Name: \qquad SUID: \qquad

Midterm Quiz

This is a 1 hour, closed notes, closed book midterm. Each problem is worth 12 points. In questions 1 and $3-5$, you will be awarded 4 points per part for a correct response, and 2 points for parts left blank. No justification is required for these questions, however. For question 2, we'll award some credit to partially correct responses.

By taking this quiz you're agreeing to respect the honor code. Good luck!

1. True or false. Write \mathbf{T} or \mathbf{F} if each statement is true or false. Suppose that $f, g: \mathbf{R}^{n} \rightarrow \mathbf{R}$ and $\phi: \mathbf{R} \rightarrow \mathbf{R}$ are given functions.
(a)__ If f, g are convex, then $h(x, y)=(f(x)+g(y))^{2}$ is convex.
(b) ___ If f, ϕ are convex, differentiable, and $\phi^{\prime}>0$, then $\phi(f(x))$ is convex.
(c) __ If f, g are concave and positive, then $\sqrt{f(x) g(x)}$ is concave.
2. $D C P$ rules. The function $f(x, y)=-1 /(x y)$ with $\operatorname{dom} f=\mathbf{R}_{++}^{2}$ is concave. Briefly explain how to represent it, using disciplined convex programming (DCP), limited to the atoms $1 / u, \sqrt{u v}, \sqrt{v}, u^{2}, u^{2} / v$, addition, subtraction, and scalar multiplication. Justify any statement about the curvature, monotonicity, or other properties of the functions you use. Assume these atoms take their usual domains (e.g., \sqrt{u} has domain $u \geq 0$), and that DCP is sign-sensitive (e.g., u^{2} / v is increasing in u when $u \geq 0$).
3. Curvature of some functions. Determine the curvature of the functions below.
(a) the product $f(u, v)=u v$, with $\operatorname{dom} f=\mathbf{R}^{2}$ convexconcaveneither
(b) the function $f(x, u, v)=\log \left(v-x^{T} x / u\right)$, with $\operatorname{dom} f=\left\{(x, u, v) \mid u v>x^{T} x, u>0\right\}$convexconcaveneither
(c) the 'exponential barrier' of polyhedral constraints

$$
f(x)=\sum_{i=1}^{m} \exp \left(\frac{1}{b_{i}-a_{i}^{T} x}\right)
$$

with $\operatorname{dom} f=\left\{x \mid a_{i}^{T} x<b_{i}, i=1, \ldots, m\right\}$, and $a_{i} \in \mathbf{R}^{n}, b \in \mathbf{R}^{m}$convexconcaveneither
4. Convexity of some sets. Determine if each set is necessarily convex.
(a) $\left\{P \in \mathbf{R}^{n \times n} \mid x^{T} P x \geq 0\right.$ for all $\left.x \succeq 0\right\}$convexnot convex
(b) $\left\{(u, v) \in \mathbf{R}^{2} \mid \cos (u+v) \geq \sqrt{2} / 2, u^{2}+v^{2} \leq \pi^{2} / 4\right\} \quad$ (Hint: $\cos (\pi / 4)=\sqrt{2} / 2$)convexnot convex
(c) $\left\{x \in \mathbf{R}^{n} \mid x^{T} A^{-1} x \geq 0\right\}$, where $A \prec 0$.convexnot convex
5. DCP compliance. Determine if each expression below is (sign-sensitive) DCP compliant, and check the applicable box.
(a) $\operatorname{sqrt}(1+4 * \operatorname{square}(x)+16 * \operatorname{square}(y))$ DCP convex $\quad \square$ DCP concave $\quad \square$ not compliant
(b) $\min (x, \log (y))-\max (y, z)$DCP convexDCP concavenot compliant
(c) $\log (\exp (2 * x+3)+\exp (4 * y+5))$ \square DCP convexDCP concavenot compliant

