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Recently, using the linear isotherm regularity (LIR) equation of state, the
average effective pair potential parameters for dense fluids have been calculated,
and it was shown that they are only temperature dependent. Those parameters
were used to propose a strong principle of corresponding states. In the present
work, the approach is extended to binary mixtures, from which we have found
that the average effective pair potential parameters of mixtures depend on
composition and temperature. We have also calculated the average effective
unlike pair potential parameters of mixtures at various temperatures via the LIR
parameters. The calculated like and unlike pair potential parameters of some
mixtures have then been used to calculate their excess enthalpy. When the cal-
culated average effective pair potential parameters of mixtures are used to
reduce the LIR parameters, a strong principle of corresponding states has been
observed for various mixtures with different compositions, as for the pure
components. The calculated like and unlike pair potential parameters have been
tested with different mixing rules based on the one-fluid approximation. The
maximum differences of the calculated values with the mixing rules are lower
than 10%.

KEY WORDS: average effective pair potential; conformal solution theory;
corresponding-states principle; like and unlike pair potential.



1. INTRODUCTION

One of the interesting problems in statistical mechanics is the prediction of
mixture properties from those of the components forming the mixture.
There are a number of ways to achieve this goal. Modern theories of fluids
and fluid mixtures have benefited a great deal from the concept of the
radial distribution function (RDF) [1]. All thermodynamic properties of a
fluid can be related to the RDF, if we assume that the N-body potential is
pairwise additive. The RDF theories have been quite successful in describ-
ing the behavior of simple liquids and liquid mixtures, although RDF
analytical expressions could be provided only for very simple model fluids
such as hard spheres and hard rods. Moreover, the validity of the results of
the RDF method is limited to spherically symmetric potentials, and there-
fore their application to polar nonspherical fluids is impossible. On the
other hand, the Kirkwood–Buff theory [2] provides equations valid for
any kind of molecular shape which allow the calculation of thermodynamic
properties of mixtures such as compressibility, partial molar volumes, and
chemical potentials only requiring the knowledge of the integrals over the
distance of the radial distribution functions. Although Kirkwood solution
theory is practical for any kind of molecular shape, its calculation is limited
to the case of dilute solutions.

Perturbation theory [3] divides the potential function into a reference
part and a perturbed part. The reference part represents a potential model
for which the thermodynamic properties are known, such as the hard-
sphere model. Variational theory [4] provides inequalities that may give
the least upper bound and the highest lower bound to the Helmholtz free
energy in terms of the effective hard-sphere diameter. The technique then
finds the diameter that minimizes the numerical value of the upper bound.
The last procedure is readily extended to mixtures, but its application to a
binary mixture, for example, requires the determination of two effective
diameters by minimizing a function of two variables. This approach pre-
sents a formidable computational task for multicomponent systems. In
both the perturbation and the variational theories, a reference system for
which the thermodynamic properties and radial distribution functions are
known is needed. Mixture calculations based on these theories are simpler
than the integral equations approach, but they are still lengthy and usually
no closed form expressions can be obtained.

As far as practical applications are concerned, the most successful
theories in predicting the thermodynamic properties of multicomponent
mixtures have been the corresponding state or conformal solution theories
of mixtures [5]. In the conformal solution theory (CST), it is assumed that
a hypothetical pure fluid exists that has the same properties as the mixture
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at the same density and temperature. This hypothetical fluid is described by
the same equation of state as that of the pure fluids which form the
mixture. The parameters of the hypothetical fluid are related to those of
the pure fluids, composition, and possibly temperature and density by
relations which are usually called the mixing rules. Many mixing rules have
been suggested. Some of those are empirically determined, and others are
derived by making some assumptions about the mixture RDF. (For a
useful review, see Ref. 6.)

The van der Waals (vdW) one-fluid theory is a widely used two-
parameter conformal solution theory. The van der Waals theory was
extended to a three-parameter potential in which the stiffness of the poten-
tial function can be varied [7]. A number of other conformal solution
theories have been derived, some of which are the mean density approxi-
mation (MDA) [8], the hard-sphere expansion (HSE) [7], and the density
expansion theories [9].

In the development of the CST for mixtures, two principles are con-
sidered. One is the choice of an accurate equation of state for the reference
pure system. The second is the choice of mixing rules for parameters of the
pure reference equation of state, to generalize them for mixtures. The
parameters of the pure reference equation of state are usually either inter-
molecular potential parameters or the critical properties. Based on this fact,
the equation of state obtained from HSE theory has been extended to mul-
ticomponent mixtures using the CST [10], and the approach has been
successful in predicting the vapor–liquid equilibrium behavior of a limited
number of mixtures. However, application of the HSE technique to any
other mixtures requires detailed knowledge about the intermolecular
potential functions of the components of that mixture, which is lacking at
the present time.

Recently, we have presented a method to predict the temperature and
density dependencies of the pair potential parameters of dense fluids using
the LIR equation of state [11]. The method is simple and practical to use
for all types of dense fluids and even gives analytical expressions for tem-
perature dependencies of the pair potential parameters. In our approach,
only p–v–T experimental data are needed. Our aim in the present work is
the extension of that method to binary mixtures using CST.

The LIR equation of state has been extended to mixtures using the
CST and the random mixing approximation (RMA) [12]. Assuming that
the effects of long-range interactions and the fluid medium on the charge
distribution of a nearest-neighbor pair are added to the potential energy
of the pair, the pairwise additive approximation for the configurational
potential energy will be exact and may be used to define the concept of
an average effective pair potential [11]. Using the Lennard–Jones (12,6)
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potential energy function for the average effective pair potential of the
components of a mixture to obtain the internal pressure of a binary
mixture along with the mixture internal pressure predicted by the LIR
equation of state, one can obtain the average effective pair potential
parameters of mixtures in terms of the LIR parameters. The approach is
exactly the same as that used for the pure fluids [11].

In the present work, we have used the CST and the one-fluid approx-
imation via the LJ (12,6) potential function (for the average effective pair
potential) to obtain the average effective pair potential parameters of mix-
tures, Ex and sx, at various temperatures and compositions. We have also
obtained the average effective unlike pair potential parameters, E12 and s12,
at various temperatures for some binary mixtures. The calculated average
effective like and unlike pair potential parameters for a given mixture have
been used to calculate the excess enthalpy of that mixture. The calculated
average effective pair potential parameters of mixtures have then been used
to introduce a strong principle of corresponding states similar to that
obtained for pure fluids. The calculated average effective like and unlike
pair potential parameters have also been used to calculate the average
effective pair potential parameters of some mixtures using various one-fluid
approximation mixing rules.

2. CALCULATION OF THE AVERAGE EFFECTIVE PAIR
POTENTIAL PARAMETERS OF BINARY MIXTURES

In the LIR equation of state, it is assumed that only nearest-neigh-
bor interactions exist. In other words, the entire potential energy of the
fluid is attributed to nearest-neighbor interactions. This means that the
longer-range interactions of a given neighboring pair with other mole-
cules, which are mainly attractive, and the effect of the fluid medium on
the charge distributions of the pair are both added to the potential
energy of the isolated nearest-neighbor pair. Such a potential is called
the average effective pair potential [11]. Regarding such a pair potential,
the potential energy of a fluid can be written as the sum of all the
average effective pair interaction potentials, exactly. Such an exact
treatment of the fluid potential energy has been considered in the LIR
derivation, and it was shown that the LJ(12,6) potential is appropriate
for such a potential. Using this potential along with the exact thermo-
dynamic expression

p=−(“E/“v)T+T(“p/“T)v (1)
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the LIR has been derived as [13]

(Z−1) v2=A+Br2 (2)

where Z is the compressibility factor and r=1/v is the molar density. The
temperature dependencies of the A and B parameters are obtained as [11]

A=A0−
AŒ
RT

B=B0+
BŒ
RT

(3)

In Eq. (3), AŒ and BŒ are related to the intermolecular attraction and
repulsion forces and are proportional to Es6 and 2Es12, respectively, while
the nonideal thermal pressure parameter Aœ, Aœ=(1/r2)[(“p/“T)r/rR−1],
is related to the A0 and B0 constants via Aœ=A0+B0r2, where R is the gas
constant.

The proportionality of AŒ and BŒ to Es6 and 2Es12, respectively, is used
to calculate the potential parameters at any given temperature via the rela-
tions

E/k=2AŒ2/BŒ

s=(BŒ/2AŒ)1/6
(4)

The AŒ and BŒ parameters can be obtained according to Eq. (3) from the
slopes of lines of A and B versus 1/T, respectively. Such calculations were
carried out to obtain the average effective pair potential parameters for
pure fluids [11]. It was found that the distance parameter of the potential,
s, increases with temperature, while its depth parameter, E, decreases.

In the present work, we have extended this approach to mixtures for
determining the average effective pair potential parameters, knowing that
the LIR is based on the CST and one-fluid approximation.

Assuming that the average effective pair interaction potential for any
pair in a mixture is the LJ(12,6), as for the pure fluid, and that different
molecules are randomly distributed in the mixture, the total configurational
potential energy of a binary mixture may be derived as

U=2z0N C
i, j
xixj 5Eijs12ij 1

1
r̄
212− Eijs6ij 1

1
r̄
266 (5)
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where Eij and sij are potential parameters for an ij pair, xi is the mole
fraction of component i, N is the number of molecules, r̄ is the average
nearest-neighbor separation, and z0 is the proportionality constant for the
coordination number with density. On the basis of the one-fluid approxi-
mation, according to which the expression for the potential energy of a
mixture is exactly the same as that for the pure fluid but its parameters are
composition dependent, the potential energy of a mixture may be generally
given as

U=2z0N 5Exs12x 1
1
r̄
212− Exs6x 1

1
r̄
266 (6)

where Ex and sx are the average effective pair potential parameters of the
mixture, which depend on the system composition, in addition to the tem-
perature. The differentiation of the total potential energy, Eq. (6), with
respect to volume gives the mixture internal pressure as −2Exs

6
xr
3+4Exs

12
x r

5

(note that v3 r̄3). The internal pressure can also be obtained from the LIR
equation of state as −AŒr3+BŒr5 (note that the thermal pressure is given
as pth=T(“p/“T)v, and the internal pressure is obtained by subtracting the
thermal pressure from the total pressure). According to the one-fluid
approximation, the internal pressure for a mixture is given as −A −mixr

3+
B −mixr

5. Comparison of these expressions for the internal pressure gives
A −mix 3 Exs

6
x and B

−

mix 3 Exs
12
x , from which the average effective pair poten-

tial parameters of mixture are

Ex/k=2A −mix
2/B −mix

sx=(B −mix/A
−

mix)
1/6

(7)

The LIR parameters are obtained for each isotherm by plotting (Z−1) v2

versus r2. The resulting values of Amix and Bmix then can be plotted versus
1/T to obtain A −mix and B

−

mix from the slopes. These quantities then serve to
calculate the average effective mixture pair potential parameters via Eq. (7).
Such a calculation for obtaining Amix and Bmix at different temperatures was
carried out for a (x)methyl 1,1-dimethylethyl ether (MTBE)+(1−x)C7H16

mixture for different compositions. The experimental p–v–T data were taken
from Ref. 14, and one sample result is plotted in Fig. 1 for x=0.8555. Such a
plot has been used to calculate the average effective pair potential parameters
for this mixture at 243.16 and 333.14 K through Eq. (7). (The approach is
exactly the same as that presented for pure fluids in Ref. 11.) The results for
this composition, along with those for some other compositions, are given in
Table I.
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Fig. 1. The temperature dependences of the LIR
parameters for an xMTBE+(1−x) C7H16 mixture
at x=0.8555.

It has been shown that (Z−1) v2 against r2 is linear for many mixtures
for densities greater than the Boyle density [12], and therefore we may
conclude that the potential parameters are independent of density, exactly
as found for the pure components.

If we differentiate Eq. (5) with respect to volume, and ignore the density
dependence of the kinetic part of the internal energy [13], the mixture
internal pressure would be obtained as ; xixj[−2Eijs

6
ijr
3+4eijs

12
ij r

5]. By
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Table I. Calculated Average Pair Potential Parameters of xMTBE+(1−x)C7H16 Mixtures,
Using Eq. (7)

T=243.16 K T=333.14 K

x ex/k (K) sx (Å) ex/k (K) sx (Å)

0.0000 6446.16 5.21 4567.27 5.39
0.0498 6673.07 5.22 4409.17 5.24
0.1013 6558.28 5.19 4487.56 5.25
0.1523 6729.35 5.19 4328.57 5.22
0.2988 6630.53 5.13 4169.69 5.16
0.5053 6630.53 5.08 3787.79 5.07
0.7013 5755.64 4.96 3842.23 5.03
0.8555 5347.38 4.88 3755.54 4.96
0.9479 5898.76 4.88 3513.59 4.91
1.0000 5358.96 4.82 3645.53 4.90

comparing this summation with that obtained from the LIR equation of
state (−A −mixr

3+B −mixr
5), we get A −mix and B −mix for a binary mixture as

quadratic functions in terms of fluid composition. Each includes three
terms, where two of them are related to the potential parameters of pure
components and the third represents a hypothetical fluid only with the
unlike interactions. Comparison of the two mentioned expressions for the
internal pressure gives the unlike parameters of the LIR (A −12 and B

−

12) in
terms of the unlike potential parameters (E12 and s12) as

A −12 3 E12s
6
12

B −12 3 2E12s
12
12

(8)

from which the unlike potential parameters of a binary mixture can be
derived as

E12/k=2A −12
2/B −12

s12=(B −12/2A
−

12)
1/6

(9)

Based on the random distribution assumption, the composition
dependences of the LIR parameters have been derived as [12]

Bmix=C
i, j
xixjBij

(A/B)mix=C
i, j
xixj(A/B)ij

(10)
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Because the values of B11, B22, (A/B)11, and (A/B)22 can be obtained from
the experimental p–v–T data of pure fluids and the values of Bmix and
(A/B)mix can be calculated from the LIR for the mixture (using the exper-
imental p–v–T data of the mixture), we may use such results to calculate
B12 and (A/B)12 for the unlike interaction at any given temperature. If the
distribution of molecules in the mixture is random, it is expected that the
LIR unlike parameters become composition independent. A strong devia-
tion from such an expectation was first observed for the CHCl3+C2H5OH
mixture due to complex formation [12]. Also, such a deviation is expected
to be observed when the interactions are associated, for which the random
mixing is certainly false. The unlike parameters are calculated from Eq. (10)
for xMTBE+(1−x)C7H16 and xCO2+(1−x)C2H5OH mixtures, using the
experimental p–v–T data given in Refs. 14 and 15, respectively. The cal-
culated unlike LIR parameters for these mixtures are given in Table II at
given temperatures. As shown in this table, the unlike parameters for the
former mixture are almost independent of composition, while those for the
latter are certainly composition dependent. This dependency is expected
since ethanol has a significant association interaction. For the cases in
which the parameters (A/B)12 and B12 are almost composition independent,
we may use their average values for each temperature to plot them versus
1/T to obtain A −12 and B

−

12, from the slopes of the lines. Having A −12 and
B −12, we may calculate the unlike potential parameters, using Eq. (9). The
calculated average effective unlike pair potential parameters are given in
Table III for three mixtures at some given temperatures, along with the
average effective like pair potential parameters [14, 16–19].

To evaluate the calculated average effective like and unlike pair
potential parameters, we have used them to calculate the excess enthalpy of
a mixture. To do so, we may use the average effective like and unlike pair
potential parameters to calculate the excess internal energy of a binary
mixture, UE, from

UE=Umix−x1U11−x2U22

where Umix, U11, and U22 are the molar configurational potential energies of
the mixture and the pure components, respectively. (We have assumed that
the kinetic energy of system does not change when mixing takes place.) The
potential energies Umix, U11, and U22 are calculated from Eq. (5). The excess
enthalpy, HE, can be calculated using the calculated UE and the experi-
mental p–v–T data (of the mixture and pure components) from

HE=UE+pvE
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Table II. Calculated Like and Unlike LIR Parameters Using Experimental pvT Data and
Eq. (9) for xMTBE+(1−x)C7H16 at 243.16 K and xCO2+(1−x)C2H5OH at 323.14 K

xMTBE+(1−x)C7H16 xCO2+(1−x)C2H5OH

Number B12 ×103 −(A/B)12 Number B12 ×105 −(A/B)12
x of points (mol4 ·L−4) (mol−2 ·L2) x of points (mol4 ·L−4) (mol−2 ·L2)

0.0498 18 9.3634 62.6423 0.5115 39 0.3266 355.8908
0.1013 18 9.4160 62.4878 0.7095 45 1.9981 329.3506
0.1523 18 9.4187 62.4928 0.8072 52 1.1374 345.2187
0.2988 18 8.6556 62.3400 0.9041 43 1.5447 332.5838
0.5053 18 9.1871 61.8665
0.7013 18 8.6313 61.4888
0.8555 18 8.2796 61.2233
0.8970 18 9.5991 60.5731
0.9479 18 10.1060 60.3342

Table III. Calculated Like and Unlike Pair Potential Parameters for xAr+(1−x)Kr,
xMTBE+(1−x)C7H16, xCO2+(1−x)C2H6, xCO2+(1−x)C6H5CH3, and

xCO2+(1−x)CH3COCH3 Mixtures Using Eqs. (4) and (9)

Mixture Ref. T (K) e11/k (K) e22/k (K) e12/k (K) s11 (Å) s22 (Å) s12 (Å)

Ar+Kr 16 135.00 519.84 817.08 649.16 2.96 3.19 2.86
140.00 536.84 856.12 722.43 2.92 3.17 3.07
145.00 561.28 894.61 882.81 2.87 3.15 3.14

MTBE+C7H16 14 278.15 4551.98 5512.17 5172.51 4.85 5.29 5.12
288.17 4359.13 5302.35 4757.14 4.86 5.31 5.09
293.10 4269.40 5206.41 4568.68 4.87 5.32 5.07
313.14 3935.72 4858.61 3921.95 4.88 5.36 4.97
333.14 3645.53 4567.27 3564.98 4.90 5.39 4.79

CO2+C2H6 17 250.00 1388.25 1138.30 1056.02 3.22 3.83 3.33
270.00 1461.44 1211.96 1036.11 3.09 3.71 3.33
290.00 1823.01 1408.15 1018.94 2.89 3.54 3.34

CO2+toluene 18 335.00 1668.14 4126.38 70.69 2.96 4.67 5.26
360.00 1044.22 3827.57 112.68 3.19 4.25 4.79
385.00 2672.47 5196.08 466.33 2.53 4.84 3.73

CO2+acetone 19 335.00 2429.45 2554.87 9.50 2.74 4.06 7.06
360.00 1132.60 2477.44 90.70 3.13 3.98 5.66
385.00 4621.49 2413.63 367.44 2.31 3.88 4.81
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Fig. 2. The calculated excess molar enthalpy (i) and
configurational potential energies of U11 (N), U22 (n), and
U12 (I) for an xAr+(1−x)Kr mixture versus mixture
density at T=135 K; experimental data taken from Ref. 16.

The calculated molar configurational potential energies of a pure and a
hypothetical mixture (with unlike interactions only) along with the
calculated excess enthalpy are plotted versus density in Fig. 2 for a
xAr+(1−x)Kr mixture with x=0.485 at T=135 K for the density range
where experimental data are available. (The experimental p–v–T data are
taken from Ref. 16.) Note that for such a density range, the interaction
energies are all negative, and the magnitude of U11 and U12 are almost the
same, but the magnitudes of U22 is significantly larger. Such a behavior is
the main reason that HE is positive, from which we may conclude that the
average pair interaction energy for the mixture is weaker than the average
of that for the pure components [U12 < (U11+U22)/2]. Our conclusion that
HE > 0 is in accordance with the experimental data [16].

3. A STRONG PRINCIPLE OF CORRESPONDING STATES

Comparing the right-hand sides of Eqs. (5) and (6), we can obtain the
following expressions for the average effective pair potential parameters of
a mixture in terms of those of the pure and hypothetical components:
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Exs
12
x =C

i, j
xixjEijs

12
ij

Exs
6
x=C

i, j
xixjEijs

6
ij

(11)

As for the pure fluids [11], the combination of Eqs. (3) and (11) gives

(A−A0)mix

s6x
=
a

Tg

(B−B0)mix

s12x
=
2b
Tg

(12)

where a and b are constants and Tg=kT/Ex. We can use the calculated
values of Ex and sx to reduce (A−A0)mix, (B−B0)mix, and T. According to
Eq. (12), the reduced quantities, (A−A0)mix/s

6
x and (B−B0)mix/s

12
x are

expected to be linear versus 1/Tg and the lines superimposed on each other
for a mixture with different compositions and even for different mixtures.
To investigate such an expectation, we have used the mixture average
effective pair potential parameters for xMTBE+(1−x)C7H16, given in
Table I, to plot (A−A0)mix/s

6
x and (B−B0)mix/s

12
x versus 1/Tg for some

given compositions in Fig. 3. Also, a similar attempt has been made for
different binary mixtures, for which the results are given in Fig. 4. The
experimental data are taken from Refs. 14–19. As expected, these two
figures predict a strong principle of corresponding states, according to
which the results for a mixture at different compositions (Fig. 3) and for
different mixtures (Fig. 4) both give a single line with a=−8.30 and
b=8.30. Note that these values are exactly the same as those for the pure
compounds, from which we may conclude that the one-fluid approximation
is accurate for such mixtures.

4. MIXING RULES

To see which mixing rules for the potential parameters are suitable, we
have used the average effective pair potential parameters for both like and
unlike pairs of different mixtures to calculate those for the mixtures, using
various models for the one-fluid approximation theories. The average effec-
tive pair potential parameters of a mixture can be calculated using either
the random mixing approximation (RMA), van der Waals (vdW), or hard-
sphere expansion (HSE) theories through the following expressions [6].
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Fig. 3. The expected corresponding-states
behavior for an xMTBE+(1−x)C7H16 mixture
with x=0.0498 (N), x=0.1523 (n), x=0.5053
(I), x=0.8555 (i), x=0.9479 (G), and x=
1.0000 (g) according to Eq. (12), using exper-
imental data from Ref. 14.
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Fig. 4. Same as Fig. 3 for different mixtures at
given compositions: xAr+(1−x)Kr at x=0.4850
(N) [16], xMTBE+(1−x)C7H16 at x=0.5053
(n) [14], xCO2+(1−x)C6H5CH3 at x=0.7430
(I) [18], xCO2+(1−x)CH3COCH3 at x=0.5689
(i) [19]; and xCO2+(1−x)C2H6 at x=0.4925
(G) [17].

1808 Parsafar and Kermanpour



RMA: Exs
3
x=5C

i, j
xixjEijs

6
ij
63/2;5C

i, j
xixjEijs

12
ij
61/2

s3x=5C
i, j
xixjEijs

12
ij
;C
i, j
xixjEijs

6
ij
61/2 (13)

vdW: Exs
3
x=C

i, j
xixjEijs

3
ij

s3x=C
i, j
xixjs

3
ij (14)

HSE: Exs
3
x=C

i, j
xixjEijs

3
ij

s3x=5C
i, j
xixjEijs

3
ij
62;C

i, j
xixjE

2
ijs
3
ij (15)

On one hand, we may use the average effective pair potential parameters
for both like and unlike pairs along with any of the above mixing rules to
calculate the parameters for the mixture at any given temperature and
composition. On the other hand, the parameters can be calculated directly
from the LIR. The results of such calculations are given in Table IV for

Table IV. Mixture Potential Parameters, Ex and sx, Calculated from Various Mixing Rules
and the LIR for xAr+(1−x)Kr at x=0.485, xMTBE+(1−x)C7H16 at x=0.5053, and

xCO2+(1−x)C2H6 at x=0.4925

ex/k (K) sx (Å)

Mixture Ref. T(K) LIR RMA vdW HSE LIR RMA vdW HSE

Ar+Kr 16 135.00 673.70 606.23 673.96 692.43 3.01 3.05 2.98 2.95
140.00 758.61 697.34 723.91 740.80 3.02 3.10 3.07 3.04
145.00 838.25 788.52 825.07 844.88 3.03 3.12 3.08 3.06

MTBE+C7H16 14 278.15 5306.35 4948.84 5128.77 5151.08 5.08 5.14 5.10 5.09
288.17 4986.41 4629.79 4820.20 4843.82 5.08 5.14 5.09 5.08
293.10 4837.04 4480.88 4680.58 4706.55 5.08 5.14 5.09 5.08
313.14 4278.30 3924.32 4198.96 4241.78 5.07 5.13 5.05 5.03
333.14 3787.79 3436.46 3896.58 3949.02 5.07 5.12 4.98 4.95

CO2+C2H6 17 250.00 1163.09 946.06 1150.48 1163.70 3.46 3.59 3.45 3.44
270.00 1319.25 1002.39 1174.22 1195.38 3.34 3.50 3.39 3.37
290.00 1609.02 1111.00 1274.04 1343.63 3.19 3.38 3.29 3.24
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xAr+(1−x)Kr at x=0.485, xMTBE+(1−x)C7H16 at x=0.5053, and xCO2

+(1−x)C2H6 at x=0.4925 at the given temperatures. The results obtained
from the LIR differ from those calculated with the mixing rules by less
than 10%.

5. CONCLUSION

In this work, a new approach is presented to obtain the average effec-
tive pair potential parameters of a mixture, Ex and sx, at various tempera-
tures and compositions, from which the unlike potential parameters, E12
and s12, are obtained and shown to be only temperature dependent. Since
the presented approach is based on the random mixing approximation, it is
limited to mixtures without strongly associated interactions, as shown for a
mixture with a C2H5OH component. (See Table II.) Using the calculated
average effective pair potential parameters of a mixture to reduce the LIR
parameters, we have introduced a strong principle of corresponding states
valid both for binary mixtures with different compositions (see Fig. 3) and
mixtures with different components (see Fig. 4). Also, using the calculated
unlike potential parameters along with the average effective pair potential
parameters of pure components, the mixture potential parameters predicted
by our approach are compared with those obtained from the mixing rules.
(See Table IV.) Our calculated results are different from those obtained
from the mixing rules only by a few percent. Finally, the calculated like
and unlike potential parameters along with the experimental p–v–T data
have been used to calculate the excess enthalpy of a mixture of xAr+
(1−x)Kr, which at least predicts the correct sign for it.
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