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The contributions of all non-ideally effects which arise from excluded volume, attractive and
repulsive forces have been separated and investigated in the direct correlation function, DCF,
using the Linear Isotherm Regularity, LIR for dense fluids. In such away we have shown that
the core of the DCF (0 < r < σ) is related to the geometric effect which arises from the excluded
volume, while the intermolecular interactions have an important role in the tail (σ < r <∞).
Also mathematical expressions for the core and tail of the DCF have been presented via the
bulk modulus and the LIR. These new expressions beside of satisfying the experimental DCF
can also generate the structural factor of fluids. The other issue that we discuss in this article
and should be noticed separately, is the effective pair potential. The effective pair potential
is the intermolecular pair interactions in presence of the other molecules of the system. We
have shown that the well depth of such an effective pair potential is shallower than that of the
isolated pair which is in accordance with the reported results in the literatures. Our results
suggest that the net effect of the medium on interactions between two molecules is positive
(repulsion).
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§1. Introduction
The DCF, c(r), is an important function in the theory
of structural liquids and has been studied extensively by
many authors, for example Kambayashi and Hiwatari in
a great deal.1) They have calculated the bridge function
and therefore the DCF for soft shpere model. The DCF is
related to the total pair correlation function, h(r), which
may be straightforwardly measured in diffraction exper-
iments and by the computer simulations, and lies at the
heart of the modern density functional theories.2,3) The
total correlation function, h(r), represents the total effect
of molecule 1 on molecule 2 at a separation r and goes to
zero in the limit of r →∞, in which there is no correla-
tion. For normal spherical fluids both functions [c(r) and
h(r)] depend only on separation and may be related to
each other by using Ornestion-Zernick equation, O.Z.4,5)

In O.Z. equation the total correlation function between
molecules 1 and 2 is separated into two contributions: 1)
a direct effect of 1 on 2 which has a short range [roughly
the same as that of the isolated pair potential, φ(r)] and
2) an indirect effect by which molecule 1 is influenced
by some other molecule 3 that in turn, affects on the
correlation with the molecule 2. This indirect effect is
the sum of all contributions due to all other molecules
and should be averaged over the volume of the system.
Therefore in the O.Z. equation the DCF is defined as,6)

h(r12) = c(r12) + ρ

∫
h(r23)c(r13)dr3 (1)
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where the first term is the direct correlation and the
second term is the indirect contribution, which includes
direct effect between 1 and 3, 3 and 4, and so on. For
a dilute gas all the indirect effects reduce to zero and
h(r) = c(r) = exp(−βφ(r)) − 1, where β = 1/kT and
φ(r) is the isolated pair potential. Since c(r) is a short
range function [compare to h(r)] the result of the theory
of liquids based on such a function is not very sensitive
to the accuracy of the approximations involved. This
function is always short range even in the critical region
in which h(r) is a long-range function and unlike the to-
tal correlation function, the direct correlation function
has no bumping. Also it is possible to obtain the ther-
modynamic properties via c(r) without using the pair
wise additivity approximation for the configuration po-
tential6) which is the main approximation in the theory
based on the pair correlation function, g(r). In spite of
the mentioned advantages, the above definition, eq. (1),
does not give any simple physical interpretation for c(r)
in terms of the probability concept. Even though it is
clear that c(r) goes to zero when r → ∞, but the be-
havior of c(r) when r goes to zero is unknown. Fisher7)

said “in the absence of an independent theory enabling
one to calculate c(r) in terms of molecular parameters
eq. (1) is really a definition of the DCF and we will adopt
with that, although O.Z. had been regarded c(r) as a
more basic function, closer relation to the intermolecu-
lar forces.” Therefore the formal definition of the DCF
is just a mathematical expression and has no obvious
physical interpretation, specially for r < σ, where σ is
the molecular diameter. It is known that in a real fluid,
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the DCF has a negative part for r < σ and rises steeply
around r = σ, and then looks very much like the Mayer-
f function, although it is somewhat smaller. When the
temperature is low, the positive part of c(r), r > σ, is
significant while for high temperatures, the negative part
of c(r) has the most contribution, similar to that of its
hard core.8) The DCF for r < σ is similar to that of the
Percus Yevick, PY, approximation for the hard sphere
fluid.9)

In this article we try to interpret the DCF from the
molecular viewpoint using the Linear Isotherm Regular-
ity. We shall present mathematical expressions for the
DCF and compare it with the experimental data. Al-
though the agreement of our results with experimental
data is so good, but we do not claim that the presented
expression for the DCF is exact and completed. Our aim
in this work is just the physical interpretation and pre-
sentation of a qualitative expression not quantitative for
the DCF. Of course we show that the obtained DCF can
generated the structural factor, S(k) that is very sen-
sitive function to small error in the DCF. Finally, the
effective pair potential is introduced and calculated by
using the obtained DCF.
Before to interpret DCF, which has been an obscure
function among the correlation functions for about a
century, we should introduce the LIR equation of state
briefly.

§2. Linear Isotherm Regularity, LIR
A general regularity was reported for pure dense flu-
ids,10,11) according to which (Z − 1)v2 is linear with re-
spect to ρ2 for each isotherm as,

(Z − 1)v2 = A+Bρ2. (2)

Where Z, is the compressibility factor, ρ = 1/v is the
molar density, and A and B are the temperature depen-
dent parameters as follows,

A = A′′ − A
′

RT

B =
B′

RT
. (3)

In which A′ and B′ are related to the intermolecular
attractive and repulsive forces, respectively, while A′′ is
related to the non-ideal thermal pressure, and RT has
its usual meaning. This regularity holds for densities
greater than the Boyle density and temperatures lower
than twice of the Boyle temperature.

§3. Physical Interpretation of the DCF
We know that the structure of a dense fluid is essen-
tially a geometric packing problem. In fact the repulsive
forces have important role in the determination of the
fluid structure and the cohesive or attractive interactions
in fluid just define the fluid volume.12) The consequent
of these facts for the direct correlation function is also
clear9) via the compressibility equation. To show that,
it is convenient to spilt the compressibility equation of

state into long- and short-range terms as,

Br =
1

kT

(
∂p

∂ρ

)
T

= 1− 4πρ
⎡
⎣∫ σ
0

c(r)r2dr

core

+

∫ ∞
σ

c(r)r2dr

tail

⎤
⎦ (4)

where Br is the reduced bulk modulus. The first and
second integrals respectively represent the contribution
of the core and tail of the DCF in Br. At high temper-
atures the weak positive tail of the DCF is washed out
and the behavior of the fluid is define essentially by the
hard-core effects [first integral of eq. (4)]. In such a con-
dition the Percus Yevick, PY, approximation is expected
to give a good description of the equation of state for real
fluid. In contrast at low temperatures the positive tail
of the DCF becomes significant and the intermolecular
interactions have an important role in determining the
thermodynamic properties. To clarify these points we
use the LIR and obtain Br as,

12)

Br = 1 + 3A
′′ρ2 − 3A

′

RT
ρ2 +

5B′

RT
ρ4. (5)

When temperature is very high, the potential energy be-
tween molecules is negligible compare to the kinetic en-
ergy and consequently the contributions of 3A′ρ2/RT
and 5B′ρ4/RT in Br become negligible in comparison
with 3A′′ρ2. In such a condition we may write Br as,

Br = 1 + 3A
′′ρ2. (6)

On the other hands, at such a condition the positive part
of the DCF is very small and eq. (4) reduces to,

Br = 1− 4πρ
∫ σ
0

c(r)r2dr. (7)

Comparison of eqs. (6) with (7) at such a condition, i.e.
at that very high temperatures, gives,

−3A
′′ρ
4π

=

∫ σ
0

c(r)r2dr. (8)

In such a way the short-range form of the DCF which
has been unknown quantity from the physical point of
view, may be interpreted using the LIR. According to
eq. (8), the core of the DCF is proportional to A′′. Since
A′′ in the LIR is related to the covolume and geomet-
ric effects, we may conclude that the contribution of the
core of the DCF depends on the excluded volume. This
equation also shows that when the density increases the
contribution of the core in the DCF also increases. We
know that if the system were hard, the only contribution
of the DCF would be such a covolume term. Although
the real systems are not hard, but at very high temper-
ature and densities, they show the hard like behavior.
At very high densities, because of the hardness nature of
fluid, the DCF doesn’t depend on temperature (like the
hard sphere fluid for which the DCF is density dependent
only9)).
It can also be shown that the A′′ is proportional to b2,
where b is the van der Waals co volume.11) Hence we may
say that with increasing the molecular size, the contri-
bution of the core in the DCF also increases. According
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to our approach, the contribution of the DCF at short
range (r < σ) is related to the geometric effect, which
arises from the excluded volume. It is clear that such
a contribution is both temperature and density depen-
dent, except when the behavior of the system becomes
similar to hard sphere (note that A′′ is related to non-
ideal thermal pressure and expected to be temperature
dependent).
Now return to eq. (4) and consider the second inte-
gral, the tail contribution. This contribution of the DCF
is very similar to the positive part of mayer-f function al-
though it is somewhat smaller. At very low-density limit
these two functions (the DCF and Mayer-f function) are
completely identical. The similarity of these two func-
tions is to some extend that Rushbrooke et al.14) gave for
the DCF a density expression of the Mayer-f function.
However, the positive part of the DCF is related to the
intermolecular interactions and becomes important when
temperature decreases. Comparison of eqs. (4) and (5)
shows that if the contribution of the excluded volume can
be attributed only to the short range, then the tail of the
DCF is merely related to the LIR potential parameters
as,

−3A′
RT

ρ2 +
5B′

RT
ρ4 = −4πρ

∫ ∞
σ

c(r)r2dr. (9)

As it is clear this contribution is both density and tem-
perature dependent and it is easy to show that it de-
creases when temperature and density increases.8) We
know that for the thermodynamic states at which the
system behaves like hard sphere fluid the tail contribu-
tion becomes negligible. In order to understand the phys-
ical meaning of that, let us use the LIR. At first we in-
troduce an average nearest neighbors separation at any
thermodynamic state for the system (like the assump-
tion made in the LIR derivation,11)) as r̄ = (1/ρN)1/3.
Therefore we have,

− 3A′

kT (r̄)6
+

5B′

kT (r̄)12
= −4πρ

∫ ∞
σ

c(r)r2dr. (10)

It is also possible to define an average value for the DCF
at each thermodynamic state, c̄(r) in such a way that
eq. (10) can be written as,

− 3A′

RT (r̄)6
+

5B′

RT (r̄)12
= −4πρc̄(r)

∫ ∞
σ

r2dr. (11)

If we assume that the excluded volume is negligible com-
pare to the fluid volume, the integral of eq. (11) gives
volume and reduces to (this is just an assumption which
is accurate when ρ → 0. However, since we are looking
for qualitative behavior of the DCF, such an assumption
is reasonable),

−3A′
(r̄)6

+
5B′

(r̄)12
= −RT c̄(r). (12)

Comparing eq. (12) with the total potential energy,
which is given by the LIR11) as,

U

N
=
−A′
2(r̄)6

+
B′

4(r̄)12
(13)

shows that −kT c̄(r) is the representation of the inter-
molecular forces at high density, at which the LIR is

valid. But one can see that the coefficients of the repul-
sion and attraction terms of eqs. (12) and (13), are not
exactly the same. The differences between these coeffi-
cients may be considered as the screening effect of the
potential in eq. (12) at high density. We may verify such
a conclusion by considering the behavior of the DCF at
very low density as,8)

h(r) = c(r) = exp(−βφ(r))− 1 ρ→ 0. (14)

At very high temperatures, the exponential term of
eq. (14) may be expanded as,

exp(−βφ(r)) = 1− βφ(r) + · · ·
and then

c(r) = −βφ(r)
or

−kTc(r) = φ(r). (15)

Therefore at very low density when temperature is high
the term −kTc(r) represents the isolated pair potential
and now we have shown by some approximations that
at very high density −kT c̄(r) is also a representation of
the effective or screened pair potential. In such away we
may conclude that the DCF at least for r > σ is always
related to the intermolecular interactions. But this inter-
molecular interactions at high densities are screened due
to the medium effect and it is obvious that the screen-
ing effect reduces when density decreases and it becomes
zero when ρ→ 0 [eq. (15)]. We shall investigate and ex-
plain the screening potential in more detail later in this
work.
As a result, we can say that the core of the DCF is
related to the geometric effect and its tail is the repre-
sentation of the interactions between two molecules in
presence of N − 2 other molecules. As we know at very
high densities the core contribution is very important
and therefore the excluded volume is the dominated fac-
tor in the DCF, while at low density and temperature
the intermolecular interactions have an important role.
To interpret the DCF more clearly, consider a sys-
tem at constant temperature and density and insert a
molecule in a position at which the fluid is uniform,
g(r) = 1. The insertion of this molecule may be consid-
ered as a perturbing factor for its neighboring molecules.
If the density is high, the values of bulk modulus and con-
sequently (∂p/∂ρ)T are large and such a condition corre-
sponds to high stability of the medium against this per-
turbation. At such a high density and stability the inter-
molecular interactions between the inserted molecule and
neighboring molecules do not have an important role,
while the co volume effect has significant contribution.
It means that at very high densities, the intermolecular
interactions are highly and effectively screened, therefore
the contribution of the tail is very small and the molec-
ular ordering is mainly due to the excluded volume. In
contrast, at very low densities when (∂p/∂ρ)T is small,
the system is very sensible to small perturbation, and
the insertion of a molecule will easily change the order-
ing of its neighboring molecules. In such a condition
the little-screened potential has an important effect on
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its neighboring molecular ordering. But, because of the
large volume of the system, the excluded volume is neg-
ligible. Therefore the core contribution in the DCF is
very small and its positive part, which is related to the
intermolecular interactions, is significant. It is clear that
the variation of the DCF with the thermodynamic state
may be understood from such an interpretation. By in-
creasing the temperature and density the contribution of
the intermolecular interactions in the DCF becomes less
and the excluded volume has an important role, there-
fore the positive part of the DCF decreases and that of
the core increases.

§4. Mathematical Expressions for the DCF
As we know, the DCF may be obtained experimen-
tally by the neutron scattering or X-ray diffraction,15)

but we want to obtain this function using an easily
available thermodynamic property such as bulk mod-
ulus. Since the behavior of the DCF in short range,
0 < r < σ, is essentially different from its long range be-
havior, σ < r < ∞, in the molecular point of view (the
behavior of the DCF at short range distances is mainly
related to the co-volume while in the long distances to
the intermolecular interactions). We consider two differ-
ent expressions for the DCF, one for 0 < r < σ, and the
other for σ < r <∞.

4.1 The DCF for short distances, 0 < r < σ
As it is clear, the Fourier transform of the DCF, c(k),
is not sensitive to the short-range form of the DCF.9)

Even from a simple model, called the empty core, all the
principal thermodynamic properties and structural fac-
tor may be easily evaluated. Also, in the PY derivation of
the DCF for hard cores, which is valid for the real fluids
at very high densities, a Taylor expansion around r = σ
is used along with some other approximations. There-
fore to obtain an analytical expression for the DCF at
short distances, we may also expand the DCF around
the average nearest neighbor’s distance, r̄, at any ther-
modynamic state as,

c(r) = c(r̄) +
1

1!

(
∂c

∂r

)
r=r̄

(r − r̄)

+
1

2!

(
∂2c

∂r2

)
r=r̄

(r − r̄)2 + · · · .

Due to the insensitivity of c(k) to the mathematical form
of the DCF at such distances, we retain only two terms
of the above series as,

c(r) = a+ br r < σ (16)

where a and b depend on the thermodynamic state. We
have already shown in eq. (8) that the core of the DCF
is related to the covolume and by using the LIR as,

−3A
′′ρ
4π

=

∫ σ
0

c(r)r2dr.

The upper limit of the integral at very high tempera-
tures is the molecular diameter, σ. Even though at low
temperatures the contribution of the covolume is also
significant for 0 < r < σ, however, its contribution for

σ < r < ∞ is not negligible. In order to include the
latter contribution we may change the upper limit of the
integral from σ to the average nearest neighbor separa-
tion, r̄. Owing to the fact that at very high densities,
at which the positive part of the DCF vanishes and fluid
behaves as hard spheres, r̄ approaches to σ, which is cor-
responds to our approximation that the excluded volume
can only effect in 0 < r < σ. Substitution of the DCF
from eq. (16) into eq. (8), and integration from r = 0 to
r = r̄, gives,

−3A′′ρ
4π

=
a(r̄)3

3
+
b(r̄)4

4
or

−3A′′ρ
4π(r̄)3

=
a

3
+
b(r̄)

4
. (17)

To obtain the parameters of eq. (17) we need an extra
relation between a and b. We assume that,

c(σ) = a+ bσ = −1. (18)

It means that the value of c(r) at contact is equal to
minus one. This is only an assumption which is accurate
at very low densities. Since the exact form of the DCF
are not important to obtain the thermodynamic function
(because they related to the DCF by an integral and
therefore the area is important). It is similar to the case
of second virial coefficient that is not sensitive to the
form of the pair potential.2) Therefore we use eqs. (17)
and (18) to obtain the value of the a and b parameters at
each thermodynamic state just by knowing the density
and A′′. In such a way by using the linear expression
for the DCF at distances less than σ, the DCF can be
obtained.

4.2 The DCF for large distances, σ < r <∞
As we mentioned before, the intermolecular interac-
tions have a significant contribution in the DCF at such
distances. Also, when the temperature and density are
low the positive part of the DCF, behaves very much
like the Mayer-f function. At high densities the behav-
ior of the tail is similar to this function but its value is
smaller (at high densities the pair potential energy be-
comes highly screened). In the other words, the interac-
tion of the two particles in the dense systems is influenced
very much by the medium. Therefore, we may consider
the same mathematical expression for the DCF at high
densities as that for its low density, exp(−βφ(r))−1, ex-
cept that we use the effective pair potential, Ueff, instead
of the isolated pair potential but just for σ < r <∞, i.e.,

c(r) = exp(−βUeff)− 1 r ≥ σ. (19)

In such away we have assumed that the analytical form
of the effective pair potential is the same as that of the
isolated pair which is reasonable at high densities (note
that in such case a molecule is surrounded uniformly and
symmetrically by its nearest neighbors). Because of the
simplicity of the LJ (12, 6) potential, we have used it as
the effective pair potential in the DCF, however, its well
depth is expected to be state dependent and different
from that of the isolated pair. Since the separation at
which c(r) = 0, which is nearly around r = σ, does not
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significantly vary with the thermodynamic state,15) we
supposed that the value of σ is the same as that of the
isolated pair. Therefore the only unknown quantity in
eq. (19) is the well depth of the effective pair potential,
εeff. To obtain εeff we have used the bulk modulus given
by the LIR, eq. (5), and eqs. (4) and (15) as,

Br = 1 + 3A
′′ρ2 − 3A

′

RT
ρ2 +

5B′

RT
ρ4

= 1− 4πρ
[∫ σ
0

(a+ br)r2dr

+

∫ ∞
σ

exp

(
−4βε

[(σ
r

)12
−
(σ
r

)6])
− 1
)
r2dr

]
.

(20)

Solving the above equation gives the εeff for each ther-
modynamic state. We did such a calculation for Ar as
follows: At each thermodynamic state using the LIR pa-
rameters15) the bulk modulus have obtained and by using
eqs. (17) and (18), we have obtained the values of a and
b parameters. Then the values of a, b, and σ = 3.41 Å for
Ar16) have been inserted in eq. (20) to obtain the value
of εeff is calculated. The results for Ar are presented in
Table I. Then the values of the σ, εeff, a, and b have
been inserted in eqs. (16) and (19) to obtain the DCF at
each thermodynamic state. Figure 1 shows the obtained
DCF for Ar at 143.15K and 24.58mol·L−1. In Table II,
we have compared the experimental values15) of the DCF
for several distances with our calculated values for Ar.
The agreements between the calculated and experimen-
tal values are quite remarkable. In summery, we have
used the analytical expressions for the DCF as,

c(r)

{
a+ br r < σ

exp(−βUeff)− 1 r ≥ σ.
(21)

As it is clear in our definition for the DCF there is a
discontinuity at r = σ, but because of the fact that the
experimental value of DCF in this region rises steeply
and the thermodynamic properties like Br is related to
the DCF by an integral, such a discontinuity is not im-
portant.
To test our result, we have also done the Fourier trans-
form of eq. (21), to obtain c(k), and the structural factor,
S(k), as,

c(k) = 4π

[ ∫ σ
0

(a+ br)
sin kr

kr
r2dr

+

∫ ∞
σ

(exp(−βUeff)− 1)sin kr
kr
r2dr

]
(22)

Table I. The calculated values for a, b, Br, and εeff/k for Ar at
several thermodynamic states.

T (K) ρ (mol·L−1) εeff/k(K) Br a b (Å−1)

143.15 24.58 84.9 2.80 −7.5238 1.91373

148.15 24.58 88.8 2.94 −7.5238 1.91373

148.15 26.94 86.38 3.33 −12.7372 3.44202

Table II. Comparison of the calculated and experimental values
for the DCF at some given distances.

T (K) ρ (mol·L−1) [r(Å)]exp cexp(r) [r(Å)]cal ccal(r)

143.15 24.58 3.45 0 3.41 0

143.15 24.58 3.82 0.84 3.83 0.81

148.15 24.58 3.38 0 3.41 0

148.15 26.94 3.72 0.86 3.83 0.82

Fig. 1. The calculated DCF versus r for Ar at 143.15K and
24.58mol·L−1.

and

S(k) =
1

1− ρc(k) (23)

where k is the wave vector. The obtained values of S(k)
are given in Figs. 2 and 3 for three different thermody-
namic states of Ar. As it is clear, the qualitative form
of the S(k) is correctly generated and the number and
heights of the bumping is increased with density, which
is expected.9)

§5. Effective Pair Potential
The interesting point to note in Table I is the values
of the well depth of the effective pair potential. As it
is clear its value is lower than that of the isolated pair,
which is ε/k = 125K, for Ar.17) Before any discussion
about this difference let us make clear the physical con-
cept of the effective pair potential. Consider a very dilute
fluid, the average separation between any two molecules
is much greater than the range of the potential, φ(r),
and two molecules can be moved toward each other al-
most without observing any other molecule (they are iso-
lated and not effected by the other molecules). Thus at
very low densities, φ(r) is also just the work required to
bring two molecules at a separation r from the infinite
separation. Now consider a dense system, in this case
there are many molecules within the range of the pair
potential and we cannot imagine any pair of molecules
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Fig. 2. The structural factor versus k for Ar, calculated from the
purposed DCF, eq. (21), at 143.15K and 24.58mol·L−1.

Fig. 3. Same as Fig. 2 for 148.15K and 24.58mol·L−1 (——) and
for 94.4K and 26.94mol·L−1 (- - - - -).

isolated from the other molecules. Therefore the work
required to bring two molecules at a separation r from
the infinite distance, denoted as ψ(r), is different from
the φ(r). The point is that in a dense system moving two
molecules toward each other causes some rearrangements
in the positions of other molecules and also the medium
(other molecules) influence on the interactions between
two molecules. Thus, when two molecules are brought
at separation r from an infinitely large separation, there
are uncontrolled changes in the configuration of the rest
of molecules. In general, ψ(r) is both temperature and
density dependent. The ψ(r) is known as the potential
of average forces and also related to the g(r) as,18)

g(r) = exp(−βψ(r)).
It is to be noted that the medium can effect on the
charge distribution of the two molecules and hence on

their interactions. The magnitude of such an effect de-
pends on the molecular polarizability. If entire effect of
the medium, which includes the change in the charge
distribution and possibly the molecular shape, is consid-
ered on two molecules and then the interaction of these
two effected molecules, free from the physical existence
of N −2 molecules is studied, we call it the effective pair
potential energy. Therefore the work, which is done to
bring these two effected molecules at distance r from in-
finity, is not affected from the physical presence of any
other molecule. Therefore the effective pair potential is
expected to be quite different from φ(r) and also ψ(r). In
fact the entire effect of the medium is included in the ef-
fective pair potential expect for the effect of the excluded
volume which leads to the bumping in ψ(r) (unlike the
ψ(r), the effective pair potential has no bumping). This
effective pair potential is also both temperature and den-
sity dependent.
As we mentioned before the well depth of the effective
pair potential energy is always shallower than that of the
isolated pair, because the net effect of the other molecules
is positive or repulsion.19) We expect that the well depth
decreases with increasing density. Because by increasing
the density the hardness behavior of system increases,
therefore εeff should be lower than that of the isolated
pair. It is also to be noted that in such a way the entire
effect of medium is included in the well depth of the
potential and the molecular diameter, σ, considered to
be unchanged.

§6. Conclusion
The objective of this work, is that just by using an
equation of state, LIR, we have been able to interpret the
DCF, which has been an unknown quantity for about one
century. As mentioned before because of the nature of
short range of the DCF even in the critical region, it has
been very noticeable in the theory of liquids. Also there
isn’t any bumping in this function and the compressibil-
ity equation may be obtained from it without using pair
wise additivity approximation for the configuration po-
tential. However, we have shown that the core of the
DCF is related to the covolume and geometric effect,
which is the only contribution involved in the DCF for
the hard sphere fluid. The amount of this contribution
increases by increasing density and temperature means
when the behavior of the system is similar to the hard
sphere. But the tail of the DCF is supported by the in-
termolecular interactions which its contribution increases
when the hardness of the system decreases. We may
conclude from the arguments given in this article that
at very high density and temperature the intermolecular
interactions do not have any important role in the DCF,
while the size of molecules (excluded volume) dose have
a significant contribution.
As we have shown in Table II, the calculated DCF
has a good agreement with the experimentally reported
values and satisfies the temperature and density depen-
dencies of the core and tail. Also the oscillatory function,
the structural factor, is generated by the obtained DCF
and its height and the number of the bumping increase
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with density.
The interesting quantity which obtained in this work
is the effective pair potential. As we mentioned, the well
depth of the potential is different and shallower than that
of the isolated pair. Since the effective pair potential is
the interaction between two molecules that are affected
by N − 2 other molecules, the difference between this
potential and the isolated pair potential shows that the
net effect of the other molecules on a given pair is repul-
sion (positive). This conclusion is in agreement with the
previous works reported in the literature.6,9, 20)

The other point that we want to mention is the won-
derful ability of the LIR regularity in the interpretation
of thermodynamic properties. Because all the no ideal
effects which arise from the excluded volume, repulsive,
and attractive forces, are considered in this regularity
separately, therefore it is possible to observe the effect of
each of them in any interested thermodynamic properties
of dense fluids. In spite of the simplicity of this regular-
ity it has been successful to interpret some phenomena
such as, the metal-non-metal transition,21) chemical po-
tential22) and Joule-Thomson inversion curve.23)
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