the
Hamiltonian reduces to

H= _zg ‘]ijSZSjZ - g,uBstz (4)

In this cases takes'/, or —%, and quantum mechanical effect

term.
The partition function may be written as

Z Z[ Z expﬂZola + b S

wherej = JKT andb = cB/KT. For simplicity, the sums in eq
7 will be denoted ag$ {4=+13, Which is taken over the set of
ai’'s, each of which can be-1 independently.

The simple Ising problem in one dimension can be solved
by several ways. Let us first consider a chain of lengtith
free ends and in the zero external field. Then for such a model,
the Hamiltonian and partition function are given3py

(7)

N—-1
—J) 00

Z, = 2(2 cosh)*

H= ®)

9)
The free energy in the thermodynamic limil (-~ ) is then

A= —NKTIn(2 coshj) (10)

We can also obtain an expression for the free energy in the
presence of a magnetic field. To avoid the end effects, we
include the periodic boundary conditions, that is, to assume that
theNth spin is connected to the first spin so that the chain forms

of the commutation properties of the spin operators have no aring, in which the elements ondN + i are the same. Using
longer to be taken into consideration. This model is called the eq 6, the partition function may be written as

Ising model. On the other hand, whercomponents can be
ignored and- andy-components have anisotropic contributions
to the Hamiltonian, then we have

H= —2; Hl(L +my8'9) + (1 — 1 S’S)] — weBY & (5)
- I

N b
Z, = (;I D exp{jaioiﬂ + E(Oi + 0i41) (11)

To solve eq 11 foizy, there are a few approaches. We shall
give only a brief introduction to the most convenient approach,

Here; is a constant which depends on the distance betweeni.e., the transfer matrix method. It is convenient to introduce a

theith andjth spins. This is called the XY model.

2 x 2 transfer matrixM 1 as,
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Figure 1. Simplest two-dimensional Ising model with three rows and
infinitive columns.
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where

m=e3, h=¢ (13) ®

. . Figure 2. Modified two-dimensional lattice model with (a) three rows
Then the partition function in terms of the trace of the transfer ang (b) four rows. Each line connecting two spins shows the interacting

matrix, Tr M'f, is given as nearest neighbor spins.
Z = Z [6;,IM ] 0,d,|M 4 |o5LLL M 4|0, 0= Tr M lN neighbors. To carry out such a modification, we may treat the
{o=%1} (14) spins on the first and third rows of each column as the nearest

neighbors. If we denote the interacting nearest neighbor spins
by a line connecting two spins to each other, our modified model
is that which is shown in Figure 2a. The periodic boundary

condition is taken into account by assuming that the states of

SinceM; is a real symmetric matrix, it may be diagonalized
by an ortogonal transformation

IM; — Al =0 (15) triangulari andN/3 + i in Figure 2a are the same. Since each
spin has two states, a or b, each triangular may have 8 states
which preserves its trace. Then W, can be written ag A, shown in Table 1.
and eq 14 becomes Now, it is possible to treat our model as the one-dimensional

Ising model. However, the following two differences have to
Zy=M1+ (A =2 asN—w  (16) be taken into account:
(1) In the one-dimensional model each spin has only two
wherel; is the largest eigenvalue. The solution of eq 15 gives states while each triangular has eight states,
(2) Unlike a spin in the one-dimensional model, each
Anax = vmcoshb + vmsintf b+ 1/m a7 triangular has a configurational energy whose value is given in

Table 1.
Then the free energy is given by By referring to Table 1, the partition function of our model
with N/3 triangulars may be written as
A= —NkTIn(v'mcoshb + v¥msinif b+ 1/m) (18)
N/3
b
Solving the Ising Model for the Square Lattice Zys= z |‘| ex;{joigm +—(o; + 0,,,)
{oi=A1toAg} 1= 2

Consider a model lattice oN spin (N — ) in a plane
composed oh rows andn’ columns N = n x n’). Each spin
can take either the statel(a) or—1(b). The mutual spiftspin
and spir-external magnetic interactions are the same as those
of the one-dimensional model, which was explained before. . .
Furthermore, we assume that the interaction energy of two While the matrixMsp is
vertical and horizontal neighboring spins are the same. Our goal ] |
is to find the macroscopic properties of the model wheand mh® mit mif mtf h h h 1
n botr_l approach infinity. Since solying such a pro_blem_is too mH mh Hm hm 1 1 U 1/
complicated, we shall use some simpler models in which the
number of rows are finite; then the results of such a simple mif h/m mh #m 1/nf 1 1 1h
model will be extended to the case that> . We start with mH h/m hHm mh 1 1m? 1 1h
th_e simplest model, in which = 3 andn' = N/3, as shovx_/n _in M3y h 1 Ut 1 mh 1/mh 1/mh myh2
Figure 1. Except for the first and last columns, each spin in the 5
middle row has four neighbors, while those in the first and third h 1 1 1m? Lmh nmh  1/mh mvh
rows each have three neighboring spins. Therefore, the coor- h 1?1 1 1mh 1/mh mh mh?
dination number of spins is different and depends on the position 1 1h 1h 1h mh? ke mihd mih?
of spin. However, in the actual model, in whichandn' are | !
both infinity, the side effects are negligible, and hence all spins (20)
are identical; each has four nearest neighbors. In order to
eliminate such a difference between the simple model (with Since our aim is to diagonalize the maths, and to obtain its
n = 3) and the actual model (with — ), the former model maximum eigenvalue, we may obtain such a maximum from
has to be modified in such a way that each spin has four nearesthe following 4x4 matrix

= ; [, |M 5] 0,1 [y M gl 0, 0= Tr Mg V3 (19)
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TABLE 1: All Possible Configurations for Each Triangular of Figure 2a along with Its Configurational Energy

J. Phys. Chem. B, Vol. 103, No. 35, 19986517

2

group 1 4
state A Az As Ay As As A, Ag
configuration a a a b a b b b

\
a/—\a b/—\a a/— b a/—\a b/—\ b b/—\a a/—\ b/—\b
config energy —3J— 3cB J—cB J+cB —3J + 3cB
TABLE 2: Same as Table 1 for a Square
group 1 2 3 4 5 6
configuration T—T Ia_T ?—T all—b T\—llj tl)—llj
a—a b—a b—b b—!a b—b b—b
degeneracy 1 4 4 2 4 1
config energy —4J — 4cB —2cB 0 4 2cB —4J + 4cB
meh® mit h 1 In tg:nagzegggﬁfe%ngsmagnetic field, the maximum eigenvalue,
3mif mh+2h/m 2+ 1m?  3h “
My, = (21)

3h 24+ 1m? mh+2/mh 3myh?
1 1h mvh? m*/h?
In the absence of any magnetic field, the statesAd A and

also the states Athrough A given in Table 1 have the same

configurational energies. In this case, the maximum eigenvalue

of the matrixM s, can be obtained from diagonalization of the
following matrix

|1+m® 1+m

M =
® 1343m 24+ m+ 2/m+ 1n?

(22)

By solving the secular determinanMs; — Al| = 0, we may
obtain the maximum eigenvalug.x = Z*N = z3 as

1, 1+1/m
Inz,=In2cosh?2+=ZIn———+f

1/m? (23)

where

f4(p) = —In2+ 34— p+ @+ ) —3p) (24)

p = 2 tanh 2/cosh 2 (25)
in which z; is the partition function for each spin in the three-
row model.

Now, we can add an additional row to the model shown in

Figure 1. Again, we face the problem that the number of nearest

neighbors of spins in such a four-row model is different,

depending on the location of spin. To eliminate such differences,
and having a model in which each spin has four nearest

neighbors, the model has to be modified. The modified model

is shown in Figure 2b, for which each square has 16 states

shown in Table 2. For this model, by including the periodic

boundary condition, the secular determinant has an order of 16.

However, its maximum eigenvalue may be obtained from the
following determinant

m'h* -4 neh? mtf h? h 1

4nth® neh?+3h? — 2 2mh+ 2hVm 2P +2h 3+ 1m? 4/h

4mif 2mh+ 2h/m 24+ mf+1mf—1 4m 2/mh+ 2mvh 4m/h?

2h? h+ hin? 2/m 1+ Um* =2 1nth+ 1/h 2/?

4h 3+ 1n? 2/mh+ 2m/h 2ith+ 2/ nf/h?+3h°— 4 4mflh®

1 1h mh? 1h? né/h? mih® — 4
-0 (26)

In z,=In 2 cosh 2+ f,(p) 27)

where
f,(p)=-",In2+
Y, I8 — P2 + o+ 2¥2 a2+ (8 — pA)(2p2 + @) (28)

a=v(8—p’) -3’

Adding another row to the former model and considering a
similar modification, the partition function per each spi,
can be obtained as

1+ 1/m

1
Inzz=In2cosh?2+=In
% 2 1+ 1m?

TP (29

where

fs(p) = —%n 2+

(@, + 0, + 2'2/0% + 0,0, + 64p° — 16p° — 6p’)
(30)

0,=16—p°—4p

0, = V256— 128 — 144p? + 40p° + 5p*

The same approach can be used to calculate the partition
function for the model witm > 5. However, fom = 6, 7, and
8 the secular determinant in the absence of any magnetic field
gives a polynomial with the order of 8, 9, and 18, respectively.
Such polynomials cannot be solved analytically. For this reason,
we have not been able to obtain a mathematical expression for
the partition function. However, the polynomials can be solved
numerically to obtain the partition functions and hence the free
energies tA/NKT = In 2). Also, we may use the polynomials
to find the first and second derivatives of the partition function,
from which the internal energies-E/NJ = 9 In z/9j) and heat
capacities ¢/Nk = j23? In Z/9j2) can be obtained.

All calculations were carried out by a personal computer,
using well-known software called “maple”. Unfortunately, we
were not able to solve analytically the secular determinant for
n > 8, mainly due to a very long computational time. However,
the determinant was solved numerically only fo= 9 and 10,
from which we have calculated the exact free energy. The results
of such calculations are given in Figures3 for the reduced
free energy, internal energy, and heat capacity, respectively. The
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Figure 3. Exact reduced free energyA/NKT, for the models witn Figure 4. Same as Figure 3, for the reduced internal energy (the results

= 3—10 compared to that for the square lattine ). The top curve for the model withn = 9 and 10 are not included).
(dashed) is fon = 3, the bottom curve is fon — o, and the other
curves are fon = 4—10 from top to the bottom, respectively. 2.00 l | | |

thermodynamic properties for the square lattine— «) are

. . 1.75
also shown in these figures.

Extension of the Results to the Square Lattice 1.50

By increasing one row to our model, the order of the transfer 1.5
matrix increases by a factor of 2. Therefore, wineincreases,
the solution of the secular determinant becomes more compli-
cated in such a way that we were able to solve it onlyrfar
10. It means that the model cannot be solved for the square 0.75
lattice (h — o), because of computer restrictions.

However, we may refer to the results of the model for which
the analytical expression for the free energy of the model is
obtained. The Irz, is given in eqs 23, 27, and 29 far= 3, 4,
and 5, respectively. These equations have a common term as
In(2 cosh 2j), from which we may expect that Ig, includes

X 0.00
such a term regardless of the valuernofThe Inz, includes a 0.00 0.25 0.50 0.75 100 1.25
term as In[(1+ 1/m)/(1 + 1/mP)]/n only for the cases that is
odd, otherwise it is zero. Because of the fact that this term
vanishes whem — o, we may ignore such a term. Therefore,
we may propose the following expression for the free energy f,=—0 0625p2 -0 01661‘04 -0 0061.)6 _
of the model ' ' ’

C/NE
2
o

0.50

0.25

J
Figure 5. Same as Figure 4, for the reduced heat capacity.

0.0032° — 0.0019' + O(p'?) (32)
Inz,=1In2cosh 2+ f(n,p) (31) , _
For the square lattice the exact free energy was obtained from

Note that eq 31 is in accordance with the common intersection

. . . . 2
point observed in Figure 4 for the internal energy, because of | _ | 5 cosh 2 1 2N 1+v1-—p’sio do
the fact that 0 2

of (2t)I 2
of(p) _ op of _ (1— 2 tank 21) =In2cosh— = Z (p/4)? (33)
4  ojop cosh 2 (t)?
which is zero atjc = JKkT. = In(1 + +/2)2, the critical The results given in egs 31 and 32 are in accordance with eq

temperature of the square lattice. At such a common point, eq33; more specifically, the first term of eq 31 is the same as that
31 gives—E/NJ = V2, which is exactly the same as that of eq 33, and eqgs 32 and 33 both have only the even powers of
shown in Figure 4. p. From such results, it is possible to propose a polynomial for
Now, we have to propose a mathematical expression, for the free energy of the model and assume that its degree depends
f(n,p). Because of the fact that the extra ternf(Byp) andf(5,p) onn.
vanishes for the case we are interestednn< «), we may Taking into account such points, along with the exact
assume that such a proposition is similar fidp). The calculated free energy for the model witlx 10, we have found
expression foif4 given in eq 28 may be expanded as a power that the following expression is appropriate for the partition
series as function
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Figure 6. Comparison of the heat capacity calculated from eq 37, Figure 7. Reduced heat capacity versus the inverse of the reduced
dotted curve, with the exact value, solid curve, for the model with ‘[BempgratureJ/kT, calculated from eq 37 fon = 20, 50, ande at
n=3and 8. =

( )1\2 Equation 37 can be used to calculate the heat capacity, the
Inz,=In2cosh2—- Z - (p/4)2t (34) result of which is shown in Figure 7 for = 20, 50, anch —
4 (t') . As shown in this figure, the singularity of heat capacity is
observed only forn — o (Onsager transitiol). Such a
where the upper bound of the summatignis given by conclusion is expected from eq 37, because of the fact that at

such pointje = In(1 + v2)/2,p=1,p = 0,p" = —8)
(2!

:1/ +4Z o

is infinite only whenl — . In other words, for the model with
2 a limited number of rows, we may expect to observe only a
) (pl4)% (36) diffuse transitiod’ or continuous transitiof?

(n=2)(n—3)

l=n+ 5

(39)

2
) (1/4)2] (nL+ 2 (40)

Equation 34 can be used to find the internal energy and heat
capacity of the model as

(20)!

E
——=2tanh 2 — 2—
NJ ((t')

Solving the Model in Nonzero Magnetic Field

E = The exact approach given in the previous sections for solving
Nk the model in the absence of any external magnetic field can be
)2 (p’2 p”) used to obtain the exact thermodynamic properties of the model

2i% 2(1 - tantf 2j) + Z (p/4)—(@a — 8t) — — in presence of a magnetic field. For example, egs 21 and 26
(tl) p2 can be used to obtain the exact partition function for the models

(37) with n = 3 and 4, respectively. As explained before for the

case thaB = 0, we can set up a transfer matrix for the model
where with larger values oh as well. We have set up the matrix for
the model withn = 3, 4, 5, 6, and 7 and found its maximum

eigenvalue. The calculated partition function is used to obtain

p= cosh 2(1 2 tanit 2)) (38) the thermodynamic properties of the model. For instance, the
results for the heat capacities are shown in Figure 8 for a given
"= (cosﬁ 2j — 6) (39) number of rows of the model at specified magnetic field
cosﬁ 2 strengthsb = cB/kT. We have also used the exact partition

function of the model to calculate the magnetization per
In order to investigate the accuracy of the proposed free spin, |

energy given by eq 34, we have compared the heat capacity
given by eq 37 with the exact value in Figure 6 for the lowest | = (&
and highest values af for which we had calculated the exact ab
specific heat, i.e.n = 3 and 8, respectively. As shown in this
figure, we may conclude that the heat capacity, and hence theThe results of such calculations are shown in Figure 9 for some
proposed free energy given by eq 34 becomes more accurategiven number of rows at SpeCiﬁed magnetic field Strengths.
whenn becomes larger, the case which we are more interested
in. In fact, for the square lattice model with— oo, the proposed
free energy is exact (compare eq 33 with eq 34 for the case In order to solve 2-D Ising model, we have used a two-
that| — o). dimensional model with a limited number of rows,in which

Conclusion



7520 J. Phys. Chem. B, Vol. 103, No. 35, 1999 Ranjbar and Parsafar

T T T T 0.7 . T T

10 - b

05 -

04+ .

C/Nk

03 -

0.1+ i

0.0 i L 1 | L 1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 07

Jj C,/Nk

Figure 8. Exact reduced heat capacity versus the inverse of the reduced,;igure 10. Exact reduced heat capacity for the model with= 5
temperature for given magnetic field for= 3 (-++), 4 (-+-), 5 (-** -), versus that fon = 6 whenb = j.

6 (—).

I becomes exact for the actual two-dimensional model, the square
lattice model, in the absence of any external magnetic field.

According to eq 40, a singular point for the heat capacity is
- expected to be observed only for the model with an unlimited
number of rows 1f — o).

We have shown how to set up the transfer matrix in the
i presence of an external magnetic field; see eqs 21 and 26 for
n = 3 and 4. Solution to such matrix gives the exact solution
for the partition function of the model. Again, the matrix can
be written for the model with any number of rows. However,
due to the mentioned limitations, it can be solved only for the
model with a limited number of rows. In fact, the expression
obtained in this case is more complicated than that for the case
in which B = 0, for any value oh. For this reason, unlike the
previous case, we have not been able to give a general analytical
| expression for the partition function whdh= 0. However,
08 10 the exact heat capacity and magnetization given in Figures 8
and 9 reveal an important conclusion, according to which the
Figure 9. Same as Figure 8, for the magnetization for= 4 (-++) calculated_ results f.on N 3’ 4. 5, an.d 6 are almost the same
5 (- 1), 6 ay ’ ' whenb = j or b > j. To disclose this point more clearly, we
have plotted the exact values of heat capacitynfer 6 against
the coordination number for each site is equal to four, regardlessthat forn =5 in Figure 10 wherb = j. From such results, we
of the value ofn. We have shown how one can set up the conclude that our exact calculated values for the model with
transfer matrix for the model. The approach introduced in this N = 4., 5, 6, or 7 are almost the same as those for the actual
work can be used to write down the matrix for the model with 2-D model | — «), whenb = j or b > j. For the case that
any number of rows. However, due to soft- and hardware B = 0, the main difference between the thermodynamic
limitations, the matrix can only be solved for the model with a properties of the model with different valuesroppears around
limited number of rows, in our case for< 7 andn < 10 in the singular point of the heat capacity; see Figure 7. For the
the presence and absence of an external magnetic field,case ofB = 0, for which there is no singularity, we may expect
respectively. Fortunately, the exact analytical expressions for that such differences become insignificant, specially for the
the model with a limited number of rows (given in this work) stronger magnetic fields. This is in accordance with our above
along with that for the actual 2-D model, given in literature, conclusion.
for B = 0 guided us to propose an analytical expression for the  Finally, it is obvious that the approach given in this work
partition function of the model with any number of rows, eq can even be used for the 3-D Ising model. However, in order
34. As a severe test, the second derivative of the proposedio get any significant result, we leave this task for the future,

partition function, namely the specific heat capacity, has been ywhen more sophisticated hard- and software is available.
compared with the exact value; as an example see Figure 6.

The difference in heat capacity becomes smaller whes

larger, in such a way that it becomes insignificant foe 8 Acknowledgment. We acknowledge the Isfahan University
and is exact fon — «. Therefore, we may conclude that eqs of Technology for the financial support, and also Dr. B. Najafi
34—36 give very accurate results for the model witk 8 and for his useful comments.
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