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Deriving Analytical Expressions for the Ideal Curves
and Using the Curves to Obtain the Temperature
Dependence of Equation-of-State Parameters
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Different equations of state (EOSs) have been used to obtain analytical
expressions for the ideal curves, namely, the Joule–Thomson inversion curve
(JTIC), Boyle curve (BC), and Joule inversion curve (JIC). The selected EOSs
are the Redlich–Kwong (RK), Soave–Redlich–Kwong (SRK), Deiters, linear
isotherm regularity (LIR), modified LIR (MLIR), dense system equation of
state (DSEOS), and van der Waals (vdW). Analytical expressions have been
obtained for the JTIC and BC only by using the LIR, MLIR, and vdW
equations of state. The expression obtained using the LIR is the simplest.
The experimental data for the JTIC and the calculated points from the
empirical EOSs for the BC are well fitted into the derived expression from
the LIR, in such a way that the fitting on this expression is better than
those on the empirical expressions given by Gunn et al. and Miller. No exper-
imental data have been reported for the BC and JIC; therefore, the calcu-
lated curves from different EOSs have been compared with those calculated
from the empirical equations. On the basis of the JTIC, an approach is given
for obtaining the temperature dependence of an EOS parameter(s). Such an
approach has been used to determine the temperature dependences of A2 of
the LIR, a and b parameters of the vdW, and the cohesion function of the
RK. Such temperature dependences, obtained on the basis of the JTIC, have
been found to be appropriate for other ideal curves as well.
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1. INTRODUCTION

An ideal curve is a curve along which one property of a real fluid is the
same as that property for the hypothetical ideal gas at the same tempera-
ture (T ) and density (ρ). Based on this very general definition, ideal curves
can be defined for almost every property, but usually only for the unit
compressibility factor (Z) and zero value for its first derivatives [1]. Brown
[2] described the ideal curves and called them characteristic curves along
which certain thermodynamic properties of the fluid agree with those of
the perfect gas.

The ideal curves are useful as criteria for assessing the extrapolation
behavior of equations for simple substances, because they contain impor-
tant information on the behavior in the high-temperature, high-pressure
region. Furthermore, these curves establish limiting conditions, which may
be useful for extrapolations. De Reuck [3] discussed the usefulness of these
characteristic (ideal) curves for extrapolating an equation of state (EOS).

The oldest empirically known ideal curve is the Zeno line or the Z=1
contour. The density of many fluids along the Zeno line has been found
to be nearly a linear function of temperature. The Z =1 contour was first
discovered by Batchinski [4] in 1906. Among the diverse names used are
the orthometric condition, ideal-gas curve, and finally the term Zeno line
was adopted by Xu and Herschbach [5]. During the late 1960s, Holleran
[6–9] proposed several useful applications for the Z =1 contour. In recent
years, from molecular-dynamics simulations, Herschbach [5] obtained a
Zeno line close to experimentally measured values over a wide range of
densities by using the Lennard–Jones potential, simple point charge (SPC),
and extended SPC (SPC/E) models for pure water.

The behavior of ideal curves may be considered as a rigorous crite-
rion for the accuracy of an EOS [1]. Parsafar and Saydi [10] made such a
study of the Zeno line. They showed that only the van der Waals (vdW)
EOS is able to predict a linear relation between the density and temper-
ature on the Z = 1 contour. However, the resulting line is quite different
from that of experiment. They obtained the temperature dependences of
the a and b parameters in such a way that experimental pvT data fitted
well onto the EOS. Considering such temperature dependences for the a

and b parameters leads to a line closer to the experimental Z =1 contour.
However, the resulting curve is not quite linear anymore.

Polishuk and Vera [11] discussed that it is not an easy task to develop
a van der Waals-like EOS with a theoretically correct hard-sphere or hard-
body repulsive term that could simultaneously give an accurate represen-
tation of vapor pressures and densities of real fluids, without making its
parameters strongly temperature dependent.
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The Joule–Thomson inversion curve (JTIC) is the locus of thermody-
namic states in which the temperature of a fluid does not change upon
isenthalpic expansion or the locus of points at which the Joule–Thomson
coefficient (µJT) is zero:

µJT ≡
(

∂T

∂p

)
h

=0. (1)

The inversion criterion, Eq. (1), may be written in several alternative
forms. For pressure we may use

T

(
∂p

∂T

)
ρ

−ρ

(
∂p

∂ρ

)
T

=0 (2)

and for the compressibility factor, one may use
(

∂z

∂T

)
p

=0. (3)

The JTIC was also called the Charles curve by Brown. The JTIC is the
best criterion for evaluating an EOS over a wide range of temperature
and pressure [12–14]. Dilay and Heidemann [12] studied the JTIC using
the Soave–Redlich–Kwong (SRK), Peng-Robinson, perturbed hard-chain,
and Lee-Kesler EOSs. Juris and Wenzel [15] compared the experimental
JTIC with those calculated from the vdW, Deiters, Berthelot, Redlich–
Kwong (RK), truncated virial (with the second and third virial coeffi-
cients taken from the Pitzer and Chueh–Prausnitz correlations), Su–Beattie
–Bridgeman, several reduced forms of Benedict–Webb–Rubin, and Martin
–Hou EOSs. Darwish and Al-Muhtaseb [16] calculated the JTIC using
the modified PR by Melhem et al., Trebble-Bishno, and Jan-Tsai EOSs.
Maghari and Seyed Matin [17] calculated the JTIC by using Adachi–Lu–
Sugie, Kubic–Martin, Yu–Lu, and Twu–Coon–Cunningham EOSs. The
LIR was used to investigate the JTIC [18]. Heyes and Liaguno [19] applied
molecular simulation for determining the JTIC for the Lennard–Jones
fluid. Colina et al. [20] simulated the JTIC for CO2 using two different
approaches based on Monte Carlo simulation for the isothermal–isobaric
ensemble.

Much effort has been made to obtain a universal expression for the
JTIC from the available experimental data of light fluids. Gunn et al. [21]
calculated inversion points from volumetric data of Ar, CO, CH4, C2H6,
N2, and Xe with the second and third virial coefficients based on the
Kihara intermolecular potential. Gunn et al. [21] calculated some addi-
tional theoretical points for Ar using a truncated virial EOS. All of
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the available inversion points, including the calculated and experimental
points, were fitted with the following empirical equation:

pr =
5∑

i=0

aiT
i
r , (4)

where pr =p/pc and Tr =T/Tc are the reduced pressure and temperature
and ai are constant coefficients independent of the molecular identity. It
was also found that Eq. (4) is appropriate only for simple and spherical
molecules. It was also found that the coefficients in Eq. (4) could be gen-
eralized for hydrocarbon and non-hydrocarbon materials (excluding alco-
hols), in the reduced form [22],

ai =a
(0)
i +a

(1)
i ωn 0.85�Tr �4.5, (5)

where ω is the acentric factor and values of n and ai depend on the molec-
ular identity.

A relatively simpler equation based on the available Joule–Thomson
inversion data of Ar, NH3, CO2, CO, CH4, C2H6, N2, and C3H8 was pro-
posed by Miller [13] as

pr =a + b

Tr
+ cT 2

r . (6)

In spite of available empirical Eqs. (4–6), an analytical expression for the
JTIC has not been presented based on any EOS. One purpose of this work
is to obtain an analytical equation for the JTIC, using different EOSs.

The Boyle curve (BC) is a curve on which the fluid obeys Boyle’s law.
This curve is characterized by the following equation:(

∂z

∂V

)
T

=0 (7)

or equivalently, (
∂p

∂v

)
T

=−p

v
. (8)

This curves lies completely inside the JTIC.
The Joule inversion curve (JIC) was also called the Amagat curve by

Brown [2]. It is characterized by the following expression:(
∂z

∂T

)
v

=0 (9)

or equivalently,
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(
∂p

∂T

)
v

= p

T
. (10)

The temperature and pressure range of this curve is so vast that it encloses
both the JTIC and BC. On this curve, the Joule coefficient, µJ = (

∂T
∂v

)
E

,
is equal to zero, where E is the internal energy. Since experimental data
have not been reported for the JIC and BC, we shall use different EOSs
to calculate such curves and compare the results with those obtained from
empirical equations [23–26].

The other purposes of this work are to use different EOSs to (1)
obtain analytical expressions for both the Boyle and Joule ideal curves,
(2) search for the ability of different EOSs to predict the ideal curves, and
finally (3) to present an approach for which the parameters of an EOS are
obtained in such a way that it gives better predictions for the ideal curves
than its original form.

2. DERIVING AN ANALYTICAL EXPRESSION FOR THE JTIC VIA
DIFFERENT EOSs

We have selected seven EOSs to calculate the JTIC. These EOSs are
the RK, SRK, Deiters, LIR, modified LIR (MLIR) by Parsafar and Say-
di [10], dense system equation of state (DSEOS), and vdW EOS that are
given in the Appendix.

In the LIR, the A and B parameters are temperature dependent as

A = A2 − A1

RT
, (11)

B = B1

RT
,

where A1 and B1 are constants which depend on the attractive and repul-
sive terms of the average effective pair potential [27, 28], respectively, A2
is related to the non-ideal thermal pressure, and R is the gas constant.
The combination of the LIR with Z =1 does not lead to a linear relation
between ρ and T . Therefore, the LIR in its original formulation does not
predict the Z = 1 contour if A2 is considered to be a constant. However,
it was shown that if A2 is temperature dependent as

A2 =a +bTr + c/Tr, (12)

where a =−2αβB ′/R, b=−β2B ′/R, and c=A′/R −α2B ′/R, and α,β,B ′,
and A′ are constant parameters that depend on the selected fluid, then the
LIR can predict the Zeno line [10]. We shall refer to the LIR with the
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temperature dependence of A2 given in Eq. (12) as the MLIR from now
on.

The simultaneous solution of Eq. (2) with any EOS will provide us
the locus of points for which µJT is zero. The calculated JTIC for Ar,
N2, and CO2 are shown in Fig. 1 by using different EOSs. As shown in
Fig. 1, the calculated points given by the Deiters EOS are well-matched
with experimental points at low temperatures and at the top of the curve.
Actually all the EOSs give good predictions for the JTIC at low tempera-
tures, except for the vdW. However, the differences among the predictions
of different EOSs with experimental values are significant around the max-
imum and also at high temperatures. As one may expect, the LIR and
DSOES give satisfactory results only at high densities for which they are
valid (ρ >ρB, where ρB is the Boyle density).

The JTIC predicted by complex multi-parameter EOSs, namely, those
of Pitzer and Span–Wagner, are also given in Fig. 1a. The prediction of
the Span–Wagner EOS is excellent for the entire temperature range. How-
ever, the Pitzer EOS prediction is poor at high temperatures, which is due
to the physically erroneous prediction of the third virial coefficient [29]. At
low but finite densities, the JTIC is governed by a combined function of
the second and third virial coefficients [29]. It follows that any EOS that
fails to predict the third virial coefficient accurately will yield an inaccurate
JTIC, at least, at very high temperatures. Even if the second virial coeffi-
cient is well represented and the predicted curve terminates at the correct
endpoint, it will approach this point from an incorrect direction, i.e., with
the wrong slope, and possibly, curvature, due to the inaccurate third virial
coefficients [29].

The maximum along the JTIC and its corresponding temperature,
along with the maximum of the inversion temperature (when p → 0) for
CO2 are given in Table I, using different EOSs. We have been able to
obtain analytical expressions for the JTIC by using the LIR, MLIR, and
vdW EOSs, which are given in Table II. The expression for the LIR may
be simply written as

p = (aT 3 +bT 2 + cT +d)

(eT +f )1/2
. (13)

The JTIC experimental data for CO2 [30] were fitted with Eq. (13) and
also with the empirical Eqs. (4) and (6). The results are shown in Fig. 2;
the correlation coefficients for Eqs. (13), Miller, and Gunn et al. are equal
to 0.999, 0.993, and 0.998, respectively.

Most of the EOSs considered in this work are not able to predict well
the upper temperature branch of the JTIC (see Fig. 1). We suspect that
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Fig. 1. Predicted JTIC by different EOSs compared with experimental data for (a) CO2

[30], (b) Ar [12], and (c) N2 [30]. For the LIR, the dotted curve has a density less than
the Boyle density for which the equation is not valid.

this problem is due to the inaccuracy of the EOSs at high temperatures.
To investigate such inaccuracy, we have calculated the pressure using the
RK EOS for CO2 as an example, and compared the results with experi-
mental values [30]. The comparison is shown in Fig. 3 for CO2. It is evi-
dent from Fig. 3 that the RK EOS predicts the upper temperature branch
even more accurately than the lower one, so our suspicion is not reason-
able. Therefore, we should search for another reason.
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Table I. Temperature and Pressure at the Maximum of the JTIC and its Maximum Inversion
Temperature for CO2, Predicted from Different EOSs

Coordinates of Maximum

Maximum Inversion
EOS Pressure (bar) Temperature (K) Temperature (K)

RK 793.96 669.67 1577.53
SRK 912.10 547.30 1003.69
Deiters 887.59 621.71 1499.18
LIR 984.91 545.22 817.82
MLIR 665.22 366.47 621.20
vdW 665.10 912.63 2053.42
DSEOS 640.11 390.08 475.36
Pitzer 1105.86 607.64 1304.67
Span–Wagner 905.30 585.26 1353.33
Miller equation 870.06 681.17 1515.60
Experimental values 895.15 603.88 1378.70

Table II. Analytical Expressions for the JTIC by using the LIR, MLIR, and vdW EOSs

EOS Expressions for the JTIC

LIR p = (−25B1RT +6A2
2R

2T 2 −13A2RT A1 +6A2
1)(2A2RT −3A1)

√
5

125B1
√−(2A2RT −3A1)B1

MLIR
p = (4b2R2T 4 +11bR2aT 3 + (6a2R2 −14bRA1 +14bR2c)T 2 + (13aR2c

−25RB1 −13aRA1)T +6c2R2 −12cRA1 +6A2
1)(bRT 2 +2aRT +3cR

−3A1)
√

5/(125B1

√
−(bRT 2 +2RaT +3cR −3A1)B1vc)

vdW p =− (RT b−2a)a(2aRT b+5RT b
√

2
√

aRT b+3R2T 2b2 −2a
√

2
√

aRT b)

b2(
√

2
√

aRT b+RT b)(2a +√
2
√

aRT b)2

There are not many data for the JTIC. Some reported values of µJT
have been obtained by appropriately differentiating pvT data [13]. Nain
and Aziz [31] predicted the µJT for the noble gases at zero pressure on the
basis of numerous intermolecular potentials. The JTIC can be obtained by
plotting Z against T for isobars to obtain their extrema [32]. These min-
imum and maximum points are the inversion points that belong to the
lower and upper branches of the JTIC, respectively. We have plotted such
a curve for the 550 bar isobar of CO2 in Fig. 4a, b.

In principle, we may use a similar approach to plot other ideal curves
using pvT data. For instance, if we plot Z versus T for an isochore, we
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Fig. 2. Experimental data of the JTIC for CO2 are fitted with
Eqs. (4), (6), and (13).

Fig. 3. Calculated pressure given by the RK EOS is compared
with experimental values of JTIC for CO2 [30].

may obtain two points of the BC from its extrema. Such a task was done
for the 15 mol·L−1 isochore of CO2 in Fig. 4c. As shown in this figure, the
minimum in this curve is obvious, but the maximum is beyond the avail-
able experimental data. For the JIC, we may plot Z versus p for an iso-
therm (see Eq. (9)) from which two points of the curve may be obtained.
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Fig. 4. An isobar (550 bar) for CO2 using experimental pvT data [35] to obtain (a) the
minimum and (b) the maximum, which are two points of the JTIC; (c) a similar plot for
the 15.0 mol ·L−1 isochore of CO2.

However, the temperature and pressure ranges of the curve are so vast
that no experimental data are available to obtain such points. Therefore,
the available experimental pvT data are only appropriate to obtain the
JTIC. As shown in Fig. 4a, b, the minimum point of the RK EOS is rea-
sonable, compared to that of experiment. However, its maximum point is
far beyond the experimental value. Therefore, we may expect that the RK
EOS is more accurate for prediction of the lower temperature branch than
the upper one of the JTIC.

3. DERIVING AN ANALYTICAL EXPRESSION FOR THE BC VIA
DIFFERENT EOSs

Equation (8) gives the condition for the BC. This curve is also the
curve on which the fluid obeys Boyle’s law or, in other words, the pressure
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Table III. Analytical Expressions for the BC by using the LIR, MLIR, and vdW EOSs

EOS Expressions for the BC

LIR p = (−4B1RT +A2
2R

2T 2 −2A2T RA1 +A2
1)(A2RT −A1)

√
2

8B1
√−(A2RT −A1)B1

MLIR
p = (b2R2T 4 +2aR2bT 3 + (a2R2 +2bR2c−2bRA1)T

2 + (2aR2c−4B1R −2aRA1)T

+c2R2 −2cRA1 +A2
1)(aRT +bT 2R + cR −A1)

√
2)

/(8B1

√
−(aRT +bRT 2 + cR −A1)B1vc)

vdW p =− (−a +RT b)a(3RT b
√

aRT b+2R2T 2B2 −a
√

aRT b)

b2(
√

aRT b+RT b)(a +√
aRT b)2

is proportional to density for any isotherm. The simultaneous solution of
Eq. (8) with any EOS will provide the locus of points for which the fluid
obeys Boyle’s law.

For the BC, no experimental data are reported, so we may use an
empirical EOS, which is typically designed for vast ranges of temperature
and pressure for a fluid, to obtain the curve. The results of such calcula-
tions are given in Fig. 5 for Ar, N2, and CO2 by using different EOSs. We
have been able to obtain analytical expressions for the BC by using the
LIR, MLIR, and vdW EOSs, which are given in Table III. Among such
expressions, the simplest one is that obtained from the LIR, which may be
simply presented by Eq. (13). As shown in Fig. 6, the calculated points of
the BC from the empirical EOS are well fitted with Eq. (13) for Ar and
N2.

4. DERIVING AN ANALYTICAL EXPRESSION FOR THE JIC VIA
DIFFERENT EOSs

For the JIC, no experimental data are reported, so we may use an
empirical EOS to obtain this curve. The results of such calculations show
that most of the EOSs considered in this work do not give appropriate
expressions for the JIC; see Table IV. However, some of these, including
Deiters and the DSEOS, numerically predict this curve that is shown in
Fig. 7 and the MLIR gives an analytical expression. As shown in this fig-
ure, the deviations from the curves calculated from the empirical equa-
tions are significant. (Note that the density range, in which the DSEOS
and MLIR are valid, is very limited in comparison with the temperature
range shown in Fig. 7.)
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Fig. 5. Predicted BC by using different EOSs compared with calculations using the
empirical equation for (a) CO2 (Pitzer [24] and Span–Wagner [23]), (b) Ar (Tegeler et al.
[26]), and (c) N2 (Span et al. [25]).

5. TEMPERATURE DEPENDENCE OF THE PARAMETERS
OF AN EOS

The most common cubic EOS of engineering interest can be writ-
ten in a generalized form [22], in terms of reduced variables Tr = T/Tc,
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Fig. 6. Calculated points for the BC (•) obtained from empirical
equation of (a) Tegeler et al. for Ar [26] and (b) Span et al. [25]
for N2 were fitted into Eq. (13).

pr =p/pc, and νR =pcν/(RTc), as

pr = RTr

vR −b
− acα(Tr)

v2
R +k1bvR +k2b

2
, (14)

where k1, k2, the critical cohesion parameter ac, and the covolume b are
characteristic constants of the EOS; e.g., k1 = 1, k2 = 0, ac = 0.42, and
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Table IV. Analytical Expressions for the JIC by using given EOSs

EOS Expressions for the JIC

RK a =0

SRK
(m+m2 +m2(T /Tc)

1/2)T −2Tcm(T/Tc)
1/2 −Tcm

2(T /Tc)
1/2 −Tcm

2(T /Tc)
3/2

−(T /Tc)
1/2Tc =0

LIR A1v
2 −B1 =0

vdW a =0

MLIR p = (2b2RT 3 +aRbT 2 + (−2bRc+2bA1)T +B1 −aRc+aA1)RT (bRT 2 − cR +A1)

B1

√
(bRT 2 − cR +A1)B1vc

Fig. 7. Predicted JIC given by different EOSs comparing calculations using the empiri-
cal EOSs of (a) CO2 (Pitzer [24] and Span–Wagner [23]), (b) Ar (Tegeler et al. [26]), and
(c) N2 (Span et al. [25]).
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b=0.086 for the RK EOS; k1 =0, k2 =0, ac =27/64, and b=1/8 for vdW
EOS [22]. The cohesion function α(Tr) expresses the temperature depen-
dence of the attraction term. Cubic EOSs are strongly oriented toward
vapor–liquid equilibrium applications, e.g., the widely used cohesion func-
tion,

α =
[
1+m(1−T

1/2
r )

]2
(15)

had its origins in the fitting of saturation pressures of pure fluids [33].
Other properties are less well represented in practice. Colina et al. [34] have
shown that the extrapolation of an EOS to supercritical temperatures can
result in significant errors when computing densities on the critical isocho-
re, the second virial coefficients, and the JTIC.

We developed new cohesion functions for the RK and vdW EOSs and
the parameter A2 in the LIR using a procedure based on the JTIC. For
the cubic EOS of Eq. (14), the inversion criterion of Eq. (2) gives a first-
order ordinary differential equation for α(Tr) as

Trac

(ν2
R +k1bνR +k2b

2)

dα(Tr)

dTr
− acνr(2νr +k1b)

(ν2
R +k1bνR +k2b

2)2
α(Tr)+ bTr

(νR −b)2
=0.

(16)

By having the JTIC as a p(T ) function, the differential-algebra set of Eqs.
(14) and (16) can be solved for Tr and α(Tr), subject to the boundary
condition α(Tr)=1 for critical-point stability. Since the numerical integra-
tion procedure required a continuous representation of the entire JTIC,
the data must be fitted with an equation. Among the general empirical
equations that have been presented for the JTIC, we selected the Miller
equation [Eq. (6)] because it uses a simple form and gives at least good
agreement with experimental inversion data of CO2; see Fig. 2.

The first-order ordinary differential Eq. (16) may be solved by using
a seventh/eighth-order continuous Runge–Kutta method. We run the pro-
cedure ‘dverk78’ using Maple. The step size was set to zero. Using this
method, we have obtained a new supercritical cohesion function based on
CO2 for the vdW and RK EOSs. The calculated cohesion parameters for
the two cubic EOSs are shown in Fig. 8. For Tr >2.1, the values of α(Tr)

given by the vdW become imaginary, for which its real part is negative,
and is not shown in Fig. 8a. According to the vdW EOS, up to Tr = 2.1,
the intermolecular attractions are meaningful. At high temperatures, mol-
ecules behave like hard spheres. In other words, only the intermolecular
repulsions are important when Tr >2.1. The value of Tr =2.1 may be com-
pared with the reduced Boyle temperature of CO2, 2.34 [5]. So the value
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Fig. 8. Cohesion function computed from the Joule–Thomson
inversion data for the (a) vdW and (b) RK that were fitted with
Eq. (15).

of α(Tr) is reasonable for Tr > 2.1. The α(Tr) function, which is positive,
is a criterion for the intermolecular attractions and continuously decreases
with temperature. Regarding the RK EOS, for the reduced temperature
Tr > 3.3, the α(Tr) becomes imaginary. Based on this EOS, the calculated
Boyle temperature for CO2 is equal to 2.9 [14], which is comparable to
Tr =3.3.
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Table V. Values of the Coefficients of the New Cohesion Function of Eq. (17), along
with the Correlation Coefficient, R2

Coefficients of the Cohesion Function (Eq. (17))

EOS m1 m2 m3 m4 R2

RK −7.858 5.846 −2.169 0.2983 1
vdW −55.04 59.3 −29.02 5.223 1

We have fitted the calculated values of α(Tr), obtained from both
vdW and RK EOSs, into the following expression reported by Colina and
Olivera-Fuentes [29]:

α =1+m1

(
T

1/2
r −1

)
+m2(Tr −1)+m3

(
T

3/2
r −1

)
+m4

(
T 2

r −1
)

. (17)

The coefficients of Eq. (17) are given in Table V. As shown in Fig. 8, the
calculated value of α(Tr) obtained from the vdW and RK EOSs are poorly
fitted with the Soave formula, Eq. (15). However, as shown in Table V, the
values of α(Tr) are well fitted with Eq. (17) for both EOSs, with a corre-
lation coefficient R2 =1.

We may now use the new cohesion function to calculate the JTIC,
using the vdW and RK EOSs. The results of such calculations for CO2 are
shown in Fig. 9, compared to the results obtained from the original EOSs.
So we may conclude that the EOSs with the new cohesion functions give
better predictions for the JTIC than the original equations, as long as the
temperature is such that the attraction is dominant, i.e., α(Tr) has a real
value.

It is interesting to see whether such a modification gives a better pre-
diction for the other ideal curves, as well. To find an answer, we used the
RK and MRK to predict the Zeno line, BC, and JIC. On the basis of the
MRK, we found the following expression for the Zeno line:

[Trb−acα(Tr)]vr +acα(Tr)b+Trb
2 =0. (18)

The experimental Zeno line for CO2 is shown in Fig. 10, along with those
predicted by the RK and MRK. As shown in this figure, the predicted line
given by the MRK is significantly better than that of the RK.

Figure 11 shows the BC given by the MRK and RK in comparison
with those obtained from the empirical equations (Span–Wagner and Pit-
zer) for CO2. As shown in this figure, the predicted curve given by the
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Fig. 9. JTIC for CO2 computed from (a) RK and (b) vdW
EOSs with the new cohesion function of Eq. (17). Calculated
results obtained from the original EOSs are also shown for
comparison.

MRK is better than that of the RK. Both the MRK and RK give no
meaningful curve for the JIC.

Unlike the previous case, we may now consider the repulsion term of
the vdW to be temperature dependent, but the attraction term independent
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Fig. 10. Predicted T versus ρ given by the RK and MRK EOSs
for the Z = 1 contour, compared with the experimental Zeno line
for CO2.

Fig. 11. Predicted BC given by the RK and MRK EOSs for
CO2 compared with those obtained from the empirical equations
of Pitzer [24] and Span–Wagner [23].

of temperature. Then Eq. (14) becomes

pr = RTr

νR −bβ(Tr)
− ac

ν2
R +k1bνR +k2b

2
. (19)
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By applying the JTIC condition on Eq. (19), the following differential
equation will be obtained:

νRac(2νR +k1b)

(ν2
R +k1bνR +k2b

2)
− Tr[Trb(dβ(Tr)/dTr)−νR]

(νR −bβ(Tr))2
+ Tr

(νR −bβ(Tr))
=0. (20)

Numerical solution of Eq. (20) would give β(Tr), which is shown in
Fig. 12a.

Fig. 12. Calculated values of (a) β(Tr) and (b) α(Tr ) of the vdW
obtained from the JTIC for CO2 which are well fitted with Eqs.
(21) and (22), respectively.
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Parsafar and Saydi [10] have recently shown that the deviation given
by the vdW EOS for the experimental Zeno line may be due to tempera-
ture dependences of the a and b parameters of this EOS. They have found
temperature dependences of the a and b parameters in such a way that the
EOS gives a more accurate prediction for the Zeno line. They found that

α(Tr) = a0 +a1Tr +a2T
2

r , (21)

1/β(Tr) = 1/b0 +b1Tr + b−1

Tr
. (22)

The calculated results for α(Tr) and β(Tr) are plotted in Fig. 12 for CO2,
which are well fitted with Eqs. (21) and (22), respectively.

They also have found the temperature dependence of the A2 parame-
ter in such a way that the LIR can give a linear relation between ρ and T

on the Z=1 contour as given in Eq. (12). We may use the same approach
for the RK and vdW EOSs to find the temperature dependence of A2 for
the LIR. The approach leads to the following differential equation:

dA2(T )

dT
= 2A2(T )

T
− 3A1

RT 2
+ 5B1ρ

2

RT 2
. (23)

We have used the JTIC experimental data of argon to calculate A2 from
Eq. (23). To solve Eq. (23), ρ should be substituted in terms of T . The
experimental density of the JTIC had been first fitted with a polynomial
function in terms of temperature (with R2 =1) as,

ρ =a +bTr + cT 2
r +dT 3

r + eT 4
r +f T 5

r . (24)

The function ρ given in Eq. (24) was then substituted into Eq. (23). The
numerical solution of the final equation gives A2(T ), which is shown in
Fig. 13. As shown in this figure, the calculated values of A2 are well fit-
ted with Eq. (12), which was obtained on the basis of the Z = 1 contour
[10].

6. DISCUSSION

The accuracies of seven different EOSs have been evaluated numeri-
cally in predicting the ideal curves (JTIC, JIC, and BC) in this work. The
predictions for the JTIC were compared to experimental data (see Fig. 1).

No experimental data have been reported for the BC and JIC; there-
fore, the calculated curves from different EOSs have been compared with
those calculated from the empirical equations (see Figs. 5 and 7). Among
these EOSs, the Deiters EOS shows the best agreement overall. However,
none of them can predict the upper temperature branch with a reasonable
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Fig. 13. Temperature dependence of the A2 parameter of the
LIR calculated on the basis of the JTIC for argon, which is well
fitted with Eq. (12).

accuracy. As explained in the text, the reason is that an EOS (like RK)
gives the minimum of the Z versus T for an isobar more accurately than
the maximum (see Fig. 4a, b).

We have been able to obtain analytical expressions for the JTIC and
BC only by using the LIR, MLIR, and vdW EOSs. The expression from
the LIR is the simplest (see Figs. 2 and 6). The experimental data for
the JTIC are well fitted with the derived expression given by the LIR in
such a way that the fitting is better than those of the empirical expressions
given by Gunn et al. [21] and Miller [13]. Also, a similar expression for the
BC was obtained from the LIR for which the calculated points from the
empirical EOSs of Tegeler et al. [26] for Ar and of Span et al. [25] for N2
are well fitted.

The calculated JIC from different EOSs show that none of them give
a reasonable prediction; only the MLIR, Deiters, and DSEOS equations
give non-trivial expressions for the curve. The MLIR gives the best pre-
diction (see Fig. 7).

On the basis of the JTIC, an approach is given for obtaining the tem-
perature dependence of EOS parameters. Such an approach has been used
to determine the temperature dependences of A2 of the LIR (see Fig. 13),
a and b parameters of the vdW (see Figs. 8a and 12), and the cohesion
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function of the RK (see Fig. 8b). We have found that such temperature
dependences obtained on the basis of the JTIC are appropriate for the
other ideal curves as well (see Figs. 10 and 11).

We may also investigate the impact of the temperature dependence
of A2 on other regularities. If A2 is assumed to be independent of tem-
perature, then two common intersection points (namely, the common bulk
modulus and common compression point) were found to be independent
of temperature [36]. However, if A2 depends on temperature as given by
Eq. (12), the intersection points would be temperature dependent. For
instance, the density of the common compression point, ρoz, may be
obtained as

ρ2
oz = A1

B1
+ bRT 2 − cR

B1

for which the second term makes ρoz to be weakly temperature dependent,
which is in accordance with experiment [37].
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APPENDIX: DETAILS OF EOSs

1. Redlich–Kwong (RK)

p = RT

v −b
− a

T 1/2v(v +b)

a =�a
R2T 2.5

c

pc
�a =0.42747

b=�b
RTc

pc
�b =0.08670
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2. Soave–Redlich–Kwong (SRK)

p = RT

v −b
− a

v(v +b)

b=0.08664
RTc

pc
a =βα(T )

α(T )=
[
1+m

(
1−

√
Tr

)]2

β =ac
R2T 2

c

pc
ac =0.4274

m=0.480+1.574ω−0.176ω2

3. Deiters EOS

p = RT

v

[
1+CC0

4η−2η2

(1+η)3

]
− abRT̃eff

v2

[
exp

(
1

T̃eff

)
−1

]
I1 (p̃)

η= (π/6)σ 3NA/v

p̃ =b/v

T̃ =CT/a

T̃eff = (T̃ −0.06911Cp̃)/y

I1(p)= (γ /C)2
∑
k=0

(k +1)hkγ
kpk

γ =1+0.697816(C −1)2

h0 =7.0794046, h1 =12.08351455, h2 =−53.6059
h3 =143.6681, h4 =−181.1554682, h5 =78.5739255

y(p̃)=f 2 −C−5.5f (1−f )+ (1−0.65/c)(1−f )2

f = exp
[
CC0(3η2 −4η)/(1−η)2

]
C0 =0.6887

γ =0.06911C

a = ε/kB

b=NAσ 3/21/2
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4. Linear isotherm regularity (LIR)

(Z −1)

(
v

vc

)2

=A+B

(
ρ

ρc

)2

A=A2 − A1

RT

B = B1

RT

5. Modified linear isotherm regularity (MLIR)

A2 =a +bT + c/T

6. Dense system equation of state (DSEOS)

prv
2
r =A0 +A1ρr +A2ρ

2
r

Ai =ai +biT + ciT ln(T )

7. van der Waals (vdW)
(
p + a

v2

)
(v −b)=RT
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