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bstract

We have derived an analytical equation of state (EOS) based on the soft-core statistical mechanical perturbation theory for fluids, using the
eeks–Chandler–Andersen (WCA) theory recently developed by Ben–Amotz–Stell (BAS) for the choice of the hard-sphere diameter, but with
new algorithm for calculation of the pair and many-body interactions. We have used Carnahan–Starling expression with the Boltzmann factor

riterion (BFC) as an effective hard-sphere diameter for the reference system, and also decomposed the perturbed pair potential to symmetric and
symmetric terms. The former term is due to the many-body interactions at high densities as was used in the linear isotherm regularity known as
IR EOS, and the latter term supports the interaction of two isolated particles that is dominating at low densities. The resulting EOS is obtained as
= Zcs + αρ + Aρ3 + Bρ5, in which Zcs is the Carnahan–Starling expression for the compressibility factor of the reference system which contains the

ffective van der Waals co-volume, and α is due to the asymmetric interaction term, or the attraction contribution of the second virial coefficient. The
and B parameters are the attractive and repulsive contributions of symmetric term, respectively. The temperature-dependencies of all parameters

f the EOS are obtained. We select some different fluids, namely Ar, N2, CH4, Ne, CO2, C2H6, C3H8, NH3 and H2O which are spherical, roughly
pherical, non-spherical, polar and associated fluids, due to their abundance of P–V–T experimental data. We have found that, except for the critical
egion, 0.8 < ρr ≤ 1.5, 1 ≤ Tr ≤ 1.5, the new EOS is accurate for all temperatures and densities available in the literatures, in such a way that the
verage percent deviation of density for Ar, Ne, N2, CH4, CO2, C2H6, C3H8, and NH3 is less than 2.81%. Then some thermodynamic properties
ncluding vapor–pressure curve, Joule–Thomson inversion curve, P–T isochors curves, and the second virial coefficient have been applied to check

he accuracy of the new EOS. Results for some isochors of argon show that the new EOS gives a small negative curvature for all isochors. The new
OS prediction of the inversion Joule–Thomson curve is reasonable, and its prediction of Clausius–Clapeyron diagram for neon and argon is very
ccurate, but small deviation for methane and nitrogen can be seen.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Over the last decade, the linear isothermal regularity known
s the LIR equation of state (LIR EOS) [1] has been exten-
ively used to calculate equilibrium properties of the pure
ense classical and metal fluids [2–4]. According to the one-
uid approximation [5], the regularity holds for the dense fluid

ixtures as well [6,7]. The LIR is able to predict many exper-

mentally known regularities for pure fluids and fluid mixtures
8–10]. According to the LIR EOS, (Z − 1)υ2 is linear with
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espect to ρ2 for each isotherm of a fluid for densities greater
han the Boyle density and temperatures lower than twice of the
oyle temperature as,

Z − 1)υ2 = ALIR + BLIRρ2 (1)

here Z is the compressibility factor andρ = 1/υ is the molar den-
ity; ALIR and BLIR are the temperature-dependent parameters,
s follows:

LIR = ALIR
2 + A1 (2a)
T

nd

LIR = B1

T
(2b)
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here A1 and B1 are related to the attraction and repulsion terms
f the average effective pair potential, respectively, while ALIR

2
s related to the non-ideal thermal pressure. This EOS was orig-
nally suggested on the basis of a simple lattice-type model
pplied to the Lennard–Jones (12, 6) fluid [11]. The key point
f this equation is related to the mean-field potential that any
article in the system interacts with other particles symmetri-
ally, that we shall refer to it as the symmetric potential, because
f uniform distribution of molecules around any given simple
pherical molecule at high densities. The shortcoming of Eq. (1)
s related to the fact that it does not include the hard-core charac-
eristic of particles explicitly which becomes important at high
emperatures, and the asymmetric contribution of the potential
hich becomes important at low densities (according to which
particle interacts with one or a few particles around it or the

lustering effect at low density), and we shall refer to this kind
f interaction as asymmetric potential.

The aim of this work is to improve the present EOS to obtain
n accurate description of the P–V–T behavior and also the
quilibrium properties of fluids at the whole density and tem-
erature ranges by recourse of a sound model using a statistical
echanical approach. In this regard we resort to thermodynamic

erturbation theory [12], and include symmetric and asymmet-
ic contributions of the pair potential in the perturbation term,
hen, we use Weeks–Chandler–Andersen (WCA) [13–15] theory
or the reference system modified by Ben–Amotz–Stell (BAS)
heory [16]. One should notice that the terms “symmetric” and
asymmetric” refer merely to distribution of other molecules
round a given molecule, which is uniform in the former case
nd non-uniform in the latter case. In the case of non-spherical
olecules, the unweighted average over the molecular orienta-

ion (known as RAM theory [17,18]) may be taken into account
o avoid the angular dependence of the potentials. The symmet-
ic contribution is due to the interactions of a given molecule
ith those that uniformly are distributed around it. Such con-

ribution is the main interaction in a dense fluid. However, in
dilute gas, the nearest neighbors of a given molecule are not
istributed around it, symmetrically, especially due to formation
f dimmers or other clusters with a few molecules. Such inter-
ctions make the asymmetric contribution, which is the major
nteraction in dilute gases. The minor interaction of a molecule
n dilute gas with the farther molecules, which are symmetrically
istributed around it, may be considered as the symmetric con-
ribution of the interaction potential. In the following section,
e propound a summary of served model, and then we shall
erive the new EOS, and using it to calculate some equilibrium
roperties.

. Statistical mechanical derivation of the new EOS

For a system of soft-repulsion with added attraction pair
otential, the excess free energy (Fex) may, without loss of gen-
rality, be expressed as the sum of the free energy of the reference

uid, F ex

0 , plus a term representing the difference between the
ree energy of real and reference systems �F,

ex = F ex
0 + �F (3)

u

w
p

ase Equilibria 264 (2008) 1–11

The Zwanzig’s first-order perturbation theory [19] implies
he following expression for �F,

β�F

N
= 2πρβ

∫ ∞

0
g0(r) u1(r)r2 dr (4a)

here g0(r) is the radial distribution function of the refer-
nce system, u1(r) is the potential energy of the perturbed
ystem, and β = 1/kBT, where kB is the Boltzmann constant.
arker–Henderson [12] derived Eq. (4a) for the first-order term
ith another approach. They divided the range of intermolec-
lar distances into interval (r0, r1), . . ., (ri, ri+1), . . ., etc., by
aking the limit as the interval width approaches to zero, the
ontinuous description is recovered. If Ni represents the number
f molecules in a spherical shell surrounding a central molecule
nd u1(r) be as a constant value of ui in the spherical shell, the
rst term of the excess free energy may be given as,

�F = β
∑

i

〈Ni〉ui, (4b)

here,

Ni〉 = 2πNρ

∫ i+1

i

g0(r)r2 dr

or the continuum limit, Eq. (4b) leads to Eq. (4a).
In this work, we decompose the perturbed energy into two

erms, the first term is the symmetric potential (us
I ) is the same as

hat in the LIR EOS, and the second term which is the asymmet-
ic potential (uas

I (r)) which becomes significant at low densities,
hus, Eqs. (4a) and (4b) may be written as,

β�F1

N
= 2πρβ

∫ ∞

0
g0(r)(us

I (rav) + uas
I (r))r2 dr

= β�F s
1

N
+ β�F as

1

N
(5)

here rav is the average distance between the nearest neigh-
ors. β�F s

1/N and β�F as
1 /N are the symmetric and asymmetric

ontributions to the Helmholtz free energy, respectively. The
otential energy related to the symmetric contribution as a mean-
eld interaction potential depends on density and may depends
n temperature, but not to the radial distance [20]. By regarding
nly the first shell in Eq. (4b) we may write,

β�F s
1

N
= us

I (ρ)β
(
4πρ

∫
first shell g0(r)r2 dr

)
2

= β us
I (ρ)

z(ρ)

2
(6)

here z(ρ) is the average number of the nearest neighbors. As in
he LIR EOS, we approximate the average potential energy by
umming contribution from the nearest neighbors’ only, assum-
ng Lennard–Jones potential for the effective pair potential,(

C C
)

s
I (ρ) = n

r12
av

− m

r6
av

(7)

here Cn and Cm are constants. We assume that z(ρ) to be pro-
ortion toρ [1], as in the LIR EOS, andρ ∝ 1/r3

av, so thatβF s
I /N
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an be written as,

β�F s
I

N
= βKmρ3 + βKnρ

5 = A

3
ρ3 + B

5
ρ5 (8)

here Km and Kn are constants, and A/3 = βKm and B/5 = βKn.
t is worth noting that, in the LIR EOS, the powers of rav in Eq.
7) had been taken as 3 and 9, and in a recent investigation the
alues of 6 and 12 were found to be more accurate [21].

The asymmetric term of Helmholtz free energy is assumed
o be mainly due to the two body interactions which is valid at
ow densities, in this case, the radial distribution function of the
eference system is approximately equal to exp [−βu0(r)], so by
sing Eq. (5), β�F as

I /N may be written as [22],

β�F as
I

N
= 2πρβ

∫ ∞

0
g0(r)uas

I (r)r2 dr

= 2πρβ

∫ ∞

0
exp[−βu0(r)]uas

I (r)r2 dr (9)

q. (9) equals to the contribution of the perturbation energy due
o the second virial coefficient, B2(T). To show this claim, we
ay write,

B2(T ) − B0
2(T )

= 2π

∫ ∞

0
((1 − exp[−βu(r)]) − (1 − exp[−βu0(r)]))r2 dr

(10)

By noting that u(r) = u0(r) + uI(r), and with expanding the
erturbation term, Eq. (10) may be rearranged to,

2(T ) − B0
2(T ) = 2π

∫ ∞

0
(βuI(r)) exp[−βu0(r)]r2 dr (11)

As mentioned in reference [23] and is justified by a numer-
cal observation [24], the plot of exp [−βu0(r)] as a function
f r, shows that, it is approximately equals to step function,
(r − σHS) = exp[−βuHS(r)], so we may conclude that asym-
etric term of Helmholtz free energy is roughly expressed by

he following equation,

β�F as
I

N
= (B2(T ) − B0

2(T ))ρ ≈ (B2(T ) − b(T ))ρ = αρ (12)

The final expression for the full excess Helmholtz free energy
s found to be as,

βF ex

N
= βF ex

HS

N
+ αρ + A

3
ρ3 + B

5
ρ5 (13)

The compressibility factor associated with Eq. (13) is,

= ρ

(
∂(βF/N)

∂ρ

)
β

= ZCS + αρ + Aρ3 + Bρ5 (14)

here,

cs = 1 + η + η2 − η3

(15)

(1 − η)3

here Zcs is Carnahan–Starling (CS) [25] equation of state as the
eference system, andη is the packing fraction equal to (b(T)/4)ρ,
here b(T) is effective vdW co-volume depended on effective

p
t
a
s

ase Equilibria 264 (2008) 1–11 3

ard-sphere diameter (σHS). The presence of a term linear in
ensity is of general believe in the community that dates back to
an der Waals, but one of the significant feature of Eq. (14), like
he Prausnitz EOS [26], is that, it is a modification of the original
eculiar result, whereby the first-order perturbation gives extra
inear terms of order −3 and −5 in the density.

There are some criteria to attribute a value to σHS, when the
qual compressibility criterion is used, it appears to be a function
f both temperature and density [27], but we try to use a criterion
hich has following qualification: (1) to have an analytical form

or σHS, (2) for simplicity to be a function of temperature only.
3) To satisfy Eq. (12) [23,24]. For these reason, we use the
oltzmann factor criterion (BFC) [28], according to which σHS

akes the value of r in such a way that,

u0(r = σHS) = ξ (16)

is a parameter which may varies from 0.5 to 1.5, but owing to
he fact that for two molecules moving in a three dimensional
pace to collide at any time, their velocity vectors must lie on the
ame plane, hence in this work, we have considered ζ = 1. Thus,
ffective vdW co-volume obtained with the Lennard–Jones (LJ),

(T ) = 2π

3
N0σ

3
HS = 2π

3
N0σ

3
[

2

1 + (ζ/βε)0.5

]0.5

(17)

here N0 is the Avogadro constant. Owing to this fact, the sec-
nd virial coefficient can be written as a power series in terms
f reciprocal of temperature which may be derivable from arbi-
rary potential model, by using Eq. (12). Note that the BFC
riterion has extensively been used by BAS perturbation theory
16].

Temperature-dependencies of α (asymmetric contribution to
he potential) may generally be written as a power series in terms
f 1/T.

(T ) = (B2(T ) − b(T )) = α1

T
+ α2

T 2 + α3

T 3 + · · · (18)

Temperature-dependencies of the parameters which are
elated to the symmetric potential are as the LIR EOS,

= A1

T
= 3βKm, B = B1

T
= 5βKn (19)

ote that in the LIR A = A2 + A1/T, where A2 is the contribution
ue to the non-ideal thermal pressure, which is more accu-
ately included in both ZCS and the asymmetric contribution
n this work. The derived EOS has four scaling parameters,
amely effective van der Waals co-volume, b(T), which is
emperature-dependent, a new parameter which is contribution
f the attractive pair potential to the second virial coefficient,
(T), which denotes the asymmetric effects of the internal
nergy, both can be derived from the molecular parameters such
s potential well (ε) and the distance where the potential func-
ion becomes zero (σ). Two other scaling parameters are the
ttractive (A) and repulsive (B) contributions of the effective

air potential of the many-body interactions, which we denote
he symmetric effects of the internal energy. Since we have not
ny insight about the molecular parameters-dependency into the
caling factors (A, B), we have obtained all scaling parameters by
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tting experimental P–V–T data into Eq. (14). Owing to the fact
hat Zcs and α(T) have two and three fitting parameters, respec-
ively, therefore Eq. (14) has totally seven fitting parameters, all
f which have physical interpretations.

. Experimental test

To examine the accuracy of the derived EOS, Eq. (14), we
erve argon as our primary test fluid because of the abundance of
vailable P–V–T data. The deviation curves of density for some
ypical non-critical isotherms including subcritical, and super-
ritical isotherms are shown in Fig. 1a, where it can be seen that
xperimental data are well fitted onto Eq. (14). Average devi-
tion for all isotherms except for the critical and near critical
nes are less than 2% which is reasonable, however, around the
ritical point (TC = 150.69 K, ρc = 13.407 mol/l), the deviation
s significantly larger. The deviation curves for the critical and
ts higher temperature isotherms are shown in Fig. 1b, accord-
ng to which the deviation in the critical region, 1 ≤ Tr ≤ 1.5
nd 0.8 ≤ ρr ≤ 1.5, is significant (Tr = T/TC, ρr = ρ/ρc). The
esults of fitting are summarized in Table 1, including the
caled parameters, pressure range of experimental data, coef-
cient of determination, and the average and maximum percent
eviations of the calculated density for some isotherms. Also,
he results for some temperatures are compared to those of
oave–Redlich–Kwong [29] and Deiters [30] EOSs, for which

he results are listed in Table 2. To see whether the new EOS is
imited to certain type of fluids, similar calculations are done for
ther fluids including Ne, Ar and CH4 (spherical molecule), N2
diatomic molecule), CO2 (linear molecule), C2H6, C3H8 and
so-C4H10 (non-spherical molecules) and also polar molecules
H3 and H2O are served, for which the results are summarized

n Table 3. It should be pointed out that the experimental P–V–T
ata are taken from references [31] and [32]. Note that for the
uids listed in Table 3, except for water, the calculated values
f ρ are relatively accurate in comparison with experimental
ata. As may be seen in Table 3 the coefficient of determina-

ion of water becomes lower at low temperatures which may be
ue to the hydrogen bond formation. In water, hydrogen bonds
ead at low temperatures to the formation of an open, approxi-

ately four-coordinated structure, in which entropy and density

c
a
a
d

able 1
he parameters of the EOS obtained from fitting P–V–T experimental data into Eq
etermination R2, and average (maximum) percent deviation of the calculated density

/TC b(T) × 103 (l/mol) α(T) × 102 (l/mol) A (×105) (l/mol)3

.6636 52.6900 −19.6168 −7.8632

.0000 50.0863 −12.7783 −5.24211

.1281 49.2576 −11.29548 −4.62539

.1945 48.8759 −10.66455 −4.36842

.3272 48.1672 −9.58882 −3.93158

.9908 45.3906 −6.55358 −2.62105

.6545 43.3889 −4.72889 −1.96579

.3181 41.8287 −3.66707 −1.57263

.6453 39.4793 −2.42779 −1.12331

.3089 38.5520 −2.07113 −0.982895

.6361 37.0138 −1.60529 −0.786316

a The maximum percent deviation is given in the parentheses.
ig. 1. Deviation curve of density for some (a) non-critical and (b) critical and
ear critical isotherms of argon.

ecrease with decreasing temperature, and thereby we need a
uitable models which includes this effect [33,34]. Deviation
urves against the reduced density for four isotherms of water

re shown in Fig. 2, as seen for Tr = 1.159 there are remark-
ble deviations around the critical density, but for Tr = 1.97, the
eviation is low.

. (14), along with the pressure range of experimental data �P, coefficient of
for some given isotherms of argon

B (×108) (l/mol)5 R2 �P (MPa) 100(|�ρ|/ρ)av
a

2.09284 0.9999 0–68 0.007 (0.017)
1.39523 0.9997 0–250 8.020 (23.60)
1.23108 0.9988 0–435 4.40 (15.70)
1.16269 0.9988 0–465 3.36 (10.3)
1.04642 0.9980 0–600 2.54 (8.80)
0.69761 0.9988 0–1000 1.80 (5.20)
0.52321 0.9990 0–1000 1.76 (4.18)
0.41857 0.9990 0–1000 1.68 (4.00)
0.29898 0.9998 0–1000 1.53 (3.71)
0.261605 0.9998 0–1000 0.90 (1.94)
0.209284 0.9997 0–1000 0.85 (1.85)
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Table 2
The percent average absolute deviation of density of the new EOS compared to those of Soave–Redlich–Kwong [29] and Deiters [30] EOSs

T/TC �ρ (mol/l) This worka (|�ρ|/ρ) × 100 SRKa (|�ρ|/ρ) × 100 Deitersa (|�ρ|/ρ) × 100

0.5641 32.9–38.0 0.05 (0.06) 0.86 (0.98) 0.07 (0.10)
0.6636 35.3–37.0 0.107 (0.137) 1.10 (1.64) 1.10 (1.49)
1.9908 1.0–35.0 1.80 (5.20) 14.35 (69.1) 10.84 (41.30)
4.6453 1.0–38.5 1.53 (3.71) 3.42 (8.33) 7.56 (13.50)

a The maximum percent deviation is given in the parentheses.

Table 3
Same as Table 1 for some different fluids

Fluid T/TC b(T) × 103 (l/mol) α(T) × 102 (l/mol) A (×105) (l/mol)3 B (×108) (l/mol)5 R2 �P (MPa) 100(|�ρ|/ρ)av
a

Ne 0.787 30.7390 −9.1654 −1.47988 3.577 × 10−4 0.9998 0–80 0.06 (0.1)
Ne 6.743 21.5968 −1.1022 −0.17265 4.140 × 10−5 1.000 0–571 0.25 (2.00)
Ne 15.733 18.5907 −0.5175 −0.073994 1.774 × 10−5 1.000 0–700 0.08 (0.55)
CH4 0.787 63.7280 −23.6821 −5.70205 9.91856 0.9998 0–250 0.75 (1.20)
CH4 3.149 51.7290 −3.8660 −1.42550 2.47964 0.9995 0–1000 2.50 (6.50)
N2 0.713 58.3360 −22.8821 −10.1650 11.08710 0.9995 0–145 0.48 (0.86)
N2 5.547 43.0848 −1.0407 −1.3070 1.42548 0.9993 0–900 2.3 (8.90)
N2 10.302 38.4240 −0.3123 −0.70378 0.767567 0.9995 0–1500 2.81 (5.40)
N2 15.849 35.3020 −0.1289 −0.45745 0.49892 0.9992 0–2200 1.70 (3.00)
C2H6 0.655 104.5520 −36.000 −93.1877 93.44360 0.9998 0–140 0.06 (0.10)
C2H6 2.620 91.4350 −9.2636 −23.2970 23.36100 0.9997 0–140 0.37 (0.70)
C3H8 0.541 149.4218 −61.7660 −290.440 276.8100 0.9998 0–205 0.10 (0.15)
C3H8 2.163 134.1534 −16.2176 −72.6100 69.20220 0.9998 0–205 1.20 (3.00)
CO2 0.904 65.4419 −18.3616 −12.3402 1.2748 0.9997 0–100 0.60 (0.90)
CO2 3.617 53.4463 −3.1005 −3.0850 0.31870 0.9995 0–1141 2.65 (8.10)
NH3 0.740 42.2459 −16.6115 −0.55122 0.45073 0.9997 0–60 0.24 (0.30)
NH3 1.723 37.4991 −5.8625 −0.23624 0.19370 0.9999 0–1000 1.00 (5.95)
H2O 0.618 29.3949 −12.4016 −0.144366 0.12621 0.9984 0–1000 0.56 (0.80)
H2O 0.773 28.8034 −10.3454 −0.115493 0.10097 0.9985 0–1000 0.3 (0.75)
H2O 1.159 27.1802 −6.5853 −0.076995 0.06731 0.9987 0–1000 5.06 (18.35)
H2O 1.39 26.2900 −5.1838 −0.064163 0.05609 0.9996 0–1000 4.3 (17.80)
H 291

A or the

c
t
2
a

F

3

2O 1.970 24.4156 −3.1021 −0.045

verage percent deviation for isotherm of any fluid is less than 2.81%, except f
a The maximum percent deviation is given in the parentheses.

Not surprising that, the worst agreement appears around the

ritical point. The average absolute percent deviation, except for
he critical region for Ne is about 0.25, for Ar 1.8%, for CH4
.5%, for N2 2.81%, for CO2 2.65%, for NH3 1.0%, for C2H6
nd C3H8 are less than 1.2%.

ig. 2. Deviation curves of density for Tr = 1.159, 1.236, 1.545 and 1.97 of water.

d
t
d
(
p
m
t
c
e
c
e
t
[

a
o
a
f
(
w

0.03960 0.9998 0–1000 2.27 (7.03)

low temperature supercritical of water.

.1. Temperature-dependencies of the parameters

In Section 2, we presented a model for temperature-
ependencies of the scaled parameters of the EOS; here, we
est the derived model for argon to investigate the temperature-
ependencies of the scaled parameters. On the basis of Eqs.
14)–(19), A and B are proportion to the reciprocal of tem-
erature, and α(T) is a power series in terms of 1/T which
ay be truncated after the third term, and b(T) is derived by

he BFC criterion which obeys Eq. (17). But for a general
ase we may use the BFC expression obtained with the gen-
ralized Lennard–Jones (GLJ) rather than LJ. The effective
o-volume for the GLJ model is like that of Eq. (17), but the
xponent 0.5 is replaced by 6/n0, where n0 is an exponent
hat characterizes the steepness of the GLJ repulsive branch
35].

The values of the scaled parameters given in Table 1 for argon
re used to check the predictions of temperature-dependencies
f the model. In Fig. 3 temperature-dependencies of the obtained

djustable parameters of argon given in Table 1 for some dif-
erent isotherms are fitted into the predicted expressions, Eqs.
17)–(19). As seen in these figures, the fittings are well done,
ith R2 = 1.000 for A and B, R2 = 0.9997 for α(T) and R2 = 1.000
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Fig. 3. The temperature-dependencies of (a) symmetric parameters of new EOS
With R2 = 1.000, (b) asymmetric parameter with R2 = 0.9997, and (c) effective
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and density whose functionalities are shown elsewhere [37,38].
Temperature-dependencies of A2 is important because in the
case of its temperature-independencies, two common intersec-
dW co-volume which is fitted into the BFC criterion with ζ = 1, R2 = 1.000 for
rgon.

or b(T). We have used Eqs. (18) and (19) to obtain five
emperature-independent constants, namely α1, α2, α3, A1, and

1. To do so, the data for A, B, and α at some different tempera-

ures are needed which may be obtained by fitting experimental
–V–T data to the EOS. The values are given in Table 4a for
ome given fluids.

t
c
t
c
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.2. Calculation of the potential parameters

The values of effective co-volumes b(T) for some fluids used
n this work are fitted into Eq. (17), to obtain the pair poten-
ial parameters for them which may be compared with the
orresponding LJ parameters obtained from the second virial
oefficient data [36a], which are listed in Table 4b. As may be
een the calculated parameters are comparable to those of the
J potential. As shown in this Table, the value of b0 depends
n product of ε/k and 1/ζ to which ε/k is inversely propor-
ional.

. Comparison with the LIR at high densities

The rearrangement of the new EOS in the form of LIR EOS
ay be written as,

Z − 1)υ3 = 1

ρ3

(
4η − 2η2

(1 − η)3 + αρ

)
+ A + Bρ2

=
(

A2 + A1

T

)
+

(
B1

T

)
ρ2 (20)

or which,

2 = 1

ρ3

(
4η − 2η2

(1 − η)3 + αρ

)
(21)

here A2 is the non-ideal thermal pressure. On the basis of
an der Waals EOS and also using experimental data, it was
ssumed that A2 is almost a constant at high density [1]. Such
n assumption may be investigated from Eq. (21). The results
or 4 isotherms of argon are shown in Fig. 4. As may be seen,
t high densities the values of A2 are approximately indepen-
ent of density. Therefore, one may conclude that non-ideal
hermal pressure is almost constant only at high densities. As
an be seen from the expression for A2, Eq. (21), it depends
n both the asymmetric parameter α(T) and vdW co-volume
(T). The significant density-dependence of A2 at low densities
s expect to be due to the asymmetric parameter of intermolecu-
ar interactions, α(T). From the high-density behavior of the new
OS, we may draw some conclusions; first the linear regime
f (Z − 1)υ3versus ρ2 does not depend on any special feature
f the molecular interaction but only on the existence of long
ange attraction and short range repulsion, due to the general-
ty for all type of fluids. These results have been also pointed
ut, based on the vdW and Ihm–Song–Mason (ISM) EOSs in
eference [1]. Careful inspection at high densities, as shown
n the sub-portion of Fig. 4, A2 varies slightly by temperature
ion points (namely, the common bulk modulus and common
ompression point) were found to be independent of tempera-
ure [8], whereas according to experimental data, they slightly
hange with temperature [39].
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Table 4a
Temperature-independent parameters of some fluids

α1 (K l−1 mol−1) α2 (K2 l−1 mol−1) α3 (K3 l−1 mol−1) A1 (K l−3 mol−3) × 103 B1 (K l−5 mol−5) × 106

Ar −17.682508 −353.52571 15442.104 −7.8631587 2.0928419
Ne −3.4098826 11.601395 −150.0371 −0.5179569 0.000125200
N2 −8.8474498 −1623.3519 51898.136 −9.1908960 9.9783740
CO2 −26.760025 −9608.663 857538.91 −33.935572 3.50569221
CH4 −21.271528 −3188.5403 152696.83 −8.5530705 14.877840
NH3 −24.927739 −12182.448 1162270.5 −1.6536690 1.3521921

Table 4b
Potential parameters obtained from temperature-dependencies of the effective
der Waals co-volume, Eq. (17), compared to the LJ values obtained from the
second virial coefficient

This work LJ

ε/kζ (K) b0 × 103 (l/mol) ε/k (K) b0 × 103 (l/mol)

Ar 122.4500 51.4060 122.0 49.58
CH4 130.0000 64.8990 148.0 70.16
N2 118.200 56.4474 95.90 64.42
Ne 31.1100 31.1034 34.90 27.10
C
N

5
t

t
t
i
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i

Z

w
s
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w
s
t
s
r
i
c
f
d
v
(

F
1

t
t
w

c
a
v
rect prediction is that, the clusters with more than two particles
are not included in deriving the EOS.
O2 298.0000 64.6943 205.0 85.05
H3 116.3000 48.8700 – –

. Accuracy of the new EOS in predicting
hermodynamics properties of fluids

In this section we give a selection of some properties, and
est the new derived EOS, which includes the second and
hird virial coefficients, linearity of isochors, Joule–Thomson
nversion curve, two-phase region (co-existence curve), and
lausius–Clapeyron curve.

.1. Second and third virial coefficients

At the zero density limit, expansion of Eq. (14) gives an
nfinite series in terms of density as,

= 1 + (b(T ) + α(T ))ρ + 5
8 (b(T )ρ)2 + 9

32 (b(T )ρ)3

+ 7
64 (b(T )ρ)4 + · · · + Aρ3 + Bρ5 (22)

here R is the molar gas constant. According to Eq. (22), the
econd virial coefficient equals to,

2(T ) = b(T ) + α(T ) (23)

hich may also be derived from Eq. (18). In Fig. 5, we have
hown the calculated second virial coefficient versus tempera-
ure for Ar and N2, compared to experimental value. This figure
hows that Eq. (23) predicts the second virial coefficient with a
easonable precision at least qualitatively for simple fluids, since
t contains both repulsive and attractive contributions to the cal-
ulated second virial coefficient. It is worth noting because of the

act that the effective van der Waals co-volume is temperature-
ependent, in accordance with Eq. (17), the calculated second
irial coefficient by Eq. (23) would pass through a maximum
very smoothly) at the inversion temperature [40,41]. Owing

F
E

ig. 4. Temperature and density-dependencies of non-ideal thermal pressure for
00 K (©), 150.69 K (�), 300 K (
), 700 K (�) isotherms of Ar.

o the fact that applicability of LIR EOS is limited to densi-
ies greater than the Boyle density; the second virial coefficient
hich is due to the pair interactions is irrelevant.
The third virial coefficient given by the EOS is monotoni-

ally decreasing function of T and positive. This is obviously
n incorrect prediction at low temperatures, at which the higher
irial coefficients are negative [42]. The reason for such incor-
ig. 5. The calculated second virial coefficient versus temperature using new
q. (23) in comparison with experimental data for Ar (©) and N2 (
).
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.2. P–T isochors

The earliest investigators of fluid compressibility were
mpressed by the fact that the curves of constant density in a
–T plot were nearly linear for real fluids [43], thus a sensi-
le EOS must give nearly linear isochors. Although by further
nspection, it was found that the isochors of real fluids show
lightly negative curvatures (concave downward) at both low
nd high densities except for some hydrocarbons that show a
egion of small positive curvature. The isochors of the van der

aals EOS are all linear, but those of the Dieterci EOS all show
positive curvature, and those of the Beattie–Bridgeman and
edlich–Kwong EOSs all show a negative curvature. Some other
OSs like Benedict–Webb–Rubin, isochors show a shift from
egative to positive and back to a negative curvature as density
ncreases. The Song–Mason [44] EOS for the LJ (12, 6) fluid
hows a small negative curvature for all isochors, and on the
asis of Eq. (1), pressure versus temperature for any isochor is
inear according to the LIR, just like van der Waals EOS. Our
esults for argon diagrammatically are shown for a number of
sochors in Fig. 6, and compared with experimental data. As may
e seen from this figure, all isochors show a small negative cur-
ature, just like ISM EOS and experimental data. It is interesting
o note that the departure from the linearity is promoted by both
he intermolecular attractions and temperature dependencies of
ard-core repulsions.

.3. The Joule–Thomson inversion curve

The Joule–Thomson inversion curve (JTIC) is the locus
f thermodynamic states on which the temperature of system
oes not vary with isenthalpic expansion or the locus of
oints at which the Joule–Thomson coefficient is zero. This
urve has been proposed as a very sensitive test of equation
f state [2,45,46]. It is related to the EOS by the following

hermodynamic expression,

JT =
(

∂T

∂P

)
H

= 1

CP

(
T

(
∂V

∂T

)
P

− V

)
= 0 (24)

ig. 6. Pressure–temperature diagram for 30.04 mol/l (©), 25.03 mol/l (�),
0.026 mol/l (
), 13.407 mol/l (�), 11.265 mol/l (♦), 8.7614 mol/l (�) isochors
f Ar, compared to experimental values.

5

f

F
p

ase Equilibria 264 (2008) 1–11

here CP is the heat capacity at constant pressure. The JTIC
ay be alternatively characterized by any of the following

xpressions:

T

(
∂P

∂T

)
ρ

− ρ

(
∂P

∂ρ

)
T

= 0,

(
∂V

∂T

)
= V

T(
∂Z

∂T

)
P

= 0,

(
∂Z

∂V

)
P

= 0

(25)

Gunn et al. [47] obtained a generalized inversion curve using
he volumetric data for some spherical and semi-spherical fluids,
nd determined the following expression by a least-square
urve fit of 89 inversion points obtained from experimental
nversion-point data,

r = −36.275 + 71.598Tr − 41.567T 2
r + 11.826T 3

r

− 1.6721T 4
r + 0.091167T 5

r (26)

here Pr and Tr are the reduced pressure and reduced temper-
ture, respectively. Since the substances used in the correlation
ave a value of acenteric factor close to zero, the correlation
s limited to simple fluids such as Ar, Ne, CH4 and N2. This
t of experimental JTIC data may be used as a basis for eval-
ating the accuracy of any EOS [47]. It must be pointed out
hat Eq. (26) is referred to as an experimental data in literature
46,48]. In reference [46] the JTIC for some cubic EOS (such
s Redlich–Kwong, Soave–Redlich–Kwong [29] and van der
aals), and also Deiters [30], LIR and modified LIR equations of

tate were investigated, and shown that except for Deiters EOS,
one of them can predict the upper temperature branch with a
easonable accuracy. The Joule–Thomson inversion curve, for
rgon, methane, nitrogen, and neon are calculated by using the
ew EOS and schematically shown in Fig. 7. As can be seen
rom this figure, the new EOS shows a reasonable JTIC for all
entioned fluids, in comparison with Eq. (26).
.4. Co-existence curve

The Helmholz free energy F is a fundamental thermodynamic
unction for description of the equilibrium thermodynamic sys-

ig. 7. The calculated Joule–Thomson inversion curve using new EOS com-
ared to Eq. (26) for Ar (©), CH4 (�), N2 (
), and Ne (�).
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em. By considering changes in V, N and T as principle variables,
e may write stability criteria for such a system as [49],

∂2F

∂V 2

)
T,N

≥ 0,

(
∂2F

∂N2

)
T,V

≥ 0, (27)

ince (∂F/∂V)T,N = −P, it also follows that κT = −(1/V)
∂V/∂P)T,N ≥ 0.

Stability criteria involving the temperature-dependence of F
ollows from the energy condition as [49],

∂S

∂T

)
V,N

≥ 0, (28)

ince S = −(∂F/∂T)V,N, we obtain (∂2F/∂2T) ≤ 0. Obviously F
ust be a convex-down function in the F–V and F–N planes,

ut a concave-down function in F–T plane. Michels et al. [50]
hown the behavior of the Helmholz free energy isotherms of
rgon calculated from Peng–Robinson EOS in terms of volume
hich fails in the two-phase region, because it dose not satisfy

he stability criteria condition of Eq. (27), then to have a stable
ystem, fluid breaks down into two phases which its characteri-
ation may be determined by the tangent construction from the
ollowing condition,(
∂F

∂V

)
N,T

)
g

=
(

∂F

∂V

)
N,T

)
l

= F (Vg) − F (Vl)

Vg − Vl
(29)

q. (29) shows the conditions from which one may obtain the
olumes or densities of the co-existence curve. We have applied
q. (29) to the new EOS to obtain the density of the co-existence
urve, for which the results for four different fluids are shown
n Fig. 8.

.5. Clausius–Clapeyron diagram
In the two-phase region, for any isotherm, we may express
he equilibrium conditions as,

g = μl, Pg = Pl = Ps (30)

ig. 8. Co-existence curve calculated by using new EOS compared to experi-
ental data for Ar (©), CH4 (�), N2 (
), and Ne (�).
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ig. 9. Clausius–Clapeyron diagram calculated using new EOS compared to
xperimental data for Ar (©), CH4 (�), N2 (
), and Ne (�).

here μg and μl are the chemical potential of the gas and liquid
hases, respectively, and Pg and Pl are their pressures which
oth are equal to the saturation pressure, Ps.

The Maxwell equal-area construction for an isotherm of Eq.
14) yields the following expression for the saturation pressure,

Ps

RT

(
1

ρg
− 1

ρl

)
=

(
η(4 − 3η)

(1 − η)2

)l

g
+ α(ρl − ρg)

+ A

3
(ρ3

l − ρ3
g) + B

5
(ρ5

l − ρ5
g) + ln

(
ρl

ρg

)

(31)

he vapor–pressure curve known as the Clausius–Clapeyron
iagram for four different fluids are shown in Fig. 9.

.6. Common intersection point of compressibility factor

There is a common compressibility point at which the com-
ression factor against density for different isotherms of any
ense fluid intersects at that single point. This intersection point
s called a common compression point. The three-shell mod-
fication of the Lennard–Jones and Devonshire EOS [36] and
lso LIR predict the common compression point. The den-
ity at this point ρOZ can be obtained by setting (∂Z/∂T )ρOZ
qual to zero. By the fact that the non-ideal thermal contribu-
ion in LIR EOS is temperature-independent, the density at this
oint is also temperature-independent, ρOZ = A1/B1. We have
sed the new EOS to calculate the compressibility factor in
erms of density for different isotherms. The results are shown
or three different isotherms of argon in Fig. 10. As shown in
his figure, the new EOS predicts a common intersection point
round ρoz = 41 mol/l, which is comparable with those obtain
rom experimental data and LIR EOS [8].
.7. Isochoric heat capacity

Constant volume heat capacity (CV) is the slope of the internal
nergy due to random motion of atoms in a sample as a function
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Table 5
Calculated critical parameters obtained from the new EOS compare to experimental values for some given fluids

Fluid Calculated values Experimental data

TC (K) ρc (mol/l) Pc (bar) Zc TC (K) ρc (mol/l) Pc (bar) Zc

Ar 160.06 12.69 59.41 0.36 150.69 13.4074 48.63 0.29
CH4 212.00 9.29 58.75 0.36 190.54 10.1390 45.99 0.29
N2 133.21 10.64 43.21 0.37
Ne 46.54 22.78 31.39 0.36
CO2 311.80 10.14 93.94 0.36
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ig. 10. Ability of the new EOS in predicting a common intersection point for
70 K (©), 180 K (�), 200 K (
) isotherms of argon.

f temperature, which measured at constant volume. Also, heat
apacity may be used as a criterion for the accuracy of an EOS.
e may use the following expression to calculate the isochoric

eat capacity,

CV = −β2 ∂2 (
βF

)
(32)
Nk ∂β2 N

y using Eqs. (13) and (32) we have calculated CV on the basis
f the new EOS. The results for four deferent isochors are given

ig. 11. Calculated constant volume heat capacity for some given isochors of
rgon. Experimental values for ρ = 7.51 mol/l.
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126.19 11.1839 33.96 0.29
44.49 23.8820 26.79 0.30

304.13 10.6249 73.77 0.27

n Fig. 11. As shown in this figure, the trend of variation of CV

ith temperature is the same as the experimental data.

.8. Compressibility factor at the critical point

The critical isotherm appears with its characteristic inflection
oint, at a point which the first and second volume derivatives
f pressure become zero. The critical parameters such as tem-
erature, density, pressure, and compressibility factor obtained
rom the new EOS are compared with their experimental values
n Table 5 for some given fluids.

. Discussion and conclusion

A new analytical EOS based on the statistical–mechanical
erturbation theory is derived for fluids, using the soft-core
hermodynamic perturbation theory used Carnahan–Starling
xpression with the effective diameter as a reference system,
ut with a new algorithm for taking into account the perturbed
otential and thereby a modification amounts to an extra term
inear in the density on the first-order perturbation term. We
ad included the symmetric interaction that a particle sees via
ll its neighbors as in the LIR EOS, and then derived a new
eneral EOS with a good approximation for whole density and
emperature ranges, as shown in Table 2. It is reasonable for
on-associating molecules especially for spherical fluids which
ith high accuracy obey the CS EOS for the reference system

nd the BFC criterion for effective hard-sphere co-volume.
On the basis of Eq. (21), one may conclude that the non-ideal

hermal pressure depends on both hard-sphere characteristic and
lso asymmetric contribution of molecular interactions which
oth of them are discarded in the LIR EOS, and such discarding
ake the application of the LIR limited to the high densities

ρ ≥ ρB) and low temperatures (T ≤ 2TB). As shown in Fig. 4,
on-ideal thermal pressure (A2) at low densities deviates signif-
cantly from a constant value.

The resulting EOS shows some thermodynamic properties
ith a reasonable accuracy, such as P–T isochors, as shown in
ig. 6, all isochors show a negative curvature just like exper-

mental data, and because of temperature-dependencies of the
ard-sphere diameter, it shows an accurate behavior of the sec-
nd virial coefficient (see Fig. 5), at least qualitatively, and it

redicts the JTIC and also two-phase region diagram with a
easonable accuracy. Some limitations of the new EOS are in
rder; there are not any molecular insights regarding the sym-
etric interaction, and it is the reason that we treat them as
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djustable parameters by fitting the experimental P–V–T data
nto the EOS. Due to the long-range interactions and formation
f large clusters at the reduced temperatures and densities range
ithin 1 ≤ Tr ≤ 15 and 0.8 ≤ ρr ≤ 15 (see Table 1 and Fig. 1b),
q. (14) shows a significant deviation which is expected from

he mean-field theory, but at the reduced temperatures higher
han 1.5, existence of such clusters can be neglected, because
articles convey high kinetic energies. Its applicability is doubt-
ul for substances like H2O for which the attractive rather than
he repulsive interaction plays an important role on the struc-
ure of liquid especially at low temperatures which formation of
he open structure is dominated, however as shown in Fig. 2 its
pplicability for high temperatures is reasonable. On the basis
f Eq. (22), the new EOS does not show a correct behavior for
he third and higher virial coefficients at low temperatures, due
o the fact that formations of such clusters are discarded in the

odel used to derive the EOS.
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