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a b s t r a c t

Metallic nanoparticles are interesting because of their use in catalysis and sensors. The surface energy
of the FCC platinum nanoparticles are investigated via molecular dynamics simulation using Quantum
Sutton–Chen (QSC) potential. We have calculated the Gibbs free energy for the FCC platinum bulk and
also for its nanoparticle. All calculations have been carried out at zero pressure. We have used the
thermodynamic integration method to obtain the Gibbs free energy. The total Gibbs free energy is taken
as the sum of its central bulk and its surface free energy. We have calculated the free energy of a platinum
nanoparticle as a function of temperature.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Particles with diameter of 1–10 nanometer exhibit properties
that are often an intermediate between those of the molecular and
crystalline states. Nanoscience and nanomaterials have been iden-
tified worldwide as the key to unlocking a new generation of de-
viceswith revolutionary properties and functionalities. A gooddeal
of experimental and theoretical work has been carried out in these
fields. Nanomaterials are challenging since they involve compo-
nents at scales that are not common and thus the conventional
theories may fail. Understanding the behavior of materials at this
scale is important both frombasic science point of view and also for
the future applications. Nanoparticles with unique properties have
emerged as an interdisciplinary field involving solid state physics,
chemistry, biology andmaterials science [1]. Comprehensive stud-
ies of the physical properties of nanoparticles, too small to be sub-
jected to macroscopic thermodynamic analysis, have been carried
out over the past decades [2–8].
Metal nanoparticles exhibit physical, chemical, and electronic

properties different from those of the bulk and single molecules
due to the large fraction of surface atoms.
Computer simulation offers an effective tool to study the prop-

erties of nanoparticles and complement ongoing experimental ef-
forts [9–11]. The results reveal that the isolated nanoparticles and

∗ Corresponding author. Tel.: +98 21 66165355; fax: +98 21 66005718.
E-mail addresses: akbarzadehhamed@yahoo.com (H. Akbarzadeh),

hadi.abroshan@yahoo.com (H. Abroshan), parsafar@sharif.edu (G.A. Parsafar).

0038-1098/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ssc.2009.11.013
substrate-supportednanoparticleswith relatively high free surface
usually exhibit a significant deviation in physical properties, com-
pared to the corresponding conventional bulk materials. The orig-
inal reason for this phenomenon is that the ratio of the number of
surface-to-volume atoms is enormous for a nanoparticle and as a
result, the total surface free energy of a nanoparticle increases as
particle size decreases.
We have used molecular dynamics (MD) simulation to study

the surface free energy of a Pt nanoparticle. Therefore our aim is
to extend the MD simulation, to investigate the thermodynamic
properties of nanoparticles with a relatively simple strategy.
Firstly, we calculate the Gibbs free energy of the platinum bulk
material and its surface free energy using molecular dynamics
(MD) with the QSC potential. Secondly, by taking the total Gibbs
free energy as the sum of the central bulk and surface free
energies [12–14], we have calculated the free energy of a platinum
nanoparticle as a function of temperature.
There are some procedures reported in the literature for the

numerical evaluation of the free energy, using some empirical
descriptions for the total energy, either inMD orMonte Carlo (MC)
frames [15,16].

2. Molecular dynamic simulation

2.1. Force field model

In the present study, molecular dynamic simulation on a
solid platinum nanoparticle was done using the DL-POLY-2.20

http://www.elsevier.com/locate/ssc
http://www.elsevier.com/locate/ssc
mailto:akbarzadehhamed@yahoo.com
mailto:hadi.abroshan@yahoo.com
mailto:parsafar@sharif.edu
http://dx.doi.org/10.1016/j.ssc.2009.11.013


H. Akbarzadeh et al. / Solid State Communications 150 (2010) 254–257 255
Table 1
Potential parameters used in MD simulation for the Pt nanocluster.

n m ε (eV) c a (Å)

QSC 11 7 0.0097894× 10−3 71.336 3.9163

program [17]. All thermodynamic properties are obtained as time
averages over the particle position and velocity. The embedded
atom potentials [18] and other long-range potentials like the
Sutton–Chen [19] based on the Finnis–Sinclair type of potential
have been used in the literature successfully to produce the
properties of the FCC based metals such as Pt. On the basis of the
Sutton–Chen potential, the potential energy of a finite system is
given by

Utot =
∑
i

Ui =
∑
i

ε

[∑
j6=i

1
2
V (rij)− cρ

1
2
i

]
, (1)

where V (rij) is the pair potential to account for the repulsion
resulting from the Pauli’s exclusion principle,

V (rij) =
(
a
rij

)n
. (2)

The local density accounting for the cohesion associated with
atom i is given by

ρi =
∑
j6=i

Φ(rij) =
∑
j6=i

(
a
rij

)m
. (3)

Sutton and Chen restricted the value of m to be greater than
6 and fitted it to give a close agreement with the bulk modulus
and elastic constants. The Sutton–Chen potential poorly predicts
properties involving defects, surfaces, and interfaces. The quantum
Sutton–Chen potential which includes the quantum corrections
and the zero-point energy allowing a better prediction for the
temperature dependent properties. The quantum Sutton–Chen
(QSC) parameters for Pt are listed in Table 1 [3,20].

2.2. MD simulation details

The MD simulations are carried out in a NPT ensemble with a
constant number of atoms N and pressure P and temperature T
with the periodic boundary conditions. Platinum is a metal with a
FCC structure. A FCC blockwas first constructed froma FCC unit cell
by replication in the three dimensions with center located at (0, 0,
0). The fractional coordinates in FCC structure are (0, 0, 0), (0.5, 0.5,
0), (0.5, 0, 0.5), and (0, 0.5, 0.5). In order to obtain the free-energy
as a function of temperature, MD simulations are implemented
in a NPT ensemble. Temperature is controlled by a Nose–Hoover
thermostat [21] and pressure kept at the 0 Pa. The equations of
motion are integrated using the Verlet Leapfrog algorithm [9] with
a time step of 0.001 ps for a system of 3430 atoms. The samples are
heated in successive runs between 298.15 and 2000 K and cooled
down to 298.15 K, with a temperature interval of 50 K. In each run,
the first 5 × 104 time steps are used to equilibrate the sample,
the statistical average of the thermodynamic variable (the internal
energy in this case) is obtained on an additional set of 5×104 time
steps.
All calculations of the surface free energy (part 3.2.) are

performed in the NVT ensemble. We have employed finite slabs
with the periodic boundary conditions in the lateral cells. The solid
slabs contain 1836, 2152 and 2212 atoms for the Pt (111), Pt (100),
and Pt (110) surfaces and consist of 13, 17, and 23 atomic layers
with zero pressure lattice constants from the NPT simulation. For
instance the former slab has 13 layers with a total of 1836 atoms.
An odd number of atomic layers are taken for the sake of symmetry
of the upper and lower surfaces. The three systems are chosen
to have approximately equal spatial dimensions and the z axis is
normal to the surface.
Fig. 1. Internal energy variation with temperature, fitted by a second order
polynomial.

3. Theory

3.1. Calculation of bulk free energy

In this paper, the procedure used is similar to that introduced
in references 15 and 16. All free-energy calculations are carried out
at zero pressure. The Gibbs free energy per atom at temperature T
and zero pressure, G(T , P = 0), is related to the internal energy
per atom, U(T , P = 0), and the specific entropy, S(T , P = 0), via
the thermodynamic relation [22]:

G(T , P = 0) = U(T , P = 0)− TS(T , P = 0). (4)

The entropy can be eliminated from Eq. (4) by expressing it in
terms of temperature derivative of the Gibbs free energy, using the
standard thermodynamic relation [22]:

S(T , P = 0) = −
(
∂G(T , P = 0)

∂T

)
P=0

. (5)

Substituting Eq. (5) into Eq. (4) yields a differential equation for
the Gibbs free energy in terms of the internal energy. Upon solving
this differential equation, one obtains an expression, valid for any
system, for the Gibbs free energy at any desired temperature:

G(T , P = 0) = T
[
G(T0, P = 0)

T0
−

∫ T

T0

U(T , P = 0)
τ 2

dτ
]

(6)

where T0 is a predetermined reference temperature. In order to
calculate G(T , P = 0), the temperature dependence of U(T , P =
0) is needed. For such a task, we use the constant-pressure
simulation to obtain the internal energy at different temperatures.
As shown in Fig. 1, a second-order equation can be well fitted
in the calculated data. The coefficients of fitting are found to be
a0 = −5.6, a1 = 2.06E–4, and a2 = 4.64E–8, were ai is the
coefficient of the ith power.

3.1.1. Calculation of free energy difference using the thermodynamic
integration
Eq. (6) is a fundamental equation that will be used to determine

the free energy as a function of temperature. In order to use
Eq. (6), the Gibbs free energy at the reference temperature must
be obtained separately by the thermodynamic integration (TI)
method for a suitable ideal reference state. To do so, we consider
a system with the switching Hamiltonian H = (1 − λ)H1 + λH2,
where H2 describes the actual system and H1 is the Hamiltonian
of the reference system, with known free energy, and λ is the
switching parameter. For the solid, the reference system H1 is a
set of Einstein oscillators centered on the average positions of the
atoms in the ensemble corresponding to the Hamiltonian H2.

H1 = (1/2)mω2(ri − ri0)2
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Fig. 2. Simulation results for the integrand 〈H2 − H1〉λ appearing in the switching
Hamiltonian method versus the switching parameter λ, corresponding to the solid
phase, fitted by a fifth order polynomial.

Table 2
Values of different contributions to the free-energy at the reference temperature T0 .
(All entries are in units of eV/atom.)

Solid G(T0, P = 0) ∆G1 Gw(T0)

T0 = 298.15 K −5.66822 −5.57582 −0.0924

where {ri0} are the ideal crystal lattice vector, m is the mass of
an atom and ω is the frequency of oscillation. To obtain the most
accurate results, the radial distribution function andmean-squared
displacement of atoms of the actual system must be similar to
those of the reference system at the temperature of interest.
The Gibbs free energy per atom relative to that of the reference

system can then be obtained by the TI along the 〈H2–H1〉λ path,

G(T0, P = 0) = Gw(T0)+∆G1 (7)

where,

∆G1 =
1
N

∫ 1

0

(
∂H
∂λ

)
P=0
dλ =

1
N

∫ 1

0
〈U −W 〉λ,P=0dλ (8)

where Gw(T0) is the free energy of the reference system at T0. The
integration is carried over the parameter λ, which varies between
0 and 1. In our case, the reference free energy of the solid Pt is
calculated at T0 = 298.15 K. Twenty one points within the interval
λ = 0–1 has been used to carry the integration in Eq. (8). Again, the
calculation for any given value of λ is carried out in two successive
runs each with 5 × 104 steps and the average of 〈H2–H1〉 is taken
over the second time step. A fifth-order polynomial was fitted to
the data, shown in Fig. 2.

3.1.2. Calculation of Gw(T0)
The free energy of an Einstein crystal can be calculated

analytically [23]:

Gw(T0) = −3kBT0ln(T0/TE). (9)

Here kB is the Boltzmann constant, TE is the Einstein temperature
of the oscillators and TE = hω/2πkB, where h is the Planck
constant and ω is the frequency of oscillation. Table 2 shows the
values of different contributions to the free energy at the reference
temperature T0.

3.2. Calculation of surface free energy

The reversible work per unit area to form a new surface of
a substance (for instance by cleavage) is defined as the specific
surface free energy γ (or simply called the surface free energy),
while the reversible work per unit area required to elastically
Fig. 3. Gibbs free energy versus temperature for the solid phase in units of eV/atom.
(experimental values taken from Reference [29]).

Fig. 4. Solid surface free energy versus temperature for the (111), (100) and (110)
faces, obtained by using the thermodynamic integration method.

stretch a surface is the surface tension σ [24]. The surface free
energy constitutes a noticeable contribution to the total free
energy of a nanoparticle. For solids, usually the surface tension is
not equal to the surface free energy in value [24]. Thus γ for a solid
is computed as

σ = γ + As
∂γ

∂As
(10)

whereσ is the surface tension, γ represents the surface free energy
and As is the surface area.
To calculate the surface free energy, we use the approach given

in Reference [25], in which the solid surface free energy can be
obtained via the bulk and slab (with two surfaces) free energy,
using Eqs. (6)–(9). We may define two surface free energies as,

γ area =
Gslab − NGbulk

2As
(11)

γ atom =
Gslab − NGbulk
2Nsurface

(12)

where γ area(atom) represents the surface free energy per area (per
atom), Gslab is the total free energy of the slab,N is the total number
of atoms in the slab, Nsurf is the number of atoms on each surface,
Gbulk is the free energy per bulk atom and the 1/2 accounts for
the two free surfaces of the simulation cell. The periodic boundary
conditions are applied in the planar directions. In order to explore
the size effect on the thermodynamic properties of a platinum
nanoparticle, we first write the total Gibbs free energy Gtotal of a
nanoparticle as the sum of the volume free energy Gbulk and the
surface free energy Gsurface,

Gtotal = Gbulk + Gsurface = NG(T )+ γ (T )As. (13)



H. Akbarzadeh et al. / Solid State Communications 150 (2010) 254–257 257
Fig. 5. Structural evolution of a platinum nanoparticle with temperature.
Assuming a spherical particle leads to the specific surface area
of [26]

As =
6NVatom(T )

R
(14)

where N is the total number of atoms in the particle, R is the radius
of the particle and Vatom(T ) is the volume per atom.

4. Results and discussion

Sturgeon and Laird [27] proposed that the optimal value for
the Einstein temperature is what gives a similar mean-squared
displacement for the reference and actual systems to reduce
the numerical errors and obtain a good free-energy difference
estimate. In our case, the reference free energy is calculated at
T0 = 298.15 K using Einstein temperature TE = 90 K.
For calculation of the ∆G1, it is necessary to use the

thermodynamic integration. The integrand for the switching
Hamiltonians, Eq. (8), is shown in Fig. 2 for Pt in the solid phase.
A fifth-order polynomial is fitted to the data with the coefficients
b0 = −5.592, b1 = −0.1698, b2 = 0.4279, b3 = 1.3533, b4 =
1.782 and b5 = −0.7897, where bi is the coefficient of the
ith power. The shape of the curve satisfies the Gibbs–Bogoliubov
inequality

(
∂2H
∂λ2

)
< 0 [23], which is used to test the accuracy of

the integrand. The expression for 〈H2 − H1〉λ is then integrated
analytically, to obtain∆G1.
The free energy as a function of temperature is plotted in Fig. 3.

The calculated results are in good agreement with experimental
values, with the average percent difference of 2.89. Using the
thermodynamic integration method, we have calculated the solid
surface free energy of the (111), (100) and (110) faces by using
Eq. (13). The results are depicted in Fig. 4.
It can be seen that the free energy of the faces at low

temperatures are ordered precisely as expected from the packing
of the atoms in the layers. The close-packed (111) face has the
lowest and loosely-packed (110) face has the highest free energy.
As the temperature increases, the anisotropy of the surface free
energy becomes lower, because of the fact that the crystal slowly
becomes disordered, see Fig. 5.
It should be emphasized that the measurement of the surface

free energy of a crystalline metal is notoriously difficult and
the wide spread of experimental values for a well-defined low-
index orientation is substantial, as pointed out by Bonzel and
Nowicki [28].
5. Conclusions

Using MD simulation with the QSC potential, we have studied
the surface energy of a platinum nanoparticle. It was shown
that the free energy of the faces at low temperatures is ordered
precisely as expected from the packing of the atoms in the layers.
The close-packed (111) face has the lowest free energy, while
loosely-packed (110) face has the largest value. As the temperature
increases, the anisotropy of the surface free energy becomes lower,
because the crystal becomes slowly disordered. The free energy of a
nanoparticle can be divided into twoparts, namely the bulk and the
surface. The impact of the size on the thermodynamic properties of
a particle is determined by its surface atoms.
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