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Abstract

We present in this paper a simple method of obtaining various equations of state for hard sphere fluid in a simple unifying way. Using
the first several virial coefficients of hard sphere fluid, we will guess equations of state by using the asymptotic expansion method. Among
the equations of state obtained in this way are Percus–Yevick, Scaled Particle Theory, and Carnahan–Starling equations of state. Also by
combining the Monte Carlo results on hard sphere fluid with the asymptotic expansion method many other equations of state for hard
sphere fluid can be found where all of them give essentially similar results in the region of isotropic hard sphere liquid, i.e., up to g < 0.5,
in which g is the packing fraction. In addition we have found a simple equation of state for the hard sphere fluid in the metastable region
which represents the simulation data accurately.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Hard sphere fluid plays a central role in almost all the-
ories of liquid state chemical physics, for example, in per-
turbation theories [1–3], in statistical associating fluid
theories [4], etc. For this reason its thermodynamic proper-
ties has been studied by various methods; scaled particle
theory [5], integral equation theories, especially Percus–
Yevick equation [6,7], and calculation of its virial
coefficients [8]. By these methods one can obtain the most
important quantity of interest; the equation of state, by
which one can calculate all thermodynamic properties.
Scaled particle theory generates the following equation of
state:

Z ¼ 1þ gþ g2

ð1� gÞ3
ð1Þ

where Z(=P/qkT) is the compressibility factor, g ¼ p
6
qr3

� �
is the packing fraction, q is the number density, P is the
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pressure, T is the absolute temperature, r is the diameter
of hard sphere, and k is the Boltzmann constant.

Wertheim and Thiele solved the Percus–Yevick [6,7]
equation and obtained two equations of state; one form
which is obtained through compressibility route is Eq. (1)
and the second one originated from virial route is

Z ¼ 1þ 2gþ 3g2

ð1� gÞ2
ð2Þ

When expanding Eqs. (1) anf (2) in terms of g, one can find:

Z¼ 1þ4gþ10g2þ19g3þ31g4þ46g5þ64g6þ85g7þOðg8Þ
ð3Þ

and

Z ¼ 1þ 4gþ 10g2 þ 16g3 þ 22g4 þ 28g5 þ 34g6

þ 40g7 þOðg8Þ ð4Þ

It is seen that both equations produce exact virial coeffi-
cients up to third term only. As we may know the first sev-
eral virial coefficients of the hard sphere fluid are [9]:
B2 = 4, B3 = 10, B4 = 18.36, B5 = 28.23, B6 = 39.54,
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B7 = 53.54 and B8 = 70.78. Carnahan and Starling used the
first three virial coefficients (of course they adopted
B4 = 18) and approximated the virial coefficients to be
Bn = n2 + 3n and summed the virial coefficients, then
reached to their famous equation [10]:

Z ¼ g3 � g2 � g� 1

ðg� 1Þ3
ð5Þ

Another route to obtain hard sphere fluid equations of
state stems from virial expansion. Summing the known first
several virial coefficients of the hard sphere fluid by, say,
Padé approximation method, one may obtain some equa-
tions of state. For example, Ree and Hoower found the fol-
lowing equation [11]:

Z ¼ 1þ 1:75399gþ 2:31704g2 þ 1:108928g3

1� 2:246004gþ 1:301056g2
ð6Þ

Also one can employ the so-called rescaled virial expansion
to obtain equations of state for hard spheres [12,13].

Here we present a simple method to generate many
equations of state (among them are Eqs. (1), (2) and (5))
for hard sphere fluid.

2. The asymptotic expansion method

We start from known virial coefficients of hard sphere
fluid and write

Z ¼ 1þ B2gþ B3g
2 þ B4g

3 þ � � � ð7Þ

We may notice that if Eq. (7) should represent the proper-
ties of a real fluid, it must be convergent. Suppose the ra-
dius of convergence of the virial expansion is b; therefore
g must be less than b, because for g P b the virial expan-
sion becomes divergent, i.e., it can not represent a real sys-
tem. Since we are unable to obtain and calculate all virial
coefficients, we can only hope to obtain an approximation.
By now, all that we know besides knowing first several vir-
ial coefficients is that it must be divergent at g P b. So one
can deduce that b is a pole for the compressibility factor
Z = Z(g). Taking this fact into account we may write the
asymptotic expansion of Z, which is of the form:

Z ¼ a0 þ
a1

g� b
þ a2

ðg� bÞ2
þ a3

ðg� bÞ3
þ . . . ð8Þ

Adopting this form for the asymptotic expansion of Z, then
expanding into virial form and comparison with known
first several virial coefficients, one can easily arrive at much
many equations of state for hard sphere fluid, all of them
are in fact asymptotic forms of Z.
3. Some equations of state for hard sphere fluid

Since we are not aware of the exact value of b at which
the virial expansion, Eq. (7), becomes divergent, we are free
to choose it conveniently. Because hard spheres crystallize
at g = 0.7405 [9], hence one may assume any value for b

greater than 0.7405, say, b = 3/4, b = 1, or b = 2, besides
this we can not say anymore. In addition to this, the num-
ber of terms in asymptotic expansion, Eq. (8), is another
degree of freedom we have. For example, if we restrict our-
selves to use only three known virial coefficients, we should
select those asymptotic forms with only three unknowns.
But if one would like to find more rigorous representations
for equation of state, (s)he should know and use more vir-
ial coefficients, hence more possibilities for the form of
asymptotic expansion are there to be tried. As we may
see, virial coefficients are all related to b, the pole (see for
example Eq. (10)). As soon as selecting a definite value
for b, one is able to obtain the desired coefficients. Different
b’s produce different coefficients, but up to third order of
course, they are all the same. They approximate different
values for the remainder terms. Among them one must
be the best, but this method can not achieve this important
goal alone. At the best we can resort to approximate theo-
ries like Scaled Particle Theory which asserts that b = 1, or
approximately determine it by the known virial coefficients
as done in Section 4.

(A) Suppose that the asymptotic form of the compress-
ibility factor Z to be:

Z ¼ a0 þ
a1

g� b
þ a2

ðg� bÞ2
ð9Þ

Expanding Eq. (9) in powers of g gives:

Z ¼ a0 �
a1

b
þ a2

b2

� �
þ � a1

b2
þ 2a2

b3

� �
g

þ � a1

b3
þ 3a2

b4

� �
g2 þOðg3Þ ð10Þ

By equating these coefficients with known second and third
virial coefficients gives:

a0 � a1=bþ a2=b2 ¼ 1

�a1=b2 þ 2a2=b3 ¼ B2

�a1=b3 þ 3a2=b4 ¼ B3

8><
>: ð11Þ

Which its solution is:

a0 ¼ 1� 2B2bþ B3b2

a1 ¼ �3B2b2 þ 2B3b3

a2 ¼ �B2b3 þ B3b4

8><
>: ð12Þ

Inserting these values in Eq. (9) and collecting we finally
obtain:

Z ¼ ð1� 2B2bþ B3b2Þg2 þ ðB2b2 � 2bÞgþ b2

ðg� bÞ2
ð13Þ

Now we may put b = 1(together with B2 = 4 and B3 = 10)
in Eq. (13) which gives:

Z ¼ 3g2 þ 2gþ 1

ðg� 1Þ2
ð14Þ
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This is the well-known equation of state of Wertheim and
Thiele, Eq. (2), obtained from the analytical solution of
the Percus–Yevick equation by the virial route.

(B) Now we suppose that the asymptotic form of the
compressibility factor Z to be (while retaining the
unknowns to be three again since we want to use only
first two virial coefficients as in previous example):

Z ¼ a1

g� b
þ a2

ðg� bÞ2
þ a3

ðg� bÞ3
ð15Þ

By taking similar steps one finds:

Z ¼ � bðð3� 3B2bþ B3b2Þg2 þ ðB2b2 � 3bÞgþ b2Þ
ðg� bÞ3

ð16Þ

Now putting b = 1 (together with B2 = 4 and B3 = 10) in
Eq. (16) gives:

Z ¼ g2 þ gþ 1

ð1� gÞ3
ð17Þ

This is the well-known equation of state of Scaled Particle
Theory, Eq. (1) and also obtained from the analytical solu-
tion of the Percus–Yevick equation by the compressibility
route.

(C) In order to obtain another (proposed originally in
[14]) equation of state we suppose that the asymptotic
form of Z is:

Z ¼ a0 þ
a1

g� 3=4
þ a2

g� 1
ð18Þ

where we have used two values for b; i.e., b = 1 and b = 3/4
that come from Scaled Particle Theory and close packing
fraction of hard spheres [9], respectively. Proceeding as be-
fore we will find the following equation:

Z ¼ 6g2 þ 5gþ 3

ð4g� 3Þðg� 1Þ ð19Þ

This equation has been used for simplification of SAFT
equation of state for hard sphere chains [15,16].

(D) Now we proceed one step further and suppose that
the asymptotic form of Z is:

Z ¼ a0 þ
a1

g� b
þ a2

ðg� bÞ2
þ a3

ðg� bÞ3
ð20Þ

We have this time four unknowns, hence need to employ
up to fourth virial coefficients. For simplicity we set
B4 = 18 as Carnahan and Starling did and proceed as be-
fore to obtain:

Z ¼ ðð28b4 þ 1� 16bþ 60b2 � 72b3Þg3 þ ð20b3 � 3b

� 54b4 þ 28b5 þ 8b2Þg2 þ ð3b2 � 54b5 þ 28b6

þ 30b4 � 8b3Þg� b3 � 4b4 þ 30b5 � 54b6

þ 28b7Þ=ðg� bÞ3 ð21Þ

Now if we set b = 1 in Eq. (21) we arrive at the well-known
Carnahan–Starling equation:
Z22 ¼
g3 � g2 � g� 1

ðg� 1Þ3
ð22Þ

(E) In this stage we would like to improve the Carnahan–
Starling equation a bit further by taking the exact
value of the fourth virial coefficient, i.e., B4 = 18.36
and employ Eq. (20) to obtain a new approximation
for Z. Doing as before we obtain:

Z¼ð�30b2þ12b�1þ18:36b3Þg3þð10b3�12b2þ3bÞg2þð4b3�3b2Þgþb3

ð�gþbÞ3

ð23Þ

Now if we set b = 1 in Eq. (23) we arrive at the following
equation:

Z24 ¼
0:64g3 � g2 � g� 1

ðg� 1Þ3
ð24Þ

(F) It is obvious that if we take some other values for b

we will find another set of equations for hard sphere
fluid. For example, by inserting b = 3/4 in Eqs. (13),
(16), (21), and (23), respectively, one finds:

Z25 ¼
10g2 þ 12gþ 9

ð4g� 3Þ2
ð25Þ

Z26 ¼
9ð2g2 � 3Þ
ð4g� 3Þ3

ð26Þ

Z27 ¼
82g3 þ 18g2 � 27

ð4g� 3Þ3
ð27Þ

Z28 ¼
72:28g3 þ 18g2 � 27

ð4g� 3Þ3
ð28Þ

(G) One may also prefer another choice for the asymp-
totic expansion of Z, for instance, we may suppose
the following form:

Z ¼ a0 þ
a1

g� 3
4

þ a2

ðg� bÞ2
þ a3

ðg� bÞ3
ð29Þ

We therefore will need to have four virial coefficients where
we take B4 = 18 for simplicity. Proceeding as before we
find the following equation:

Z¼� 81b3�144b4þ72b5�81g3�216g4�243b2g
�

þ648b3g�600b4gþ243bg2þ888bg4�2358b2

þ1746b3g2þ792bg3�1080b2g2�1137b2g4þ2970b3g3

�1248b4g2þ192b5gþ588b3g4�1680b4g3þ336b5g2

�112b4g4þ336b5g3
�
= 3 8b2�16bþ9

� �
ð4g�3Þð�gþbÞ3

� �

ð30Þ

Now we set, say, b = 3/2 to obtain the following equation:

Z31 ¼ �
22g4 þ 114g3 � 54g2 � 54g� 81

ð4g� 3Þð2g� 3Þ3
ð31Þ
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4. Determination of the radius of convergence from the virial

coefficients

Until now, the choice of the radius of convergence (b)
was arbitrary. But we can determine b from the virial coef-
ficients; hence there is indeed no need to assume it freely. It
is obvious that if we take b as another unknown, we are
able to find it. Also we would like to work with only three
known virial coefficients, i.e., B2 = 4, B3 = 10, B4 = 18.36,
hence we prefer to work with Eqs. (9) and (15).

I. First we work with Eq. (9) and write it:

Z ¼ a0 þ
a1

g� b
þ a2

ðg� bÞ2
ð32Þ

which may be expanded in powers of g up to fourth order:

Z ¼ a0 �
a1

b
þ a2

b2

� �
þ 2a2

b3
� a1

b2

� �
gþ 3a2

b4
� a1

b3

� �
g2

þ 4a2

b5
� a1

b4

� �
g3 þOðg4Þ ð33Þ

Equating these coefficients with known first three virial
coefficients gives:

a0 � a1=bþ a2=b2 ¼ 1

2a2=b3 � a1=b2 ¼ 4

3a2=b4 � a1=b3 ¼ 10

4a2=b5 � a1=b4 ¼ 18:36

8>>>><
>>>>:

ð34Þ

This system of equations has two set of solutions.The first
set is:

b ¼ 0:26; a0 ¼ �0:41; a1 ¼ �0:47; a2 ¼ �0:03

and the second one:

b ¼ 0:83; a0 ¼ 1:21; a1 ¼ 3:07; a2 ¼ 2:39 ð35Þ

Since we would like to have b as large as possible we must
choose the second set. Inserting these values in Eq. (32) and
collecting them gives the desired equation:

Z36 ¼
1:21g2 þ 1:07gþ 0:68

ðg� 0:83Þ2
ð36Þ

II. As the second step we invoke Eq. (15) and write it:

Z ¼ a1

g� b
þ a2

ðg� bÞ2
þ a3

ðg� bÞ3
ð37Þ

which may be expanded in powers of g up to fourth order:

Z ¼ � a1

b
þ a2

b2
� a3

b3

� �
þ � 3a3

b4
� a1

b2
þ 2a2

b3

� �
g

þ � 6a3

b5
þ 3a2

b4
� a1

b3

� �
g2 þ 4a2

b5
� 10a3

b6
� a1

b4

� �
g3

þO g4
� �

ð38Þ
Equating these coefficients with known first three virial
coefficients gives:

�a1=bþ a2=b2 � a3=b3 ¼ 1

�3a3=b4 � a1=b2 þ 2a2=b3 ¼ 4

�6a3=b5 þ 3a2=b4 � a1=b3 ¼ 10

4a2=b5 � 10a3=b6 � a1=b4 ¼ 18:36

8>>>><
>>>>:

ð39Þ

This system of equations has three set of solutions.The first
two sets are:

a2 ¼ �0:01; a3 ¼ 0; b ¼ 0:11; a1 ¼ �0:20

a3 ¼ 0:05; a2 ¼ 0:39; b ¼ 0:45; a1 ¼ 0:17

These are rejected in favor of the third set:

a2 ¼ �5:20; a3 ¼ �4:81; b ¼ 1:07; a1 ¼ �1:74 ð40Þ
This is our desired solution because b in this solution has
the greatest value. Inserting these values in Eq. (37) and
collecting them gives the desired equation:

Z41 ¼
1:74g2 þ 1:48gþ 1:23

ðg� 1:07Þ3
ð41Þ

III. As our final example we use Eq. (20):

Z ¼ a0 þ
a1

g� b
þ a2

ðg� bÞ2
þ a3

ðg� bÞ3
ð42Þ

which may be expanded in powers of g up to fifth order:

Z ¼ a0 �
a1

b
þ a2

b2
� a3

b3

� �
þ � a1

b2
þ 2a2

b3
� 3a3

b4

� �
g

þ � a1

b3
þ 3a2

b4
� 6a3

b5

� �
g2 þ a1

b4
þ 4a2

b5
� 10a3

b6

� �
g3

þ � a1

b5
þ 5a2

b6
� 15a3

b7

� �
g4 þO g5

� �
ð43Þ

Equating these coefficients with known virial coefficients
(where for simplicity we set B4 = 18 and B5 = 28 as Carna-
han and Starling did) gives:

a0 � a1=bþ a2=b2 � a3=b3 ¼ 1

�a1=b2 þ 2a2=b3 � 3a3=b4 ¼ 4

�a1=b3 þ 3a2=b4 � 6a3=b5 ¼ 10

�a1=b4 þ 4a2=b5 � 10a3=b6 ¼ 18

�a1=b5 þ 5a2=b6 � 15a3=b7 ¼ 28

8>>>>><
>>>>>:

ð44Þ

This system of equations has two set of solutions, the first
set reads:

b ¼ 0:19; a0 ¼ �0:33; a1 ¼ �0:40; a2 ¼ �0:03;

a3 ¼ 0

that should be rejected in favor of the following one:

a0 ¼ 1; b ¼ 1; a1 ¼ 2; a2 ¼ 0; a3 ¼ �2

Not surprisingly, when putting them in Eq. (42) the famous
Carnahan–Starling equation (Eq. (5)) will be recovered.We
may compare the obtained equations of state for hard
sphere fluid to computer simulation data, too. For this pur-
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pose we have used the computer simulation data from [17].
The results are shown in Fig. 1. We may easily observe that
all obtained equations can essentially well represent the
hard sphere fluid properties in the isotropic liquid range,
i.e., when g 6 0.5. In addition we have compared the virial
coefficients of the obtained equations of state with the exact
values in Table 1.

5. Equations of state based on computer simulation data

In previous sections one restricted to use only known
virial coefficients. Suppose we have access to computer sim-
ulation data. Since asymptotic expansion method produce
as essentially accurate results as the original function, we
may expect that (the various forms of) Eq. (8) can be used
to accurately represent the original data. For this purpose
we may use the recent Monte Carlo reported in Ref. [17]
for hard sphere fluid in two cases; i.e., isotropic liquid
and metastable fluid regions.

5.1. The isolated liquid region

We choose the asymptotic form of the compressibility
factor Z to be like Eq. (20). Fitting the MC data by that
equation and collecting, one finds:
Table 1
Comparison of the virial coefficients of the obtained hard sphere equations of

Virial coefficients ZMD
a Z22 Z24 Z27 Z28

B2 4 4 4 4 4
B3 10 10 10 10 10
B4 18.36 18 18.36 18 18.36
B5 28.23 28 29.08 28.15 29.59
B6 39.54 40 42.16 40.30 44.14
B7 53.54 54 57.60 53.73 62.26
B8 70.78 70 75.40 66.72 83.79
B9 93.06 88 96.56 75.85 107.71
B10 123.21 108 118.08 74.9 131.55

a Taken from Ref. [9].
Z45 ¼
1:714g3 þ 0:014g3 � 0:161g� 0:542

ðg� 0:814Þ3
ð45Þ

One may also suppose in Eq. (20) that b = 1, and then per-
form fitting to obtain:

Z46 ¼
1:151g3 � 1:088g2 � 0:990g� 1:003

ðg� 1Þ3
ð46Þ

It is interesting to notice the very similarity between this
equation with the Carnahan–Starling’s.

Another suitable choice is to use Eq. (9), which after fit-
ting with MC data gives:

Z47 ¼
2:508g2 þ 1:326gþ 0:825

ðg� 0:903Þ2
ð47Þ

A comparison of these equations and Carnahan–Starling
equation with MC data in the isotropic liquid region has
been made in Fig. 2. As can be seen they are all essentially
the same in this region. In addition we have compared the
virial coefficients of the obtained equations of state with the
exact values in Table 1.
state with computer simulation data

Z31 Z36 Z41 Z45 Z46 Z47

4 4 4 3.99 3.99 3.87
10 10 10 10.143 10.08 10.40
18 18.36 18.36 17.99 18.08 18.28
27.63 29.81 28.53 27.78 28.02 27.74
39.26 45.28 40.03 39.75 39.89 39.02
53.73 65.97 52.45 54.06 53.69 52.40
72.25 93.38 65.45 70.79 69.41 68.21
96.44 129.44 78.73 89.83 87.07 86.80

128.38 176.59 92.06 110.79 106.66 108.59
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Eq. (47) appears to be interesting, because it is simpler
than the others. In Fig. 3 a comparison has been made
between Eq. (47) and Carnahan–Starling equation in the
whole liquid region of hard sphere fluid which indicate that
they give essentially the same results in the liquid region of
hard sphere fluid.

5.2. The metastable fluid region

Speedy [18] has given a purely empirical equation for the
metastable fluid region:

Z48 ¼
2:67

1� 1:543g
ð48Þ

So we choose the simplest form of asymptotic expansion to
represent this region; i.e.,
Z ¼ a0 þ
a1

g� b
ð49Þ

Fitting the MC data in this region and collecting, one finds:

Z50 ¼
3:730g� 3:712

g� 0:642
ð50Þ

Comparison between these two equations in Fig. 4 reveals
that Eq. (50) represents MC data in the metastable region
even better than Eq. (48). Of course, if one wants, it is pos-
sible to obtain more accurate equation by using, say, Eq.
(9), but it will not be as simple as Eq. (50).
6. Conclusion

We have presented in this paper a simple method of
obtaining various equations of state for hard sphere fluid
in a simple unifying way. Using the first several virial coef-
ficients of hard sphere fluid, we will guess equations of state
by using the asymptotic expansion method. Among the
equations of state obtained in this way are Percus–Yevick,
Scaled Particle Theory, and Carnahan–Starling equations
of state. Also by combining the Monte Carlo results on
hard sphere fluid with the asymptotic expansion method
many other equations of state for hard sphere fluid can
be found where all of them give essentially similar results
in the region of isotropic hard sphere liquid, i.e., up to
g < 0.5, in which g is the packing fraction. In addition we
have found a simple equation of state for the hard sphere
fluid in the metastable region which represents the simula-
tion data accurately.
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