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bstract

In this work, a new method based on the modified Enskog theory (MET) is presented for calculation of transport properties at high densities
ρ > ρc). The main limitation of using the MET is lack of experimental data for co-volume, b0. We have substituted b0 from hard sphere (HS) theory
nd zero density transport properties from the kinetic theory of gases for HS in the MET expression, because of the fact that dense fluids behave
ore and less like a HS fluid. As a result, a simple linear expression for the self diffusion (D) and quadratic expressions for viscosity (η) and

hermal conductivity (λ) coefficients have been obtained in terms of Y at high densities (ρ > ρc), where Y = (T (∂p/∂T )�)/ρRT − 1. To evaluate
he obtained expressions, we have used experimental values of densities and the transport properties and calculated Y from the reported accurate
quation of state (EOS) for argon and xenon. We have noticed that the quadratic fits for viscosity and thermal conductivity and the linear fit (when
< Tc) for self diffusion hold quiet well with the correlation coefficient, R2 ≥ 0.9994, when ρ > ρc. Also, we have found that the curves for different

sotherms of a fluid fall onto a common curve at high densities over entire temperature range for which experimental data exist, but the curves
epend on the nature of fluid. So, by using experimental data of transport properties for one isotherm and an accurate EOS for calculation of Y
or a dense fluid, we may calculate the corresponding property of that fluid for any other isotherm. In this work, we have used this approach to
redict the viscosity coefficient of n-alkanes from propane to n-octane and cyclohexane at different densities (ρ > ρc) and temperatures. To do such
redictions, we need an accurate EOS for each compound which is not generally available. For this reason, we have made use of the modified linear
sotherm regularity (MLIR). Therefore, using the calculated values of density and thermal pressure coefficient from the MLIR and the coefficients
f the viscosity expression for each of these fluids, their viscosities have been predicted with the average percentage error less than 1.6%. To make
he approach more general, we have used the principle of corresponding states to present viscosity expression independent of fluid in terms of the
educed variables. Therefore, one may use experimental data for one isotherm of an arbitrary fluid to find the coefficients of the reduced viscosity

xpression. Then, these coefficients may be used for other fluids at the same reduced temperature, Tr, to calculate the reduced viscosity. Here, we
ave selected n-butane as a reference compound because of abundance of experimental data. We have used the coefficients of the expression for
-butane and density and Y have been calculated from the MLIR, this approach gives viscosity of hydrocarbons with the average percentage error
ess than 1.7%. Similar approach has been used to calculate the self diffusion coefficient and thermal conductivity of dense fluids.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Liquid viscosity is one of the most significant transport
roperties required by chemical engineers involved in reactor

pplications and heat and mass transfers. Accurate experimen-
al measurements of viscosity are a complex task. Therefore,
n this situation, any generalized prediction approach is highly
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esirable for practical engineering uses. Reid et al. has reviewed
any different viscosity methods [1]. The viscosity models

ound in literature range from highly theoretical to simple
mpirical correlations. The kinetic theory of dilute gases and
he Chapman–Enskog theory [2] have formed accurate semi-
heoretical models for the viscosity prediction of dilute gases.
he Rainwater-Friend theory is used for prediction of viscosity
n intermediate density range [3]. Also, the Rainwater-Friend
heory was used for densities up to 2 mol/dm−3 by Najafi et al.
4]. Nevertheless, because of the complexity of the intermolec-
lar forces in dense fluids, makes even a semi-theoretical model
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dx.doi.org/10.1016/j.fluid.2007.02.002
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xtremely difficult. At high densities, the Modified Enskog
heory [2], the excess viscosity function methods [4–6] and
he friction theory (f-theory) [7] may be used for prediction
f viscosity. Several estimation methods have been proposed
or prediction of viscosity for organic compounds in literature
uch as, the Jossi–Stiel–Thodos correlation for non-polar pure
ubstances [8], the Stiel–Thodos correlation for polar pure sub-
tances [9], method of Chung [10] and the modified method
f Ely and Hanley [11]. Also, other methods such as the group
ontribution method [12] and artificial neural network [13], have
een used for estimation of viscosity in terms of temperature.

In this work, the modified Enskog theory (MET) along with
he modified linear isotherm regularity (MLIR) [14,15] are used
o predict the viscosity of dense hydrocarbon fluids over wide
anges of temperature and pressure. Also, the principle of corre-
ponding states is used to predict transport properties of dense
uids.

.1. The modified Enskog theory

On the basis of the Enskog theory, viscosity of dense hard
phere fluid is given as [2]:

= η0b0ρ

[
1

Y
+ 0.800 + 0.761Y

]
(1)

here η is the viscosity of the hard-sphere fluid, η0 the viscosity
f a dilute hard sphere gas, b0 the co-volume and is equal to
/3πσ3, where σ is the hard-sphere diameter, and Y = b0ρg(σ),
here ρ is the number density and g(σ) is the two-body hard-

phere radial distribution function at contact. The quantity Y is
elated to the hard-sphere equation of state as

= p

ρkT
− 1 (2)

Although the Enskog theory is an accurate theory for dense
ard-sphere fluids, in which the pressure and the thermal pres-
ure are the same, Enskog himself proposed and formulated
ts application to real dense fluids in an ad hoc manner. This
ransformation, which is known as the modified Enskog the-
ry (MET), incorporates two modifications with respect to the
riginal Enskog theory. First, Enskog suggested that instead of
elating Y to the actual pressure of the system through Eq. (3), one
hould introduce the so called “thermal pressure”, T(∂p/∂T)ρ,
here (∂p/∂T)ρ is called the “thermal pressure coefficient”. The

ustification for this is that the contribution of the intermolecular
nteractions in pressure which is known as the “internal pres-
ure”, (∂E/∂V)T, must be included in the real fluids. The exact
hermodynamic relation relates the sum of the pressure and the
nternal pressure to the thermal pressure as(

∂p

∂T

)
ρ

= p +
(

∂E

∂V

)
T

(3)
herefore, Y may be written as

= 1

ρRT

[
T

(
∂p

∂T

)
ρ

]
− 1 (4)
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econd, the co-volume b0 is redefined in terms of the second and
hird virial coefficients B and C and their temperature derivat-
ves:

0 = B + T
dB

dT
+ C + T

dC

dT
(5)

herefore, having values of b0, η0, density and the thermal pres-
ure coefficient, γ , of any real fluid along with the MET, the
alue of viscosity may be predicted at each temperature and
ressure of interest. But, the latter step seriously hinders the
pplication of the theory to real systems, because of a lack of
nowledge of the virial coefficients for many fluids. On the other
and, the shortage of experimental data for the thermal pres-
ure coefficients of liquids is another limitation in using the

ET.

. Viscosity calculation of dense fluids based on the
ET

For prediction of viscosity of a dense fluid via Eq. (1), we
eed the values of b0, η0, density and the thermal pressure coeffi-
ient of that fluid. Precise information about the thermal pressure
oefficient is scared and obtained by cumbersome from the direct
erivation of accurate equation of state which depends on fluid.
he value of density may be obtained either by the exact equa-

ion of state or experimental data for a fluid. Also, the value of η0
t any temperature may be found in literature for different com-
ounds. Nevertheless, the lack of b0 for many compounds is one
f the main limitations in applying the MET to these systems.
o solve this problem, we may make use of the hard sphere
HS) theory because of the fact that the behavior of a dense
eal fluid is primarily determined by the short range repulsive
orces (like the HS fluid) and the relatively long-range attractive
art of the potential provides a net force that gives a some-
hat uniform attractive potential. To examine this point, we
ave calculated the thermal pressure of Xe using its accurate
OS [16], to plot the result against the pressure which is shown

n Fig. 1. As shown in this figure, a linear correlation is found
hen ρ > ρc, unlike the case when ρ < ρc. In the other words,

or a real dense fluid, the two pressures are not the same but
hey are different only by a constant for the entire density. So
he values of b0 and η0 for dense fluids, may be approximately
ubstituted from the HS theory. Therefore, we may rearrange
q. (1) as:

ηY

η0ρ
= b0(1 + 0.800Y + 0.761Y2) (6)

ccording to the kinetic theory of gases, the viscosity of a dilute
ard sphere gas, η0, can be expressed as

0 = 5

16
√

π

(√
MRT

NAσ2

)
(7)
here M is the molecular weight, R the gas constant, T the tem-
erature, NA the Avogadro constant and σ is the hard-sphere
iameter. By substituting this expression for η0 and 2/3πσ3 for
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ig. 1. Plot of the thermal pressure against the pressure of Xe for (a) ρ > ρc and
ase, with the correlation coefficient R2=0.9998.

0 in Eq. (6), this equation may be reduced to:

ηY√
Tρ

=
(

2

3
πσ3

)(
5

16
√

π

(√
MR

NAσ2

))

× (1 + 0.800Y + 0.761Y2)

⇒ ηY√
Tρ

=
(

5σ

24

(√
πMR

NA

))
(1+0.800Y+0.761Y2)

(8)

r generally

ηY√
Tρ

= aY2 + bY + c (9)

here a, b, and c coefficients are independent of temperature
nd expected to be so for the real dense fluids as well. However,
hey are expected to depend on temperature for real dilute flu-
ds, due to appearance of σ on the right side of Eq. (8), even if
q. (9) holds. To investigate our expectation, we select argon
nd xenon as test fluids because of the abundance of available
xperimental viscosity and pvT data and the existence of accu-
ate equations of state for them. At first, by direct derivation
rom the accurate equations of state for Xe [16] and Ar [17],
he values of thermal pressure coefficient may be obtained for
hese fluids. Then, using the calculated thermal pressure coef-
cient and experimental data for density [16,17] and viscosity
18,19] for different isotherms of these fluids, we have plotted
Y/

√
Tρ versus Y, see Figs. 2 and 3. As shown in these figures,

he quadratic fit holds quiet well for each isotherm with the cor-
elation coefficient, R2 ≥ 0.9993, when ρ > ρc, where ρc is the

ritical density. In addition, these isotherms fall onto a single
ommon quadratic curve for ρ > ρc for whole temperature range
hat experimental data are reported (200 K < T < 600 K for Xe
nd 110 K < T < 500 K for Ar). But as shown in Figs. 2 and 3b,

e
n
i
c

ρc at T = 300 K. Note the linear dependence of the two pressures in the former

either such common curve nor the quadratic fit are held when
< ρc. Due to significant deviation of real dilute fluids from

he HS theory, such behaviors are expected. Since our purpose
n this section is to predict viscosity of dense hydrocarbons,
e have used Eq. (9) to investigate the prediction for n-alkanes

rom propane to n-octane and cyclohexane. To do so, at first, by
irect derivation from the accurate equation of state for these
ompounds [20], the value of thermal pressure coefficient is
btained. Then, using the calculated thermal pressure coeffi-
ient and experimental data for density and viscosity of propane
nd n-butane [18], n-pentane, n-hexane, and n-octane [21], n-
eptane [22] and cyclohexane [23] for different isotherms that
xperimental data are available, we have plotted ηY/

√
Tρ ver-

us Y. Again, we have found that plots of different isotherms for
ach of these fluids well fit in a quadratic function and all of
hem can be presented by a common curve at dense region, see
able 1. Therefore, the range of density and temperature over
hich this behavior is valid and a, b and c coefficients are inde-
endent of temperature, is ρ > ρc and entire temperature range
or which experimental data exist.

A common plot for ηY/
√

Tρ in terms of Y resulted in,
Y/

√
Tρ can be expressed by a quadratic function in terms of

for each of these dense fluids with different values for the
oefficients of the equation, see Eq. (9). The coefficients of this
quation are given in Table 1 for Xe, Ar, n-alkanes from propane
o n-octane and cyclohexane. Having these coefficients and the
alues of density and thermal pressure coefficient along with
q. (9), the viscosity may be predicted in terms of pressure for
ach of these fluids. But as mentioned before, the experimental
ata for the thermal pressure coefficients are scared and obtained
rom the direct derivation of accurate equation of state for differ-

nt fluids. On the other hand, such accurate equation of state does
ot exist for many compounds. In this case, an appropriate EOS
s desirable for calculation of both density and thermal pressure
oefficient. Recently, the extension of linear isotherm regularity
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Fig. 2. Quadratic fit of ηY/ρ
√

T as a function of Y for different isotherms of Xe for (a) ρ > ρc and (b) ρ < ρc. The values of a, b, and c coefficients for each isotherm
at ρ > ρc are given in the parenthesis.

T
T
d

F

C
n
n
n
n
n
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X
A

Fig. 3. Same as F

able 1
he values of a, b and c coefficients of Eq. (9) in �Pa s L mol−1 K−0.5 and the correlat
ata in Eq. (9) for given temperature and pressure ranges

luid 	T (K) 	p (MPa) a

3H8 298.15–348.15 0.1–100 0.1
-C4H10 298.15–348.15 0.1–69 0.2
-C5H12 303.15–348.15 0.1–69 0.5
-C6H14 303.15–348.15 0.1–92 0.9
-C7H16 303–348 0.1–100 1.3
-C8H18 303.15–348.15 0.1–96 1.9

6H12 298.15–348.15 0.1–85.5 4.8
e 200–600 20–300 0.3
r 110–500 0.1–400 0.1
ig. 1 for Ar.

ion coefficient, R2, for some given compounds obtained via fitting experimental

b c R2

82 −0.838 2.318 0.9997
69 −1.862 6.122 0.9998
79 −7.668 33.899 0.9998
12 −14.755 73.984 0.9998
77 −25.638 154.005 0.9997
56 −45.819 309.464 0.9997
93 −100.993 558.620 0.9997
80 −1.0986 1.449 0.9996
543 −0.3639 0.6211 0.9996



1 Phas

t
t
m
s
o
t

2
s

p
i
c
i
d

(

w
t
d
b
B
t
m
L
s
t
t
t
a
t
b
a
h
i
t
e

w
l
t
a
n
v
o
[
c
a
p
t

t
n
a
g
t

a
T
u
l
t
p
g
c
c
p
E
c
p
l
c
s
o
t(

T
w
a
p
t

2
a

n
p
p
fl
t
p
a
b
w
t
w
M
t
t

12 G.A. Parsafar, Z. Kalantar / Fluid

o long chain organic compounds is reported via the group con-
ribution method [14,15]. We may use this EOS (known as the

odified linear isotherm regularity, MLIR) for prediction of den-
ity and thermal pressure coefficient of hydrocarbons because
f its high performance. The MLIR used in this work is going
o be introduced in brief.

.1. The modified linear isotherm regularity equation of
tate

Using the LJ (12, 6) potential for the average effective
air potential (AEPP) along with the pairwise additive approx-
mation for the molecular interactions in dense fluids and
onsidering only the nearest neighbor interactions, the linear
sothermal regularity (LIR) was derived from the exact thermo-
ynamic relations as

Z − 1)v2 = A + Bρ2 (10)

here Z = p/ρRT is the compressibility factor, and ρ = 1/v is
he number density and A and B are the temperature depen-
ent parameters [24]. The LIR was experimentally found to
e hold for all types of fluids for densities greater than the
oyle density (ρB ≈ 1.8ρc, where ρc is the critical density) and

emperature less than twice the Boyle temperature. Since the
athematical form of the AEPP function is assumed to be the
J (12,6), such potential function is appropriate for the spherical-
ymmetrical molecules, then non-spherical molecules, such as
he chain organic compounds, show significant deviation from
he linearity of the LIR. However, based on the group contribu-
ion method concept, an organic compound may be considered
s a hypothetical mixture of their constituent groups, in which
he interaction potential among any two groups is assumed to
e the AEPP. Then, on the basis of the van der Waals one-fluid
pproximation, the LIR equation of state was used for such a
ypothetical mixture, but the new equation of state parameters
n addition of temperature, depend on groups composition of
he mixture. Therefore, the LIR for ordinary mixtures [25] was
xtended to organic chains as [15]:(

p
nρRT

− 1

n2ρ2

)
= Am + Bmn2ρ2

⇒
(

Z
n

− 1

ρ2

)
= Am + Bmn2ρ2 (11)

hich we shall refer to it as the modified linear isotherm regu-
arity (MLIR) from now on. In this equation, Am and Bm are
he MLIR parameters where their temperature dependencies
re just the same as those for the LIR parameters and n is the
umber of constituent groups of organic compound. In our pre-
ious works the MLIR were successfully applied for long chain
rganic compounds such as n-alkanes and their binary mixtures
14], primary, secondary and tertiary alcohols, ketones and 1-

arboxylic acids [15], according to which (Z/n − 1)ν2 is linear
gainst ρ2 for each isotherm of these dense fluids. The MLIR
arameters (Am, Bm) for these fluids were predicted by using
he group contribution method. To do so, we considered each of

v
c
T
p

e Equilibria 253 (2007) 108–117

hese fluids as a hypothetical mixture of its constituent groups,
amely methyle, terminal methylene (methylene groups each
ttached to one methyle group), middle methylene (methylene
roups at the middle of chain which each of them attached to
wo methyle groups), and an appropriate functional group such

s CH2OH, 〉CHOH, , 〉C O, and COOH groups.
hen basic compounds, namely propane and n-butane, were
sed to obtain the contribution of methyl and terminal methy-
ene groups, cyclohexane was used to obtain the contribution of
he middle methylene groups and also other appropriate com-
ounds were used to obtain the contribution of the functional
roups in the MLIR parameters. Having the contribution of
onstituent groups in the EOS parameters along with dependen-
ies of the LIR parameters to system composition, the MLIR
arameters for each compound were calculated. The calculated
OS parameters along with the MLIR are then used to cal-
ulate the density of different organic compounds at different
ressures and temperatures with the average percentage error
ess than 1.2. Also, we have calculated the thermal pressure
oefficient (γ = (∂p/∂T)ρ) at different temperatures and pres-
ures for some hydrocarbons from the following expression
btained from the MLIR with average percentage error less
han 1.1%:

∂p

∂T

)
ρ

= nρR + n3ρ3R(Am + A′
mT ) + n5ρ5R(Bm

+B′
mT ) (12)

he main advantage of the MLIR for organic dense fluids is that
e may predict their density and thermal pressure coefficient

ccurately, just by using the experimental data of the basic com-
ounds. Hence, we have used this EOS to calculate density and
hermal pressure coefficient of dense hydrocarbons.

.2. Viscosity calculation using the quadratic expression
long with the MLIR-EOS

The main purpose in this section is to calculate the viscosity of
-alkanes from propane to n-octane and cyclohexane in terms of
ressure and temperature using Eq. (9) and the MLIR. For this
urpose, the contribution of three constituent groups of these
uids (methyle, terminal methylene and middle methylene) in

he MLIR parameters, were calculated using three basic com-
ounds, namely propane, n-butane and cyclohexane at 313.15
nd 333.15 K (for details see Refs. [14,15]). Having the contri-
utions of three constituent groups of the EOS parameters along
ith dependencies of the LIR parameters to system composi-

ion, the MLIR parameters for each n-alkane and cyclohexane
ere calculated at two temperatures. Then, using the calculated
LIR parameters along with Eqs. (11) and (12), the density and

hermal pressure coefficient have been calculated for each of
hem in terms of pressure at both temperatures. The calculated

alues of density and thermal pressure coefficient, and also the
oefficients of Eq. (9) for each of these hydrocarbons given in
able 1 may be used to calculate viscosity coefficient at any
ressure and temperature. The calculated results are given in
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Table 2
Average absolute percent deviation of the calculated viscosity for n-butane, n-
pentane, n-hexane, n-heptane, n-octane and cyclohexane at 313.15 and 333.15 K
using the calculated values of density and thermal pressure coefficient obtained
from the MLIR and the values of a, b and c coefficients of Eq. (9) from Table 1

Fluid T (K) 	p (MPa) (|	η| /η)av × 100

n-C4H10 313.15 0.75 (0.99)
333.15 0.1–69 0.81 (1.1)

n-C5H12 313.15 0.89 (1.2)
333.15 0.1–69 0.96 (1.3)

n-C6H14 313.15 0.99 (1.4)
333.15 0.1–92 1.1 (1.5)

n-C7H16 313.15 1.0 (1.4)
333.15 0.1–100 1.2 (1.7)

n-C8H18 313.15 1.5 (1.9)
333.15 0.1–96 1.6 (2.0)
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6H12 313.15 0.91 (1.2)
333.15 0.1–85.5 0.98 (1.3)

aximum deviations are given in parentheses.

able 2. The average percentage error and its maximum value for
iscosity were found to be lower than 1.6 and 2.0, respectively.

. Extension to other transport properties

.1. Calculation of thermal conductivity

Based on MET, the thermal conductivity of a dense fluid is
iven as [2]:

= λ0b0ρ

[
1

Y
+ 1.2 + 0.755Y

]
(13)

here λ is the thermal conductivity of the dense fluid, λ0 is
ts zero density value, b0 is the co-volume, ρ is the number
ensity and Y for real dense fluid may be given by Eq. (4).
gain, the values of λ0 and b0 may be substituted from dilute
as expressions of the hard sphere fluids. Based on the kinetic
heory of gases, the zero-density thermal conductivity of hard
phere gas, λ0, can be given as [2]:

0 = 5

16

(
CV,m + 9

4
R

)(
RT

πM

)1/2 1

NAσ2 (14)

here CV,m is the molar heat capacity at constant volume. By
ubstituting this expression for λ0 and 2/3πσ3 for b0 in Eq. (13),
his equation may be reduced to

λY

ρ
√

T (CV,m + (9/4)R)
= iY2 + jY + k (15)

here i, j and k coefficients are independent of temperature and
xpected to be so for real dense fluids as well. The same as pre-
ious section, we may expect that the plot of λY/

√
Tρ(CV,m +

9/4)R) in terms of Y be quadratic for each isotherm of a dense
uid and the isotherms fall onto a common curve. To investigate

his expectation, we may use the experimental data of density and

hermal conductivity of Xe [16,18] because of the abundance of
vailable experimental thermal conductivity and pvT data and
ts reported accurate equation of state [16]. For the monoatomic
uids, CV,m is almost independent of temperature and hence we

a
e
s
a
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xpect that plots of λY/
√

Tρ in terms of Y be quadratic for each
sotherm of Xe. As shown in Fig. 4a and b, for ρ > ρc, the data
or each isotherm fit well in a quadratic function and in addition
o that all isotherms fall onto a single curve for all isotherms for
hich experimental data exist. However, neither the quadratic
t nor the falling onto a common curve were observed when
< ρc. Therefore, if λY/

√
Tρ(CV,m + 9/4R) is plotted in terms

f Y for any isotherm of a dense fluid and fitted in a quadratic
quation, the obtained coefficients of the equation may be used
o calculate the thermal conductivity of that fluid at any other
emperature. Therefore, again we may use the MLIR to calculate
ensity and thermal pressure coefficient, along with the coeffi-
ients of Eq. (15), to calculate λ for dense organic compounds.
nfortunately, there is no enough experimental data in literature

o do such calculation.

.2. Calculation of self-diffusion

The self-diffusion is given as [2]:

= D0b0ρ

(
1

Y

)
(16)

here D is the self-diffusion of the hard-sphere fluid, D0 the
elf-diffusion of a dilute hard sphere gas, b0 the co-volume and
is the number density. Again, the quantity of Y for real dense

uid may be given by Eq. (4) and the self-diffusion of a dilute
ard sphere gas, D0, is obtained from the kinetic theory of gases
s [2]:

0 = 3

8

(√
RT

πM

)
1

ρσ2 (17)

y substituting this expression for D0 and 2/3πσ3 for b0 in Eq.
16), this equation may be reduced and rearranged to:

D = 3

8

(√
RT

πM

)
1

ρσ2

(
2

3
πσ3

)
ρ

(
1

Y

)

⇒ DY√
T

= σ

4

√
Rπ

M
(18)

r generally

DY√
T

= cte (19)

or the self-diffusion we expect that plots of DY/
√

T versus Y
or each isotherm of dense fluid to be a constant. To test such
n expectation, we have used the self-diffusion data of methane
26] and n-hexane [27], only available data we could find in liter-
ture. By the direct derivation of the accurate equation of state of
ethane and n-hexane [20], the value of thermal pressure coef-
cient is calculated. Then, using the calculated thermal pressure
oefficient and experimental data for self-diffusion of methane

nd n-hexane for each isotherm for which the experimental data
xists, we have plotted DY/

√
T versus Y, see Fig. 5a and b. As

hown in Fig. 5a, the data of different isotherms for each fluid
re well fitted in a single line when ρ > ρc and T < Tc, instead of
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Fig. 4. Quadratic fit of (λY/ρ
√

T ) vs. Y for diff

eing a constant. However for the supercritical isotherms (even
ith ρ > ρc) shown in Fig. 5b, neither the linearity nor the falling
f isotherms onto a single curve are observed. Therefore, we may
xpect that having the intercept and slope of the line for a fluid
re sufficient to be used along with the MLIR, to calculate the
elf diffusion coefficient of that fluid when ρ > ρc and T < Tc.

. Viscosity calculation of dense fluids using the
rinciple of corresponding states

As mentioned in the previous section, the values of a, b and c

oefficients in Eq. (9) depend on fluid. However, they are inde-
endent of temperature for the dense fluids (ρ > ρc). Therefore,
or the dense fluids, at least experimental data for one isotherm
nd accurate EOS for calculation of the thermal pressure coef-

w
o
e
m

ig. 5. Plot of DY/
√

T vs. Y for given isotherms with ρ > ρc of (a) methane (dashed
isotherms of Xe for (a) ρ > ρc and (b) at ρ < ρc.

cient are need. However, for the latter need, the MLIR and
roup contribution method may be used. If there is no exper-
mental data, even for one isotherm of a fluid, we may make
se of the principle of corresponding states for the prediction of
iscosity of the dense fluid over a wide temperature and pres-
ure ranges. To do so, we reduce η, T, and ρ by η0, Tc and ρc,
espectively. Therefore, Eq. (9) may be written in the reduced
orm as,

ηrY√
Trρr

= a′Y2 + b′Y + c′ (20)
here a′, b′ and c′ coefficients are expected to be independent
f fluid, but depend on Tr. For checking such expectation, the
xperimental values of density and viscosity along with the ther-
al pressure coefficient calculated from the accurate EOS for

line) and n-hexane (solid line) when T < Tc and for (b) methane with T < Tc.



G.A. Parsafar, Z. Kalantar / Fluid Phas

F
h
l

n
η

s
g
T
o
(
t
n
e
p
a
a
b
c
l
M
f
l

t

T
A
n
v
E
b

F

n
n
n
n
C

M

f
c
a

5

H
(
c
[
fl
o
b
fl
w
l
m
d
a
a
a
t
h
t
c
o
a
t
r
g
p
a
i
a
c
a
(
a
e

ig. 6. Quadratic fit of ηrY/ρrTr
0.5 vs. Y for n-butane, n-pentane, n-hexane, n-

eptane, n-octane and cyclohexane for Tr = 0.45 (dashed line) and Tr = 0.6 (solid
ine) isotherms.

-alkanes (C4–C8), are used to plot the dimensionless quantity
rY/ρr

√
Tr versus Y at two reduced temperatures (Tr = 0.45, 0.6),

ee Fig. 6. As shown, all the points for a given Tr fall on a sin-
le quadratic curve with the correlation coefficient R2 > 0.9996.
herefore, one may use the experimental data for one isotherm
f an arbitrary fluid to find the a′, b′, and c′ coefficients of Eq.
20). Then, these coefficients may be used for other fluids at
he same reduced temperature as well. Here, we have selected
-butane as a reference compound, because of the abundance of
xperimental data for it over a wide range of temperature and
ressure. The experimental values of density and viscosity [18]
long with the thermal pressure coefficient calculated from its
ccurate EOS [20] of n-butane are used to obtain the values of a′,
′, and c′ coefficients at Tr = 0.55 (a′ = 0.197, b′ = −4.401 and
′ = 30.472). We have used these values along with the calcu-
ated values of density and thermal pressure coefficient from the

LIR at this reduced temperature to obtain viscosity at Tr = 0.55

or some other hydrocarbons with the average percentage error
ess than 1.7, see Table 3.

This approach has not been applied for the thermal conduc-
ivity and self diffusion because of the lack of experimental data

able 3
verage absolute percent deviation of the calculated viscosity for n-pentane,
-hexane, n-heptane, n-octane and cyclohexane at Tr = 0.55 using the calculated
alues of density and thermal pressure coefficient obtained from the MLIR and
q. (20) for which its coefficients are obtained from experimental data of n-
utane

luid T (K) 	p (MPa) (|Δη| /η)av × 100

-C5H12 258.34 0.1–69 0.98 (1.2)
-C6H14 279.30 0.1–92 1.1 (1.4)
-C7H16 297.07 0.1–100 1.4 (1.7)
-C8H18 313.13 0.1–96 1.7 (2.1)

6H12 304.48 0.1–85.5 1.2 (1.6)

aximum deviations are given in parentheses.
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or these transport properties. However, we expect that the prin-
iple of corresponding states may be applied for these properties
s well, at least for non-polar and weakly polar fluids.

. Conclusions

In this work, the MET expressions and their zero density
S expressions are used to obtain a simple linear expression

for self diffusion) and quadratic expressions, Eq. (9) for vis-
osity and Eq. (16) for thermal conductivity, in terms of Y =
T (∂p/∂T )ρ]/ρRT − 1 at high densities (ρ > ρc) at which real
uids approximately behave more and less like a HS fluid. The
btained expressions are generally valid for the real dense fluids
ut the ratios of coefficients are different from those of the HS
uid. However, real fluids, as expected, behave quiet differently
ith HS fluid at low densities (ρ < ρc), in such a way that the

inear and quadratic expressions of the HS fluid are not valid any
ore. We have approved such behavior by using experimental

ata. To evaluate such approval, experimental data for density
nd viscosity and calculated thermal pressure coefficient from
n accurate EOS, were used to plot ηY/

√
Tρ against Y for Xe

nd Ar, see Figs. 2 and 3. The quadratic fit holds quiet well with
he correlation coefficient R2 ≥ 0.9995, for these compounds at
igh densities (ρ > ρc), see Figs. 2 and 3a. Also, we have noticed
hat the plots for different isotherms of a dense fluid fall onto a
ommon curve, see Figs. 2 and 3a, but such behavior weren’t
bserved at low densities (ρ < ρc) for which the effect of the
ttractive forces are more important and hence deviation from
he HS fluid is significant, see Figs. 2 and 3b. The temperature
ange of the quadratic fit and falling of the isotherms onto a sin-
le curve were observed over a wide range of temperature and
ressure (200 < T < 600 K and pressure up to 300 MPa for Xe
nd 110 K < T < 500 K and pressure up to 400 MPa for Ar) that
s the entire temperature range for which the experimental data
re reported. Also, this approach was applied to the dense hydro-
arbons and a, b, and c coefficients of Eq. (9) were calculated
nd tabulated, see Table 1. Calculation of viscosity by using Eq.
9) requires the values of density, thermal pressure coefficient,
nd a, b, and c coefficients. The values of the coefficients for
ach of these fluids may be found in Table 1. Also, the values
f density and thermal pressure coefficient may be calculated
rom the MLIR and its appropriate derivative using the group
ontribution method. Using these coefficients along with the cal-
ulated values of density and thermal pressure coefficient from
he MLIR, viscosity of the hydrocarbons at two temperatures,
13.15 and 333.15 K, were calculated with average percentage
rror lower than 1.6, see Table 2. Also, the calculated viscosity
f some hydrocarbons are compared with those of some corre-
ations [8,10,11] for a given temperature and pressure range, in
able 4.

This approach has been extended and evaluated for other
ransport properties such as the thermal conductivity, λ, and
elf-diffusion, D. For the thermal conductivity, the accuracy

f the quadratic expression was investigated using the calcu-
ated thermal pressure coefficient from the accurate equation
f state and experimental data for density and thermal conduc-
ivity of Xe. We have again found that λY/

√
Tρ in terms of
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Table 4
Comparison of average absolute percent deviation of the calculated viscosity obtained from this work with those obtained from several estimation methods [8,10–11]
at given temperature and pressure ranges

Fluid 	T (K) 	p (MPa) 100(|Δη| /η)av

This work Thodos [8] Chung [10] Ely and Hanely [11]

n-C4H10 280–350 0.1–65 1.03 (1.27) 9.5 (28.4) 6.5 (28.6) 5.9 (27.1)
n-C5H12 313.15–348.15 0.1–69 1.18 (1.32) 12.8 (28.1) 6.6 (16.7) 3.9 (19.9)
n-C6H14 298.15–348.15 0.1–92 1.31 (1.58) 14.7 (30.8) 7.8 (18.3) 5.8 (80.4)
n-C7H16 303–348 0.1–100 1.50 (1.81) 12.8 (28.8) 4.7 (20.5) 3.3 (31.6)
n 3)
C 5)

M

Y
w
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-C8H18 298.03–348.14 0.1–96 1.84 (2.2

6H12 298.15–348.15 0.1–85.5 1.24 (1.4

aximum deviations are given in parentheses.

for different isotherms of Xe fits in a quadratic expression
ith R2 > 0.999 when ρ > ρc. The same as that for viscosity,

he isotherms fall onto a single quadratic curve at high densi-
ies (ρ > ρc), see Fig. 4a, but such behavior are not observed at
ow densities (ρ < ρc), see Fig. 4b. Again, at low densities that
ttractive forces become more important than repulsive ones,
eviation from the HS fluid is expected to be significant. For
he self diffusion, the quantity DY/

√
T for the HS fluid does

ot vary with Y. To investigate such a case for real fluids, the
alculated values of the thermal pressure coefficient from the
ccurate equation of state and experimental data for density and
elf-diffusion of methane and n-hexane have been used to plot
Y/

√
T versus Y. As shown in Fig. 5a, we have found that the

ata for each isotherm of subcritical fluid fit in a linear expression
nd at high densities (ρ > ρc) they fall onto a single line. How-
ver, neither the linearity nor the falling was observed for the
upercritical fluids, even at high densities (ρ > ρc), see Fig. 5b. It
eems that diffusion of molecules in a supercritical dense fluid is
uiet different with that of the subcritical dense fluid, compare
ig. 5a with b.

Even though a real dense fluid behaves according to the math-
matical expression obtained for the properties of the HS fluid,
ut their behavior is not exactly the same, for this reason the
atios of the coefficients for the expressions obtained for real flu-
ds are different with those of the HS fluid. Each molecule in the
ense fluid experiences mainly a repulsion which is somewhat
oft, compare to infinite value for the HS molecule when two
olecules penetrate each other. Therefore, one may expect that

eal dense fluids behave similar to HS fluid, but their behaviors
re not exactly the same.

For calculation of viscosity and thermal conductivity of a
ense fluid via the quadratic equations, Eq. (9) for the viscosity
nd Eq. (15) for the thermal conductivity, we need the experi-
ental data at least for one isotherm of that fluid and an accurate
OS for calculation of its thermal pressure to obtain the coef-
cients of the quadratic equations, because the values of the
oefficients in the quadratic equations depend on type of fluid.
herefore, if there is no experimental data even for one isotherm
f that fluid, this approach cannot be used. In this case, we may
esort to the principle of corresponding states. For this purpose,

e have reduced η, T, and ρ in Eq. (9) by η0, Tc and ρc, respec-

ively. Thus, a′, b′, and c′ of Eq. (20) are being independent of
uid type at a given reduced temperature. Using the experimen-

al values of density, viscosity and thermal pressure coefficient

p
R
T
T

13.4 (23.8) 3.5 (14.7) 4.4 (14.6)
49.9 (54.2) 47.4 (65.9) 46.1 (66.4)

f n-alkanes (C4–C8), the universality of Eq. (20) is verified for
wo reduced temperatures (Tr = 0.45, 0.60), for which the exper-
mental data are available, see Fig. 6. As shown in this figure,
t any reduced temperature, dimensionless quantity ηrY/ρr

√
Tr

ersus Y fits in a single quadratic curve (R2 > 0.9996) for all
iven hydrocarbons. Therefore, by fitting the data of a real fluid
t a given reduced temperature in the quadratic function in terms
f Y, the coefficients (a′, b′, and c′) may be used for other fluids
t the same reduced temperature. We have selected n-butane as a
eference fluid because of abundance of pvT and viscosity data.
sing its experimental values of density, viscosity and thermal
ressure coefficient, the values of a′, b′, and c′ coefficients at
r = 0.55 are obtained. Having the values of these coefficients
nd calculating the values of density and thermal pressure coeffi-
ient from the MLIR at this reduced temperature for other fluids,
e have calculated viscosity of some hydrocarbons with the

verage percent error less than 1.7%, see Table 3.
We may also use the principle of corresponding states to

alculate thermal conductivity and self-diffusion by a similar
rocedure mentioned for viscosity. However, because of lim-
ted data for such properties of organic compounds, we have not
alculated them. Also, the procedure may be applied for other
ompounds, at least for non-polar and slightly polar compounds.

ist of symbols
, b and c coefficients of Eq. (9)
′, b′ and c′ coefficients of Eq. (20)
, B LIR parameters
m, Bm MLIR parameters
0 co-volume
2, C second and third virial coefficients

self-diffusion
0 self-diffusion of a dilute hard sphere gas
(σ) two-body hard-sphere radial distribution function at

contact
, j and k coefficients of Eq. (15)

molecular weight
total number of constituent groups of organic com-
pound

A Avogadro constant

pressure
gas constant
temperature

(∂p/∂T)ρ thermal pressure
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c critical temperature
r reduced temperature
= p/ρRT compressibility factor

reek symbols
= (∂p/∂T)ρ thermal pressure coefficient

∂E/∂V)T internal pressure
viscosity

r reduced viscosity
0 viscosity of a dilute hard sphere gas

thermal conductivity
0 thermal conductivity of a dilute hard sphere gas

number density
c critical density
r reduced density

hard-sphere diameter
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