
Chapter Seven

Output Feedback

One may separate the problem of physical realization into two stages: computation of the
“best approximation”x̂(t1) of the state from knowledge of y(t) for t ≤ t1 and computation of
u(t1) givenx̂(t1).

From R. E. Kalman “Contributions to the theory of optimal control” [111]

In the last chapter we considered the use of state feedback tomodify the dy-
namics of a system. In many applications, it is not practicalto measure all of the
states directly and we can measure only a small number of outputs (correspond-
ing to the sensors that are available). In this chapter we show how to use output
feedback to modify the dynamics of the system, through the usof observers. We
introduce the concept of observability and show that if a system is observable, it
is possible to recover the state from measurements of the inputs and outputs to the
system. It is then shown how to design a controller with feedback from the ob-
server state. An important concept is the separation principle quoted above, which
is also proved. The structure of the controllers derived in this chapter is quite
general and is obtained by many other design methods.

7.1 OBSERVABILITY

In Section 6.2 of the previous chapter it was shown that it is possible to find a
feedback that gives desired closed loop eigenvalues provided that the system is
reachable and that all states are measured. For many situations, it is highly unreal-
istic to assume that all states are measured. In this sectionwe investigate how the
state can be estimated by using a mathematical model and a fewmeasurements. It
will be shown that the computation of the states can be carried out by a dynamical
system called anobserver.

Definition of Observability

Consider a system described by a set of differential equations

dx
dt

= Ax+Bu, y = Cx+Du, (7.1)

wherex∈ R
n is the state,u∈ R

p the input, andy∈ R
q the measured output. We

wish to estimate the state of the system from its inputs and outputs, as illustrated
in Figure 7.1. In some situations we will assume that there is only one measured
signal, i.e. that the signaly is a scalar and thatC is a (row) vector. This signal
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Figure 7.1: Block diagram for an observer. The observer uses the process measurementy
(possibly corrupted by noisen) and the inputu to estimate the current state of the process,
denoted ˆx.

may be corrupted by noise,n, although we shall start by considering the noise-free
case. We write ˆx for the state estimate given by the observer.

Definition 7.1 (Observability). A linear system isobservableif for any T > 0 it is
possible to determine the state of the systemx(T) through measurements ofy(t)
andu(t) on the interval[0,T].

The definition above holds for nonlinear systems as well, and the results dis-
cussed here have extensions to the nonlinear case.

The problem of observability is one that has many important applications, even
outside of feedback systems. If a system is observable, thenthere are no “hid-
den” dynamics inside it; we can understand everything that is going on through
observation (over time) of the inputs and outputs. As we shall see, the problem of
observability is of significant practical interest because it will determine if a set of
sensors is sufficient for controlling a system. Sensors combined with a mathemat-
ical model can also be viewed as a “virtual sensor” that givesinformation about
variables that are not measured directly. The process of reconciling signals from
many sensors with mathematical models is also calledsensor fusion.

Testing for Observability

When discussing reachability in the last chapter we neglected the output and fo-
cused on the state. Similarly, it is convenient here to initially neglect the input and
focus on the autonomous system

dx
dt

= Ax, y = Cx. (7.2)

We wish to understand when it is possible to determine the state from observations
of the output.

The output itself gives the projection of the state on vectorsthat are rows of the
matrixC. The observability problem can immediately be solved if the matrix C is
invertible. If the matrix is not invertible we can take derivatives of the output to
obtain

dy
dt

= C
dx
dt

= CAx.



7.1. OBSERVABILITY 209

From the derivative of the output we thus get the projection ofthe state on vectors
that are rows of the matrixCA. Proceeding in this way we get




y

ẏ

ÿ
...

y(n−1)




=




C
CA
CA2

...
CAn−1




x. (7.3)

We thus find that the state can be determined if the matrix

Wo =




C
CA
CA2

...
CAn−1




(7.4)

hasn independent rows. It turns out that we need not consider any derivatives
higher thann− 1 (this is an application of the Cayley-Hamilton theorem (Exer-
cise 6.11).

The calculation can easily be extended to systems with inputs. The state is then
given by a linear combination of inputs and outputs and theirhigher derivatives.
The observability criterion is unchanged. We leave this caseas an exercise for the
reader.

In practice, differentiation of the output can give large errors when there is
measurement noise and therefore the method sketched above is not particularly
practical. We will address this issue in more detail in the next section, but for now
we have the following basic result:

Theorem 7.1. A linear system of the form(7.1) is observable if and only if the
observability matrix Wo is full rank.

Proof. The sufficiency of the observability rank condition follows from the analy-�
sis above. To prove necessity, suppose that the system is observable butWo is not
full rank. Letv∈ R

n, v 6= 0 be a vector in the null space ofWo, so thatWov = 0. If
we letx(0) = v be the initial condition for the system and chooseu = 0, then the
output is given byy(t) = CeAtv. SinceeAt can be written as a power series inA
and sinceAn and higher powers can be rewritten in terms of lower powers ofA (by
the Cayley-Hamilton theorem), it follows that the output will be identically zero
(the reader should fill in the missing steps if this is not clear). However, if both the
input and output of the system are 0, then a valid estimate of the state is ˆx = 0 for
all time, which is clearly incorrect sincex(0) = v 6= 0. Hence by contradiction we
must have thatWo is full rank if the system is observable.

Example 7.1 Compartment model
Consider the two compartment model in Figure 3.18a on page 91 but assume that
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Figure 7.2: A non-observable system. Two identical subsystems have outputs that add
together to form the overall system output. The individual states of the subsystem cannot be
determined since the contributions of each to the output are not distinguishable. The circuit
diagram on the right is an example of such a system.

the the concentration in the first compartment can be measured. The system is
described by the linear system

dc
dt

=


−k0−k1 k1

k2 −k2


c+


b0

0


u, y =


1 0


x.

The first compartment can represent the concentration in the blood plasma and the
second compartment the drug concentration in the tissue where it is active. To
determine if it is possible to find the concentration in the tissue compartment from
measurement of blood plasma we investigate the observability of the system by
forming the observability matrix

Wo =


 C

CA


 =


 1 0
−k0−k1 k1


 .

The rows are linearly independent ifk1 6= 0 and under this condition it is thus
possible to determine the concentration of the drug in the active compartment from
measurements of the drug concentration in the blood. ∇

It is useful to have an understanding of the mechanisms that make a system
unobservable. Such a system is shown in Figure 7.2. The system iscomposed
of two identical systems whose outputs are added. It seems intuitively clear that
it is not possible to deduce the states from the output since we cannot deduce
the individual output contributions from the sum. This can also be seen formally
(Exercise 7.2).

Observable Canonical Form

As in the case of reachability, certain canonical forms willbe useful in studying
observability. We define the observable canonical form to be the dual of the reach-
able canonical form.
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Figure 7.3: Block diagram of a system on observable canonical form. The states ofthe
system are represented by individual integrators whose inputs are a weighted combination
of the next integrator in the chain, the first state (right most integrator) and the system input.
The output is a combination of the first state and the input.

Definition 7.2 (Observable canonical form). A linear single input, single output
(SISO) state space system is inobservable canonical formif its dynamics are given
by

dz
dt

=




−a1 1 0 · · · 0
−a2 0 1 0

...
...

−an−1 0 0 1
−an 0 0 · · · 0




z+




b1
b2
...

bn−1
bn




u

y =

1 0 0· · · 0


z+Du.

The definition can be extended to systems with many inputs the only difference
is that the vector multiplyingu is replaced by a matrix.

Figure 7.3 shows a block diagram for a system in observable canonical form.
As in the case of reachable canonical form, we see that the coefficients in the sys-
tem description appear directly in the block diagram. The characteristic equation
for a system in observable canonical form is given by

λ (s) = sn +a1sn−1 + · · ·+an−1s+an. (7.5)

It is possible to reason about the observability of a system in observable canonical
form by studying the block diagram. If the inputu and the outputy are available
the statez1 can clearly be computed. Differentiatingz1 we also obtain the input
to the integrator that generatesz1 and we can now obtainz2 = ż1 + a1z1 − b1u.
Proceeding in this way we can compute all states. The computation will however
require that the signals are differentiated.

To check observability more formally, we compute the observability matrix for
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a system in observable canonical form, which is given by

Wo =




1 0 0 . . . 0
−a1 1 0 . . . 0

−a2
1−a1a2 −a1 1 0

...
...

...
...

∗ ∗ . . . 1




,

where * represents as entry whose exact value is not important. The rows of this
matrix are linearly independent (since it is lower triangular) and henceWo is full
rank. A straightforward but tedious calculation shows thatthe inverse of the ob-
servability matrix has a simple form, given by

W−1
o =




1 0 0 · · · 0
a1 1 0 · · · 0
a2 a1 1 · · · 0
...

...
...

...
an−1 an−2 an−3 · · · 1




.

As in the case of reachability, it turns out that if a system isobservable then
there always exists a transformationT that converts the system into reachable
canonical form (Exercise 7.3). This is useful for proofs, since it lets us assume
that a system is in reachable canonical form without any lossof generality. The
reachable canonical form may be poorly conditioned numerically.

7.2 STATE ESTIMATION

Having defined the concept of observability, we now return to the question of how
to construct an observer for a system. We will look for observers that can be
represented as a linear dynamical system that takes the inputs and outputs of the
system we are observing and produces an estimate of the system’s state. That is,
we wish to construct a dynamical system of the form

dx̂
dt

= Fx̂+Gu+Hy,

whereu andy are the input and output of the original system and ˆx ∈ R
n is an

estimate of the state with the property that ˆx(t) → x(t) ast → ∞.

The Observer

We consider the system in equation (7.1) withD set to zero to simplify the expo-
sition:

dx
dt

= Ax+Bu, y = Cx, (7.6)
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We can attempt to determine the state simply by simulating the equations with the
correct input. An estimate of the state is then given by

dx̂
dt

= Ax̂+Bu. (7.7)

To find the properties of this estimate, introduce the estimation errorx̃ = x− x̂. It
follows from equations (7.6) and (7.7) that

dx̃
dt

= Ax̃.

If matrix A has all its eigenvalues in the left half plane, the errorx̃ will go to zero
and hence equation (7.7) is a dynamical system whose output converges to the
state of the system (7.6).

The observer given by equation (7.7) uses only the process input u; the mea-
sured signal does not appear in the equation. We must also require that the system
is stable, and essentially our estimator converges becausethe state of both the ob-
server and the estimator are going zero. This is not very useful in a control design
context since we want to have our estimate converge quickly to a nonzero state, so
that we can make use of it in our controller. We will thereforeattempt to modify
the observer so that the output is used and its convergence properties can be de-
signed to be fast relative to the system’s dynamics. This version will also work for
unstable systems.

Consider the observer
dx̂
dt

= Ax̂+Bu+L(y−Cx̂). (7.8)

This can be considered as a generalization of equation (7.7).Feedback from the
measured output is provided by adding the termL(y−Cx̂), which is proportional
to the difference between the observed output and the outputthat is predicted by
the observer. It follows from equations (7.6) and (7.8) that

dx̃
dt

= (A−LC)x̃.

If the matrixL can be chosen in such a way that the matrixA−LC has eigenval-
ues with negative real parts, the errorx̃ will go to zero. The convergence rate is
determined by an appropriate selection of the eigenvalues.

Notice the similarity between the problems of finding a state feedback and
finding the observer. State feedback design by eigenvalue assignment is equivalent
to finding a matrixK so thatA−BK has given eigenvalues. Design of an observer
with prescribed eigenvalues is equivalent to finding a matrixL so thatA−LC has
given eigenvalues. Since the eigenvalues of a matrix and its transpose are the same
we can established the following equivalence:

A↔ AT , B↔CT , K ↔ LT , Wr ↔WT
o

The observer design problem is thedual of the state feedback design problem.
Using the results of Theorem 6.3, we get the following theoremon observer design:



214 CHAPTER 7. OUTPUT FEEDBACK

Theorem 7.2(Observer design by eigenvalue assignment). Consider the system
given by

dx
dt

= Ax+Bu y= Cx (7.9)

with one input and one output. Letλ (s) = sn + a1sn−1 + · · ·+ an−1s+ an be the
characteristic polynomial for A. If the system is observablethen the dynamical
system

dx̂
dt

= Ax̂+Bu+L(y−Cx̂) (7.10)

is an observer for the system, with L chosen as

L = W−1
o W̃o




p1−a1
p2−a2

...
pn−an




, (7.11)

and the matrices Wo andW̃o given by

Wo =




C
CA
...

CAn−1




W̃o =




1 0 0 · · · 0
a1 1 0 · · · 0
a2 a1 1 0
...

...
. . .

an−1 an−2 an−3 1




−1

.

The resulting observer error̃x= x− x̂ is governed by a differential equation having
the characteristic polynomial

p(s) = sn + p1sn−1 + · · ·+ pn.

The dynamical system (7.10) is called an observer for (the states of) the sys-
tem (7.9) because it will generate an approximation of the states of the system
from its inputs and outputs. This form of an observer is a much more useful form
than the one given by pure differentiation in equation (7.3).

Example 7.2 Compartment model
Consider the compartment model in Example 7.1 which is characterized by the
matrices

A =


−k0−k1 k1

k2 −k2


 B =


b0

0


 , C =


1 0


 .

The observability matrix was computed in Example 7.1 where we concluded that
the system was observable ifk1 6= 0. The dynamics matrix has the characteristic
polynomial

λ (s) = det


s+k0 +k1 −k1

−k2 s+k2


 = s2 +(k0 +k1 +k2)s+k0k2.
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Figure 7.4: Observer for a two compartment system. The observer measures theinput con-
centrationu and output concentrationy to determine the compartment concentrations, shown
on the right. The true concentrations are shown in full lines and the estimatesgenerated by
the observer in dashed lines.

Let the desired characteristic polynomial of the observer bes2 + p1s+ p2. and
equation 7.1 gives the observer gain

L =


 1 0
−k0−k1 k1




−1
 1 0

k0 +k1 +k2 1




−1
p1−k0−k1−k2

p2−k0k2




=


 p1−k0−k1−k2

(p2− p1k2 +k1k2 +k2
2)/k1




Notice that the observability conditionk1 6= 0 is essential. The behavior of the
observer is illustrated by the simulation in Figure 7.4b. Notice how the observed
concentrations approaches the true concentrations. ∇

The observer is a dynamical system whose inputs are the process inputu and
process outputy. The rate of change of the estimate is composed of two terms. One
term,Ax̂+ Bu, is the rate of change computed from the model with ˆx substituted
for x. The other term,L(y− ŷ), is proportional to the differencee= y− ŷ between
measured outputy and its estimate ˆy = Cx̂. The estimator gainL is a matrix that
tells how the errore is weighted and distributed among the states. The observer
thus combines measurements with a dynamical model of the system. A block
diagram of the observer is shown in Figure 7.5.

Computing the Observer Gain

For simple low order problems it is convenient to introduce the elements of the
observer gainL as unknown parameters and solve for the values required to give
the desired characteristic polynomial, as illustrated in the following example.

Example 7.3 Vehicle steering
The normalized, linear model for vehicle steering derived inExamples 5.12 and 6.4
gives the following state space model dynamics relating lateral path deviationy to
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ŷ

y

u

x̂

L −1

B
∫

C

Figure 7.5: Block diagram of the observer. The observer takes the signalsy andu as inputs
and produces an estimatex. Notice that the observer contains a copy of the process model
that is driven byy− ŷ through the observer gainL.

steering angleu
dx
dt

=


0 1

0 0


x+


γ

1


u

y =

1 0


x

(7.12)

Recall that the statex1 represents the lateral path deviation and thatx2 represents
turning rate. We will now derive an observer that uses the system model to deter-
mine turning rate from the measured path deviation.

The observability matrix is

Wo =


1 0

0 1


 ,

i.e., the identity matrix. The system is thus observable and the eigenvalue assign-
ment problem can be solved. We have

A−LC =


−l1 1
−l2 0


 ,

which has the characteristic polynomial

det(sI−A+LC) = det


s+ l1 −1

l2 s


 = s2 + l1s+ l2.

Assuming that we want to have an observer with the characteristic polynomial

s2 + p1s+ p2 = s2 +2ζoωos+ω2
o ,

the observer gains should be chosen as

l1 = p1 = 2ζoωo, l2 = p2 = ω2
o .

The observer is then

dx̂
dt

= Ax̂+Bu+L(y−Cx̂) =


0 1

0 0


 x̂+


γ

1


u+


l1

l2


(y− x̂1).
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Figure 7.6: Simulation of an observer for a vehicle driving on a curvy road. The observer
has an initial velocity error. The plots on the left show the lateral deviationx1, the lateral
velocity x2 in full lines and their estimates ˆx1 andx̂2 in dashed lines. The plots on the right
show the estimation errors.

A simulation of the observer for a vehicle driving on a curvy road is simulated
in Figure 7.6. The vehicle length is the length unit in the normalized model. The
figure shows that the observer error settles in about 8 vehiclelengths. ∇

For systems of high order we have to use numerical calculations. The duality
between design of a state feedback and design of an observer means that means
that the computer algorithms for state feedback can be used also for the observer
design; we simply use the transpose of the dynamics matrix and the output matrix.
The MATLAB commandacker, which essentially is a direct implementation of
the calculations given in Theorem 7.2, can be used for systemswith one output
(Exercise 7.8). The MATLAB commandplace can be used for systems with
many outputs. It is also better conditioned numerically.

7.3 CONTROL USING ESTIMATED STATE

In this section we will consider a state space system with no direct term (the most
common case):

dx
dt

= Ax+Bu, y = Cx. (7.13)

Notice that we have assumed that there is no direct term in thesystem (D = 0). This
is often a realistic assumption. The presence of a direct termin combination with a
controller having proportional action creates a so called algebraic loop which will
be discussed in Section 8.3. The problem can be solved even if there is a direct
term but the calculations are more complicated.

We wish to design a feedback controller for the system where only the output is
measured. As before, we will be assume thatu andy are scalars. We also assume
that the system is reachable and observable. In Chapter 6 we found a feedback of
the form

u = −Kx+kr r



218 CHAPTER 7. OUTPUT FEEDBACK

for the case that all states could be measured and in Section 7.2 we developed an
observer that can generate estimates of the state ˆx based on inputs and outputs.
In this section we will combine the ideas of these sections tofind a feedback that
gives desired closed loop eigenvalues for systems where only outputs are available
for feedback.

If all states are not measurable, it seems reasonable to try the feedback

u = −Kx̂+kr r, (7.14)

wherex̂ is the output of an observer of the state, i.e.

dx̂
dt

= Ax̂+Bu+L(y−Cx̂). (7.15)

Since the system (7.13) and the observer (7.15) are both of state dimensionn, the
closed loop system has state dimension 2n with state (x, x̂). The evolution of the
states is described by equations (7.13), (7.14) and (7.15).To analyze the closed
loop system, the state variable ˆx is replaced by

x̃ = x− x̂. (7.16)

Subtraction of equation (7.15) from equation (7.13) gives

dx̃
dt

= Ax−Ax̂−L(Cx−Cx̂) = Ax̃−LCx̃ = (A−LC)x̃.

Returning to the process dynamics, introducingu from equation (7.14) into
equation (7.13) and using equation (7.16) to eliminate ˆx gives

dx
dt

= Ax+Bu= Ax−BKx̂+Bkr r = Ax−BK(x− x̃)+Bkr r

= (A−BK)x+BKx̃+Bkr r.

The closed loop system is thus governed by

d
dt


x

x̃


 =


A−BK BK

0 A−LC





x

x̃


+


Bkr

0


 r. (7.17)

Notice that the statẽx, representing the observer error, is not affected by the com-
mand signalr. This is desirable since we do not want the reference signal to
generate observer errors.

Since the dynamics matrix is block diagonal, we find that the characteristic
polynomial of the closed loop system is

λ (s) = det(sI−A+BK)det(sI−A+LC).

This polynomial is a product of two terms: the characteristicpolynomial of the
closed loop system obtained with state feedback and the characteristic polynomial
of the observer error. The feedback (7.14) that was motivatedheuristically thus
provides a neat solution to the eigenvalue assignment problem. The result is sum-
marized as follows.
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Figure 7.7: Block diagram of an observer-based control system. The observeruses the
measured outputy and the inputu to construct an estimate of the state. This estimate is used
by a state feedback controller to generate the corrective input. The controller consists of the
observer and the state feedback; the observer is identical to Figure 7.5.

Theorem 7.3(Eigenvalue assignment by output feedback). Consider the system

dx
dt

= Ax+Bu, y = Cx.

The controller described by

u = −Kx̂+kr r

dx̂
dt

= Ax̂+Bu+L(y−Cx̂) = (A−BL−KC)x̂+Ly

gives a closed loop system with the characteristic polynomial

λ (s) = det(sI−A+BK)det(sI−A+LC).

This polynomial can be assigned arbitrary roots if the systemis reachable and
observable.

The controller has a strong intuitive appeal: it can be thought of as composed
of two parts, one state feedback and one observer. The dynamics of the controller
is generated by the observer. The feedback gainK can be computed as if all state
variables can be measured and it only depends onA andB. The observer gainL
only depends onA andC. The property that the eigenvalue assignment for output
feedback can be separated into eigenvalue assignment for a state feedback and an
observer is called theseparation principle.

A block diagram of the controller is shown in Figure 7.7. Notice that the con-
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troller contains a dynamical model of the plant. This is called theinternal model
principle: the controller contains a model of the process being controlled. Indeed,
the dynamics of the controller are due to the observer and thecontroller can thus
be viewed as a dynamical system with inputy and outputu:

dx̂
dt

= (A−BK−LC)x̂+Ly, u = −Kx̂+kr r. (7.18)

Example 7.4 Vehicle steering
Consider again the normalized, linear model for vehicle steering in Example 6.4.
The dynamics relating steering angleu to lateral path deviationy is given by the
state space model (7.12). Combining the state feedback derived in Example 6.4
with the observer determined in Example 7.3 we find that the controller is given
by

dx̂
dt

= Ax̂+Bu+L(y−Cx̂) =


0 1

0 0


 x̂+


γ

1


u+


l1

l2


(y− x̂1)

u = −Kx̂+kr r = k1(r −x1)−k2x2.

Elimination of the variableu gives

dx̂
dt

= (A−BK−LC)x̂+Ly+Bkr r

=


−l1− γk1 1− γk2

−k1− l2 −k2


 x̂+


l1

l2


y+


γ

1


k1r.

The controller is a dynamical system of second order, with twoinputsy andr and
one outputu. Figure 7.8 shows a simulation of the the system when the vehicle
is driven along a curvy road. Since we are using a normalized model the length
unit is the vehicle length and the time unit is the time it takes to travel one vehicle
length. The estimator is initialized with all states equal tozero but the real system
has an initial velocity 0.5. The figures show that the estimatesconverge quickly to
their true values. The vehicle tracks the desired path which is in the middle of the
road, but there are errors because the road is irregular. The tracking error can be
improved by introducing feedforward. ∇

7.4 KALMAN FILTERING
��

One of the principal uses of observers in practice is to estimate the state of a sys-
tem in the presence ofnoisymeasurements. We have not yet treated noise in our
analysis and a full treatment of stochastic dynamical systems is beyond the scope
of this text. In this section, we present a brief introduction to the use of stochastic
systems analysis for constructing observers. We work primarily in discrete time
to avoid some of the complications associated with continuous time random pro-
cesses and to keep the mathematical prerequisites to a minimum. This section
assumes basic knowledge of random variables and stochasticprocesses; see Ku-
mar and Varaiya [129] or̊Aström [15] for the required material.
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Figure 7.8: Simulation of a vehicle driving on a curvy road with a controller based on state
feedback and an observer. The upper curves show the road markings (dotted), the vehicle
position (full) and its estimate (dashed), the middle curve shows the velocity (full) and its
estimate (dashed) and the bottom curve shows the control signal with a controller based on
state feedback (full) and the control signal (dashed).

Consider a discrete time, linear system with dynamics

x[k+1] = Ax[k]+Bu[k]+Fv[k]

y[k] = Cx[k]+w[k],
(7.19)

wherev[k] andw[k] are Gaussian, white noise processes satisfying

E{v[k]} = 0 E{w[k]} = 0

E{v[k]vT [ j]} =

{
0 k 6= j

Rv k = j
E{w[k]wT [ j]} =

{
0 k 6= j

Rw k = j

E{v[k]wT [ j]} = 0.

(7.20)

E{v[k]} represents the expected value ofv[k] andE{v[k]vT [ j]} the correlation ma-
trix. We assume that the initial condition is also modeled asa Gaussian random
variable with

E{x[0]} = x0 E{x[0]xT [0]} = P0. (7.21)

We wish to find an estimate ˆx[k] that minimizes the mean square errorE{(x[k]−
x̂[k])(x[k]− x̂[k])T} given the measurements{y(τ) : 0 ≤ τ ≤ t}. We consider an
observer in the same basic form as derived previously:

x̂[k+1] = Ax̂[k]+Bu[k]+L[k](y[k]−Cx̂[k]). (7.22)

The following theorem summarizes the main result.

Theorem 7.4. Consider a random process x[k] with dynamics(7.19) and noise
processes and initial conditions described by equations(7.20) and (7.21). The



222 CHAPTER 7. OUTPUT FEEDBACK

observer gain L that minimizes the mean square error is givenby

L[k] = AP[k]CT(Rw +CP[k]CT)−1,

where
P[k+1] = (A−LC)P[k](A−LC)T +FRvF

T +LRwLT

P0 = E{x[0]xT [0]}.
(7.23)

Before we prove this result, we reflect on its form and function. First, note that
the Kalman filter has the form of arecursivefilter: given P[k] = E{E[k]ET [k]}
at timek, can compute how the estimate and covariancechange. Thus we do not
need to keep track of old values of the output. Furthermore, the Kalman filter gives
the estimate ˆx[k] and the covarianceP[k], so we can see how reliable the estimate
is. It can also be shown that the Kalman filter extracts the maximum possible
information about output data. If we form the residual between the measured
output and the estimated output,

e[k] = y[k]−Cx̂[k],

we can can show that for the Kalman filter the correlation matrix is

Re( j,k) = E{e[ j]eT [k]} = W[k]δ jk, δ jk =

{
0 j 6= k

1 j = k.

In other words, the error is a white noise process, so there isno remaining dynamic
information content in the error.

The Kalman filter is extremely versatile and can be used even if the process,
noise or disturbances are non-stationary. When the system is stationary andif P[k]
converges, then the observer gain is constant:

L = APCT(Rw +CPCT),

whereP satisfies

P = APAT +FRvF
T −APCT(

Rw +CPCT)−1
CPAT .

We see that the optimal gain depends on both the process noiseand the measure-
ment noise, but in a nontrivial way. Like the use of LQR to choosestate feedback
gains, the Kalman filter permits a systematic derivation of the observer gains given
a description of the noise processes. The solution for the constant gain case is
solved by thedlqe command in MATLAB.

Proof (of theorem).We wish to minimize the mean square of the error,E{(x[k]−
x̂[k])(x[k]− x̂[k])T}. We will define this quantity asP[k] and then show that it
satisfies the recursion given in equation (7.23). By definition,

P[k+1] = E{x[k+1]xT [k+1]}
= (A−LC)P[k](A−LC)T +FRvF

T +LRwLT

= AP[k]AT −AP[k]CTLT −LCAT +L(Rw +CP[k]CT)LT .
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LettingRε = (Rw +CP[k]CT), we have

P[k+1] = AP[k]AT −AP[k]CTLT −LCAT +LRεLT

= AP[k]AT +
(
L−AP[k]CTR−1

ε
)
Rε

(
L−AP[k]CTR−1

ε
)T

−AP[k]CTR−1
ε CPT [k]AT +Rw.

To minimize this expression, we chooseL = AP[k]CTR−1
ε and the theorem is

proved.

The Kalman filter can also be applied to continuous time stochastic processes.
The mathematical derivation of this result requires more sophisticated tools, but
the final form of the estimator is relatively straightforward.

Consider a continuous stochastic system

ẋ = Ax+Bu+Fv E{v(s)vT(t)} = Rv(t)δ (t −s)

y = Cx+w E{w(s)wT(t)} = Rw(t)δ (t −s),

whereδ (τ) is the unit impulse function. Assume that the disturbancev and noise
w are zero-mean and Gaussian (but not necessarily stationary):

pdf(v) =
1

n
√

2π
√

detRv
e−

1
2vTR−1

v v

pdf(w) =
1

n
√

2π
√

detRw
e−

1
2wTR−1

w w

We wish to find the estimate ˆx(t) that minimizes the mean square errorE{(x(t)−
x̂(t))(x(t)− x̂(t))T} given{y(τ) : 0≤ τ ≤ t}.

Theorem 7.5(Kalman-Bucy, 1961). The optimal estimator has the form of a lin-
ear observer

˙̂x = Ax̂+Bu+L(y−Cx̂)

where L(t) = P(t)CTR−1
w and P(t) = E{(x(t)− x̂(t))(x(t)− x̂(t))T} and satisfies

Ṗ = AP+PAT −PCTR−1
w (t)CP+FRv(t)F

T

P[0] = E{x[0]xT [0]}
Example 7.5 Vectored thrust aircraft
To design a Kalman filter for the system, we must include a description of the
process disturbances and the sensor noise. We thus augment the system to have
the form

dx
dt

= Ax+Bu+Gw

y = Cx+v

whereG represents the structure of the disturbances (including the effects of non-
linearities that we have ignored in the linearization),w represents the disturbance
source (modeled as zero mean, Gaussian white noise) andv represents that mea-
surement noise (also zero mean, Gaussian and white).
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Figure 7.9: Kalman filter design for a vectored thrust aircraft. In the first design (left), only
the lateral position of the aircraft is measured. Adding a direct measurement of the roll angle
produces a much better observer (right).

For this example, we chooseG as the identity matrix and choose disturbances
wi , i = 1, . . . ,n to be independent disturbances with covariance given byRii = 0.1,
Ri j = 0, i 6= j. The sensor noise is a single random variable which we model as
having covarianceRv = 0.01. Using the same parameters as before, the resulting
Kalman gain is given by

L =




7.42
−3.70
27.6
28.0




The performance of the estimator is shown in Figure 7.9a. We seethat while the
estimator converges to the system state, it contains significant “ringing” in the state
estimate, which can lead to poor performance in a closed loopsetting.

To improve the performance of the estimator, we explore the impact of adding
a new output measurement. Suppose that instead of measuring just the output
positionξ , we also measure the orientation of the aircraft,θ . The output becomes

y =


1 0 0 0

0 1 0 0


x+


v1

v2




and if we assume thatv1 andv2 are independent noise sources each with covariance
Rvi = 0.0001 then the optimal estimator gain matrix becomes

L =




7.31 −0.019
−0.019 6.25

26.8 −0.368
0.110 19.6




.

These gains provide good immunity to noise and very high performance, as illus-
trated in Figure 7.9b.

∇
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Figure 7.10: Block diagram of a controller based on a structure with two degrees of free-
dom. The controller consists of a trajectory generator, state feedback and an observer. The
trajectory generation subsystem computes a feedforward commanduff along with the desired
statexd. The state feedback controller uses the estimated state and desired state to compute
a corrective inputufb.

7.5 FEEDFORWARD AND IMPLEMENTATION

In this section we will discuss improved ways to introduce reference values by
using feedforward. This leads to a system structure is one that appears in may
places in control theory and is the heart of most modern control systems. We will
also briefly discuss how computers can be used to implement a controller based on
output feedback.

Feedforward

In this chapter and the previous one we have emphasized feedback as a mechanism
for minimizing tracking error; reference values were introduced simply by adding
them to the state feedback through a gainkr . A more sophisticated way of doing
this is shown by the block diagram in Figure 7.10, where the controller consists of
three parts: an observer that computes estimates of the states based on a model and
measured process inputs and outputs, a state feedback, and atrajectory generator
that generates the desired behavior of all statesxd and a feedforward signaluff .
Under the ideal conditions of no disturbances and no modeling errors the signaluff
generates the desired behaviorxd when applied to the process.

To get some insight into the behavior of the system, we assumethat there are no
disturbances and that the system is in equilibrium with constant reference signal
and with the observer state ˆx equal to the process statex. When the command
signal is changed the signalsuff andxd will change. The observer tracks the state
perfectly because the initial state was correct. The estimated state ˆx is thus equal to
the desired statexd and the feedback signalufb = L(xd − x̂) will also be zero. All
action is thus created by the signals from the trajectory generator. If there are some
disturbances or some modeling errors the feedback signal will attempt to correct
the situation.

This controller is said to havetwo degrees of freedombecause the responses
to command signals and disturbances are decoupled. Disturbance responses are
governed by the observer and the state feedback while the response to command
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signals is governed by the trajectory generator (feedforward).
For an analytic description we start with the full nonlineardynamics of the

process
ẋ = f (x,u), y = h(x,u). (7.24)

Assume that the trajectory generator is able to generate a desired trajectory(xd,uff )
that satisfies the dynamics (7.24) and satisfiesr = h(xd,uff ). To design the con-
troller, we construct the error system. Lete= x−xd, v = u−uff and compute the
dynamics for the error:

ė= ẋ− ẋd = f (x,u)− f (xd,uff )

= f (e+xd,v+uff )− f (xd)

= F(e,v,xd(t),uff (t)).

In general, this system is time varying.
For trajectory tracking, we can assume thate is small (if our controller is doing

a good job) and so we can linearize arounde= 0:

ė≈ A(t)e+B(t)v, A(t) =
∂F
∂e

∣∣∣∣
(xd(t),uff (t))

B(t) =
∂F
∂v

∣∣∣∣
(xd(t),uff (t)

.

It is often the case thatA(t) andB(t) depend only onxd, in which case it is conve-
nient to writeA(t) = A(xd) andB(t) = B(xd).

Assume now thatxd anduff are either constant or slowly varying (with respect
to the performance criterion). This allows us to consider just the (constant) linear
system given by(A(xd),B(xd)). If we design a state feedback controllerK(xd) for
eachxd, then we can regulate the system using the feedback

v = K(xd)e.

Substituting back the definitions ofeandv, our controller becomes

u = −K(xd)(x−xd)+uff

This form of controller is called again scheduledlinear controller withfeedfor-
ward uff .

Finally, we consider the observer. The full nonlinear dynamics can be used for
the prediction portion of the observer and the linearized system for the correction
term:

˙̂x = f (x̂,u)+L(x̂)(y−h(x̂,u))

whereL(x̂) is the observer gain obtained by linearizing the system around the cur-
rently estimated state. This form of the observer is known as an extended Kalman
filter and has proved to be a very effective means of estimating the state of a non-
linear system.

There are many ways to generate the feedforward signal and there are also
many different ways to compute the feedback gainK and the observer gainL.
Note that once again the internal model principle applies: the controller contains a
model of the system to be controlled, through the observer.
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Figure 7.11: Trajectory generation for changing lanes. We wish to change from the left lane
to the right lane over a distance of 30 meters in 4 seconds. The left figureshows the planned
trajectory in thexy plane and the right figure shows the lateral positiony and the steering
angleδ over the maneuver time interval.

.

Example 7.6 Vehicle steering
To illustrate how we can use two degree of freedom design to improve the perfor-
mance of the system, consider the problem of steering a car tochange lanes on a
road, as illustrated in Figure 7.11.

The dynamics of the system were derived in Example 2.8. Using the center of
the rear wheels as the reference (α = 0), the dynamics can be written as

ẋ = cosθv, ẏ = sinθv, θ̇ = 1/b tanδ ,

wherev is the forward velocity of the vehicle andδ is the steering angle. To
generate a trajectory for the system, we note that we can solve for the states and
inputs of the system givenx, y by solving the following sets of equations:

ẋ = vcosθ ẍ = v̇cosθ −vsinθθ̇
ẏ = sinθv ÿ = v̇sinθ +vcosθθ̇
θ̇ = v/l tanδ

(7.25)

This set of five equations has five unknowns (θ , θ̇ , v, v̇ andδ ) that can be solved
using trigonometry and linear algebra. It follows that we can compute a feasible
trajectory for the system given any pathx(t), y(t). (This special property of a
system is something that is known asdifferential flatness[74, 75].)

To find a trajectory from an initial state(x0,y0,θ0) to a final state(xf ,yf ,θ f ) at
a timeT, we look for a pathx(t),y(t) that satisfies

x(0) = x0 x(T) = xf

y(0) = y0 y(T) = yf

ẋ(0)sinθ0 + ẏ(0)cosθ0 = 0 ẋ(T)sinθT + ẏ(T)cosθT = 0

ẏ(0)sinθ0 + ẏ(0)cosθ0 = 0 ẏ(T)sinθT + ẏ(T)cosθT = 0

(7.26)
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One such trajectory can be found by choosingx(t) andy(t) to have the form

xd(t) = α0 +α1t +α2t
2 +α3t

3, yd(t) = β0 +β1t +β2t
2 +β3t

3.

Substituting these equations into equation (7.26), we are left with a set of linear
equations that can be solved forαi ,βi , i = 0,1,2,3. This gives a feasible trajectory
for the system by using equation (7.25) to solve forθd, vd andδd.

Figure 7.11b shows a sample trajectory generated by solving these equations.
Notice that the feedforward input is quite different from 0,allowing the controller
to command a steering angle that executes the turn in the absence of errors.

∇

Kalman’s Decomposition of a Linear System
�

In this chapter and the previous one we have seen that two fundamental properties
of a linear input/output system are reachability and observability. It turns out that
these two properties can be used to classify the dynamics of asystem. The key
result is Kalman’s decomposition theorem, which says that alinear system can be
divided into four subsystems:Σro which is reachable and observable,Σrō which is
reachable but not observable,Σr̄o which is not reachable but is observable, andΣr̄ ō

which is neither reachable nor observable.
We will first consider this in the special case of systems wherethe matrixA has

distinct eigenvalues. In this case we can find a set of coordinates such that theA
matrix is diagonal and, with some additional reordering of the states, the system
can be written as

dx
dt

=




Aro 0 0 0
0 Arō 0 0
0 0 Ar̄o 0
0 0 0 Ar̄ ō




x+




Bro

Brō

0
0




u

y =

Cro 0 Cr̄o 0


x+Du.

(7.27)

All statesxk such thatBk 6= 0 are reachable and all states such thatCk 6= 0 are
observable. If we set the initial state to zero (or equivalently look at the steady
state response ifA is stable), the states given byxr̄o andxr̄ ō will be zero andxrō

does not affect the output. Hence the outputy can be determined from the system

ẋro = Aroxro +Brou, y = Croxro +Du

Thus from the input/output point of view, it is only the reachable and observable
dynamics that matter. A block diagram of the system illustrating this property is
given in Figure 7.12a.

The general case of the Kalman decomposition is more complicated and re-
quires some additional linear algebra. Introduce the reachable subspaceXr which
is the linear subspace spanned by the columns of the reachability matrix Wr . The
state space is the direct sum ofXr and another linear subspaceXr̄ . Notice thatXr

is unique but thatXr̄ can be chosen in many different ways. Choosing coordinates
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(a) (b)

Figure 7.12: Kalman’s decomposition of a linear system. The decomposition on the left is
for a system with distinct eigenvalues, the one on the right is the general case. The system
is broken into four subsystems, representing the various combinations of reachable and ob-
servable states. The input/output relationship only depends on the subsetof states that are
both reachable and observable.

with xr ∈ Xr andxr̄ ∈ Xr̄ the system equations can be written as

d
dt


xr

xr̄


 =


A11

r A12
r

0 A22
r





xr

xr̄


+


B1

0


u, (7.28)

where the statesxr are reachable andxr̄ are non-reachable.
Introduce the unique subspaceXō of non-observable states. This is the right

null space of the observability matrixWo. The state space is the direct sum ofXō

and the non-unique subspaceXo. Choosing a coordinate system withxo ∈Xo and
xō ∈ Xō the system equations can be written as

d
dt


xo

xō


 =


A11

o 0
A21

o A22
o





xo

xō


+


B1

o
B2

o


u

y =

C1 0





xo

xō


 ,

(7.29)

where the statesxo are observable andxō are not observable.
The intersection of two linear subspaces is also a linear subspace. Introduce

Xrō as the intersection ofXr and Xō and the complementary linear subspace
Xro, which together withXrō spansXr . Finally, we introduce the linear subspace
Xr̄o which together withXrō, Xrō andXrō spans the full state space. Notice
that the decomposition is not unique because only the subspace Xrō is unique.
Combining the representations (7.28) and (7.29) we find that alinear system can
be transformed to the form

dx
dt

=




A11 0 A13 0
A21 A22 A23 A24

0 0 A33 0
0 0 A43 A44




x+




B1

B2

0
0




u

y =

C1 0 C2 0


x,

(7.30)
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where the state vector has been partitioned as

x =




xro

xrō

xr̄o

xr̄ ō




A block diagram of the system is shown in Figure 7.12b. By tracing the arrows
in the diagram we find that the input influences the systemsΣro andΣr̄o and that
the output is influenced byΣro andΣr̄o. The systemΣr̄ ō is neither connected to the
input nor the output. The input/output response of the systemis thus given by

ẋro = A11xro +B1u, y = C1xro +Du, (7.31)

which is the dynamics of the reachable and observable subsystemΣro.

Example 7.7 System and controller with feedback from observer states
Consider the system

dx
dt

= Ax+Bu, y = Cx,

The following controller based on feedback from the observerstate was given in
Theorem 7.3

u = −Kx̂+kr r,
dx̂
dt

= Ax̂+Bu+L(y−Cx̂)

Introducing the statesx andx̃ = x− x̂ the closed loop system can be written as

d
dt


x

x̃


 =


A−BK 0

BK A−LC





x

x̃


+


Bkr

0


 r, y = Cx.

The state ˜x is clearly not reachable from the command signalr and the relation
between the referencer and the outputy is the same as for a system with full state
feedback. ∇

Computer Implementation

The controllers obtained so far have been described by ordinary differential equa-
tions. They can be implemented directly using analog components, whether elec-
tronic circuits, hydraulic valves or other physical devices. Since in modern en-
gineering applications most controllers are implemented using computers we will
briefly discuss how this can be done.

A computer-controlled system typically operates periodically: every cycle, sig-
nals from the sensors are sampled and converted to digital form by the A/D con-
verter, the control signal is computed and the resulting output is converted to ana-
log form for the actuators, as shown in Figure 7.13. To illustrate the main princi-
ples of how to implement feedback in this environment, we consider the controller
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Figure 7.13: Components of a computer-controlled system. The controller consists of
analog-to-digital (A/D) and digital-to-analog (D/A) converters, as well asa computer that
implements the control algorithm. A system clock controls the operation of thecontroller,
synchronizing the A/D, D/A and computing processes. The operator input is also fed to the
computer as an external input.

described by equations (7.14) and (7.15), i.e.,

u = −Kx̂+kr r,
dx̂
dt

= Ax̂+Bu+L(y−Cx̂).

The first equation consists only of additions and multiplications and can thus be
implemented directly on a computer. The second equation can be implemented by
approximating the derivative by a difference

dx
dt

≈ x̂(tk+1)− x̂(tk)
h

= Ax̂(tk)+Bu(tk)+L
(
y(tk)−Cx̂(tk)

)
,

wheretk are the sampling instants andh= tk+1− tk is the sampling period. Rewrit-
ing the equation to isolate ˆx(tk+1), we get

x̂(tk+1) = x̂(tk)+h
(
Ax̂(tk)+Bu(tk)+L

(
y(tk)−Cx̂(tk)

))
. (7.32)

The calculation of the estimated state at timetk+1 only requires addition and mul-
tiplication and can easily be done by a computer. A section ofpseudo code for the
program that performs this calculation is

% Control algorithm - main loop
r = adin(ch1) % read reference
y = adin(ch2) % get process output
u = -K*xhat + Kr*r % compute control variable
daout(ch1, u) % set analog output
xhat = xhat + h*(A*x+B*u+L*(y-C*x)) % update state estimate

The program runs periodically at a fixed rateh. Notice that the number of
computations between reading the analog input and setting the analog output has
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been minimized by updating the state after the analog outputhas been set. The
program has an array of states,xhat, that represents the state estimate. The choice
of sampling period requires some care.

There are more sophisticated ways of approximating a differential equation
by a difference equation. If the control signal is constant between the sampling
instants it is possible to obtain exact equations; see [20].

There are several practical issues that also must be dealt with. For example, it
is necessary to filter a signal before it is sampled so that the filtered signal has little
frequency content abovefs/2 where fs is the sampling frequency. If controllers
with integral action are used, it is also necessary to provide protection so that the
integral does not become too large when the actuator saturates. This issue, called
integrator windup, is studied in more detail in Chapter 10. Care must also be taken
so that parameter changes do not cause disturbances.

7.6 FURTHER READING

The notion of observability is due to Kalman [113] and, combined with the dual
notion of reachability, it was a major stepping stone towardestablishing state space
control theory beginning in the 1960s. The observer first appeared as the Kalman
filter, in the paper by Kalman [112] for the discrete time case and Kalman and
Bucy [114] for the the continuous time case. Kalman also conjectured that the
controller for output feedback could be obtained by combining a state feedback
with an observer; see the quote in the beginning of this chapter. This result was
formally proved by Josep and Tou [109] and Gunckel and Franklin [93]. The
combined result is known as the linear quadratic Gaussian control theory; a com-
pact treatment is given in the books by Anderson and Moore [7]andÅström [15].
Much later it was shown that solutions to robust control problems also had a sim-
ilar structure but with different ways of computing observer and state feedback
gains [64].

EXERCISES

7.1 (Coordinate transformations) Consider a system under a coordinate transfor-
mationz= Tx, whereT ∈R

n×n is an invertible matrix. Show that the observability
matrix for the transformed system is given byW̃o =WoT−1 and hence observability
is independent of the choice of coordinates.

7.2 Show that the system depicted in Figure 7.2 is not observable.

7.3 (Coordinate transformations) Show that if a system is observable, then there
exists a change of coordinatesz = Tx that puts the transformed system into ob-
servable canonical form.
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7.4 (Bicycle dynamics) The linearized model for a bicycle are given in equa-
tion (3.5), which has the form

J
d2ϕ
dt2

− Dv0

b
dδ
dt

= mghϕ +
mv2

0h

b
δ ,

whereϕ is the tilt of the bicycle andδ is the steering angle. Given conditions
under which the system is observable and explain any specialsituations were it
loses observability.

7.5 (Pendulum on cart) Consider the linearized model of a pendulum on a cart
given in Example??. Is the system is observable from the cart position? What
happens if the ratiom/M goes to zero? Discuss qualitatively the effect of friction
on the cart.

7.6(Pendulum on cart) Design an observer for the pendulum on the cart. Combine
the observer with the state feedback developed in Example?? to obtain an output
feedback. Simulate the system and investigate the effect of abias error in the angle
sensor.

7.7(Pendulum on cart) A normalized model of the pendulum on a cartis described
by the equations

ẍ = u, θ̈ = θ +u,

where it has been assumed that the cart is very heavy, see Example ??. Assume
that cart positionx and the pendulum angleθ are measured, but that there is a bias
in the measurement of the angle, which is modeled byy2 = θ + θ0, whereθ0 is
a constant bias, hencėθ0 = 0. Introduce state variablesx1 = x, x2 = θ , x3 = ẋ,
x4 = θ̇ andx5 = θ0. Show that the system is observable. What is the engineering
implication of the result?

7.8 (Duality) Show that the the following MATLAB function computesthe gainL
of a an observer for the system ˙x = Ax, y = Cx which gives and observer whose
eigenvalues are the elements of the vectorp.

function L=observer(A,C,p)
L=place(A’,C’,p);L=L’;

Test the program on some examples where you have calculated the result by
hand.

7.9(Selection of Eigenvalues) Pick up the program for simulating Figure 7.4 from
thewiki. Read the program and make sure that you understand it. Explore the
behavior of the estimates for different choices of the eigenvalues.

7.10 (Uniqueness) Show that design of an observer by eigenvalue placement is
unique for single output systems. Construct examples that show that the problem
is not necessarily unique for systems with many outputs. Suggest how the lack of
uniqueness can be exploited.




