Midterm Quiz Solutions

1. Convexity of some sets. Determine if each set below is convex.
(a) $\left\{(x, y, z) \in \mathbf{R}^{3} \left\lvert\,\left[\begin{array}{ll}x & y \\ y & z\end{array}\right] \succeq 0\right.\right\}$
\square convex \square not convex
(b) $\left\{(x, y, z) \in \mathbf{R}^{3} \mid x z-y^{2} \geq 0, x \geq 0, z \geq 0\right\}$
convexnot convex
(c) $\left\{(x, y, z) \in \mathbf{R}^{3} \mid x z-y^{2} \geq 0\right\}$
convex \square not convex
(d) $\left\{(x, y, z) \in \mathbf{R}^{3} \left\lvert\, \frac{y^{2}}{z} \geq x\right., z<0, x \leq 0\right\}$

■ convexnot convex

Solution.

(a) Convex. The given set is \mathbf{S}_{+}^{2}.
(b) Convex. The given set is again \mathbf{S}_{+}^{2}, which we find by taking a determinant.
(c) Not convex. The given set is the union $\mathbf{S}_{+}^{2} \cup \mathbf{S}_{-}^{2}$, where $\mathbf{S}_{-}^{2}=\left\{X \in \mathbf{S}^{2} \mid X \preceq 0\right\}$. Take convex combinations of the vectors $(1,0,0)$ and $(0,0,-1)$.
(d) Convex. The given set is

$$
\left\{(x, y, z) \left\lvert\,\left[\begin{array}{cc}
x & y \\
y & z
\end{array}\right] \preceq 0\right., z<0\right\},
$$

which again we obtain by taking determinants.
2. Curvature of some functions. Determine the curvature of the functions below.
(a) $f(x)=\max \left\{2, x, 1 / \sqrt{x}, x^{3}\right\}$, with $\operatorname{dom} f=\mathbf{R}_{+}$

- convexconcaveaffineneither
(b) $f(x, t)=\frac{\|x\|^{14}}{t^{13}}$ with $\operatorname{dom} f=\left\{x \in \mathbf{R}^{n}, t>0\right\}$
\square convex \square concaveaffineneither
(c) $f(x)=(1 / 2) x^{2}-(1 / 12) x^{4}$, with $\operatorname{dom} f=\mathbf{R}$convexconcaveaffine
neither
(d) $f(x, y, z)=\log \left(y \log \frac{z}{y}-x\right)+\log (z y)$, with $\operatorname{dom} f=\left\{(x, y, z) \in \mathbf{R} \times \mathbf{R}_{++}^{2} \mid y e^{x / y}<z\right\}$convex
- concaveaffineneither

Solution.

(a) Convex. The maximum of convex functions is convex, and x^{3} and $1 / \sqrt{x}$ are convex over $x \geq 0$.
(b) Convex. This is the perspective transform of $g(x)=\|x\|^{14}$, which is convex.
(c) Neither. We have $f^{\prime}(x)=x-(1 / 3) x^{3}$ and $f^{\prime \prime}(x)=1-x^{2}$, so $f^{\prime \prime}(x) \geq 0$ for $|x| \leq 1$ while $f^{\prime \prime}(x)<0$ for $|x|>1$.
(d) Concave. The function $h(t)=\log t$ is concave and monotone on $t>0$, and $g(y, z)=y \log \frac{y}{z}$ is convex (it is the perspective of $y \log y$) on $y, z>0$, so $c(x, y, z)=\log (-x-g(y, z))$ is concave on $g(y, z)+x<0$ by composition rules. $\log z+\log y$ is obviously concave.
3. Convexity of some sets of positive semidefinite matrices. In each part of the question, n, k are fixed numbers with $k<n$. Determine if each set below is convex.
(a) $\left\{A \in \mathbf{S}_{+}^{n} \mid \boldsymbol{\operatorname { R a n k }}(A) \geq k\right\}$, where $k<n$.
(b) $\left\{A \in \mathbf{S}_{+}^{n} \mid \operatorname{Rank}(A) \leq k\right\}$, where $k<n$.
(c) $\left\{A \in \mathbf{S}_{+}^{n} \mid \operatorname{Rank}(A)=n\right\}$.
(d) $\left\{C \in \mathbf{S}_{++}^{n} \mid A-B^{T} C^{-1} B \succeq 0\right\}$ where A, B are fixed matrices of appropriate size.

Solution.
(a) Convex. As in the homework (book exercise 2.13), the convex combination of any two matrices $A, B \in \mathbf{S}_{+}^{n}$ with $\min \{\operatorname{Rank}(A), \boldsymbol{\operatorname { R a n k }}(B)\} \geq k$ satisfies $\boldsymbol{\operatorname { R a n k }}(\theta A+(1-\theta) B) \geq$ k.
(b) Not convex. Let e_{i} be the standard basis vectors, and set $A=\sum_{i=1}^{k} e_{i} e_{i}^{T}$ and $B=$ $\sum_{i=2}^{k+1} e_{i} e_{i}^{T}$. Then $\boldsymbol{\operatorname { R a n k }}(A)=\boldsymbol{\operatorname { R a n k }}(B)=k$, while $\boldsymbol{\operatorname { R a n k }}((A+B) / 2)=k+1>k$.
(c) Convex. For any full rank $A, B \in \mathbf{S}_{+}^{n}$, we have $A \succ 0$ and $B \succ 0$, so this set is simply \mathbf{S}_{++}^{n}.
(d) Convex. By Schur complements, this is

$$
\left\{C \in \mathbf{S}_{++}^{n} \left\lvert\,\left[\begin{array}{cc}
A & B \\
B^{T} & C
\end{array}\right] \succeq 0\right.\right\} .
$$

4. $D C P$ rules. The function

$$
f(x)=\log \left(\exp \left(\frac{\left(a^{T} x\right)^{2}}{c^{T} x-d}\right)+\exp \left(\left(c^{T} x-d\right)^{-1 / 2}\right)\right)
$$

is convex in x over $\left\{x \in \mathbf{R}^{n} \mid c^{T} x-d>0\right\}$. Express f using disciplined convex programming (DCP), limited to the following atoms:
inv_pos(u), which is $1 / u$, with domain \mathbf{R}_{++}
square(u), which is u^{2}, with domain \mathbf{R}
sqrt(u), which is \sqrt{u}, with domain \mathbf{R}_{+}
geo_mean (u), which is $\left(\prod_{i=1}^{n} u_{i}\right)^{1 / n}$, with domain \mathbf{R}_{+}^{n}
quad_over_lin(u, v), which is u^{2} / v, with domain $\mathbf{R} \times \mathbf{R}_{++}$
$\log _{\text {_sum_exp }}(\mathrm{u})$, which is $\log \left(\sum_{i=1}^{n} \exp \left(u_{i}\right)\right)$, with domain \mathbf{R}^{n}.
$\log (u)$, which is $\log u$, with domain \mathbf{R}_{++}
$\exp (u)$, which is e^{u}, with domain \mathbf{R}
You may also use addition, subtraction, scalar multiplication, and any constant functions. Assume that DCP is sign-sensitive, e.g., square (u) increasing in u when $u \geq 0$. Please only write down your composition. No justification is required.
Solution. We can write the function as

```
log_sum_exp((quad_over_lin(a' * x, c' * x - d)),
    inv_pos(sqrt(c' * x - d)))
```

The atom log_sum_exp is jointly convex on its domain $\left(\mathbf{R}^{n}\right)$ and increasing in its arguments, so composition with any demonstrably convex function is valid. As sqrt (y) is concave and positive, the composition inv_pos (sqrt (u)) is DCP convex. The full composition is thus DCP convex.

Note that you may not write

```
log_sum_exp((quad_over_lin(a' * x, c' * x - d)),
    sqrt(inv_pos(c' * x - d)))
```

because the square root command sqrt() does not guarantee convexity, and so while these are equivalent functions, this is not DCP. For similar reasons, replacing the quad_over_lin commands with terms such as $\left(\mathrm{a}^{\prime} * \mathrm{x}\right)^{\wedge} 2 /\left(c^{\prime} * \mathrm{x}-\mathrm{d}\right)$ will fail.

