Name: _____

SUID: _

Midterm Quiz

This is a 75 minute, closed notes, closed book midterm. Each question is worth 20 points. In questions 1–3, we will award 5 points per part for correct responses, and 2 points for parts left blank. For question 4, we'll award some credit to partially correct responses. No justification is required for any of these questions, however.

By taking this quiz you're agreeing to respect the honor code. Good luck!

- 1. Convexity of some sets. Determine if each set below is convex.
 - (a) $\left\{ (x, y, z) \in \mathbf{R}^3 \mid \begin{bmatrix} x & y \\ y & z \end{bmatrix} \succeq 0 \right\}$
 - \square convex \square not convex
 - (b) $\{(x, y, z) \in \mathbf{R}^3 \mid xz y^2 \ge 0, x \ge 0, z \ge 0\}$
 - \square convex \square not convex
 - (c) $\{(x, y, z) \in \mathbf{R}^3 \mid xz y^2 \ge 0\}$
 - \square convex \square not convex
 - (d) $\{(x, y, z) \in \mathbf{R}^3 \mid \frac{y^2}{z} \ge x, z < 0, x \le 0\}$
 - \square convex \square not convex
- 2. Curvature of some functions. Determine the curvature of the functions below. For affine functions (which are both convex and concave), select only the 'affine' box. If a function is neither convex nor concave, select 'neither'.
 - (a) $f(x) = \max\{2, x, 1/\sqrt{x}, x^3\}$, with **dom** $f = \mathbf{R}_+$
 - \square convex \square concave \square affine \square neither
 - (b) $f(x,t) = \frac{\|x\|^{14}}{t^{13}}$ with $\operatorname{dom} f = \{x \in \mathbf{R}^n, t > 0\}$
 - \Box convex \Box concave \Box affine \Box neither
 - (c) $f(x) = (1/2)x^2 (1/12)x^4$, with **dom** $f = \mathbf{R}$
 - \square convex \square concave \square affine \square neither
 - (d) $f(x, y, z) = \log(y \log \frac{z}{y} x) + \log(zy)$, with $\operatorname{dom} f = \{(x, y, z) \in \mathbf{R} \times \mathbf{R}_{++}^2 \mid ye^{x/y} < z\}$

- 3. Convexity of some sets of positive semidefinite matrices. In each part of the question, n, k are fixed numbers with k < n. Determine if each set below is convex.
 - (a) $\{A \in \mathbf{S}^n_+ \mid \mathbf{Rank}(A) \ge k\}$, where k < n.
 - \square convex \square not convex
 - (b) $\{A \in \mathbf{S}^n_+ \mid \mathbf{Rank}(A) \le k\}$, where k < n.
 - \square convex \square not convex
 - (c) $\{A \in \mathbf{S}^n_+ \mid \mathbf{Rank}(A) = n\}.$
 - \square convex \square not convex
 - (d) $\{C \in \mathbf{S}_{++}^n \mid A B^T C^{-1} B \succeq 0\}$ where A, B are fixed matrices of appropriate size.
 - \Box convex \Box not convex
- 4. DCP rules. The function

$$f(x) = \log\left(\exp\left(\frac{(a^T x)^2}{c^T x - d}\right) + \exp\left((c^T x - d)^{-1/2}\right)\right)$$

is convex in x over $\{x \in \mathbf{R}^n \mid c^T x - d > 0\}$. Express f using disciplined convex programming (DCP), limited to the following atoms:

inv_pos(u), which is 1/u, with domain \mathbf{R}_{++}

square(u), which is u^2 , with domain R

sqrt(u), which is \sqrt{u} , with domain \mathbf{R}_+

geo_mean(u), which is $(\prod_{i=1}^n u_i)^{1/n}$, with domain \mathbf{R}_+^n

quad_over_lin(u,v), which is u^2/v , with domain $\mathbf{R} \times \mathbf{R}_{++}$

 $\log_{\sup}\exp(\mathbf{u})$, which is $\log(\sum_{i=1}^{n}\exp(u_i))$, with domain \mathbf{R}^n .

 $\log(\mathbf{u})$, which is $\log u$, with domain \mathbf{R}_{++}

 $\exp(\mathbf{u})$, which is e^u , with domain \mathbf{R}

You may also use addition, subtraction, scalar multiplication, and any constant functions. Assume that DCP is sign-sensitive, e.g., square(u) increasing in u when $u \geq 0$. Please only write down your composition. No justification is required.