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model on some fluid properties
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The effect of repulsive steepness of the soft-core square well (SCSW) potential model on the
second virial coefficient, critical behaviour (two- phase region and the position of critical point), and
coordination number are investigated. The soft-core thermodynamic perturbation theory (TPT) presented
by Weeks-Chandler-Anderson (WCA) recently developed by Ben-Amotz and Stell (BAS) has been used for
the reference system, and the Barker-Henderson TPT for the perturbed system. The Barker-Henderson
macroscopic compressibility approximation has been used for all order perturbation terms in which the
second-order one is improved by assuming that the molecules in every two neighbouring shells are
correlated upon the original assumption. By using the hard-sphere isothermal compressibility consistency for
the radial distribution function (RDF), an analytical closed expression has been derived for the
Helmholtz free energy function contained effective hard-sphere diameter. The accuracy of the model has
been examined for the hard-core system, and an appropriate range found for the attractive width of
the potential well (R), then the effect of steepness parameter on the critical quantities, coordination number,
and the inversion temperature of the second virial coefficient, has been investigated qualitatively.
The predicted results are in good agreement with the computer simulation data for the critical constants,
and coordination number at the limit of the hard-core square-well potential model at least qualitatively,
and for the attractive range 1.55�R� 1.7, quantitatively. It was found that the steepness of the
potential model has a marginal effect on the critical behaviour, and also every thermodynamic quantity at
low and medium temperatures for which the molecular penetration is negligible, but since the penetration
at high temperatures is significant, the role of the steepness of potential on the inversion temperature of
the second virial coefficient and coordination number is highlighted.

Keywords: equation of state; thermodynamic perturbation theory; soft-core square well potential model;
steepness of potential model

1. Introduction

For a long time, the square-well (SW) potential model

has been the subject of extensive investigations using

deferent statistical mechanical methods, either as

simulation techniques [1,2] or as a theoretical

approach, since the SW fluid represents a good and

simple model that includes the attractive and repulsive

interactions which is able to reproduce the behaviour of

simple fluids, and also it is applicable for the complex

fluids such as mixtures, chain molecules, associating

fluids, and polar fluids. Moreover, different values of

the interaction range cover a large variety of various

system models from sticky or adhesive range through

medium to long range hard-sphere which it may be

regarded as a new parameter for the non-conformal

changes affect on fluids [3].
Among the theoretical aspects, perturbation the-

ories have been a decisive step in calculating and

understanding the thermodynamic properties of fluids.

Some versions of the perturbation theories such as, the

Barker–Henderson second-order and higher-order

expansion [4,5] for hard-sphere, the Chang and

Sandler perturbation theory [6,7] for hard-sphere-

chains, and the perturbed hard chain sphere equation

of state presented by Hino and Prausnitz [8] are often

used for systems containing spheres.
In this work, by noting the fact that with choosing a

suitable criterion for effective hard-sphere, one may use

the step function approximation for the reference

system, we have used the Barker–Henderson macro-

scopic compressibility approximation for the second-

order and higher-order perturbation terms in which the

second-order one is improved by assuming that the

number of molecules in every two neighbouring shells

are correlated upon the original assumption [9,10].

We have derived a simple close analytical expression for
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8 the soft-core square well (SCSW) potential model in
which directly using a hard-sphere (HS) reference
system rather than indirectly via a soft-repulsive
reference system as used by Ben-Amotz and Stell
(BAS) perturbation theory [11].

We have used the SCSW potential model:

UðrÞ ¼
4" �

r

� �n
� �

r

� �ðn=2Þh i
r � rm

�" rm<r � R�
0 r>R�

8><
>: ð1Þ

where rm¼ 22/n�, " is the well depth (minimum
potential function), � is intermolecular separation in
which potential function is zero, R is the reduced well
width, and n is the steepness of repulsive wall (which is
reciprocal of softness, 1/n). In the following section, we
show succinctly that how one can approximately use
the effective HS diameter for the repulsive part of the
potential model as a reference system, like BAS
perturbation theory.

2. Theory

In the Barker and Henderson approach the excess
Helmholtz free energy can be expressed as,

�Fex

N
¼
�Fex

0

N
þ
�F1

N
þ
�F2

N
þ � � � ð2Þ

where Fex
0 is the excess free energy of the hard-sphere

reference fluid; F1, F2, . . . are the first-order, second-
order, and higher-order perturbation terms, respec-
tively, and �¼ 1/kT where k is Boltzmann constant.

2.1. Reference system potential for SCSW model

The starting point of many soft-core thermodynamic
perturbation theories as WCA theory [12–14] is to
decompose the potential model into the sum of
repulsive, U0(r), and preturbative, U1(r), terms as,

U0ðrÞ ¼
4" �

r

� �n
� �

r

� �n=2h i
þ " r<rm

0 r � rm

(
ð3aÞ

U1ðrÞ ¼
�" r<R�

0 r � R�:

�
ð3bÞ

The other key point of WCA theory pertains to the
method used to relate the thermodynamic properties of
a soft-repulsive reference fluid to that of a hard-sphere
fluid with an effective hard sphere diameter depends on
both temperature and density, known as iso-compres-
sibility criterion. Owing to the fact that density
dependency of the effective hard sphere diameter has
very insignificant effect, we try to use a criterion which

depends only on temperature, and give an analytical
expression for �HS. For these reasons, we use the
Boltzmann factor criterion (BFC) [15], according to
which �HS takes the value of r in such a way that

�u0ðr ¼ �HSÞ ¼ � ð4Þ

where � is a parameter which may varies from 0.5 to
1.5. By substituting Equation (3a) as the reference
system in Equation (4), one may solve it to obtain the
effective hard-sphere diameter, �HS(T)

�HSðTÞ ¼ �
2

1þ
ffiffiffiffiffiffiffiffiffiffi
�=�"
p

� �2=n
¼ � � ½�ðTÞ�: ð5Þ

It has been shown that �HS from BFC criterion with
�¼ 1 by step function approximation equals to the
BH criterion [16], and also regarding the fact that
collision of two particles occurs in a plane, we choose
�¼ 1. Note that the BFC criterion has extensively been
used by Ben–Amotz–Stell as BAS perturbation theory
[11]. By supposing the step function of reference system
the SCSW model, Equation (1), is rewritten as

UðrÞ ¼
1 r � �HS

�" �HS<r � R�
0 r>R�

8<
: ð6aÞ

and thereby the decomposed reference and
perturbative terms according to Equation (14) like
Equations (3a) and (3b), are

U0ðrÞ ¼
1 r � �HS

0 r>�HS

�
ð6bÞ

U1ðrÞ ¼

0 r � �HS

�" �HS<r � R�

0 r>R�:

8><
>: ð6cÞ

One may conclude from the above discussion that we
can use every HS expression for Fex

0 with effective hard
sphere diameter as a reference system.

2.2. Perturbation term

In Equation (2),

�F1

N
¼ 2���

Z 1
0

g0ðrÞu1ðrÞr
2dr

�F2

N
¼����2

�
1þ2K�2

�Z 1
0

u21ðrÞkT
@�

@p

	 

0

g0ðrÞr
2dr ð7Þ

where � ¼ ð�=6Þ��3HS is the packing fraction. By
assuming that the number of molecules in every two
neighbour shells is correlated, Zhang [9] added factor
(1þ 2K�2) to Barker–Henderson’s second-order
macroscopic compressibility expression in which
K � 1=�2con, �con ¼ 0:493. For the higher-order

104 M. Shokouhi and G.A. Parsafar
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8 perturbation terms other approximation given by

Barkar and Henderson [5]

Fi ¼
F1ð2F2=F1Þ

i�1

i!
: ð8Þ

Substituting Equation (7) into Equation (8), leads to

�Fex

N
¼ �Fex

HS=N�
12��

�3ðT�Þ

	 


�"

�
þ

1

2!

�"

�

	 
2

þ
1

3!

�"

�

	 
3

þ � � �

" #Z R

�ðT�Þ

g0ðxÞx
2dx

ð9aÞ

or

�Fex

N
¼ �Fex

HS=N�
12��

�3ðT�Þ

	 


exp
�"

�

	 

� 1

� � Z R

�ðT�Þ

g0ðxÞx
2dx ð9bÞ

�(T*) was introduced in Equation (5), and

��1 ¼ ð1þ 2K�2ÞðkredT Þ0. Since the reference system is

the effective hard sphere system in Equation (6b), the

subscript 0 may be changed to HS.
By using Equation (9b), we are ready to obtain an

analytical form of EOS using the effective HS

Carnahan Starling [17,18] expression for reference

system:

�Fex
HS

N
¼

4�� 3�2

ð1� �Þ2
ð9cÞ

and reduced isothermal compressibility with the HS

Carnahan Starling expression

kredT

� �
HS
¼

@

@�
ðZHS�Þ

	 
�1
�

¼
ð1� �Þ4

1þ 4�þ 4�2 � 4�3 þ �4

ð9dÞ

and, g0(r) is simply given by [19]

g0ðrÞ ¼
0 r<�HS

gHSðrÞ �HS � r � R�
1 r>R�:

8<
: ð10Þ

In Equation (10), we have considered a general form

for the radial distribution function of the reference

system and there is no need to state the complicated

mathematical expression for it. In fact we have used

the radial distribution function expression, which

generates a consistency for the hard sphere isothermal

compressibility with the approximation g0(r)¼ 1 for

r>R�. Owing to the fact that the reference potential is

very short range, we required the following

approximation [19]:

24�

Z 1
R

½g0ðxÞ � 1�x2dx ¼ 0 ð11Þ

where x is the intermolecular separation in units of the

hard-core diameter �. By using the isothermal com-

pressibility equation

kredT

� �
HS
¼ kT

@�

@p

	 

HS

¼ 1þ �

Z 1
0

½g0ðrÞ � 1�4�r2dr

ð12Þ

we obtain the following result:

kredT

� �
HS
¼ 1þ

24�

�ðT�Þ3

	 
 Z �ðT�Þ

0

g0 xð Þ� 1½ �x2dx

�

þ

Z R

�ðT�Þ

½g0ðxÞ� 1�x2dxþ

Z 1
R

½g0ðxÞ� 1�x2dx

�
:

ð13aÞ

Using Equation (10),

kredT

� �
HS
¼ 1þ

24�

�ðT�Þ3

	 
Z R

�ðT�Þ

gHSðxÞx
2dx�

8R3�

�ðT�Þ3

ð13bÞ

24�

�ðT�Þ3

	 
Z R

�ðT�Þ

gHSðxÞx
2dx ¼ kredT

� �
HS
�1þ

8R3�

�ðT�Þ3

	 

ð13cÞ

where the left side of the Equation (13c) may be

regarded as the coordination number of the hard-

sphere system, NHS
C . By substitution of Equation (13c)

into Equation (9b), the final closed form Helmholtz

free energy expression is

�Fex

N
¼ �Fex

HS=N�
�

2

� �
NHS

C exp
�"

�

	 

� 1

� �
ð14aÞ

or, equivalently,

�Fex

N
¼ �Fex

HS=N�
�

2

� �
exp

�"

�

	 

� 1

� �

kredT

� �
HS
�1þ 8R3�=� T�ð Þ3

� �
: ð14bÞ

Equation (14a) is a good approximation of the

Helmholtz free energy for a SCSW potential and

it has the advantage of being analytical.
Owing to the fact that, when steepness approaches

to infinity in accordance with Equation (5) �(T*)! 1,

and thereby the soft-core potential model used in this

work, approaches to common hard-core potential

model, and noting the fact that there is much

Monte Carlo SW simulation data, first of all we

Molecular Physics 105
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examine the accuracy of the model for the hard core
system, when n!1, and obtain appropriate values

for the attractive range (R). We then (qualitatively)
investigate the effect of the steepness parameter on the
critical quantities, coordination number, and the
inversion temperature of the second virial coefficient.

3. Accuracy of the new potential model in predicting

hard-core sw fluid properties

One way to test the theoretical approach used in this
work is to analyse the compressibility factor, vapour–
liquid phase diagram, internal energy, and also critical

constants predicted by our framework and compare
them with available simulation data [2,20–22] and other
theoretical approaches [23]. In this analysis we have

considered intermediate values of attraction range,
1.25�R� 2 for which a large number of data are
reported in literature both by simulation and theory.

3.1. Critical point and coexistence curve

The values of critical constants estimated from
simulation are summarized in Table 1, and a

comparison is made with the corresponding results

obtained from some theoretical approaches such as
the second-order thermodynamic perturbation theory
(PT) [21], self-consistent Ornstein–Zernike approxi-
mation (SCOZA) [23] based on a generalized mean-
spherical approximation (MSA), and this work.
As may be seen from Table 1, our model like two
other theoretical ones predicts very well the beha-
viour of T�CðRÞ, P

�
CðRÞ and �

�
CðRÞ. When the attrac-

tive range of the potential model increases, the
critical temperature and pressure rise. The SCOZA is
the best theoretical model for predicting the critical
temperatures of the SW potential model which it
may be used to propose an analytical expression for
the reduced critical temperature and pressure [23].
All versions of perturbation theories overestimate the
critical temperature and pressure for all values of R,
whereas our approach underestimates for small
values of R and overestimates for the large values
of R, but it gives reasonable values within
1.55�R� 1.7. The qualitative behaviour of the
reduced critical density as a function of R, for all
three theoretical approaches is reasonable, although
a clear dispersion of the simulation data predicted
by several authors can been seen in literatures,
which makes a comparison with the theories
rather difficult.

Table 1. Critical parameters for different values of R obtained from Monte Carlo (MC), molecular dynamics (MD), this work,
second-order perturbation theory (PT), and self-consistence Ornstein–Zernike approximation (SCOZA).

R T�C ¼ kTC=" PC�
3=" �C�

3 ZC

1.25 MC 0.764	 0.004 0.081	 0.015 0.370	 0.023 0.29	 0.07
MD 0.78
PT 0.913 0.133 0.34 0.43

This work 0.656 0.058 0.259 0.339
SCOZA 0.761 0.073 0.343 0.280

1.375 MC 0.974	 0.01 0.105	 0.023 0.355	 0.045 0.30	 0.11
MD 1.01
PT 1.11 0.148 0.34 0.39

This work 0.897 0.079 0.257 0.341
SCOZA 0.978 0.079 0.291 0.278

1.5 MC 1.219	 0.008 0.108	 0.016 0.299	 0.023 0.30	 0.07
MD 1.27
PT 1.35 0.153 0.31 0.36

This work 1.188 0.104 0.255 0.344
SCOZA 1.21 0.092 0.272 0.280

1.75 MC 1.811	 0.013 0.179	 0.02 0.284	 0.009 0.35	 0.05
MD 1.79
PT 2.04 0.196 0.25 0.38

This work 1.934 0.170 0.253 0.349
SCOZA 1.809 0.128 0.249 0.284

2 MC 2.765	 0.023 0.197	 0.026 0.225	 0.018 0.32	 0.07
PT 2.88 0.255 0.24 0.37

This work 2.93 0.259 0.251 0.352
SCOZA 2.699 0.201 0.252 0.296

PT: [21], MC: [2], MD: [22], SCOZA: [23].

106 M. Shokouhi and G.A. Parsafar
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3.2. Coordination number behaviour

The coordination number (CN) is defined as the

average number of particles within the potential well

which is a valuable quantity for SW model, since a

thermodynamic equation of state (EOS) may be

developed by using the CN [24], and also the general-

ized van der Waals theory [25] may be based on the

CN theory. These groups of theories are generally

simple, both conceptually and operationally. For the

SCSW potential model, the CN may be written as

NC ¼
24�

�3ðT�Þ

	 
Z R

�ðT�Þ

gSWðxÞx2dx: ð15Þ

As may be seen, the CN depends on the molecular

potential function via the pair distribution function.

To determine the CN for the HSSW fluid, a number of

theoretical models have been developed [26,27], from

which [27]

NC ¼
��maxN

HS
C e1=T

�

��max þ �
� e1=T

�
� 1ð Þ

ð16Þ

where NHS
C is the CN for hard-sphere fluids,

�� ¼ ��3HS, and �
�
max is the maximum reduced density

assumed to be unit by Heyes [26], but it yields correct

low densities behaviour of the CN and departs

markedly from simulation data at high densities.

Largo and Soana [27] modified ��max as

��max ¼ �
� þ

1

R3

ffiffiffi
2
p
� ��

� �
: ð17Þ

We may use Equation (13c) as the CN of hard-sphere

system to obtain it for SW model. We obtained the

value of CN of the hard-core SW for some values of

well width, and temperatures, for which the results are

listed in Table 2 and compared with simulation data

[27]. As may be seen, like the critical points, the best

results are obtained within 1.50�R� 1.70, which is

suitable for real fluids. Such a suitable result obtained

with our model is due to the criterion we used for taking

into account the radial distribution function,

Equations (10) and (13c), for which the criterion is

correct only at the aforementioned potential well width.

3.3. Internal energy and compressibility factor

There are two alternative formulas, Equations (18) and

(19), to calculate the internal energy, E, of soft-sphere

and hard-core SW potential model:

E

NkT
¼

Eid

NkT
þ

Eex

NkT
¼

3

2
þ �

@

@�

�Fex

N

	 

ð18Þ

E ¼ Eid þ Eex ¼
3

2
NkTþ 2�N�

Z 1
0

UðrÞgðrÞr2dr ð19Þ

where E id and E ex are the ideal and excess internal
energy, respectively. For simplicity we use
Equation (19), for which one may obtain

Eex

NkT
¼ �

1

2T�
24�

�3ðT�Þ

	 
Z R

�ðT�Þ

gSWðxÞx2dx ¼ �
NC

2

1

T�
:

ð20Þ

The value of excess energy for the hard-core
SW model is calculated by using Equation (20), see
Table 3, and compared with simulation data [20,21].

By using the derivative of Equation (14b), one may
obtain other thermodynamic properties, such as the
equation of state:

Z ¼ �
@ð�F=NÞ

@�

	 

�

¼ �
@ð�F=NÞ

@�

	 

�

: ð21Þ

For the limit of hard-core SW potential, comparison
of our calculated compressibility factor values with
those computed from the equations reported by Lee
and Chao (LC) [28], Lee and Sandler (LS) [29], Guo
et al. (GWL) [30], Shen and Lu (SL) [31], and the MC
data [20,21] is presented in Table 4. One may notice
from Table 4 that the results obtained from this work
are comparable with the simulation data and also other
EOSs. However, this work has the advantage over
the other EOSs that it does not use any
complicated expression for the radial distribution
function.

4. Dependencies of the critical point, liquid-vapor

equilibrium, coordination number, and second

virial coefficient on the steepness parameter (n)

The shape of the coexistence curve and the location of
the critical point with variation of attractive range of
the SW potential model are extensively investigated
[3,23], and as we showed in the preceding section, our
results are reasonable at least qualitatively in compar-
ison with other theoretical approaches and simulation
data. We tend to investigate how the coexistence curve,
coordination number, and second virial coefficient can
be influenced by the repulsive quantities such as
steepness of SCSW potential model.

In Table 5, the effect of the steepness parameter on
the critical parameters is listed. As may be seen, by
reducing the n, the critical temperature increases. Such
dependency is smoother than the dependency of critical
parameters to the well width. Like the critical
temperature, the critical density and pressure are
almost not affected by the steepness parameter.
In Figure 1, the coexistence curve for different
values of n when R¼ 1.60 is shown. As may be seen,
the effect of repulsion softness parameter on the

Molecular Physics 107
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phase region is marginal. It means that the steepness

parameter (unlike the well width parameter) as an

additional parameter for non-conformal fluids isn’t a

suitable variable for the acenteric factor [3].

As mentioned before coordination number may

have a significant effect on some thermodynamic

properties such as equation of state, internal energy,

and heat capacity. Every EOS based on one particle

Table 3. Calculated excess internal energy, Eex=NkT, compared with those of Monte Carlo simulation data, for given values
of R, T* and �*.

R T� ¼ kT=" �� ¼ ��3

1.5 0.4 0.5 0.6 0.7 0.8

0.57 �4.37 �8.68 �9.69 �10.69 (�10.03)
0.67 �4.26 �7.31 �8.19 �9.06 (�8.59)
0.80 �4.14 �5.95 �6.71 (�6.29) �7.45 (�7.16)
1.0 �3.96(�4.07) �4.63 (�4.27) �5.25 (�5.03) �5.86 (�5.73)
1.�3 �3.81(�3.89) �3.34 (�3.2) �3.83 (�3.77) �4.30 (�4.30)
2.0 �3.60(�3.64) �2.13 (�2.13) �2.46 (�2.51) �2.79 (�2.86)
4.0 �3.36(�3.48) �1.01 (�1.07) �1.18 (�1.26) �1.35 (�1.43)

1.625
0.8 �5.43 �7.45 �9.40 (�9.33)
1.25 �3.21 (�3.22) �4.55 (�4.55) �5.86 (�5.72)
2 �1.87 (�1.87) �2.73 (�2.73) �3.57 (�3.51)
3 �1.19 (�1.18) �1.77 (1.78) �2.34 (�2.31)

Simulation data [20,21] given in parentheses.

Table 2. Calculated coordination number NC for the hard-core SW potential model compared with simulation data.

T� ¼ kT="

R ��3 1.0 1.5 2.0 3.0 5.0

1.3 0.20 2.06 (2.47) 1.81 (1.89) 1.67 (1.68) 1.54 (1.50) 1.44 (1.38)
0.30 2.94 (3.50) 2.67 (2.82) 2.53 (2.57) 2.38 (2.36) 2.25 (2.21)
0.40 3.80 (4.48) 3.54 (3.78) 3.39 (3.53) 3.23 (3.30) 3.09 (3.14)
0.50 4.64 (5.42) 4.39 (4.80) 4.25 (4.56) 4.09 (4.35) 3.95 (4.19)
0.60 5.47 (6.41) 5.24 (5.92) 5.11 (5.71) 4.96 (5.51) 4.83 (5.37)
0.70 6.29 (7.55) 6.09 (7.15) 5.97 (6.97) 5.83 (6.79) 5.71 (6.65)
0.80 7.11 (8.84) 6.93 (8.49) 6.82 (8.33) 6.70 (8.16) 6.59 (8.03)

1.5 0.20 3.30 (3.4) 3.04 (3.04) 2.77 (2.73) 2.57 (2.53)
0.30 4.75 (4.89) 4.45 (4.45) 4.15 (4.12) 3.91 (3.91)
0.40 6.13 (6.22) 5.84 (5.85) 5.52 (5.56) 5.26 (5.37)
0.50 7.49 (7.59) 7.20 (7.32) 6.89 (7.08) 6.62 (6.90)
0.60 8.80 (9.06) 8.53 (8.85) 8.24 (8.64) 7.98 (8.47)
0.70 10.09 (10.56) 9.85 (10.36) 9.58 (10.15) 9.35 (9.99)
0.80 11.37 (11.89) 11.16 (11.71) 10.92 (11.53) 10.71 (11.38)

1.6 0.20 4.05 (4.50) 3.75 (3.84) 3.46 (3.45) 3.22 (3.20)
0.30 5.78 (6.16) 5.46 (5.51) 5.13 (5.12) 4.86 (4.87)
0.40 7.45 (7.57) 7.13 (7.13) 6.78 (6.81) 6.51 (6.59)
0.50 9.07 (9.08) 8.76 (8.80) 8.45 (8.55) 8.17 (8.35)
0.60 10.67 (10.71) 10.40 (10.49) 10.09 (10.27) 9.82 (10.08)
0.70 12.27 (12.29) 12.01 (12.08) 11.73 (11.87) 11.48 (11.70)
0.80 13.82 (13.67) 13.61 (13.47) 13.36 (13.28) 13.14 (13.11)

1.8 0.20 5.41 (5.98) 5.06 (5.13) 4.78 (4.76)
0.30 7.82 (8.12) 7.44 (7.41) 7.13 (7.08)
0.40 10.18 (10.08) 9.81 (9.67) 9.49 (9.40)
0.50 12.52 (12.22) 12.17 (11.92) 11.86 (11.69)
0.60 14.85 (14.38) 14.52 (14.10) 14.23 (13.87)
0.70 17.16 (16.44) 16.87 (16.14) 16.61 (15.90)
0.80 19.47 (18.38) 19.21 (18.06) 18.98 (17.80)

Simulation data [27] given in parentheses.
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effective potential, CN plays a pivotal role on its
deriving process, either experimentally as a linear
isotherm regularity EOS [32,33], or theoretically as a
GvdW EOS [25] By using Equations (17a), (17b) and
(13c). we have obtained the theoretical value of the
CN for different values of reciprocal n (softness),

which are shown schematically at different densities
and temperatures in Figure 2. As seen in this figure,
NC behaves linearly as a function of 1/n with a suitable
coefficient of determination, R2

¼ 0.9998, from which
one may obtain the hard-core value from the intercept.
For T*¼ 2, and �*¼ 0.2, 0.5, and 0.8 the value of
intercept is 3.746, 8.758, and 13.58, respectively, which
are comparable with the corresponding values
obtained from simulation (Table 2). Another feature
of Figure 2 is that at higher densities and tempera-
tures, the more significant of the steepness parameter,
which is reasonable, since at higher density and
temperature particles spend most time at the repulsive
branch of the potential. Using this argument, one may
infer that first, the expansion mechanism in fluid arises
from the reducing of CN, whereas in the solid state it
is due to the anharmonistic vibrations of particles, and
second, for a constant density for which we expect that
CN to be constant as well, the softer the model

Table 4. Comparison of calculated compressibility factor with Monte Carlo simulation data and those obtained from other
equations of state for given values of R, T* and �*.

R T� ¼ kT=" �� ¼ ��3 MC LC LS GWL SL This work

1.75 0.05 0.916 0.926 0.878 0.920 0.958 0.925
1.5 1.75 0.10 0.853 0.875 0.792 0.855 0.913 0.869

1.75 0.30 0.736 0.880 0.798 0.760 0.856 0.834
1.75 0.50 1.052 1.088 1.489 1.091 1.320 1.329
1.75 0.65 2.073 1.690 2.730 1.898 2.366 2.385
1.75 0.80 4.616 3.935 5.100 3.683 4.556 4.557
2.50 0.05 0.959 0.991 0.960 0.987 1.004 0.989
2.50 0.10 1.081 0.999 0.945 0.985 1.011 0.990
2.50 0.30 1.097 1.211 1.163 1.132 1.189 1.177
2.50 0.50 1.691 1.716 2.008 1.724 1.902 1.902
2.50 0.65 2.909 2.623 3.355 2.766 3.137 3.135
2.50 0.80 5.529 5.041 5.839 4.838 5.514 5.492
3.00 0.05 1.013 1.014 0.989 1.011 1.022 1.011
3.00 0.10 1.035 1.044 1.000 1.032 1.049 1.035
3.00 0.30 1.265 1.339 1.302 1.275 1.319 1.310
3.00 0.50 1.930 1.966 2.213 1.975 2.129 2.127
3.00 0.65 3.168 2.996 3.608 3.114 3.436 3.430
3.00 0.80 5.956 5.480 6.140 5.302 5.887 5.861
4.00 0. 50 2.310 2.283 2.473 2.292 2.412 2.409
4.00 0.60 3.130 2.967 3.349 3.047 3.250 3.244
4.00 0.70 4.490 4.132 4.632 4.180 4.495 4.482
4.00 0.80 6.470 6.036 6.526 5.894 6.353 6.326

1.625
1.25 0.4 �0.270 �0.223
1.25 0.6 0.150 0.144
1.25 0.8 3.44 2.138
2.00 0.4 0.720 0.629 1.224 0.495 0.800 0.796
2.00 0.6 1.66 0.726 2.464 0.945 1.642 1.657
2.00 0.8 5.38 3.097 5.402 2.773 4.188 4.175
3.00 0.4 1.35 1.368
3.00 0.6 2.59 2.519
3.00 0.8 5.71 5.342

Simulation data from [20,21,30].

Table 5. Effect of steepness parameter on critical
parameters.

n TC/("/k) �C�
3
HS PC�

3
HS="

10 1.5735 0.2534 0.1383
12 1.5504 0.2535 0.1363
15 1.5292 0.2535 0.1344
18 1.5159 0.2536 0.1332
27 1.4953 0.2536 0.1314
36 1.4856 0.2537 0.1305
54 1.4763 0.2537 0.1297
Infinity 1.4587 0.2538 0.1281
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8 potential, leads to a less pressure or compressibility

factor.
We may use either the statistical mechanical

analytical expression or the first derivative of compres-

sibility factor to obtain an analytical expression for the

second virial coefficient [34]:

B2ðTÞ ¼ �2�

Z 1
0

e��uðrÞ � 1
� �

r2dr

B2ðTÞ ¼
@Z

@�

	 

�!0

¼ lim
Z� 1

�

	 

�!0

: ð22Þ

Using both forms of Equation (22), the reduced

form of the second virial coefficient, B�2ðT
�Þ ¼ B2=b0

where b0 ¼ ð2�=3ÞN0�
3, may be obtained in terms

of the reduced temperature, well width, and

steepness, as

B�2ðT
�Þ ¼ �3ðT�Þ 1� e1=T

�

� 1
� � R3

�3ðT�Þ
� 1

	 
	 

: ð23Þ

In Figure 3, the reduced second virial coefficient as a

function of reduced temperature for some different

values of steepness, hard-core limit of the potential

model, vdW co-volume (b0), and effective vdW

co-volume (b(T*)) are depicted. As expected and

shown in this figure, B�2ðT
�Þ of the hard-core fluid

doesn’t pass through any inversion temperature,

whereas three other forms behave like that of real

fluids [35,36]. Variation of the Boyle and inversion

temperatures and also their ratio for some different

values of steepness parameter and well width of SCSW

potential model are listed in Table 6. By inspection of

Figure 3 and Table 6, one obtains the following results:

(1) The soft repulsive part of the potential model

associated with the attractive range has two especial

effects on the second virial coefficient, the attractive

characteristic of the potential increases monotoni-

cally, and the repulsive branch decrease monotoni-

cally, and at low temperatures the former dominates

the second virial coefficient, whereas at a specific

temperature known as the inversion temperature,

1/n
0.00 0.02 0.04 0.06 0.08 0.10 0.12

N
C

2

4

6

8

10

12

14

16

18

20

22

ρ∗ = 0.8

ρ∗ = 0.5

ρ∗ = 0.2

T * = 2

T * = 8

Figure 2. Steepness dependency of the coordination number at given values of temperature and density.

η

0.0 0.1 0.2 0.3 0.4

T
*

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

hard core
n = 18
n = 12

Figure 1. Effect of the softness parameter (1/n) on the
coexistence curve, where � ¼ ���3HS=6.
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8 these two effects balance each other; finally at very

high temperatures the latter effect dominates. (2) For

a given value of the steepness, the Boyle and inversion

temperatures increase with increasing well width, but

their ratio remains almost constant. (3) For a fixed

value of well width, with increasing steepness para-

meter, the inversion temperature rises, since there is

the characteristic distance at this temperature where

two opposite effects balance each other, hence for

attaining to such distance, system needs a higher

thermal energy, but it has marginal effect on the

Boyle temperature. These effects make the ratio rise

when the steepness parameter increases. (4) The hard-

core potential model shows an inversion temperature

at infinity. It is worth noting that for real fluid this

ratio is 6.5–7.8 [36].

5. Conclusions

Owing to the fact that, the intermolecular potential

model with two common parameters, � and ", does not
show potential shape and thermodynamic quantities

accurately, and other dimensionless parameters are

needed, we chose the steepness of the repulsive branch

of the potential model as an additional parameter to

investigate its influence on thermodynamic properties.

In this work, by using the WCA theoretical model, we

have shown with a suitable effective hard-sphere

criterion, that one may use the step function

approximation for soft-core potential models and

then investigate the influence of the steepness param-

eter on some properties of interest. Regarding the fact

that, there are extensive simulation data for the hard-

core SW potential model, and also that one is able to

derive a simple closed expression without using a

complicated form of the radial distribution function,

and coordination number, we have focused on the

equation of state of the square well fluid. In order to

investigate the appropriateness of the new expression,

Equation (14a), we have chosen different values of

R from 1.25 to 2 as an input for the hard-core model to

calculate the critical parameters and coordination

number, and as shown in Tables 1 and 2, our new

model is suitable for well width 1.55�R� 1.70.

As shown in Figures 1, 2 and 3, the steepness of the

potential model is an important variable for the

coordination number and second virial coefficient

at high temperatures, at which penetration of

two particles into each other is significant, but not

for the coexistence curve, in which the attraction

term and thermal fluctuation both play very

significant roles.
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