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A new potential function, which can in a simple and reasonable manner represent the molecular
interaction of many kinds of hard-core fluids by varying the value of its parameter, is proposed. For
prediction of thermodynamic properties of hard-core fluids such as the square-well (SW) and hard core
Lennard–Jones (HCLJ), a simple perturbed equation of state (EOS) is derived by using the new potential
function along with the Barker–Henderson perturbation theory. This method yields a simple and general
analytical expression for each thermodynamic property of such fluids. The most important feature of
these expressions is that they have no adjustable parameter and in some regions in which there is no
simulation data for such hard-core fluids, such equation may be used to predict the needed data. The
derived EOS in this work was successfully applied to predict thermodynamic properties of the SW and
HCLJ fluids, for which the simulation data are available. The predicted results are in good agreement
with both the computer simulation data and the well-known equations of state.
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1. Introduction

The theory of simple fluids with spherical potentials is
rather well developed and little remains to be done as far as
improving the agreement with the known models involve an
extensive numerical computation and are often not practical
for obtaining quick and accurate results for the fluids. It is
therefore of great interest to condense the numerical results
of the long tables into some simple analytical expressions
that are simpler to handle, from which even a physical
insight may be provided and therefore application and
extension to more complicated fluid systems becomes
possible.

Reliable models for the accurate correlation and predic-
tion of thermodynamic properties of pure fluids and their
mixtures are much in demand for process design and
material handling. In the chemical and petroleum industries,
much effort has been given to the development of simple
analytical equation of state to meet such a demand.

With the development of statistical thermodynamics of
fluid, many equations of state have been developed in terms
of parameters, which characterize the intermolecular forces.
Such works include various equations of state based on the
perturbed-hard-chain theory,1) the generalized van der Waals
theory,2) and the generalized perturbation theory.3) However,
all these equations have attractive terms that are based on
either the SW, HCLJ, or Lennard–Jones (LJ) potentials and
are not sufficiently flexible; that is due to the fact that the
universal constants of these equations are frequently
obtained from the simulation data for the specified potential.

Recently, an analytical expression for the first coordina-
tion shell of the radial distribution function (RDF) of the
hard-sphere fluid has been derived.4) This expression has as
many as 153 parameters. If we use such an expression along
with the Barker–Henderson perturbation theory for either the
SW or SU fluid yields a very complicated equation of state

with 153 parameters which is not easy to handle.4,5)

In this paper, we have developed a new analytical EOS to
predict the properties of hard-core fluids. Our approach is
based on the Barker–Henderson perturbation theory along
with the new potential function. Even though the proposed
potential function is as simple as the SW potential, it is more
flexible than the SW, HCLJ, and LJ potentials for practical
use. We have used this potential to derive a new equation of
state, which is capable of predicting the thermodynamic
properties of the hard-core fluids such as the SW and HCLJ
fluids.

2. Potential Function

Potential functions, such as the hard sphere (HS), SW, LJ,
and HCLJ are empirical in nature, and approximate to the
intermolecular forces in real fluid.6) Although it is desirable
that a potential function be able to represent the intermo-
lecular forces for various kinds of fluids as accurately as
possible, it must still be simple in mathematical form.
However it is difficult to have a potential function that
satisfies these requirements simultaneously.

In this work, a new extended SW potential function is
proposed which is a compromise between simplicity, reality
and flexibility. The function is

uðxÞ ¼

1 x < 1
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In this expression, x ¼ r=� is the intermolecular separation
in units of the hard-core diameter �. The quantity " is the
well depth (minimum potential energy), � is the reduced
well width, and � is an additional parameter introduced to
make the potential more flexible by changing the steepness
of the potential tail. It is clear that this potential can be
reduced to different hard-core potential models, depending
on the value of �, for making the potential more flexible.
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Equation (1) is obviously more realistic than both the HS
and SW potentials, owing to the presence of the tail, and also
more realistic than the Sutherland (SU) and triangular well
potentials, due to the presence of the non-zero well width.
Due to the term ð1=xÞ6 in the tail, the potential is more
realistic than the trapezoidel-well (TW) potential. Owing to
the fact that different values can be attributed to the
parameter � of the potential in addition to the parameters �,
", and �; it becomes more flexible than the HS, SW, SU,
TW, LJ, and HCLJ potentials. Finally it is less complicated
than the HCLJ and LJ potentials, due to the simple
expression for the tail portion of the potential.

3. A New Analytical EOS for the Hard-Core Fluid
based on Perturbation Theory

In this section, we develop a new equation of state for the
proposed potential, based on a perturbation theory. Accord-
ing to the perturbation theory, the Helmholtz free energy is
given as,7)
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where A0 and g0ðrÞ refer to the Helmholtz free energy and
the RDF of the reference fluid, respectively. The variable
y ¼ ð�=6Þ��3 is the packing fraction, and kT has its usual
meaning. The integrals appear in eq. (2) depend on y, for
which an expression will be derived. We use the HS fluid as
the reference in this work. For this reason, A0 may be
derived from the Carnahan–Starling equation as,8)
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and, g0ðxÞ is simply given by,

g0ðxÞ ¼
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1 x > �

8<
: ð4Þ

In eq. (4) we have considered a general form for g0ðxÞ and
there is no need to know the mathematical form of the g1ðxÞ.
The expression for H is given by Barker–Henderson as,7)

H ¼
ð1� yÞ4

1þ 4yþ 4y2 � 4y3 þ y4
ð5Þ

The fact that g0ðxÞ ¼ 1 for x > � , we require the following
approximation that,
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Using eq. (6) along with the isothermal compressibility
equation,9)
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we may obtain the following result,
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Substitution of eqs. (1), (4), and (8) into eq. (2) yields,
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Using eq. (9) for the Helmholtz free energy, the
compressibility factor Z for the proposed potential may be
obtained as,
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where,

Z0 ¼
ð1þ yþ y2 � y3Þ

ð1� yÞ3
ð13Þ

Therefore, on the basis of the proposed potential, the
perturbed EOS, eq. (12) is derived.

4. Calculation of the Thermodynamic Properties of
Hard-Core Fluids Using the Derived EOS

The resultant EOS can be easily applied to many kinds of
hard-core fluids, for the prediction of their thermodynamic
properties, because of the flexibility of the proposed
potential function. The applications of the proposed EOS
to the SW and HCLJ fluids is presented as follows.

4.1 Square-well fluid
The resultant equation of state may be used to calculate

the compressibility factor Z of the square-well fluid. The
value of � in eq. (12) was taken to be 1.5, which has been
used by many researchers to simulate the properties of this
fluid.10,12)

To calculate the properties of this fluid, the value of � in
eq. (12) should be taken equal to zero, since there is no tail
for the SW potential. At any reduced density �� ¼ ��3 and
temperature T� ¼ kT=", the value of the fluid compressi-
bility factor can be easily calculated from eq. (12) without
requiring any additional parameter. For comparison, the
value of Z may be compared with that given by the 27-
constant expression of Alder et al.,10)

Z ¼ Z0 þ
X
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where V0 ¼ N�3=
ffiffiffi
2

p
; the Aim–Nezbeda’s (AN) equation,13)

Z ¼ Z0 �
"

kT

ð4yþ 10y2 � 2y3Þð1� y3Þ
D2

� 4y�3

� �

� 6
"

kT

� �2

yCI þ y2I
@C

@y
þ y2C

@I

@y

� � ð15Þ

where

D ¼ 1þ 4yþ 4y2 � 4y3 þ y4;

C ¼ ð1� yÞ4=D

and

I ¼ ð�3=3Þ þ ðC � 1Þ=24y;
the Lee et al.’s (LLS) equation,14)
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with Zm ¼ 18; the Lee–Sandler (LS) equation15) as presented
by Guo et al.12)
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and the Guo et al.’s equation (GWL),12)
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Such a comparison is given in Table I and also shown in
Fig. 1. The simulation data are taken from ref. 11 at T� ¼
1:00 and 1.33, and from ref. 12 at T� ¼ 1:75, 2.50 and 3.00.
In Table II, the calculated results are compared with the
simulation data reported by Henderson et al.16) and also with
the results obtained from the Lee and Chao (LC),17) GWL,
and LS equations of state for various values of � .

Recently an analytical expression for the first coordination
shell of the RDF for the hard-sphere fluid has been derived,4)

which is given as

g1ðxÞ ¼
1

x2

X1
n¼0

X1
m¼0

Inm
nðx� 1:5Þn�1

ð1� yÞnþ1
ym ð19Þ

where the parameters Inms are constant. The values of Inms
up to n ¼ 8 and m ¼ 16 are reported in ref. 4. This
expression has as many as 153 parameters. Such expression,
along with the Barker–Henderson perturbation theory for
both the SW and SU fluids, are used to derive a complicated

Table I. Calculated compressibility factor of the SW fluid, compared to that given by different equations of state and the simulation data.

�� T� ANaÞ LLSdÞ LSeÞ GWLfÞ This work Simulation data

0.50 1.00 0.055 �0:096 0.270 �0:405 0.077 �0:450bÞ

0.60 1.00 0.385 0.399 0.877 �0:272 0.412 �0:210bÞ

0.70 1.00 1.097 1.335 1.878 0.145 1.120 0.590bÞ

0.80 1.00 2.403 2.918 3.463 1.020 2.420 2.340bÞ

0.50 1.33 0.815 0.762 0.960 0.445 0.827 0.460bÞ

0.60 1.33 1.309 1.364 1.631 0.759 1.324 0.700bÞ

0.70 1.33 2.195 2.393 2.704 1.390 2.210 1.820bÞ

0.80 1.33 3.684 4.056 4.374 2.524 3.697 3.840bÞ

0.05 1.75 0.929 0.904 0.878 0.920 0.927 0.916cÞ

0.10 1.75 0.875 0.828 0.792 0.855 0.870 0.853cÞ

0.30 1.75 0.865 0.787 0.798 0.760 0.864 0.736cÞ

0.50 1.75 1.382 1.378 1.489 1.091 1.389 1.052cÞ

0.65 1.75 2.445 2.560 2.730 1.898 2.454 2.073cÞ

0.80 1.75 4.635 4.193 5.100 3.683 4.642 4.616cÞ

0.05 2.50 0.990 0.972 0.960 0.987 0.989 0.959cÞ

0.10 2.50 0.992 0.962 0.945 0.985 0.990 1.081cÞ

0.30 2.50 1.194 1.159 1.163 1.132 1.193 1.097cÞ

0.50 2.50 1.933 1.956 2.008 1.724 1.936 1.691cÞ

0.65 2.50 3.176 3.273 3.356 2.766 3.180 2.909cÞ

0.80 2.50 5.553 5.746 5.839 4.838 5.556 5.529cÞ

0.05 3.00 1.012 0.997 0.989 1.011 1.011 1.013cÞ

0.10 3.00 1.036 1.012 1.000 1.032 1.034 1.035cÞ

0.30 3.00 1.322 1.300 1.302 1.275 1.321 1.265cÞ

0.50 3.00 2.150 2.178 2.213 1.975 2.153 1.930cÞ

0.65 3.00 3.464 3.551 3.608 3.114 3.466 3.168cÞ

0.80 3.00 5.914 6.075 6.140 5.302 5.916 5.956cÞ

a) ref. 13. b) ref. 11. c) ref. 12. d) ref. 2. e) ref. 15. f) ref. 12.
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EOS with 153 parameters which is not simple to be
handled.4,5) For example, the compressibility factor of the
SW fluid can be written as,

Z ¼ Z0 þ
Z1

T� þ
Z2

T�2 ð20Þ

where Z0 is the compressibility factor for the hard-sphere
fluid and

Fig. 1. Compressibility factor calculated by AN (– � � –), LLS (– � –), LS (� � � � � �), GWL (— —), This work (—) and simulation data (�) for (a) T� ¼ 1:33,

(b) T� ¼ 1:75, (c) T� ¼ 2:5, (d) T� ¼ 3:00.

Table II. Calculated compressibility factor of the SW fluid at various values of � compared to that given by different equations of state and the simulation

data.

� T� �� LCaÞ LSbÞ GWLcÞ This work Simulation data

1.125 1.00 0.40 2.049 �0:052 2.005 1.521 1.390dÞ

1.125 1.00 0.60 3.416 0.877 3.470 2.702 2.230dÞ

1.125 1.00 0.80 6.601 3.463 6.549 5.538 3.530dÞ

1.375 1.50 0.40 1.306 0.792 1.212 1.214 0.970dÞ

1.375 1.50 0.60 2.018 1.906 2.159 2.265 1.680dÞ

1.375 1.50 0.80 4.777 4.710 4.594 4.980 4.000dÞ

1.625 2.00 0.40 0.629 1.224 0.495 0.845 0.720dÞ

1.625 2.00 0.60 0.726 2.464 0.945 1.725 1.660dÞ

1.625 2.00 0.80 3.097 5.402 2.773 4.272 5.380dÞ

1.750 1.43 0.40 �0:940 0.708 �1:213 �0:395 �0:220dÞ

1.750 1.43 0.60 �2:169 1.800 �1:769 �0:142 0.160dÞ

1.750 1.43 0.80 �0:726 4.580 �1:233 1.724 3.030dÞ

2.000 6.00 0.40 1.160 2.090 1.083 1.806 1.480dÞ

2.000 6.00 0.60 1.676 3.656 1.835 3.197 2.820dÞ

2.000 6.00 0.80 4.359 6.923 4.063 6.281 5.500dÞ

a) ref. 17. b) ref. 15. c) ref. 12. d) ref. 16.
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It is to be noted that eq. (12) is simpler than all compared
equations of state, except for the LLS equation. As we shall
see in the next section, eq. (12) is not limited to the SW fluid.
It is to be noted that eq. (12) has three advantages over eq.
(20); first is the number of parameters, second is the
generality of the EOS, and finally there is no need to any
explicit mathematical expression for the RDF for deriving
eq. (12).

4.2 Hard-core Lennard–Jones fluid
The HCLJ potential is more realistic but more complex

than the SW potential. This potential is given as,18)
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In order to apply eq. (12) to the HCLJ fluid, the potential
parameters have to be obtained in a suitable manner. In
general, the parameters of an equation of state which are
used to calculate the fluid properties are considered as
adjustable parameters, and their values chosen in such a way
that it gives the best fit with the simulation data. This fitting
procedure usually makes the theoretically developed equa-
tion of state lose its original physical meaning. In this work,
an analytical method is proposed to obtain the values of the
potential parameters. Strictly speaking, the value of � in eq.
(12) should vary with density.9) However, the exact variation
of � with density is not known, and therefore, its density
dependency is discarded. In our calculation � is taken to be
1.3 which nearly satisfies eq. (6) for all densities. In addition
we have assumed that � in eq. (1) is equal to that of eq. (23).
The values of � and "="HCLJ are determined in a straightfor-
ward analytical procedure, as explained below. This proce-
dure is also applicable to fluids other than the HCLJ fluid
with a hard-core repulsion.

For a given fluid, whose potential function, udðxÞ, is
known, we require that the following two equal-area
constraints to be approximated as,

Z�
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uðxÞdx ¼
Z�
1

udðxÞdx ð24Þ

Z3
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Z3
�
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For the HCLJ fluid, we substitute eqs. (23) and (1) into eqs.
(24) and (25). If we use � ¼ 1:3 and solve eqs. (24) and (25)
simultaneously, we would get "="HCLJ ¼ 0:914 and � ¼
4:849.

These values for the parameters were used to calculate the
reduced internal energy and the compressibility factor for
the HCLJ fluid. The calculated values of Z ¼ p=�RT are
compared with the simulation data of Sowers and Sandler3)

in Table III. We have used eq. (9) to calculate the reduced
internal energy of the HCLJ fluid, the results of which are
compared with those of the simulation data and eq. (27) in
Table IV. The Sowers and Sandler EOS (SS) is given as,
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where T� ¼ kT="HCLJ, �
� ¼ ��HCLJ

3, and Zm is the max-
imum coordination number. The quantities a, b1, and b2 are
adjustable parameters, whose values are obtained by fitting
the simulation data into eq. (26). In Table IV, the calculated
internal energy is compared with that of eq. (27) and
simulation data.3)

One may notice from Tables III and IV that the results
obtained from this work are comparable with those obtained
from eqs. (26) and (27). However, eq. (12) has an advantage
over the SS EOS, which is the absence of any adjustable
parameter in this EOS.

5. Conclusion

We have proposed a new potential function for hard-core
fluids that has at least three advantages over other hard-core
potentials. These advantages are the reality, flexibility, and
simplicity. For example, this potential is more realistic and
flexible than the SW potential and more flexible and less
complicated than the HCLJ potential. The most important
advantage of this potential is the presence of the � parameter
that makes the potential more flexible. It is clear that this
potential can be reduced to different hard-core potential
models, depending on the value of �. Using the proposed
potential function along with the Barker–Henderson pertur-
bation theory, a simple perturbed EOS is derived. This EOS
has some advantages, the first advantage is the unique
feature of the EOS is that it contains the same number of
parameters and uses the same expression for different hard-
core fluids that is due to the flexibility of the proposed
potential function. Secondly, this EOS has no adjustable
parameters, therefore, in some regions that there is no
simulation data for such hard-core fluids, it may be used to
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Table III. Calculated compressibility factor of this work compared to the

simulation data and SS EOS at different reduced temperatures and

densities for the HCLJ fluid.

�� T� This work Simulation dataaÞ eq. (26)

0.05 1.350 0.844 0.841 0.863

0.100 1.350 0.703 0.716 0.733

0.200 1.350 0.487 0.496 0.503

0.300 1.350 0.373 0.353 0.333

0.400 1.350 0.383 0.258 0.258

0.500 1.350 0.568 0.299 0.331

0.600 1.350 1.014 0.528 0.634

0.700 1.350 1.853 1.206 1.294

0.800 1.350 3.296 2.516 2.517

0.900 1.350 5.691 4.996 4.644

0.05 1.750 0.912 0.912 0.916

0.100 1.750 0.836 0.855 0.841

0.200 1.750 0.738 0.752 0.728

0.300 1.750 0.736 0.711 0.687

0.400 1.750 0.860 0.749 0.753

0.500 1.750 1.167 0.993 0.981

0.600 1.750 1.741 1.364 1.454

0.700 1.750 2.713 2.288 2.300

0.800 1.750 4.293 3.771 3.725

0.900 1.750 6.827 6.213 6.072

0.05 2.000 0.940 0.939 0.939

0.100 2.000 0.890 0.904 0.888

0.200 2.000 0.843 0.845 0.827

0.300 2.000 0.889 0.854 0.842

0.400 2.000 1.064 0.975 0.970

0.500 2.000 1.423 1.229 1.266

0.600 2.000 2.051 1.773 1.813

0.700 2.000 3.079 2.760 2.739

0.800 2.000 4.717 4.290 4.250

0.900 2.000 7.310 6.995 6.692

0.05 3.000 1.001 0.999 0.994

0.100 3.000 1.012 1.022 1.001

0.200 3.000 1.083 1.090 1.064

0.300 3.000 1.247 1.223 1.215

0.400 3.000 1.542 1.470 1.491

0.500 3.000 2.026 1.883 1.947

0.600 3.000 2.783 2.554 2.667

0.700 3.000 3.944 3.667 3.780

0.800 3.000 5.716 5.405 5.492

0.900 3.000 8.444 8.193 8.147

0.05 4.000 1.030 1.027 1.023

0.100 4.000 1.071 1.079 1.060

0.200 4.000 1.202 1.207 1.186

0.300 4.000 1.426 1.415 1.405

0.400 4.000 1.784 1.719 1.755

0.500 4.000 2.331 2.233 2.290

0.600 4.000 3.154 3.022 3.095

0.700 4.000 4.380 4.172 4.298

0.800 4.000 6.219 6.124 6.105

0.900 4.000 9.015 8.813 8.863

0.05 6.000 1.058 1.054 1.052

0.100 6.000 1.129 1.133 1.119

0.200 6.000 1.320 1.322 1.309

0.300 6.000 1.606 1.598 1.596

0.400 6.000 2.027 1.990 2.017

0.500 6.000 2.639 2.576 2.629

0.600 6.000 3.527 3.447 3.514

0.700 6.000 4.820 4.736 4.801

0.800 6.000 6.729 6.648 6.699

0.900 6.000 9.589 9.392 9.550

a) ref. 3.

Table IV. Calculated reduced internal energy of this work compared to

the simulation data and SS EOS at different reduced temperatures and

densities for the HCLJ fluid.

�� T� This work Simulation dataaÞ eq. (27)

0.100 1.350 �0:751 �0:848 �0:612

0.200 1.350 �1:4562 �1:628 �1:246

0.300 1.350 �2:1225 �2:344 �1:905

0.400 1.350 �2:7679 �3:044 �2:596

0.500 1.350 �3:4096 �3:758 �3:320

0.600 1.350 �4:0563 �4:541 �4:081

0.700 1.350 �4:710 �5:378 �4:883

0.800 1.350 �5:374 �6:253 �5:728

0.900 1.350 �6:049 �7:122 �6:617

0.100 1.750 �0:7135 �0:765 �0:637

0.200 1.750 �1:3997 �1:498 �1:305

0.300 1.750 �2:060 �2:212 �2:005

0.400 1.750 �2:7114 �2:941 �2:740

0.500 1.750 �3:360 �3:711 �3:511

0.600 1.750 �4:015 �4:513 �4:321

0.700 1.750 �4:679 �5:366 �5:171

0.800 1.750 �5:352 �6:240 �6:063

0.900 1.750 �6:032 �7:115 �6:998

0.100 2.000 �0:694 �0:737 �0:649

0.200 2.000 �1:371 �1:459 �1:330

0.300 2.000 �2:029 �2:172 �2:045

0.400 2.000 �2:682 �2:909 �2:795

0.500 2.000 �3:336 �3:680 �3:582

0.600 2.000 �3:996 �4:504 �4:407

0.700 2.000 �4:663 �5:360 �5:271

0.800 2.000 �5:340 �6:237 �6:176

0.900 2.000 �6:025 �7:112 �7:124

0.100 3.000 �0:6472 �0:685 �0:678

0.200 3.000 �1:253 �1:380 �1:387

0.300 3.000 �1:958 �2:097 �2:128

0.400 3.000 �2:616 �2:852 �2:902

0.500 3.000 �3:279 �3:648 �3:710

0.600 3.000 �3:651 �4:482 �4:551

0.700 3.000 �4:629 �5:352 �5:427

0.800 3.000 �5:314 �6:237 �6:338

0.900 3.000 �6:005 �7:105 �7:285

0.100 4.000 �0:6252 �0:662 �0:692

0.200 4.000 �1:268 �1:349 �1:412

0.300 4.000 �1:923 �2:070 �2:161

0.400 4.000 �2:581 �2:826 �2:937

0.500 4.000 �3:250 �3:636 �3:743

0.600 4.000 �3:927 �4:474 �4:578

0.700 4.000 �4:610 �5:342 �5:442

0.800 4.000 �5:301 �6:222 �6:336

0.900 4.000 �5:996 �7:099 �7:260

0.100 6.000 �0:603 �0:642 �0:706

0.200 6.000 �1:234 �1:321 �1:433

0.300 6.000 �1:886 �2:043 �2:181

0.400 6.000 �2:550 �2:810 �2:950

0.500 6.000 �3:219 �3:621 �3:741

0.600 6.000 �3:905 �4:467 �4:552

0.700 6.000 �4:590 �5:339 �5:385

0.800 6.000 �5:287 �6:222 �6:240

0.900 6.000 �5:983 �7:100 �7:116

a) ref. 3.
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predict the needed data. Thirdly, for deriving EOS based on
the perturbation theory there is no need to know any explicit
mathematical form for g0ðrÞ in the 1 < x < � region.

As expressed by eqs. (24) and (25), the proposed equal
area approach for determining the values of the parameters is
straightforward. Using this EOS, we have calculated the
compressibility factor for the SW and HCLJ fluids. The
results are presented in Tables I, II, and III, and also shown
in Fig. 1. As shown in these tables and Fig. 1, the results of
the EOS are in good agreement with the simulation data. The
reason for this good agreement may be due to the fact that
value of the parameter � is chosen in such a way that the
surface underneath of the new extended SW potential
function is equal to that of the model potentials (like SW
and HCLJ), see eqs. (24) and (25). According to eq. (2) the
accuracy of such surface leads to the accurate Helmholtz
free energy. In these tables and Fig. 1 the results of our EOS
are compared with those of the others EOSs, from which we
may conclude that this EOS is compatible with the
mentioned equations of state. Therefore, the approximations
we used in this work seem to be appropriate. Extension of
this work to fluids with a soft repulsive branch of potential
remains for the future.
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