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Abstract

In this work, a new method based on the modified Enskog theory (MET) is presented for calculation of transport properties at high densities
(p> p.). The main limitation of using the MET is lack of experimental data for co-volume, by,. We have substituted by from hard sphere (HS) theory
and zero density transport properties from the kinetic theory of gases for HS in the MET expression, because of the fact that dense fluids behave
more and less like a HS fluid. As a result, a simple linear expression for the self diffusion (D) and quadratic expressions for viscosity (1) and
thermal conductivity (1) coefficients have been obtained in terms of Y at high densities (o> p.), where Y = (T(dp/dT),)/pRT — 1. To evaluate
the obtained expressions, we have used experimental values of densities and the transport properties and calculated Y from the reported accurate
equation of state (EOS) for argon and xenon. We have noticed that the quadratic fits for viscosity and thermal conductivity and the linear fit (when
T < T.) for self diffusion hold quiet well with the correlation coefficient, R?>0.9994, when p > p.. Also, we have found that the curves for different
isotherms of a fluid fall onto a common curve at high densities over entire temperature range for which experimental data exist, but the curves
depend on the nature of fluid. So, by using experimental data of transport properties for one isotherm and an accurate EOS for calculation of ¥
for a dense fluid, we may calculate the corresponding property of that fluid for any other isotherm. In this work, we have used this approach to
predict the viscosity coefficient of n-alkanes from propane to n-octane and cyclohexane at different densities (o > p..) and temperatures. To do such
predictions, we need an accurate EOS for each compound which is not generally available. For this reason, we have made use of the modified linear
isotherm regularity (MLIR). Therefore, using the calculated values of density and thermal pressure coefficient from the MLIR and the coefficients
of the viscosity expression for each of these fluids, their viscosities have been predicted with the average percentage error less than 1.6%. To make
the approach more general, we have used the principle of corresponding states to present viscosity expression independent of fluid in terms of the
reduced variables. Therefore, one may use experimental data for one isotherm of an arbitrary fluid to find the coefficients of the reduced viscosity
expression. Then, these coefficients may be used for other fluids at the same reduced temperature, 7;, to calculate the reduced viscosity. Here, we
have selected n-butane as a reference compound because of abundance of experimental data. We have used the coefficients of the expression for
n-butane and density and Y have been calculated from the MLIR, this approach gives viscosity of hydrocarbons with the average percentage error
less than 1.7%. Similar approach has been used to calculate the self diffusion coefficient and thermal conductivity of dense fluids.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction desirable for practical engineering uses. Reid et al. has reviewed

many different viscosity methods [1]. The viscosity models

Liquid viscosity is one of the most significant transport
properties required by chemical engineers involved in reactor
applications and heat and mass transfers. Accurate experimen-
tal measurements of viscosity are a complex task. Therefore,
in this situation, any generalized prediction approach is highly
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found in literature range from highly theoretical to simple
empirical correlations. The kinetic theory of dilute gases and
the Chapman—Enskog theory [2] have formed accurate semi-
theoretical models for the viscosity prediction of dilute gases.
The Rainwater-Friend theory is used for prediction of viscosity
in intermediate density range [3]. Also, the Rainwater-Friend
theory was used for densities up to 2 mol/dm ™3 by Najafi et al.
[4]. Nevertheless, because of the complexity of the intermolec-
ular forces in dense fluids, makes even a semi-theoretical model
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extremely difficult. At high densities, the Modified Enskog
theory [2], the excess viscosity function methods [4-6] and
the friction theory (f-theory) [7] may be used for prediction
of viscosity. Several estimation methods have been proposed
for prediction of viscosity for organic compounds in literature
such as, the Jossi—Stiel-Thodos correlation for non-polar pure
substances [8], the Stiel-Thodos correlation for polar pure sub-
stances [9], method of Chung [10] and the modified method
of Ely and Hanley [11]. Also, other methods such as the group
contribution method [12] and artificial neural network [13], have
been used for estimation of viscosity in terms of temperature.

In this work, the modified Enskog theory (MET) along with
the modified linear isotherm regularity (MLIR) [14,15] are used
to predict the viscosity of dense hydrocarbon fluids over wide
ranges of temperature and pressure. Also, the principle of corre-
sponding states is used to predict transport properties of dense
fluids.

1.1. The modified Enskog theory

On the basis of the Enskog theory, viscosity of dense hard
sphere fluid is given as [2]:

1
n = nobop 7T 0.800 4+ 0.761Y (1)

where 1 is the viscosity of the hard-sphere fluid, 1 the viscosity
of a dilute hard sphere gas, by the co-volume and is equal to
2/3703, where o is the hard-sphere diameter, and Y =bgypg(o),
where p is the number density and g(o) is the two-body hard-
sphere radial distribution function at contact. The quantity Y is
related to the hard-sphere equation of state as

p

Y= AT 1 2)

Although the Enskog theory is an accurate theory for dense
hard-sphere fluids, in which the pressure and the thermal pres-
sure are the same, Enskog himself proposed and formulated
its application to real dense fluids in an ad hoc manner. This
transformation, which is known as the modified Enskog the-
ory (MET), incorporates two modifications with respect to the
original Enskog theory. First, Enskog suggested that instead of
relating Y'to the actual pressure of the system through Eq. (3), one
should introduce the so called “thermal pressure”, T(dp/dT),,
where (0p/0T),, is called the “thermal pressure coefficient”. The
justification for this is that the contribution of the intermolecular
interactions in pressure which is known as the “internal pres-
sure”, (0E/0V)r, must be included in the real fluids. The exact
thermodynamic relation relates the sum of the pressure and the
internal pressure to the thermal pressure as

p\ 8£
(), (2),

Therefore, ¥ may be written as

op
T(M)j —1 4)

1
Y=—
PRT

Second, the co-volume b is redefined in terms of the second and
third virial coefficients B and C and their temperature derivat-
ives:
b B TdB C TdC 5
0=B+T - +C+T o (%)
Therefore, having values of by, 19, density and the thermal pres-
sure coefficient, y, of any real fluid along with the MET, the
value of viscosity may be predicted at each temperature and
pressure of interest. But, the latter step seriously hinders the
application of the theory to real systems, because of a lack of
knowledge of the virial coefficients for many fluids. On the other
hand, the shortage of experimental data for the thermal pres-
sure coefficients of liquids is another limitation in using the
MET.

2. Viscosity calculation of dense fluids based on the
MET

For prediction of viscosity of a dense fluid via Eq. (1), we
need the values of by, ng, density and the thermal pressure coeffi-
cient of that fluid. Precise information about the thermal pressure
coefficientis scared and obtained by cumbersome from the direct
derivation of accurate equation of state which depends on fluid.
The value of density may be obtained either by the exact equa-
tion of state or experimental data for a fluid. Also, the value of ng
at any temperature may be found in literature for different com-
pounds. Nevertheless, the lack of by for many compounds is one
of the main limitations in applying the MET to these systems.
To solve this problem, we may make use of the hard sphere
(HS) theory because of the fact that the behavior of a dense
real fluid is primarily determined by the short range repulsive
forces (like the HS fluid) and the relatively long-range attractive
part of the potential provides a net force that gives a some-
what uniform attractive potential. To examine this point, we
have calculated the thermal pressure of Xe using its accurate
EOS [16], to plot the result against the pressure which is shown
in Fig. 1. As shown in this figure, a linear correlation is found
when p> o, unlike the case when p < pc. In the other words,
for a real dense fluid, the two pressures are not the same but
they are different only by a constant for the entire density. So
the values of bg and ng for dense fluids, may be approximately
substituted from the HS theory. Therefore, we may rearrange
Eq. (1) as:

nY

—— = by(1 4 0.800Y 4 0.761Y?) (6)
0P

According to the kinetic theory of gases, the viscosity of a dilute
hard sphere gas, 19, can be expressed as

_ 5 MRT 7
M= 967 \ Nao?
where M is the molecular weight, R the gas constant, T the tem-

perature, Na the Avogadro constant and o is the hard-sphere
diameter. By substituting this expression for 7o and 2/370" for
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Fig. 1. Plot of the thermal pressure against the pressure of Xe for (a) p> p. and (b) p < p. at T=300 K. Note the linear dependence of the two pressures in the former

case, with the correlation coefficient R2=0.9998.

bg in Eq. (6), this equation may be reduced to:

nwy o (2, 5 [+MR
m_(3m) 16/m \ Nao?

x (1 +0.800Y + 0.761Y?)

o (0 (VAMRAY L6 800v-£0.76172)
JTp \ 24 Na ’ '

®)

or generally

Y by e 9)
VTp

where a, b, and ¢ coefficients are independent of temperature
and expected to be so for the real dense fluids as well. However,
they are expected to depend on temperature for real dilute flu-
ids, due to appearance of o on the right side of Eq. (8), even if
Eq. (9) holds. To investigate our expectation, we select argon
and xenon as test fluids because of the abundance of available
experimental viscosity and pvT data and the existence of accu-
rate equations of state for them. At first, by direct derivation
from the accurate equations of state for Xe [16] and Ar [17],
the values of thermal pressure coefficient may be obtained for
these fluids. Then, using the calculated thermal pressure coef-
ficient and experimental data for density [16,17] and viscosity
[18,19] for different isotherms of these fluids, we have plotted
nY/~/Tp versus Y, see Figs. 2 and 3. As shown in these figures,
the quadratic fit holds quiet well for each isotherm with the cor-
relation coefficient, R% > 0.9993, when 0> pc, Where pg is the
critical density. In addition, these isotherms fall onto a single
common quadratic curve for p > p. for whole temperature range
that experimental data are reported (200 K<7<600K for Xe
and 110K <T<500K for Ar). But as shown in Figs. 2 and 3b,

neither such common curve nor the quadratic fit are held when
p < pc. Due to significant deviation of real dilute fluids from
the HS theory, such behaviors are expected. Since our purpose
in this section is to predict viscosity of dense hydrocarbons,
we have used Eq. (9) to investigate the prediction for n-alkanes
from propane to n-octane and cyclohexane. To do so, at first, by
direct derivation from the accurate equation of state for these
compounds [20], the value of thermal pressure coefficient is
obtained. Then, using the calculated thermal pressure coeffi-
cient and experimental data for density and viscosity of propane
and n-butane [18], n-pentane, n-hexane, and n-octane [21], n-
heptane [22] and cyclohexane [23] for different isotherms that
experimental data are available, we have plotted nY/ JT 0 ver-
sus Y. Again, we have found that plots of different isotherms for
each of these fluids well fit in a quadratic function and all of
them can be presented by a common curve at dense region, see
Table 1. Therefore, the range of density and temperature over
which this behavior is valid and a, b and ¢ coefficients are inde-
pendent of temperature, is p> p. and entire temperature range
for which experimental data exist.

A common plot for nY/ ﬁ p in terms of Y resulted in,
nY/~/Tp can be expressed by a quadratic function in terms of
Y for each of these dense fluids with different values for the
coefficients of the equation, see Eq. (9). The coefficients of this
equation are given in Table 1 for Xe, Ar, n-alkanes from propane
to n-octane and cyclohexane. Having these coefficients and the
values of density and thermal pressure coefficient along with
Eq. (9), the viscosity may be predicted in terms of pressure for
each of these fluids. But as mentioned before, the experimental
data for the thermal pressure coefficients are scared and obtained
from the direct derivation of accurate equation of state for differ-
ent fluids. On the other hand, such accurate equation of state does
not exist for many compounds. In this case, an appropriate EOS
is desirable for calculation of both density and thermal pressure
coefficient. Recently, the extension of linear isotherm regularity
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Fig. 2. Quadratic fit of nY/ p~/T as a function of Y for different isotherms of Xe for (a) p> p. and (b) p < pc. The values of a, b, and ¢ coefficients for each isotherm
at p> p. are given in the parenthesis.
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0.7

The values of a, b and ¢ coefficients of Eq. (9) in wPas L mol~! K~% and the correlation coefficient, R?, for some given compounds obtained via fitting experimental
data in Eq. (9) for given temperature and pressure ranges

Fluid AT (K) Ap (MPa) a b c R

C3Hg 298.15-348.15 0.1-100 0.182 —0.838 2318 0.9997
n-C4Hio 298.15-348.15 0.1-69 0.269 —1.862 6.122 0.9998
n-CsHiy 303.15-348.15 0.1-69 0.579 —7.668 33.899 0.9998
n-CeHig 303.15-348.15 0.1-92 0912 —14.755 73.984 0.9998
n-C7Hjg 303-348 0.1-100 1.377 —25.638 154.005 0.9997
n-CgHig 303.15-348.15 0.1-96 1.956 —45.819 309.464 0.9997
CeHia 298.15-348.15 0.1-85.5 4.893 —100.993 558.620 0.9997
Xe 200-600 20-300 0.380 —1.0986 1.449 0.9996
Ar 110-500 0.1-400 0.1543 —0.3639 0.6211 0.9996
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to long chain organic compounds is reported via the group con-
tribution method [14,15]. We may use this EOS (known as the
modified linear isotherm regularity, MLIR) for prediction of den-
sity and thermal pressure coefficient of hydrocarbons because
of its high performance. The MLIR used in this work is going
to be introduced in brief.

2.1. The modified linear isotherm regularity equation of
state

Using the LJ (12, 6) potential for the average effective
pair potential (AEPP) along with the pairwise additive approx-
imation for the molecular interactions in dense fluids and
considering only the nearest neighbor interactions, the linear
isothermal regularity (LIR) was derived from the exact thermo-
dynamic relations as

(Z — 1? = A+ Bo? (10)

where Z=p/pRT is the compressibility factor, and p = 1/v is
the number density and A and B are the temperature depen-
dent parameters [24]. The LIR was experimentally found to
be hold for all types of fluids for densities greater than the
Boyle density (pp ~ 1.8p., where p. is the critical density) and
temperature less than twice the Boyle temperature. Since the
mathematical form of the AEPP function is assumed to be the
LJ (12,6), such potential function is appropriate for the spherical-
symmetrical molecules, then non-spherical molecules, such as
the chain organic compounds, show significant deviation from
the linearity of the LIR. However, based on the group contribu-
tion method concept, an organic compound may be considered
as a hypothetical mixture of their constituent groups, in which
the interaction potential among any two groups is assumed to
be the AEPP. Then, on the basis of the van der Waals one-fluid
approximation, the LIR equation of state was used for such a
hypothetical mixture, but the new equation of state parameters
in addition of temperature, depend on groups composition of
the mixture. Therefore, the LIR for ordinary mixtures [25] was
extended to organic chains as [15]:

P _
<npR§ 5 ) = Am + an2p2
n2p

z
Z_
= n

which we shall refer to it as the modified linear isotherm regu-
larity (MLIR) from now on. In this equation, Ay, and By, are
the MLIR parameters where their temperature dependencies
are just the same as those for the LIR parameters and # is the
number of constituent groups of organic compound. In our pre-
vious works the MLIR were successfully applied for long chain
organic compounds such as n-alkanes and their binary mixtures
[14], primary, secondary and tertiary alcohols, ketones and 1-
carboxylic acids [15], according to which (Z/n — l)v2 is linear
against p® for each isotherm of these dense fluids. The MLIR
parameters (Am, Bm) for these fluids were predicted by using
the group contribution method. To do so, we considered each of

) = Am + Bmn’p’ (11)

these fluids as a hypothetical mixture of its constituent groups,
namely methyle, terminal methylene (methylene groups each
attached to one methyle group), middle methylene (methylene
groups at the middle of chain which each of them attached to

two methyle groups), and an appropriate functional group such
|

-COH

as —CH,;OH, )CHOH, | , YC=0, and —COOH groups.

Then basic compounds, namely propane and n-butane, were
used to obtain the contribution of methyl and terminal methy-
lene groups, cyclohexane was used to obtain the contribution of
the middle methylene groups and also other appropriate com-
pounds were used to obtain the contribution of the functional
groups in the MLIR parameters. Having the contribution of
constituent groups in the EOS parameters along with dependen-
cies of the LIR parameters to system composition, the MLIR
parameters for each compound were calculated. The calculated
EOS parameters along with the MLIR are then used to cal-
culate the density of different organic compounds at different
pressures and temperatures with the average percentage error
less than 1.2. Also, we have calculated the thermal pressure
coefficient (y =(dp/dT),) at different temperatures and pres-
sures for some hydrocarbons from the following expression
obtained from the MLIR with average percentage error less
than 1.1%:

3
<al;) = npR + 1 p*R(Am + AL T) + n°p> R(Bm,
p

+B.T) (12)

The main advantage of the MLIR for organic dense fluids is that
we may predict their density and thermal pressure coefficient
accurately, just by using the experimental data of the basic com-
pounds. Hence, we have used this EOS to calculate density and
thermal pressure coefficient of dense hydrocarbons.

2.2. Viscosity calculation using the quadratic expression
along with the MLIR-EOS

The main purpose in this section is to calculate the viscosity of
n-alkanes from propane to n-octane and cyclohexane in terms of
pressure and temperature using Eq. (9) and the MLIR. For this
purpose, the contribution of three constituent groups of these
fluids (methyle, terminal methylene and middle methylene) in
the MLIR parameters, were calculated using three basic com-
pounds, namely propane, n-butane and cyclohexane at 313.15
and 333.15K (for details see Refs. [14,15]). Having the contri-
butions of three constituent groups of the EOS parameters along
with dependencies of the LIR parameters to system composi-
tion, the MLIR parameters for each n-alkane and cyclohexane
were calculated at two temperatures. Then, using the calculated
MLIR parameters along with Egs. (11) and (12), the density and
thermal pressure coefficient have been calculated for each of
them in terms of pressure at both temperatures. The calculated
values of density and thermal pressure coefficient, and also the
coefficients of Eq. (9) for each of these hydrocarbons given in
Table 1 may be used to calculate viscosity coefficient at any
pressure and temperature. The calculated results are given in
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Table 2

Average absolute percent deviation of the calculated viscosity for n-butane, n-
pentane, n-hexane, n-heptane, n-octane and cyclohexane at 313.15 and 333.15 K
using the calculated values of density and thermal pressure coefficient obtained
from the MLIR and the values of a, b and c¢ coefficients of Eq. (9) from Table 1

Fluid T (K) Ap (MPa) (|An| /1m)ay x 100
n-C4Hjo 313.15 0.75 (0.99)
333.15 0.1-69 0.81 (1.1)
n-CsHjp 313.15 0.89 (1.2)
333.15 0.1-69 0.96 (1.3)
n-C¢Hja 313.15 0.99 (1.4)
333.15 0.1-92 1.1(1.5)
n-C7Hj¢ 313.15 1.0 (1.4)
333.15 0.1-100 1.2 (1.7)
n-CgHjg 313.15 1.5(1.9)
333.15 0.1-96 1.6 (2.0)
CeHi2 313.15 0.91 (1.2)
333.15 0.1-85.5 0.98 (1.3)

Maximum deviations are given in parentheses.

Table 2. The average percentage error and its maximum value for
viscosity were found to be lower than 1.6 and 2.0, respectively.

3. Extension to other transport properties
3.1. Calculation of thermal conductivity

Based on MET, the thermal conductivity of a dense fluid is
given as [2]:

1
A = Xobop Y +1.2+0.755Y (13)

where A is the thermal conductivity of the dense fluid, Ag is
its zero density value, by is the co-volume, p is the number
density and Y for real dense fluid may be given by Eq. (4).
Again, the values of A¢ and by may be substituted from dilute
gas expressions of the hard sphere fluids. Based on the kinetic
theory of gases, the zero-density thermal conductivity of hard
sphere gas, 1q, can be given as [2]:

o= (Cymtor) (KL v (14)
"= Te \ VM T 4 M)  Npo?

where Cy, is the molar heat capacity at constant volume. By
substituting this expression for Ag and 2/37a3 for by in Eq. (13),
this equation may be reduced to

Y =iY? +jY +k (15)
PNT(Cv.m + (9/R)
where i, j and k coefficients are independent of temperature and
expected to be so for real dense fluids as well. The same as pre-
vious section, we may expect that the plot of AY/+/T p(Cy.m+
(9/4)R) in terms of Y be quadratic for each isotherm of a dense
fluid and the isotherms fall onto a common curve. To investigate
this expectation, we may use the experimental data of density and
thermal conductivity of Xe [16,18] because of the abundance of
available experimental thermal conductivity and pvT data and
its reported accurate equation of state [16]. For the monoatomic
fluids, Cy, is almost independent of temperature and hence we

expect that plots of AY/~/T p in terms of ¥ be quadratic for each
isotherm of Xe. As shown in Fig. 4a and b, for p > p., the data
for each isotherm fit well in a quadratic function and in addition
to that all isotherms fall onto a single curve for all isotherms for
which experimental data exist. However, neither the quadratic
fit nor the falling onto a common curve were observed when
p < pe. Therefore, if Y/+/T p(Cy m + 9/4R) is plotted in terms
of Y for any isotherm of a dense fluid and fitted in a quadratic
equation, the obtained coefficients of the equation may be used
to calculate the thermal conductivity of that fluid at any other
temperature. Therefore, again we may use the MLIR to calculate
density and thermal pressure coefficient, along with the coeffi-
cients of Eq. (15), to calculate A for dense organic compounds.
Unfortunately, there is no enough experimental data in literature
to do such calculation.

3.2. Calculation of self-diffusion

The self-diffusion is given as [2]:

1
D = Dobop <Y) (16)

where D is the self-diffusion of the hard-sphere fluid, Dy the
self-diffusion of a dilute hard sphere gas, by the co-volume and
p is the number density. Again, the quantity of Y for real dense
fluid may be given by Eq. (4) and the self-diffusion of a dilute
hard sphere gas, Dy, is obtained from the kinetic theory of gases
as [2]:

b3 JRT\ 1 .
0= \Vam | po? an

By substituting this expression for Dy and 2/370" for by in Eq.
(16), this equation may be reduced and rearranged to:

=3 (V) 3 () (3

DY_cr/Rn 18

or generally

= cte 19)

SI%

For the self-diffusion we expect that plots of DY/+/T versus Y
for each isotherm of dense fluid to be a constant. To test such
an expectation, we have used the self-diffusion data of methane
[26] and n-hexane [27], only available data we could find in liter-
ature. By the direct derivation of the accurate equation of state of
methane and n-hexane [20], the value of thermal pressure coef-
ficient is calculated. Then, using the calculated thermal pressure
coefficient and experimental data for self-diffusion of methane
and n-hexane for each isotherm for which the experimental data
exists, we have plotted DY/+/T versus Y, see Fig. 5a and b. As
shown in Fig. 5a, the data of different isotherms for each fluid
are well fitted in a single line when p > p. and T< T¢, instead of
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Fig. 4. Quadratic fit of (AY/ p+/T) vs. Y for different isotherms of Xe for (a) p> pc and (b) at p< pe.

being a constant. However for the supercritical isotherms (even
with p > p.) shown in Fig. 5b, neither the linearity nor the falling
of isotherms onto a single curve are observed. Therefore, we may
expect that having the intercept and slope of the line for a fluid
are sufficient to be used along with the MLIR, to calculate the
self diffusion coefficient of that fluid when p> p. and T< T¢.

4. Viscosity calculation of dense fluids using the
principle of corresponding states

As mentioned in the previous section, the values of a, b and ¢
coefficients in Eq. (9) depend on fluid. However, they are inde-
pendent of temperature for the dense fluids (p > p.). Therefore,
for the dense fluids, at least experimental data for one isotherm
and accurate EOS for calculation of the thermal pressure coef-
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ficient are need. However, for the latter need, the MLIR and
group contribution method may be used. If there is no exper-
imental data, even for one isotherm of a fluid, we may make
use of the principle of corresponding states for the prediction of
viscosity of the dense fluid over a wide temperature and pres-
sure ranges. To do so, we reduce n, T, and p by ng, T, and p,
respectively. Therefore, Eq. (9) may be written in the reduced
form as,

nY

\/Trpr

where o/, b’ and ¢’ coefficients are expected to be independent
of fluid, but depend on 7. For checking such expectation, the
experimental values of density and viscosity along with the ther-
mal pressure coefficient calculated from the accurate EOS for
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Fig. 5. Plot of DY/+/T vs. Y for given isotherms with p> p. of (a) methane (dashed line) and n-hexane (solid line) when T < T, and for (b) methane with 7< 7.
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n-alkanes (C4—Cg), are used to plot the dimensionless quantity
n:Y/ pra/T; versus Y at two reduced temperatures (T, = 0.45, 0.6),
see Fig. 6. As shown, all the points for a given T; fall on a sin-
gle quadratic curve with the correlation coefficient R> >0.9996.
Therefore, one may use the experimental data for one isotherm
of an arbitrary fluid to find the @', &', and ¢’ coefficients of Eq.
(20). Then, these coefficients may be used for other fluids at
the same reduced temperature as well. Here, we have selected
n-butane as a reference compound, because of the abundance of
experimental data for it over a wide range of temperature and
pressure. The experimental values of density and viscosity [18]
along with the thermal pressure coefficient calculated from its
accurate EOS [20] of n-butane are used to obtain the values of &',
b, and ¢’ coefficients at Ty =0.55 (¢’ =0.197, b’ = —4.401 and
¢’ =30.472). We have used these values along with the calcu-
lated values of density and thermal pressure coefficient from the
MLIR at this reduced temperature to obtain viscosity at 7y = 0.55
for some other hydrocarbons with the average percentage error
less than 1.7, see Table 3.

This approach has not been applied for the thermal conduc-
tivity and self diffusion because of the lack of experimental data

Table 3
Average absolute percent deviation of the calculated viscosity for n-pentane,
n-hexane, n-heptane, n-octane and cyclohexane at 7y =0.55 using the calculated
values of density and thermal pressure coefficient obtained from the MLIR and
Eq. (20) for which its coefficients are obtained from experimental data of n-
butane

Fluid T (K) Ap (MPa) (AN /)y % 100
n-CsHi, 258.34 0.1-69 0.98 (1.2)
n-CeHys 279.30 0.1-92 1.1(1.4)
n-C7Hie 297.07 0.1-100 1.4(1.7)
n-CsHs 313.13 0.1-96 1721

CeH1a 304.48 0.1-85.5 1.2 (1.6)

Maximum deviations are given in parentheses.

for these transport properties. However, we expect that the prin-
ciple of corresponding states may be applied for these properties
as well, at least for non-polar and weakly polar fluids.

5. Conclusions

In this work, the MET expressions and their zero density
HS expressions are used to obtain a simple linear expression
(for self diffusion) and quadratic expressions, Eq. (9) for vis-
cosity and Eq. (16) for thermal conductivity, in terms of ¥ =
[T(dp/0T),]/pRT — 1 at high densities (o> pc) at which real
fluids approximately behave more and less like a HS fluid. The
obtained expressions are generally valid for the real dense fluids
but the ratios of coefficients are different from those of the HS
fluid. However, real fluids, as expected, behave quiet differently
with HS fluid at low densities (p < p.), in such a way that the
linear and quadratic expressions of the HS fluid are not valid any
more. We have approved such behavior by using experimental
data. To evaluate such approval, experimental data for density
and viscosity and calculated thermal pressure coefficient from
an accurate EOS, were used to plot nY/ JT p against Y for Xe
and Ar, see Figs. 2 and 3. The quadratic fit holds quiet well with
the correlation coefficient RZ > 0.9995, for these compounds at
high densities (p > p.), see Figs. 2 and 3a. Also, we have noticed
that the plots for different isotherms of a dense fluid fall onto a
common curve, see Figs. 2 and 3a, but such behavior weren’t
observed at low densities (p < p.) for which the effect of the
attractive forces are more important and hence deviation from
the HS fluid is significant, see Figs. 2 and 3b. The temperature
range of the quadratic fit and falling of the isotherms onto a sin-
gle curve were observed over a wide range of temperature and
pressure (200<7< 600K and pressure up to 300 MPa for Xe
and 110K <7T<500K and pressure up to 400 MPa for Ar) that
is the entire temperature range for which the experimental data
are reported. Also, this approach was applied to the dense hydro-
carbons and a, b, and c coefficients of Eq. (9) were calculated
and tabulated, see Table 1. Calculation of viscosity by using Eq.
(9) requires the values of density, thermal pressure coefficient,
and a, b, and c coefficients. The values of the coefficients for
each of these fluids may be found in Table 1. Also, the values
of density and thermal pressure coefficient may be calculated
from the MLIR and its appropriate derivative using the group
contribution method. Using these coefficients along with the cal-
culated values of density and thermal pressure coefficient from
the MLIR, viscosity of the hydrocarbons at two temperatures,
313.15 and 333.15 K, were calculated with average percentage
error lower than 1.6, see Table 2. Also, the calculated viscosity
of some hydrocarbons are compared with those of some corre-
lations [8,10,11] for a given temperature and pressure range, in
Table 4.

This approach has been extended and evaluated for other
transport properties such as the thermal conductivity, A, and
self-diffusion, D. For the thermal conductivity, the accuracy
of the quadratic expression was investigated using the calcu-
lated thermal pressure coefficient from the accurate equation
of state and experimental data for density and thermal conduc-
tivity of Xe. We have again found that AY/+/Tp in terms of
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Comparison of average absolute percent deviation of the calculated viscosity obtained from this work with those obtained from several estimation methods [8,10-11]

at given temperature and pressure ranges

Fluid AT (K) Ap (MPa) 100(|Anl /n)ay
This work Thodos [8] Chung [10] Ely and Hanely [11]

n-C4Hjo 280-350 0.1-65 1.03 (1.27) 9.5(28.4) 6.5 (28.6) 5.9(27.1)
n-CsHjp 313.15-348.15 0.1-69 1.18 (1.32) 12.8 (28.1) 6.6 (16.7) 3.9(19.9)
n-CeHya 298.15-348.15 0.1-92 1.31 (1.58) 14.7 (30.8) 7.8 (18.3) 5.8 (80.4)
n-C7Hj¢ 303-348 0.1-100 1.50 (1.81) 12.8 (28.8) 4.7 (20.5) 3.3(31.6)
n-CgHjg 298.03-348.14 0.1-96 1.84 (2.23) 13.4 (23.8) 3.5(14.7) 4.4 (14.6)
CeHi2 298.15-348.15 0.1-85.5 1.24 (1.45) 49.9 (54.2) 47.4 (65.9) 46.1 (66.4)

Maximum deviations are given in parentheses.

Y for different isotherms of Xe fits in a quadratic expression
with R2>0.999 when p> p.. The same as that for viscosity,
the isotherms fall onto a single quadratic curve at high densi-
ties (p> pc), see Fig. 4a, but such behavior are not observed at
low densities (p < p.), see Fig. 4b. Again, at low densities that
attractive forces become more important than repulsive ones,
deviation from the HS fluid is expected to be significant. For
the self diffusion, the quantity DY/~/T for the HS fluid does
not vary with Y. To investigate such a case for real fluids, the
calculated values of the thermal pressure coefficient from the
accurate equation of state and experimental data for density and
self-diffusion of methane and n-hexane have been used to plot
DY/~/T versus Y. As shown in Fig. 5a, we have found that the
data for each isotherm of subcritical fluid fitin a linear expression
and at high densities (p > p¢) they fall onto a single line. How-
ever, neither the linearity nor the falling was observed for the
supercritical fluids, even at high densities (o > p.), see Fig. 5b. It
seems that diffusion of molecules in a supercritical dense fluid is
quiet different with that of the subcritical dense fluid, compare
Fig. 5a with b.

Even though areal dense fluid behaves according to the math-
ematical expression obtained for the properties of the HS fluid,
but their behavior is not exactly the same, for this reason the
ratios of the coefficients for the expressions obtained for real flu-
ids are different with those of the HS fluid. Each molecule in the
dense fluid experiences mainly a repulsion which is somewhat
soft, compare to infinite value for the HS molecule when two
molecules penetrate each other. Therefore, one may expect that
real dense fluids behave similar to HS fluid, but their behaviors
are not exactly the same.

For calculation of viscosity and thermal conductivity of a
dense fluid via the quadratic equations, Eq. (9) for the viscosity
and Eq. (15) for the thermal conductivity, we need the experi-
mental data at least for one isotherm of that fluid and an accurate
EOS for calculation of its thermal pressure to obtain the coef-
ficients of the quadratic equations, because the values of the
coefficients in the quadratic equations depend on type of fluid.
Therefore, if there is no experimental data even for one isotherm
of that fluid, this approach cannot be used. In this case, we may
resort to the principle of corresponding states. For this purpose,
we have reduced 1, T, and p in Eq. (9) by no, T, and p., respec-
tively. Thus, @, b’, and ¢’ of Eq. (20) are being independent of
fluid type at a given reduced temperature. Using the experimen-
tal values of density, viscosity and thermal pressure coefficient

of n-alkanes (C4—Cg), the universality of Eq. (20) is verified for
two reduced temperatures (77 = 0.45, 0.60), for which the exper-
imental data are available, see Fig. 6. As shown in this figure,
at any reduced temperature, dimensionless quantity 1Y/ or/Ty
versus Y fits in a single quadratic curve (R*>0.9996) for all
given hydrocarbons. Therefore, by fitting the data of a real fluid
at a given reduced temperature in the quadratic function in terms
of Y, the coefficients (a, b’, and ¢’) may be used for other fluids
at the same reduced temperature. We have selected n-butane as a
reference fluid because of abundance of pvT and viscosity data.
Using its experimental values of density, viscosity and thermal
pressure coefficient, the values of @, b’, and ¢’ coefficients at
T:=0.55 are obtained. Having the values of these coefficients
and calculating the values of density and thermal pressure coeffi-
cient from the MLIR at this reduced temperature for other fluids,
we have calculated viscosity of some hydrocarbons with the
average percent error less than 1.7%, see Table 3.

We may also use the principle of corresponding states to
calculate thermal conductivity and self-diffusion by a similar
procedure mentioned for viscosity. However, because of lim-
ited data for such properties of organic compounds, we have not
calculated them. Also, the procedure may be applied for other
compounds, at least for non-polar and slightly polar compounds.

List of symbols

a, b and ¢ coefficients of Eq. (9)
a,b and ¢’ coefficients of Eq. (20)
A, B LIR parameters

Am, Bm MLIR parameters

bo co-volume
B>, C  second and third virial coefficients
D self-diffusion

Dy self-diffusion of a dilute hard sphere gas
g(o) two-body hard-sphere radial distribution function at

contact

i,jand k coefficients of Eq. (15)

M molecular weight

n total number of constituent groups of organic com-
pound

Na Avogadro constant

p pressure

R gas constant

T temperature

T(dp/dT),, thermal pressure



G.A. Parsafar, Z. Kalantar / Fluid Phase Equilibria 253 (2007) 108-117 117

T critical temperature
T: reduced temperature
Z=pl/pRT compressibility factor

Greek symbols
y =(0p/dT), thermal pressure coefficient
(0E/dV)r internal pressure

n viscosity

Nr reduced viscosity

no viscosity of a dilute hard sphere gas

A thermal conductivity

Ao thermal conductivity of a dilute hard sphere gas
P number density

Pc critical density

Or reduced density

o hard-sphere diameter
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