
IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 19 (2007) 156218 (8pp) doi:10.1088/0953-8984/19/15/156218

Making thermodynamic functions of nanosystems
intensive

A M Nassimi1 and G A Parsafar

Department of Chemistry and Nanotechnology Research Center, Sharif University of Technology,
Tehran 11365-9516, Iran

E-mail: ali.nassimi@utoronto.ca and parsafar@sharif.edu

Received 1 November 2006, in final form 26 February 2007
Published 26 March 2007
Online at stacks.iop.org/JPhysCM/19/156218

Abstract
The potential energy of interaction among particles in many systems is
proportional to r−α . In systems for which α < d , we encounter nonextensive
(nonintensive) thermodynamic functions, where d is the space dimension.
A scaling parameter, Ñ , has been introduced to make the nonextensive
(nonintensive) thermodynamic functions of such systems extensive (intensive).
Our simulation results show that this parameter is not capable of making
the thermodynamic functions of a nanosystem extensive (intensive). Here
we have presented a theoretical justification for Ñ . Then we have
generalized this scaling parameter to be capable of making the nonextensive
(nonintensive) thermodynamic functions of nanosystems extensive (intensive).
This generalized parameter is proportional to the potential energy per particle at
zero temperature.

1. Introduction

Ordinary thermodynamics is valid when the number of particles (N) in the system goes to
infinity. When we have few particles in the system, the surface, rotation and other effects
prevent the ordinary thermodynamics from being valid. The first work in this regard was
carried out by Hill about five decades ago. He used ordinary thermodynamic relations and
added a correction term for each extra effect appearing in small systems [1]. Another approach
to nanothermodynamics is to focus on the fluctuations of thermodynamic functions, since
fluctuations are not negligible in nanosystems. It has been shown that averaging the fluctuating
quantities yields to Tsallis statistics for nanosystems [2, 3].

Here we present a method for making the thermodynamic functions of nanosystems
extensive. If the interaction between two particles is (at least at long distances) of the form
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r−α , then by considering a fixed particle density and approximating the particle density as
continuous, the potential energy (U) per particle is of the form

U

N
∝

∫ ∞

1
dr rd−1r−α, (1)

where d is the space dimension. This integral converges when α > d; otherwise, it diverges to
infinity. Thus in cases where α < d , we must take care of the finite dimension of the system
and write the relation (1) in the form

U

N
∝

∫ N 1/d

1
dr rd−1r−α, (2)

where N1/d represents the linear size of the system. According to the relation (2), the energy
per particle depends on the number of particles in the system (N). This is contrary to what we
expect from classical thermodynamics, i.e., energy is an extensive thermodynamic function [4].
We shall refer to the situation α < d as long-range interaction. It is claimed that such systems
must be investigated using nonextensive statistical mechanics (Tsallis statistics) [5].

In 1995, Jund et al introduce a parameter—the value of the integral in relation (2)
multiplied by d—to make U extensive in a system containing long-range interactions [6]. This
parameter is denoted by N∗, i.e.,

N∗ ≡ N1−α/d − 1

1 − α/d
. (3)

In the limit N → ∞, we will have

N∗ ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

α/d − 1
if α/d > 1,

ln N if α/d = 1,
N1−α/d

1 − α/d
if 0 � α/d < 1.

(4)

Then Tsallis inspected some systems containing long-range interactions, i.e., the d-
dimensional Bravais lattice Ising ferromagnet and the system studied by Jund et al [6]. Tsallis
proposed that to make all thermodynamic functions intensive or extensive, we must divide all
functions having the dimension of energy and all functions which are defined through a partial
derivative of energy by N∗ [7].

Then we can define the reduced energy, enthalpy, free energy, thermodynamic potential,
temperature and pressure respectively via the relations E∗ = E/N∗, H ∗ = H/N∗, A∗ =
A/N∗, G∗ = G/N∗, T ∗ = T/N∗, p∗ = p/N∗. By using these newly defined functions
we regain all usual extensive (intensive) properties of ordinary thermodynamics. Also, each
thermodynamic function is a function of these new variables to be well behaved. We can easily
see that ( ∂ E∗

∂S )N,V = T ∗ and ( ∂ E∗
∂V )N,S = −p∗. So, defining H = E − V ( ∂ E

∂V )S,N , we can
get H ∗ = E∗ + p∗V , and similar relations for the free energy. This means that the Legendre
transformation structure of thermodynamics is not affected by this scaling. Here we note that
intensive functions in the standard structure of thermodynamics and functions with the energy
dimension must be scaled by N∗ , then all thermodynamic functions are functions of these
scaled quantities [7].

In 1996, Cannas and Tamarit used this scaling parameter to generalize the Currie–Weiss
model for an Ising ferromagnet [8]. In the same year, Grigera carried out some molecular
dynamics (MD) simulations on a lattice with a generalized Lennard-Jones (LJ) potential, i.e.,
Vi j = C12r−12 − Cαr−α . He showed that by plotting E/N N∗ at constant T ∗, one can get a
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horizontal line. He also showed that the potential energy is a very weak function of the scaled
temperature [9].

In 1997, Sampaio et al used this scaling for thermodynamics of magnetic systems.
They obtained magnetization curves of a two-dimensional classical Ising model, including
an interaction potential proportional to r−α . They deduced that the appropriate form of the
equation of state for magnetic systems is M/N = m(T ∗, H ∗) [10].

In 1997, Cannas and de Magalhaes studied the one-dimensional Potts model with long-
range interactions. They verified that we must scale the critical temperature by N∗ to get a
constant critical temperature for different values of α [11].

In 1999, Salazar and Toral studied the one-dimensional Ising model with long-range
interactions in the context of Tsallis statistics. They used the aforementioned scaling as a
starting point. It is only valid for q = 1, where q is the entropy index introduced in Tsallis
statistics [5]. They generalize the Monte Carlo simulation to q �= 1, and find different scaling
for the cases q < 1, q = 1, and q > 1 [12]. In 1999, Curilef and Tsallis investigated a LJ-like
fluid. They calculated the liquid vapour critical point as a function of α and N , i.e., Tc(α, N)

and pc(α, N). They showed that in order to avoid getting a negative pressure, we must use T ∗
instead of T [13].

In 1999, Tsallis argued that in the limit α/d → ∞, which means very short-ranged
interactions (the nearest neighbour), we have N∗ → 0, which is an unphysical scaling. Thus it
is better to define Ñ as

Ñ ≡ N∗ + 1 = N1−α/d − α/d

1 − α/d
. (5)

He also mentioned that Ñ characterizes the effective number of neighbours that can be
associated with a given particle [14].

In 2005, Abe and Rajagopal defined λ = (2 − α/d)
−1

1−α/d , then by implicitly redefining
temperature, pressure and chemical potential respectively via T ≡ 1

λ
∂U
∂S , p ≡ − 1

λ
∂U
∂V and

μ ≡ 1
λ

∂U
∂ N , they proved the Euler relation, i.e., U = T S − pV + H M + μN . Note that the

definitions of T, p and μ are α/d-dependent. They concluded that the Gibbs–Duhem relation
must be valid for these systems. Therefore, μ, T, p and H must be scaled with N∗ . This proves
N∗ scaling from a classical thermodynamics point of view [15].

This scaling factor has been satisfactorily used for various systems [16–23]. In this
work, we first justify the use of this scaling factor and then argue that it cannot make the
thermodynamic functions of nanosystems extensive (intensive). By defining a new scaling
factor, i.e., N ′, which has the same physical interpretation but is computed differently, we will
extend this method to the realm of nanosystems, in order to make nanosystem thermodynamic
functions extensive (intensive).

2. Theory

We have assumed that the interaction energy among particles in the system is of the form r−α .
Therefore, according to the relation (2) and the definition (3) the potential energy of the system
is proportional to N∗. Now, we consider the parameter N ′, which in the thermodynamic limit
(TL), is equal to N∗ = Ñ and is defined in section 4 for nanosystems. The virial theorem in
statistical mechanics states [24]

(2 − α)〈K 〉 = −α〈E〉 + 3pV , (6)

where K is the kinetic energy of the system. Thus, the dependence of U, K , E and pV on N
must be the same. This means that when we define a scaling parameter N ′ such that it scales
U to an extensive parameter, N ′ must do the same for K and E as well.
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Enthalpy is defined as H ≡ U + pV ; thus, N ′ is the scaling factor making enthalpy
extensive. Now, let us consider pressure defined as p = −( ∂ E

∂V )N,S ; dividing both sides by N ′,
we get

P

N ′ = −
(

∂(E/N ′)
∂V

)
N,S

. (7)

The numerator of the right-hand side of the relation (7) is extensive. Considering the concept
of volume in solids and liquids, we expect the denominator to be extensive; therefore p must
scale by N ′ to be intensive.

According to the kinetic theory, for a substance whose molecules do not possess internal
degrees of freedom, temperature is defined through [25]

K = 1

2
m〈(v − 〈v〉)2〉 = 3NkBT

2
, (8)

where v is a particle’s velocity, and 〈 〉 represents an average over all particles in the system.
Having internal degrees of freedom changes the constant of proportionality. Since K scales by
N N ′ , considering equation (8), T scales by N ′.

Helmholtz free energy is defined through the equation A ≡ E − T S, so A/N ′ is extensive.
We have shown that T/N ′ is intensive, so S is extensive. With a similar argument, we can show
that Gibbs free energy (G) scales by N N ′ .

In the case of systems with long-range interactions, we have either a lattice with long-range
interacting rotators (spins), or an LJ-like fluid. In the first case, the only potential present in the
system is of the form r−α; in the second case, the prevailing term is of the form r−α . Thus, we
can use the result of the virial theorem, equation (6). But in the case of nanosystems, e.g., for
the common two-body interaction potentials, we encounter two terms of the form r−α , so the
virial theorem does not give any result. Imagine that the kinetic and the potential energy scale
by different powers of N , then if the kinetic energy scales by a larger power of N , in the TL we
will have a potential energy negligible compared to the kinetic energy, which practically means
no interaction. If the potential energy scales by a larger power of N , then in the TL the kinetic
energy will be negligible compared to the potential energy, which means the system is frozen.
Since there exist interactions and the system is not frozen, the potential and kinetic energy must
scale in the same way, even in the absence of the virial theorem.

3. Scaling parameter

In the above discussion, we define the scaling factor as the average number of interactions
per particle in the continuum approximation. Switching to nanosystems, we cannot use the
continuum approximation and compute the average by integration.

As can be seen in figure 1, which represents the internal and potential energy per particle
versus N , nonextensivity in nanosystems strongly depends on the surface size. The average
interaction energy for a surface particle is different from this average for a particle in bulk.
Changing the shape or size of the system changes the fraction of the surface particles. Thus,
the scaling parameters N∗ and Ñ , which do not depend on the shape of the system, are not
relevant for nanosystems, e.g., scaling the results of our simulations (section 4) with these
parameters yields no improvement in their linear correlation coefficient. Therefore, defining an
analytical form for the scaling parameter N ′ in nanosystems seems to be impossible.

The concept of energy per particle is an exact concept in some systems, e.g., ideal gases,
phonons and photons; it is also a useful concept in the realm of systems containing short-range
interactions, but in the realm of systems containing long-range interactions or nanosystems,
we must instead use the concept of energy per number of effective interactions, which is

4



J. Phys.: Condens. Matter 19 (2007) 156218 A M Nassimi and G A Parsafar

a) b) 

Figure 1. Calculated internal energy (a) and potential energy (b) per atom for Kr clusters
(in kJ mol−1). Note the strong dependence of E/N on the cluster surface.

proportional to N multiplied by N ′ . Here, by considering the particles to be static in their
equilibrium position (classical system in zero temperature), we want to compute the average of
the interactions of each particle with other particles, denoting this by N ′ . In section 4, how fast
the strength of interactions falls with distance is shown. After the distance related to the fifth
neighbour, the strengths of the interactions are negligible; therefore, we just considered the first
fifth layers of neighbours in computing N ′.

4. Molecular dynamics simulation

The simulation was performed by using the DL POLY code [26]. An atomic cluster containing
noble gas atoms can well be described by the LJ potential. We have performed our simulation
on a face-centred cubic (fcc) lattice of Kr atoms with LJ parameters σ = 3.827 Å and
ε/kB = 164.0 K [27]. Due to software limitations, we have performed our simulations at
zero pressure. Then, we had to use low temperatures to prevent the cluster from sublimation.
We used the canonical ensemble. The Evans method was used for fixing the temperature of the
simulation cell.

Since the scaled temperature must be the same for all the simulated systems, we consider
the value of 2.1419 as the reduced temperature, and multiply N ′ by this value in order to
evaluate the simulation temperature for that system. We have plotted the graph of temperature
versus simulation step and found it to have large and directional fluctuations until step 300, so
we consider the first 500 steps of each simulation for equilibration and evaluate the average
by the data from steps 500 to 10 000. The time between simulation steps was 0.002 ps; one
of the systems was simulated by a time step of 0.001 ps which yielded the same results. The
cut-off for the van der Waals forces was considered to be 16 Å for the smaller systems, and
larger for larger systems. Since the nearest-neighbour separation in this lattice is about 4 Å,
and the prevailing term in the LJ potential is the (σ/r)6 term, the interaction strength is about
1/46 = 1/4096 of its initial value. When instead of two atoms we have a lattice of atoms, the
equilibrium separation between LJ interacting atoms will be 0.971 times that of two separate
atoms [28]. Therefore, the nearest-neighbour separation in this lattice is 4.171 Å.

The computed scaling parameters and simulation temperatures, as well as the results for
the E, U , and their scaled values for atomic Kr clusters are reported in table 1. Since p is zero
for these clusters, H is equal to E in the clusters. The computed values of scaling parameters
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Table 1. The calculated thermodynamic functions obtained from the MD simulation for krypton
clusters, with given number of atoms (N) and absolute temperature (T ).

N N ′ T/K E (kJ mol−1) −E/N ′ −U (kJ mol−1) U/N ′

8 4.669 10.00 2.45 × 101 5.257 25.29 −5.417
27 7.596 16.27 1.31 × 102 17.28 136.4 −17.95
64 9.380 20.09 3.87 × 102 41.28 402.7 −42.94

125 10.56 22.62 8.55 × 102 81.01 889.7 −84.25
216 11.40 24.41 1.59 × 103 139.4 1653 −145.1
343 12.02 25.74 2.67 × 103 222.4 2780 −231.4
512 12.50 26.76 4.15 × 103 332.1 4318 −345.6
729 12.88 27.58 6.10 × 103 473.7 6347 −492.9

1 000 13.19 28.24 8.58 × 103 650.7 8927 −677.0
1 331 13.44 28.79 1.17 × 104 867.0 12 126 −902.1
1 575 13.40 28.70 1.37 × 104 1024 14 289 −1066
1 728 13.66 29.26 1.54 × 104 1127 16 015 −1172
2 000 13.14 28.14 1.71 × 104 1299 17 762 −1352
2 197 13.84 29.65 1.99 × 104 1434 20653 −1492
2 744 14.00 29.99 2.51 × 104 1792 26 111 −1865
3 375 14.14 30.29 3.12 × 104 2206 32 456 −2295
3 600 12.93 27.70 3.02 × 104 2333 31 408 −2429
4 096 14.26 30.55 3.82 × 104 2675 39 692 −2783
4 913 14.37 30.78 4.62 × 104 3216 48 083 −3345
5 832 14.47 30.99 5.52 × 104 3815 57 457 −3970
6 859 14.56 31.18 6.53 × 104 4488 67 996 −4671
8 000 14.64 31.35 7.66 × 104 5236 79 764 −5450
9 261 14.71 31.50 8.92 × 104 6063 92816 −6311

10 648 14.77 31.64 1.03 × 105 6973 10 7210 −7257
12 167 14.83 31.77 1.18 × 105 7969 12 3020 −8294
13 824 14.89 31.89 1.35 × 105 9056 14 0310 −9425
27 000 15.14 32.43 2.68 × 105 17 712 27 9090 −18433
32 768 15.20 32.57 3.29 × 105 21 649 34 2470 −22524
39 304 15.26 32.69 3.96 × 105 25 976 41 2440 −27026
46 656 15.31 32.79 4.72 × 105 30 845 49 1360 −32092

Table 2. The calculated energy (E), potential energy (U) and enthalpy (H ) obtained for systems
simulated with the periodic boundary condition, with the given number of atoms (N).

N E (kJ mol−1) U (kJ mol−1) H (kJ mol−1)

4 913 −5.35 × 104 −5.56 × 104 −4.09 × 104

7 056 −7.68 × 104 −7.99 × 104 −5.88 × 104

8 000 −8.71 × 104 −9.06 × 104 −6.66 × 104

13 824 −1.51 × 105 −1.56 × 105 −1.15 × 105

N ′ is equal to 16.182 and T is equal to 34.660.

and simulation temperatures together with the values of E, U and H are given in table 2 for
similar systems simulated with the periodic boundary condition. The energy and potential
energy per particle are sketched in figure 1 to show nonextensivity in such systems. The points
represented with a circle are atomic clusters with an equal number of atoms along each axe of
the crystal. These systems contain n3 atoms, where n = 2, . . . , 24, 30, 32, 34, and 36. In order
to find the thermodynamic functions in the TL, we have also simulated three systems with
an equal number of atoms along the three axes, and a system with (14, 21, 24) atoms along
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a)         b) 

Figure 2. Calculated internal energy (a) and potential energy (b) for Kr clusters scaled with N ′ for
the reduced temperature T/N ′ = 2.142; note the linear correlation coefficient of 1.0000.

its axes with the periodic boundary condition. They correspond to four points constituting a
line at the bottom of figure 1. Another three systems containing (7, 15, 15), (5, 20, 20) and
(4, 30, 30) atoms along each axis have been simulated to show the effects due to shape and
surface. Figure 1 clearly shows that these systems do not fit with the trend of the previous
systems. Figure 2 shows the graphs of E/N ′ and U/N ′ versus N . The success of this method
for making thermodynamic functions extensive is reflected in the value of 1.000 for the linear
correlation coefficient in these graphs.

5. Conclusion

In this work, we have justified the scaling method that was used to make extensive (intensive)
thermodynamic functions in systems containing long-range interactions [6–23], which are
nonextensive (nonintensive) on their own. We have argued that by going to limited systems,
i.e., where we do not reach the TL, thermodynamic functions are again nonextensive. (See
figure 1.) Our justification shows that this nonextensivity yields nonintensivity. The scaling
parameter for doing this must depend on the shape of the system. Thus, in the case of these
systems, we discarded N∗ and Ñ , and defined N ′ , which has the same interpretation but must
be evaluated without using the continuum approximation, i.e., integration. Finally, we have
performed an MD simulation on some atomic clusters of Kr; the results are presented in tables 1
and 2. We have scaled the internal and potential energy by the parameter N ′; the results are
represented in figure 2, with the linear correlation coefficient of 1.000 for both graphs.

This scaling is universal for nanocrystals since there is no assumption beyond that the
system will exhibit normal behaviour in the TL; but, in going to liquids the particles will not
have definite positions relative to each other, so we cannot evaluate N ′ in this manner. If the
range of interactions is short enough for one or two shells of neighbours to be enough for
evaluating the N ′ , we can determine the dependence of the N ′ on the portion of the particles
present on the surface. But this depends on the number of the nearest neighbours for each group
of particles (surface and bulk), which in turn depends on the lattice structure.

Doing some simulations capable of computing entropy and free energy remains for the
future, to check the validity of this scaling on such systems, and also to check the scaling of the
thermodynamic functions of nanomagnetic systems.

This method makes thermodynamic functions artificially extensive to broaden the range of
the applicability of the ordinary thermodynamics to systems containing long-range interactions
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and nanosystems. But some guesses have been made that such systems must be described by
nonextensive thermodynamics [5]: systems containing long-range interactions with a value of
entropy index q that is a function of α and d and nanosystems with a value of q that is a function
of α, d , and N [6]. The result of this work shows that the mentioned q for nanosystems must
also be a function of the system shape (to account for surface effects). Investigation into this
supposition also remains for the future.
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