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A simple functional form for a general equation of state based on an effective near-neighbor pair interaction
of an extended Lennard-Jones (12,6,3) type is given and tested against experimental data for a wide variety
of fluids and solids. Computer simulation results for ionic liquids are used for further evaluation. For fluids,
there appears to be no upper density limitation on the equation of state. The lower density limit for isotherms
near the critical temperature is the critical density. The equation of state gives a good description of all types
of fluids, nonpolar (including long-chain hydrocarbons), polar, hydrogen-bonded, and metallic, at temperatures
ranging from the triple point to the highest temperature for which there is experimental data. For solids, the
equation of state is very accurate for all types considered, including covalent, molecular, metallic, and ionic
systems. The experimental pVT data available for solids does not reveal any pressure or temperature limitations.
An analysis of the importance and possible underlying physical significance of the terms in the equation of
state is given.

I. Introduction

In an extensive review published in 1969, Macdonald1

suggested that the existence of a usefully simple equation of
state (EoS) that applies consistently to all dense matter is
extremely unlikely. This opinion was perhaps based on the fact
that dense systems are complicated at the molecular level with
diverse many-body interactions, and moreover, even the pair
interactions are not well-known, except for the simplest systems.
Nevertheless, at present, there exist several equations of state
that are reasonably accurate for a variety of dense materials.2-12

Despite their complexity at the molecular level, dense systems
exhibit a number of simple regularities,13,14 some of which have
been known experimentally for a long time. The existence of
these regularities suggests that it might be possible to write a
general effective potential that embodies the common features
that appear in the equations of state of many different materials.
On the basis of this reasoning, several effective, near-neighbor
pair potentials have been introduced in the literature, and
associated equations of state have been derived.7,9-12 This work
has provided simple analytical forms for equations of state that
can accurately “fit” experimental data for a varied selection of
materials and over significant ranges of state parameters.

For some dense fluids, it is known experimentally that
isotherms plotted as (Z - 1)V2 versus F2, where Z is the
compressibility factor, F is the density, and V the molar volume,
tend to be linear. Parsafar et al.10,15 employed an effective
potential of the Lennard-Jones (LJ)(12,6) type (originally named
the averaged effective pair potential) to obtain an equation of
state that mimics this behavior. Ghatee and Bahadori11 proposed
using the softer Mie(6,3) potential to obtain an accurate equation
of state for liquid cesium and other liquid metals. Parsafar and
Mason9 used the repulsive branch of a universal expression for

the binding energy of solids given by Rose et al.16 to obtain a
simple cubic function for the potential energy in terms of
density. Recently, Shokouhi et al.12 have shown that the effective
pair potentials that have been proposed for dense fluids are also
appropriate for some solids.

The purpose of the present paper is to suggest a new, more
general equation of state that works extremely well for a great
variety of fluids and solids and over wide ranges of density.
Indeed, we have not yet found a material for which it fails. The
validity of the equation of state is tested using experimental
pVT data for fluids and solids that have very different physical
properties, ranging from neon to long-chain hydrocarbons to
ionic and metallic solids. Computer simulation results for ionic
liquids are also used to provide further tests and to investigate
the relative importance of the internal and thermal pressure
contributions to the thermodynamic equation of state. Expres-
sions for the temperature dependence of the parameters (three
in total) that occur in the equation of state are also given. Finally,
the new equation of state is compared with some earlier
suggestions.

II. The Equation of State

We define the intensive quantities V ) V/N and u ) U/N,
where V is the volume and U the configurational (potential)
energy of a N particle system. Then, an exact thermodynamic
equation of state can be written as

where p is the pressure, T the temperature, and we have used
the fact that the ideal contribution to the total internal energy is
independent of density. The first and second terms of eq 1 are
often named the thermal and internal pressures, respectively.
Following Parsafar and Mason,10 we rewrite eq 1 in the form
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where

is the contribution from the nonideal thermal pressure (following
the notation of Parsafar and Mason10), Z ) pV/kBT is the
compressibility factor, F ) 1/V is the number density, and kB is
the Boltzmann constant.

Parsafar and Mason10 suggested evaluating the first term on
the right-hand side of eq 2 by introducing an effective near-
neighbor pair potential. Following their approach, and also the
more recent work of Ghatee and Bahadori,11 aimed at finding
an equation of state for liquid metals, we propose a more general
effective near-neighbor pair potential, such that the total
configurational energy of an N particle system is given by

In eq 4, r is taken to be a mean near-neighbor distance, and
following Parsafar and Mason,10 we assume that r ≈ V1/3. The
parameter z is the mean coordination number, which, for solids,
will obviously be constant if no phase transition occurs in the
density range of interest. For a fluid, if one defines the distance
r as fixed, independent of density, then one would expect z to
vary with F. However, in the present model, where it is assumed
that r ≈ V1/3, z will also be independent of density for fluids.

Substituting r ) V1/3 into eq 4 and differentiating, we obtain

where the Di(T) are temperature-dependent parameters. In our
model, eq 2 now becomes

where the parameters Fi(T) are related to the corresponding r-i

terms in the effective potential.
It is useful at this point to consider earlier work10,11 in more

detail. In their original paper, Parsafar and Mason10 assumed
an effective potential of the LJ(12,6) form with temperature-
independent parameters (i.e., the first two terms of eq 4 with
temperature-independent Ci). They further assumed that the term
related to the thermal pressure coefficient (the last term) in eq
6 is a constant, independent of density over the density range
of interest. This latter assumption will be further discussed
below. With these assumptions, Parsafar and Mason10 obtained
the result

where a ) a2 + a1/T, b ) b1/T, a1 and b1 are related to the
attractive and repulsive terms of the effective potential, respec-

tively, and a2 is the contribution coming from the nonideal
thermal pressure, as defined above.

Equation 7, which is known as the linear isotherm regularity,10

will be referred to as EoS I in this paper. This equation of state
has been used to explain some experimentally well-known
regularities and also to predict some that were previously
unknown.17,18 Equation 7 is valid for densities higher than the
Boyle density, FB = 1.8FC, and temperatures less than twice
the Boyle temperature, TB = 2.5 - 2.7TC, where FC and TC are
the critical density and temperature, respectively. It was recently
shown12 that EoS I works well for some nonionic and nonmetal-
lic solids, as well as for dense fluids. Equation 7 does show
some deviations from experiment for extremely nonspherical
molecules. Parsafar and Klantar19,20 have shown that the (Z -
1)V2 versus F2 isotherms for long-chain organic compounds show
significant deviations from linearity. Moreover, we show below
that, somewhat unexpectedly, EoS I cannot fit the data for the
simple fluid neon if a wide density range is considered (see
section IV.A). Also, the application of EoS I to alkali metals,
more specifically, liquid cesium, suffers within the density range
where the metal-nonmetal transition occurs.11,21

To find an equation of state for liquid metals, in particular,
liquid cesium, Ghatee and Bahadori11 proposed that an effective
potential of the Mie(6,3) form be used, again with temperature-
independent coefficients. Their arguments for this form are based
on the effective potential obtained by inverting the structure
factor of liquid cesium. In particular, Ghatee and Bahadori11

suggested that the Mie(6,3) potential would “soften” the core
repulsion and that the r-3 term would help account for the
longer-ranged, slowly decaying interaction found for liquid
cesium.22 Using arguments analogous to those of Parsafar and
Mason,10 including the assumption that the last term in eq 6 is
independent of density, Ghatee and Bahadori11 obtained the
equation of state

where c ) a2 + c1/T and d ) d1/T, with d1 and c1 related to the
attractive and repulsive parts of the effective potential, respec-
tively. Here, we shall refer to eq 8 as EoS II. Ghatee and
Bahadori11 showed that EoS II gives a good description of the
equation of state for cesium over its entire liquid range. Recently,
it has been shown that EoS II is valid for some metallic and
ionic solids as well.12

Despite the success of EoS I for many atomic and molecular
liquids and solids and of EoS II for some metals and ionic
systems, there remain many materials for which neither equation
of state works well, especially if wide density ranges are
considered (see section IV). This has led us to seek a more
general result.

The effective pair potential that we assumed above (eq 4) is
of an extended Lennard-Jones (ELJ)(12,6,3) form with temper-
ature-dependent coefficients. A motivation for this form is that
it yields an equation of state with both the F2 dependence of
EoS I and the 1/F dependence of EoS II. Physically, terms
proportional to r-6 and r-12 can be justified in an effective
potential because a dispersion interaction, together with a term
representing the repulsive cores, is expected to be present for
molecules of all types. The r-3 term, which gives the 1/F
contribution in eq 6, is harder to rationalize because, apart from
molecules with permanent dipoles, we would not expect a term
proportional to r-3 in the true pair potential. However, here,
we are considering a model where the total configurational

(Z - 1)V2 ) - 1

F3kBT(∂u
∂V)T

+ a2 (2)

a2 ) 1

F2[ 1
FkB

(∂p
∂T)V - 1] (3)

U ) N
2

z(C12(T)

r12
+

C6(T)

r6
+

C3(T)

r3 ) (4)

(∂u
∂V)T

) -(D12(T)

V5
+

D6(T)

V3
+

D3(T)

V2 ) (5)

(Z - 1)V2 ) F6(T) +
F3(T)

F
+ F12(T)F2 + a2 (6)

(Z - 1)V2 ) a + bF2 (7)

(Z - 1)V2 ) c + d
F

(8)
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energy is represented by effective near-neighbor interactions.
Thus, one can simply view the r-3 term as a “stand in” for all
contributions to the energy that cannot be represented by the
LJ(12,6) interaction. In practice, we find that the 1/F term
appears essential in a general equation of state, and within the
assumptions of Parsafar and Mason,10 this term can come only
through an r-3 contribution in the effective potential. It is also
worth noting that for systems of uncharged particles, the leading
term in the exact low-density expansion of (Z - 1)V2 behaves
as 1/F. Thus, for such systems, a term proportional to 1/F is
necessary to ensure that the equation of state obeys the correct

low-density limit. A further discussion of the importance of the
1/F term in EoS III and why it may appear very significant for
some materials but not for others is given below (section IV).

Further consideration of the contribution of the a2 term in eq
6 is also necessary. In their original work, Parsafar and Mason10

assumed that a2 is nearly independent of density. They based
their assumption mainly on experimental results for argon, and
it may well be a good approximation for many materials.
However, using computer simulations, we show explicitly that
it does not hold at all for model ionic liquids. As discussed
below (section III), for ionic liquids, the density dependence of

TABLE 1: Parameters in the Fits of Equations 9 and 11 to the Ionic Liquid Resultsa

T, K k6/kBT k3/kBT k12/kBT R2 (eq 11) e f g R2 (eq 9)

1200 24.550 -28.238 -6.1938 0.99999 6.0130 -9.6755 3.3172 0.99998
1700 14.294 -18.019 -2.8984 0.99997 5.8244 -7.1891 2.2238 0.99998
2000 11.968 -15.008 -2.4001 0.99996 5.7381 -6.2745 1.7719 0.99998

a R2 is the coefficient of determination for the fits indicated. The reduced density (F*) ranges used in the fits are 0.7005-0.8993 at 1200 K
and 0.7005-1.0244 at 1700 and 2000 K.

Figure 1. Simulation results for the model ionic liquid at 1700 K.
The solid curves represent fits to (a) eq 11 and (b) eq 9. Note that V*
) 1/F*.

TABLE 2: Contributions of the Internal and Nonideal Thermal Pressures to the Coefficients of EoS III for Model Ionic
Liquids

T, K 2k6/kBT (e - 2k6/kBT) k3/kBT (f - k3/kBT) 4k12/kBT (g - 4k12/kBT)

1200 49.10 -43.09 -28.24 18.56 -24.78 28.09
1700 28.59 -22.76 -18.02 10.83 -11.59 13.82
2000 23.94 -18.20 -15.01 8.734 -9.600 11.37

Figure 2. Testing EoS III at high density. The points are experimental
values for CO,25 and the solid curve is the fit to eq 9.

TABLE 3: Examing Equation 9 for Any Low-Density
Limitationa

substance T, K ∆F, mol/L R2

CH4 150 22.3796-30.2510 1.0000
190 7.21135-33.2518 0.99635
190 15.0030-33.2518 0.99972
190 17.6148-33.2518 0.99997
308.15 23.3716-35.3615 0.99996
473.15 21.1042-33.0584 0.99994
500 10.0625-32.144 0.99996

N2 100 24.584-34.576 0.99991
400 11.376-36.184 0.99996
600 5.2407-33.237 0.99992
600 9.1343-33.237 0.99972
600 11.187-33.237 0.99969
800 13.641-30.967 0.99952

1200 10.335-26.194 1.0000

a ∆F denotes the density range used in the fit, and R2 is the
coefficient of determination associated with the fit.
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a2 is comparable to that of the internal pressure contribution
and follows the same functional form.

Thus, we express eq 6 as

where e, f, and g are nontrivial functions of temperature, and in
general, one must expect all three functions to contain contribu-
tions from both the internal and thermal pressures. We call eq
9 EoS III, and it is the central result of this paper. We show
below that it gives an excellent representation of isotherms for
widely differing materials and over wide ranges of density. We
note that the accuracy of EoS III also extends to ionic liquids,
even though for Coulombic systems, we would expect (assuming
complete dissociation of the ions) the low-density limit to behave
as F-3/2 rather than F-1. A brief discussion of a model ionic
liquid to illustrate the density dependence of a2 is given below.
A complete analysis of the application of EoS III to ionic liquids
including further model calculations and experimental results
will be given in a forthcoming paper.23

III. Computer Simulation Results for a Model Ionic
Liquid: The Density Dependence of a2

A detailed description of molecular dynamics (MD) results
for model ionic liquids of different types will be given
elsewhere.23 Here, it is useful to briefly discuss one relatively
simple model in order to demonstrate that a2 can be strongly
density-dependent for some systems. We consider a model ionic
liquid consisting of equal size LJ spheres embedded at the center
with single elementary charges such that the interaction of ions
i and j is given by

where ε ) 3.614 kJ/mol and σ ) 0.5 nm are the LJ energy and
length parameters taken to be the same for all pair interactions,
rij is the distance between the centers of mass of ions i and j,
and ε0 is the permittivity of free space. Molecular dynamics
simulations were carried out at three temperatures, 1200, 1700,
and 2000 K, for a range of reduced densities, F* ) Fσ3, where
F ) (N+ + N-)/V is the number density. Note that the densities
used (Table 1) are typical liquid values. A significant advantage
of computer simulations is that one obtains both the configu-
rational energy and the pressure. This allows us to separate the
contributions of the internal and thermal pressure terms to the
equation of state.

The expressions for the configurational energy and equation
of state given above were obtained explicitly for one-component
systems, but as shown by Parsafar and Mason,24 analogous
expressions can be found for multicomponent (constituent)
systems. For the present discussion, it is convenient to rearrange
eq 4 into the form

where the ki are temperature-dependent coefficients. Then,
combining eqs 2, 9, and 11 immediately gives the nonideal
thermal contribution in the form

TABLE 4: Parameters of Equation 9 and Coefficients of Determination for Different Isotherms of Nitrogen Over the Pressure
Range ∆p

T, K e, (L/mol)2 f, (L/mol) g, (L/mol)4 ∆p, MPa R2

100 -0.0158518 0.144462 1.39049 × 10-5 0.8-200 0.99991
200 -9.62551 × 10-4 -6.25806 × 10-3 5.43791 × 10-6 20-900 0.99957
308.15 1.31533 × 10-3 -6.63055 × 10-3 3.22340 × 10-6 150-1000 0.99995
400 1.28451 × 10-3 9.82150 × 10-3 2.59806 × 10-6 50-900 0.99996
600 1.44183 × 10-3 0.0201100 1.78244 × 10-6 80-900 0.99969
800 1.42354 × 10-3 0.0250311 1.34165 × 10-6 150-900 0.99952
1000 1.34963 × 10-3 0.0280700 1.05946 × 10-6 150-900 0.99997
1200 1.28708 × 10-3 0.0297710 8.45318 × 10-7 150-800 1.0000

TABLE 5: As in Table 2 but for Isotherm(s) of Different Fluids

fluid T, K 103 × e, (L/mol)2 102 × f, (L/mol) 106 × g, (L/mol)4 ∆p, MPa R2

Ara 120 -7.91713 5.77526 5.66745 1.5-150 0.99999
Arb 308.15 0.00258067 0.119478 1.93337 150-1000 0.99999
Nec 298 0.287237 1.10615 0.058911 60-1000 0.99949
N2

d 308.15 1.31533 -0.663055 3.22340 150-1000 0.99995
COe 308.15 1.47330 -1.01608 3.43530 150-1000 0.99995
CH4

f 150 -15.6599 9.87947 18.6804 1.5-200 1.0000
308.15 -0.467732 -1.66984 7.18707 150-1000 0.99996
500 1.12743 0.226194 4.28628 50-1000 0.99996

C3H8
g 308.15 -57.5237 20.0147 238.882 100-1000 0.99996

n-C9H20
h 303.15 -3913.32 1068.35 63650.7 20-620 1.0000

n-C19H40
i 343.15 -34315.4 4946.29 2117410 0.1-150 1.0000

CH3OHj 300 -25.4517 18.2106 27.2493 0.15-70 1.0000
H2Ok 298.15 0.928970 -15.1403 0.484137 20-800 1.0000
Hgk 303.15 -25.8876 43.4644 4.23011 100-800 0.99999

a Reference 30. b Reference 31. c Reference 37. d Reference 29. e Reference 25. f References 26 and 27. g Reference 32. h Reference 33.
i Reference 34. j Reference 35. k Reference 36.

(Z - 1)V2 ) e + f
F
+ gF2 (9)

u(ij) ) 4ε[( σ
rij

)12
- ( σ

rij
)6] +

qiqj

4πε0rij
(10)

uV2 ) k6 +
k3

F
+ k12F

2 (11)
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Given that eq 2 is exact, if the equation of state is well fit by eq
9 and if the configurational energies are well fit by eq 11, then
eq 12 must give an accurate representation of the nonideal
thermal pressure contribution.

The fitting parameters and R2 values for both the energy (eq
11) and EoS III (eq 9) are given in Table 1 for three
temperatures. Note that for these fits, the density was expressed
in reduced units (F* ) Fσ3), such that the fitting parameters
given in Table 1 are in dimensionless form. The fits obtained
at 1700 K are shown in Figure 1, and similarly excellent fits
were obtained at 1200 and 2000 K. We note that fits to EoS I
and EoS II (not shown) do not give a good representation of
the results; plots versus F*2 and 1/F* show deviation from the
linearity expected for EoS I and EoS II, respectively.

Considering the fits to eq 11, it is interesting to note (Table
1) that k6 and k3 are of similar magnitude but opposite sign.
The k6 term makes a positive contribution to the average
configurational energy, and the k3 and k12 terms make negative
contributions, with k12 about an order of magnitude smaller than
k3. Thus, for our model ionic liquid, the main contributions to
k3 and k12 must come through the attractive LJ and Coulombic
interactions, whereas k6 is dominated by repulsions. We note
that this pattern holds for the energies of other model ionic
liquids not discussed in this paper. This serves to illustrate that,
at least for ionic liquids, the terms in the effective near-neighbor
potential may not have the same physical significance as terms
with the same r dependence in the true pair interaction.

From the fitting parameters given in Table 1, we can easily
obtain the coefficients of the internal and nonideal thermal
pressure contributions to the equation of state. These are given
in Table 2 for all three temperatures. Note that terms depending
only on the ki are the internal pressure coefficients and that the
coefficients of the nonideal thermal pressure contribution are
given in eq 12. From Table 2, we see that the coefficients
associated with both contributions are of similar magnitude but
opposite sign. It is clear that both terms in eq 2 contribute
significantly to all three coefficients in EoS III.

IV. Comparison with Experimental Data

A. Fluids. We first examine eq 9 to check for temperature
and/or density limitations. In order to test for limitations at high
density, we use the CO data given by Robertson and Babb, Jr.25

The 308.15 K isotherm is shown in Figure 2, and we note that
eq 9 fits the data very well over the entire density range, 23-38
mol/L, with a coefficient of determination of R2 ) 0.99995.
Similar results are found for other fluids, including CH4, Ar,
and N2. Therefore, on the basis of the reported experimental
data, there does not appear to be an upper density limit on the
validity of eq 9, as long as the material remains fluid. A similar
conclusion was reached10 for EoS I.

To examine the lower density limit, we use experimental data
for CH4, both the revised data given by Robertson,26 and the
summary of Setzmann and Wagner.27 We also use the N2 data
as summarized by Jacobsen et al.28 The R2 values obtained for
different isotherms, together with the density ranges used in
each fit to eq 9, are given in Table 3. We consider the fit to be
“very good” if 1 - R2 < 0.001. We see from Table 3 that the
fits are very good for all isotherms, at least for densities larger
than the critial density (the critical density and temperature27,28

for CH4 are 10.150 mol/L and 190.564 K, and those for N2 are
11.177 mol/L and 126.1 K). For supercritical isotherms, the fits
are good at much lower densities, for example, see the different
density ranges fit for N2 at 600 K. Thus, generally speaking,
we may consider the critical density as the lower density limit
of eq 9 for isotherms near the critical temperature.

To look for possible temperature limitations of EoS III, we
use the nitrogen data given in ref 28 (for a wide range of

a2 ) e -
2k6

kBT
+ (f -

k3

kBT)1
F
+ (g -

4k12

kBT )F2

(12)

Figure 3. The 298 K isotherm of fluid neon. The points are
experimental results,37 and in (a) and (b), the dashed lines are simply
to guide the eye. The solid line in (c) is the fit to EoS III (eq 9). Plots
(a) and (b) show that both EoS I and EoS II, respectively, deviate
significantly from linearity, whereas plot (c) shows that EoS III gives
an excellent fit to the data.
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temperatures) and ref 29. The fitting results are summarized in
Table 4, and it is evident that eq 9 gives very good fits for all
isotherms considered. Hence, at least as far as can be checked
with available experimental data, EoS III does not have any
temperature limitation.

We have used experimental pVT data for widely varying
fluids25-27,29-37 to investigate the generality of EoS III. The
results for different selected fluids are given in Table 5, and
these serve to demonstrate the generality of EoS III. In
comparison, we note that EoS II does not fit the experimental
data for atomic and molecular fluids at all, and EoS I shows
some deviation for water, long-chain hydrocarbons, and metallic
liquids.

In fact, if a wide enough density range is considered, one
does not have to consider more complex fluids to find an
example where both EoS I and EoS II cannot fit the data. Results
for supercritical neon37 at 298 K are plotted over a wide density
range in Figure 3a-c. The function (Z - 1)V2 versus density
passes through a minimum, and it is obvious that neither EoS
I nor EoS II can describe this behavior. On the other hand, EoS
III again gives an excellent fit over the entire density range.
Some insight into the possible reason for the neon behavior,
and why it differs from some other simple fluids such as argon,
can be gleaned by expanding the van der Waals expression for
(Z - 1)V2 to obtain

where b and a are the usual van der Waals parameters associated
with replusive and attractive interactions, respectively. We note
that a term linear in F does not occur in EoS III and appears
unncessary to fit experimental data for dense matter. The term
proportional to 1/F is interesting in that at the van der Waals
level, it is the only term that depends on both b and a, and
clearly if the terms b and a/RT largely cancel, the 1/F
contribution will be unimportant. However, if for particular
materials the cancellation is insufficient, the 1/F term will be
significant and perhaps even dominate, giving the behavior
predicted by EoS II. Possibly, for argon and other systems where
EoS I works well, there is a good deal of cancellation between
repulsive and attractive forces in dense fluids, as was noted by
Parsafar and Mason in their original paper.10 For neon, the
dispersion interaction is weaker than that for argon and is

possibly too small to cancel the repulsive contribution; thus,
the 1/F term is important. The van der Waals expression suggests
that the 1/F term will be significant whenever the attractive and
repulsive contributions do not largely cancel. Of course, we
know that the van der Waals equation does not apply to dense
fluids and solids, but it does offer some explanation as to why
a 1/F term is apparently necessary in the equation of state for
some materials but is unimportant for others.

It is interesting to examine the contributions of f/F and gF2

to EoS III. Note that if gF2 dominates f/F over the entire density
range, then EoS I will be sufficient; if the reverse is true, EoS
II will apply, but if both terms are significant EoS III is necessary

TABLE 6: The Contributions of the f/G and gG2 Terms in
EoS III for n-C19H40 (343.15 K), H2O (298.15 K), and Au
(300 K) at Selected Densities

substance F, (mol/L) f/F, (L/mol)2 gF2, (L/mol)2

n-C19H40 2.786 17.75 16.43
2.864 17.27 17.37
2.945 16.80 18.36
3.010 16.43 19.18
3.065 16.14 19.89

H2O 55.8300 -2.712 × 10-3 1.509 × 10-3

59.5131 -2.544 × 10-3 1.715 × 10-3

62.5623 -2.420 × 10-3 1.895 × 10-3

65.0000 -2.330 × 10-3 2.046 × 10-3

67.0500 -2.258 × 10-3 2.177 × 10-3

Au(s) 99.89 -65.45 × 10-3 3.199 × 10-3

108.8 -60.11 × 10-3 3.793 × 10-3

119.4 -54.76 × 10-3 4.569 × 10-3

132.3 -49.42 × 10-3 5.610 × 10-3

148.3 -44.08 × 10-3 7.053 × 10-3

(Z - 1)V2 ) b2 + (b - a
RT)1

F
+ b3F + b4F2 + ...

(13)

Figure 4. As in Figure 3, except that the data shown are for the 3000
K isotherm of solid gold.38

11982 J. Phys. Chem. B, Vol. 113, No. 35, 2009 Parsafar et al.



to accurately describe the equation of state. As examples, results
for two fluids (water and n-C19H40) and one solid (gold) are
given in Table 6. For each substance, values are given for a
range of densities on a particular isotherm. We see that for
n-C19H40 and water, both terms are of comparable magnitude,
which means that neither EoS I nor EoS II can provide an
accurate description of the equation of state for these substances.
However, for gold, the magnitude of gF2 tends to be much
smaller than that of f/F, particularly at low densities. Therefore,
we would expect EoS II to be accurate for gold, at least if the
densities are sufficiently low.

B. Solids. EoS I and EoS II were initially derived for atomic
and molecular10 and metallic11 fluids, respectively, but were later

applied to ionic, metallic, and other types of solids12 as well.
Even though EoS I and EoS II are relatively simple two-
parameter equations of state, their accuracy is comparable with
that of other well-known equations of state for solids.12

Therefore, we compare the accuracy of EoS III with that of
EoS I and EoS II. For comparison purposes, we use three
different types of solid for which very high pressure data is
available, specifically, gold, neon, and diamond.

Results for the 3000 K isotherm of gold are shown in Figure
4a-c using the experimental data of Heinz and Jeanloz.38 Note
that linear behavior is expected in Figure 4a if EoS I is obeyed
and in Figure 4b if EoS II applies. We see that Figure 4a exhibits
a significant convex deviation from linearity, which is to be
expected because EoS I was not proposed for metals but for
simpler liquids and solids.10,12 The coefficient of determination
for the linear fit is low (R2 ) 0.99139). Figure 4b exhibits a
concave deviation from the expected linear behavior, with R2

) 0.99394. Figure 4c shows that the experimental data are well
fit by EoS III, with R2 ) 0.99984.

The data of Dewaele et al.39 are used to make a similar
comparison for solid neon, and the isotherm at 298 K is plotted
in Figure 5a-c. A large convex deviation from EoS I is seen
in Figure 5a, and an attempted fit gives R2 ) 0.94312. Figure
4b shows a smaller concave deviation from EoS II (R2 )
0.99477). Again, EoS III gives a good fit (Figure 5c) with R2

) 0.99824. Similar results are obtained for diamond, as shown
by the 298 K isotherm39 plotted in Figure 6a-c. In the diamond
case, the deviations from EoS I and EoS II are smaller than
those observed for neon (Figure 5a and b), which may be due
to the smaller pressure range covered by the available experi-
mental data.

We have examined the validity of EoS III for other solids as
well, and the fits obtained are very good in most cases.
Information about the fits for different solids and isotherms38-47

is given in Table 7. We note that for the two oxides included
(CaO and MnO), “noise” is apparent in the experimental data,
and this results in R2 values which deviate further from unity
than is the case for the other solids considered. For solids, we
conclude that the available experimental data do not reveal any
pressure or temperature limitations for EoS III.

Expressions for the bulk modulus B and its pressure derivative
B′ can be easily obtained from EoS III. One obtains

and

where F0 ) 1/V0 is the molar density at p ) 0 and Fr ) F/F0.
The values of B and B′ at zero pressure (B0 and B0′) can be
obtained simply by setting Fr ) 1 in eqs 14 and 15. The values
obtained for a range of solids at particular temperatures are given
in Table 8 and compared with some literature values obtained
using other equations of state.39,46-51 We note that the agreement
is reasonable, given that estimates of B0 and B0′ tend to vary
considerably depending on how they are obtained.

V. Temperature Dependence of the Parameters of
EoS III

A knowledge of the temperature dependence of the three
parameters in EoS III would greatly increase its predictive power

Figure 5. As in Figure 3, except that the data shown are for the 298
K isotherm of solid neon.39

B ) F0RT [Fr + 2(fF0)Fr
2 + 3(eF0

2)Fr
3 + 5(gF0

4)Fr
5]

(14)

B' )
F0RT

B
[Fr + 4(fF0)Fr

2 + 9(eF0
2)Fr

3 + 25(gF0
4)Fr

5]

(15)
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with minimal input data. This is especially important for
geophysical applications, where knowledge of high-pressure and
high-temperature behavior is often necessary but direct mea-
surement is difficult.

Since the temperature dependence of the Ci(T) coefficients
in eq 4 is not known, exact expressions for the temperature
dependence of the parameters in EoS III cannot be found.
Nevertheless, we can obtain empirical expressions following
an approach first used for solids9 and then extended to fluids.8

The exact thermodynamic equation of state (eq 1) can be
written as9

Parsafar et al.8 have shown that the assumption that u(T) is
linear in T, which is a good approximation for solids above
the Debye temperature, does not hold for fluids. However,
at least for simple fluids such as argon, the temperature
dependence can be well described with a quadratic form.
Therefore, we adopt the form

where the density-dependent coefficients, ui(F), depend on
the physical properties of the system being considered.
Substituting eq 17 into eq 16 and integrating yields

where the ui′(F) are density derivatives of the ui(F) and �(F)
is an unknown function of density.

Equation 9 can be rearranged into the form

Then, requiring that the temperature dependence of eq 19 be
the same as that of eq 18, we obtain

where the fi, ei, and gi will be different for different materials.
As a test of the above analysis, we have attempted to fit the

results for nitrogen given in Table 4 using eqs 20a-20c, and
the fits are shown in Figure 7a-c. We see that the fits for
parameters e (Figure 7a) and f (Figure 7b) are reasonable and
that the fit for parameter g (Figure 7c) is excellent.

VI. Relative Importance of the Different Terms in EoS
III for Different Materials

It is interesting to examine the relative magnitude of some
coefficients in EoS III and compare them with corresponding
coefficients in EoS I and EoS II. This gives some insight into
the possible significance of the terms in the effective potential.
The ratio |g/f| is compared for different substances, all at a
temperature near 300 K, in Table 9. Note that in Table 9, cesium
chloride and all substances listed below it are solids, while all
substances listed above CsCl are fluids. Also, keep in mind that
the coefficients g and f are related to the F2 and 1/F terms,
respectively, in EoS III and that these terms are in turn related
to the r-12 and r-3 parts of the effective potential.

Figure 6. As in Figure 3, except that the data shown are for the 298
K isotherm of diamond.39

T2(∂(p/T)
∂T )F ) -F2(∂u

∂F)T
(16)

u(F, T) ) u0(F) + u1(F)T + u2(F)T2 (17)

p
T
) F2u0′(F)

1
T
- F2u1′(F) ln T - F2u2′(F)T + �(F)

(18)

p
T
) kB(F + fF2 + eF3 + gF5) (19)

f ) f0 + f1T +
f-1

T
+ f2 ln T (20a)

e ) e0 + e1T +
e-1

T
+ e2 ln T (20b)

g ) g0 + g1T +
g-1

T
+ g2 ln T (20c)
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Considering first the fluids, we note that |g/f| tends to be
largest for nonpolar molecules, and its magnitude has a rough
correlation, with the particle “size” being largest for the long-
chain hydrocarbons. This indicates that the r-12 term in the
effective potential is relatively important for nonpolar species
(especially large molecules), as one might have expected. For
the polar species, methanol and water, the ratio is smaller and
seems to decrease with polarity, with water having the lowest
value of all liquids considered. The value for mercury is
comparable to that of water. Thus, one is tempted to conclude
that the r-3 term in the effective potential takes account of
longer-ranged effects coming through the dipolar interactions
in water and methanol and through other long-range correlations
in liquid metals.11 However, the low value for fluid neon (falling
between mercury and water) appears to be a counterexample
to this explanation. Perhaps the importance of the r-3 term is
simply due to the fact that it introduces a 1/F contribution into
the Parsafar-Mason theory. As discussed above, the importance
of this term might mainly depend on the balance between
repulsive and attractive forces, which varies depending on the
material and is only indirectly related to the interaction
(correlation) range in a particular substance. At present, we
cannot distinguish between these possible explanations, and of
course, either or both might apply, depending on the material.
We note that for all solids considered, including neon, the |g/f|
ratio is small, indicating that the 1/F contribution is important
in EoS III.

It is also instructive to compare ratios of corresponding
coefficients (same powers in density) in EoS III, EoS II, and

EoS I. The relevant ratios are b/g to compare EoS III and EoS
I and d/f to compare EoS III and EoS II. If b/g is near 1, then
the 1/F term in EoS III is unimportant, and EoS I will be an
accurate equation of state. If d/f is near 1, then the 1/F term
dominates, and EoS II will apply. These ratios are given for
some substances in Table 9, and we see that, consistent with
the above discussion, b/g is nearest 1 for relatively simple
nonpolar liquids, and d/f is nearest 1 for metallic and ionic solids.
Results for fluid neon are not given because the data cannot be
fitted even “approximately” by EoS I or EoS II.

VII. Summary and Conclusion

In this paper, we suggest an equation of state that gives highly
accurate fits to pVT data for a wide variety of materials over a
great range of conditions, some of which could be considered
extreme. We call this new equation of state EoS III because it
builds on earlier linear regularities (EoS I10 and EoS II11) that
perform well for particular materials. EoS I works well for many
materials composed of relatively simple nonpolar molecules,
and EoS II was “designed” specifically for liquid metals such
as cesium. EoS III is not a linear regularity because it contains
two density-dependent terms, but with just three temperature-
dependent parameters, it appears to work very well for fluids
and solids of any type. EoS III will be particularly useful in
cases where both EoS I and EoS II prove inadequate. For
example, Alavi52 has reported that experimental pVT data of
water show a systematic deviation from the linear prediction
of EoS I over a large pressure range at 298 K. EoS III fits the
same experimental data36 with R2 ) 0.99999. Also, long-chain
hydrocarbons show significant deviation from linearity for EoS
I,19,20 but again, EoS III fits this data with R2 ) 1.000.

EoS III is based on an effective near-neighbor pair potential
of the ELJ(12,6,3) type. This is more general than the LJ(12,6)
and Mie(6,3) forms used in EoS I and EoS II, respectively. This
introduces one additional temperature-dependent parameter into
EoS III, giving three adjustable parameters in total. We also
allow the coefficients of the ELJ(12,6,3) potential to be
temperature-dependent, again a generalization of EoS I and EoS
II. This means that the parameters in EoS III have a more
complicated temperature dependence than those of EoS I and
EoS II. We give general expressions for this temperature
dependence and show that they give a good representation of
available data for nitrogen.

In EoS III, the terms in the effective near-neighbor pair
potential are related to corresponding terms in the equation of

TABLE 7: The Parameters of Equation 9 for Isotherms of Different Solids (quantities are tabulated as those in Table 4)

solid T, K ∆p, GPa 102 × e, (L/mol)2 f, (L/mol) 107 × g, (L/mol)4 R2

Ara 65 0-1.863 -2.30982 -0.005696 128.377 0.99992
77 0-1.863 -2.54504 0.280593 106.025 0.99970

H2
a 4 0-1.961 1.56376 -0.943934 2.27343 0.99658

D2
a 4 0-1.961 7.41524 -4.04448 13.8816 0.99856

Aub 300 3.56-216.10 6.35539 -6.53791 3.20568 0.99999
3000 19.42-230.56 0.330025 -0.326071 0.772481 0.99984

Bic 900 0-0.2 -0.0349846 -0.430555 43.6919 1.0000
NaCld 300 1.385-20.907 20.5938 -7.54191 -25.9631 0.99999
CsCle 293.15 2.50-45 60.7346 -15.2178 262.813 0.99965
CaCO3

f 300 0.001-300 89.9510 -25.4580 161.862 0.99973
H2Og 250 0-0.200 2.66061 -1.47302 7.11374 1.0000
Neh 298 4.53-208.8 0.316178 -0.281778 0.0609340 0.99824
C(diamond)h 298 1.3-57.6 1.15699 -2.97817 0.165238 0.99982
CaO(B1)i 298 0-64.1 28.0180 -15.4144 -60.4568 0.99108
MnOj 300 0-60.5 13.8416 -10.6756 4.92582 0.98831

a Reference 40. b Reference 38. c Reference 41. d Reference 42. e Reference 43. f Reference 44. g Reference 45. h Reference 39. i Reference
46. j Reference 47.

TABLE 8: Bulk Moduli (B0) and Their Pressure Derivatives
(B0′) at p ) 0 Obtained Using EoS IIIa

solid T, K B0, kbar B0′

Ar 77 12.38(14.1)b 8.956
H2 4 1.251(1.74)c 5.099(5.4)c

D2 4 3.678(3.37)c 5.341(5.4)c

C(diamond) 298 4546(4445)d 3.841(4.18)d

Au 300 1698(1666.5)e 5.261(5.4823)e

CsCl 293 199.1(168)e 5.328(5.85)e

NaCl 300 243.7(235)e 4.765(5.35)e

CaO 298 1140(1147)f 4.390(4.10)f

MnO 300 1589(1620 ( 170)g 5.106(4.8 ( 1.1)g

a Results are included for selected solids and temperatures. Some
values previously reported are given in parentheses. b Reference 48.
c References 49 and 50. d Reference 39. e Reference 51 (note that for
CsCl, the literature values are for 300 K). f Reference 46.
g Reference 47.
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state. Therefore, we have attempted to understand the possible
physical significance of the different contributions to the
effective potential by comparing the relative magnitudes of
parameters in EoS III for different materials. This analysis
indicates that the 1/F term in EoS III is particularly important
in systems where long-range correlations are expected, such as
polar, ionic, and metallic fluids and solids. This term in EoS
III is related to the r-3 contribution in the effective potential.
Thus, one is tempted to speculate that including this term allows
the effective near-neighbor model sufficient flexibility to account
for the influence of long-range effects on the equation of state.
However, we have found that the 1/F term is essential to fit
experimental data for supercritical neon, for which results are

available over a wide range of densities. It is also necessary to
describe solid neon. Since there are no obvious long-range
interactions or correlations in fluid neon, the neon results suggest
that the above explanation is at best incomplete.

Searching for another explanation as to why the 1/F contribu-
tion is crucially important for some materials but not at all for
others, we noted that at the van der Waals level, the coefficient
of the 1/F term in the expansion of (Z - 1)V2 contains opposing
contributions from the repulsive and attractive parts of the
intermolecular force. If these contributions cancel exactly, then
the term vanishes; if they do not cancel exactly, the 1/F term
will contribute, and its magnitude will depend on the extent of
the cancellation. For neon, the dispersion interaction is consider-
ably weaker than that for argon, which might reduce the
cancellation and explain why EoS I is excellent for argon but
fails completely for neon. Now, while it is obvious that the van
der Waals expression is not valid for dense fluids and solids, it
is possible that a similar cancellation, or lack thereof, also
controls the importance of the 1/F term in dense materials. Such
an effect would be only indirectly related to the range of the
interactions and correlations in a particular system. Of course,
these possible explanations of the relevance of the r-3 term are
not mutually exclusive, and either or both might apply,
depending on the material.

We are applying MD simulations together with experimental
results to examine the validity of EoS III for ionic liquids, where
both short- and long-range interactions are important.23 Molec-
ular dynamics results for one model ionic liquid are given in
this paper and serve to show that EoS III is excellent for these
systems, whereas both EoS I and EoS II are not adequate. An
advantage of the MD approach is that the internal and nonideal
thermal pressure contributions to the equation of state can be
separated. For model ionic liquids, we find that both contribu-
tions are of comparable magnitude and have a similarly strong
dependence on density. This contrasts with the situation for
simpler systems such as argon, where the density dependence
of the nonideal thermal pressure contribution is relatively weak.10

Our calculations show that the argon observations cannot be
generalized to more complex systems and that, in general, one
must expect the coefficients of EoS III (and also those of EoS
I and EoS II) to contain contributions from both terms in the
exact thermodynamic equation of state. If the internal and
thermal pressure contributions cannot be separated, this further

Figure 7. Fitting the parameters of EoS III for nitrogen to eqs
20a-20c. The parameter e is shown in (a), f in (b), and g in (c).

TABLE 9: Significance of the Different Terms in Equation 9a

substance T, K 104 × |g/f|, (L/mol)3 b/g d/f

n-C19H40 343.15 428 0.533
n-C9H20 303.15 59.6 0.665
Ar 308.15 16.2 0.986
C3H8 308.15 11.9 0.919
N2 308.15 4.86 1.03
CH4 308.15 4.30 1.05
CO 308.15 3.38 1.05
CH3OH 300 1.50 0.793
Hg 303 0.0973 0.840
Ne(fluid) 298 0.0533
H2O 298.15 0.0320 1.67
CsCl 293.15 0.0173 8.73 1.13
CaCO3 300 0.00636 1.08
NaCl 300 0.00344 0.935
Au 300 0.000490 1.15
Ne(solid) 298 0.000216 3.42 1.36
C(diamond) 298 0.0000555 -2.03 0.671

a Note that CsCl and all substances listed below it are solids; all
above CsCl are fluids.
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complicates any attempt to relate these coefficients to the
underlying intermolecular forces.
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