EE 364a: Convex Optimization I January 23, 2020

Midterm Quiz Solutions

1. Convexity of some sets. Determine if each set below is convex.

(a)
$$\begin{cases} (x, y, z) \in \mathbf{R}^3 \mid \begin{bmatrix} x & y \\ y & z \end{bmatrix} \succeq 0 \\ \\ \blacksquare \text{ convex } \Box \text{ not convex} \end{cases}$$

(b)
$$\{ (x, y, z) \in \mathbf{R}^3 \mid xz - y^2 \ge 0, x \ge 0, z \ge 0 \}$$

$$\blacksquare \text{ convex } \Box \text{ not convex}$$

(c)
$$\{ (x, y, z) \in \mathbf{R}^3 \mid xz - y^2 \ge 0 \}$$

- (c) $\{(x, y, z) \in \mathbf{R}^3 \mid xz y^2 \ge 0\}$ \Box convex \blacksquare not convex (d) $\{(x, y, z) \in \mathbf{R}^3 \mid y^2 > x < 0\}$
- (d) $\{(x, y, z) \in \mathbf{R}^3 \mid \frac{y^2}{z} \ge x, z < 0, x \le 0\}$ \blacksquare convex \Box not convex

Solution.

- (a) Convex. The given set is \mathbf{S}_{+}^{2} .
- (b) Convex. The given set is again S^2_+ , which we find by taking a determinant.
- (c) Not convex. The given set is the union $\mathbf{S}^2_+ \cup \mathbf{S}^2_-$, where $\mathbf{S}^2_- = \{X \in \mathbf{S}^2 \mid X \leq 0\}$. Take convex combinations of the vectors (1,0,0) and (0,0,-1).
- (d) Convex. The given set is

$$\left\{ (x,y,z) \mid \begin{bmatrix} x & y \\ y & z \end{bmatrix} \preceq 0, \ z < 0 \right\},$$

which again we obtain by taking determinants.

- 2. Curvature of some functions. Determine the curvature of the functions below.
 - (a) $f(x) = \max\{2, x, 1/\sqrt{x}, x^3\}$, with **dom** $f = \mathbf{R}_+$
 - **convex** \Box concave \Box affine \Box neither

(b)
$$f(x,t) = \frac{\|x\|^{1}}{t^{13}}$$
 with **dom** $f = \{x \in \mathbf{R}^n, t > 0\}$

convex \Box concave \Box affine \Box neither

(c)
$$f(x) = (1/2)x^2 - (1/12)x^4$$
, with dom $f = \mathbf{R}$
 \Box convex \Box concave \Box affine \blacksquare neither

(d)
$$f(x, y, z) = \log(y \log \frac{z}{y} - x) + \log(zy)$$
, with **dom** $f = \{(x, y, z) \in \mathbf{R} \times \mathbf{R}^2_{++} \mid ye^{x/y} < z\}$
 \Box convex \blacksquare **concave** \Box affine \Box neither

Solution.

(a) Convex. The maximum of convex functions is convex, and x^3 and $1/\sqrt{x}$ are convex over $x \ge 0$.

J. Duchi

- (b) Convex. This is the perspective transform of $g(x) = ||x||^{14}$, which is convex.
- (c) Neither. We have $f'(x) = x (1/3)x^3$ and $f''(x) = 1 x^2$, so $f''(x) \ge 0$ for $|x| \le 1$ while f''(x) < 0 for |x| > 1.
- (d) Concave. The function $h(t) = \log t$ is concave and monotone on t > 0, and $g(y, z) = y \log \frac{y}{z}$ is convex (it is the perspective of $y \log y$) on y, z > 0, so $c(x, y, z) = \log(-x g(y, z))$ is concave on g(y, z) + x < 0 by composition rules. $\log z + \log y$ is obviously concave.
- 3. Convexity of some sets of positive semidefinite matrices. In each part of the question, n, k are fixed numbers with k < n. Determine if each set below is convex.
 - (a) $\{A \in \mathbf{S}^n_+ | \operatorname{\mathbf{Rank}}(A) \ge k\}$, where k < n.
 - (b) $\{A \in \mathbf{S}^n_+ \mid \mathbf{Rank}(A) \leq k\}$, where k < n.
 - (c) $\{A \in \mathbf{S}^n_+ \mid \mathbf{Rank}(A) = n\}.$
 - (d) $\{C \in \mathbf{S}_{++}^n \mid A B^T C^{-1} B \succeq 0\}$ where A, B are fixed matrices of appropriate size.

Solution.

- (a) Convex. As in the homework (book exercise 2.13), the convex combination of any two matrices $A, B \in \mathbf{S}^n_+$ with $\min\{\operatorname{\mathbf{Rank}}(A), \operatorname{\mathbf{Rank}}(B)\} \ge k$ satisfies $\operatorname{\mathbf{Rank}}(\theta A + (1-\theta)B) \ge k$.
- (b) Not convex. Let e_i be the standard basis vectors, and set $A = \sum_{i=1}^{k} e_i e_i^T$ and $B = \sum_{i=2}^{k+1} e_i e_i^T$. Then $\operatorname{\mathbf{Rank}}(A) = \operatorname{\mathbf{Rank}}(B) = k$, while $\operatorname{\mathbf{Rank}}((A+B)/2) = k+1 > k$.
- (c) Convex. For any full rank $A, B \in \mathbf{S}^n_+$, we have $A \succ 0$ and $B \succ 0$, so this set is simply \mathbf{S}^n_{++} .
- (d) Convex. By Schur complements, this is

$$\left\{ C \in \mathbf{S}_{++}^n \mid \begin{bmatrix} A & B \\ B^T & C \end{bmatrix} \succeq 0 \right\}.$$

4. DCP rules. The function

$$f(x) = \log\left(\exp\left(\frac{(a^T x)^2}{c^T x - d}\right) + \exp\left((c^T x - d)^{-1/2}\right)\right)$$

is convex in x over $\{x \in \mathbf{R}^n \mid c^T x - d > 0\}$. Express f using disciplined convex programming (DCP), limited to the following atoms:

inv_pos(u), which is 1/u, with domain \mathbf{R}_{++} square(u), which is u^2 , with domain \mathbf{R} sqrt(u), which is \sqrt{u} , with domain \mathbf{R}_+ geo_mean(u), which is $(\prod_{i=1}^n u_i)^{1/n}$, with domain \mathbf{R}_+^n quad_over_lin(u,v), which is u^2/v , with domain $\mathbf{R} \times \mathbf{R}_{++}$ $\log_{sum_exp}(u)$, which is $\log(\sum_{i=1}^{n} \exp(u_i))$, with domain \mathbf{R}^n . log(u), which is $\log u$, with domain \mathbf{R}_{++} exp(u), which is e^u , with domain \mathbf{R}

You may also use addition, subtraction, scalar multiplication, and any constant functions. Assume that DCP is sign-sensitive, *e.g.*, square(u) increasing in u when $u \ge 0$. Please only write down your composition. No justification is required.

Solution. We can write the function as

The atom \log_sum_exp is jointly convex on its domain (\mathbf{R}^n) and increasing in its arguments, so composition with any demonstrably convex function is valid. As sqrt(y) is concave and positive, the composition $inv_pos(sqrt(u))$ is DCP convex. The full composition is thus DCP convex.

Note that you may *not* write

because the square root command sqrt() does not guarantee convexity, and so while these are equivalent functions, this is not DCP. For similar reasons, replacing the quad_over_lin commands with terms such as $(a' * x)^2 / (c' * x - d)$ will fail.