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Solubility Prediction Using Statistical Mechanics
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In the present work, a new expression for the chemical potential of a component in its pure and mixed state has been
derived using the classical partition function and the Linear Isotherm Regularity, LIR. Using this approach, we are able
to interpret all contributions of ideal and non-ideal terms which appear in the chemical potential. The derived chemical
potential satisfies Raoult’s and Henry’s laws. We may also predict the solubility using the chemical potential without
any adjustable parameter when the solvent and solute have molecular similarity, like NH; in H,O. However, for cases in
which the solvent and solute molecules are significantly differ, one adjustable parameter must be considered. Success in
predicting the solubility in different systems is due to the generality of the used equation of state, LIR.

Predicting solubility is a main point in chemical process
design and, recently, in supercritical fluid technology. An ex-
perimental determination of solubility is not an easy task for
hazardous solvents, or for a medium under extreme tempera-
ture and/or pressure. Therefore, using an accurate solubility
equation can yield satisfactory information without involv-
ing any experimental difficulties.

Recently, there has been considerable progress in the de-
velopment of an analytical statistical-mechanical equation
of state applicable for deriving a solubility equation. Kwak
and Mansoori' developed a mixing rule for a cubic equation
of state based on statistical mechanical theory from which
the solubility of heavy solids in supercritical fluids may be
predicted. They used such a prediction as a sever test for
the mixture equation of state. Although their prediction of
the solubility versus pressure is in better agreement with the
experimental data than the original mixing rule, this suc-
cess is partly indebted to additional adjustable parameters.
Mohsen-nia et al.? introduced two new constant parameters
for their cubic equation of state. They have claimed that their
equation is more accurate than the Redlich—-Kwong equation
of state in predicting the properties of pure fluids and fluid
mixtures, including the solubility.

QOur aim in this work is to predict the solubility in dense
fluids, with densities greater than the Boyle density, using
classical statistical thermodynamics and the linear isotherm
regularity, LIR, as an equation of state. In this article, we
first introduce the LIR, and then derive an expression for the
chemical potential of a component in both pure and mixed
phases. Finally, we predict the solubility of some compo-
nents in given solvents using the equality of chemical poten-
tial of that component in two phases at a fixed temperature
and pressure.

Linear Isotherm Regularity

Recently, a general regularity was reported for pure dense
fluids,® according to which (Z—1)? is linear with respect

to p? for each isotherm for densities greater than the Boyle
density and temperatures lower than twice the Boyle temper-
ature. Thus,

Z- DV =A+Bp, )

where Z is the compressibility factor and p= 1/ v is the molar
density; A and B are temperature dependent parameters, as
follows:

A=A"—A"/RT (2a)

and
B=B'/RT. (2b)

A’ and B’ are related to the intermolecular attractive and re-
pulsive forces, respectively, while A” is related to the non-
ideal thermal pressure. This regularity is also valid for dense
mixtures as well as pure fluids. The composition dependen-
cies of the parameters were obtained as their temperature
dependencies.* The temperature dependencies for a mixture
parameters are as follows:

Amix = A;r,lix - A:nix/RTv (33)
Bunix = Buix + B /RT, (3b)

and their composition dependencies are
Bnix = zBljxixj7 (43)

ij
(A/B)mix = _(A/B)yxix;, (4b)
iy

where the coefficients for i = are for the pure components
and i #j for a hypothetical mixture with only the i —j interac-
tion. For many binary mixtures, the unlike LIR parameters

(i#j) are taken as the mean geometric of those for pure
parameters,’

(A/B)12 = [(A/B)11(A/B)n]'"?, (52)
B2 = (B11Bx)' /2. (5b)
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Chemical Potential for a Component in the Pure State

Many chemical phenomena depend on the properties of a
solution, and much of our knowledge about such properties
arises from the studies of the equilibrium state. For example,
knowledge concerning the chemical potential of a substance
is needed to develop a quantitative description of solubility.
It should therefore be obvious that the first step in studying the
thermodynamics of a solution is to determine the functional
dependencies of the chemical potential of the solute on the
composition, temperature, and pressure or density.

In this study, we obtain an expression for the chemical po-
tential using the Linear Isotherm Regularity and the classical
statistical partition function. We first start with the partition
function for the canonical ensemble (Q(7T,V,N)),

N

. . .
Q(T,V,N):m/‘../e BUNGR, ...dRw, 6)

where, ¢, N, A3, and Uy are the internal partition function
of a single molecule, the number of particles, the momentum
partition function, and the configurational potential energy,
respectively and § = 1/kT has its usual meaning. The chem-
ical potential is related to the partition function as

~ =_kT<81nQ)T,V @

ON
Using the Stirling approximation for the ideal-gas behavior,
Un =0, we simply find the chemical potential to be

3
p =—kTIng+kTln Né , (8)

where V is the volume. As shown in Eq. 8, two terms are
included in the ideal-gas chemical potential which may be
interperatated by using the Helmholtz free energy. To do so,
we present the chemical potential in 7, V, N space as

u= (Qé> =AT,V,N+1) - A(T,V,N), )]
ON/ry

where A is the Helmholtz free energy. Differentiating A with
respect to N may be written as the Helmholtz free-energies
difference because of the fact that it is an extensive property,
and the addition of one particle to a macroscopic system can
be considered to be an infinitesimal change for the variable
N. Instead of adding one particle to the system, we insert it at
a fixed position, Ry. The change in the Helmoltz free energy
for such insertion, ,u*, is given as

#* =A(T,V,N +1,Ro) — A(T,V,N)
+1y/N N
=—kTIn [qN v } +kTln [ qv ] = —kTlng. 10)

AN! AN
Therefore Eq. 8 may be written as
,u=,u*+kT1n1—‘\§A3. (1)

Hence, the work required for adding one particle to the sys-
tem is partly for inserting the particle in a fixed position,

Solubility Calculation in Binary Systems

w1, and partly for making that particle free. When the par-
ticle is released from its fixed position, its Helmholtz free
energy changes in three ways. First, it gains translational
kinetic energy, with its corresponding contribution to y as
kTinA3. Second, the particle wanders throughout the entire
volume; the corresponding contribution is —k71nV. Finally,
when the particle is at a fixed position, it is distinguish-
able from all N indistinguishable particles. Therefore, the
contribution for such indistinguishability in the chemical po-
tential is kTInN. The summation of these three contributions
is given as kTlnpA 3 in Eq. 11, where pA 3 < 1; hence, the
contribution of kTlnpA 3 to the chemical potential is always
negative.’

We now extend this approach to obtain the chemical poten-
tial in a dense system, in which intermolecular interactions
are present. Just as for Eq. 9, it is possible to write the
chemical potential in terms of the free-energy differences as

QT V,N+1)
exp(—fw) =exp[—BIA(T, VN +1) — A(T,V,N)]] = OT.V.N)
@ AMON DU [dRodR) ... dRyexp(—BUns1)
B g"/A3NN! [ ... [dR,...dRyexp(—BUx) ’

(12)

Note that the added particle is denoted by a zero subscript. In
order to obtain the chemical potential, we should know Uy,
and Uy, the configurational potential energy for a system with
N+1 and N particles at fixed temperature and density. Using
the assumption of pairwise additivity, the total potential is

N
Unst =Un+ Y _ U(Ro,R;). (13)
j=1
where we consider all interactions between the zeroth particle
and the remaining molecules in the last term. Also, we
assume that adding this particle does not have any effect on
the interactions among the other particles, Uy. Substitution
of Eq. 13 in Eq. 12 and assuming that the entire volume is
accessible for the zeroth particle (the occupied volume by
the particles is taken as zero) we have

-4V By .
exp(—fu) = N+ DA? <exp< ﬁFZIU(Roij)> >, (14)
where (exp[—B> U(Ro,R))]) is the average of the exponen-
tial of —B3" U(Ry.R;) over the original N-particle system.
Assuming that p=N/V =(N+1)/V, and rearranging of Eq. 14
gives the chemical potential as

N
u=kTinpA3q~' —kTIn <exp (—/3 3 U(Ro,R,-)) > . (15
j=1

The first term on the right-hand side of Eq. 15 is simply
the ideal-gas chemical potential at the same temperature and
density. The second term is due to the non-ideal behavior
which arises from interactions among the added particle with
N particles in the system, which is an unknown quantity
in Eq. 15. In this way, the only difference between the
chemical potentials of the ideal system and a real system is
due to the interactions among the particles in the real system.
This means that the non-zero volume of the real particles
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has been neglected. However, in order to obtain such a
chemical potential by Eq. 15, we should know the N-particle
configurational potential. Even if we know such a potential,
we must assume the pairwise additivity approximation for the
potential, and also assume that the addition of one particle
to the system does not effect the interactions among the N
particles in the system. None of these assumptions is true;
moreover, we do not know the exact form of the pair potential
in dense systems, which is quite different from the isolated
potential.” Because of such difficulties in calculating this
term in Eq. 15, we try to derive the chemical potential from
the exact definition given in Eq. 7 by means of

iz_(aan> g 'NA® (aan) 7 (16)
TV TV

kT ON ON

where

Z=/.../exp(—/J’UN)dR1...dRN

In this way, if we know the configurational partition function,
Z, in terms of known thermodynamic variables, such as V,
T, and N, we can obtain the chemical potential using Eq. 16.
In this article we should try to obtain this term by using an
appropriate equation of state. We select the LIR equation of
state, which is suitable for different dense fluids, including
polar, non-polar, and hydrogen bonded systems; also, the
temperature and composition dependencies of its parameters
are known. The partition function is related to the equation
of state via

_ OlnQ
p—kT( oy ) (17)
or
-/ £
/dan_/deV.
Using the LIR
A B
InQ= N(an—ﬁ—m)+F(T,N), (18)

where v is the molar volume and F(7,N) is the constant of
integration, which may be obtained by comparing Eq. 18
with Eq. 6 as

F(T,N)=NIng—InN!'—NInA">. 19)

Substituting Eq. 19 in Eq. 18 and using Eq. 7, we obtain the
chemical potential for a dense fluid as

U =RTInpA’q~" +RT (3; ’ 4 %Bp“) ) (20)
It is clear from Eq. 20 that the first term in this equation is
the chemical potential for an ideal gas, and the second term
is related to the non-ideal contributions. Comparing Eq. 15
with Eq. 20 suggests that the contribution of all non-ideality,
which is caused by interactions among the zeroth particle
and other particles of the system and the effect of a non-zero
volume of the particles, may be written as

34 5, 5B 4)
RT 22
(2 tar

or
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" ’ !
<3A RT , 34" , 5B 4>. an

A A4
It is remarkable that none of the mentioned approximations
used to derive the chemical potential by Eq. 15 appears in this
approach given by Eq. 20. In other words, we have obtained
a more accurate expression for the chemical potential, in
which all contributions for the interactions are considered;
additionally, we have taken the effect of the non-zero volume
of the particles into account. The quantity in Eq. 21 is referred
to as the total binding energy of the added particle with all
other particles and the effect of the non-ideal situation caused
by the excluded volume in the real system. The non-ideal
effect has three contributions, which may be interpreted by
using the LIR as the equation of state. The first contribution,
3/2RTA” p?, which is positive, is due to the covolume of
the particles. The other two contributions, —3/2A’p? and
5/4B’p4, are due to the average contribution of the attractive
and repulsive terms, respectively. Because the attraction
between the added particle and the other particles in the
system causes stability for the particle, its contribution to the
chemical potential is negative, while the contribution of the
average repulsion is positive.

It is to be noted that although derivation of the non-ideal ef-
fect in the chemical potential can be made with any equation
of state, using the LIR enables us to give a proper physical
interpretation for each contribution.

Chemical Potential of a Component in a Binary Mixture

The chemical potential in the mixed state can be obtained
by a straightforward generalization of Eq. 20. For a binary
mixture containing N; molecules of component 1 and N,
molecules of component 2, the partition function is given by
the LIR as

AN +N2)? B(N; +No)*
InQ=(N InV — — — — !
nQ=(N+N,) |InV 2 e InN{!'—InN,
—NiInAP — M InA3 +Nilng, +NaIngo, (22)

where A; and g, are the momentum and the internal partition
function of component 2. We take the differentiation of the
Eq. 22 with respect to Ny at fixed 7, V, and N, (note that
parameters A and B in Eq. 22 depend on the intermolecular
interactions and non-ideal thermal pressure and vary with
Np). Thus, by using Eq. 7, we obtain the chemical potential
of component 1, g, in the binary mixture as

=RTInpuix A7 q; '+ A'—A)+ B'+3B)+RTInx;, (23
Hi n PmixA; 4 2V,$“x( ) 4V:“X( ) nx,(23)
where x; is the mole fraction of component 1 in the binary
mixture; Viix = 1/pmix is the molar volume of the mixture,

and A’, A, B’, and B are as follows:

vl (3), re-20() |

B1|+(2x1 2x%)B;2+(1+xf—2x1)Bzz]+

b4
(3) con-s(2) i)

[2x1B1 +(2 2x1)B12],
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i (§), e 20(2) i)

x [x%Bn +(201 — 2)Bia + (1 + 4% — 2x1)322] ,
B’ = [leBn +(2 —_ 2)C1)B|2]7

and

= [x}B11 + (2x; — 2xD)B1a + (1 +x} — 2x1)B]. 24)

Comparing Eqgs. 23 and 20 suggests that the difference be-
tween the first terms of these two chemical potentials is due
to the volume within the particle can wander. Therefore, for
a particle in a mixture, such a volume depends on concen-
tration, besides the temperature and pressure. The second
and third terms in Eq. 23 arise from the intermolecular inter-
actions between a particle of kind 1 in a mixture with mole
fraction of x; for component 1, in which the covolume of the
particles are considered. Finally, the last term is the entropy
contribution of random mixing in the chemical potential. It
is perhaps more convenient to write Eq. 23 explicitly in terms
of T, p, x and the LIR parameters as

1 =RTInpAg; " +RTInx

ax* +bx* + () + c2p? /D% +(d +dzp2/2)x 5
+ 2 P /27
+Hei+e20p°/2)

(25)

where x| = x and p = ppix, and

=—Aj1 —An—4A;n+

A
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Equation 25 shows that the chemical potential of component
1 in a binary mixture, in addition to RTInx, has a function
of mole fraction, which is quartic and arises from the inter-
molecular interactions and molecular covolumes.

It has been clarified that the derived chemical potential
is valid for the entire range of compositions, from x =0
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to x = 1. Therefore, it should satisfy Henry’s law in the
limit of x—0. When x approaches zero, the quartic terms

of x become negligible in comparison to RTlnx, except for
(e1+e2p*/2)p*12. We then have,

W =RTInpA*q™ +(e +e2p2/2)p2/2+RT1nx,
i =u°+RTnx, 27

where 1 is the reference chemical potential for the so-
lute according to Convention IL® It is also remarkable to
show that Eq. 25 satisfies Raoult’s law in the limitx—1. In
this limit, pmix approaches to the pure-solvent density and
A’—4A, B'—3B. Therefore, Eq. 23 reduces to

1 =RTInpA3q™" +3/24p +5/4Bp" + RTInx,
7 pA g

or
=u? +RTInx, (28)

where 19 is the chemical potential of a pure solvent. Equa-
tion 28 is Raoult’s law.

In order to check the accuracy of the obtained chemical
potential with that reported in the literature, there are two
difficulties. First, the internal partition function (g) should
be known, which is a difficult task. Second, the reported
chemical potential in the literature depends on an arbitrary
reference state. We shall therefore examine the obtained
chemical potential via a solubility prediction, which is a
sever test.

Solubility Prediction via the Chemical Potential

Consider two phases, a and £, in which N; molecules of
component | are distributed. For equilibrium between two
phases at the same temperature and pressure, we have

u=pl. (29)

We can obtain the equilibrium concentration in a binary mix-
ture via this equality by using the obtained chemical poten-
tials (Eqs. 25 and 20). In addition to the LIR limitations
(discussed later), one more assumption is the applicability
of classical statistical mechanics. As a first attempt, we ex-
amined the solubility of NH3 in water because of the nearly
same intermolecular interactions. To simplify the system as
a binary mixture, we ignored the ionic dissociation of NH3
because of its small dissociation constant. The ung, in so-
lution is calculated from Eq. 25, and the other phase may be
treated as a pure phase, for which the ammonium chemical
potential is obtained from Eq. 20. Because of the fact that
the values of these two chemical potentials at any equilib-
rium concentration at fixed temperature and pressure must
be equal, we dropped the term kTln g~ from both sides of
the equality. In other words, we calculated p—u* for NHj in
pure and mixed states. We first calculated the chemical po-
tential of NHj3 in the solution using the experimental values
of the mole fraction® at any given temperature and pressure
and the LIR parameters, which have been calculated using
p-v-T data taken from Refs. 10 and 11. The density of the
pure and mixed states were also calculated from the LIR
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equation of state. The calculated values of (u—u™)/RT for
NHj in the pure and mixed states are summarized in Table 1.
If our treatment were exact, the calculated chemical poten-
tial of NH; in two phases at equilibrium would be equal.
However, the values of these two chemical potentials are not
exactly the same. These discrepancies may be attributed to
the following limitations:

1. The LIR mixing rule is based on random mixing, or con-
sidering a regular solution. This assumption is accurate at
high temperatures for components with approximately sim-
ilar interactions. This assumption is therefore not valid for
systems with partial miscibility, owing to the fact that the so-
lute molecules do not distribute randomly among the solvent
molecules when the interactions are significantly different.
This mixing rule may simply be regarded as only an approx-
imation.

2. The unlike interactions, (A/B);; and B),, are assumed
to be the mean geometric of those values for the pure compo-
nents. The mean geometric approximation is valid mostly for
components with similar intermolecular interactions.’ How-
ever, we have used it as an approximation; in some cases we
must consider an adjustable parameter.

3. In our approach the contribution of internal degrees of
freedom in the chemical potential, kTln ¢!, is taken to be
equal in the pure and mixed states. This means that the
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solvent molecules have no effect on the internal degrees of
freedom of the solute. This is also an approximation that
fails for large solute molecules, such as polymers.
Therefore, we may expect that the obtained chemical poten-
tials of NH3 in the pure and mixed states are not exactly the
same due to using the above-mentioned approximation. In
spite of such limitations, we have used the equality of the
derived expression for the chemical potentials, Eqs. 20 and
25, to predict the solubility.

In order to predict the solubility of NH3 in H,O in any
thermodynamic state, we set u—u™* by using Eq. 20 for the
pure phase equal to u—u*, obtained from Eq. 25 for the
mixed state. Since all coefficients and densities needed to
calculate chemical potentials can be obtained from the LIR in
any thermodynamic state, we can obtain the equilibrium mole
fraction at that temperature and pressure. The values of a, b,
c1, C2, di, dy, €1, and e, of Eq. 25 are summarized in Table 2
for some given isotherms. The calculated mole fraction by
this approach is compared with the experimental values in
Table 3. The results of the solubility show that the agreement
between the experimental and calculated values improves
with increasing pressure. This agreement is very remarkable
because we have not used any adjustable parameter for the
chemical potential. However, in order to improve the results,
an adjustable parameter may be introduced.

Table 1. Chemical Potential and Density of NH; in the Pure (pp,(— ™ )p) and Mixed (pm,(tt—u™*)m) States at Given Thermody-
namic States. The Experimental Solubility, x(NH3), Has Been Cited
X(NH;)  pm/mol1™! pp/mol 17 T/K (u—~p*)o/RT  (U—p")alRT
0.5168 46.6662 36.5037 273.1500 —11.2013 —12.3296
0.5238 46.5248 36.5039 —11.2012 —12.2982
0.5474 46.0524 36.5048 —11.2009 —12.1974
0.6121 44.7396 36.5060 —11.2005 —11.9538
0.6277 44.4211 36.5064 —11.2004 —-11.9016
0.6508 43.9472 36.5073 —11.2001 —11.8287
0.6571 43.8162 36.5076 —11.2000 —11.8098
0.6662 43.6296 36.5082 —11.1998 —11.7827
0.3489 49.3423 35.0648 293.1500 —11.0435 —13.0274
0.3651 49.0121 35.0651 —11.0434 —12.9203
0.4208 47.8692 35.0665 —11.0430 —12.5843
0.4239 47.8055 35.0662 —11.0431 —12.5660
0.4309 47.6615 35.0668 —11.0429 —12.5280
0.4373 47.5272 35.0671 —11.0428 —12.4933
0.4819 46.5991 35.0671 —11.0428 —12.2679
0.4994 46.2314 35.0698 —11.0421 —12.1860
0.5394 45.3870 35.0727 —11.0412 —12.0147
0.5597 44.9562 35.0744 —11.0407 —11.9348
0.5692 44.7531 35.0752 —11.0405 —11.8990
0.2501 50.7954 33.8513 310.1500 —10.9434 —13.6019
0.2537 50.7225 33.8515 —10.9434 —13.5716
0.3069 49.6292 33.8532 —10.9430 —13.1470
0.3268 49.2174 33.8542 —10.9427 -13.0026
0.3313 49.1218 33.8544 —10.9427 —12.9713
0.3633 48.4519 33.8564 —-10.9422 —12.7591
0.3903 47.8815 33.8582 —10.9418 —12.5929
04113 47.4344 33.8592 —10.9415 —12.4709
0.4293 47.0515 33.8615 —10.9410 —12.3728
0.4662 46.6861 33.8635 —10.9405 —12.2845
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Table 2. The Parameters of Chemical Potential Equation,
Eq. 25, for Solubility of NH; in H,O for Given Isotherms,
Calculated from the LIR Parameters and Eq. 26

T/K 273.15 293.15 310.15

A 5.8¢—3 5.6e—3 5.4¢—3

b —2.0e—3 —2.1e-3 —23e—3

C1 6.4e—3 6.5¢—3 6.6¢—3

¢ (Pmol™?%) 3.591e—6 3.456¢—6 3.373¢—6
d, —94¢—3 —8.5¢—3 —7.8e—3

dy (Pmol™?) 1.0412¢—5 1.0449¢—5  9.9536e—6
el —0.0139 —0.0135 —0.0131

e (Pmol™?) 6.1982¢—6  6.1315¢—6  6.0524e—6

Table 3. The Experimental, xxp, and Calculated Solubility,
Xcal, of NH3 in H,O for Several Thermodynamic States
T/K platm Xexp(NH3) Xcal(NH3)
273.15 1.2039 0.5168 0.5600
1.2421 0.5238 0.5600
1.5000 0.5474 0.5800
1.8539 0.6121 0.6100
1.9737 0.6277 0.6200
22158 0.6508 0.6400
2.2789 0.6571 0.6400
2.4539 0.6662 0.6500
293.15 0.9697 0.3489 0.4400
1.0618 0.3651 0.4600
1.5105 0.4208 0.4900
1.5434 0.4239 0.5000
1.6237 0.4309 0.5040
1.6961 0.4373 0.5080
2.2158 0.4819 0.5340
2.5579 0.4994 0.5400
3.5000 0.5394 0.5700
4.0520 0.5597 0.5800
43171 0.5669 0.5900
310.15 1.0368 0.2501 0.3900
1.0658 0.2537 0.3900
1.5342 0.3069 0.4300
1.7947 0.3268 0.4400
1.8487 0.3313 0.4400
2.3829 0.3633 0.4600
2.8974 0.3903 0.4800
3.2618 04113 0.4900
3.7500 0.4293 0.5000
4.2682 0.4462 0.5100

We may conclude that when the intermolecular interac-
tions and molecular sizes of the solvent and solute are nearly
the same, the random mixing and the mean geometric approx-
imations become more reasonable. Therefore, our approach
in predicting the solubility becomes more accurate. Also,
the assumption concerning the identity of the contribution
of the internal degrees of freedom in the chemical potential
in both phases becomes more realistic. Therefore, when the
solubility is large, for which the solvent and solute molecules
are similar, our approach without including any adjustable
parameter can be used to predict the solubility.

However, it is desirable to predict the solubility when the
miscibility is not too large and the intermolecular interactions
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and molecular sizes are significantly different. In such cases,
we can’t predict the solubility by using the LIR mixing rule.
Also, the assumption of a mean geometric for unlike interac-
tions doesn’t hold. The deficiency due to these assumptions,
namely, the random mixing, mean geometric, and identity of
the internal degrees of freedom in both phases, are simply
considered as an adjustable parameter for the unlike inter-
actions in the LIR parameters (A2, B, and (A/B)2). An
example for such a case is the solubility of gaseous CO; in
liquid benzene with different molecular sizes. Note that the
density of this solution is in the range of the applicability
of the LIR. We have used Eq. 25 to calculate the chemical
potential of CO; in solution (the p-v-T data for obtaining the
LIR parameters is taken from Refs. 12 and 13). However,
for the pure gas phase, CO,, which is in equilibrium with the
solution, the LIR equation of state, can’t be used because of
the low density. Therefore, we have used the virial equation
of state as an appropriate equation of state for the low den-
sities, and truncate it after the third term. In a similar way
to that used by taking the LIR, the chemical potential of the
pure component may be derived as

C

B +— (30)

s 3 —1
InpA~q +v 22

RT
where B and C are the second and third virial coefficients.
The chemical potential for the pure phase of CO, has been
calculated from Eq. 30 (the virial coefficients are taken from
Ref. 14) and for the mixed state from Eq. 25. These two val-
ues are found to be quite different for the 303.15 K isotherm
(Table 4). Therefore, we obtained an adjustable parame-
ter for the unlike interactions to satisfy the condition of the
equality of these two chemical potentials at equilibrium. The
adjustable parameter for the equality of the chemical poten-
tials of CO; at 303.15 K was found to be 0.7872 from a least-
squares fitting. We then used this adjustable parameter for

Table 4. The Chemical Potential of CO; in the Pure Phase,
(u—u™*)p, and in the Solution, (u—u*), Calculated
from the Virial and LIR Equations of State Respectively
at 303.15 K. The Densities of the Pure State, p,, and
Mixed State, pm, Are Given

Xexp(CO2) pm/mol1™" pp/moll™" (u—p*)m/RT (u—p*)p/RT

0.1310 12,9100 0.4610 —31.2602 —13.9061
0.1720 13.4400 0.6110 —30.0916 —13.6408
0.2130 13.9700 0.7768 —28.7804 —13.4188
0.2550 14.5000 0.9342 —27.3187 —13.2514
0.3000 15.0700 1.1351 —25.6211 —13.0783
0.3420 15.6100 1.2800 —23.9293 —12.9737
0.4030 16.3800 1.6567 —21.4270 —12.7559
0.4800 17.2400 1.9498 —18.6259 —12.6238
0.5340 18.0100 21773 —16.3455 —12.5373
0.5450 18.1500 22278 —15.9522 -12.5196
0.5850 18.6400 2.3920 —14.6621 —12.4655
0.6220 19.0900 2.5496 —13.6128 —12.4180
0.6540 19.4700 2.5840 —12.8466 —12.4081
0.8080  21.2000 3.3990 —10.9470 —12.2167
0.8400  21.5000 3.7653 —10.9204 —12.1508
0.8820  21.8100 4.1798 —11.0292 —12.0871
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the unlike interactions in Eq. 25 to predict the solubility for
the 303.15 K isotherm. The predicted solubility is compared
with the experimental data® in Fig. 1. As can be clearly seen,
the discrepancy takes place at high pressures, which is ex-
pected to be due to a limitation of the internal motions of CO,
molecules when they are surrounded by solvent molecules.
The internal motions of a confined CO, molecule in a sol-
vent cage is quite limited compared to that molecule in the
gas phase. As mentioned before, this adjustable parameter is
introduced to compensate for any deficiency arising from the
three mentioned limitations. However, a single adjustable
parameter is not sufficient for the entire pressure range when
the third limitation is fundamentally different in two phases,
like CO; in the pure gas phase and a dense liquid solution.
This difference between the internal degrees of freedom in
two phases varies with the pressure and becomes more sig-
nificant at high pressures. We have also used this adjustable
parameter to predict the solubility for other isotherms of CO,
in C¢Hg. We have shown the predicted solubility by using
the LIR parameters, virial coefficients, and the adjustable
parameter found from the equality of the chemical potentials
for the 303.15 K isotherm in Figs. 2a and 2b. The agreement
between the experimental and calculated values is similar
to those obtained for the 303.15 K isotherm. By using the
experimental values of the solubility just for an isotherm we
are able to predict the solubility at any desirable state for
which experimental data are not available.

We have also predicted the solubility of C¢Hg in N,° with
an adjustable parameter, found to be —0.8605. The p-v-T
data needed to determine the LIR parameters was taken from
Jacobsen et al.'® The agreement between the experimental
and calculated values of solubility with such an adjustable
parameter is superior (Table 5). Because of the LIR density
limitation, we have not predicted the solubility in this system
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Fig. 1. Thecalculated solubility (O) of CO, in C¢Hg vs. pres-
sure compared to the experimental values (@) for 303.15 K
isotherm.
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Fig. 2. Solubility predicting of CO, in C¢Hg vs. pressure us-
ing the obtained adjustable parameter (0.7827) from 303.15
K isotherm for (a) 313.15 K and (b) 323.15 K.

Table 5. The Experimental, xexp, and Calculated, xca, Sol-
ubility of N in C¢Hs in Several Given Thermodynamic
States

1°C  platm®  py/moll™"  pn/moll™! xey(N2)  xea(N2)

15.0 1000 19.8600 12.1300 0155 0162

150 1100 20.4800 12.1900 0158 .0170

30.0 1000 18.7500 12.0200 .0213 0210

30.0 1100 19.3400 12.0800 0218 0219

a) 1 atm = 101325 Pa.

for other reported states for which the density is lower than
the Boyle density.
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Conclusion

In this article we have derived an expression for calculating
the chemical potential of a component in both the pure and
mixed states using the LIR and statistical thermodynamics.
Using the LIR, we have been able to interpret all of the terms
that appear in the chemical-potential expression. In fact, we
derived the contribution of the non-ideality in three parts.
First, the average effective attraction, —3/2A’ pz, which has
a negative contribution to the chemical potential; second,
the average effective repulsion contribution, 5/4B’p*, with a
positive contribution; and finally, the contribution due to the
non-zero volume of particles, 3/2A” RTp?, in the chemical
potential. The separation of these three contributions to the
chemical potential for real systems in this interesting way is
possible by using only the LIR.

As we know, predicting solubility is a sever test for the
mixture equation of sate. The results of this work indicate
that the LIR is a strong regularity which is successful in
predicting of the solubility, at least when the molecules of
the solvent and the solute are similar, without any adjustable
parameters. From the fact that this regularity is applicable
for different dense fluid systems, such as polar, non-polar,
and hydrogen-bonded systems, we may conclude that our
approach along with the LIR can be used for all different
dense fluids. Since the temperature dependencies of the
parameters of the chemical potentials are known in terms
of the LIR parameters, we may predict the solubility, even
at some temperatures for which experimental data is not
available.

In cases where the solvent and solute are not similar, from
the view point of the intermolecular interactions and molec-
ular sizes, we may also predict only the solubility by having
experimental values of the solubility for an isotherm. From
these we can obtain the value of the adjustable parameter, and
use it for other isotherms for which no experimental data is
available. As we shown for CO; in C¢Hg, the agreement
between the experimental and calculated values for such
isotherms is similar to that obtained from a least-squares
fitting of the experimental data (compare Fig. 2 with Fig. 1).

Finally, it should be noted that our approach for deriving
the chemical potential is general, and is not limited to the

Solubility Calculation in Binary Systems

LIR. Depending on the system of interest, an appropriate
equation of state can be used. For example, for low density
we used the virial equation of state. The success of this
approach strongly depends on the accuracy of the mixing
rule of the equation of state. If the mixing rule is sufficiently
accurate we may expect that the solubility can be predicted
without any adjustable parameter.

We acknowledge Dr. B. Najafi for his fruitful comments
and the Isfahan University of Technology Research Council
for its financial support.
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