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A variational theory (VT), in which the potential energy of a real system is
evaluated relative to the hard-sphere system, has been used to investigate the
medium’s effects on the pair potential parameters. By adding the medium’s effects
to the isolated pair potential, the concept of an ‘‘effective pair potential’’ (EPP) has
been introduced. The advantage of such a potential (EPP) over the isolated pair
potential is that the configurational energy can exactly be written as the sum of all
EPP of all pairs available in the system. The parameters of such a pair potential
will then show state dependence. The EPP parameters for different dense fluids at
various temperatures have been obtained via the VT, and they have been shown to
be density independent for densities greater than the Boyle density, rB 4 1.8rc,
(where rc is the critical density), while at lower densities the parameters depend on
density as well as temperature. For any dense fluid, the depth of the EPP, e, is
found to be larger than its corresponding isolated pair. When the EPP parameters
are used to reduce temperature and density, the cut-off parameter, C=d/s

depends only on the reduced density, and this parameter shows a strong principle
of corresponding states for different fluids. The resulting expression for the cut-off
parameter has then been used to accurately predict the internal energy. Finally, the
EPP parameters are compared with those of the average effective pair potential
(AEPP) for Ar, to show the importance of the medium effects and the long-range
interactions of the AEPP in dense fluids, individually. This comparison shows that
the depth parameter of the AEPP is much larger than that of the EPP. Since the
long-range interactions are mainly attractive, such a conclusion is reasonable.

KEY WORDS: average effective pair potential; corresponding states; varia-
tional theory.



1. INTRODUCTION

The interaction potential of an isolated pair is quite different from that of
the pair in the presence of other molecules. This difference can be attrib-
uted to the effect of the medium on the molecular charge distribution. In
addition to the effect of the medium on the molecular charge distribution,
which makes the configurational energy non-pair-wise additive, the long-
range interactions have important contributions in dense fluids. Even in
liquids with spherically symmetrical molecules, interactions of a given
molecule with at least three molecular shells surrounding it must be taken
into account. Recently, the concept of the ‘‘average effective pair poten-
tial,’’ (AEPP) is introduced [1], in order to write the configurational
potential energy as the sum of only the nearest neighbor potential energies
with the AEPP interactions, exactly. Such a pair potential (AEPP) is con-
sidered as an isolated pair potential to which the medium effect and all
long-range interactions of a given pair with remaining molecules are both
added. The mathematical form of the average effective pair potential is
considered to be the same as that of the isolated pair potential, but the
parameters of the former are state dependent.

Because at very high temperatures the equation of state of a fluid is
mainly due to the repulsive potential among its molecules and the attractive
part comes into effect at lower temperatures, Zwanzig [2] originally used a
perturbation approach for the equation of state of fluids based on a simple
system of hard spheres. Mansoori and Canfield [3] applied that idea via
a variational approach, so that if one varies the attractive contribution of
the partition function around the repulsive contribution, the hard-sphere
contribution, the lower temperature properties of gases and liquids may be
predicted satisfactorily.Such a method, which is known as a variational
theory, has been used to successfully predict the thermodynamic properties
of fluids [3–5]. A number of investigators have used the variational tech-
nique to calculate the thermodynamic properties of different fluids includ-
ing liquid metals [6–13]. Jedrzejek and Mansoori [14] used the variational
technique to develop analytic equations of state of a hard-core fluid with a
Yukawa tail. They then extended their work to a two-tail Yukawa poten-
tial [15]. In the variational inequality minimizing (VIM) approach, Alem
and Mansoori [16] have used the variational theory, along with the
Lennard-Jones (LJ) pair potential function and the Axilrod–Teller three-
body potential, to predict the thermodynamic properties of fluids. They
also have obtained general expressions for the density and temperature
dependences of the hard-sphere diameter, d.

Because there is no reason to limit the non-additive contribution of the
configurational potential energy of dense fluids to three-body interactions
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only, we have introduced an effective pair potential (EPP) similar to that in
our previous work (i.e., AEPP) to present an exact expression for the con-
figurational energy. The EPP is considered to be the isolated pair potential
to which the medium effect is added. Since long-range interactions are not
included in the EPP (unlike the case of AEPP), such interactions must be
taken into account in the configurational energy.

Our goal in the present work is to show how to use the EPP to predict
the state dependences of its parameters, e and s. We have followed the
VIM approach but with the EPP as an effective pair interaction potential
energy in a real fluid. The parameters of the EPP have then been calculated
at various temperatures at high densities (r > rB). The calculated EPP
parameters are used to obtain a precise expression for the cut-off parameter
(C=d/s) of different fluids in terms of the reduced density. The resulting
expression has then been used to accurately predict the internal energy.

2. FORMULATION OF A VARIATIONAL THEORY BASED ON EPP

The equilibrium behavior of a fluid can be formulated using the
canonical partition function. A fundamental relation for the statistical
mechanical description of the canonical ensemble exists between the
Helmholtz free energy and the canonical partition function Q of an
N-particle system confined in volume V at temperature T [17]

A=−kT ln Q (1)

where

Q=QintZ (2)

and

Z=
1

N!
FF e−f/kT dr1 · · · drN (3)

in which Q int is the partition function of the internal molecular motions,
Z is the configurational integral, and f is the intermolecular potential
energy function. If we consider two systems with different potential energy
functions, f and f0, with the same volume, temperature, and particle
number, the ratio of their configurational integrals will be [16]

Q
Q0

=
> · · · > e (f0 − f)/kT dr1 · · · drN

> · · · > e−f0/kT dr1 · · · drN

=Oe (f0 − f)/kTP0 (4)
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The right-hand side of Eq. (4) can be expanded about O(f − f0)P0 by a
Taylor’ s series as

Oe (f0 − f)/kTP0=e O(f0 − f)/kT P 0+1
2 O[(f0 − f)/kT − O(f0 − f)/kT P0]2 etP0

(5)

where the higher-order terms are ignored and

(f0 − f)/kT [ t [ O(f0 − f)/kT P0 (6)

The second term on the right side of Eq. (5) is always positive. Omitting it
and replacing the result in Eq. (4) will give

Q
Q0

\ e O(f0 − f)/kT P 0 (7)

which can be written in terms of the Helmholtz free energy as

A [ A0+Of − f0 P0 (8)

The inequality of Eq. (8) is known as the Gibbs–Bogoliubov inequality
[16]. According to such an inequality, if we know the intermolecular
potential energy function for a real system relative to that of a reference
system (0) and the thermodynamic properties of the reference system, we
can then obtain the Helmholtz free energy and the other thermodynamic
properties of the real system by minimizing the right side of Eq. (8).

We define the configurational energy of the real system in terms of the
effective pair potential (EPP), feff, so that we can consider the configura-
tional energy of the real system as sum of all EPP pairs which include
medium effects. Therefore, this potential for a pair is expected to depend
on the thermodynamic state of the system, in addition to the intermolecular
separation of the pair. Because the effect of the fluid medium on the
molecular charge distribution of a pair is included in the pair interaction
potential, we will have

f=C
i, j

feff, ij (9)

The hard-sphere model is taken as the reference system (0). Hence,

f0=˛., rij [ d

0, rij > d
(10)
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where rij is the intermolecular distance between i and j molecules and d is
the effective hard-sphere diameter for the reference system which gives the
same entropy as that for the real system. The Helmholtz free energy will
then be

A [ A0+A2b (11)

where A0 is the Helmholtz free energy of the reference system, A is that for
the real system with the EPP interaction between each pair, and

A2b=(r2/2) FF g02(r12) f(r12) dr1 dr2 (12)

and g02 is the radial distribution function of a pair in the reference system.
Note that the real system has no interaction other than the EPP for all
pairs, since the medium effect is completely included. This is the main dif-
ference between the present work and previous studies [2–4], in which at
most the three-body interactions were included.

In order to calculate the properties of fluids via Eq. (11), its right
side should be minimized with respect to d as the variational parameter to
satisfy the following conditions:

AŒ=(“A0/“d)r+(“A2b/“d)r=0 (13)

and

Aœ=(“
2A0/“d2)r+(“

2A2b/“d2)r > 0 (14)

The Helmholtz free energy of the hard-sphere (reference) system was fairly
accurately obtained by Carnahan and Starling [18] as

A0=A ig+
RTg(4 − 3g)

(1 − g)2 (15)

where A ig is the ideal gas Helmholtz free energy,

g=
p

6
NA rd3 (16)

is a dimensionless density called the packing factor, and NA is the Avogadro
number. Substitution of Eq. (15), for A0, in Eq. (11) gives

A [ A ig+
RTg(4 − 3g)

(1 − g)2 +A2b(r, d) (17)

Temperature/Density Dependences of Pair Potential Parameters 191



As mentioned before, the minimization of the right side of Eq. (17) with
respect to Eq. (13) gives the effective hard-sphere diameter at a given
thermodynamic state. The right side with the resulting value of d gives the
Helmholtz free energy of the real system at a given thermodynamic state.
Hence, the inequality can now be replaced by an equality. All thermo-
dynamic functions can be derived from Eq. (17) (but the inequality should
be replaced with an equality in advance). For instance, for entropy using
the thermodynamic equation of S= − (“A/“T)r with respect to Eq. (13)
we obtain

S(r, T)=S ig+
Rg(4 − 3g)

(1 − g)2 =S0(g) (18)

which means that the entropy of the real system is equal to the entropy of
the hard-sphere system with a hard-sphere diameter, d. At this stage, we
assume that the EPP parameters are constants. Once the EPP parameters
are calculated, that assumption should be corrected using an iterative pro-
cedure based on the condition of Eq. (13) to reach convergence for the EPP
parameters. According to Eqs. (16) and (18), we can directly use the exper-
imental values of entropy at any given thermodynamic state to calculate
the value of d at that state. Actually, Eqs. (16) and (18) can be combined
and solved for the d parameter, which gives

d(r, T)=3 6
prNA

{2 − (S − S ig)/R+[4 − (S − S ig)/R]1/2}
[3 − (S − S ig)/R]

41/3

(19)

Such calculations have been done for Ar, CH 4, and C 2H 6 (the needed data
are taken from Refs. 19–21) and the result are shown in Figs. 1 and 2 for a
given isotherm and isochore, respectively.

3. CALCULATION OF THE EPP PARAMETERS

Substitution of Eq. (9) in Eq. (12), and using the (12-6) LJ potential as
an effective pair potential, we will have

A2b=48gNAe[I12(g)/C12 − I6(g)/C6] (20)

where In(g) is defined as [3]

In(g)=F
.

0
g02(x, g) x2 − n dx (21)
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Fig. 1. Calculated hard-sphere diameter d versus r,
for Ar (N) at T=100 K, CH 4 (I) at T=150 K,
and C 2H 6 (J) at T=260 K, using Eq. (19).
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Fig. 2. The calculated hard-sphere diameter d in
terms of T, for Ar (N) at r=25.30 mol · L−1, CH 4

(I) at r=20.21 mol · L−1, and C 2H 6 (J) at r=
17.62 mol · L−1.
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Table I. Calculated I6 and I12 via Eq. (21) in Terms
of g, using g02 Values from Refs. 23 and 24

g I6 [23]a I12 [23]a

0.2 0.379830 0.137530
0.3 0.405096 0.153022
0.4 0.432894 0.172019
0.5 0.461725 0.193219
0.6 0.492349 0.217700
0.7 0.523744 0.245060
0.8 0.557696 0.277233
0.9 0.593070 0.313957

a Reference from which the values of g02 are taken is
indicated in the column heading.

in which g02 is the radial distribution function for the reference system,
C=d/s, and x=r/d. Mansoori and Ali [22] have shown that In(g) can be
expressed as a polynomial in terms of g as

In(g)= C
5

i=0
Cn ig

i (22)

We have calculated Ins for n=6 and 12 for various values of g, using the
reported values of g02 [23], and then we have computed the Cn is coeffi-
cients for them via Eq. (22). The calculated Ins are given in Table I in terms
of g. On the basis of data given in Table I, values of Cn is coefficients of
Eq. (22) are calculated and given in Table II.

Now, by substitution of Eq. (20) in Eq. (17) (with the equal sign), we
can obtain the Helmholtz free energy of the real system as

A=A ig+
RTg(4 − 3g)

(1 − g)2 +48gNAe[{I12(g)/C12 − I6(g)/C6] (23)

Table II. Calculated C6i and C12i Coefficients
of Eq. (22), using the Data of Table I

i C6 C12

0 0.33248 0.00000
1 0.22149 0.12357
2 0.07131 0.04786
3 4.692e-3 0.07375
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In order to calculate the EPP parameters, Eq. (23) can be rearranged to

5A − A ig −
RTg(4 − 3g)

(1 − g)2
6 d6

48gI6(g)
=es12 I12(g)

d6I6(g)
− es6 (24)

In Eq. (24), A could be calculated using experimental data of U and S via
the relation of A=U − TS and the d parameter could be obtained through
Eq. (18). If the EPP parameters of dense fluids are independent of density,
then, according to Eq. (24), we expect that the quantity on the left side of
this equation becomes linear versus I12/d6I6 for each isotherm. Moreover,
the slope and intercept of each isotherm give es6 and es12, respectively, at
that temperature. Figure 3 shows the results of such calculations for some
given isotherms of argon with densities greater than the Boyle density, rB

(its value for Ar is 24 mol · L−1). As shown in this figure, the parameters
are independent of density for such high densities. However, as shown in
Fig. 4, the parameters are significantly density dependent at low densities.
Also, if we calculate the EPP parameters by fitting the experimental data of
argon in Eq. (24) for a wide density range and then illustrate them against r,
such density dependences can be seen obviously. (See Figs. 5 and 6.)
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Fig. 3. Search for the density independencies
of the EPP parameters for: 100 K (N), 120 K
(I), and 140 K (J), isotherms of argon for
densities greater than the Boyle density.
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Fig. 4. Search for the density dependence of
the EPP parameters for Ar at T=200 K, and
the density range of 3.74 to 21.70 mol · L−1.
(Note the significant deviation of the curve
from linearity.)
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Fig. 5. Search for the density dependence of the
e/k parameters for Ar at T=100 K (N), T=
160 K (I), and T=220 K (J).
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Fig. 6. Search for the density dependences of
the s parameters for Ar at T=100 K (N),
T=160 K (I), and T=220 K (J).

If we denote the slope and intercept of a line with s and i, respectively,
for an isotherm of dense fluid, then the EPP parameters, e and s, can be
calculated from

e/k=i2/s (25)

and

s=(−s/i)1/6 (26)

for that isotherm. Once the EPP parameters are calculated, an iterative
procedure based on the condition of Eq. (13) should be applied to reach
the convergence for the obtained EPP parameters. The results of such cal-
culations are given in Table III for dense argon, along with those for CH 4

and C 2H 6.
In order to evaluate the calculated EPP parameters, they have been

used to calculate the internal energy, U, of some given fluids via the
following relation which can be derived from Eqs. (18) and (23) for the
entropy and Helmholtz free energy of the fluid. Using the thermodynamic
equation of U=A+TS one obtains,

U=U ig+48gNAe[I12(g)/C12 − I6(g)/C6] (27)
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Table III. EPP Parameters, e and s, for Ar, CH 4, and C 2H 6 at Given Temperatures
Calculated from Eqs. (25) and (26). ( The isolated pair potential parameters of Ar,

CH 4, and C 2H 6 are e/k=125 K, s=0.341 nm; e/k=159.7 K, s=0.3706 nm;
and e/k=227.9 K, and s=0.4407 nm, respectively [24].)

Ar CH 4 C 2H 6

T (K) e/k (K) s (nm) e/k (K) s (nm) e/k (K) s (nm)

100 365.01 0.440 – – – –
120 331.94 0.451 – – – –
140 291.86 0.469 – – – –
150 – – 351.56 0.474 – –
160 253.66 0.492 340.46 0.472 – –
170 – – 332.47 0.470 – –
180 236.21 0.497 330.75 0.465 – –
200 204.44 0.522 386.33 0.446 746.00 0.524
220 179.10 0.548 – – 691.76 0.525
240 – – – – 692.63 0.514
260 – – – – 848.60 0.483

where

In(g)= C
4

i=0
Cn ig

i (28)

The results of such calculations are given in Table IV. The agreement
between the calculated and reported values is satisfactory. The absolute
deviation is less than 1.5%.

Table IV. Comparison of the Calculated Internal Energy, Ucal, from Eq. (27) with the
Reported Values, Uexp, for Given Fluids along with the Absolute Percent Deviation

for Given Thermodynamic States

p Range T Range No. of AAD for internal
Fluid (MPa) (K) Data points energy ( %)

Ar 6–40 100–180 9 0.60
CH 4 5–25 150–170 9 0.24
C 2H 6 5–25 200–240 9 0.05
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4. COMPARISON OF THE AEPP PARAMETERS WITH THOSE OF
THE EPP

As mentioned before, differences between the interaction energy of a
pair in a dense fluid and that in vacuum can be attributed to the medium’s
effect on the molecular charge distribution and the long-range interactions
among molecules. Because the long-range interactions are included in the
AEPP but not in the EPP, comparison of these potentials can explore the
effects of the medium and long-range interactions on a given pair in dense
fluids, individually. For this reason, the temperature dependences of the
potential parameters of Ar are compared in Fig. 6. As shown in this figure,
the depth parameter of the AEPP is much larger than that of the EPP at
each temperature. Because the long-range interactions are mainly attrac-
tive, such a conclusion is reasonable. Since the e parameter decreases with
T in both cases, we may conclude that its temperature dependence is
mainly due to the medium effect. When temperature increases, molecules
behave more like hard spheres, then the medium effects on charge distri-
bution of each molecule become less important. The parameter s increases
with T for both cases. This parameter for the AEPP is larger than that for
the EPP at each temperature. Such a difference is reasonable due to the
long-range attractions of the AEPP. Also, we may conclude that the tem-
perature dependence of the parameter s of AEPP is mainly due to the
temperature dependence of the long-range interactions. This is because the
temperature dependence of this parameter for the EPP is insignificant (see
Fig. 7).

5. A CORRELATION FOR THE CUT-OFF PARAMETER IN TERMS
OF THE REDUCED DENSITY

In the Alem and Mansoori approach [16], the hard-sphere diameter d
was obtained as a function of density and temperature. By reducing the d
with s as C=d/s (which is called the cut-off parameter), they gave a
general expression in terms of the reduced temperature, T* (=kT/e), and
density, r* (=rs3) for C. Their reducing parameters are the pair potential
parameters. However, we have used the temperature-dependent EPP
parameters to reduce T, r, and d, for which the results are shown in Fig. 8
for different fluids. There are two important points shown in this figure:
first, when the EPP parameters are used to reduce the above mentioned
quantities, the cut-off parameter depends on r* only, and second, such a
parameter shows a strong principle of corresponding states. The points
shown in Fig. 8 are well fitted into the following cubic expression:

C=2.35140 − 1.57421rg+0.68806rg2 − 0.10976rg3 (29)
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Fig. 7. Comparison of the parameters of the
AEPP (– – –) and the EPP (- - -) for Ar at different
temperatures.

Having a general relation for the cut-off parameter, along with
Eqs. (18) and (23), the thermodynamic properties of a fluid can be cal-
culated, if we know its EPP parameters. Such a calculation has been carried
out for Ar, CH 4, and C 2H 6 at different thermodynamic states, and the
results are listed in Table V. As shown, the agreement between the cal-
culated and experimental internal energies is quite satisfactory.
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Fig. 8. Cut-off parameter in terms of r* for
Ar (N), CH 4 (I), and C 2H 6 (J) for differ-
ent reduced temperatures. The curve is plotted
based on Eq. (29).

6. DISCUSSION

In the variational theory (VT), the real system is compared with a
hard-sphere model, as the reference system, whose entropy is taken to be
exactly equal to that of the real system. In order to have such equality, an
appropriate state-dependent molecular diameter has to be attributed to the
spheres. Such a diameter may be considered as an ‘‘effective hard-sphere
diameter,’’ for the real system. In order to not restrict ourselves merely to
the non-additive three-body interactions (which is unreasonable for the
case of dense fluids) and to obtain the exact configurational energy, we
have introduced the concept of ‘‘effective pair potential,’’ in which the
medium effect is included. We have shown that the EPP parameters for
dense fluids are temperature dependent but independent of density.

Table V. Calculated Internal Energy, Ucal, via Eqs. (27)–(29), for Given Fluids
Compared to Experimental Data, Uexp, and the Absolute Percent Deviation,

at Given Thermodynamic States

p Range T Range No. of AAD for internal
Fluid (MPa) (K) Data points energy ( %)

Ar 6–40 100–180 9
CH 4 5–25 150–170 9 0.38
C 2H 6 5–25 200–240 9 0.10
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However, at low densities the parameters depend on density as well as
temperature. Since a part of the repulsive interaction of the real system is
excluded and is related to the hard-sphere model, it is expected that the
repulsive effect in the EPP becomes smaller than that of the isolated pair,
and hence two molecules can approach each other at a closer distance.
Also, the well depth of the EPP, e, is deeper than that of the isolated pair
and the intermolecular distance that corresponds to the zero potential, s, is
shorter than that of the isolated pair. These expectations are in accordance
with the calculated values of the EPP parameters given in Table III.

The remarkable point is that when the depth parameter of the AEPP
and the EPP are compared at a given temperature, as shown in Fig. 7, the
former has a much larger depth. Because the long-range interactions are
mainly attractive, such a behavior is reasonable. These effects are included
in the AEPP but not in the EPP. The other result is that the hard-sphere
diameter d decreases with increasing density for each isotherm (Fig. 1).
Such a result seems to be reasonable, because the hard spheres cannot
penetrate in each other, and the only way to hold more molecules in a
given volume is to reduce their diameters.

When the EPP parameters are used to reduce temperature and density,
the cut-off parameter, C, depends on r* only and such a parameter shows
a strong principle of corresponding states for different fluids at various
reduced temperatures. Using the general relation for the cut-off parameter
(of Eq. (29)) along with the EPP, the thermodynamic properties of any
fluid, such as internal energy, can be calculated, accurately.
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