Chapter Seven
Output Feedback

One may separate the problem of physical realization into two stages: wtatign of the
“best approximation”X(t;) of the state from knowledge aftyfort <t; and computation of
u(ty) givenx(ty).

From R. E. Kalman “Contributions to the theory of optimal control” [111]

In the last chapter we considered the use of state feedbaunlodify the dy-
namics of a system. In many applications, it is not practicaheasure all of the
states directly and we can measure only a small number ofitsufporrespond-
ing to the sensors that are available). In this chapter we $tow to use output
feedback to modify the dynamics of the system, through thef bservers. We
introduce the concept of observability and show that if desysis observable, it
is possible to recover the state from measurements of thesigmd outputs to the
system. It is then shown how to design a controller with fee#bfrom the ob-
server state. An important concept is the separation pleguoted above, which
is also proved. The structure of the controllers derived ia thapter is quite
general and is obtained by many other design methods.

7.1 OBSERVABILITY

In Section 6.2 of the previous chapter it was shown that it issjiide to find a

feedback that gives desired closed loop eigenvalues mrduidat the system is
reachable and that all states are measured. For many @itsiatiis highly unreal-

istic to assume that all states are measured. In this saggdnvestigate how the
state can be estimated by using a mathematical model andradasurements. It
will be shown that the computation of the states can be chaig by a dynamical

system called anbserver

Definition of Observability

Consider a system described by a set of differential equsitio

d
d%‘ — Ax+Bu,  y=Cx+Du, (7.1)

wherex € R" is the stateu € RP the input, and/ € RY the measured output. We
wish to estimate the state of the system from its inputs amplubs, as illustrated
in Figure 7.1. In some situations we will assume that theranig one measured
signal, i.e. that the signalis a scalar and tha is a (row) vector. This signal
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Figure 7.1: Block diagram for an observer. The observer uses the processireezenty
(possibly corrupted by nois®) and the inputi to estimate the current state of the process,
denotedk”

may be corrupted by noiss, although we shall start by considering the noise-free
case. We writex for the state estimate given by the observer.

Definition 7.1 (Observability) A linear system i®bservablef forany T > 0 it is
possible to determine the state of the sysi€m) through measurements wft)
andu(t) on the intervalO, T].

The definition above holds for nonlinear systems as well, aaddbults dis-
cussed here have extensions to the nonlinear case.

The problem of observability is one that has many importaptieations, even
outside of feedback systems. If a system is observable,ttrege are no “hid-
den” dynamics inside it; we can understand everything thawing on through
observation (over time) of the inputs and outputs. As wel stes, the problem of
observability is of significant practical interest becauseill determine if a set of
sensors is sufficient for controlling a system. Sensors coedbivith a mathemat-
ical model can also be viewed as a “virtual sensor” that gimésmation about
variables that are not measured directly. The process ohodow signals from
many sensors with mathematical models is also caéetsor fusion

Testing for Observability

When discussing reachability in the last chapter we neggettie output and fo-
cused on the state. Similarly, it is convenient here to iiytizeglect the input and
focus on the autonomous system
dx = AX, y=Cx (7.2)
dt
We wish to understand when it is possible to determine the ftam observations
of the output.

The output itself gives the projection of the state on vedioasare rows of the
matrix C. The observability problem can immediately be solved if thenr C is
invertible. If the matrix is not invertible we can take detives of the output to

obtain q d
Y_o9X_
dt c dt CAX
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From the derivative of the output we thus get the projectiothefstate on vectors
that are rows of the matri€A. Proceeding in this way we get

y C
y CA
y [ =] CA |x (7.3)
-1 cA-1
We thus find that the state can be determined if the matrix
C
CA
W, = | CA (7.4)
CA.n—l

hasn independent rows. It turns out that we need not consider anyalives
higher thann — 1 (this is an application of the Cayley-Hamilton theorem (Exe
cise 6.11).

The calculation can easily be extended to systems with inpiis state is then
given by a linear combination of inputs and outputs and thigiher derivatives.
The observability criterion is unchanged. We leave this easan exercise for the
reader.

In practice, differentiation of the output can give largeoes when there is
measurement noise and therefore the method sketched abae¢ particularly
practical. We will address this issue in more detail in thetisection, but for now
we have the following basic result:

Theorem 7.1. A linear system of the forrfv.1) is observable if and only if the
observability matrix Wis full rank.

Proof. The sufficiency of the observability rank condition followsrin the analy-@
sis above. To prove necessity, suppose that the systemasvabse but/, is not
full rank. Letv € R", v# 0 be a vector in the null space 8, so that,v = 0. If
we letx(0) = v be the initial condition for the system and choase 0, then the
output is given byy(t) = CeMv. Sincee™ can be written as a power seriesAn
and sinceA" and higher powers can be rewritten in terms of lower powers (bfy
the Cayley-Hamilton theorem), it follows that the outputlweie identically zero
(the reader should fill in the missing steps if this is not dledowever, if both the
input and output of the system are 0, then a valid estimateen$tate ix = O for
all time, which is clearly incorrect sinc€0) = v # 0. Hence by contradiction we
must have that\,, is full rank if the system is observable. Ol

Example 7.1 Compartment model
Consider the two compartment model in Figure 3.18a on pageiBadsume that
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Figure 7.2: A non-observable system. Two identical subsystems have outputsdtiat a
together to form the overall system output. The individual states of theystdm cannot be
determined since the contributions of each to the output are not distinblésfde circuit
diagram on the right is an example of such a system.

the the concentration in the first compartment can be measured system is
described by the linear system

dc —ko—ki ki bo (

— = c u, =11 0) X.

dt [ ko k) T |0 Y
The first compartment can represent the concentration in tuallglasma and the
second compartment the drug concentration in the tissueenhé active. To
determine if it is possible to find the concentration in theucompartment from

measurement of blood plasma we investigate the obsenyabflthe system by
forming the observability matrix

c 10
Wo = [CA] = [—ko—kl kl] :

The rows are linearly independentkf # 0 and under this condition it is thus
possible to determine the concentration of the drug in thigeacompartment from
measurements of the drug concentration in the blood. O

It is useful to have an understanding of the mechanisms tla&kera system
unobservable. Such a system is shown in Figure 7.2. The systeamigosed
of two identical systems whose outputs are added. It seemmisively clear that
it is not possible to deduce the states from the output sineecannot deduce
the individual output contributions from the sum. This casoabe seen formally
(Exercise 7.2).

Observable Canonical Form

As in the case of reachability, certain canonical forms Wéluseful in studying
observability. We define the observable canonical form tdbeltal of the reach-
able canonical form.
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Figure 7.3: Block diagram of a system on observable canonical form. The statéee of
system are represented by individual integrators whose inputs ar@ghtac combination
of the next integrator in the chain, the first state (right most integratakjt@system input.
The output is a combination of the first state and the input.

Definition 7.2 (Observable canonical formA linear single input, single output
(SISO) state space system iinservable canonical forifits dynamics are given

by

—ag 1 0 - 0 by
—ap 0 1 0 by
CE = . Z+ . u
dt - . .
—a,.1 0 0 1 bn-1
—-a, 0 O 0 b

y=[(1 0 0+ 0)z+Du

The definition can be extended to systems with many inputs tlyeddference
is that the vector multiplyingi is replaced by a matrix.

Figure 7.3 shows a block diagram for a system in observablenieal form.
As in the case of reachable canonical form, we see that tHéaieets in the sys-
tem description appear directly in the block diagram. Theattaristic equation
for a system in observable canonical form is given by

As)="+as" 1+ +a,_15+an. (7.5)

It is possible to reason about the observability of a systeabservable canonical
form by studying the block diagram. If the inputand the outpuy are available
the statez; can clearly be computed. Differentiatizg we also obtain the input
to the integrator that generatesand we can now obtaim = z; + a;z; — byu.
Proceeding in this way we can compute all states. The compntaiil however
require that the signals are differentiated.

To check observability more formally, we compute the obakility matrix for
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a system in observable canonical form, which is given by

1 0O 0 .. O

—a 1 0 ... 0

W= | —af—aa —a 1 0
* * o1

where * represents as entry whose exact value is not imgoridre rows of this
matrix are linearly independent (since it is lower triaragyland henc#\; is full
rank. A straightforward but tedious calculation shows thetinverse of the ob-
servability matrix has a simple form, given by

1 0 0 0
ai 1 0 0
WO—]-: ao a1 1 0
a1 @2 -3 - 1

As in the case of reachability, it turns out that if a systeroliservable then
there always exists a transformatidnthat converts the system into reachable
canonical form (Exercise 7.3). This is useful for proofs, siitclets us assume
that a system is in reachable canonical form without any édsggenerality. The
reachable canonical form may be poorly conditioned nura#yic

7.2 STATE ESTIMATION

Having defined the concept of observability, we now returrinéoguestion of how
to construct an observer for a system. We will look for obsesvthat can be
represented as a linear dynamical system that takes th&siapd outputs of the
system we are observing and produces an estimate of thersystiate. That is,
we wish to construct a dynamical system of the form

dx

— =FX+Gu+H
whereu andy are the input and output of the original system and R" is an
estimate of the state with the property tikét) — x(t) ast — co.

The Observer

We consider the system in equation (7.1) witlset to zero to simplify the expo-
sition: g
X

g =AXtBu  y=Cx (7.6)
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We can attempt to determine the state simply by simulatiegetiuations with the
correct input. An estimate of the state is then given by
dx

4 = A%+Bu (7.7)

To find the properties of this estimate, introduce the estomatrrorx = x—X. It
follows from equations (7.6) and (7.7) that

ax

gt = AX.
If matrix A has all its eigenvalues in the left half plane, the eraill go to zero
and hence equation (7.7) is a dynamical system whose outpnerges to the
state of the system (7.6).

The observer given by equation (7.7) uses only the process inphe mea-
sured signal does not appear in the equation. We must alsoedhat the system
is stable, and essentially our estimator converges bethestate of both the ob-
server and the estimator are going zero. This is not very sefucontrol design
context since we want to have our estimate converge quiokdyrtonzero state, so
that we can make use of it in our controller. We will therefateempt to modify
the observer so that the output is used and its convergeogenies can be de-
signed to be fast relative to the system’s dynamics. Thisamrsill also work for
unstable systems.

Consider the observer

dx

G = ARFBUL(Y—CR). (7.8)

This can be considered as a generalization of equation (Fegdback from the
measured output is provided by adding the tériy— CX), which is proportional
to the difference between the observed output and the otliptits predicted by
the observer. It follows from equations (7.6) and (7.8) that

dx

If the matrixL can be chosen in such a way that the mafix LC has eigenval-
ues with negative real parts, the ersowill go to zero. The convergence rate is
determined by an appropriate selection of the eigenvalues.

Notice the similarity between the problems of finding a statedback and
finding the observer. State feedback design by eigenvalugreseit is equivalent
to finding a matrixK so thatA — BK has given eigenvalues. Design of an observer
with prescribed eigenvalues is equivalent to finding a matrso thatA — LC has
given eigenvalues. Since the eigenvalues of a matrix anchitspose are the same
we can established the following equivalence:

A< AT, B—CT, KeoLT,  Wew

The observer design problem is theal of the state feedback design problem.
Using the results of Theorem 6.3, we get the following thecoaerabserver design:
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Theorem 7.2(Observer design by eigenvalue assignme@®nsider the system
given by

dx

at = Ax+Bu y=Cx (7.9)
with one input and one output. L&t(s) ="+ a;" 1+ - +a, 1S+ a, be the
characteristic polynomial for A. If the system is observablen the dynamical
system

4%
d—)t(:AﬁvLBquL(y—Cf() (7.10)
is an observer for the system, with L chosen as
pr—a1
~ | P2—@a
L =W, W, , , (7.11)
Pn—an
and the matrices WandW, given by
-1
c 1 0 0 0
a1 1 0 0
CA -
WO — . WO = a2 a-l 1 0
cart o A
a8n-1 a-2 an-3 1

The resulting observer erréf= x— X is governed by a differential equation having
the characteristic polynomial

p(s) ="+ pas" 4+ pn.

The dynamical system (7.10) is called an observer for (thestaf) the sys-
tem (7.9) because it will generate an approximation of tagestof the system
from its inputs and outputs. This form of an observer is a muohenuseful form
than the one given by pure differentiation in equation (7.3)

Example 7.2 Compartment model
Consider the compartment model in Example 7.1 which is chevized by the

matrices
_[—ko—ki kg _ [bo _
A_[ ko —kz] B_[O]’ €= (1 0]’
The observability matrix was computed in Example 7.1 where oveluded that

the system was observablekif 2 0. The dynamics matrix has the characteristic
polynomial

A(s) = det [s+ Eok:_ ke slkliz] — &+ (ko+ k1 + ka)s+ koko.
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@) (b)

Figure 7.4: Observer for a two compartment system. The observer measurieptheon-
centratioru and output concentratignto determine the compartment concentrations, shown
on the right. The true concentrations are shown in full lines and the estigetesated by
the observer in dashed lines.

Let the desired characteristic polynomial of the observes®e pis+ p,. and
equation 7.1 gives the observer gain

(D) et 9
—ko—ki kg Ko+ki+ky 1 p2 — koko

_ [ P1—ko— ki —kz ]
(P2 — prke + kako +k2) /K
Notice that the observability conditioky # O is essential. The behavior of the
observer is illustrated by the simulation in Figure 7.4b. iblohow the observed
concentrations approaches the true concentrations. O

The observer is a dynamical system whose inputs are the grogasu and
process output. The rate of change of the estimate is composed of two terms. On
term, AX+ Bu, is the rate of change computed from the model wigubstituted
for x. The other terml_(y—VY), is proportional to the difference=y —y between
measured output and its estimatg = CX. The estimator gaih is a matrix that
tells how the erroe is weighted and distributed among the states. The observer
thus combines measurements with a dynamical model of theraysA block
diagram of the observer is shown in Figure 7.5.

Computing the Observer Gain

For simple low order problems it is convenient to introduice élements of the
observer gairk as unknown parameters and solve for the values required/¢o gi
the desired characteristic polynomial, as illustratechanfbllowing example.

Example 7.3 Vehicle steering
The normalized, linear model for vehicle steering derivelxamples 5.12 and 6.4
gives the following state space model dynamics relatirgyétpath deviationy to
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Figure 7.5: Block diagram of the observer. The observer takes the sigraislu as inputs
and produces an estimate Notice that the observer contains a copy of the process model
that is driven byy — y through the observer galn

G (03, (M)
dt - 10 0 1 (7.12)
y= (1 O] X
Recall that the state, represents the lateral path deviation and #akepresents
turning rate. We will now derive an observer that uses théesysnodel to deter-

mine turning rate from the measured path deviation.
The observability matrix is

10
WO: [O 1]7

i.e., the identity matrix. The system is thus observable aaceigenvalue assign-
ment problem can be solved. We have

(-1
Ao ()

which has the characteristic polynomial

steering angle

det(sl — A+ LC) = det [STZ'l ‘Sl] =415+ 1p.

Assuming that we want to have an observer with the charatitepolynomial
S+ p1S+ p2 = S+ 20oweS+ &,

the observer gains should be chosen as

l1 = p1= 2{owy, l = p2 = .

The observer is then

ﬁ:AﬂBquL(y—CX): [8 (1)] R+ [i’] u-+ [:;] (Y —%0).
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Figure 7.6: Simulation of an observer for a vehicle driving on a curvy road. Theeoker
has an initial velocity error. The plots on the left show the lateral deviatiptthe lateral
velocity X, in full lines and their estimates, andx> in dashed lines. The plots on the right
show the estimation errors.

A simulation of the observer for a vehicle driving on a curend is simulated
in Figure 7.6. The vehicle length is the length unit in the ndized model. The
figure shows that the observer error settles in about 8 veleiotghs. O

For systems of high order we have to use numerical calcalgtidhe duality
between design of a state feedback and design of an obseeasTsnthat means
that the computer algorithms for state feedback can be Useda the observer
design; we simply use the transpose of the dynamics matdxtanoutput matrix.
The MATLAB commandacker , which essentially is a direct implementation of
the calculations given in Theorem 7.2, can be used for systgdthsone output
(Exercise 7.8). The MATLAB commangl| ace can be used for systems with
many outputs. It is also better conditioned numerically.

7.3 CONTROL USING ESTIMATED STATE

In this section we will consider a state space system withireztterm (the most
common case):

% = Ax+ Bu, y=Cx (7.13)
Notice that we have assumed that there is no direct term isystem D = 0). This
is often a realistic assumption. The presence of a directittoombination with a
controller having proportional action creates a so callgdlaraic loop which will
be discussed in Section 8.3. The problem can be solved eveerd th a direct
term but the calculations are more complicated.

We wish to design a feedback controller for the system wheletbe output is
measured. As before, we will be assume thanhdy are scalars. We also assume
that the system is reachable and observable. In Chapter 6unel fa feedback of
the form

U= —Kx+kr
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for the case that all states could be measured and in Secfome/developed an
observer that can generate estimates of the sthi@séd on inputs and outputs.
In this section we will combine the ideas of these sectiorftba feedback that
gives desired closed loop eigenvalues for systems wheyeootputs are available
for feedback.

If all states are not measurable, it seems reasonable togrfgedback

u=—KX+Kkr, (7.14)
wherexis the output of an observer of the state, i.e.
dx . -
at = AX+Bu+L(y—Cx). (7.15)

Since the system (7.13) and the observer (7.15) are bothtefditaensiom, the
closed loop system has state dimensiom&h state &, X). The evolution of the
states is described by equations (7.13), (7.14) and (7.TId)analyze the closed
loop system, the state variablésreplaced by

X=X—X. (7.16)
Subtraction of equation (7.15) from equation (7.13) gives
(:jl)t( = AX— AX—L(Cx—CX) = AX— LCX= (A—LC)X.

Returning to the process dynamics, introducinfrom equation (7.14) into
equation (7.13) and using equation (7.16) to elimineg@/és
d
d%( — Ax+Bu=Ax— BKX+ Bk = Ax— BK(x—X) + Bk
= (A—BK)x+BKX+ Bkr.

The closed loop system is thus governed by

d (x A—BK BK X Bk

3 R e B 1 L
Notice that the stat®, representing the observer error, is not affected by the-com
mand signalr. This is desirable since we do not want the reference signal to
generate observer errors.

Since the dynamics matrix is block diagonal, we find that theasttaristic
polynomial of the closed loop system is

A(s) = det(sl — A+ BK)det(sl - A+ LC).

This polynomial is a product of two terms: the characteriptitynomial of the

closed loop system obtained with state feedback and thacteaistic polynomial

of the observer error. The feedback (7.14) that was motivagedistically thus

provides a neat solution to the eigenvalue assignmentgmbl'he result is sum-
marized as follows.
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Figure 7.7: Block diagram of an observer-based control system. The obseses the
measured outpytand the inputi to construct an estimate of the state. This estimate is used
by a state feedback controller to generate the corrective input. Theoientonsists of the
observer and the state feedback; the observer is identical to Figure 7.5

Theorem 7.3(Eigenvalue assignment by output feedbadBpnsider the system

dx
— =Ax+B =C
gt X+ Bu, y=Cx
The controller described by
U= —KX+kr
dx

Fri AX+Bu+L(y—CX) = (A—BL—KC)X+Ly

gives a closed loop system with the characteristic polyabmi
A(s) = det(sl — A+ BK)det(sl —A+LC).

This polynomial can be assigned arbitrary roots if the sysiemeachable and
observable.

The controller has a strong intuitive appeal: it can be thooflas composed
of two parts, one state feedback and one observer. The dysaiftice controller
is generated by the observer. The feedback gatan be computed as if all state
variables can be measured and it only dependad andB. The observer gaih
only depends o andC. The property that the eigenvalue assignment for output
feedback can be separated into eigenvalue assignment tateadesedback and an
observer is called theeparation principle

A block diagram of the controller is shown in Figure 7.7. Nettbat the con-
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troller contains a dynamical model of the plant. This is chleeinternal model
principle: the controller contains a model of the process being ciattoindeed,
the dynamics of the controller are due to the observer anddheoller can thus
be viewed as a dynamical system with ingwand outpuu:

dx

;= (A-BK—LC)%+Ly, u=—Kg+kt. (7.18)

Example 7.4 Vehicle steering

Consider again the normalized, linear model for vehiclerstg in Example 6.4.
The dynamics relating steering angie¢o lateral path deviatiow is given by the
state space model (7.12). Combining the state feedbackedein Example 6.4
with the observer determined in Example 7.3 we find that therothet is given
by

dx Ao o\ 0 1), y l1 5

a_Ax+Bu+L(y—Cx)_ [O O] X+ [1] u+ [|2] (y—%a)
U= —KX+kr =Kky(r—xp)— koxo.

Elimination of the variablel gives

gl)t( = (A—BK—LC)X+Ly+Blkr

—li—vk 1-yk) ., [

= [ —kl—y|k2 —lsz ] X+ [lz] Y+ [:{] Kar.
The controller is a dynamical system of second order, withitbpotsy andr and
one outputu. Figure 7.8 shows a simulation of the the system when the hehic
is driven along a curvy road. Since we are using a normalizedeiribe length
unit is the vehicle length and the time unit is the time it @ketravel one vehicle
length. The estimator is initialized with all states equateoo but the real system
has an initial velocity 0.5. The figures show that the estimed@serge quickly to
their true values. The vehicle tracks the desired path wisiéth the middle of the

road, but there are errors because the road is irregular. réblerig error can be
improved by introducing feedforward. 0

7.4 KALMAN FILTERING

One of the principal uses of observers in practice is to eg#rthe state of a sys-
tem in the presence aofoisymeasurements. We have not yet treated noise in our
analysis and a full treatment of stochastic dynamical systis beyond the scope

of this text. In this section, we present a brief introductio the use of stochastic
systems analysis for constructing observers. We work pifyniaa discrete time

to avoid some of the complications associated with contisuane random pro-
cesses and to keep the mathematical prerequisites to a smminThis section
assumes basic knowledge of random variables and stoclpastiesses; see Ku-
mar and Varaiya [129] ohstrom [15] for the required material.
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Figure 7.8: Simulation of a vehicle driving on a curvy road with a controller based ae sta
feedback and an observer. The upper curves show the road gsukiotted), the vehicle
position (full) and its estimate (dashed), the middle curve shows the veldaifygnd its
estimate (dashed) and the bottom curve shows the control signal withraltmrbased on
state feedback (full) and the control signal (dashed).

Consider a discrete time, linear system with dynamics
X[k+ 1] = AXK] + Bulk] + FV[K]

VK] = CXK] + Wik, 719
wherev[k] andw[k] are Gaussian, white noise processes satisfying
E{vk]} =0 E{wk]} =0
E(vlkv[]]) = {‘; L EWRWT) - {‘;W a2

E{vKw'[j]} =0.
E{v[k|} represents the expected valuev{i] andE{v[k]v' [j]} the correlation ma-
trix. We assume that the initial condition is also modele@ d&aussian random
variable with
E{x(0} =x  E{x[0)x"[0]} =R (7.21)

We wish to find an estimatgk] that minimizes the mean square ereqi(x[k] —
X[K])(x[k] —X[K])T} given the measuremenfy(t) : 0 < T <t}. We consider an
observer in the same basic form as derived previously:

X[k~ 1] = AX[K] 4 BUlk] + L[K] (y[k] — CX[K]). (7.22)
The following theorem summarizes the main result.

Theorem 7.4. Consider a random processkk with dynamicg(7.19) and noise
processes and initial conditions described by equatigh20) and (7.21) The
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observer gain L that minimizes the mean square error is gbyen
L[k] = APKICT (Ry+CP[KICT) 1,

where
Plk+1] = (A—LC)P[K(A—LC)" +FRFT +LR,L"

Po = E{x[0]x"[0]}

Before we prove this result, we reflect on its form and functi@inst, note that
the Kalman filter has the form of eecursivefilter: given P[k] = E{E[KET[K]}
at timek, can compute how the estimate and covariatf@nge Thus we do not
need to keep track of old values of the output. Furthermoe=Ktdman filter gives
the estimatexk] andthe covarianc@[k], so we can see how reliable the estimate
is. It can also be shown that the Kalman filter extracts the mari possible
information about output data. If we form the residual beswehe measured
output and the estimated output,

elk] = y[k] —CX[K],
we can can show that for the Kalman filter the correlation madri

0 j#k
1 j=k

(7.23)

Re(Jvk) = E{e[]]eT[k]} ZW[k]éjk, 5jk = {

In other words, the error is a white noise process, so therelismaining dynamic
information content in the error.

The Kalman filter is extremely versatile and can be used evdreiptocess,
noise or disturbances are non-stationary. When the syststationary and P[K]
converges, then the observer gain is constant:

L =APCT (R, +CPCT),
whereP satisfies
P—APA" + FRFT —APCT (R, +CPCT) 'CPAT.

We see that the optimal gain depends on both the processaruisine measure-
ment noise, but in a nontrivial way. Like the use of LQR to chostsge feedback
gains, the Kalman filter permits a systematic derivation efdhserver gains given
a description of the noise processes. The solution for thetaohgain case is
solved by thedl ge command in MATLAB.

Proof (of theorem).We wish to minimize the mean square of the erkof(x[k] —
R[K)(x[K] — X[K)T}. We will define this quantity a®[k] and then show that it
satisfies the recursion given in equation (7.23). By definjtion

Plk+1] = E{xk+ 1)x" [k+ 1]}
= (A—LC)PK(A—LC)T + FRFT +LR,L"
—= APKIAT — APKICTLT — LCAT + L(Ry+CPK|ICT)LT.
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Letting R: = (Ry+CPIKICT), we have
Plk+1] = AP[KAT — APKICTLT — LCA" 4+ LRL"
— APKAT + (L— APKICTR: )R (L — APKICTR 1)
— APKICTR;ICPT [KAT 4Ry,

To minimize this expression, we chooke= APK|CTR:! and the theorem is
proved. O

The Kalman filter can also be applied to continuous time stdthpocesses.
The mathematical derivation of this result requires morenstigated tools, but
the final form of the estimator is relatively straightforward

Consider a continuous stochastic system

X = Ax+ Bu+Fv E{v(sV' (1)} = Ry(t)d(t —s)

y=Cx+w E{w(sW' (1)} = Ry(t)5(t —s),
whered(T) is the unit impulse function. Assume that the disturbanaed noise
w are zero-mean and Gaussian (but not necessarily statjonary

1 1, Tp-1
df(v) = 7672\/ RV
pdf(v) v 2mm/detR,
1 1,Tp-1
dfw) = ——— g 2" RvW
pdf(w) v2m/detR,

We wish to find the estimatgt) that minimizes the mean square erfdr(x(t) —
(1)) (x(t) —X(t))T} given{y(1) : 0< T <t}.

Theorem 7.5(Kalman-Bucy, 1961) The optimal estimator has the form of a lin-

ear observer ]
X=AX+Bu+L(y—CX)

where L(t) = P(t)CTR, ! and At) = E{(x(t) — X(t))(x(t) — R(t))T} and satisfies
P=AP+PA" —PC'R,(t)CP+FR,(t)F"
P[0] = E{x/0)x" [0]}
Example 7.5 Vectored thrust aircraft
To design a Kalman filter for the system, we must include a dwesmn of the

process disturbances and the sensor noise. We thus audraesytstem to have
the form

lef = Ax+ Bu+ Gw
y=Cx+Vv

whereG represents the structure of the disturbances (includieg@tiects of non-
linearities that we have ignored in the linearizatiomyepresents the disturbance
source (modeled as zero mean, Gaussian white noisey eeptesents that mea-
surement noise (also zero mean, Gaussian and white).
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Figure 7.9: Kalman filter design for a vectored thrust aircraft. In the first desigi) (lenly
the lateral position of the aircraft is measured. Adding a direct meamumeof the roll angle
produces a much better observer (right).

For this example, we choosgas the identity matrix and choose disturbances

w;i, i =1,...,nto be independent disturbances with covariance giveR;jby 0.1,
Rj = 0,i # ]. The sensor noise is a single random variable which we model as
having covarianc&®, = 0.01. Using the same parameters as before, the resulting
Kalman gain is given by

7.42

-3.70

27.6

28.0

The performance of the estimator is shown in Figure 7.9a. Wehsgevhile the
estimator converges to the system state, it contains signtficinging” in the state
estimate, which can lead to poor performance in a closeddetmg.

To improve the performance of the estimator, we explorertigaict of adding
a new output measurement. Suppose that instead of measusinth¢ output
positioné, we also measure the orientation of the aircr@ftThe output becomes

(1 000 i Vi
Y=1lo 1 0 0 Vo
and if we assume th&i andv, are independent noise sources each with covariance
Ry, = 0.0001 then the optimal estimator gain matrix becomes

L=

731 -0.019
L— —-0.019 @25
| 268 —0.368
0.110 196

These gains provide good immunity to noise and very high pedoce, as illus-
trated in Figure 7.9b.
0
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Figure 7.10: Block diagram of a controller based on a structure with two degrees ®f fre
dom. The controller consists of a trajectory generator, state feedbackraobserver. The
trajectory generation subsystem computes a feedforward comugaidng with the desired
statexq. The state feedback controller uses the estimated state and desired statgtibec

a corrective inputi.

7.5 FEEDFORWARD AND IMPLEMENTATION

In this section we will discuss improved ways to introducterence values by
using feedforward. This leads to a system structure is orteajh@ears in may
places in control theory and is the heart of most modern obsyistems. We will
also briefly discuss how computers can be used to implememtteoier based on
output feedback.

Feedforward

In this chapter and the previous one we have emphasizeddekedls a mechanism
for minimizing tracking error; reference values were idoed simply by adding
them to the state feedback through a dgainA more sophisticated way of doing
this is shown by the block diagram in Figure 7.10, where therotlar consists of
three parts: an observer that computes estimates of tles ftased on a model and
measured process inputs and outputs, a state feedback tiajelctory generator
that generates the desired behavior of all stageand a feedforward signak.
Under the ideal conditions of no disturbances and no moglelirors the signalk;
generates the desired behavigmwhen applied to the process.

To get some insight into the behavior of the system, we assatéhere are no
disturbances and that the system is in equilibrium with tamsreference signal
and with the observer stateequal to the process state When the command
signal is changed the signalg andxy will change. The observer tracks the state
perfectly because the initial state was correct. The estidnsthtecis thus equal to
the desired statey and the feedback signeg, = L(xg — X) will also be zero. All
action is thus created by the signals from the trajectoryggor. If there are some
disturbances or some modeling errors the feedback sighiahttégmpt to correct
the situation.

This controller is said to havevo degrees of freedolmecause the responses
to command signals and disturbances are decoupled. Dastcebresponses are
governed by the observer and the state feedback while thenss to command
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signals is governed by the trajectory generator (feedfatjva
For an analytic description we start with the full nonlinemamics of the

process
x= f(x,u), y = h(x,u). (7.24)

Assume that the trajectory generator is able to generatsigederajectory(Xq, Ut )
that satisfies the dynamics (7.24) and satisfiesh(xy, U ). To design the con-
troller, we construct the error system. leet X — X4, V= U— Ug and compute the
dynamics for the error:

é=X—Xg = f(x,u) — f(xg,Us)
= f(e+xg,v+ug) — f(Xq)
= F(e v, xq(t), ui (t)).

In general, this system is time varying.
For trajectory tracking, we can assume that small (if our controller is doing
a good job) and so we can linearize arownd O:
e~ A(t)e+B(t)v, Alt) = 9F B(t) = oF .
08 [ (xg(t).ug 1) OV | xat).ur 1)
It is often the case thak(t) andB(t) depend only oy, in which case it is conve-
nient to writeA(t) = A(xq) andB(t) = B(Xq).

Assume now thaty andug are either constant or slowly varying (with respect
to the performance criterion). This allows us to considet flug (constant) linear
system given byA(Xq),B(Xq)). If we design a state feedback controli&fxy) for
eachxy, then we can regulate the system using the feedback

v=K(xg)e
Substituting back the definitions efandv, our controller becomes

U= —K(Xq)(X—Xq) + Usi

This form of controller is called gain scheduledinear controller withfeedfor-
ward Us.

Finally, we consider the observer. The full nonlinear dynanci&n be used for
the prediction portion of the observer and the linearizestesy for the correction

term:
R = f(Xu)+L(X)(y—h(%u))

whereL (X) is the observer gain obtained by linearizing the systemratdiie cur-

rently estimated state. This form of the observer is knowmasxgended Kalman
filter and has proved to be a very effective means of estimatingate af a non-

linear system.

There are many ways to generate the feedforward signal ame #ne also
many different ways to compute the feedback gdimnd the observer gaib.
Note that once again the internal model principle applies:controller contains a
model of the system to be controlled, through the observer.
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Figure 7.11: Trajectory generation for changing lanes. We wish to change from thieuhef
to the right lane over a distance of 30 meters in 4 seconds. The left §goves the planned
trajectory in thexy plane and the right figure shows the lateral positjaand the steering
angled over the maneuver time interval.

Example 7.6 Vehicle steering
To illustrate how we can use two degree of freedom design poake the perfor-
mance of the system, consider the problem of steering a adraioge lanes on a
road, as illustrated in Figure 7.11.

The dynamics of the system were derived in Example 2.8. Usimgéehnter of
the rear wheels as the reference=£ 0), the dynamics can be written as

X = cos@v, y = sin@v, 6 = 1/btand,

wherev is the forward velocity of the vehicle andl is the steering angle. To
generate a trajectory for the system, we note that we cae $ohthe states and
inputs of the system givex) y by solving the following sets of equations:

X = vcosh X = Vcosh — vsinH
y = sin@v y = Vvsind +vcosH o (7.25)
6 = v/l tand

This set of five equations has five unknow#s @, v, v andd) that can be solved
using trigonometry and linear algebra. It follows that wa campute a feasible
trajectory for the system given any patft), y(t). (This special property of a
system is something that is knowndifferential flatnes$74, 75].)

To find a trajectory from an initial stateo, yo, 6p) to a final statéxs, ys, 6¢) at
atimeT, we look for a pathx(t), y(t) that satisfies

X(0) =Xxo X(T) =X¢

y(0) = Yo y(T) =y (7.26)
X(0) sinBy +y(0) cosfp = 0 X(T)sinBr +y(T)cos6r =0
y(0) sinBp +Yy(0) cosby =0 y(T)sin6r +y(T)cosbr =0
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One such trajectory can be found by choosiftg andy(t) to have the form
Xg(t) = o+ ot + aapt? + aaat?, Ya(t) = Bo+ But + Bot? + Bat.

Substituting these equations into equation (7.26), we drevith a set of linear
equations that can be solved fmr G, i = 0,1, 2,3. This gives a feasible trajectory
for the system by using equation (7.25) to solvefigrvg anddy.

Figure 7.11b shows a sample trajectory generated by solkgggetequations.
Notice that the feedforward input is quite different fromallpwing the controller
to command a steering angle that executes the turn in theedsé errors.

O

Kalman’s Decomposition of a Linear System

In this chapter and the previous one we have seen that twafoedtal properties
of a linear input/output system are reachability and oladahty. It turns out that
these two properties can be used to classify the dynamicssgétem. The key
result is Kalman’s decomposition theorem, which says thiaesr system can be
divided into four subsystem&:, which is reachable and observaligz which is
reachable but not observabigg which is not reachable but is observable, apgl
which is neither reachable nor observable.

We will first consider this in the special case of systems whezenatrixA has
distinct eigenvalues. In this case we can find a set of coaelireuch that thé
matrix is diagonal and, with some additional reorderinghaf states, the system
can be written as

Ao 0 0 0O Bro

dX_ 0 Ag O 0 Bro

gt [0 0 Ao o |0 " 7.27)
0 0 0 As 0 '

y— [qo 0 GCo 0] X+ Du.

All statesxy such thatBx # 0 are reachable and all states such that 0 are
observable. If we set the initial state to zero (or equivilyelook at the steady
state response i is stable), the states given By andxq will be zero andxg
does not affect the output. Hence the outpaoan be determined from the system

Xro = AroXro + BroU, Yy = CioXro +Du

Thus from the input/output point of view, it is only the reableaand observable
dynamics that matter. A block diagram of the system illustoathis property is
given in Figure 7.12a.

The general case of the Kalman decomposition is more contgticand re-
quires some additional linear algebra. Introduce the raalehsubspace’; which
is the linear subspace spanned by the columns of the redighatatrix W;. The
state space is the direct sum.#f and another linear subspa@g. Notice thatZ;
is unigue but thatZican be chosen in many different ways. Choosing coordinates
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Figure 7.12: Kalman’s decomposition of a linear system. The decomposition on the left is
for a system with distinct eigenvalues, the one on the right is the gene®l Tae system

is broken into four subsystems, representing the various combinatieeaahable and ob-
servable states. The input/output relationship only depends on the siilstates that are
both reachable and observable.

with x, € Z; andxr € Z7the system equations can be written as

a [Xr] = [ 0 Agz X + 0 u, (7.28)
where the stateg are reachable ang-are non-reachable.
Introduce the unique subspacks of non-observable states. This is the right
null space of the observability mathié,. The state space is the direct sum%y§

and the non-unique subspagg. Choosing a coordinate system withe 2, and
Xg € Zgthe system equations can be written as

d (%) _ (A O (], (B,

it (o) ~ (At A2) L) T B3

= (e o) 2]
= [Xo]

where the stateg, are observable andg are not observable.

The intersection of two linear subspaces is also a lineampsdes Introduce
Zrs as the intersection of2; and 25 and the complementary linear subspace
Zro, Which together withZ: g5 spansZ;. Finally, we introduce the linear subspace
Zto Which together with-2rs, 2rs and 2 spans the full state space. Notice

that the decomposition is not unique because only the sabspas is unique.

Combining the representations (7.28) and (7.29) we find thiaear system can
be transformed to the form

(7.29)

All 0 Al3 0 Bl
9( B AZl A22 A23 A24 ot BZ y
dd | 0 0 A® 0 0 (7.30)
0 0 A® A% 0 '

y— [cl 0 c2 o) X,
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where the state vector has been partitioned as

Xro

A block diagram of the system is shown in Figure 7.12b. By trgdhe arrows
in the diagram we find that the input influences the systEmand s and that
the output is influenced by, andZr. The systenkigis neither connected to the
input nor the output. The input/output response of the sysdhus given by

Yo = Allxo + By, y = Clx + Du, (7.31)
which is the dynamics of the reachable and observable sigrsys,.

Example 7.7 System and controller with feedback from observer stase

Consider the system

dx

— = Ax+B =C

dt X+ bUu, y==LX
The following controller based on feedback from the obsestate was given in
Theorem 7.3

u=—Kx+kr, (;(:AX+BU+L(y—C>“()

Introducing the statesandxX= x — X the closed loop system can be written as

d (x) (A-BK 0 X Bk B
(3] = (o %) 3]+ () veer
The statex’is clearly not reachable from the command signaind the relation

between the referenceand the outpuy is the same as for a system with full state
feedback. 0

Computer Implementation

The controllers obtained so far have been described by aydditferential equa-

tions. They can be implemented directly using analog compisne/hether elec-
tronic circuits, hydraulic valves or other physical degceSince in modern en-
gineering applications most controllers are implement&dgicomputers we will

briefly discuss how this can be done.

A computer-controlled system typically operates perialiyc every cycle, sig-
nals from the sensors are sampled and converted to digital iy the A/D con-
verter, the control signal is computed and the resultinguiuis converted to ana-
log form for the actuators, as shown in Figure 7.13. To illigtithe main princi-
ples of how to implement feedback in this environment, wesabgr the controller



7.5. FEEDFORWARD AND IMPLEMENTATION 231

external disturbances noise

Actuators—{ System >

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

operator input

Figure 7.13: Components of a computer-controlled system. The controller consists of
analog-to-digital (A/D) and digital-to-analog (D/A) converters, as welaaomputer that
implements the control algorithm. A system clock controls the operation afdahgoller,
synchronizing the A/D, D/A and computing processes. The operatot isaiso fed to the
computer as an external input.

described by equations (7.14) and (7.15), i.e.,

u=—KxX+kt, (Zl)t(_AR+Bu+L(y—C>2).

The first equation consists only of additions and multiplmasi and can thus be
implemented directly on a computer. The second equationeamflemented by
approximating the derivative by a difference

ax  X(tis) — X(t)
dt h
wherety are the sampling instants ahé- ty . 1 —tx is the sampling period. Rewrit-
ing the equation to isolatety 1), we get
R(tkr1) = X(tk) + h(Af((tk) +Bu(t) + L(y(tk) —CR())). (7.32)

The calculation of the estimated state at tigng only requires addition and mul-
tiplication and can easily be done by a computer. A sectigrsefido code for the
program that performs this calculation is

— AR(ty) + Bu(ti) + L (y(t) — CR(t)),

% Control algorithm- nain |oop

r = adin(chl) % read reference

y = adin(ch2) % get process out put

u = -Krsxhat + Kr=r % conpute control variable
daout (chl, u) % set anal og out put

xhat = xhat + h*(A*x+Bxu+L*(y-Cxx)) % update state estinate

The program runs periodically at a fixed rdte Notice that the number of
computations between reading the analog input and settengrialog output has
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been minimized by updating the state after the analog outasitbeen set. The
program has an array of statefat , that represents the state estimate. The choice
of sampling period requires some care.

There are more sophisticated ways of approximating a diffexleequation
by a difference equation. If the control signal is constagtineen the sampling
instants it is possible to obtain exact equations; see [20].

There are several practical issues that also must be dehlt For example, it
is necessary to filter a signal before it is sampled so that tieedfd signal has little
frequency content abovk/2 wherefs is the sampling frequency. If controllers
with integral action are used, it is also necessary to pepiwtection so that the
integral does not become too large when the actuator sesurahis issue, called
integrator windup s studied in more detail in Chapter 10. Care must also kentak
so that parameter changes do not cause disturbances.

7.6 FURTHER READING

The notion of observability is due to Kalman [113] and, conglinvith the dual
notion of reachability, it was a major stepping stone towestblishing state space
control theory beginning in the 1960s. The observer first agaokas the Kalman
filter, in the paper by Kalman [112] for the discrete time casd Kalman and
Bucy [114] for the the continuous time case. Kalman also exinyed that the
controller for output feedback could be obtained by conmigra state feedback
with an observer; see the quote in the beginning of this @mnagthis result was
formally proved by Josep and Tou [109] and Gunckel and Frar®8]. The
combined result is known as the linear quadratic Gaussiatr@dheory; a com-
pact treatment is given in the books by Anderson and MoorarfdRAstrom [15].
Much later it was shown that solutions to robust control peois also had a sim-
ilar structure but with different ways of computing obseread state feedback
gains [64].

EXERCISES

7.1 (Coordinate transformations) Consider a system under edowie transfor-
mationz= T x, whereT € R™"is an invertible matrix. Show that the observability
matrix for the transformed system is given\bly =W, T~ and hence observability
is independent of the choice of coordinates.

7.2 Show that the system depicted in Figure 7.2 is not observable.

7.3 (Coordinate transformations) Show that if a system is oladdey then there
exists a change of coordinates= T x that puts the transformed system into ob-
servable canonical form.



7.6. FURTHER READING 233

7.4 (Bicycle dynamics) The linearized model for a bicycle areegivin equa-
tion (3.5), which has the form
d?¢ Dvodd mgh
T T AT
where ¢ is the tilt of the bicycle and is the steering angle. Given conditions

under which the system is observable and explain any sp&itigtions were it
loses observability.

7.5 (Pendulum on cart) Consider the linearized model of a pemddo a cart
given in Example??. Is the system is observable from the cart position? What
happens if the ration/M goes to zero? Discuss qualitatively the effect of friction
on the cart.

7.6 (Pendulum on cart) Design an observer for the pendulum oraettieCombine

the observer with the state feedback developed in Exafle obtain an output
feedback. Simulate the system and investigate the effedbiafsserror in the angle
Sensor.

7.7 (Pendulum on cart) A normalized model of the pendulum on aisddscribed

by the equations .
X=u, 6 =0+u,

where it has been assumed that the cart is very heavy, see ExatpAssume
that cart positiorx and the pendulum anglare measured, but that there is a bias
in the measurement of the angle, which is modelegby: 6 + 6y, where6y is

a constant bias, hend® = 0. Introduce state variablegs = X, Xxo = 0, X3 = X,

X4 = 6 andxs = 6y. Show that the system is observable. What is the engineering
implication of the result?

7.8 (Duality) Show that the the following MATLAB function computése gainL
of a an observer for the systexn="Ax, y = Cx which gives and observer whose
eigenvalues are the elements of the vegtor

function L=observer (A C, p)
L=pl ace(A ,C ,p); L=L";

Test the program on some examples where you have calculsegdult by
hand.

7.9 (Selection of Eigenvalues) Pick up the program for simulatingifé 7.4 from
thewi ki . Read the program and make sure that you understand it. Exyer
behavior of the estimates for different choices of the eiglres.

7.10 (Uniqueness) Show that design of an observer by eigenvaaeeiplent is
unique for single output systems. Construct examples tiaw shat the problem
is not necessarily unique for systems with many outputs. &stdgpw the lack of
unigueness can be exploited.






