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Abstract A general regularity was found based on an effective pair potential of Lennard-Jones LJ (12, 6),
for both dense, nonmetallic and nonionic fluids and solids according towhich (Z−1)v2 linearly varieswith
respect to ρ2 for each isotherm, and this equation of state (EoS I) is known as LIR. However, despite the
fact that Ne is a simple spherical species, unexpectedly, its solid and liquid phases both show a significant
deviation from EoS I. In this work, we have investigated the accuracy of the EoS I for other systems,
including quantum light molecules, such as D2, H2 and He, in both fluid and solid states at different
temperatures. Like Ne, we have noticed that these systems do not well obey the EoS I. Then, using a
simple van der Waals equation, it is shown that significant deviations in dense systems of light molecules
are because of the unbalance between repulsive and attractive interactions, due to the importance of the
quantum effect. Also, we notice that at higher temperatures and for heavier species, LIR is valid due to a
decrease in the quantum effect. We have shown that the hard-sphere fluid remarkably deviates from LIR.
Two other EoSs have also been examined.

© 2012 Sharif University of Technology. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Linear Isotherm Regularity (LIR) was reported based on the
effective pair potential of Lennard-Jones LJ (12, 6), for a variety
of pure dense fluids and fluid mixtures [1–6], for densities
greater than Boyle density and temperatures lower than twice
that of the Boyle temperature; the temperature at which the
second virial coefficient is zero. Also, the LIR Equation of
State (EoS) holds for solids including nonmetallic and nonionic
compounds [7]. The regularity states that isotherms of (Z−1)v2

are linear with ρ2 where Z = ρ/pRT is the compressibility
factor and ρ = 1/v is the molar density.

Although this EoS gives a good description for a wide range
of fluids and solids, it has recently been found that isotherms of
(Z − 1)v2, with respect to ρ2, show significant deviations from
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linearity for some types of compound. Because of the fact that
the LJ (12, 6) is suitable for spherical molecules, nonspherical
molecules, such as long-chain organic compounds, show a
deviation from the linear behavior of the LIR, in such a way
that the deviation becomes more significant when the chain
becomes longer. For this reason, a new method, called the
group contribution, via theModified Linear IsothermRegularity
(MLIR), was introduced to predict the volumetric properties
of long-range compounds [8,9]. Another type is liquid metals,
for which a remarkable deviation has been observed when
the metal–nonmetal transition takes place [3,10]. Ghatee and
Bahadori [10] especially showed deviation from LIR for liquid
Cs. They derived another EoS, on the basis of an effective pair
potential of LJ (6, 3), according to which the isotherm (Z − 1)v2

is linear in terms of 1/ρ. Then, Shokouhi et al. indicated that this
EoS gives an excellent fit to experimental pvT data of metallic
and ionic solids, while LIR is not appropriate for this class of
solids [7]. Also, Alavi reported that experimental pvT data of
water show a systematic deviation from the linear prediction
of LIR [11]. Even though Ne is a simple spherical molecule that
belongs to normal compounds, unexpectedly, solid and liquid
Ne indicates a significant deviation from LIR [12]. Recently,
however, a general EoS based on an effective near-neighbor
pair interaction of the extended LJ (12, 6, 3) type, has been
introduced for a wide variety of fluids and solids with different
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properties, ranging from Ne to long-chain hydrocarbons and to
ionic and metallic solids.

The purpose of this research is to give answers to the
following questions:
1. Why does the fluid and solid Ne show noticeable deviations

from LIR?
2. Do other quantum light species, like D2, H2 and He, show

large deviations from this regularity?
3. How is the magnitude of deviation from the LIR related to

molecular weight and temperature?
4. Does hard sphere fluid deviate from the mentioned linear-

ity?
5. Which of the mentioned equations of state has the

best agreement with experimental data of quantum light
molecules?

2. Linear isotherm regularity equation of state (LIR EoS)

The LIR EoS was derived on the basis of the assumption that
the Average Effective Pair Potential (AEPP) is a Lennard-Jones
(12, 6) function. Using such AEPP, the configuration potential
energy may be given as:

U =
N
2
z

C12

r̄12
−

C6

r̄6


, (1)

whereN is the number ofmolecules, z is themean coordination
number, r̄ is the average distance between the nearest
neighbors, and C6 and C12 are constants, depending on the
molecular identity. For dense systems that are complicated
at the molecular level, due to the significance of many-body
interactions, such apotential function (AEPP) is considered to be
the interaction of the nearest neighboring molecules, to which
all long range interactions and also the influence of themedium
on the charge distributions of two neighboring molecules are
added [2]. The Lennard-Jones (12, 6) potential function applies
to fluids with short range interactions, undergoing dispersive
interactions as a dominating contribution. The interest in the
Lennard-Jones (12, 6) function is due to its simple form that
facilitates its integration and differentiation for derivation of
an analytical form for thermodynamic functions. With this
assumption and on the basis of an exact thermodynamic
expression, known as the exact thermodynamic equation of
state, the LIR EoS was obtained as [1]:

(Z − 1) v2
= A + Bρ2. (2)

We will refer to it as EoS I, hereafter, where A and B are the LIR
parameters, which depend on temperature as:

A = A2 +
A1

T
, (3)

B =
B1

T
, (4)

whereA1 andB1 are related to the attractive and repulsive terms
of the average effective pair potential and A2 is related to the
nonideal thermal pressure.

The LIR is able to explain many experimentally known
regularities for a variety of dense fluids; both compressed
liquids (T < TC ) and dense supercritical fluids. The temperature
range at which the linear relation holds is T < 2TB, where TB
is the Boyle temperature; the temperature at which the second
virial coefficient is zero. Also, it has been found that the linearity
holds when ρ > ρB ≈ 1.8ρC , where ρC is the critical density.
The upper density limit for linearity in the liquid region is the
freezing line, and is at least almost twice the Boyle density for
supercritical fluids. It was recently shown that EoS I is valid for
nonmetallic and nonionic solids [7] as well.
2.1. Comparison with van der Waals EOS

Although the vanderWaals equationdoes not apply to dense
fluids and solids, it can be checked for compatibility with the
linearity of (Z − 1)v2 versus ρ2. Then, its success or failure can
indicate what features of an EoS are crucial for the explanation
of a phenomenon. The van der Waals EoS can be written as [1]:

(Z − 1)(v/b)2 =
1
bp


1

1 − bρ
−

a
bRT


, (5)

where b and a are associated with repulsive and attractive
interactions, respectively, and a/bR is equal to TB. At low densi-
ties, where bρ → 0, the term (a/bRT )(bρ)−1 makes Eq. (5) ap-
proach negative infinity, which can be related to the attraction
forces. At high densities, where bρ → 1, the intermolecular re-
pulsion is dominant, so the term (1− bρ)−1 causes the expres-
sion to diverge. However, within intermediate densities (bρ ≈

0.5), the linear region results in a balance between attraction
and repulsion. Actually, the linear portion does not depend on
any special features of molecular interaction, but only on the
existence of long-range attraction and short-range repulsion.

2.2. Experimental test of EoS I for quantum light molecules

Owing to the fact that Ne is in the group of ordinary pure
compounds, we would expect that (Z − 1)v2 versus ρ2 for its
isotherms would become linear for both fluid and solid states.
However, Parsafar et al. [12] have recently shown that EoS I
unexpectedly shows a significant deviation from LIR linearity
at 298 K, if a wide density range is considered. Since Boyle
temperature and density [13,14] for Ne are about 120.32 K and
12.8mol/L, respectively, we have examined the accuracy of EoS
I for the fluid Ne at 200 K, which is lower than twice that of
the Boyle temperature and in a density range of 15–62 mol/L.
The pressure range of the experimental data [14] used for the
examination is 30–400 MPa. As shown in Figure 1(a), it is
obvious that EoS I cannot be fitted into the data.

Due to the fact that Ne is a relatively light atom with
weak dispersion interaction, we have attempted to investigate
the accuracy of the LIR EoS for the other systems including
quantum light molecules, such as D2, H2 and He, in the fluid
and solid states at different temperatures. First, we have used
experimental pvT data [14] to check the accuracy of the EoS
I for the fluid D2 at 200 K, the Boyle temperature and density
[13,14] for D2 are 227.4 K and 31.18mol/L. The data are plotted
in the density range of 31–43 mol/L and pressure range of
101–206 MPa (see Figure 1(b)).

As D2 is classified in the group of normal fluids, it is expected
to obey the LIR EoS, but as shown in Figure 1(b), the fluid D2, like
Ne, shows a remarkable concave deviation with the coefficient
of determination R2

= 0.9491. Of course the deviation for D2
is smaller than that of Ne, which may be due to the smaller
density range of data. Similar investigations have been done for
H2 and He in both fluid and solid states as well. The results of
such investigations are summarized in Table 1.

As may be seen in Table 1, it is obvious that dense systems
of light molecules do not obey the LIR regularity. As mentioned
in Section 2.1, the van der Waals equation can offer some
explanations for the deviation of Ne and other quantum light
molecules, like D2, H2 and He. On the basis of the van derWaals
EoS, (Z − 1) v2 can be written as [12]:

(Z − 1)v2
= b2 + (b − a/RT )

1
ρ

+ b3ρ + b4ρ2
+ · · · , (6)
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Figure 1: The 200 of K isotherm (Z − 1)v2 versus ρ2 for (a) fluid Ne, and (b)
fluid D2 . Note that EoS I deviates significantly from the linearity.

Table 1: Examining the accuracy of the LIR EoS for quantum lightmolecules
over the given pressure range (1p) and density range (1ρ) along with the
coefficient of determination (R2) associated with each fit.

Fluid
T (K) 1p (MPa) 1ρ (mol/L) R2

D2 200 101–206 31–43 0.9491
Hea 40 20–100 35–68 0.9848
H2

b 50 12–220 28–57 0.9944

Solid
T (K) 1p (kg/cm3) 1ρ (mol/L) R2

D2
c 4 0–20000 51–105 0.9516

Hec 4 0–20000 58–156 0.9339
H2

c 4 0–20000 44–99 0.9569
a [14].
b [14,15].
c [16].

where b and a are the van der Waals parameters that are
attributed to repulsive and attractive interactions, respectively.
In Eq. (6), the 1/ρ term depends on both b and a. Therefore, if
the terms b and a/RT largely cancel each other, the 1/ρ term
will be insignificant, and the EoS I works well. But, probably for
quantum light molecules, due to the existence of a significant
quantum effect in addition to a weak dispersion interaction,
the term b − a/RT does not vanish and, therefore, the 1/ρ
contribution becomes important. As an example, the quantum
effect in H2 as a fermion particle appears as a repulsion that
causes a higher pressure for Fermi–Dirac ideal gas than that
of classical ideal gas under the same circumstances [17]. In
general, this means that the quantum effect might weaken
Table 2: Fitting EoS I in experimental data for H2 and CH4 at some given
temperatures.

Substance T (K) 1p (MPa) 1ρ (mol/L) R2

H2

4a 0–1961 44–99 0.9560
50b 12–220 28–57 0.9944

100b 40–300 29–57 0.9978
150b 65–1000 29–74 0.9998
200b 90–1000 29–67 0.9930
210b 100–1000 29–71 0.9910
250b 120–1000 30–70 0.9620
300b 140–800 29–62 0.5830

CH4

100c 0.1–12 27.41–27.90 1.000
120c 0.2–20 25.56–26.71 1.000
150c 1.2–200 22.36–30.21 1.000
200c 16–200 18.74–28.38 1.000

a [16].
b [14].
c [18].

Table 3: Fitting EoS I in experimental data for given isotherms of some
species.

T (K) 1p (kg/cm2) 1ρ (mol/L) R2

Diatomic molecules

H2 4 0–20000 44–99 0.9569
D2 4 0–20000 51–105 0.9516
N2

a 65 0–19000 34–51 0.9841

Monoatomic molecules

He 4 0–20000 58–156 0.9339
Ne 4 0–20000 71–106 0.9974
Ara 77 0–19000 41–57 0.9992

a [16].

the balance between repulsion and attraction interactions that
consequently leads to the deviation from LIR EoS.

2.3. Effect of molecular weight and temperature on the magnitude
of deviation from the LIR

The magnitude of the quantum effect depends on the
molecular weight and temperature in such a way that this
effect is more important at lower temperatures and for lighter
species, such as D2, H2 and He. Therefore, it is expected that the
deviation from the linearity behavior of EoS I is more at lower
temperatures due to the quantum effect. As an example, the
value of the coefficient of determination for the fit to the EoS
I for some isotherms of H2 and CH4 [18] is given in Table 2.

From the value of R2 given in Table 2, we may notice that H2
at 4 K shows a noticeable deviation from EoS I, while it behaves
more according to EoS I when temperature increases. However,
for temperatures higher than 200 K, its consistency with EoS
I decreases, so that the deviation from linearity at 300 K is
quite significant; such a temperature is larger than twice that
of the Boyle temperature. A similar situation was observed for
D2 and Ne. The validity of LIR is examined for methane, as well.
The result for some isotherms is given in Table 2. From such a
result (R2

= 1.000), we may conclude that the quantum effect
for methane is insignificant at least at the given temperatures.
Considering the fits to EoS I for monoatomic and diatomic
molecules, it is interesting to check the predictive power of EoS
I for some other species (the results are given in Table 3). One
can see that EoS I is more appropriate for heavier molecules.
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Figure 2: Significant deviations of the PY, SPT andCS EoSs from the LIR linearity.

3. Validity of the LIR for systems with significant unbalance
forces

To verify the reason mentioned in part 2b, regarding devia-
tion of quantum light molecules from the LIR EoS, we may use
the hard sphere fluid that plays a central role in almost all the-
ories of liquid state chemical physics, for example, in perturba-
tion theories, in statistical associating fluid theories, etc. [19].
The hard sphere model is simply defined as impenetrable
spheres that cannot overlap in space. They mimic an extremely
strong repulsion that atoms and sphericalmolecules experience
at very close distances. On the other hand, there is no contribu-
tion of attraction in the potential function of the hard sphere
model, and the behavior of repulsion in this model is roughly
similar to real molecules. The hard sphere potential function is:

U(r) = ∞, r < σ,

U(r) = 0, r ≥ σ , (7)

where r is the intermolecular separation and σ is themolecular
diameter. Therefore, the hard sphere fluid is a simple model in
which the forces are quite unbalanced.

Using the first several exact virial coefficients of hard
sphere fluid along with the asymptotic expansion method of
Percus–Yevick (PY), Scaled Particle Theory (SPT) and Carnahan–
Starling (CS), the following EoSs have been derived [19,20]:
SPT EoS:

Z =
1 + η + η2

(1 − η)3
. (8)

PY EoS:

Z =
1 + 2η + 3η3

(1 − η)2
. (9)

CS EoS:

Z =
η3

− η2
− η − 1

(η − 1)3
, (10)

where Z = p/ρkT is the compressibility factor, η = π/6ρσ 3

is the packing fraction, ρ is the number density, p is the
pressure, T is the absolute temperature, σ is the diameter of
the hard sphere, and k is the Boltzmann constant. As shown
in Figure 2, all mentioned equations of state (SPT, PY and CS)
deviate significantly from the linearity of EoS I, within η ≈

0.5–0.74 for normal liquid density (Note that the hard sphere
has only one fluid phase [11]). Since the hard spheremodel only
assumes repulsive forces amongmolecules, it is a good example
with unbalanced forces for which the deviation from the LIR is
expected.
Table 4: The coefficients of determination for the fits of EoS II and EoS III to
experimental data of the light species at the given temperature.

Substance Physical
state

T (K) R2 for EoS II R2 for
EoS III

D2 Fluid 200 0.8799 0.9996
He Fluid 40 0.8509 1.000
H2 Fluid 50 0.9456 0.9999
D2 Solid 4 0.9948a 0.9985
He Solid 4 0.9824 0.9965
H2 Solid 4 0.9896 0.9962

a For solid D2; experimental data are shown systematic deviation of
EoS II.

4. Predictive power of some other equations of state

For some ionic and metallic dense fluids and solids, espe-
cially within the metal–nonmetal transition range, the ther-
modynamic properties and derived equation of state, based on
Lennard-Jones (12, 6), lose their applications, because they in-
troduce an unrealistic hard repulsion that is suitable for fluids
with short-range interactions, while ionic and metallic fluids
highly interact with an appreciable Columbic feature. Hence,
the long-range dispersive interaction potential is underesti-
mated if treated by only a simple sixth power of the inverse of
interatomic distance [10]. To consider this effect, and because
of the electrostatic interaction energies between twomolecules
with non-symmetrical charge distribution, we see the interac-
tion between dipole moments of these two molecules; we may
take this effect into account using the r̄−3 term. On the other
hand, it is found that the interionic dipole–dipole interaction
has an effect on softening the repulsive part of the pair poten-
tial [21,22]. From the discussion mentioned above, eventually,
Lennard-Jones (6, 3) is supposed for ionic and metallic dense
fluids and solids [7,10].

u(r) = Aε

σ

r̄

6
−

σ

r̄

3


, (11)

where A is a constant, ε is the potential well depth and σ is the
diameter of the molecule [10]. The final form of the equation of
state derived on the basis of LJ (6, 3) for these kinds of dense
system is as (which is hereafter referred to as EoS II) [10]:

(Z − 1) v2
= c +

d
ρ

, (12)

where c and d are temperature-dependent parameters, as c =

c2 + c1/T and d = d1/T , with d1 and c1 related to the attractive
and repulsive parts of the effective potential, respectively. Since
there are no obvious long-range interactions or correlations in
dense systems with light molecules, and because they are nor-
mal fluids with dispersion interaction, we may expect that EoS
II cannot justify the behavior of these systems. We have used
experimental data of light molecules to examine the accuracy
of this EoS. The results of such examinations are presented in
Table 4.

In a real fluid, there are dipole–dipole interactions including
permanent and/or induced dipoles, London dispersion interac-
tions and some other interactions, so that in different fluids, the
contributions of these interactions are different. For example,
in a fluid like Ar, there are only London dispersion interactions,
while in some fluids, like CO, there are dipole–dipole interac-
tions in addition to London interactions. As a result, recently, a
general equation of statewas suggested on the basis of an effec-
tive near-neighbor pair potential of an extended Lennard-Jones
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(ELJ) (12, 6, 3), which includes both the ρ2 dependence of EoS I
and the 1/ρ dependence of EoS II. It also appears to work well
for all types of solid and fluid, even for those that do not work
with EoS I and EoS II. The ELJ (12, 6, 3) potential function is given
by [12]:

U =
N
2
z

C12(T )

r̄12
+

C6(T )

r̄6
+

C3(T )

r̄3


, (13)

where r̄ , which is given by v1/3, is a mean near-neighbor
distance and z is the average number of nearest neighbors,
which is not dependent on density, and the Cis(T ) are
temperature-dependent parameters. The r̄−12 and r̄−3 terms
are related to the short-range repulsive and long-range
attractive interactions, respectively. On the basis of ELJ (12, 6,
3), a general equation of state has been obtained as follows [12]
(which will, hereafter, be referred to as EoS III):

(Z − 1)v2
= e +

f
ρ

+ gρ2, (14)

where e, f and g are temperature dependent parameters.
The EoS III is a universal equation of state that gives a
good description of all types of fluid and solid, including
nonpolar, polar, hydrogen-bonded, metallic compounds and
ionic systems. This EoS works well in a wide density range,
and there are no upper and lower density limitations for this
EoS. For solids, there appear to be no pressure and temperature
limitations as well. Since experimental data of the quantum
light molecules do not well obey either EoS I or EoS II, we have
examined the validity of this new equation of state for them.
The results for Ne and D2 fluids are plotted in Figure 3(a) and
(b), respectively. We see that EoS III gives excellent agreement
with experimental data of fluid Ne and fluid D2 at 200 K. Similar
investigations have beenmade for He andD2, aswell. The fitting
results are summarized in Table 4.

As shown in Table 4, EoS II, like EoS I, is not accurate for
quantum light molecules, but it is evident that EoS III has very
good agreement with isotherms considered for these systems
(the value of coefficient of determination verifies this point). In
regard to the van der Waals expression, given in Section 2.2,
the terms b and a/RT do not omit each other, and both 1/ρ
andρ2 contributionsmust be taken into account. Therefore, EoS
III, which includes both terms, gives a good description of the
behavior of these systems (see Table 4).

5. Discussion and conclusion

In this paper, we have investigated the accuracy of LIR (EoS
I) for some types of normal spherical molecule called quantum
light systems including Ne, He, H2 and D2 in both fluid and
solid states. Although LIR has been derived on the basis of
the effective pair potential of Lennard-Jones (12, 6), which
is appropriate for simple spherical nonmetallic and nonionic
compounds, unexpectedly, we noticed that the dense systems
of light molecules show remarkable deviations from EoS I (see
Figure 1 and Table 1). As seen in Eq. (2), LIR only includes
the term ρ2. Recently, however, a general equation of state
(EoS III), based on an effective near-neighbor pair interaction
of the ELJ (12, 6, 3) type, has been introduced for a wide
variety of fluids and solids, as we have shown in Figure 3 and
Table 4, which gives an excellent fit to experimental pvT data
of dense systems with light molecules. The EoS III includes
both 1/ρ and ρ2 contributions, where ρ2 is related to short-
range interaction, and the 1/ρ term is particularly important
Figure 3: The excellent fits of EoS III to experimental data of (a) fluid Ne and
(b) fluid D2 at 200 K. (compared to Figure 1).

in systems where long-rang correlations are expected, such as
ionic and metallic fluids and solids. This term is related to the
r̄−3 contribution in the effective pair potential. However, we
have found that the 1/ρ term is essential to fit experimental
data for quantum light molecules. Since there are no obvious
long-rang interactions or correlations in these systems, the
results suggest that the above explanation is not complete.
Looking for a possible reason as to why the 1/ρ contribution
is crucially important for some substances but not at all for
others, we expand the van der Waals equation for (Z − 1)v2,
and we noted that the coefficient of the 1/ρ term contains two
opposing contributions from the repulsive and attractive parts
of the intermolecular force. If these contributions exactly cancel
each other out, the term of 1/ρ will be unimportant, and EoS I
works well for instance for Ar. But, for Ne and other quantum
light molecules, there is not a balance between repulsion and
attraction, and the 1/ρ term will be significant in addition to
ρ2; therefore, EoS III gives a good description for these systems.
For some materials, such as ionic and metallic fluids and solids,
the 1/ρ term even dominates the ρ2 term, so that EoS II, given
in Eq. (12), workswell. Aswe can see in Tables 2 and 3, at higher
temperatures and for heavier species, EoS I becomes valid due
to a decrease in the quantum effect. To verify such a conclusion,
related to a deviation of the light molecules from EoS I we have
shown that the hard-sphere fluid remarkably deviates from
EoS I for which only repulsive forces exist among molecules,
and therefore it is obvious that there is no balance between
repulsion and attraction in this model at all (see Figure 2). As
shown in Figure 2, the Percus–Yevick, Scaled Particle Theory,
and Carnahan Starling (CS) EoSs based on the hard sphere
model, all indicate significant deviations from EoS I.
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