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Abstract

We present in this paper a new method of modifying hard-core potentials to correctly predict the equilibrium and non-equilibrium
properties of real fluids at low densities (specifically when q 6 B/C where q is density, and B and C are the second and third virial coef-
ficients) only by one set of potential parameters. Because the molecular diameter becomes smaller when temperature increases, we intro-
duced a new expression for the variation of molecular diameter with temperature that incorporates this effect. The temperature
dependence of the diameter was used in both Sutherland (ST) and square-well (SW) potential models to modify the second virial coef-
ficient. Then we have shown that the experimental second virial coefficient fits into the modified Sutherland (MST) and modified square-
well (MSW) quite well for the entire temperature range for which experimental data are reported, including the inversion temperature.
Such fittings give the parameters of the modified potential models, which are used to calculate the non-equilibrium properties of He, Ne,
N2, O2, CO, and NO, including viscosity, thermal conductivity, and self-diffusion coefficients. In comparison with experimental data,
such modifications of the potential models give much better results than those obtained from the original ST and SW models, especially
at high temperatures at which the deviations are reduced significantly. Therefore, there is no need to use two sets of potential parameters;
one for the equilibrium and another for the non-equilibrium properties of real fluids, if we use the modified hard-core potential models.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Hard-core potential models, including the hard-sphere
(HS), square-well (SW), Sutherland (ST), and hard-core
Lennard-Jones (HCLJ) are of great importance in fluid the-
ories because of:

(A) Having analytical expressions for their radial distri-
bution functions (RDF) at least at low-densities;
hence their properties may be expressed and calcu-
lated analytically [1–4].
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(B) The HS potential is usually used as a reference state
in the perturbation theory of simple liquids.

(C) The behavior of all simple liquids approaches that of
the hard-core fluids when temperature and density
increase.

For these reasons their radial distribution functions
(RDF), thermodynamic properties, and phase behavior
are intensely investigated both analytically and by various
computer simulation methods [5–15]. Despite these
features, they have an incorrect behavior that must be
improved. For instance, while these potential models cor-
rectly predict the behavior of the second virial coeffi-
cient [B(T)] in the low temperature region, they show a
significant deviation from experimental data at high
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temperatures. Specifically, they do not predict any maxi-
mum value for B(T) versus T at any temperature, which
may be called the inversion temperature [16,17], observed
experimentally. In addition, it has been known for a long
time that the potential parameters of any given model
that give the best fit for non-equilibrium and equilibrium
properties (such as viscosity, thermal conductivity, self-
diffusion coefficient, and the second virial coefficient) are
generally different [18]. Hence, for a simple potential
model (like the Lennard-Jones), there is one specific set
of potential parameters appropriate for each property.
Our goal in this work is to modify these potential models
in such a way that they can predict the behavior of the
second virial coefficient B(T) up to high temperatures,
including the inversion temperature. Then, the modified
potentials will be used to calculate the transport proper-
ties. The potentials used for this purpose are the square-
well and Sutherland which we have analytical expressions
for their RDFs. As will be shown in Sections 2 and 3, we
can achieve this goal by modifying the hard-core diameter
properly. In this way we are able to retain the hard-core
potentials and their analytical RDFs for description of
real simple fluids. Also it is shown that with these modi-
fied potential models, we can well represent the experi-
mental data (equilibrium and non-equilibrium) only by
one set of potential parameters at low densities.
b0 ¼ bs þ ðbc � bsÞe ð5Þ
2. The modified hard-core potential models

The Sutherland (ST) and square-well (SW) potential
models are defined as

U rð Þ ¼ 1 r 6 rð Þ
U rð Þ ¼ �er�c r > rð Þ
U rð Þ ¼ 1 r 6 rð Þ
U rð Þ ¼ �e r < r 6 krð Þ
U rð Þ ¼ 0 r > krð Þ

respectively.
The second virial coefficients of the ST and SW poten-

tials are given [19] by

B ¼ b0½1� e=kT � 1
6
ðe=kT Þ2 � 1

30
ðe=kT Þ3 þ � � �� ð1Þ

and

B ¼ b0½1� ðk3 � 1Þðee=kT � 1Þ� ð2Þ
respectively, where b0 ¼ 2

3
pr3, r is the core diameter, k is

the width of the SW potential, e is the depth of the poten-
tial well, and T is absolute temperature. For these poten-
tials, the derivative of B(T) with respect to T is always
positive. Therefore these potentials can not show any max-
imum value which has been observed experimentally [20].

This difference in behavior is mainly due to the existence
of a hard-core diameter in such potential models. However,
the soft-core potential models like the Lennard-Jones
model, can take into account this effect qualitatively. They
are treated in the perturbation theories of liquids as having
a hard-core. In the perturbation theories of liquids the
potential, at the first step, is separated into two parts;
repulsion and attraction. In the second step, it is shown
that the fluid structure is mainly determined by the repul-
sion part which in turn may be represented by a conve-
niently chosen hard-sphere fluid, and the attractive part is
treated as a perturb term. The hard-sphere fluid which is
taken as the reference system has a temperature-dependent
diameter. For instance, for the Barker–Henderson theory,
it can be calculated by [19];

r ¼
Z 1

0

ð1� e�uðrÞ=kT Þ�dr ð3Þ

in which u(r) is the repulsive part of the potential. For the
Lennard-Jones potential, Verlet and Weis used Eq. (3) to
calculate the temperature-dependent diameter. The calcu-
lated diameter was fitted into [4];

rvw ¼
aT þ b
cT þ 1

ð4Þ

where a = 0.3837, b = 1.068, and c = 0.4293, which yields
an error less than 2 · 10�4. Therefore, one may expect
that if temperature-dependence of the diameter is taken
into account, the second virial coefficient given by a
hard-core potential model would pass through a maxi-
mum. We may note that when temperature increases, real
molecules are expected to penetrate more into each other,
and hence the diameter is expected to become shorter.
For instance, we may expect that at very low tempera-
ture the closest distance between the centers of two mol-
ecules is the molecular diameter, i.e., they just may touch
each other. However, the distance decreases with temper-
ature. We may include the above-mentioned character to
improve these potential models without loosing their sim-
ple functional forms by supposing that the diameter is
temperature-dependent. In this way, we are able to retain
the hard-core potentials and their known properties for a
description of real simple fluids. As mentioned previ-
ously, at high temperatures the real inter-particle poten-
tial becomes harder and harder, in other words with
increasing temperature, molecules may penetrate into
each other more and more. The amount of penetration
depends on both the softness of outer shell and temper-
ature. At low temperatures, the molecules may only
touch each other, which in this situation the molecular
diameter is indicated by its soft core diameter, rs. With
increasing temperature, molecules penetrate into each
other to the point that the repulsion forces overcome
the thermal energy; which for the case of T!1, the
core diameter is given by the hard-core diameter rc.
Since the hard-core diameter involves in the second virial
coefficient via b0, where b0 ¼ 2

3
pr3, the following equation

may account for the temperature dependence of the core
diameter:

�a=T
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where bc ¼ 2
3
pr3

c , bs ¼ 2
3
pr3

s , and a ¼ � d lnðb0�bsÞ
dð1=T Þ is the rate

of molecular penetration with temperature. Even though
we could make use of Eq. (4) to take temperature-dependence
of the diameter, but we prefer to use Eq. (5) which its
parameters have clear physical meaning. Nonetheless, we
have considered the Verlet–Weis form for completeness and
comparison, which we may refer to them as ST–VW and
SW–VW, respectively. Inserting Eq. (5) into Eqs. (1) and
(2), one can reach to the following modified expressions
for the second virial coefficients of the modified SW and
modified ST potential models, respectively:

B ¼ ½bs þ ðbc � bsÞe�a=T �½1� ðk3 � 1Þðee=kT � 1Þ� ð6Þ
and

B ¼ ½bs þ ðbc � bsÞe�a=T �
� ½1� e=kT � 1

6
ðe=kT Þ2 � 1

30
ðe=kT Þ3 þ . . .� ð7Þ

The modified potential models which lead to Eqs. (6) and
(7) will be called the MSW and MST models from now
on, respectively. Now that the modified SW and ST
potentials and their corresponding second virial coeffi-
cients have been introduced, we may test the ability of
the modified potentials in predicting the equilibrium
and non-equilibrium properties of real gases at low
densities.
Fig. 1. (a) The experimental second virial coefficient of Ne fitted into Eqs.
(1) and (6) for ST and MST Potential Models. (b) The experimental
second virial coefficient of Ne fitted into Eqs. (2) and (7) for the SW and
MSW potential models.
3. Experimental test for the second virial coefficients

In this work for some real gases (He, Ne, N2, O2, CO,
and NO); we used the accurate reported data containing
the inversion temperatures. For He we used the experi-
mental data in [20] at the whole temperature range and
for Ne, N2 in [21–23] at low temperatures. For these
two gases and for other gases at high temperatures we
used the accurate reported data, based on the principle
of corresponding states in [24,25]. The accurate reported
data have been fitted into the modified second virial coef-
ficients [Eqs. (6) and (7)], which for one of them, namely
neon, we have plotted the second virial coefficients using
the ST, MST, SW, and MSW potential models along with
experimental data in Fig. 1. As may be seen, the experi-
mental data are well fitted into the proposed MST and
MSW models in whole temperature range for which the
experimental data are reported, whereas the second virial
coefficients calculated with the ST and SW potential mod-
els have meaningful deviations from experimental data,
especially at high temperatures. In addition we see that
the MST and MSW potential models can take into
account the inversion temperature whereas the ST and
SW potential models can not. Also, we have used the
Verlet–Weis parameterization to calculate temperature-
dependence diameter, which may be used to obtain the
second virial coefficient via both ST and SW potential
models. The deviation curve of Ne for the calculated sec-
ond virial coefficient, obtained from the MST, MSW, ST–
VW, and SW–VW are shown in Fig. 2.
For other gases essentially similar results are obtained.
Using the above-mentioned method of fitting, the parame-
ters of the new potentials for the MST and MSW have been
obtained which are given in Table 1. We may consider rs/rc

as a quantity representing the extent of penetration and a
as the rate of molecular penetration with temperature. A
penetrable molecule has a smaller value for its ratio of
rs/rc, and softer molecule has a larger value of a, hence
its penetration with temperature is more. As one can see
in the 6th and 15th rows of Table 1, when temperature
increases the molecular diameter of all above-mentioned
gases will decrease within 17–24% with one exception;
helium with �34% (due to its small diameter). In order
to grasp the penetrability of different molecules, the ratio
of r(T)/rs obtained from both MST and MSW is plotted
versus T in Fig. 3. As shown in this figure, the penetrability
for He has the highest values which means He is the softest
species.



Table 1
Potential parameters for the modified Sutherland and modified square-well po

Potential models Gases parameters He Ne

ST e/k (K) 11.28 ± 4.5 106.8 ± 5.1
b0 (cm3/mol) 12.72 ± 0.73 15.81 ± 0.85

MST e/k (K) 11.42 ± 1.24 103.3 ± 1.3
bs (cm3/mol) 12.77 ± 0.20 17.62 ± 0.45
bc (cm3/mol) 5.526 ± 0.271 10.84 ± 1.12
rs/rc 1.3221 1.1758
a (K) 799.2 ± 49.4 1004 ± 312

SW e/k (K) 61.81 ± 162.39 69.27 ± 21.54
k 1.029 ± 0.133 1.292 ± 0.122
b0 (cm3/mol) 12.35 ± 0.9 14.85 ± 0.9

MSW e/k (K) 68.39 ± 66.51 35.14 ± 10.34
k 1.024 ± 0.024 1.584 ± 0.145
bs (cm3/mol) 12.35 ± 0.34 17.91 ± 1.17
bc (cm3/mol) 5.393 ± 0.274 11.03 ± 1.13
rs/rc 1.3390 1.1750
a (K) 884.9 ± 96.6 903.8 ± 393.2
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Fig. 2. (a) The deviation curves for the calculated second virial coefficient
of Ne, Obtained from the MST and ST–VW. (b) Same as (a) for the MSW
and SW–VW.

Fig. 3. (a) The penetrability ratio, r(T)/rs, of various gases obtained from
MST. (b) Same as (a) for the MSW.
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4. Calculation of transport properties using the modified

potentials

Now by having the potential parameters we can easily
compute the transport properties of the gases, i.e., viscos-
tentials of some gases

N2 O2 CO NO

279.1 ± 7.4 343.4 ± 9.1 300.8 ± 10 360.7 ± 10
41.92 ± 2.14 34.06 ± 1.85 42.91 ± 5.56 36.45 ± 2.07

269 ± 4.3 331.6 ± 4.5 283.2 ± 2.5 347.1 ± 4.4
45.92 ± 1.66 37.82 ± 1.37 49.47 ± 0.95 40.6 ± 1.33
27.38 ± 7 22.62 ± 4.84 28.42 ± 2.36 23.2 ± 5.04
1.1881 1.1869 1.2029 1.2051
1289 ± 730 1497 ± 787.2 953.8 ± 216.2 1542 ± 720

118.2 ± 20.6 161.5 ± 34.8 137.7 ± 19.9 166.5 ± 33.7
1.478 ± 0.082 1.436 ± 0.092 1.44 ± 0.066 1.443 ± 0.088
40.32 ± 2.76 32.44 ± 2.23 40.07 ± 2.86 34.67 ± 2.47

66.14 ± 10.19 54.97 ± 34.92 91.33 ± 9.17 76.22 ± 23.09
1.739 ± 0.079 1.959 ± 0.384 1.605 ± 0.045 1.797 ± 0.163
53.78 ± 3.05 47.35 ± 6.38 52.65 ± 2.76 48.24 ± 4.2

29.7 ± 1.67 24.73 ± 1.28 29.33 ± 1.76 25.55 ± 1.39
1.2189 1.2417 1.2153 1.2360
642.8 ± 170 624.2 ± 263.9 722.6 ± 195.7 743.2 ± 243.4



Table 2
Values of coefficients of Eq. (11) for Xð1;1Þ

�
and Xð2;2Þ

�
along with their

correlation coefficients, R2

Coefficients Xð1;1Þ
�

Xð2;2Þ
�

a 1.00014 1.00007
b 0.31205 0.33600
c 1.87524 1.58426
d �5.81541 �2.89715
e 9.99791 2.43445
f �10.71868 �0.85739
g 7.24213 �0.17984
h �2.99283 0.28312
i 0.69041 �0.09880
j �0.06809 0.01213
R2 1.00000 0.99999

Table 3
Values of coefficients of Eq. (12) for Xð1;1Þ

�
and Xð2;2Þ

�
along with their

correlation coefficients, R2

1/k

0.4 0.6 0.8

Coefficients of Xð1;1Þ
�

a 0.99999 0.99999 0.99999
b 0.55672 0.38962 0.21563
c 1.37396 0.49438 0.29865
d �2.16354 �0.95208 �0.89896
e 1.52604 0.67188 0.81510
f �0.42188 �0.17708 �0.26042
R2 1.00000 1.00000 1.00000

Coefficients of Xð2;2Þ
�

a 0.99999 0.99999 0.99999
b 0.68941 0.31958 0.18096
c 1.25490 1.20073 0.80073
d �0.48385 �1.75885 �1.59167
e �0.65365 1.13802 1.20052
f 0.43490 �0.29427 �0.33854
R2 1.00000 1.00000 1.00000
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ity, thermal conductivity, and self-diffusion coefficients at
low densities. It is well-known that at low densities, the
Boltzmann equation gives explicit expressions for the vis-
cosity, thermal conductivity, and self-diffusion coefficients
as [18,19]:

g¼ 5

16

ðpmkT Þ1=2

pr2Xð2;2Þ
� ð8Þ

k¼ 25

32

Cv

N
pkT
m

� �1=2
1

pr2Xð2;2Þ
� for monatomics ð9aÞ

k¼ 5

16N
9

4
RþCv

� �
pkT
m

� �1=2 1

pr2Xð2;2Þ
� for polyatomics

ð9bÞ

D ¼ 3

8

pkT
m

� �1=2
1

qpr2Xð1;1Þ
� ð10Þ

In these equations m, k, q, r, and T are the particle
mass, Boltzmann constant, number density, molecular
diameter, and absolute temperature. In addition X(1,1)*

and X(2,2)* are the reduced collision integrals. As may
be seen in these equations, we encounter with the colli-
sion integrals, i.e., X(1,1)* and X(2,2)* which have to be
calculated. But these quantities have already been com-
puted and tabulated for the SW and ST potentials (see
appendices IV and V of Ref. [18]). We have used these
values and fitted them into a polynomial; we found that
the reported values for the collision integrals are quite
well fitted into the following polynomials. For the ST
we found that

Xðl;sÞ
�
¼ aþ b

1

2T �

� �
þ c

1

2T �

� �2

þ d
1

2T �

� �3

þ e
1

2T �

� �4

þ f
1

2T �

� �5

þ g
1

2T �

� �6

þ h
1

2T �

� �7

þ i
1

2T �

� �8

þ j
1

2T �

� �9

ð11Þ

the reported data are fitted into Eq. (11), which is valid
for T* > 0.25, where T* = kT/e is the reduced tempera-
ture and values of the coefficients of Eq. (11) with the
correlation coefficients (R2) are given in Table 2. For
the SW for which the collisional integrals are given in
terms of T* and 1/k, are fitted as a function of T* for dif-
ferent given values of k Then X(l,s)* are obtained from
interpolations for the desired values of k. Finally, we
found that,

Xðl;sÞ
�
¼ aþ b

1

T �

� �
þ c

1

T �

� �2

þ d
1

T �

� �3

þ e
1

T �

� �4

þ f
1

T �

� �5

ð12Þ

which is valid for T* > 1. The values for the coefficients
of Eq. (12) along with the correlation coefficients are gi-
ven in Table 3. Now we may compute transport coeffi-
cients, i.e., viscosity, thermal conductivity, and self-
diffusion coefficients. These calculations have been per-
formed for all gases given in Table 1, using the potential
parameters given in Table 1. We have shown in Figs. 4–6
the results of these calculations for Ne as an example,
using the SW, ST, MST, MSW, ST–VW, and SW–VW
potential models. Fig. 4 shows the calculated viscosity ob-
tained by using the potential parameters of Table 1 along
with the viscosity calculated by using the potential
parameters obtained from viscosity coefficients (V–ST
and V-SW) taken from Ref. [18] for comparison. The re-
ported error bars for some experimental data are also
shown. As may be seen, the results obtained from these
new modified potentials are in much better agreement
with experimental data than those obtained from the
non-modified original model, especially at high tempera-
tures. As may be seen in Fig. 4, the agreement between
the three calculated viscosities with experimental data is
very good at low temperatures, whereas at high tempera-
tures only the modified models give closer result to



Fig. 4. (a) Comparison of experimental viscosity coefficient of Ne at
q! 0 with those calculated from the ST, V–ST, MST, and ST–VW
potential models (the potential parameters of the two former cases are
taken from Ref. [18] and the latter from Table 1). (b) Same as (a) for the
SW, V–SW, MSW, and SW–VW Models.

Fig. 5. (a) Same as Fig. 4(a) for self- diffusion coefficient. (b) Same as
Fig. 4(b) for self-diffusion coefficient.
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experimental values. At low temperatures, the attraction
between molecules is more important than the repulsion;
hence this branch of potentials plays the main role in the
equilibrium and/or transport properties. At high temper-
atures, the repulsion between molecules is prevalent,
hence has more contribution in the equilibrium and/or
transport properties. But real molecules are fairly pene-
trable especially at high temperatures; actually there is
no molecule to be completely rigid. Such penetration
leads to inversion temperature of the second virial coeffi-
cient. Indeed the reason for the superiority of MSW and
MST potential models with respect to hard-core ones
(especially at high temperatures) is due to the fact that
they allow the penetration occurs. For this reason, the
modified models give a better agreement with experimen-
tal data than the hard-core potential models such as ST/
SW in which molecule is assumed to be an impenetrable
hard-core. Similar results may be obtained for other
transport coefficients of gases whose MST and MSW po-
tential parameters have been given in Table 1. Calcula-
tions for the other gases is done, for which we have
merely reported the average absolute error percentage
for their viscosity, thermal conductivity, and self diffusion
coefficients in Table 4, which clearly shows the priority of
the MSW and MST potentials with respect to their sim-
ple forms. As may be seen, the results of calculations
for viscosity are in better agreement with experimental
data than those obtained for thermal conductivity, and
they are better than those for self-diffusion. We may note
that the experimental data of viscosity are more accurate
than those of thermal conductivity and also these are
more accurate than those of self-diffusion [26]; hence
comparison of the calculated viscosity with those of
experimental values is more reasonable, for evaluation
of a potential model. In addition, it is seen that the agree-
ment with experimental data at low temperatures is better
than that at high temperatures. In order to explain such a
behavior, we may note that Eqs. (8)–(10) are the first or-
der approximations of the transport properties. In order
to obtain the Kihara correction terms, the calculated val-
ues must be multiplied in a factor larger than unity. For
instance, viscosity may be given as

½g�k ¼ ½g�1f ðKiharaÞ
g ð13Þ

where the multiplier factor, f ðKiharaÞ
g , is given as



Fig. 6. (a) Same as Fig. 4(a) for thermal-conductivity coefficient. (b) Same
as Fig. 4(b) for thermal-conductivity coefficient.

Table 4
Average absolute deviation of viscosity, thermal conductivity, and self-
diffusion coefficients for some given gases

Gas Temperature range (K) ST MST SW MSW

Average absolute deviation of viscosity (lPa s)

He 150–523 0.95 0.67 0.88 0.59
523–1273 5.84 1.57 4.81 1.61
1273–2273 18.83 5.53 16.96 5.01
2273–3273 33.22 12.21 30.72 10.88

Ne 150–523 2.83 0.91 5.21 2.06
523–1273 2.11 0.47 2.73 0.87
1273–2273 12.34 3.47 8.12 3.01
2273–3273 26.27 9.46 21.09 9.39

O2 150–523 0.27 0.98 3.49 0.81
523–1273 0.67 1.26 2.64 0.66
1273–2273 4.97 0.87 2.32 0.79
2273–3273 11.57 1.69 7.85 1.17

N2 150–523 0.14 0.71 2.78 0.50
523–1273 0.96 0.69 2.00 0.64
1273–2273 5.92 0.97 2.60 0.78
2273–3273 13.69 3.54 9.11 3.33

CO 150–523 0.47 1.53 2.30 0.14
523–1273 1.80 1.34 1.30 0.22
1273–2273 6.95 1.37 3.55 0.61
2273–3273 14.90 4.07 11.03 3.47

NO 150–523 0.12 1.13 3.12 0.56
523–1273 0.89 1.47 2.31 0.45
1273–2273 4.97 0.92 2.28 0.78
2273–3273 11.61 1.74 8.03 1.21

System
Average absolute deviation of thermal conductivity (mW/m K)

He 150–523 7.15 5.98 6.56 5.22
523–1273 46.67 13.40 38.68 13.77
1273–2273 148.37 44.89 133.80 40.82
2273–3273 260.93 97.40 241.46 87.07

Ne 150–523 4.14 1.24 7.82 3.10
523–1273 3.34 0.76 4.05 1.17
1273–2273 19.60 5.91 3.09 5.20
2273–3273 41.27 15.29 33.27 15.19

Average absolute deviation of self-diffusion (10�4m2/s)

He 150–523 0.41 0.48 0.35 0.48
523–1273 3.56 2.53 3.27 2.54
1273–2273 16.63 10.49 15.67 10.24
2273–3273 40.09 25.51 38.24 24.58

Ne 150–523 0.02 0.05 0.02 0.04
523–1273 0.42 0.36 0.29 0.33
1273–2273 2.42 1.58 2.06 1.56
2273–3273 6.34 4.00 5.65 4.02

O2 150–523 0.02 0.04 0.01 0.02
523–1273 0.16 0.17 0.08 0.12
1273–2273 0.87 0.62 0.70 0.54
2273–3273 2.42 1.54 2.12 1.49

N2 150–523 0.02 0.04 0.01 0.02
523–1273 0.17 0.16 0.08 0.12
1273–2273 0.94 0.60 0.71 0.55
2273–3273 2.58 1.57 2.15 1.56

CO 150–523 0.03 0.04 0.01 0.02
523–1273 0.20 0.17 0.11 0.13
1273–2273 1.01 0.63 0.80 0.57
2273–3273 2.70 1.62 2.43 1.58

(continued on next page)
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We have used the values of the collision integrals for ST
model, given in Refs. [18,19], to obtain the values of the Ki-
hara approximation multiplier factor for the viscosity at
some temperatures. The calculated values are given in
Table 5. As shown in this table, f ðKiharaÞ

g increases with T.
Therefore, we may expect that the significant deviation at
high temperatures is mainly due to the correction terms
which are not included in this work. Considering all
above-mentioned facts, we may conclude that:

(a) There is no need to have two sets of potential param-
eters to calculate equilibrium (e.g. the second virial
coefficient) and non-equilibrium properties (e.g. vis-
cosity coefficient) if temperature dependence of the
molecular diameter is taken into account; i.e. using
the MSW and MST models instead of the SW and
ST models.

(b) The fact that the calculated results based on the mod-
ified models of the SW and ST are in much better
agreement with experimental data especially at high
temperatures, indicates the superiority of the modi-
fied models for computation of equilibrium and
non-equilibrium properties.



Table 4 (continued)

Gas Temperature range (K) ST MST SW MSW

NO 150–523 0.03 0.04 0.01 0.02
523–1273 0.16 0.17 0.08 0.13
1273–2273 0.90 0.63 0.72 0.54
2273–3273 2.56 1.63 2.26 1.58

Table 5
The multiplier factor for the Kihara second order approximation of
viscosity coefficient

T* f ðKiharaÞ
g

0.25 1.0023
0.50 1.0025
1.00 1.0035
2.00 1.0072
4.00 1.0112

10.00 1.0139
16.67 1.0145
25.00 1.0148
50.00 1.0151
1 1.0153
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5. Conclusion

We have presented in this paper a new method of mod-
ifying hard-core potentials in such a way that one can use
them to predict correctly the equilibrium and non-equilibrium
properties of real fluids by only one set of potential param-
eters. By the fact that the molecule diameter becomes smal-
ler when temperature increases, we introduce a new
expression for the variation of diameter with temperature
that incorporates this effect. Then we show that the second
virial coefficient of the modified –ST and –SW, also ST–
VW, and SW–VW can correctly represent the experimental
data of real fluids in an extremely wide temperature range,
including the inversion temperature. By obtaining the
parameters of the modified potential models by fitting
the experimental data of the second virial coefficient into
the new purposed expressions, we have calculated the
non-equilibrium properties of real fluids, i.e., viscosity,
thermal conductivity, and self-diffusion coefficients. When
these calculations were performed we found that the
obtained results were in a closer agreement with experimen-
tal data, that is, there is no need to have two sets of poten-
tial parameters for the equilibrium and non-equilibrium
properties of real fluids when the temperature dependence
of the molecular parameter are taken into account, cor-
rectly. Also, using the Verlet–Weis equation, along with
ST and SW models gives the transport coefficients as accu-
rately as those obtained from the MST and MSW (see Figs.
4–6). Such a conclusion is reasonable, because of the fact
that an accurate potential, like the Aziz and Slaman
[27,28] for the noble gases, is expected to give accurate
results for both the equilibrium and transport properties.
We expect also that this method of modifying the ST/SW
potential models can equally well applied to other hard-
core potential models such as triangular-well and trapezoi-
dal-well potentials. As shown in Fig. 4, the set of potential
parameters obtained and reported for the non-equilibrium
properties are appropriate for low temperatures only.
Using such a set for high temperatures may lead to a signif-
icant error.
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