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We present in this paper a general analytical solution to the integral equations of liquid state theories
(Born–Green–Yvon, hyper-netted-chain, and Percus–Yevick Equations) at low-density limit for
potentials with a hard core. For the specific case of the Lennard-Jones potential with a hard core, we
have derived an analytical function for the radial distribution function at high temperature and low
density. We have noted that this function has two humps which is the characteristic feature of the radial
distribution function at low densities. In addition, this function has been used to calculate the third virial
coefficient for such a fluid exactly. We see that for the especial case of Lennard-Jones fluid with a hard
core, which its radial distribution function has explicitly been calculated at high temperatures, the correct
behavior of the third virial coefficient with temperature is obtained. The magnitude of hard-core diameter
has significant effect on the thermodynamic properties of fluid: for instance, when the diameter changes
only by a few percent the third virial coefficient may change more than 100%. The hard-core diameter
decreases when temperature increases. The reduction is less than 20%. For the supercritical fluid, the
calculated compression factor and internal energy are in good agreement with those obtained from the
simulation for the Lennard-Jones fluid.
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1. Introduction

Radial distribution function (RDF) is the main theme of
fluid state theories. Using this function, one can calculate
almost all thermodynamic properties of a fluid. For this
reason various ways of obtaining the RDF has been
introduced; including the integral equations theories, com-
puter simulation methods (Molecular Dynamics and Monte
Carlo), and neutron scattering experiments. However, in
spite of all efforts, finding an exact analytical expression for
the RDF has not yet been possible. Nevertheless, the semi-
empirical expressions for some classes of simple fluids have
been presented (including the hard sphere fluids,1) square-
well fluids,2) and Lennard-Jones fluids.3) Also, via the RDF
of a simple fluid one can study the role of the attractive and
repulsive parts of the pair potential in the fluid structure.2,4)

Thus obtaining an analytical expression for the RDF is of
vital importance for the liquid state chemical physics.

It is well known that the various integral equations of
classical simple liquid theory yield the approximate radial
distribution functions.5–8) These approximate radial distri-
bution functions in turn yield the correct second and third
virial coefficients, but the incorrect fourth, fifth, and . . .,
virial coefficients, when substituted into either following
equations which relates the pressure or the compressibility
factor to the RDF respectively, i.e.;

p ¼ �kT �
2

3
��2

Z 1

0

gðrÞ
@u

@r
r3dr ð1Þ

kT
@�

@p

� �
T

¼ 1þ 4��

Z 1

0

½gðrÞ � 1�r2dr ð2Þ

where k is the Boltzmann constant, � is the average number

density, p is the pressure, T is the absolute temperature, uðrÞ
is the interaction potential between two particles at distance
r, and gðrÞ is the RDF.

In this paper, we show that we can solve integral
equations of liquid state theories (Percus–Yevick, hyper-
netted-chain, and Born–Green–Yvon) for potentials with a
hard core at low densities (i.e., densities at which the RDF
has two humps only).

The integral equations that will be studied are the Percus–
Yevick (PY):

e�uðr12Þgðr12Þ

¼ 1þ �

Z
½gðr23Þ � 1�½1� e�uðr13Þ�gðr13Þdr3

ð3Þ

hyper-netted-chain (HNC):

ln gðr12Þ þ �uðr12Þ ¼ �

Z
½gðr23Þ � 1�½gðr13Þ � 1

� ln gðr13Þ � �uðr13Þ�dr3
ð4Þ

and Born–Green–Yvon (BGY):

� kTr1 ln gðr12Þ

¼ r1uðr12Þ þ �

Z
gðr13Þgðr23Þr1uðr13Þdr3

ð5Þ

where � ¼ 1=kT and r1 represents the gradient with respect
to r1.

These equations must be solved to give the approximate
RDF, which in turn can be used to calculate other
thermodynamic properties, and hence comparing them with
one another and with the (computer) experiment values. In
this way, one can decide on their range of validity. However,
these equations have all been solved numerically except PY,
which was solved analytically for the case of hard sphere
potential.9) Although because of some approximations in
deriving these equations, the obtained gðrÞ are not exact,

�To whom correspondence should be addressed.

E-mail: parsafar@sharif.edu

Journal of the Physical Society of Japan

Vol. 73, No. 5, May, 2004, pp. 1197–1204

#2004 The Physical Society of Japan

1197



however the main features of this function may be
reproduced in this way, and be used as a base for other
theories. Although these equations can be solved numeri-
cally,10–12) there are some interests to have gðrÞ analytically
for (reasonably) real potentials.3,13) Nevertheless, there has
been yet no analytical solution found even at low densities
for the reasonable potentials. In this paper, we are going to
derive an analytical solution to these equations for potentials
with a hard core, at low densities. At zero density limit
(� ! 0), one obtains from eqs. (3)–(5) that gðrÞ ¼ e��uðrÞ,
which is the zeroth approximation to gðrÞ. Having this
approximation, we can proceed to obtain low-density
approximation for gðrÞ as a first approximation; i.e., for
densities not too high; gðrÞ can be expanded in powers of the
number density �6–8) as:

gðrÞ ¼ e��uðrÞ½1þ G1ðrÞ�þ G2ðrÞ�2 þ � � �� ð6Þ

where the coefficients G1ðrÞ;G2ðrÞ; . . . are also functions of
uðrÞ and T . The exact expression for G1ðrÞ is:6–8)

G1ðrÞ ¼
Z
½1� e��uðr23Þ�½1� e��uðr13Þ�dr3 ð7Þ

Now in order to find G1ðrÞ from each liquid state theory, gðrÞ
from eq. (6) is substituted into the integral equations and the
coefficients of like powers of � on both sides are set equal to
each other, from which one can show that G1ðrÞ is given by
the exact expression, eq. (7), in each case. However, the
exact expressions for other Gis [for i � 2] obtained from
these equations are different. Hence, to the first approxima-
tion eqs. (3)–(5) are equal, but yet their RDFs will be
different.6–8) At this first level of approximation we may
obtain;

gðrÞ ¼ e��uðrÞ½1þ �G1ðrÞ� ð8Þ
from the PY equation at low densities, and

gðrÞ ¼ e��uðrÞe�G1ðrÞ ð9Þ

from the HNC and BGY equations at low densities. So in
order to find gðrÞ at this first level of approximation we have
to calculate G1ðrÞ. In order to calculate the G1ðrÞ, it is
necessary to write it in bipolar coordinates6–8) as:

G1ðrÞ ¼
2�

r

Z
½1� e��uðRÞ�½1� e��uðr0Þ�Rr0dRdr0 ð10Þ

Let us use a general potential with a hard core as;

u0ðrÞ ¼
1 r < d

uðrÞ r � d

�
ð11Þ

where d is the hard core diameter. In the reduced form, the
potential may be written in terms of the reduced distance
r� ¼ r=d as:

u0ðr�Þ ¼
1 r� < 1

uðr�Þ r� � 1

�
ð12Þ

Then eq. (10) reduces to:

G1ðr�Þ ¼
2�d3

r�

Z
½1� e��u0ðR�Þ�½1� e��u0ðr0�Þ�

� R�r0�dR�dr0�
ð13Þ

For simplicity, we shall drop the stars on the reduced
variables, and write G1ðrÞ as:

G1ðrÞ ¼
2�d3

r

Z 1

0

Z rþR

jr�Rj
½1� e��u0ðRÞ�½1� e��u0ðr0Þ�

� Rr0dRdr0
ð14Þ

We shall show in the following section that an analytical
expression for G1ðrÞ may be derived if a hard-core potential
is used.

2. General Analytical Expression for RDF at Low
Densities

In order to solve eq. (14) for G1ðrÞ, we may note from
eqs. (8), (9), and (12) that gðrÞ ¼ 0 when r < 1; so we must
have r � 1. But r0 and R may either be more or less than 1.
So the four following cases should be considered.

A) When we simultaneously have:

r � 1; R < 1; and r0 < 1: ð15Þ

In general we have 0 � R < 1, and jr � Rj � r0 � r þ R;
which in combination to eq. (15) will give: r � R � r0 <
1 � r þ R, which is equivalent to r � 1 � R < 1, hence
1 � r � 2. So G1ðrÞ in this case will equal to:

a ¼
2�d3

r

Z 1

r�1

Z 1

r�R

Rr0dRdr0 ðwith 1 � r � 2Þ ð16Þ

B) When we simultaneously have:

r � 1; R < 1; and r0 � 1: ð17Þ

From eq. (17) we have r � R and jr � Rj � r0 � r þ R; from
which one can deduce:

r � R � 1 � r0 � r þ R ð18Þ

and/or:

1 � r � R � r0 � r þ R ð19Þ

Equation (18) gives R � r � 1, which in combination to
eq. (17) indicates:

0 � r � 1 < R < 1 � r that results in 1 � r � 2 ð20Þ

Equation (19) gives R � r � 1, which in combination to
eq. (17) indicates:

0 � R � r � 1 � 1 � r that results in 1 � r � 2 ð21Þ
and

0 � R � 1 � r � 1 � r that results in r � 2 ð22Þ

Hence, the integration in this case will become as:Z 1

r�1

Z rþR

1

ð1 � r � 2Þ

þ
Z r�1

0

Z rþR

r�R

ð1 � r � 2Þ þ
Z 1

0

Z rþR

r�R

ðr � 2Þ ð23Þ

which can easily be transformed to:Z 1

0

Z rþR

1

ðr � 1Þ

þ
Z r�1

0

Z 1

r�R

ð1 � r � 2Þ þ
Z 1

0

Z 1

r�R

ðr � 2Þ ð24Þ

Hence, G1ðrÞ in this case consists of three terms, namely b1,
b2, and b3:
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b1 ¼
2�d3

r

Z 1

0

Z rþR

1

½1� e��uðr0Þ�Rr0dRdr0

(with r � 1) ð25Þ

b2 ¼
2�d3

r

Z r�1

0

Z 1

jr�Rj
½1� e��uðr0Þ�Rr0dRdr0

(with 1 � r � 2) ð26Þ

b3 ¼
2�d3

r

Z 1

0

Z 1

r�R

½1� e��uðr0Þ�Rr0dRdr0

(with r � 2) ð27Þ

C) When we simultaneously have:

r � 1; R � 1; and r0 < 1: ð28Þ

From eq. (28) we have r þ R � 2 and also jr � Rj � r0 �
r þ R; from which one can deduce;

jr � Rj � r0 � 1 ð29Þ

for which we have two following cases:
1) When R � r; which in combination to eq. (29) yields:

0 < R� r � r0 � 1 ð30Þ

and

1 � r � R < 1þ r ð31Þ

2) When R � r; which in combination to eq. (29) yields:

0 < r � R � r0 � 1 ð32Þ

But we have in this case r0 < 1 which in combination to
eq. (29) yields:

0 < 1 � r � 1 � R < r that results in r � 2 ð33Þ
and

0 � r � 1 < 1 � R < r that results in 1 � r � 2 ð34Þ

Hence, the integration in this case will become as:Z r

1

Z 1

r�R

ð1 � r � 2Þ

þ
Z r

r�1

Z 1

r�R

ðr � 2Þ þ
Z rþ1

r

Z 1

R�r

ðr � 1Þ
ð35Þ

which can easily be transformed to:Z 1þr

1

Z 1

jr�Rj
ð1 � r � 2Þ þ

Z rþ1

r�1

Z 1

jr�Rj
ð1 � 2Þ ð36Þ

Hence G1ðrÞ in this case consists of two following terms:

c1 ¼
2�d3

r

Z 1þr

1

Z 1

jr�Rj
½1� e��uðRÞ�Rr0dRdr0

(with 1 � r � 2) ð37Þ

c2 ¼
2�d3

r

Z rþ1

r�1

Z 1

jr�Rj
½1� e��uðRÞ�Rr0dRdr0

(with r � 2) ð38Þ

D) When we simultaneously have:

r � 1; R � 1; and r0 � 1: ð39Þ

Combination of eq. (39) with jr � Rj � r0 � r þ R yields
two situations:

jr � Rj � 1 � r0 � r þ R ðDIÞ

and/or

1 � jr � Rj � r0 � r þ R ðDIIÞ

Now we have two cases:
1) when R � r; which in combination to eqs. (DI) and

(DII) yield:

(DI) �! R� r � 1 � r0 � r þ R

�! 1� r � 0 < 1 � r � R � 1þ r

(with r � 1) ð40Þ
(DII) �! 1 � R� r � r0 � r þ R

�! 1� r � 0 < 1 � r � 1þ r � R

(with r � 1) ð41Þ

2) when R � r; which in combination to eqs. (DI) and
(DII) yield:

(DI) �! r � R � 1 � r0 � r þ R

�! 1� r � 0 < 1 � r � 1 � R � r

(with r � 2) ð42Þ
and/or

(DI) �! r � R � 1 � r0 � r þ R

�! 1� r � 0 < r � 1 � 1 � R � r

(with 1 � r � 2) ð43Þ
and

(DII) �! 1 � r � R � r0 � r þ R

�! 1� r � 0 < 1 � R � r � 1

(with r � 2) ð44Þ
Hence, the integration in this case will become:Z rþ1

r

Z rþR

1

ðr � 1Þ þ
Z 1

1þr

Z Rþr

R�r

ðr � 1Þ þ
Z r

r�1

Z rþR

1

ðr � 2Þ

þ
Z r

1

Z rþR

1

ð1 � r � 2Þ þ
Z r�1

1

Z rþR

r�R

ðr � 2Þ

which can easily be transformed to:Z 1

r

Z rþR

1

ðr � 1Þ

þ
Z 1

1þr

Z 1

R�r

ðr � 1Þ þ
Z r�1

1

Z 1

r�R

ðr � 2Þ
ð45Þ

Hence, G1ðrÞ in this case consists of three terms, namely d1,
d2, and d3:

d1 ¼
2�d3

r

Z 1

1

Z rþR

1

½1� e��uðRÞ�½1� e��uðr0Þ�Rr0dRdr0

(with r � 1) ð46Þ

d2 ¼
2�d3

r

Z 1

rþ1

Z 1

r�R

½1� e��uðRÞ�½1� e��uðr0Þ�Rr0dRdr0

(with r � 1) ð47Þ

d3 ¼
2�d3

r

Z r�1

1

Z 1

r�R

½1� e��uðRÞ�½1� e��uðr0Þ�Rr0dRdr0

(with r � 2) ð48Þ

Now with having expressions for a, b1, b2, b3, c1, c2, d1, d2,
d3 we can write G1ðrÞ as follows:
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G1ðrÞ ¼ aþ b1 þ b2 þ c1 þ d1 þ d2

(with 1 � r � 2) ð49Þ
G1ðrÞ ¼ b1 þ b3 þ c2 þ d1 þ d2 þ d3

(with r � 2) ð50Þ

which in combination to, for example eq. (9), gives us gðrÞ
at low densities. At this stage, we would like to write down
the explicit expression for gðrÞ, which is:

gðrÞ ¼ 0 when 0 � r < 1 ð51aÞ
and,

gðrÞ ¼ e��uðrÞ exp
2��d3

r

Z 1

r�1

Z 1

r�R

Rr0dRdr0

þ
Z 1

0

Z rþR

1

½1� e��uðr0Þ�Rr0dRdr0

þ
Z r�1

0

Z 1

jr�Rj
½1� e��uðr0Þ�Rr0dRdr0

þ
Z rþ1

1

Z 1

jr�Rj
½1� e��uðRÞ�Rr0dRdr0

þ
Z 1

1

Z rþR

1

½1� e��uðRÞ�½1� e��uðr0Þ�Rr0dRdr0

þ
Z 1

rþ1

Z 1

r�R

½1� e��uðRÞ�½1� e��uðr0Þ�Rr0dRdr0

2
6666666666666666666664

3
7777777777777777777775

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;

when 1 � r � 2 ð51bÞ

and

gðrÞ ¼ e��uðrÞ exp
2��d3

r

Z 1

0

Z rþR

1

½1� e��uðr0Þ�Rr0dRdr0

þ
Z 1

0

Z 1

r�R

½1� e��uðr0Þ�Rr0dRdr0

þ
Z rþ1

r�1

Z 1

jr�Rj
½1� e��uðRÞ�Rr0dRdr0

þ
Z 1

1

Z rþR

1

½1� e��uðRÞ�½1� e��uðr0Þ�Rr0dRdr0

þ
Z 1

rþ1

Z 1

r�R

½1� e��uðRÞ�½1� e��uðr0Þ�Rr0dRdr0

þ
Z r�1

1

Z 1

r�R

½1� e��uðRÞ�½1� e��uðr0Þ�Rr0dRdr0

2
6666666666666666666664

3
7777777777777777777775

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;

when r � 2 ð51cÞ

The analytical expression given by eqs. (51) may be used to
calculate gðrÞ at any temperatures at low densities accu-
rately, if the pair interaction potential is known. The above
expression for gðrÞ is based on the HNC and/or BGY
equations; however, if eq. (8) is used for gðrÞ, one will
obtain the gðrÞ of the PY equation. Nevertheless, in order to
obtain analytical expressions for these integrals, the math-
ematical form of the uðrÞ must be known. If uðrÞ is the
inverse powers of r, it is possible to obtain an analytic
expression for the gðrÞ at this level of approximation (i.e., at
low densities), at least for high temperatures. For example,
we have derived the RDF for the Lennard-Jones fluid with a
hard core; see the appendix. At any reduced temperature and
density, the RDF may be calculated at that thermodynamic
state for a hard-core Lennard-Jones fluid. As an example, the
calculated RDF at T� ¼ 3:5 and �� ¼ 0:25 is shown in
Fig. 1 when the hard-core diameter is taken to be d ¼ 0:96�
and d ¼ 0:92�. As expected, our RDF has only two humps
which indicates that the function can only works at low
densities. It is interesting to note that gðrÞ for the Lennard-
Jones potential at low densities was obtained numerically
and plotted for some different temperatures and densities by

de Boer.14) His numerical results are essentially similar to
ours, though we have included an arbitrary hard core in the
Lennard-Jones potential. Based on the WCA theory,15) one
expects that the hard-core diameter has a significant effect

0 1 2 3 4 5 6
0

0.5

1

1.5

g(r)

r

Fig. 1. The radial distribution function for the Lennard-Jones fluid with

hard core when d ¼ 0:92� (dotted line) and d ¼ 0:96� (solid line).
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on the liquid state properties. For instance, hard-core
diameter (or excluded volume) has significant contribution
on the direct correlation function.4) Therefore, we have
decided to evaluate this expectation using the derived gðrÞ.
For this purpose we have calculated the third virial
coefficient, because one can exactly calculate this coefficient
for fluids that their pair interaction potentials are given by
eq. (11). Inserting eq. (6) into eq. (1), one obtains a general
expression for the virial coefficients8) as:

Biþ2ðTÞ ¼
�1

6kT

Z 1

0

ru0ðrÞe��uðrÞGiðr;TÞ4�r2dr ð52Þ

where Gi
0s are the same as those defined in eq. (6). As an

especial case, the reduced third virial coefficient becomes as:

B3ðTÞ ¼
�1

6kT

Z 1

0

ru0ðrÞe��uðrÞGiðr;TÞ4�r2dr ð53Þ

Since we have obtained a general explicit expression for
G1ðr;TÞ for the hard core fluid, we are able to calculate the
third virial coefficient exactly. As an example, we have used
the calculated RDF along with eq. (53) to calculate B3ðTÞ for
the hard core Lennard-Jones potential with d ¼ 0:96� and
d ¼ 0:92�. The results are depicted in Fig. 2, which is seen
that it predicts at least qualitatively the correct behavior of
the third virial coefficient. As seen when the diameter of the
hard core is changed only by a few percent, the third virial
coefficient varies significantly. Such a conclusion is in
accordance to the WCA theory; according to which it is
assumed that the thermodynamic properties of fluids are
strongly depend on the hard-core diameter.

To do another test for the derived RDF, we have
calculated the structure factor, SðkÞ, from

SðkÞ ¼ 1þ 4��

Z 1

0

drr2½gðrÞ � 1�
sinðkrÞ
kr

ð54Þ

where k is the wave vector. The results have been obtained
for �� ¼ 0:25 and T� ¼ 3:5 with two hard core diameters.
The calculated SðkÞ looks like the experimental result
obtained from scattering, for instance see Verlet.16) Note
that a minimum appears in SðkÞ vs k when attraction exists,
for instance there is no such a minimum for the hard sphere
fluid, see for instance McQuarrie.8) To see the effect of core
size on the structure factor, we have calculated SðkÞ for d ¼

0:96� and d ¼ 0:92� both at �� ¼ 0:25 and T� ¼ 3:5, the
results are shown in Fig. 3. Note that the effect of the core
diameter on SðkÞ becomes more significant for small values
of k.

In order to find the range of applicability of the derived
gðrÞ of this work, we test it for the Lennard-Jones (LJ) fluid.
Before doing that, we should note that our potential is a
hard-core Lennard-Jones (HCLJ) potential with diameter d,
to which all distances are reduced. Hence for a LJ potential
we have to find an equivalent HCLJ potential. To follow
Zwanzig17) approach, we should note that the LJ potential
has two parameters; namely, �LJ, "LJ whereas the HCLJ
potential has three parameters; ", �, and L ¼ d=�.

By setting the second virial coefficient of the two
potentials equal to each other, we find a set of values for
the parameters of the HCLJ potential, among which we
choose the set which gives the correct value for the third
virial coefficient of the Lennard-Jones fluid at the same
temperature. Also in the numerical calculations, one should
notice that for the LJ fluid T and � are reduced as TLJ

� ¼
kT="LJ and �LJ

� ¼ ��3
LJ, whereas for the HCLJ potential the

reduced variables are T� ¼ kT=" and �� ¼ �d3. Now if we
define the reduced energy (e ¼ "="LJ) and the reduced
distance ( f ¼ d=�LJ), we find that T� ¼ T�

LJ=e and �� ¼
��LJ f

3. Therefore for the LJ fluid at a given T�
LJ we may

calculate L, e, and f parameters. The results are presented in
Table I for some given temperatures. It is interesting to note
that L decreases when T�

LJ increases; which is in accordance
with our expectation. Due to the fact that the penetration of
two molecules into each other increases with temperature,
therefore the core diameter decreases.

We may find the range of applicability of the derived gðrÞ
for the LJ fluid, as follows. At a given T�

LJ and ��LJ for the LJ
fluid we first find the equivalent HCLJ potential parameters
and then T� and ��. By having the potential parameters, the
gðrÞ and hence the thermodynamic properties may be
calculated. The results of such calculations are summarized
in Table II, for different thermodynamic states.

From the calculated results given in this table, we may
conclude that the calculated gðrÞ in this work is reasonable
for the supercritical state; at least for the LJ fluid for which
��LJ,critical ¼ 0:35 and T�

LJ,critical ¼ 1:35.
It seems that the HCLJ potential model, along with the
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Fig. 2. The reduced third virial coefficients vs the reduced temperatures

for the hard core Lennard-Jones fluid when d ¼ 0:92� (dotted line) and

d ¼ 0:96� (solid line).
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derived expression for gðrÞ can be used as an appropriate
reference system in perturbation theory for the subcritical
liquid states as well.

3. Conclusion

We have presented in this paper a general solution to
integral equations of liquid state theories at low densities for
potentials with a hard core, which is indeed one step forward
to obtain analytical solution to the integral equations.

As an especial case, we have derived an explicit
expression for the RDF of the Lennard-Jones potential with
a hard core. One may use this expression to calculate the
fluid properties at low densities. The calculated structural
factor is shown in Fig. 3. At least qualitatively, the obtained
analytical expression for the RDF gives correct behavior of
SðkÞ for the supercritical states, for instance see Fig. 3 for
�� ¼ 0:25 and T� ¼ 3:5.

The fact that two molecules in touch become harder and
harder when penetrate into each other, the hard core
potential models seems to be more realistic than the hard

sphere model (HSM), physically. Therefore, regarding the
perturbation theories, one expects that the present model is
more appropriate than the HSM as the reference system.

To investigate the importance of the hard-core diameter,
we have calculated the reduced third virial coefficient at
different reduced temperatures, which is qualitatively in
agreement with the experiment. As it is obvious from Fig. 2,
the hard-core diameter has an important effect on the exactly
calculated third virial coefficient. The fact that all thermo-
dynamic properties are strongly dependent on the hard-core
diameter has already been confirmed by the WCA theory.15)

In order to calculate the thermodynamic properties of a
fluid, one should therefore know the three parameters of the
potential, namely ", �, and L, which is obtained and
tabulated for a Lennard-Jones fluid from which one can
easily calculated these properties. The calculated results
show that the derived gðrÞ works well for the supercritical
states, see Table II.
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Appendix

In this appendix, we shall derive an analytical expression
for the RDF for the following potential at low densities.

u0ðrÞ ¼
1 r < d

uðrÞ r � d

�

where uðrÞ is the Lennard-Jones potential, i.e.,

uðrÞ ¼ 4"
�

r

� �12

�
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� �6
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Defining r� ¼ r=d, T� ¼ kT=", �� ¼ �d3 and L ¼ d=�, one
may write:

uðr�Þ ¼ 4
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At high temperatures, we assume that 1� e��u ¼� �u, and
then perform all integrals of eq. (51). By using the MAPLE,
we find that (just for simplicity we have dropped all stars):
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Similarly, the other integrals of eqs. (51) can be performed to obtain analytical expressions for c1, c2, d1, d2 and d3 as well.
Hence, by having analytical expressions for all terms of eqs. (49) and (50), may be obtained from eqs. (51) for the RDF.

For instance for 1 � r � 2, we find that

gðrÞ ¼ exp �
4 1

L12r12
� 1

L6r6

� �
T

 !
exp

�
2��

�
r3

24
�

r

2
þ 2=3þ

4
1

10L12
� 1

4L6

2r
þ 1þ3r

24L6r3ð1þrÞ3 �
36r2þ9rþ84r3þ126r4þ126r5þ84r6þ36r7þ1

720L12r9ð1þrÞ9

� �
T

þ
4

1
4L6

� 1
10L12

� �
ðr�1Þ2

2r
� 1=3r3�1=2r2þ1=6

4L6r3
þ �1=8r8þ1=9r9þ1=72

10L12r9

� �
T

þ rð360þ 1800r � 2520L6r þ 4290r2 þ 5922r3 þ 4788r4

þ 1860r5 � 225r6 � 585r7 � 360L6 � 7530L6r2 � 12330L6r3 � 11610L6r4 � 5610L6r5 � 270L6r6

þ 1170L6r7 þ 570L6r8 þ 90L6r9 � 244r8 � 36r9Þ
�

ð180ð1þ rÞ9L12TÞ þ 16

� 1
4L6

� 1
10L12

� �2
r

þ
1

4L6
�

1

10L12

� �
1

10L12rð1þ rÞ10
�

1

4L6rð1þ rÞ4

� �
þ 1=5040

�
� 2110966r10 þ 360360 lnð1þ rÞ

� 360360 ln
1

1þ r

� �
þ 126r20 þ 2070r17 þ 1645r18 þ 700r19 þ 180r14 þ 540r15 þ 1485r16 � 840r13 � 65520r11

þ 5460r12 � 3603600 ln
1

1þ r

� �
r9 � 360360 ln

1

1þ r

� �
r10 � 16216200 ln

1

1þ r

� �
r2 � 43243200 ln

1

1þ r

� �
r3

� 75675600 ln
1

1þ r

� �
r4 � 90810720 ln

1

1þ r

� �
r5 � 75675600 ln

1

1þ r

� �
r6 � 43243200 ln

1

1þ r

� �
r7

� 16216200 ln
1

1þ r

� �
r8 þ 43243200 lnð1þ rÞr7 þ 75675600 lnð1þ rÞr6 þ 3603600 lnð1þ rÞr

þ 16216200 lnð1þ rÞr2 þ 43243200 lnð1þ rÞr3 þ 75675600 lnð1þ rÞr4 � 3603600 ln
1

1þ r

� �
r

þ 16216200 lnð1þ rÞr8 þ 3603600 lnð1þ rÞr9 þ 360360 lnð1þ rÞr10 þ 90810720 lnð1þ rÞr5 � 6846840r3

� 720720r � 29069040r3 � 72492420r4 � 117261144r5 � 127987860r6 � 94757520r7 � 46344870r8

J. Phys. Soc. Jpn., Vol. 73, No. 5, May, 2004 M. KHANPOUR et al. 1203



� 13902460r9
��

ðL18r15ð1þ rÞ10Þ � 1=12600

�
� 681842018r10 þ 116396280 lnð1þ rÞ � 116396280 ln

1

1þ r

� �

þ 126r20 � 1710r17 þ 665r18 � 280r19 þ 58140r14 � 15504r15 þ 4845r16 � 271320r13 � 21162960r11

þ 1763580r12 � 1163962800 ln
1

1þ r

� �
r9 � 116396280 ln

1

1þ r

� �
r10 � 5237832600 ln

1

1þ r

� �
r2

� 13967553600 ln
1

1þ r

� �
r3 � 24443218800 ln

1

1þ r

� �
r4 � 29331862560 ln

1

1þ r

� �
r5

� 24443218800 ln
1

1þ r

� �
r6 � 13967553600 ln

1

1þ r

� �
r7 � 5237832600 ln

1

1þ r

� �
r8

þ 13967553600 lnð1þ rÞr7 þ 24443218800 lnð1þ rÞr6 þ 1163962800 lnð1þ rÞr

þ 5237832600 lnð1þ rÞr2 þ 13967553600 lnð1þ rÞr3 þ 24443218800 lnð1þ rÞr4

� 1163962800 ln
1

1þ r

� �
r þ 5237832600 lnð1þ rÞr8 þ 1163962800 lnð1þ rÞr9 þ 116396280 lnð1þ rÞr10

þ 29331862560 lnð1þ rÞr5 � 2211529320r2 � 232792560r � 9389299920r3 � 23415051660r4

� 37875349512r6 � 41340078780r6 � 30606678960r7 � 14969393010r8 � 4490494580r9
��

ðL24r21ð1þ rÞ10Þ � 1=48

�
420 lnð1þ rÞ � 420 ln

1

1þ r

� �
þ 1680 lnð1þ rÞr þ 2520 lnð1þ rÞr2

þ 1680 lnð1þ rÞr3 þ 420 lnð1þ rÞr4 � 1680 ln
1

1þ r

� �
r � 2520 ln

1

1þ r

� �
r2 � 1680 ln

1

1þ r

� �
r3

� 420 ln
1

1þ r

� �
r4 � 2940r2 � 840r � 3640r3 � 1750r4 � 168r5 þ 28r6 � 8r7 þ 3r9

��

ðL12r9ð1þ rÞ4Þ þ 1=5040

�
� 72072r10 þ 360360 lnð1þ rÞ � 360360 ln

1

1þ r

� �
� 189r17 � 56r18 � 72r14 � 144r15

� 261r16 þ 252r13 þ 6552r11 � 1092r12 � 360360 ln
1

1þ r

� �
r9 � 12972960 ln

1

1þ r

� �
r2 � 30270240 ln

1

1þ r

� �
r3

� 45405360 ln
1

1þ r

� �
r4 � 45405360 ln

1

1þ r

� �
r5 � 30270240 ln

1

1þ r

� �
r6 � 12972960 ln

1

1þ r

� �
r7

� 3243240 ln
1

1þ r

� �
r8 þ 12972960 lnð1þ rÞr7 þ 30270240 lnð1þ rÞr6 þ 3243240 lnð1þ rÞr

þ 12972960 lnð1þ rÞr2 þ 30270240 lnð1þ rÞr3 þ 45405360 lnð1þ rÞr4 � 3243240 ln
1

1þ r

� �
r

þ 3243240 lnð1þ rÞr8 þ 360360 lnð1þ rÞr9 þ 45405360 lnð1þ rÞr5 � 6126120r2 � 720720r � 22942920r3

� 49549500r4 � 67711644r5 � 60276216r6 � 34481304r7 � 11863566r8 � 2038894r9
��

ðL18r15ð1þ rÞ9Þ
��

T2

��
:

1204 J. Phys. Soc. Jpn., Vol. 73, No. 5, May, 2004 M. KHANPOUR et al.


