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PREFACE 

In preparing the second edition of this book, the changes have been motivated 
by the desire to make this edition a more application-oriented book than the 
first one in order to better address the needs of the readers seeking solutions 
to heat conduction problems without going through the details of various 
mathematical proofs. Therefore, emphasis is placed on the understanding and 
use of various mathematical techniques needed to develop exact, approximate, 
and numerical solutions for a broad class of heat conduction problems. Every 
effort has been made to present the material in a clear, systematic, and readily 
understandable fashion. The book is intended as a graduate-level textbook for 
use in engineering schools and a reference book for practicing engineers, 
scientists and researchers. To achieve such objectives, lengthy mathematical 
proofs and developments have been omitted, instead examples are used to 
illustrate the applications of various solution methodologies. 

During the twelve years since the publication of the first edition of this book, 
changes have occurred in the relative importance of some of the application 
areas and the solution methodologies of heat conduction problems. For example, 
in recent years, the area of inverse heat conduction problems {IHCP) associated 
with the estimation of unknown thermophysical properties of solids, surface 
heat transfer rates, or energy sources within the medium has gained significant 
importance in many engineering applications. To answer the needs in such 
emerging application areas, two new chapters are added, one on the theory and 
application of IHCP and the other on the formulation and solution of moving 
heat source problems. In addition, the use of enthalpy method in the solution 
of phase-change problems has been expanded by broadening its scope of applica-
tions. Also, the chapters on the use of Duhamel's method, Green's function, and 

XV 



xvi 	PREFACE 

finite-difference methods have been revised in order to make them application-
oriented. Green's function formalism provides an efficient, straightforward 
approach for developing exact analytic solutions to a broad class of heat 
conduction problems in the rectangular, cylindrical, and spherical coordinate 
systems, provided that appropriate Green's functions are available. Green's 
functions needed for use in such formal solutions are constructed by utilizing the 
tabulated eigenfunctions, eigenvalues and the normalization integrals presented 
in the tables in Chapters 2 and 3. 

Chapter I reviews the pertinent background material related to the heat 
conduction equation, boundary conditions, and important system parameters. 
Chapters 2, 3, and 4 are devoted to the solution of time-dependent homogeneous 
heat conduction problems in the rectangular, cylindrical, and spherical coordi-
nates, respectively, by the application of the classical method of separation of 
variables and orthogonal expansion technique. The resulting eigenfunctions, 
eigenconditions, and the normalization integrals are systematically tabulated 
for various combinations of the boundary conditions in Tables 2-2,2-3,3-1, 3-2, 
and 3-3. The results from such tables are used to construct the Green functions 
needed in solutions utilizing Green's function formalism. 

Chapters 5 and 6 are devoted to the use of Duhamel's method and Green's 
function, respectively. Chapter 7 presents the use of Laplace transform technique 
in the solution of one-dimensional transient heat conduction problems. 

Chapter 8 is devoted to the solution of one-dimensional, time-dependent heat 
conduction problems in parallel layers of slabs and concentric cylinders and 
spheres. A generalized orthogonal expansion technique is used to solve the 
homogeneous problems, and Green's function approach is used to generalize the 
analysis to the solution of problems involving energy generation. 

Chapter 9 presents approximate analytical methods of solving heat con-
duction problems by the integral and Galerkin methods. The accuracy of 
approximate results are illustrated by comparing with 'the exact solutions. 
Chapter 10 is devoted to the formulation and the solution of moving heat 
source problems, while Chapter 11 is concerned with the exact, approximate, and 
numerical methods of solution of phase-change problems. 

Chapter 12 presents the use of finite difference methods for solving the steady-
state and time-dependent heat conduction problems. Chapter 13 introduces the 
use of integral transform technique in the solution of general time-dependent 
heat conduction equations. The application of this technique for the solution 
of heat conduction problems in rectangular, cylindrical, and spherical 
coordinates requires no additional background, since all basic relationships 
needed for constructing the integral transform pairs have already been developed 
and systematically tabulated in Chapters 2 to 4. Chapter 14 presents the 
formulation and methods of solution of inverse heat conduction problems and 
some background information on statistical material needed in the inverse 
analysis. Finally, Chapter 15 presents the analysis of heat conduction in 
anisotropic solids. A host of useful information, such as the roots of 

PREFACE 	xvii 

transcendental equations, some pro p,rties of Bessel functions, and the numerical 
values of Bessel functions and Legendre polynomials are included in Appendixes 

IV and V for ready reference. 
I would like to express my thanks to Professors J. P. Bardon and Y. Jarny 

of University of Nantes, France, J. V. Beck of Michigan State University, and 
Woo Seung Kim of Hanyang University, Korea, for valuable discussions and 

suggestions in the preparation of the second edition. 

Raleigh, No•ili Carolina 
December 1992 

M. NI:c .,%ri ozi!;n: 
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1 
HEAT CONDUCTION 
FUNDAMENTALS 

The energy given up by the constituent particles such as atoms, molecules, or 
free electrons of the hotter regions of a body to those in cooler regions is called 
heat. Conduction is the mode of heat transfer in which energy exchange takes 
place in solids or in fluids in rest (i.e., no convective motion resulting from the 
displacement of the macroscopic' portion of the medium) from the region of 
high temperature to the region of low temperature due to the presence of 
temperature gradient in the body:-The-heat-flow-cannot-be-measured_directly, 	  
but the concept has physical meaning because it is related to the measurable 
scalar quantity called temperature. Therefore, once the temperature distribution 
T(r, t) within a body is determined as a function of position and time, then the 
heat flow in the body is readily computed from the laws relating heat flow to 
the temperature gradient. The science of heat conduction is principally concerned 
with the determination of temperature distribution within solids. In this chapter 
we present the basic laws relating the heat flow to the temperature gradient in 
the medium, the differential equation of heat conduction governing the tempe-
rature distribution in solids, the boundary conditions appropriate for the analysis 
of heat conduction problems, the rules of coordinate transformation needed to 
write the heat conduction equation in different orthogonal coordinate systems, r-
and a general discussion of various methods of solution of the heat conduction 
equation. 

1-1 THE HEAT FLUX 

The basic law that gives the relationship between the heat flow and the tempera- 
ture gradient, based on experimental observations, is generally named after the 
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FTe-hch mathematical - physicist -Joseph- Fourier [I], who used it in his analytic 
theory of heat. For a homogeneous, isotropic solid (i.e., material in which 
thermal conductivity is independent of direction) the Fourier law is given in the 
form 

q(r, r) = — kVT(r. r) W/m 2 	 (1-1) 

----where-the- temperature gradient is a vector normal to the isothermal surface, 
the heat flux rector q{r, t) represents heat flow per unit time, per unit area of 
the isothermal surface in the direction of the decreasing temperature, and k is 
called the thermal conductivity of the material which is a positive, scalar quantity. 
Since the heat flux vector q(r, t) points in the direction of decreasing temperature, 
the minus sign is included in equation (1-1) to make the heat flow a positive 
quantity. When the heat flux is in W/m2  and the temperature gradient in °C/m, 
the thermal conductivity k has units W/(rn•°C). In the rectangular coordinate 
system, for example, equation (1-1) is written as 

a 	OT 
g(x,y,z,r)= 	

DT 
jk—kk

T
- 

ax 	ay 	az 

where 1,1, and k are the unit direction vectors along the x, y, and z directions, 
respectively. Thus, the three components of the heat flux vector in the x, y, and 
z directions are given, respectively, by 

aT 
q, 	k 

ax 
DT 

qr= k and 	(L.= — k DT 
ez 

(1-3a,b,c) 

Clearly, the heat flow rate for a given temperature gradient is directly pro-
portional to the thermal conductivity k of the material. Therefore, in the analysis 
of heat conduction, the thermal conductivity of the material is an important 
property, which controls the rate of heat flow in the medium. There is a wide 
difference in the thermal conductivities of various engineering materials. The 
highest value is given by pure metals and the lowest value by gases and vapors; 
the amorphous insulating materials and inorganic liquids haye thermal conduc-
tivities that lie in between. To give some idea of the order of magnitude of thermal 
conductivity for various materials, Fig. 1-1 illustrates the typical ranges. Thermal 
conductivity also varies with temperature. For most pure metals it decreases with 
temperature, whereas for gases it increases with increasing temperature. For most 
insulating materials it increases with increasing temperatures. Figure 1-2 illus-
trates the effect of temperature on thermal conductivity of materials. At very low 
temperature approaching absolute zero, thermal conductivity first increases 
rapidly and then exhibits a sharp descent as shown in Fig. 1-3. A comprehensive 
compilation of thermal conductivities of materials may be found in references 2-4. 

THE DIFFERENTIAL. EQUATION OF HEAT CONDUCTION 	3 

We present in Appendix I the thermal conductivity of typical engineering 
materials together with the specific heat C p, density p, and the thermal diffusi-

vity a. 

1-2 THE DIFFERENTIAL EQUATION OF HEAT CONDUCTION 

We now derive the differential equation of heat conduction for a stationary, 
homogeneous, isotropic solid with heat generationwithin the body. Heat genera-
tion may he due to nuclear, electrical, chemical, y-ray, or other sources that may 
be a function of time and/or position. The heat generation rate in the medium, 
generally specified as heat generation per unit time, per unit volume, is denoted 
by the symbol g(r,t), and if SI units are used, is given in the units W/m3. 

We consider the energy-balance equation for a small control volume V, 

illustrated in Fig. 1-4, stated as 

	

[Rate of heat entering through 	rate of energy 	[rate of storage] (1-4) 

	

the bounding surfaces of V 	generation in V 	of energy in V 

(1-2) 
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where A is the surface area of the volume element V, ft is the outward-drawn 
normal unit vector to the surface element dA, q is the heat flux vector at dA; here, 
the minus sign is included to ensure that the heat flow is into the volume element 
V, and the divergence theorem is used to convert the surface integral to volume 
integral. The remaining two terms are evaluated as 

(R-ate-ofenergy-, generation 	g(r, t) drr 	 (1 -5b) 
J v 

f (Rate of energy storage in V) = 
v 

pCp
t3 7- 

at
(r, t) 

du (1-5c) 

r 
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6 HEAT CONDUCTION FUNDAMENTALS 

Fig. 1-4 Nomenclature for the derivation of heat conduction equation. 

The substitution of equations (1-5) into equation (1-4) yields 

1. T(r, t) 
[ — V - q(r, t) g(r, t) pC p 	dtt — 0 

at 
(1-6) 

Equation (1-6) is derived for an arbitrary small-volume element V within the 
solid; hence the volume V may be chosen so small as to remove the integral. We 
obtain 

— V. q(r, t) g(r, t) = pCp 
 T(r, t) 

at 

Substituting q(r, t) from equation (1-I) into equation (1-7), we obtain the differen-
tial equation of heat conduction for a stationary, homogeneous, isotropic solid 
with heat generation within the body as 

[kV-T(r, 	g(r, 	Cr, 
 T(

t

r, t) 

	

(4-8) 	 
a 

This equation is intended for temperature or space dependent k as well as 
temperature dependent Cr,. When the thermal conductivity is assumed to be 
constant (i.e., independent of position and temperature), equation (1-8) simplifies 
to 

• Ig(a. 
I aT(r ) 

,V 2 T(r, t) 
k

r t) 
at 

where 

CARTESIAN, CYLINDRICAL, AND SPHERICAL COORDINATE SYSTEMS 	7 

TABLE 1-1 	Effect of Thermal Diffusivity on the Rate of Heat Propagation 

Material Silver Copper Steel Glass Cork 

a x 106  m2/s 
Time 

170 
9.5 min 

103 
16.5 min 

12.9 
2.2 h 

0.59 
2.00 days 

0.155 
7.7 days 

For a medium with constant thermal conductivity and no heat generation, 
equations (1-9) become the diffusion or the Fourier equation 

T(r, t)
a 	at 

DT(r,  I) 
(1-10) 

Here, the thermal diffusivity a is the property of the medium and has a dimension 
. of length2/time, which may be given in the units m2/h or m2/s. The physical 
significance of thermal diffusivity is associated with the speed of propagation of 
heat into the solid during changes of temperature with time. The higher the 
thermal diffusivity, the laster is the propagation of heat In the medium. This 
statement is better understood by referring to the following specific heat conduc-
tion problem: Consider a semiinfinite medium, x 0, initially at a uniform 
temperature. M. For times t > 0, the boundary surface at x = 0 is kept at zero 
temperature. Clearly, the temperature in the body will vary with position and 
time. Suppose we are interested in the time required for the temperature to 
decrease from its initial value To  to half of this value, 17'0, at a position, say, 
30cm from the boundary surface. Table 1-1 gives the time required for several 
different materials. It is apparent from these results that the larger the thermal 
diffusivity, the shorter is the time required for the applied heat to penetrate into 
the depth of the solid. 

1-3 HEAT CONDUCTION EQUATION IN CARTESIAN, 
CYLINDRICAL, AND SPHERICAL COORDINATE SYSTEMS 

The first step in the analytic solution of a heat conduction problem for a given 
region is to choose an orthogonal coordinate system such that its coordinate 
surfaces coincide with the boundary surfaces of the region. For example, the 
rectangular coordinate system is used for rectangular bodies, the cylindrical and 
the spherical coordinate systems are used for bodies having shapes such as cylinder 
and sphere, respectively, and so on. Here we present the heat conduction 
equation for an homogeneous, isotropic solid in the rectangular, cylindrical, and 
spherical coordinate systems. 

Equations (1-8) and (1-9) in the rectangular coordinate system (x, y, z), respec-
tively, become 

(1-7) 

(1••9a) 

a = —
k 

= thermal diffusivity 
PC,, 

(1-9b) 

ax (

kaT)+ a ( kan a ( Lan aT 

ax) ay)+-FA' az ) 4. g PL*P  at 
(1-11a) 
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32T (32T a2T 1 	1 aT 
axe + 	 — a at 
	 (1-11b) 

Figure. l-5a,b show the coordinate axes for the cylindrical (r, 0, z) and the 
spherical (r, 0, 8) coordinate systems. In the cylindrical coordinate system equa-
tions (1-8) and (1-9), respectively, become 

I 0 ( kraT) + I 0 ( k aT\ + a k OT) g  = pc, aT 
r 	Or 	r2 	(3( ) az 	az ) 	at 

I a f r 	+ 1 82T 02T 1 	I aT 
\V: 	(.22rk 	r2 ao2+  az2 + kg   a at 

= 
z 

(a)  

(b)  

Fig. 1-5 (a) Cylindrical coordinate system (r, z); (b) Spherical coordinate system (r, 0). 

HEAT CONDUCTION EQUATION 

and in the spherical coordinate system they take the form 

	

1 a ( 2  al 	I 	a ( . OT) 	1 	a ( OT 
- - kr --- + - ,- - : = k s in 0 — + -2sr fi-i-2-6 43-6-19  k 4  - F g = p C aT  
r2  dr 	dr 	rh sin -0 dti 	ao 	 9  at 

(1-13a) 

	

r` Or r Or 	r' sin o 30 	
u 
 a0 	r2  sin' 0 O4'2 k g ~ a at 

	

a ( 2 aT) 	1 	 1 	027' 1 	OT 

	

— 	- sin — 

	 (1-13b) 

1-4 HEAT CONDUCTION EQUATION IN OTHER 
ORTHOGONAL COORDINATE SYSTEMS 

In this book we shall be concerned particularly with the solution of heat conduc-
tion problems in the rectangular, cylindrical, and spherical coordinate systems; 
therefore, equations needed for such purposes are immediately obtained from 
equations (1-11)-(1-13) given above. The heat conduction equations in other 
orthogonal curvilinear coordinate systems (i.e., a coordinate system in which the 
coordinate lines intersect each other at right angles) are readily obtained by the 
coordinate transformation. Here we present a brief discussion of the transforma-
tion of the heat conduction equation into a general orthogonal curvilinear coordi-
nate system. The reader is referred to references 5-7 for further details. 

Let u, , u 2, and u3  be the three space coordinates, and ii1 ,112 , and fi3  he the unit 
direction vectors in the u l , u2, and u3  directions in a general orthogonal curvilinear 
coordinate system shown in Fig. 1-6. A differential length dS in the rectangular 
coordinate system (x, y, z) is given by 

(dS)2  = (dx)2 (dy)2  k (dz)2 	 (1-14) 

113 

X -  - -7, 
I 

- 

/ ds 

i f  a, du3  

- as  du2 

0 
	

If 2 

Fig. 1-6 A differential length ds in a curvilinear coordinate system (u 1 , u2 , u3). 



i= 1,2,3 	 (1-21) 

coordinates are given by 

I DT 
q1 = — K- 

ct Dui  

3  DX 
dx = E -du, 

au, 

± ay ay= L —
, 

 
=1 ell; 

 
dz = E aZ 

 dui 
1= 1 C:111 

(1-17) (dS)2  = a2,(du,)2  4(du2)2  + 4(43)2  

= 1, 2, 3 	(1-18) 
ox  )2 ( u

u, 

 ) 2 ( az  )2 
2 = (_.

u, a  

(1-20) 
3 	I DT 

q 	kVT= k 7 CI;  — 
i= 	a, au, 
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Let the functional relationship between orthogonal curvilinear coordinates 
(a„, u2,1/3) and the rectangular coordinates (x, y, z) be given as 

x = X(u 	u ). 	y = Y(111. 112, 113) 	and 	z = Z(u,,u2,u3) 	(1-15) 

Then, the differential lengths dx,dy, and dz are obtained from equations (1-15) by 
differentiation 

Substituting equations (1-16) into equation (1-14), and noting that the dot products 
must be zero when 11,, u2, and a3  are mutually orthogonal yields the following 
expression for the differential length dS in the orthogonal curvilinear coordinate 
system u, ,u2, a3  

where 

Here, the coefficients a1 ,a2, and a 3  are called the scale factors, which may be 
constants or functions of the coordinates. Thus, when the functional relationship 
between the rectangular and the orthogonal curvilinear system is available [i.e., 
as in equation (1-15)], then the scale factors a;  are evaluated by equation (1-18). 

Once the scale factors are known, the gradient of temperature in the ortho-
gonal curvilinear coordinate system (a , 	a 1) is given by 

1 OT 	l OT 	1 07' 
VT= 6,--- ---- +A,— 	+ 	 (1-19) 

a, au, 	 a3  0113  

The expression defining the heat flux vector q becomes 

and the three components of the heat flux vector along the u, , a2, and a3  

The divergence of the heat flux vector q in the orthogonal curvilinear coordinate 
system (a, , u2, u„) is given by 

(O 	1'2-611) + —T112 ) + -T(h)1 aL Di / 1 \a, 	au, a, 	au, a, 

Where 

a = al a2a, 	 (1-22b) 

The differential equation of heat conduction in a general orthogonal curvilinear 
coordinate system is now obtained by substituting the results given by equations 
(1-21) and (1-22) into equation (1-7) 

al_au l  

DT) + 0 ( k  a On+  a (ka DT \-1 

al 010 	au, 	(4 0112) 	Du, 	4 au, 

g  pc, aT 

P  at 
(1-23) 

The heat conduction equations in the cylindrical and spherical coordinates given 
previously by equations (1-12) and (1-13) are readily obtainable as special cases 
from the general equation (1-23) if the appropriate values of the scale factors are 
introduced. 

Length, Area, and Volume Relations 

In the analysis of heat conduction problems integrations are generally required 
over a length, an area, or a volume. If such an operation is to be performed in 
an orthogonal curvilinear coordinate system, expressions are needed for a dif-
ferential length dl, a differential area dA, and a differential volume dV. These 
relations are determined as now described. 

In the case of rectangular coordinate system, a differential volume element dV 
is given by 

dV = dx dydz 	 (I-24a) 

and the differential areas dA„,dAy, and dA, cut from the planes x = constant, 
y = constant, and z = constant are given, respectively, by 	• 

dAx = dy dz, 	dAy = dxdz, 	and 	dA = dxdy 	(1-24b) 

In the case of an orthogonal curvilinear coordinate system, the elementary 
lengths rill , dI2, and di, along the three coordinate axes u,, u2, and u3  are given, 

(1-22a) 

HEAT CONDUCTION EQUATION 	11 

tJ 
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Then, an elementary volume element dV is expressed as 

dV = a ,a,a, du, du2  dal, = a du, du, dui, 	where 	a a,a2a3 	(1-25b) 

The differential areas dA „ dA 2, and dA3  cut from the planes u, = constant, 
u, constant, and u3  = constant arc given, respectively, by 

dA = d12  d13  = a2a3  du, du3, 	dA2  = d1, d13  = a, a3  du, dui 	and 

respectively, by 

dl, = a, dui , 

Hence the scale factors for the cylindrical coordinate system become 

a, = 1, 	a = r, 	az = 1, 	and 	a = r 	(1-27a) 

and the three components of the heat flux are given as 

The scale factors a, ar, a, ao, and a3  = a, for the (r, 4,, z) coordinate system 
are determined by equation (1-18) as 

a a2  = (312  + (12  + 	= COS2  +s in' + 0 = 1 t =ar 
	 Or 

a, 2 

 ar 

a2 	r-c)2  + PI'  )2  + 	= (:r sin 0)2  + (r cos + o = r2  2 	- 0 	 a 	 ao  

Solution. The functional relationships between the coordinates (r, 4,, z) and the 
rectangular coordinates (x, y, z) are given by 

Let 

Example 1-1 

Determine the scale factors for the cylindrical coordinate system (r, 4,, z) and 
write the expressions for the heat flux components. 

• 

a23 a2  = a + (ala 
2 
 + (12  = + + 1  = 1  z 	Z 	z 	az 

dA3 = dl, d12  = a, a, du, du, 

OT 
q, — k — 

Or' 

at  r, 	u2 =4i, 	 and 	u3  =z 

x=rcosO, 	y=rsin4,, 	z=z 

k OT 

q̀ P  = 

dt, = a, du2, 	and 	d13  = a3  du, 

and 	q, = 	
Dz 	

(1-27b) 

(1-25c) 

(1-25a) 

(1-26) 
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Example 1-2 

Determine the scale factors for the spherical coordinate system (r, 0,0). 

Solution. The functional relationships between the coordinates (r,.(P, 0) and 
the rectangular coordinates (x, 	are given by 

x = r sin 0 cos 49, 	y = r sin 0 sin (1), 	z r cos 0 
Let 	 (1-28) 

ts, 	r, 	Li z 	ti), 	and 	t, 3 = 0 

Then, by utilizing equation (1-IB), the scale factors a, 	a„ a2 = a,p, and a3  a, 
are determined as 

az .= 
r = (sin 0 cos 0)2  + (sin 0 sin 0)2  + (cos 0)2  = 1 

a2 = az = r2 sin2  sin2  + r2  sin2  0 cos2  2 	# 	 + 0 = r2  sin2  0 

3 
2 = a2 = r2  cos' 0 cos2  + r2 cos2  0 sin20 r2 sia2 = r2 

" 

Hence the scale factors become 

	

a, = 1, 	ao  = r sin 0-, 	- 	= 	. and. 	a r2sin 0 ___(1 -29) 

1-5 GENERAL BOUNDARY CONDITIONS 

The differential equation of heat conduction will have numerous solutions unless 
a set of boundary conditions and an initial condition (for the time-dependent 
problem) are prescribed. The initial condition specifies the temperature distribu-
tion in the medium at the origin of the time coordinate (that is, t = 0), and the 
boundary conditions specify the temperature or the heat flow at the boundaries 
of the region. For example, at a given boundary surface, the temperature distribu-
tion may be prescribed, or the heat flux distribution may be prescribed, or there 
may be heat exchange by convection and/or radiation with an environment at 
a prescribed temperature. The boundary condition can be derived by writing an 
energy balance equation at the surface of the solid. 

We consider a surface element having an outward-drawn unit normal vector 
it, subjected to convection, radiation, and external heat supply as illustrated in 
Fig. 1-7. The physical significance of various heat fluxes shown in this figure is 
as follows. 

The quantity q„,, represents energy supplied to the surface, in Wini=, from an 
external source. 

The quantity a cony represents heat loss from the surface at temperature T by 
convection with a heat transfer coefficient It into an external ambient at a 
temperature Tx , and is given by 

g,„„, it(T — 	W /m 2 	 (1:30a) 
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qsup 

T,.. 

Qcony 

th:1.1 
gn 

Fig. 1-7 Energy balance at the surface of a solid. 

TABLE 1-2 Typical Values of the Convective Heat Transfer Coefficient h 

GENERAL BOUNDARY CONDITIONS 	15 

Here the heat transfer coefficient h varies with the type of flow (laminar, turbulent, 
etc.), the geometry of the body and flow passage area, the physical properties of 
the fluid, the average temperature, and many others. There is a wide difference 
in the range of values of the heat transfer coefficient for various applications. 
Table 1-2 lists the typical values of h, in W/m2°C, encountered in some applica-
tions. 

	

The quantity 11, 4,4  represents hc—gt. -lriss-frow-th-e-surfitcc-by-ntdia tion - in to- a n- 	 ..... . 

ambient at an effective temperature T,, and is given by 

grad = 60(T4  — 71) Winvz 	 (1-30b) 

where c is the emissivity of the surface and a is the Stefan-Boltzmann constant, 
that is, a = 5.6697 x 10-8  WArri2 . IC4). 

The quantity q,, represents the component of the conduction heat flux vector 
normal to the surface element and is 

h,111 Arriz °C) Typc of now 

Free Conoection. AT= 25°C 

0.25-rn vertical plate in 
Atmospheric air 
Engine oil 
Water 

0.02-m-OD horizontal cylinder in 
Atmospheric air 
Engine oil 
Water 

Forced Convection 

Atmospheric air at 25°C with U = 10 m/s over 
L= 0.1-m flat plate 

Flow at 5 m/s across I-cm-OD cylinder of 
Atmospheric air 
Engine oil 

Water flow at I kg/s inside 2.5-cm-ID tube 

of Wafer at 1 aim 

Pool boiling in a container 
Pool boiling at peak heat flux 
Film boiling 

Condensation of Steam at I atm 

Film condensation on horizontal tubes 
Film condensation on vertical surfaces 
Dropwise condensation 

q.=q-j1= — kVT A 	 (I-31a) 

For the Cartesian coordinates we have 

DT ,.DT 	OT 
VT=1+ j 

 
+k 

ax 	Oz 
(I-31b) 

= +14 + fd, 	 (I-31c) 

Introducing equations (1-31b,c) into (1-31a), the normal component of the heat 
flux vector at the surface becomes 

, DT aT , DT) 	, DT 
q„= — 1C(Ix—

xa 
+

, Dy
+ 1 — = —K- 

2  Dz 

where ix, and I. are the direction cosines (i.e., cosine of the angles) of the unit 
normal vector ñ with the x, y, and z coordinate axes, respectively. Similar expres-
sions can be developed for the cylindrical and spherical coordinate systems. 

To develop the boundary condition, we consider the energy balance at the 
surface as 

Heat supply = heal loss 
or 	 (1-33) 

q„+ gsup = gaa„„+ grad  

Introducing the expressions (1-30a,b) and (1-32) into (1-33), the boundary condi-
tion becomes 

aT 
k — q „ = h(T— Tj+ co-(r Tr') 

can s P  

(1-32) 

(1-34a) 

5 
37 

440 

8 
62 

741 

40 

85 
1,800 

10,500 

3,000 
35,000 

300 

9,000-25,000 
4,000-11,000 

60,000-120,000 
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which can be rearranged as 

k
OT 

+ hT + Ear = hT,,+ + Ear,' 
an 

where all the quantities on the right-hand side of equation (1-34b) are known 
and the surface temperature T is unknown. 

The general boundary condition given by equations (1-34) is nonlinear because 
it contains the fourth power of the unknown surface temperature T4. In addition, 
the absolute temperatures need to be considered when radiation is involved. If 
(IT — TM/T.« 1, the radiation term can be linearized and equation (1-34a) 
takes the form 

LINEAR BOUNDARY CONDITIONS 	17 

Here f(r, 0 is the prescribed heat flux, W/m2. The special case 

OT 0  

an 
on 	S 	 (1-37b) 

is called the homogeneous boundary condition of the second kind. 

3. Boundary Condition of the Third Kind. This is the convection boundary 
condition which is readily obtained from equation (I-35a) by setting the radiation 
term and the heat supply equal to zero, that is 

kLT 
+ hT= hTz(r, t) 

On 

(1-34b) 

on 	S 	 (1-38a) 

Co 

C 
rJ 
C 

r- 

— kL
T 

+ gs„
P 
 = h(T — T,,o ) + h,(T- Tr ) 

On  
(1-35a) 

where the heat transfer coefficient for radiation is defined as 

	

4EcrT,3 	 (I-35b) 

1-6 LINEAR BOUNDARY CONDITIONS 

In this book, for the analytic solution of linear heat conduction problems, we 
shall consider the following three different types of linear boundary conditions. 

1. Boundary Condition of the First Kind. This is the situation when the 
temperature distribution is prescribed at the boundary surface, that is 

T= f(r, t) 	on 	S 	 (1-36a) 

where the prescribed surface temperature f(r, t) is, in general, a function of 
position and time. The special case 

T=0 	on 	S 	 (I-36b) 

is called the homogeneous boundary condition of the first kind. 
2. Boundary Condition of the Second K ind. This is the situation in which the 

heat flux is prescribed at the surface, that is 

	

on 	S 	 (1-37a) 

where aT/On is the derivative along the outward drawn normal to the surface. 

where, for generality, the ambient temperature Tz(r, t) is assumed to be a function 
of position and time. The special case 

k—
T 
 hT = 0 
	

on 	S 	 (1-38b) 

is called the homogeneous boundary condition of the third kind. It represents 
convection into a medium at zero temperature. Clearly, the boundary conditions 
of the first and second kind are obtainable from the boundary condition of the 
third as special cases if k and h are treated as coefficients. For example, by setting 

k = 0 and T,D(r, t) t), equation (1-38a) reduces to equation (1-36a). Similarly, 

by setting hT„(r, t) = f (r, t) and then letting 1, = 0 on the left-hand side, equation 
(I-38a) reduces to equation (1-37a). 

4. Interface Boundary Condition. When two materials having different thermal 

conductivities k, and k2  are in imperfect contact and have a common boundary 
as illustrated in Fig. 1-8, the temperature profile through the solids experiences a 
sudden drop across the interface between the two materials. The physical signifi-
cance of this temperature drop is envisioned better if we consider an enlarged 
view of the interface as shown in this figure and note that actual metal-to-metal 
contact takes place at a limited number of spots and the void between them is 
filled with air, which is the surrounding fluid. As thermal conductivity of air is 
much smaller than that of metal, a steep temperature drop occurs across the gap. 
To develop the boundary condition for such an interface, we write the energy 
balance as 

(

Heat conduction) = 
thru. solid 1 

( heat transfer ) 	(heat conduction 
across the gap 	thru. 

= h (T1  — T2)1= 	kz ox 
T,  

(1-39a) 
solid 2 

(1-39b) 	  (7,  k, 

aT 
k 	f(r,t) 

an 



.. 

- 
(./ ---- 

.. 
1,000 - 

..--•""-. 
i 	

---- 

- /..." 

"2/ 
 

..- 	
T, = 93°C 

/ 
- / 
/ 

h •
  B

tu
1

0
 • f
tl•

°F
) 10,000 

G

- 

s 
-7 	4 
-6 
-5  

-4 

-3 

2 

1.000 

snow 
4 

4 204"C 	 0541419 (1° 	 - 3 

TLoxigOeSs  

2 

3 pm (120 pin) 
5s  

--------- 

10,000 

/7T, = 93°C 

75S-T6 Aluminum-to-aluminum Joint 
with air as interiteip4 fkijel 

-8  
- 7 
-6 

1000 
 10 	 20 30 

interface 
• 

x, 

Fig. 1-8 Boundary condition al the interface of two contacting surfaces. 

204°C 

iiauTgiar;;;;;077g Am (30 pin) 

93°C 

= 204"C 
C/ 

r

-----------------
- ----- 

----- [toughness •-• 2.54 pm (100 pin)

----- 

 

----- 

Stainless steel-to-stainless sled Joint 
with air as interracial fluid 

T, =93°C 

) 

) 

0 

h.
  B

tu
Al

i'
 1.0

 • ''F
 ) 

18 	HEAT CONDUCTION FUNDAMENTALS 

where subscript i denotes the inferface and h„ in W/(m2 -"C), is called the contact 
conductance for the interface. Equation (1-39b) provides two expressions for the 
boundary condition at the interface of two contacting solids, and it is generally 
called the interface boundary conditions. 

For the special case of petfrct thermal contact het ween the surfaces, we ha ye 
ex., and equation (1-39b) reduces to 

T1 = T2 

3T1 	OT, 
— 	= —1{. 2  

Ox 

where equation (1-40a) is the continuity of temperature, and equation (1-40b) is 
the continuity of heat flux at the interface. 

The experimentally determined values Of contact conductance for typical 
materials in contact can be found in references 8-10. The surface roughness, the 
interface pressure and temperature, thermal conductivities of the contacting 
metal and the type of fluid in the gap are the principal factors that affect contact 
conductance. 

TO illustrate the effects of various parameters such as the surface roughness, 
the interface temperature, the interface pressure, and the type of material, we 
present in Fig. I-9a,b the interface thermal contact conductance h for stainless 
steel-to-stainless steel and aluminum-to-aluminum joints. The results on these 
figures show that interface conductance increases with increasing interface pres-
sure, increasing interface temperature, and decreasing surface roughness. The 
interface conductance is higher with a softer material (aluminum) than with a 
harder material (stainless steel). 

LINEAR BOUNDARY CONDITIONS 	19 
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Fig. 1-9 Effects of interface pressure, contact temperature, and roughness on interface 

conductance h. (Based on data from reference 8). 
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The smoothness of the surface is another factor that affects contact conduc-
tance; a joint with a superior surface finish may exhibit lower contact conductance 
owing to waviness. The adverse effect of waviness can be overcome by introducing 
between the surfaces an interface shim from a soft material such as lead. 

Contact conductance also is reduced with a decrease in the ambient-air 
pressure, because the effective thermal conductance of the gas entrapped in the 
interface is lowered. 

Example 1-3 

Consider a plate subjected to heating at the rates of f, and f2, in W/m 2, at 
the boundary surfaces x = 0 and x L, respectively. Write the boundary 
conditions. 

TRANSFORMATION OF NONHOMOGENEOUS BOUNuAx 

and T, 2, with heat transfer coefficients h , and 11, .2 respectively, as illustrated 

in Fig. 1-10. Write the boundary conditions. 

Solution. The convection boundary condition is given by equation (1-38a) in 

the form 

OT 	• 
k — 11T 	at 	S 

On 

The outward-drawn normal at the boundary surfaces r = a and r — II are in 

the negative r and positive r directions. Hence the boundary condition (1-43) 

gives 

(1-43) 	- •- 

Sblutkm. The prescribed heat flux boundary condition is given by equation 
(I-37a) as 

ar 
k— = f on 

On (1-41) 

— 

OT 	, 
k— n,u2 .1 = 

Or 

at 	r = a 

at 	r = b 

(1-44a) 

(1-44b) 

The outward-drawn normal vectors at the boundary surfaces x = 0 and x = L 
are in the negative x and positive x directions, respectively. Hence the boundary 
conditions become 

— k =f2  
L aT 

OX 
	at 	x=0 
	

(1-42a) 

k --
aT

= f, 	at 	x=L 
	

(1-42b) Ox 

Example 1-4 

Consider a hollow cylinder subjected to convection boundary conditions at 
the inner r = a and outer r = b surfaces into ambients at temperatures T„, 

1-7 TRANSFORMATION OF NONHOMOGENEOUS BOUNDARY 
CONDITIONS INTO HOMOGENEOUS ONES 

In the solution of transient heat conduction problems with the orthogonal 
expansion technique, the contribution of nonhomogeneous terms of the boundary 
conditions in the solution generally gives rise to convergence difficulties when 
the solution is evaluated near the boundary. Therefore, whenever possible, it is 
desirable to transform the nonhomogeneous boundary conditions into homo-
geneous ones. Here we present a methodology for performing such transform- 

ations for some special cases. 
We consider one-dimensional transient heat conduCtion with energy genera-

tion and nonhomogeneous convection boundary conditions for a slab, hollow 

cylinder and sphere given by 

Fig. I-I0 Boundary conditions for Example 1-4. 

	 • 	OT ) 1  
- g(x, t) = 

XP  aX 	ax 	k 	cc at 

- - + 1r,T = NIA() 
ax 

OT L 	, 
K 	a2 = a2„/ 21M ex 
T= F(x) 

in 	 (1-45a)  

at x = x„ 

at 	x = xL  

for 	t = 0 

> 	(1-45h) 

> Q 	(1-45c) 

xo  x L (1-45d) 
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where 
at 	x = 	t >0 	(1-49c) 50 

k— + h 20 = 0 
Ox 

for 	t = 0, 	xo  x xi  (1-49d) = F*(x) P =.1  

2 

	f slab  

cylinder 

sphere 

(1-45e) 

k
dq5, 

+1120,=.
.. 0 

dx 

xo < x < 

- k
O, 

 
dx

+11,01=h, 
d 

at 	x = xo 

at 	x = 	 (1-47c) 

in 	X0 < X < 

at 	x =x0  

at 	x=xt  

xr dq5 2) 0  
rlx 	dx 

dO 
-k , +h,02=0 

dx 

k 	+11202 =1;2  
dx 

in 	xo  <x <xi, t > 0 	(l-49a) 

at 	x = Xo, 	t > 0 	(1-49b) 

1 8( 50 	 150 
x" 5x  

xP 
PX 

 ) + g*(x,t)= - 
a at 

as 
-k—+11,0=0 

ax 

1 	1( 	d f 	df(1)) 
g*(x, t) = -g(x, 1)- - ,(x) 	+ 02(x) 

a 	dt 	dt 

F*(x) = F(x) - (46 1(x).1.1(0) + 02(x)f2(0)} 

(1-50a) 

(1 -50b) 

VT+ 
g(r, t) 

= 
1 OT 

k 	a at 
in region R, 	t > 0 	(1-52a) 

T(x, t) = 0(x, t) + q5,.(x)f 1(0+ 0 2(x)f 2(t) 

are the solutions of the 

and 

Then, it can be shown that the function 13(x, t) is the solution of the following one-
dimensional transient heat conduction with homogeneous convection boundary 
conditions, a modified energy generation term g*(x,t) and a modified initial 
condition function F*(x), given in the form 

where g*(x, t) and F*(x) are defined by 

The validity of the above splitting-up procedure can be verified by introducing 
equation (1-46) into equations (1-45) and utilizing equations (1-47), (1-48) and 
(1-49). 

The above splitting-up procedure can be extended to the multidimensional 
problems provided that the nonhomogeneous terms in the boundary conditions 
do not vary with the position, but may depend on time. 

1 -8 HOMOGENEOUS AND NONHOMOGENEOUS PROBLEMS 

For convenience in the anaysis, the time-dependent heat conduction problems 

will be considered in two groups: homogeneous problems and nonhomogeneous 
problems. 

The problem will be referred to as homogeneous when both the differential 
equation and the boundary conditions are homogeneous. Thus the problem 

1 DT v2T= _ 
a at 

DT 
lk— + 1,T= 0 an 

 

T= F(r) 

in region R, 

on boundary S,, 

in region R, 

t > 0 

t > 0 

t =0 

(1-51a) 

(1-51b) 

(I-51c) 

will be referred to homogeneous because both the differential equation and the 
boundary condition are homogeneous. 

The problem will be referred to as nonhomogeneous if the differential equation, 
or the boundary conditions, or both are nonhomogeneous. For example, the 
problem 

Here, f L (t) and .f2(t) are the ambient temperatures. 
We assume that the temperature T(x, I) can be split up into three components 

as 4  

(1-46) 

where the dimensionless functions ,(x) and 02(x) 
following two steady-state problems 

d 
dx 

 yrd4b, dx.)_ 
)- 

in (1-47a) 

(1-47b) 

(1-48a) 

(1-486) 

(I-48c) 
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on boundary S,, t > 0 	(1-52b) 

in region R, 	t = 0 	(1-52c) 

is nonhomogeneous because the differential equation and the boundary condition 
are nonhomogeneous. 

The problem 

in region R, 	t > 0 	(1-53a) 

on boundary Sr, t > 0 	(I -53b) 

in region R, t = 0 (1-53c) 

is also nonhomogeneous because the differential equation is nonhomogeneous. 

1-9 HEAT CONDUCTION EQUATION FOR MOVING SOLIDS 

So far we considered stationary solids. Suppose the solid is moving with a velocity 
a and we have chosen the rectangular coordinate system. Let ux, u3, and uz  be 
the three components of the velocity in the x,y and z direction, respectively. For 
solids, assuming that pC, is constant, the motion of the solid is regarded to give 
rise to convective or enthalpy fluxes 

pCpTuy, 	pCpTu. 

in the x,y, and z directions, respectively, in addition to the conduction fluxes in 
those directions. With these considerations the components of the heat flux 
vector q are taken as 

OT 
(ix = — k c  + pcTu. 	 ( I-54a) 

(1-54b) 

Clearly, on the right-hand sides of these equations, the first term is the conduction 

flux and the second term is the convection flux due to the motion of the solid. 
For the case of no motion, equations (1-54) reduces to equations (1-3). 

The heat conduction equation for the moving solid is obtained by introducing 
. equations (1-54) into the energy equation (1-7): 

kV2T+g(r,t)=pC,(-a
+.2.—T+ I

'
.
OT

+ U. -
T

,
-) 

 
(1-55) 

This equation is written more compactly as 

MV2  T —
1 

g(r, t)= —
DT A

c, 	Dt 
(1-56) 

which are strictly applicable for constant pC p. Here, a = (kIpC) is the thermal 

diffusivity and D/Dt is the substantial (or total) derivative defined by 

D a 	a 	a 	a 
+ 

Dt at 	ax 	ay 	az 

For the case of no motion, equation (1-56) reduces to equations (1-9). 

1-10 HEAT CONDUCTION EQUATION FOR 
ANISOTROPIC MEDIUM 

So far we considered the heat flux taw for isotropic media, that is, thermal conduc-

tivity k is independent of direction, and developed the heat conduction equation 
accordingly. However, there are natural as well as synthetic materials in which 
thermal conductivity varies with direction. For example, in a tree trunk the 
thermal conductivity may vary with direction; that is, the thermal conductivi-
ties along the grain and across the grain are different. In laminated sheets the 
thermal conductivity along and across the laminations are not the same. Other 
examples include sedimentary rocks, fibrous reinforced structures. cables, heat 
shielding for space vehicles, and many others. 

Orihotrupic Medium 

First we consider a situation in the rectangular coordinates in which the thermal 
conductivities kz, ky, and kz  in the .v, y, and z directions, respectively, are different. 
Their the-heat fltrx vector-q(-xi-y,z,t) given by e.q_uatio.rai  -2) is modified as  

aT .. aT - (IT) 
(IV, y, z, 0 .= — ik ---- + jk, — + kk_---1 -- 

x  c3x 	. Oy 	- az 

aT iki — + JiT = f(r, 
an, 

T= F(r) 

V2T+
g(r,t) 

=
1 aT 

k 	a at 

aT 
ki

an 
+ hiT= 0 

, 

T= F(r) 

aT 
qy = — k -- + pcTuy  

(3x 

q.= — k —
aT 

 + pC
" 

Tu 
az  

(1-54c) 

(1-57) 

(1-58) 

r • 

C 

C 
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and the three components of the heat flux vector in the x,y, and z directions, 
respectively, become 

q, = — kx--, 
aT 
rx 

	
fly = — — 	and 	— k.. DT 

DT 
(1-59) 

Similar relations can be.written for the heat flux components in the cylindrical 
and spherical coordinates. The materials in which thermal conductivity vary in 
the (x, y, z) or (r, 0, z) or (r, 0,49) directions are called orthotropic materials. The 
heat conduction equation for- an orthotropic medium in the rectangular coordi-
nate system is obtained by introducing the heat flux vector given by equation 
(1-58) into equation (1-7). We find 

ax x  ax 	ay 	ay 	az 	az 	P  at 

	

(, DT) a (, aT) a(, aT 	OT 	
(1-60) 

Thus thermal conductivity has three distinct components. 

Anisotropic Medium 

In a more general situation encountered in heat flow through crystals, at any 
point in the medium, each component q,,„q,„ and q:  of the heat flux vector is 
considered a linear combination of the temperature gradients aT/dx,DT/dy, and 
aT/dz, that is 

DT 	OT 	aT) 
q„= — (k„ — +ki2 --- kt3— ax 	ay 	az 

, DT , DT , aT) 
gy= —1( K 2,—+ K2,— a + .23— 

	

y 	az 

, DT , DT , DT) 
q:= —(K 3  — + Ki, — + - 

	

1 
 ax dy 	" az 

Such a medium is called an anisotropic medium and the thermal conductivity for 
such a medium has nine components, k0, called the eonductivit y coefficients that 
are considered to be the components of a second-order tensor k: 

1c 1 , 

1c 2 , 

k31  

14, 2  

1(. 72  

k3-3 

k13 

k23 

k33  

(1-62) 

Crystals are typical example of anisotropic material involving nine conductivity 

coefficients [11,12]. The heat conduction equation for anisotropic solids in the 
rectangular coordinate system is obtained by introducing the expressions for the 
three components of heat flux given by equations (1-61) into the energy equation 
(1-7). We find 

, if' T 	ii 2 T 	irT 	 02 7- 
h m 	+ 1 - 2 	, +k ,., 	+(k I2  1-k.,,) 	+(k13  + ki,) 

02T 
px Dy- 	

I . 	 liXily 	 . i'xii:: 

02 T  
+ (k23 + k32)— + 0(x, y,z,t)= pc 	

Or 

aT(x,y,z,t) (1-63) 
il vilz  

where k i2  = k21. k , 3 = k3 ,, and k23  = k 3 2 by the reciprocity relation. This matter 
will be discussed further in Chapter 15. 

1-11 LUMPED SYSTEM FORMULATION 

The transient heat conduction formulations considered previously assume tem-
perature varying both with time and position. There are many engineering 
applications in which the variation of temperature within the medium can be 
neglected and temperature is considered to be a function of time only. Such 
formulations, called lumped system formulation, provide great simplification in 
the analysis of transient heat conduction; but their range of applicability is very 
restricted. Here we illustrate the concept of lumped formulation approach and 
examine its range of validity. 

Consider a small, high-conductivity material, such as a metal, initially at a 
uniform temperature T,, suddenly immersed into a well-stirred hot bath main-
tained at a uniform temperature T. Let V be the volume, A the surface area, p 
density, Cp  specific heat of the solid, and h the heat transfer coefficient between 
the solid surface and the fluid. We assume that the temperature distribution 
within the solid remains sufficiently uniform for all times due to its small size and 
high thermal conductivity. Then the temperature T(t) of the solid can be consi-
dered to be a function of time only. The energy-balance equation on the solid is 
stated as 

(

Rate ()Cheat flow into the 	= 	rate of increase of ate 
solid through its boundaries internal energy of the solid (1-64) 

When the appropriate mathematical expressions are written, the energy equation 
(1-64) takes the form 

hA[T,. T(t)] = pCV
dT(t) 

dt 
(1-65) 
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> 0 

t -= 0 

(1-66a) 

(1-66b) 

(1-67) 

(1-68a) 

(1-68b) 

(1-68c) 

which is rearranged as 

for 

T(t)= To 	 for 

A temperature excess 0(t) is defined as 

= T(t) - T ,o  

Then, the lumped formulation becomes 

	

dO(t) 
+ ,n9(t) = 0 • 
	

for 	t > 0 

	

= To - T. = go 	for 	t = 0 

where 

hA 
- — 
pc V  
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)f the Biot number Bi, and rearrange it in the form 

= fiL =(L/k,A) = 	
resistance 

Ics 	(1/hA) 	(external thermal 

(internal thermal 

resistance) 

	 (1-71) 

where k = thermal conductivity of the solid and L = V /.t = characteristic• length 
of the solid. 

We recall that the lumped system analysis is applicable if the temperature 
distribution within the solid remains sufficiently uniform during the transients, 
whereas the temperature distribution in a solid becomes uniform if the internal 
resistance of the solid to heat flow is negligible. Now we refer to the above 
definition of the Biot number and note that the internal thermal resistance of 
solid is small in comparison to the external thermal resistance if the Biot number 
is small. Therefore, we conclude that the lumped system analysis is valid only for 
small values of the Biot nunibei. For example, exact analytic solutions of transient 
heat conduction for solids in the form of a slab, cylinder or sphere, subjected to 
convective cooling show that for Bi < 0.1, the variation of temperature within the 
solid during transients is less than 5%. Hence it may be concluded that the 
lumped system analysis may be applicable for most engineering applications if 
the Biot number is less than about 0.1. 

dT(t) 	hA  - 	[T(t)- T.] = 0 
de pC pV 

and the solution is given by 

(1-69) 

This is a very simple expression for temperature varying with time and the 
parameter in has the unit of (time)- I. 

The physical significance of the parameter nt is better envisioned if its definition 
is rearranged in the form 

 
= (pc 11( )  

hA 

(thermal capacitance) external thermal 
 

resistance 

Then, the smaller is the thermal capacitance or the external thermal resistance, 
the larger is the value of tn, and hence the faster is the rate of change of 
temperature 0(t) of the solid according to equation (1-69). 

In order to establish some criteria for the range of validity of such a simple 
method for the analysis of transient heat conduction, we consider the definition 

Example 1-5 

The temperature of a gas stream is to be measured with a thermocouple. The 
junction may be approximated as a sphere of diameter D = a mm, k = 30 W/ 
(m•°C), p = 8400 kg/m3  and C p  = 0.4 k.11(kg•°C). If the heat transfer coefficient 
between the junction and the gas stream is h = 600 W/(m2 . GC),  how long does 
it take for the thermocouple to record 99% of the temperature difference 
between the gas temperature and the initial temperature of the thermocouple? 

Solution. The characteristic length L is 

, V (4/3)7r0 r D 3/4 	10 -3  

A = -4nri -3 6 6 = mm  = - 	m  8  

The Biot number becomes 

/IL 600 10-3  
Bt= = 	- = 

30 8 IC 	
2.5 x l0' 

 

hence the lumped system analysis is applicable since Bi < 0.1. From equation 
(1-69) we have 

T(t) - Tx  

- To  — T„, 100 

(1-70), 



a 	 aT(x,t) 
— —(Aq)Ax hp(x)Ax[T,„, T(x, t)] = pC,Ax A(x) 	 

ex 	 at 

where the heat flux q is given by 

t) 
q = — k ax 

(1-73a) 

(I -73b) 

and other quantities are defined as 

A(x) = cross-sectional area of the disk 

p(x) = perimeter of the disk 
= heat transfer coefficient 

k 	= thermal conductivity of the solid 

Tx, = ambient temperature 

We introduce a new temperature 0(x, t) as 

	

0(x, I) = T(x, 	 (1-74) 

and substitute the expression for q into the energy equation (1-73a). Then 
equation (I-73a) takes the form 

r 	■301 	hp(x) 	109(x, t) 

T,x_ A(x)71-17Ai.:i t(x.t)=; rat 

For the steady state, equation (1-75) simplifies to 

	

d F ANdryAi_ 	o(x)  = 0  
dx • dx j 	k 

(1-75) 

(1-76) 
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or 

e"" = 100, 	nit = 4.6 

The value of m is determined from its definition 

hA 	It 	600 	8 
111 = = 1.428s-  ' pc,1/ pe pi. 8400 x 400 10 3  

Then 

= 
4.6

= 
 4.6 

t 	 -= 3.22 s 
in 	1.428 

To develop the heat conduction equation with lumping over the plane per-
pendicular to the x axis, we consider an energy balance for a disk of thickness 
Ax about the axial location x given by 

(

Net rate of heat rate of heat gain rate of increase 
gain by conduction + by convection from = of internal energy 
in the x direction the lateral surfaces of the disk 

When the appropriate mathematical expressions are introduced for each of these 
three terms, we obtain 

(1-72) 

That is, about 3.22s is needed for the thermocouple to record 99% of the 
applied temperature difference. 

Partial Lumping 

In the lumped system analysis described above, we considered a total lumping 
in all the space variables; as a result, the temperature for the lumped system 
became a function of the time variable. 

It is also possible to perform a partial lumping,such that the temperature 
variation is retained in one of the space variables but lumped in the others. For 
example, if temperature gradient in a solid is very steep, say, in the x direction 
and very small in the y and z directions, then it is possible to lump the system in 
the y and z variables. To illustrate this matter we consider a solid as shown in 
Fig. 1-11, in which temperature gradients are assumed to be large along the x 
direction, but small over the y—z plane perpendicular to the x axis. Let the solid 
dissipate heat by convection from its lateral surfaces into an ambient at a 
constant temperature Tx, with a heat transfer coefficient h. 

Fig. 1-11 Nomenclature for the derivation of the partially lumped heat conduction 
equation. If we further assume that the cross-sectional area A(x) = A 0  = constant, equation 
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(1-76) reduces to 

d20(x) hp
- 0(x) = 0 

axe 	k A a  

which is the fin equation for fins of uniform cross-section. 
The solution to the fin equation (I-77) can be constructed in the form 

0(x) 	e i  cosh /my + s• S11111 111• 	 (1 -78a) 
or 

0(x) = cle-" (le" 	 (1-78b) 

The two unknown coefficients are determined by the application of boundary 
conditions at x = 0 and x = L, and the solutions can be found in any one of the 
standard books on heat transfer [131 

The solution of equation (1-76) for fins of variable cross section is more 
involved. Analytic solutions of fins of various cross sections can be found in the 
references 14 and 15. 
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PROBLEMS 

1-1 	Verify that VT and V•q in the cylindrical coordinate system (I. , , are 

given as 

aT 	aT A  OT 
VT= 

A 
ur- +

A
- - 

- Or 	r 	az 

r (rib-) 	
r t?ct) 
I cli ' I 

1-2 	Verify that V T and V-q in the spherical coordinate system (r, 0, 0) are given 

as 

1 LT 	 DaTo  
VT--11r  

Or +"-sin 0 ao
4. 

 

1 	aq ,. 
V-q = a  

1 ar(rlci r)+-rii-n-O 190; r sin 0 a0 
(go sin 0) 

1-3 	By using the appropriate scale factors in equation (1-23) show that the heat 
conduction equation in the cylindrical and spherical coordinate systems 
are given by equations (1-12) and (1-13). 

1-4 	Obtain expressions for elemental areas dA cut from the surfaces r = cons- 
tant, 0 = constant, and z = constant, also for an elemental volume dV in 
the cylindrical coordinate system (r, 0, z). 

1-5 	Repeat Problem 1-4 for the spherical coordinate system (r, 0, 0). 

Fig. 1-12 Prolate spheroidal coordinates (q, 0,0). 

(1-77) 
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1-6 	The prolate spheroidal coordinate system (11,0,0)as illustrated in Fig. 1-12 
consists of prolate spheroids q = constant, hyperboloids 0 = constant, and 
planes 4i = constant. Note that as I/ —) 0 spheroids become straight lines of 
length 2A on the z axis and as /)---) co spheroids become nearly spherical. For 
0 = 0, hyperboloids degenerate into c axis from A to + oo, and for 0 = n 
hyperboloids degenerate into z axis from —A to — an, and for 0 nI2 
hyperboloids become the x y plane. If the coordinates (q, 0,0,) of the 
prolate spheroidal system are related to the rectangular coordinates by 

x = A sinh n sin 0 cos 0 

y=A sinh ►jsinOsin 4)  
z = A cosh /i cos 0 

show that the scale factors are given by 

a, 	A(sin2  0 + sinh2  0'12  

a2  ay= A(sin2  0 + sin h 2  q)112  

a3  no = A sinh t? sin 0 

1-7 	Using the scale factors determined in Problem 1-6, show that the expression 
for V2 T in the prolate spheroidal coordinates (q, 0, 0) is given as 

1 	razT 	DT (32T 	DT
.I — — — V2T = 

A 2(sinh 2  + sin 2  Oi 0/12
+ coth q an + 

 a02
+ cot 0 

09  
a2T 

+ 
A-  sinh'ii sin' 0 a4" 

1-8 	Obtain expressions for elemental areas dA cut from the surfaces q = cons- 
tant, 0 = constant, and 0 = constant, and also for an elemental volume 
element dV in the prolate spheroidal coordinate system (q, 0, 0) discussed 
above. 

1-9 	The coordinates (1,0,0) of an oblate spheroidal coordinate system are 
related to the rectangular coordinates by 

x = A cosh q sin 0 cos 0 

y= A cosh q sin 0 sin 4 
z — A sinh n  cos 0 

Show that the scale factors are given by 

a 2i = = A2(cosh 2 	sin2  0) 

nz -ao =A2(cosh2 q=sin' 0) 

= A 2  cosh211 sin' 0  

1-10 Using the scale factors in Problem 1-9, show that the expression for V2 T 
in the oblate spheroidal coordinate system (r1,0,0) is given by 

1 	a2T 	aT 32T 	,OT 
V' T = - 	 tanh ri— + — + COt (I — 

	

A 2(cosh2  q — sin2  0) De 	Dq DO' 	00 

1 	iPT 
A 2  COSh2  I/ sine  o 42 

1-11 Show that the following three different forms of the differential operator 
in the spherical coordinate system are equivalent, 

1 d r2 dT) 1 d 2  7,1  d2T + 2 dT 

r2  (IA dr )=; dr2‘r 1=  dr' r dr 

1-12 Set up the mathematical formulation of the following heat conduction 
problems: 

1. A slab in 0 x L is initially at a temperature F(x). For times t > 0, 
the boundary at x = 0 is kept insulated and the boundary at x = L 
dissipates heat by convection into a medium at zero temperature. 

2. A semiinifinite region 0 x < no is initially at a temperature F(x). For 
times 1 > 0, heat is generated in the medium at a constant rate of 
go  W/m3, while the boundary at x = 0 is kept at zero temperature. 

3. A solid cylinder 0 r ‘.1) is initially at a temperature F(r). For times 
t > 0, heat is generated in the medium at a rate of g(r), W/m3, while the 
boundary at r = h dissipates heat by convection into a medium at zero 
temperature. 

4. A solid sphere 0 r b is initially at temperature F(r). For times t > 0, 
heat is generated in the medium at a rate of g(r), W/m3, while the 
boundary at r = b is kept at a uniform temperature To. 

1-13 For an anisotropic solid, the three components of the heat conduction 
vector q, qy  and qz  are given by equations (1-61). Write the similar 
expressions in the cylindrical coordinates for q„ go, (I, and in the spherical 
coordinates for q„ q4. ga. 

1-14 Prove the validity of the transformation of the heat conduction problem 
[equation (1-45)] into the three simpler problems given by equations 
(1-47), (1-48) and (1-49) by using the splitting-up procedure defined by 
equation (1-46). 

1-15 A long cylindrical iron bar of diameter D = 5 cm, initially at temperature 
To  = 650°C, is exposed to an air stream at T,,„ = 50°C. The heat transfer 
coefficient between the air stream and the surface of the bar is h= 
80 W/(m2  Thermophysical properties may be taken as p = 



2 
THE SEPARATION OF VARIABLES 
IN THE RECTANGULAR 
COORDINATE SYSTEM 

The method of separation of variables has been widely used in the solution of 
heat conduction problems. The homogeneous problems are readily handled 
with this method. The multidimensional steady-state heat conduction problems 
with no generation can also he solved with this method if only one of the 
boundary conditions is nonhornogeneoug;-problems-involving-morta-t-han-ora. 	 
nonhomogeneous boundary conditions can be split up into simpler problems 
each containing only one nonhomogeneous boundary condition. In this chapter 
we discuss the general problem of the separability of the heat-conduction equa-
tion; examine the separation in the rectangular coordinate system; determine the 
elementary solutions, the norms, and the eigenvalues of the resulting separated. 
equations for different combinations of boundary conditions and present these 
results systematically in a tabulated form for ready reference; examine the solution 
done and multidimensional homogeneous problems by the method of separation 
of variables; examine the solution of multidimensional steady-state heat conduc-
tion problems with and without heat generation; and describe the splitting up of 
a nonhomogeneous problem into a set of simpler problems that can be solved 
by the separation of variable technique. The reader should-consult-references-1 -4 .; ........ 
for a discussion of the mathematical aspects of the method of separation of 
variables and references 5-8 for additional applications on the solution of heat 
conduction problems. 

2-I BASIC CONCEPTS IN THE SEPARATION OF VARIABLES 

To illustrate the basic concepts associated with the method of separation of 
variables we consider a homogeneous boundary-value problem of heat conduc- 
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7800 kg/m', Cp  = 460 J/(kg.°C), and k = 60 W/(m•°C). Determine the time 
required for the temperature of the bar to reach 250°C by using the lumped 
system analysis. 

1-16 A thermocouple is to be used to measure the temperature in a gas stream. 
The junction may be approximated as a sphere having thermal conductivity 
k = 25 W/(m•°C), p = 8400 kg/m3, and Cp = 0.4 k.1/(kg•°C). The heat trans-
fer coefficient between the junction and the gas stream is h = 560 Wilni 2-'0 
Calculate the diameter or the junction if the thermocouple should itiewiti re 
95% of the applied temperature difference in 3s. 

37 
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tion for a slab in 0 ‘, x L. Initially the slab is at a temperature T = F(x), 
and for times t > 0 the boundary surface at x = 0 is kept insulated while the 
boundary at x =L dissipates heat by convection with a heat-transfer coefficient 
It into a medium at zero temperature. There is no heat generation in the medium. 
The mathematical formulation of this problem is given as (see Fig. 2-1) 

Ox 2 	a at 
T(x, t) l (17V, 	

in 	0 < x < L, t > 0 	 (2-1a) 

at 	x = 0, 	1>0 	 (2-1 b) 

k + hT =o ax 
	 at 	x = L, 	t >0 	 (2-1c) 

T = F(x) 
	

for 	t = 0, 	0 x L 	(2-1d) 

To solve this problem we assume the separation of function T(x, t) into a 
space- and time-dependent functions in the form 

T(x,1)= X(x)F(t) 	 (2-2) 

The substituting of equation (2-2) into equation (2-1a) yields 

X(x) dx2—  af(t) dt 

d2X(x) 	I dr(i) 	
(2-3) 

In this equation, the left-hand side is a function of the space variable x, alone, 
and the right-hand side of the time variable t, alone; the only way this equality 
holds if both sides are equal to the same constant, say — /32; thus, we have 

X(x) dx2 	ant) dt 

1 d 2X(x) = 1 dF(t) = 132 	 (2-4) 

Fig. 2-1 Heat conduction in a slab. 

Then, the function r(t) satisfies the differential equation 

Mt) 
dt + 4121-(1)= 0 
	

(2-5) 

which has a solution in the form 

	

r(t)= 	 • (2-6) 

Here, we note that the negative sign chosen above for /32,  now ensures that the 
solution r(t) approaches zero as time increases indefinitely because both a and 
t are positive quantities. This is consistent with the physical reality for the 
problem (2-1) in that the temperature tends to zero as t co. 

The space-variable function X(x) satisfies the differential equation 

	

d2X(x) 
+ (32  X(x)= 0 	in 	0 < x 	 (2-7a) 

dx2  

The boundary conditions for this equation are obtained by introducing the 
separated solution (2-2) into the boundary conditions (2-1b) and (2-1c); we 
find 

dX 0  
at 	x = 0 	 (2-7b) 

dx 

	

k—
dX  + hX = 0 at x = L 	 (2-7c) 
dx 

The auxiliary problem defined by equations (2-7) is called an eigenvalue problem, 
because it has solutions only for certain values of the separation parameter 
= /3„,, n1= 1, 2, which are called the eigenvalues; the corresponding 

solutions X(P„„ x) are called the eigenfunctions of the problem. When /1 is not 
an eigenvalue, that is, when /1 # //,,„ the problem has trivial solutions (i.e., X = 0 
if /I # /l„,). We now assume that these eigenfunctions X(/1„„x) and the cigcnvalucs 

„, are available and proceed to the solution of the above heat conduction 
problem. The complete solution for the temperature T(x, t) is constructed 
by a linear superposition of the above separated elementary solutions in 
the form 

00 

T(x, = j e„,X(fl 
m=1 
	 - 

	

(2-8) 

aT 
fix 
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This solution satisfies both the differential equation (2-la) and the boundary 
conditions (2-1b) and (2-1e) of the heat conduction problem, but it does not 
necessarily satisfy the initial condition (2-1d). Therefore, the application of the 
initial condition to equation (2-8) yields 

2-2 GENERALIZATION TO THREE-DIMENSIONAL PROBLEMS 

The method of separation of variables illustrated above for the solution of the 
one-dimensional homogeneous heat conduction problem is now formally gene-
ralized to the solution of the following three-dimensional homogeneous problem 

F(x)= E cr,x(p., x) 	in 	0 < x < L 	 (2-9) 
m- 

This result is a representation of an arbitrary function F(x) defined in the interval 
0 < x < L, in terms of the eigenfunctions X(16„,, x) of the eigenvalue problem (2-7). 
The unknown coefficients cm's can be determined by making use of the orthogo-
nality of the eigenfunctions given as 

13T 
k, 	hiT = 0 

an,  

la T(r, t) 
V2 T(r. t) 

at 

T(r, 1) = F(r) 	for t = 0, in region R 

on boundary Si, r>0 

in region R, 	r > 0 (2-14) 

(2-I5a) 

(2-15b) 

.1: X(15„„ x)X(13„, x) dx = 
form 0 71 

form = 
(2- 10) 

where, the normalization integral (or the norm), N(11„,), is defined as 

MAN) = 	 LX(11„„ x)] 2  dx 	 (2-11) 

The eigenvalue problem given by equations (2-7) is a special case of a more 
general eigenvalue problem called the Sturm-Liouvitle problem. A discussion 
of the orthogonality property of the Sturm-Liouville problem can be found in 
the references 4,5,7, and 8. 

To determine the coefficients cm  we operate on both sides of equation (2-9) 
by the operator if X(f3„ x)dx and utilize the orthogonality property given by 
equations (2-10); we find 

•  1 
	L 

N(An) , 

Cm  = 	X((3„„ x)F(x)dx 
c 

(2-12) J 
The substitution of equation (2-12) into equation (2-8) yields the solution for 
the temperature as 

T(x, t) =- E aim, Ml3.) X(flp„ x) f X(il„„ x')F(x') dx' 	(2-13) 
 mt 

Thus the temperature diStribution in the medium can be determined as a function 
of position and time from equation (2-13) once the explicit expressions are 
available for the eigenfunctions X(11„„ x), the eigenvalues 14, and the norm N([1.). 
This matter will be discussed later in this chapter. 

where Dian;  denotes differentiation along the outward-drawn normal to the 
boundary surface Si  and r denotes the general space coordinate. It is assumed that 
the region R has a number of continuous boundary surfaces Si, r = I, 2,.., N in 
number, such that each boundary surface Si  fits the coordinate surface of the 
chosen orthogonal coordinate system. Clearly the slab problem considered above 
is obtainable as a special case from this more general problem; that is, the slab 
has two continuous boundary surfaces one at x = 0 and the other at x = L. The 
boundary conditions for the slab problem are readily obtains ble from the general 
boundary condition (2-15a) by choosing the coefficients h, and k,, accordingly. 

To solve the above general problem we assume a separation in the form 

	

T(r, t) = tfr(r)r(t) 	 (2-16) 

where function OW, in general, depends on three space variables. We substitute 
equation (2-16) into equation (2-14) and carry out the analysis with a similar 
argument as discussed above to obtain 

w)  V i/(r)=
F(i) di = 

1 	2 	
a

1 Mt) 	A2 	
(2-17) 

where A is the separation variable. Clearly, the function r(t) satisfies an ordinary 
differential equation of the same form as equation (2-5) and its solution is taken 
as exp (— ec,1 2t). The space-variable function Cr) satisfies the following auxiliary 
problem 

+ Azkfr(r) = 0 	in region R 	 (2-18a) 

ki 	hitfr = 0 	on boundary Si 	 (2-18b) 
dni  

where i = 	N. The differential equation (2-18a) is called the Helmholtz 
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AB 2-1 Orthogonal Co-ordinate—Systems—Allowing—Simple—Sepa 
Helmholtz and Laplace Equations' 

Coordinate System 	 Functions That Appear in Solution 

1 Rectangular 	 Exponential, circular, hyperbolic 
2 Circular cylinder 	 ' Besse!, c.xponcntial, circular 

3 Elliptic- cylinder 	 Mathieu, circular 

4 Parabolic-cylinder 	 Weber, circular 

5 Spherical 	 Legendre, power, circular 

6 Prolate spheroidal 	 Legendre, circular 

7 Oblate spheroidal 	 Legendre, circular 

8 Parabolic 	 Besse!, circular 

9 Conical 	 Lan-he, power 

10 Ellipsoidal 	 Lame 

11 Paraboloidal 	 Baer 

From references 1,3, and 10. 

equation, and it is a partial-differential equation, in general, in the three 
space variables. The solution of this partial-differential equation is essential 
for the solution of the above heat conduction problem. The Helmholtz equation 
(2-18a) can be solved by the method of separation of variables provided that its 
separation into a set or ordinary differential equation is possible. The separability 
of the Helmholtz equation has been studied and it has been shown that a simple 
separation of the Helmholtz equation (also of the Laplace equation) into ordinary 
differential equations is possible in eleven orthogonal coordinate system. We list 
in Table 2-1 these 11 orthogonal coordinate systems and also indicate the type 
of functions that may appear as solutions of the separated functions [1,3, 10]. A 
discussion of the separation of the Helmholtz equation will be presented in this 
chapter for the rectangular coordinate system and in the following two chapters 
for the cylindrical and spherical coordinate systems. The reader should consult 
references I0 and 11 for the definition of various functions listed in Table 2-I. 

Equation (2-19) becomes 

Y  
tai ax 2 	ej, 2 	2 
1  (02 	 43  

	

2, a2, 	2,)  dr(t) 
t   ar(t) dt 

Then, the separated functions no and satisfy the equations 

drol al2r(1).= 0 

02,,, 	a2,,., 

ax 	ay 	az 2  

Equation (2-23) is the Helmholtz equation; we assume a separation in the form 

kb(x, y, z) = X(x)Y(y)Z(z) 	 (2-24) 

The substitution of equation (2-24) into equation (2-23) yields 

1 d2X 1 (12  Y 1112Z 
2  

X dx2+  Y dy2+ 
 Z dz2+A =0 

 

Here, since each term is a function of a single independent variable, the only way 
this equality .is satisfied is if each term is equated to an arbitrary separation 
constant, say, in the form 

1 d2X 
X dx2 = fl 2, 

1 d2 	2  
1 	Y  

and 	—
1 d2Z 
Z dz2  

= _n2 (2-26) 

Then the separated equations become 

dr 

(2-21) 

(2-22) 

(2-23) 

(2-25) 

d 2 X 
+ 112X =0 

dx2  

Y 13'.2 +),2 Y 0 	 (2-27b) 

(2-27a) 

d 2Z 

dz2 
si 2Z -= 0 D2 T (327" 19 2 T 10T 

Ox- ay- 	Oz2  a cat 
where T = T(x, y,z, t) 	(2-19) 

2-3 SEPARATION OF THE HEAT CONDUCTION EQUATION 
IN THE RECTANGULAR COORDINATE SYSTEM 

Consider the three-dimensional, homogeneous heat conduction equation in the 
rectangular coordinate system 

(2-27c) 

where 

132 + y2 + = 	 (2-27d) 

. 	- 
Assume a separation of variables in the form 

T(x, y, z,t)= 0(x, y, 2) no 	 (2-20) 



	

02  T(x, 	I OT(x, 

	

axe 	a at 

aT 
k —+h,T= 0 

Ox 

k2—
a

—
T 
 h2T = 0 

ax 

T = F(x) 

in 

at 

at 

for 

for m n 
for m = n 

(2-33) 
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Clearly, the solutions of the separated equations for the functions X, Y, and Z 
are sines and cosines, and the solution of equation (2-22) for the function ['(t) is 
given as 

I o  = e 	+ y2 4. 72,, 	 (2-28) 

The complete solution for the temperature T(x, y, 0 is constructed by a linear 
superposition of the separated solutions X, Y, Z, and r. When the region is finite, 
say. in the x direction, the separation constant /3 associated with it takes discrete 
values and the superposition of the separated solutions for the .v variable is 
performed. by summation over all permissible values of 11„,. On the other hand, 
when the region is infinite or semiinfinite, the separation constant assumes all 
valUes from zero to infinity continuously and superposition is done by integra-
tion over all values of /I. In the following sections we examine the explicit 
functional forms of the separated solutions for finite, semiinfinite, and infinite 
regions. The elementary solutions obtained in this manner are tabulated systema-
tically for ready reference in the solution of heat conduction prohlems by the 
method of separation of variables. 

2-4 ONE-DIMENSIONAL HOMOGENEOUS PROBLEMS 
IN A FINITE MEDIUM (9 x 

Here we consider the application of the method of separation of variables to the 
solution of the homogeneous boundary-value problem of heat conduction for a 
slab. That is, a slab, 0 x L, initially at a temperature F(x), dissipates heat by 
convection for times r > 0 from its boundary surfaces into an environment at 
zero temperature. For generality we assumed that the heat transfer coefficients 
at the two boundaries are not the same. The mathematical formulation of this 
problem is given as 

0 < x < L, I > 0 
	

(2-29a) 

x = 0, 	r > 0 
	

(2-29b) 

x=L, 	t>0 
	

(2-29c) 

t =0, in 0 ..-cx‘.,L 	(2-29d) 

Clearly, the heat conduction problems for a slab for other combinations of 
boundary conditions are readily obtainable as special cases from the problem 

considered here by setting any one of the coefficients k l , k 2, li ,, and h, equal to 
zero. Nine different combinations of these boundary conditions are possible. 

We assume a separation in the form 

T(x, = X(x)F(t) 	 (2-30) 

and separate the equation in a manner described above. The solution for the 
function fit) is given as 

	

r(0 = e 421 	 t2-31) 

and the space-variable function X((3, x) satisfies the following eigenvalue 
problem: 

d2X(x)
+  fl2X(x)= 0 

dx 2  

d X 
—k1 

 
dx -Fh

I X = 0 

d X 
k, 	+.11 2 X . 0 

dx 

This problem is a special case of the Sturm-Liouville problem discussed in Note 
I, with p(x) = 1, w(x) = 1, q(x) = 0, and A= /32. Then, the eigenfunctions X(/3,,,, x) 
are orthogonal, that is 

.1 
X(13„„ x)X(fl„, x) dx = 

N()(.3„,) 

The solution of the problem (2-29) is now constructed as 

T(x, = 	c„,X(11„„ 	 (2-34) 
m=l 

The application of the initial condition (2-29d) gives 

F(x) = E c.),c(fino 
	in 0 < x < L 
	

(2-35a) 
m = 1 

This is a representation of an arbitrary function F(x) defined in the interval 
0 < x < Lin terms of the eigenfunction X(/1„„ x) of the eigenvalue problem (2-32). 
Suppose such a representation is permissible, the coefficients c,, can be determined 

r. 

in 	0 < x < L 
	

(2-32a) 

at 	x= 0 
	

(2-32b) 

at 	x= f. 
	 (2-32c) 
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by operating on both sides of equation (2-35a) by the operator ft,X(/3„„ x)dx and 
utilizing the orthogonality property of the eigenfunctions. We find 

	

„, = 	
I 	

X(13„„ x')F(x') dx' 
NUL) 0 
	 (2.35b) 

where Ike norm Nis defined as 

	

N(N m) = f
L 
 [X  (fi x)]2  dx 
	 (2.35c) 

The substitution of equation (2-35b) into equation (2-34) yields the solution for 
the temperature T(x, t) as 

T(x t)= E 	X(13„„ x) f X(fl,,„ x')F(x1dx' . 	m 
	

, NUL) 
	 (2-36a) 

'lilts solution is valid for times t > 0; as t 0, It approaches to the initial value of 
the temperature in the medium. Therefore, by substituting t = 0 in equation 
(2-36), we obtain 

F(x) = E 	x) f 	„„ x')F(x') dx` 	in 	0 < x < L 	(2-36b) 
m = 1 N(/3.) 

This equation is a representation of an arbitrary function F(x) defined in the 
interval 0 < x < L in terms of the eigenfunctions X(13„„ x) of the eigenvalue 
problem given by equations (2-32). 

The eigenfunctions X(fl,„, x) of the eigenvalue problem (2-32) are given as 

X(/3m, x) = (3„, cos 13 „,x H , sin /3„,x 	 (2-37a) 

where the eigenvalues /1,„ are the roots of the following transcendental equation 

tan f3m L = 13";(1/1 + H2) 	 (2-37b)  

The eigenfunctions, eigencondition and the normalization integral given by 
equations (2-37) are for the general case of boundary condition of the third kind 
at both boundaries, x = 0 and x = L. The results for other combinations of 
boundary conditions are obtainable by setting in equations (2-37) H , or H2 equal 
to zero or infinity. 

We list in Table 2-2 the eigenfunctions X(13„„x), the eigenvalues /3„,, and the 
normalization integral N(11„,) of the cigenvatuc problem (2-32) for nine different 
combinations of boundary conditions at x = 0 and x = L. We note that, for the 
boundary condition of the second kind at both boundaries (i.e., case 5), 130  = 0 is 
also an eigenvalue corresponding to the eigenfunction X(fim) = I as shown in 
note 2 at the end of this chaptei. 

2-5 COMPUTATION OF EIGENVALUFS 

--Once-the;eigenvalues /3„, are computed from the solution of the transcendental 
equation, the eigenfunctions X (I3„,) and the normalization integral N(/3 m) become 
known, and the tempei mute dist' ibution T(x, t) in the medium io determined 
from the solution given by equation (2-36a). Some of the transcendental equations, 
such as sin fl„,L = 0 or cos fl,,,L = 0, are simple expressions; hence the /1„, are 
readily evaluated. Consider, for example, the transcendental equation for the case 
I in Table 2-2 with H , = H2 -a H. The resulting expression is written as 

(fiL)(HL) 
tan R. = 2 	 (2-38a) 

(HL)2  

and for convenience this result is rearranged as 

cot = 2 ( 
B 
	

— 
) — Z 	 (2-38b) 

where = JlL and B = HL. Clearly, the solution of this transcendental equation 
is not so easy. First we present a graphical interpretation of the roots of .this 
transcendental equation before discussing its computer solution. 

and the normalization integral N(13„,) is given by 

N(/3„,) = -21  [(ti! H f)( L /32 1.4.12H3 H 

Graphical Representation 

The result given by equation (2-38h) represents the following two curves: 

where 

	

— 11, 	 h2 

	

H , = -- 	- and 	Hi -- ---- 

	

k, 	 k2  

The reader should consult reference 8 [p. 80] for the derivation of these results. 

(2-37d)- - 

Z = 2 
—B 

( 	and 	Z = cot 	 (2-38c, d) 
- 

The first of these curves represents a hyperbola whose center is at the origin and 
its asymptotes are = 0 and Z = t/2B, while the second represents a set of 
cotangent curves as illustrated in Fig. 2-2. The values corresponding to the 

(2-37c) 
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( ) 	 Z = cot 

a 
) 

Fig. 2-2 Geometrical representation of the roots of cot ={1}{(03) — (810]. 

	

) 	
the.cotangent curves.are.the roots of the above 

transcendental equation. Clearly there are an infinite number of such points, each 
successively located in intervals (0 — n), (n — 2n), (2n — 3n), etc. Because of symmetry, 
the negative roots are equal in absolute value to the positive ones; therefore, only 
the positive roots need to be considered in the solution since the solution remains 
unaffected by the sign of the root. The graphical representation of the roots 
shown in Fig. 2-2 is useful to establish regions where the roots lie; but accurate 
values of the roots are determined by numerical solution of the transcendental 
equations as described next. 

Numerical Solutions 

Various methods are available for solving transcendental equations numerically 
[14,15]. Here we consider the bisection, Newton—Raphson and Secant methods 
for the determination of the roots of transcendental equations. 

Bisection Method Consider a transcendental equation written compactly in the 
form 

) 

0 
1,D 

(I) 
a 
0 

O 
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Fig. 2-3 The bisection method. 

occurs in this interval. If the product is positive, the root must lie in the second 
subinterval. If the product is exactly zero, ,.4.(ii2)  is the exact root. The procedure 
For determining the root is now apparent. The subinterval containing the root 
is bisected and the bisection procedure is continued until the change in the value 
of root from one bisection to the next becomes less than a specified tolerance c. 

The bisection procedure always yields a root if a region is found over which 
F() changes sign and has only one root. Therefore, the graphical interpretation 
of roots as illustrated in Fig. 2-2 is useful to locate the regions where the roots 
lie. In the absence of graphical representation, one starts with = 0 and evaluates 
M) for each small increment of until F(t) changes sign. Then, a root must lie 
in that interval and the bisection procedure is applied for its determination. 

In each bisection, the interval is reduced by half; therefore, after n bisections 
the original interval-is reduced by a factor r. For example, 10 bisections reduce 
the original interval by a factor more than 1000, and 20 bisections reduce more 
than one million. 

F() =0 	 (2-39) 

and suppose it has only one root in the region 	, as illustrated in 
Fig. 2-3. We wish to determine this root by the bisetion method. The interval 

„ is divided into two subintervals by a point if i  la) defined by 

•=1(ti 
	 (2-40a) 

and the sign of the product N 1). F((;,., 41,2,) is examined. If the product 

F( i)Ni .„(112, 1 )< 0 	 (2-40b) 

then the root lies in the first subinterval 	i.i.(11.2), since the sign change 

Newton—Raphson Method Consider a function F(0.=. 0 plotted against ,( as 
illustrated in Fig. 2-4. Let the tangent drawn to this curve at = intersect the 

axis at = 	The slope of this tangent is given by 

(2-41a) 

where prime denotes derivative with respect to Solving this equation for 
we obtain 

(2-41b) 

9 
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Fig. 2-4 Newton-Raphson method. 

Equation (2-41b) provides an expression for calculating 	from the knowledge 
of F( r) and plo by iteration, until the change in the value of 	from one 
iteration to the next is less than a specified convergence criteria E. The method 
is widely used in practice because of its rapid convergence; however, there arc 
situations that may give rise to convergence difficulties. For example, if the initial 
approximation to the root is not sufficiently close to the exact value of the root 
or the second derivative F"(0 changes sign near the root convergence difficulties 
arise. 

Secant Method The Newton-Raphson method requires the derivative of the 
function for each iteration. However, if the function is difficult to differentiate, 
the derivative is approximated by a difference approximation, hence equation 
(2-41b) takes the form 

ti 	 • -- 	 : 

[FW 	- Mgr -  

for several different values of C. These transcendental equations are associated 
with the cases 2 and 3 in Table 2-2, respectively. 

When using the secant or Newton-Raphson method for solving such trans-
cendental equations, it is preferable to establish the region where a root lies by 
a bisection method or a graphical approach, and then apply the secant or 
Newton-Raphson method. An examination of the roots listed in the Appendix 
II reveals that the roots lie in the intervals which are multiples of n. Consider, for 
example, the transcendental equation (2-43a). For large values of C, the roots lie 
in the regions where the slope of the tangent curve is very steep; hence difficulty 
is experienced in the determination of roots from Eq. (2-43b) when the roots lie 
in the regions where the slope of the cotangent curve is very steep. In such 
situations, the convergence difficulty is alleviated if equations (2-43a) and (2-43b) 
are rearranged, respectively, in the forms • 

F(/3)w/3sin/3- C cos II = 0 
	

(2-44a) 

F((3)=(3 cos + Csin /3= 0 
	

(2-44b) 

Example 2-1 

A slab in 0 x L is initially at a temperature F(x); for times t > 0, the 
boundary at x • 0, is kept insulated and the boundary at x = L dissipates heat 
by convection into a medium at zero temperature, that is 

ax + 12 T = 0 	at 
ox 

Obtain an expression for the temperature distribution T(x, t) in the slab. Also 
consider the case when F(x) = To  = constant. 

Solution. The boundary conditions for this problem correspond to case 4 in 
Table 2-2. Therefore, when the eigenfunctions X(3„„x) and the norm N(fl „,) 
are obtained from this table and introduced into equation (2-36a), the solution 
becomes (2-42) 

ET 
ax 

_ 0 
 

at 	x = 0 	and x = L 

The secant method may not be as rapidly convergent as the Newton-Raphson 
method; but if the evaluation of F'(0 is time-consuming, then the secant method 
may require less computer time than Newton's method. 

pm2 

m= 	L(I3 	H 2) + 2 

-Cos fiffix 	rvl ens limx• (2-45a) 

Tabulated Etkenvalues in Appendix II we tabulated first six roots of the trans-
cendental equations 

	

F(I3) titan /3 C = 0 	 (2-43a) 

	

13 cot 13 + C = 0 	 (2-43b) 

where /3,,, values are the positive roots of 

fl„, tan /3m L = H2 	 (2-45b) 

For the special case of F(x) = To  = constant, the integration in equation 
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(2-45a) can be performed and the solution reduces to 

I I 0 

T(x,t)= 27-0 	P„,2 + HZ 	sin fi„,L 
/43.2 ± 	H 2  flm  cos pff,x (2-450 

r= 1 

g  use of the transcendental equation (2-45W this result is written 

—k, — + = 0 aT 	 Initially at 
T= Mx) 

as 

142 	cos 13„,x 
T(x, t)= 27-0  E e 'fl,Lr 	  

Ltfi.2  + HP + H, COS fi,„1- 
(2-45d) 	 Fig. 2-5 Heat conduction in a semiinfinite region. 

Example 2-2 

A slab, 0 < x < L, is initially at a temperature F(x), for times t > 0 the bounda-
ries at x = 0 and x = L are kept insulated, that is, 57-/Dx = 0 at x = 0 and x = L. 
Obtain an expression for the temperature distribution T(x, t) in the slab. 

Solution. The boundary conditions for this problem correspond to case 5 in 
Table 2-2. Obtaining X(A„, x) and N(f„,) from this table and introducing them 
into equation (2-36) and noting that for this special case flo  = 0 is also an 
eigenvalue, the solution of the problem becomes 

1 f t' 	2 4. 	
^ T(x, t) = 	F(x') 	— E e afl.' 

L 0 	L m. 
r. 

cos /1„,x f 	F(.1 cos fi„,x' dx' 	(2-46) 

where fl„, values are the roots of sin fl,„L = 0 or given as fl,„ = ni/r/L,m = 
1, 2,3, .... Here, the first term on the right-hand side of the equation results 
from the fact that Po  = 0 is also an eigenvalue. The physical significance of 
this term is as follows: It represents the temperature in the solid as 1 —* co (i.e., 
after the transients have passed); it is an arithmetic mean of the initial tempera-
ture over the region 0 < x < L. This is to be expected by physical considerations, 
since heat cannot escape from the insulated boundaries, eventually the tem-
perature equalizes over the region. 

2-6 ONE-DIMENSIONAL HOMOGENEOUS PROBLEMS 
IN A SEMIINFINITE MEDIUM 

We now consider the solution of a homogeneous heat conduction problem for 
a semiinfinite region. That is, a semiinfinite region, 0 x < ec, is initially at a 
temperature F(x) and for times t > 0 the boundary surface at x 0 dissipates 
heat by convection into a medium at zero temperature as illustrated in Fig. 2-5. 

The mathematical formulation of this problem is given as 

ax T(x, t) 1 	T(x, t) 
in 

at 

for 

0<x<oo, 

x = 0, 

t = 0, 	in 

t>0 

t > 0 

0 	x < rf) 

(2-47a) 

(2-47b) 

(2-47c) 

Ox' 

oT k1 — 

ax 

T 	F(x) 

a 	Pt 

h i T =0 

We assume a separation in the form T(x, t) = X(x)F(t); then, the solution for the 
function T(t) is as given previously by equation (2-31); that is: 

no= V -41"  

where /3 is the separation constant, and the space-variable function 
satisfies the following problem: 

d2 X(x) 	
112  X(x) = 0 	in 	0<x<oo 

(2-31) 

X(I1,x) 

(2-48a) 

(2-48h) 

(2-49a) 

(2-49b) 

d x 2  

dX(x) 
— k ,

d 	
h , X (x) 	0 	at 	• 	x = 0 

x 

The solution of equations (2-48) may be taken in the form 

X(fl, x) = fl cos fix + H r  sin fix 

where 

H t  = 
ht 
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and the separation variable /1 assumes all values from zero to infinity continuously. 
The general solution for T(x, t) is constructed by the superposition of all these 
elementary solutions by integrating over the value of /3 from zero to infinity 

T(x,1)= 	c(fi)e-44(# cos fix + H i  sin fix) 43 
p = o 

The application of the initial condition to equation (2-50) yields 

ONE-DirVIENTSiUNPIL. 

TABLE 2-3 The Solution MA x) and the Norm N(13) of the Differential Equation 

d 2X(x) 
- 	/12 X(x)= 0 	in 	0<x<a.. 

dx2  

Subject to the Boundary Conditions Shown in the Table Below 

(2-50) 

(2-51) F(x) = I 	c(f3)X(fl, x)dfi 	in 	0 < x < oo 
11=0 

where 

X(fi, x) = cos fix + H, sin fix 

This result is a representation of an arbitrary function F(x) defined in the 
semi-infinite interval 0 < x < co in terms of the solution of the auxiliary problem 
defined by equations (2-48). A similar representation has been developed 
[II, p. 228] when solving the heat-conduction problem (2-47) by the Laplace 
transform technique, and that result can be expressed in the form 

Boundary Condition 

No. 	at x =0 X(fi, x) I/NW)  

2 	1 

2 

rr. 

2 
11 

  

1 	—
dX

+H i X =0 
dx 

2 
	dX =0  

dx 

3 	X.= 0 

fi cos fix H, sin fix 

cos fix 

sin fix 

  

     

F(x) =I. 	X (11, x) 
o N(IJ) L0 [ 

X(/1, 	 (2-52) 
where 

X(f1,x)= fl cos 11x + II, sin /ix (2-55a) 

where 

1 	2 

N(/1) rr /32  + 

The representation given by equation (2-52) is valid when F(x) and dF/dx are 
sectionally continuous on each finite interval in the range 0 < x < co, provided 
the integral I VF(x)I dx exists, if F(x) is defined as its mean value at each point 
of discontinuity. 

By comparing equations (2-51) and (2-52) we obtain the unknown coefficient 
•(P) as 

c(/i) = 	X(fi, x')F(x') dx' 
N( ft) r (2-53) 

where N(fJ) and X(/3,x) are as defined previously. The substitution of equation 
(2-53) into equation (2-50) yields the solution for the heat conduction problem 
(2-47) as 

T(x, t) = f 	
1 

"21 	X (fi, x) 	X(11, x')F(x')dx' dfi 	(2-54) 
s= o 	N(fl ) 	=o  

1 	2 	1  

N(fl) 702  + 

The functions X(fl, x) and NA given by equations (2-55) are for a boundary 
condition of the third kind at x = 0. The boundary condition at x = 0 may also 
be of the second or the first kind. We list in Table 2-3 the functions X(fl, x) and 
N(P) for these three different boundary conditions at x = 0. Thus, the solution of 
the homogeneous heat conduction problem for a semiinfinite medium 0 x < x: 
given by equations (2-47) is obtainable from equation (2-54) for the three different 
boundary conditions at x = 0 if X(fi,x) and N(13) are taken from Table 2-3, 

accordingly. 

Ex mple 2-3 

A semiinfinite region 0 ‘...x < oo is initially at temperature F(x)• For time t 	0 
the boundary at x = 0 is kept at zero temperature. Obtain an expression for 
the temperature distribution T(x, t) in the medium. Also, examine the case 
when F(x) = T0  = constant. 

Solution. The boundary condition for this problem corresponds to case 3 in 
Table 2-3. Obtaining the functions X(f3, x) and N(f3) from this table and 

X(fl, x) = /I cos fix + H I  sin fix 	and 

and (2-55b) 



) 

) 

) 

) 

) 

) 

) 
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substituting in equation (2-54) the solution becomes 

T(x, t) = -2 f 	F(x') 	e -41 ' sin fix sin ax' dx' 
0 	p=0 

(2-56) 

The integration with respect to /I is evaluated by making use of the following 
relations 

equation (2-58b) becomes 

T(x, r) = 1 [ .1°) 	
e-'12  fin - 	dti 	(2-58c) 

To 	velri 	4,,/4,7; 

Since e-"' is symmetrical about a =0, equation (2-58c) is written in the form 

T(x, t) 
= 

2 	
e

_
'
12 

dti 
To ,fr J0 

(2-58d) 2 sin fix sin /3x' = cos 11(x - x') - cos fl(x x') 
	

(2-57a) 

and from Dwight [17: #861.20] we have 

Then 

0 

x - x' 
e-  °fill cos fl(x 	

4at —•
exp[ ( 

4a[ 

 )2] 	(2-57b) 

e-  *Pt  COS fl(x + x')dfl = 4at 
	

[ 
(x 

4at
x')2

]  

2 f co 

- 	̀"v t sin fix sin fix' d/3 
jg 0 	 -  

The right-hand side of this equation is called the error function of argument 

x/\774ai and the solution is expressed in the form 

T(x, t) 
erf 	 (2-58e) 

To 	Oat 

The values of the error functions are tabulated in Appendix III. Also included 
in this appendix is a brief discussion of the properties of the error function. 

(2-57c) 

(2-57d) 
= 	exp 	:_x')2 _ exp  _(x x')2  

(47tat)112 	4at 	 4at 
2-7 FLUX FORMULATION 

and the solution (2-56) becomes 

(x - )2  
T(x, t) 	1  	f 	F(x') [exp 	 exp 	

(x + x`)2)] 
 dx

, 

(4nai) 1  /2 	 Oat 	 4at x.= o 
(2-58a) 

For a constant initial temperature in the solid, F(x) = To  = constant, 
equation (2-58a) becomes 

T(x, t) 	1 	 x'y dx, 	 (x 

	

exp   dx' 
(tInat) 2 	— 	 4at 	X 0 	 Oat 

(2-58b) 

Introducing the following new variables, 

dx = Oat do 	for the first integral 

dx` = ,i4at d>t 	for the second integral 

The one-dimensional transient heat conduction equation, customarily given in 
terms of temperature T(x, I), can be expressed in terms of heat flux, q(x, 1). Such 
a formulation is useful for solving heat conduction in a semiinfinite medium with 
prescribed heat flux boundary condition. Consider the heat conduction equation 

a2T t aT(x,t) 

ax e a at 

and the definition .of the heat flux 

q(x, t) = - 
aT(x, t) 

Equation (2-59a) is differentiated with respect to space variable and the result 
is manipulated by utilizing equations (2-59a) and (2-59b). We obtain 

iix 2  a cat 

a2  q
= 

 1 t3q(x, t) 
 - — 
	 (2-59c) 

which is a differential equation in flux and is of the same form as equation (2-59a).. 

X — 
-n= 	 

,Oat 

x x' 

4at 

(2-59a) 

(2-59b) 



To illustrate its application, we consider heat conduction in a semiinlinite 
medium 0 <x < co, initially at zero temperature and for times r > 0, a constant 
heat flux'f, is applied at the boundary surface x = 0. The mathematical formula-
tion of this problem, in the flux formulation, is given by 

82,1 0q(x, t) 
— = -  ax 2  a at 

q(x, t) = 	= constant 	at 	x = 0, 	t > 0 	(2-59e) 

q(x, = 0 	 for 	t = 0 	 (2-59f) 

A new dependent variable Q(x, t) is defined as 

Q(x, t) = 10,1) - A 	 (2-59g) 

Then the problem takes the form 

0212 	0Q(x, t) 
axe  a at 

in 	0 < x < co, i > 0 	(2-60a) 	t  

Q(x, t) = 0 	at 	x = 0, 	t > 0 	(2-60b) 

+ ex p
( (x + 42)1 

 dx 
4at 

(2-63c) 

A comparison of the solutions (2-58a) and (2-63e)reveals that  the two  exponential  
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and the temperature at the surface x = 0 becomes 

2f0  (1112  
(2-62e) 

Example 2-4 

A semiinfinite region 0 < x < co is initially at temperature F(x). For times t > 0 
the boundary at x = 0 is kept insulated. Obtain an expression for the tempera-
ture distribution in the medium. 

Solution. The boundary condition for this problem corresponds to case 2 in 
Table 2-3. Therefore the formal solution given by equation (2-54) becomes 

2 
T(x, 	- f 	F(x') • e- 4°' cos Px cos fix' dx' (2-63a) 

0 P 	0 

From the trigonometric relations we have 

2 cos px cos /lx' = cos 13(x - x') + cos fl(x + x') (2-63b) 

Therefore, the integration with respect to fl in the above solution is performed 
by utilizing equations (2-57b) and (2-57c); then the solution becomes 

0-'40= - fo 	for - t = 0 	 (2-60c) 

The solution of this problem is immediately obtained from equation (2-58e) as 

Q(x, t) 	f0  erf(x/.14at) 	 (2-61a) 

Or 

q(x, t) = Jo  Q(x, t) = 10[1 - erf(x/i4at)] 	(2-6 lb) 

q(.x, t) = f0  erfe(x/i4at) 	 (2-61c) • 

T(x, I) 	= 
11'. 	[ ex 	

(x - )2 ) 
Ftf) p 

(4rta)112
7 

 ,•

" 
=ci 	 4at 

terms are subtracted in the former and added in the latter. 

2-8 ONE-DIMENSIONAL HOMOGENEOUS PROBLEMS 
Once q(x, t) is known, the temperature distribution T(x, t) is determined by the 	 IN AN INFINITE MEDIUM 
integration of equation (2-59b). We obtain 

7'(x,t) 	 (x7.14at) dx' 
• k x  

(2-62a) 

The integration is performed by utilizing the relationship given by equation (6) 
in Appendix III. 

- 
T (x, t) = —2kf°  [ (:t) e-  x'142' - erfc (414-  at)] 	(2-62b)  

We now consider the homogeneous heat conduction problem for a one-dimen- 
•sionat infinite medium; - co--:-.< < c, which is iniiially.a t .ternperittu re F(x). We 
arc interested in the determination of the temperature •(x, t) or the medium for 
time t > 0. No boundary conditions are specified for the problem since the 
medium extends to infinity in both directions; but the problem consists of a 
boundedness condition on T(x, t). The mathematical formulation is given as 

- 	• (32 T(x, t) 	1 a 7(x, t) 

Ox2 	a at 
in 	- co < 
	 (2-64a) 
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are sectionally continuous on every finite interval on the x axis, F(x) is defined 
as its mean value at each point of discontinuity, and the integral l'oo lF(x)Idx 

exists [4,p. 115]. 
A comparison of the results in equations (2-66a) and-(2:66d)implies that the- 

coefficients are given by 

T = F(x) 
	

for 	r = 0, in - x < x < oo 	(2-64b) 

By separating the variables in the form T(x,t)= X (x)F(t), the solution for the 
function F(t) is given as 

= 	 (2-64c) 

and the function X(x) satisfies the equation 

(12  X(x) 
	. + X(x) = 0 	in 

	

dx- 
	 -- co < x < x 	(2-64d) 

Two linearly independent solutions of this equation are cos fix and sin fix, 
corresponding to each value of /3. As negative values of i6 generates no additional 
solutions, we consider only /3 0. The general solution of the heat conduction 
problem is constructed by the superposition of X(13, x)r(t) in the form 

	

T(x, t) 	er-afl 2 f[a(l3) cos fix b(/3) sin /ix] dfl 
	

(2-65) 
P - 0 

The unknown coefficients a(11) and b(fi) are to be determined so that for t = 0 this 
solution represents the initial temperature distribution F(x) in the medium 
- 	< x < cr y.  The application of the initial condition to equation (2-65) yields 

F(x) = 	[o(13) cos fix + 1)(f) sin fix] d/3, 	- op < x < co (2-66a) 
0=0 

This equation is the Fourier formula for the integral representation of an arbit-
rary function F(x) defined in the interval - op < x < co; the coefficients a(fl) and 
17(3) are given as [4, p. 114; 14, p. 1] 

1  a(13)= - 
x'= — co 

". 	 

F(x') cos fix dx' 

F(x') sin fix' dx' 

(2-66b) 

(2-66e) /Of = .
1 

Equations (2.66b,c) _are _substituted into _equation (2-66a), the trigonometric 
terms are combined and the order of integration is changed. We obtain 

F(x) = 
jI=.0 	x'= —co 

[ 1  F 	F(x') cos fi(x - x')dx'ldfl 	(2-66d) 

The representation given by equation (2-66d) is valid if function F(x) and dF/dx 

NM cos /ix + b(fl) sin fix] _7-- -
1 
	F(x') cos 13(x - x') dx' 

= - 
(2-67) 

Then the solution given by equation (2-65) becomes 

CO 

T(x, t) = 1 e-"13'' 	F(x') cos 13(x - x')dx' dfl (2-68) 
= o 

In view of the integral, Dwight [17, #861.20] 

e GPI  cos fi(x 
121 

(2-69) 
-
4a

x
t 

- x')(113 = 	—
n 

exp 
[ 

4ca 	j = 0  

The solution (2-68) takes the form 

T(x, t)= - 	- 
[4nat]1/2 

- x' 
F(x') exp [ 	

(x
---- 
Oat 

(2-70) 

Example 2-5 

In a one-dimensional infinite medium - oo < x < co, the region - L < x < L 
is initially at a constant temperature T0, and everywhere outside this region 
is at zero temperature. Obtain an expression for the temperature distribution 
T(x, t) in the medium for times t > 0. 

Solution. For this particular case the initial condition function is of the form 

in -L<x<L 
F(x) = T°  

t0 	everywhere outside this region 

and the solution (2-70) becomes 

L 
T(x, t) 	-T° 	eXPI — 

(x  x`)2 
dx' 

(4Irca)1/2  _L 	4at 
(2-71) 

A new variable is defined as 

x - x' 

Oat
=  dx' = - 4at dri 	 (2-72) 



T = 0 at y = 0: 

T = 	y) 

ay 
+ 11,7' = 0 at y = b 

for t = 0, in the region 

for 	> 0 	(2-750 

12-75d) 

Assuming a separation in the form 

() = 	(N)Y(3.) 
	

(2-76) 

the problems defining the X(x) and Y(y) functions become 

and 

d2Mx) iq 2xix)= 0 
flX 2  

d X 
=0 
	at x=0; 

dx 

in 	0 < < a 

dX 
H 2 X =0 

dx 

(2-77a) 

at x = a 	(2-77b) 

d2 Y(Y) 	2 
+ 7 Y(y) = 0 

d•2  

Y = 0 
	

at y 0; 

in 	0 < y < b 

dY
+ H4Y = 0  

dy 

(2-78a) 

ut y =1) 	(2-78b) 

and the solution for r(t) is given by 

r(t) = e-a(P+ 7 21f 
	

(2-79) 

TaT — 114  T = 0 

T = Ftx,y1 
initially 

DT + H2 T 0 
ax 

aT 
ax 

A 
T 
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Then equation (2-71) becomes 

T 
T(x,t)= 

2 

which is written 

1) 	[ 
T 	

= - 
1  

o 	2 

2 	fa..+.0,,,TaT 	2 	0.- xii..11;7 
rig + .— 	 "2 dii] 

vfit 	0 	 11iJ 0 

in the form 

erf 
(L +

-x
)  

--) + erf'(—
L 	

in 	— co < x < oo 
fa—t 	Oat 

(2-73) 

(2-74) 

2-9 'MULTIDIMENSIONAL HOMOGENEOUS PROBLEMS 

Having established the eigenfunctions, eigenconditions, and the normalization 
integrals for one-dimensional problems of finite, semiinfinite, and infinite regions, 
we are now in a position to apply the method of separation of variables to the 
solution of multidimensional homogeneous heat conduction problems as illus-
trated below with representative examples. 

Example 2-6 

A rectangular region 0 x u,0 y b is initially at temperature F(x, y). For 
times t > 0 the boundary at x 0 is kept insulated, the boundary at y = 0 is 
kept at zero temperature, and boundaries at x = a and y = b dissipate heat by 
convection into an environment at zero temperature as illustrated in Fig. 2-6. 
Obtain an expression for the temperature distribution T(x, y, t) for times t > 0. 

Solution. The mathematical formulation of the problem is given as 

(2-75a) 

(2-75b) 

a2T er  _1 aT 
ay2 a at 

DT
11 - 

- 
=0 at x 0; 	--+,T=0 at x=a for t> 

• ax  

The complete solution for the problem is constructed as 

t) = E E 	4  -24 .4" X 	x) )2(7H, 1) 
t 

(2-80) 

For 1= 0 equation (2-80) becomes 

y) = E E 	x1Y4,,, y) 
	

in 	< x < a, 0 < y b (2-81).  
on= „Al 

The unknown coefficient c„,„ is determined by operating on both sides of 
equation (2-81) successively by the operators 

in 0 < x < a, 0 < y < b, t > 0 

Fig. 2-6 Boundary and initial conditions for a rectangular region considered in 
Example 2-6. 

b 

f X(fl,„x) 	and 	YE?. Y)dY o 	 0  
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and utilizing the orthogonality of these eigenfunctions. We obtain 

ra Th 
= 	 X(fi„„ x') Y(y„, y')F(x', y') dx' dy' 

N(f l,„)N(T.) le=0 y'=0 

where 

fb  Y2(74. dy 
0 

The substitution of equation (2-82) into equation (2-80) gives the solution of 
this problem as 

1  	 a .18 

	

T(x, y, t)= E E 	4), 	x(p., x)Y(y„, y) 	X(fl,„ x') 

	

I II= 1 	 N(Pm)INI(Tn) 	 0 0 

Y(L„, )')F(x',  y') dx' dy' 	 (2-83) 

The eigenfunctions, the eigenvalues, and the norms appearing in equation 
(2-83) are immediately obtainable from Table 2-2; that is, X(/I„„x) satisfying 
the eigenvalue problem (2-77) corresponds to case 4 and is given by 

X (fl„,, x) = cosfi„,x 	 (2-84a) 

N(11„,) 	+ HP + H2 
I 

—2 
	II' 2  "+ 
	

(2-84b) 

and the fi„, values are the positive roots of 

fl„, tan lima = H2 	 (2-84c) 

The function Y(y„, y) satisfying the eigenvalue problem (2-78) corresponds to 
case 7 in Table 2-2; after replacing L by b, fi by y, and H2 by H4, we find 

Y(y. y) -= sin y„y 	 (2-85a)  

becomes 

cr 	 R2 Fr2 	+ H2  
T(x, y, t) = 4 E E 	4,1)' 	— 2 	

4  

	

m= 	 a(f3„,2  + HP + H 2b(yn2  + H1) H4 

a 	rh 

	

'cos /I„,x sin -y„.1, 	cos /1„,x' sin y„y'F(x'. y'l dx' dy' (2-86) 
x•=0 y'=0 

where 13„, and y„ are the positive roots of the equations (2-84c) and (2-85c), 
respectively. 

Example 2-7 

A rectangular parallelepiped 0 x a, 0 y b, 0 z c is initially at tem-
perature F(x, y, z). For times t > 0 all boundary surfaces are kept at zero 
temperature. Obtain an expression for T(x, y, z, t) for times I > 0. 

Solution. The mathematical formulation of this problem is given as 

0 2T 02T a2T 1 OT 

axe  .42 	az2  at at 
= 	in 	0<x<a, 0<y<b, 0 <z<c, 

for 	t > 0 	 (2-87a) 

T = 0 
	 on all boundaries, for t > 0 	(2-87b) 

T = F(x, y, z) 
	

for I = 0, in the region 	(2-87c) 

Assuming a separation in the form T(x, y, z, t) = f(t)X(x)Y(y)Z(z), the complete 
solution for T(x, y, z,t) in terms of these separated functions is written as 

	

rzo 	06 

T(x,y,z, t)= E E E c„,„,,e-cde+ 	ep)fX(ft„„ x)Y(y,,,y)Z(11,,z) 	(2-88) 
m=1 a=1 p=1 

The application of the initial condition gives 

(2-82) 

'J 

 
N 	2(fl „„ x)dx and 

a. 	a. 	a■ 

(2-89) (2-85b) F(x, y, z) = 	 x) Y(y„, y)Z(ib„ z) 
m.1 n=1 p=1 

and the y„ values are the positive roots of 

Yr, cot y,,b = — H4 	 (2-85c) 

Introducing equations (2-84) and (2-85) into equation (2-83), the solution 

The unknown coefficient c„,„,, is determined by operating on both sides of 
equation (2-89) successively by the operators 

1'1  X(11 x) d 	Y(y„, y) dy, 	and 	Z(>10, z) dz 

+IP 

my,) 	bh.! + 11.20 + H4 



and utilizing the orthogonality of these eigenfunctions. We obtain 

a 	r 
Camp 

	 = 	=0 
Mi

m
X1Y(;,, 10ZO/p, z')

A 	N 
 

-F(x', y',1)dx' dy' dz' 

where 
u 	 1r 

N(11m) -=- f X 2(1 x) dx, 	N(y„) 	y 2(y„, y) dy', 

(2-90) 

 

T 0 

 

 

 

T 
initially 
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where 

rr1 =1,2,3,... 

n= I, 2, 3, ... 

p = 1, 2, 3, ... 

a 

= 

pit 
11p =  

C 

and 

N(rh,)-=- 	Z2(th,, z) dz 
0 

The substitution of equation (2-90) into equation (2-88) gives the solution as 

1(x, y, z, t) = 	E 	 edt 	l 	
x) Y(Y.,Y)411p, 2) 

= 1 n= p= 	 N(Pni)NUN(tip) fb 
X(f3„„ x') Y (y„, y')Z(ti p,z1F(2e, y', z') dx' dy' dz' 

(2-9 I ) 

Here, the functions. X, Y, Z satisfy the eigenvalue problems whose solutions 
corresponds to those given by case 9 in Table 2-2. Therefore, from Table 2-2 
we immediately obtain 

X (13„„ x) = sin /3„,x, 

Y(Y., JP) = 

Z(11 pz) = sin th,z, 

1 	2 
— and 

and 

and 

Jim's are roots of sin /3„,a = 0 

}'m's are roots of sin -,,„b = 0 

Vs are roots of sin ti pc = 0 

N(firr,) 	a 

I 	_ 2 

1 	2 

N(11p) 	c 

Hence, the solution (2-91) becomes 

T(x, y, z, t) = —
8 E E E e-2(P-2  + 4 4. 11: P4  • sin Anx sin y„y sin qpz 

abc m= 1  n=1 p=1 
a r ic 

sin /1,,,x' sin yny' sin ti pz'F(x', y', 1) dx' dy' dz' 
.c. = 0 i y=0 i e = o (2-92) 

Example 2-8 

A semiinfinite rectangular strip 0 y b,0 x < co is initially at temperature 

F(x, y). For times t > 0 the boundaries at x = 0 and y = b are kept at zero 
temperature and the boundary at y = 0 dissipates heat by convection into an 
environment at zero temperature as illustrated in Fig. 2-7. Obtain an expression 
for the temperature T(x, y, t) for times t > 0. 

Solution. The mathematical formulation of this problem is given as 

in 	0 < x < 	0 < y < h, t > 0 (2-93a) 

at 	= 0, 	1 > 0 	 (2-93b) 

at 	y = 0, 	t > 0 	 (2-93c) 

at 	y = b, 	r > 0 	 (2-93d} 

for 	r = 0, in the region 	 (2-93e) 

T 

— ay 1-1 T = 0 

Fig. 2-7 Boundary and initial conditions for a semiinfinite strip considered in 
Example 2-8. 

A 0 r 
02T a2T I aT 

• + • 	• 	- 

ax2 	y2  a Ot 

T = 0 

T 
II = 

Oy 

T = 0 

T = F(x, y) 
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(2-94) 

The general solution for T(x, y, f) is written in the form 

T(x, 	f 	c „(fl)e 	+ 7!)'X(13,  x) 11(y„, y) dy 
= 1 ,0 = 0  

determined according to equation (2-53); we obtain 

1 	 1 
e„(13).— f X(//,x)[— 	Y(y,„ y)F(x, y)dy]dx (2-99) 

N(P) x= o 	NUJ y= o 

The substitution of equation (2-99) into equation (2-94) gives the solution for 
T(x, y. t) as 

where X(fl, x) satisfies the auxiliary problem 

i2X!.:9 fl,x(x)  = 0  
in 	0 <x < oo 	(2-95a) 

dx2  

_—, 0 	 at 	x = 0 	 (2-95b) 

and Y(y„, y) satisfies the eigenvalue problem  

7(x, y, 1) = 	e- 	1  

	

n=1 13 	 NON(1„) 

	

r., 
	X(fi, 	", 

f b 

X(fl, x`)Y(y„, y')F(x', y)dx'•dy'l dfl 
LJx.=0 ywo 

(2-100) • 

d2 

 dY 

y(y)  
+ y2  Y(Y) = 0 

d 
in 	0 <y<b 	(2-96a) 

---+HI Y= 0 
dy 

at 	y = 0  • (2-96b) 

Y at 	y = h (2-96c) 

The application of the initial condition to equation (2-94) yields 

E 	en(13)X(13,x)Y(T„, Y) 	 (2-97) 
1 f 1=0 

To determine the unknown coefficients cr,(13) we first operate on both sides of 
equation (2-97) by the operator ft Y(y,„ y)dy and utilize the othogonality of 
the eigenfunctions Y(y,„ y). We obtain 

The eigenfunctions Y(y„, y), the norm N(y„) and the eigenvalues y„ for the y 
separation are immediately obtainable from case 3 of Table 2-2 by appropriate 
changes in the symbols. We find 

Y(y„, y) = sin ya,(b y) 	 (2-101a) 

N(7.) 	h(y„ + 	+ 
1 y2  + 1/2  

= 2 	n 
	

(2-101b) 

and the y„ values are the positive roots of 

yi, cot y„,b = — H1 	 (2-10Ic) 

The function X(fl, x) and the norm N(J)) are obtained from case 3 of Table 2-3, 
as 

X(ig,x)= sin fix 	 (2-102a) 

(2-98a) 
1 	2 = 

N(11) 
(2-102b) 

f*(x)= 	c„(13)X(), x) d 
= 0 

in 	0 < x < oo 

where 

1 
(f*(x) 	 y„, y)F(x, Adj., 	N(y„) =f Y2(y„,y)dy 	(2-98b) 

1‘1( Yn) y = 0 	 0 

Equation (2-98a) is a representation of an arbitrary function f '(x), defined in 
the interval 0 < x < oo in terms of the functions X(fi x), which are the solution 
of the auxiliary problem (2-95). This representation is of exactly the same form 
as that given by equation (2-51); the coefficient of equation (2-51) is given by 
equation (2-53). Therefore, the unknown coefficient c(fi) in equation (2-98a) is 

Substituting equations (2-101) and (2-102) into equation (2-100) and after 
changing the orders of integration, we obtain 

T(x, y, t) = 
4 	2 	y + H 
	 sin y„(b y) 

n n=1 	b(y! + HD+ H, 

Jr.. f 
 

F(x', y') sin y„(b — y')dx' dy' i 	e-"'t sin IN' sin fix dp • 
x. - 0 r. =9 	 d=o 

(2-103) 



To solve this problem we consider the following two one-dimensional homo-
geneous heat conduction problems for slabs 0 x a and 0 y b, given as 

e2 T, 	1 ST, 
in 	0 < < 	t > 0 	 (2-106a) 

ex' a ef 

OT, 	. 
-k, - 4- 1; 1 1 , =0 	at 	0 	t > 0 	 (2- I 06b) 

Ox 

, ST, 	t 	n  
K 2 ------ -F /12 I

n., 
 / = U 	at 	x = a, 	t > 0 	 (2-106c) 

Ox 

T1  = F1(x) 	 for - t = 0, 	in 0 < x < a 	(2-106d) 

and 

52T2  1aT2  
in 	0 < y < h, t > 0 	 (2-107a) 

aye 	a  of  

- k, —
aT2 

+ h3  T2 = 0 	at 	Y = 0, 	t>0 	 (2-107b) 
ay  

01'2 k 	+ h4 T2 = 0 : 	at 	y = b, 	t > 0 	 (2-107c) 4 ay  

T2 = F2(y) 	 for 	t = 0, 	in 0 y b 	(2-107d) 

Here we note that the boundary conditions for the problem (2-106) are the same 
as those given by equations (2-105b,c) and those for the problem (2-107) are the 
same as those given by equations (2-105d,e). Then the solution of the two-
dimensional problem (2-105) is given as the product solution of the above 
one-dimensional problems as 

T(x, y, t) = T1(x, TAP, t) 
	

(2-108) 

To prove the validity of this result we substitute equation (2-108) into equations 
(2-105) and utilize the equations (2-106) and (2-107). For example, the substitu-
tion of equation (2-108) into the differential equation (2-105a) gives 

	

32 T1 	(12 T2 I 	CT, 	1 	a T2 

	

T2 -- - 	T 	- = T 2 - - - 	- T, 

	

..cz 	0.1,2 	a 	St 	a 	Cr 

or 

a2 T1  1 aT, ( 02T2 1 07.2 
T2  	

) 

ax2 a at ) 
+ T, 

ay2  a at =o  
(2-109) 

C 
C 

C, 
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The last integral with respect to # was evaluated previously and the result 
given by equation (2-57d); then equation (2-103) becomes 

 r 	
2 	2 

T(X,y,I)=     ---  sin y„(b - y) (R

r
ao I/2 

	

b()I2 	+H, 
, 	

F(x', y) sin ).„(b - yl[exp - - 
(x_ X')2 

J 	0 Jy- -0 	 4at 

(x+ x)2  
- exp --- - - 	dx' dy' 	 (2-104) 

4at

' 

 

2-10.. PRODUCT SOLUTION 

In the rectangular coordinate system, the solution of multidimensional homo-
geneous heat conduction problems can be written down very simply as the 
product of the solutions of one-dimensional problems if the initial temperature 
distribution in the medium is expressible as a product of single space variable 
functions. For example, for a two-dimensional problem it may be in the form 
F(x, y) = F 1(x) F2(y), or for a three-dimensional problem in the form F(x, y, z) = 
F 1(x)F2(y)F3(z). Clearly, the case of uniform temperature initial condition also 
is expressible in the product form. 

To illustrate this method we consider the following two-dimensional homo-
geneous heat conduction problem for a rectangular region 0 x a, 0 y b: 

2T a2T aT 
 19x2 	 o at 
+ 	= 	in 	0 < x < a, 0 < y < b, t > 0 	(2-105a) 

- k,
aT 

 + hi T =0 at 	x=0, 	t > 0 	 (2-105b) 
ax 

OT 
k2 8—+h2T=0 	at 	x -= a, 	t > 0 	 (2-105c) 

x 

- k 3  — ST + h3T = 0 at 	y = 0, 	t > 0 	 (2-105d) 
y 

ik4 - ± 14 T = 0 	at 	y = b, 	r > 0 	 (2-105e) 
aY 

T =F 1(x)F2(y) 	for 	t = 0, in the region 	 (2-105f) 

where 

T -a T(x, y, t) 



ay 
aT +nr=o 

VA  
aT 
ax 

T + HT =11 
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Thus, the differential equation is satisfied in view of equations (2-106a) and 
(2-107a). 

Similarly, the substitution of equation (2-107) into the boundary conditions 
(2-105) shows that they are also satisfied. Hence, equation (2-108) is the solution 
of the problem (2-105). 

Example 2-9 

A semiinfinite corner, 0 x < co and 0 y < co, is initially at a constant 
temperature To; for times t > 0 the boundaries at x = 0 and y = 0 are kept at 
zero temperatures. Obtain an expression for the temperature T(x, y, 1) in the 
region for times t > 0. 

Solution. The solution of this problem can be expressed as the product of the 
solutions of 'the following two one-dimensional problems: (1) Ti(x, t), the 
solution for a semifinite region 0 x < cc initially at a temperature F ,(x)= 1 
and for times t > 0 the boundary surface at x = 0 is kept at zero temperature, 
and (2) T2(y, 1), the solution for a semiinfinite region 0 y < co initially at a 
temperature FAA = To  and for times t > 0 the boundary at y = 0 is kept at zero 
temperature. Clearly, the initial condition for the two-dimensional problem 
is expressible as a product, To  = I - To. The solution of such one-dimensional 
problem was considered previously in Example 2-3; thus obtaining these 
solutions fi-om equation (2-58e), we write 

T,(x, t) = erf(  x 	and 	T2(y, = To  e rf 	 
./4at) 

Then, the solution for the above two-dimensional problem becomes  

aT 
ay 

Fig. 2-8 Boundary and initial conditions for a rectangular region considered in 
Example 2-I0. 

and (2) T2(y, t), for a slab, 0 y..<„ b, initially at a temperature F(y) = To  and 
for times t > 0 the boundary at y = 0 is insulated and the boundary at y = b 
dissipates heat by convection into an environment at zero temperature with 
a heat transfer coefficient h (or H = h/k). These slab problems were solved 
previously in Example 2-1 and the solutions for T1(x, t) and T2(y, t) are readily 
obtainable from equation (2-45d) by appropriate changes in the parameters. 
We set To  = 1, L = a, and H2 = H to obtain 

cos 13„,x 

	

Ti (x, t) = 2 E 	 (2-111a) 

	

m=1 	aot H 2  j+ H cos 11„;a 

where the 13„, values are the positive roots of &„, tan 	= H. 
We set L= b, H 2 = H, x = y, and IL= y„ to find 

co 	2H 	cos y 
T2(y, t) = 2To  E 

n 1 	b(y + H 2) + H cos y„b 
(2-111b) 

T(x. 3', t) = Ti(x, ()TAY. t) = To erf (-ii7a)erf 	
Oaf 

(2-110) where the y„ values are the positive roots of y„ tan yi,b = H. 
Then the solution of the above problem for the rectangular region becomes 

Example 2-10 

A rectangular region 0 S x 0, 0 z y h is initially at a uniform temperature 
F(x, r) = 7;,. For times t > 0, the boundaries at x = 0 and y = 0 are insulated 
and the boundaries at x = a and y = b dissipate heat by convection into an 
environment at zero temperature with a heat transfer coefficient li (or H = It/ k). 
Figure 2-8 illustrates the boundary conditions for this problem. Obtain an 
expression for the temperature distribution T(x,y, t) for times t > 0. 

Solution. The solution of this problem can be expressed as the product of the 
solutions of the following two slab problems: (1) Ti(x, t), for a slab, 0 x a, 
initially at a temperature F(x) =- 1 and for times t > 0 the boundary at x = 0 
is insulated and the boundary at x = a dissipates heat by convection into an 
environment at zero temperature with a heat transfer coefficient h (or H = h/k): 

T(x, y, t) = T1(x, t)T2(y, r) 	 (2-111c) 

	

co no 	 H2e  — n(131+ y!)r 	 cos /3.x cos yhy 

	

T(x, y,t) = 4 To  E E 	 
[a((,2„ + H 2) H][b(y! + H 2) + H] cos 11„,a cos ynb 

(2-111d) 

The multidimensional steady-state heat conduction problem with no heat gene-
ration can be solved by the 'separation of variables technique when only one of 
the boundary conditions is nonhomogeneous. If the problem involves more than 

Y 	r 	, 	1  

2-11 MULTIDIMENSIONAL STEADY-STATE PROBLEMS 
WITH NO HEAT GENERATION 
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one nonhomogeneous boundary condition, it can be split up into a set of simpler 
problems each containing only one nonhomogeneous boundary condition; the 
method of separation of variables can then be used to solve the resulting simpler 
problems. Consider, for example the following steady-state problem subject to 
more than one nonhomogeneous boundary condition 

02T(r) = 0 
	

in region R 
	

(2-112a) 

k`•— h.T = 
api, 
DT 	

on boundary Si 	(2-112b) 

where a/ani  is the derivative along the outward-drawn normal to the boundary 
surface Si, i = 1, 2, ... , N and N is the number of continuous boundary surfaces of 
the region, and f, is the nonhomogeneous part of the boundary condition at the 
surface Si. This problem can be split up into a set of simpler problems for the 
temperatures TAO in the form 

Q2 Ti(r) = 0 	 in region R 

k, — , i j=ouj, 	on boundary Si 
aTj  
ani 
	 (2-113b)  

IVI Ill- I lift enk 	 - _ _ 

ar 
ay 

ar 	= 0 0.7c 

0 	 r= f(x) 

Fig. 2-9 Boundary conditions for a rectangular region considered in Example 2-11. 

Solution. The mathematical formulation of the problem is given as 

32  T(x, y) 4.  a2T(x, y) 0  

axe 	aye 
	in 	<x<a, 0<y<b 

	
(2-115a) 

aT — 
ax 

0 	atx=0, 

•T f(x) 	at y = 0, 	—
OT

= 0 
	aty=b 	 (2-115c) 

ay 

(2-113a) Tx 
DT 

HT=0 	atx=a 	 (2-115b) 

where 

i= 1, 2, , N 

j = 1, 2, ... , N 

{0 
6o= Kronecker delta = • 

1 
for 10j 
for i =j 

In this problem the boundary condition at y = 0 is nonhomogeneous; looking 
ahead in the analysis, we conclude that the nonhomogeneous part f(x) of this 
boundary condition should be represented in terms of the separated solution 
X(x) for the problem. Therefore, when separating the temperature in the form 
T(x, y) = X(x) Y(y), the sign of the separation constant should be so chosen as 
to produce an eigenvalue problem for the function X(x). With this considera-
tion the separated problems become 

and 

Clearly, each of the steady-state problems given by equations (2-113) has only 
one nonhomogeneous boundary condition. Then, the solution of the heat con-
duction problem (2-112) is obtained by the superposition of these simpler problems 
in the form 

T(r) = E TAO 
	

(2-114) 
1=r 

The validity of this result is readily verified by substituting equation (2-114) into 
equations (2-112) and utilizing equations (2-113). 

Example 2-11 

Obtain an expression for the steady-state temperature distribution T(x, y) in 
a rectangular region 0 .4 x a, 0 y b for the boundary conditions shown 
in Fig. 2-9. 

X(x)  p2x(x)=0 
dx 2  

d X 0  
dx 

d X +HX =0 • 
dx 

d 2  Y(Y) /12 Y(Y) 0 dye 

dY = 0  
dy 

in 	0 < x < a 

at 	x=0 

at 	x=a 

in 	0 < y < b 

at 	y b 

(2-116a) 

(2-116b) ' 

(2-1 16c) 

(2-117b) 

(2-117a) 
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The solution of the eigenvalue problem (2-116) is immediately obtainable from 
Table 2-2 as case 4; by replacing L by a and H2 by H we find 

	

X(fin„ x) = cos /3„,x, 	
N(P„,) 	a(/3  + H2) + H 

1)13!, + 
= 2 

	HZ 	
(2-118a) 

and the 	values are the positive roots of 

fin, tan 13„,a = H 
	

(2-118b) 

The solution of equations (2-117) is taken as 

Y(fi,n, y) = cosh fl„,(b — y) 
	

(2-118c) 

The complete solution for T(x, y) is constructed as 

CO 

T(x, y) = E c„, cosh g„,(b — y) cos fl„rx 

	

m=1 
	 (2-119) 

which satisfies the heat-conduction equation (2-115a) and its three homoge-
neous boundary conditions; the coefficients c„, should be so determined that 
this solution also satisfies the nonhomogeneous boundary condition. The 
application of the boundary condition at y = 0 yields 

= 0 
b 

T =o 

T.0 fo) 

Fig. 2-10 Boundary conditions for a semihriifinite strip considered in Example 2-12. 

Solution. The mathematical formulation of this problem is given as 

32  T(x, y)+  d2 	y) = 0  
a.,c2 	6,2 
	 in 	0 <y<b, 0<x<oo 	(2-123a) 

T=0 	at x = 0, 
	 (2-.123h) 

T = f(x) 	at y 0, T=0 at y b 	 (2-123c) 

The separated equations for the functions X(x) and Y(y) are now constructed 
by considering the fact that the nonhomogeneous boundary condition func-
tion f(x) defined in the interval 0 <x < oo should be represented by the 
function X(x). Then the separated problems become 

f (x) = 
m= 

cm  cosh fl„,b cos /1,,x 	in 	0 < x < a 	(2-120) d2 X(x)
+ n2X(x)=0  

dx2  
in 	0 <x<co 	(2-124a) 

The coefficients em  are determined by utilizing the orthogonality of the func-
tions cos fimx; we find 

c,,, „ =- 
N([1„,) cosh finib jo 

cos fi,„x'f (x') dx' 
a 

(2-121) 

The substitution of this expression into equation (2-119) together with the 
value of N(fL) as given above, results in the solution 

flm2  + 112 	cosh ,(1„,(b — v) 
	' cos j3„,x 61  cos fl,,,x' f(xl dx' T(x, y)= 2 2 	2 	2  H 	cosh limb m= (0.± H 

= 0 at 	x = 0 	 (2-1246) 

and 

Y( 	= 

dy2

y) 
	(y) u 0 <y<b 	(2-125a) 

Y=0 	 at 	y b 	 (2- I 25b) 

The solution of the problem (2-124) is obtainable from Table 2-3, case 3, as 

(2-126a) 
1 	2 

N([3) it where the fin, values are the roots of equation (2-118b). 

(2-122) 
x) = sin fix 	and 

Example 2-12 

Obtain an expression for the steady-state temperature T(x, y) in a semiinfinite 
strip 0 y h, 0 -< x < x,  for the boundary conditions shown in Fig. 2-10. 

Y(fi, y) = sinh ii(b — y) 	 (2-126b) 

and the solution of (2-125) is given as 



in 	0 < x < oo (2-128a) f (x) = 	A(fi)sinh fib sin fix dif 
0=o 

(2- i29b) 
co  

T(x, = 	f(x') dx' 	
sinh 	—  sin fix sill fix' dfl 

rr 	= o 	ffl=, sinh fib 

(2-132a).  tPX(x) ri2 X(X) 0 	in 	--co < x < co 
dx1 
  

(2-134a) 

f (x) -= 	sinh fib[A((3) cos fix + B(f3) sin fix] dfi 	in 	—z.c<x<oc 
p=oi 
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Then the complete solution for T(x, y) is constructed as 

T(x, y)= 	A(fi) sinh 	— y) sin fix d 	(2-127) 
/1=0 

If this solution should also satisfy the nonhomogeneous boundary condition 
at y = 0 for the above heat conduction problem, we obtain 

This is a representation of function f(x) defined in the interval 0 < x < co; but 
it is a special case of the representation given by equation (2-51). The coeffi-
cient for equation (2-51) is given by equation (2-53). Therefore, the coefficient 
of equation (2-128a) is determined from the result in equation (2-53) as 

A(fi)Sinh fib = 	r sin iix'f(x')dx' 	(2-128b) 

where 

as given previously_ The substitution of A(g) into equation (2-127) gives 

T(x, y) = —
2f 	sinh  fAb y)

sin fix dai 	sin fi x' f (x') dxr 	(2-I29a) 
# .=0 	sinh fib 	 o 

or changing the order of integration we obtain 

The integral with respect to fi has been evaluated [16, Section 10.11]; then the 
solution for the tempdature becomes 

Tx 	y ' 
1 {, y) = . 

I 
 sin

rt 	
f (x') 	

I 
. • 	 • 

2b 	b x., 0 	[cos [n(b — y)/b] + cosh [a(x — x')/b] 

1 

cos Err(b y)/b] + cosh [n(x + x')/b] 

Example 2-13 

Obtain an expression for the steady-state temperature T(x, y) in an infinite 
strip 0 y b, — co < x < co for the boundary conditions shown in Fig. 2-11. 
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Then the general solution for T(x, y) is constructed as 

T(x, y)=J sinh fi(b — .Y) [A(0) cos fix + B(fi) sin fix] d13 (2-133) 

P=p 

If this solution should satisfy the boundary condition at y = 0, we obtain 

This is a representation of function f (x) defined in the interval — oo < x < tx• 
in a form similar to that given by equation (2-66a); the coefficients of equation 
(2-66a) is given by equation (2-67). Then the coefficients of (2-134a) are obtained 
according to the relation given by equation (2-67). We find 

sinh flb[A(fl)cos fix + B(f3)sin fix] = f 	f (x') cos f3(x — x') dx' (2-134b) 

]dx' 	(2-130) 

Th 

and 

I. 

T 

o 	T =fIx1 

Fig. 2-11 Boundary conditions for an infinite strip considered in Example 2-13. 

Solution. The mathematical formulation of this problem is given as 

T(x, 	a2  T(x, 	0  

49x2 	03,2 

T.= f (x) 	at y = 0, . T = 0 

The separated problems are taken as 

(12  Y(Y) 	2 	0 
dy 	) — 

Y(1) 0  

in 	0 <y<b 	(2-132b) 

f‘/- 170 at y b 

//// e/ ■0' 

in 	—cc.<x<cc, 0<y<b (2-131a) 

at 	y = b 	(2-131b) 
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The substitution of these coefficients into equation (2-133) yields and 
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n 

or changing the 

I 
T(x, ) = - 

11" 
T(x, y) =  sink fl(b - y) 

f(x') cos /3(x -- x')dx' d/3 
-o 

we obtain 

h fit

h 

 h - y) sin

si 

(2-135a) 

(2-135b) 

0 	sinh 

order of integration 

f f 

x. = - 0 

/3b 	j.e-= 

dfl cos /3(x - x') 	dx' 
0 n 	flb 

The integral with respect to /1 is available in the integral tables of Dwight 
[17, #862.41]. Then the solution becomes 

ym 
T(x. y'1= 

1 
1= — sin— 	 f(x') 	

dx' 	(2-136) 

	

2b 	b fx.,,cos [n(b - y)/h] + cosh [n(x - x')/b] 

Example 2-14 

Obtain an expression for the steady-state temperature T(x, y)in a semiinfinite 
strip 0 c y c 6,0 <x < co for the boundary conditions shown in Fig. 2-12. 

Solution. The mathematical formulation is given as 

T(x,  y) 	T(x, y) = 0  

	

ax2 	03,2 

	

T= f(y) 	at x = 0 	 (2-137b) 

T=0 at y = 0, T = 0 at y b (2-137c) 

The sign of the separation constant must be so chosen that the separation 
function T(y) results in an eigenvalue problem. Then the separated problems 
are as 

(12X(x) 
dx2 
	y2X(x) = 0 
	

in 	0<x<oo 	(2-139) 

The solution of equations (2-138) is obtainable from Table 2-2, case 9, as 

= sin Va. 
b • 

MY.) = 2 
(2-140a) 

where they„ values are the positive roots of sin y„b = 0 or yn = mr/b, n = 1, 2, 3,... . 

The solution of (2-139) that does not diverge at infinity.is 

X(y„x)= e-Y"x  

Then the complete solution for T(x, y) is constructed as 

GO 

T(x, y) = E cne-  7"  sin y„y 
!i= 1  

The application of the boundary condition at x = 0 gives 

f(y)= E ci, sin y„y 	in 	0 < y < 	(2-I42a) 
n= 

The coefficients e„ are determined by utilizing the orthogonality of the eigen-

functions sin y„y; we find 

1 
c„ = 	f sin ynyf (y') dy' 

hi(Y.) o 
(2-142b) 

The substitution of cr, into equation (2-141) together with the value of N(y„) as 
given above results in 

in 	0 y < b, 0 < x < co 	(2-137a) 

(2-140b) 

(2-141) 

y= h 

Y( y)
+]2 Y(1)-0 

dye  

Y = 0 	at y = 0, 

in 	0<y<b 

Y= 0 	at 

T=0  

(2-138a) 

(2-138b) 	 where 

2 " 
T(x, y) - E 	7"x  sin yfly sin y,,y'f (y)dy' 

bn=1 

nn 	
n = 1,2,3... 

(2-143) 

T= f(y) 
For the special case of f(y) = To  = constant, the integral is performed and the 
solution becomes 

T(x,Y)  4 	1 e "" sin  
To 	

Y.Y 
Ir n =odd n 

(2-144) 0 	 T=0 

Fig. 2-12 Boundary conditions for a semiinfinite strip considered in Example 2-14. 



in region it, I>0 

on boundary Si  

N 

Th  = F(r) — 	Toi(r) 	for t = 0, in region R 

(2-1-17a) 

(2-147b) 

(2-147c) 

I OTh(r, t) 
V11r,(r, t)= 	• 

a 

eT, 
- = V 
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where only the odd values of n are considered in the summation because the 
terms for the even values of n vanish. 

2-12 SPLITTING UP OF NONHOMOGENEOUS PROBLEMS 
INTO SIMPLER PROBLEMS 

When the heat conduction problem is nonhomogeneous due to the nonhomo-
geneity of the differential equation and/or the boundary conditions, it can be 
split up into a set of simpler problems that may be solved by the method of the 
separation of variables. Here we consider a nonhomogeneous problem in which 
the generation term and the nonhomogeneous parts of the boundary-condition 
functions do not depend on time: 

" 	1 	I 

	

 
V 2T(r,t)+  g(r)— 	 

• k 	
5T(r,t) 

a or 

aT 
lk,--+ 	f,(r) 

On f 

T= F(r) 

where (0/0/1,)--. derivative along the outward-drawn normal to the boundary 
surface Si(i = I, 2, N) and N = number of continuous boundary surfaces of 
region R. Here we note that g(r) and fi(r) do not depend on time. Clearly, many 
special cases are obtainable from the general problem given above. We shall now 
split up this problem into a number of simpler problems in the following manner: 

1. A set of steady-state problems defined by the temperatures Toj(r), j= 
0, 1,2, ..., N. 

2. A homogeneous time-dependent problem defined by the temperature 
Th(r, t). 

The temperatures Toj(r) are taken as the solutions of the following set of steady-
state problems 

1 
(V2T0.1(r)+ 

k 
 g 0=0' 

• aTo  
+ 	= bu f,(r) 	on boundary S, 	(2-146b) 

an;  

where 

= 1, 	N 
= 0,1, 2„ N  

N = number of continuousboundary surfaces of region R 

= Kronecker delta = 
10 	for i Of- 

The temperature Th(r, r) is taken as the solution of the following homogeneous 

problem: 

Then, the solution T(r, 1) of the problem (2-145) is given in terms of the solutions 
of the above problems as 

T(r, t)= Th(r, t) + E Toi(r) 	 (2-148) 
j- 0 

The validity of equation (2-148) can be verified by substituting this equation into 
equation (2-145) and by utilizing equations (2-146) and (2-147). 

We note that equations (2-146) corresponds to a set of steady-state heat 
conduction problems. The function Too(r) for] = 0 corresponds to a steady-state 
heat conduction problem with heat generation in the medium, but subject to all 
homogeneous boundary conditions. The functions To,(r), To,(r), T03(r),... for 

j = 1, 2, 3, ... , respectively, corresponds to heat conduction problems with no heat 
generation, but only one of the boundary conditions, i =j, is nonhomogeneous. 

The homogeneous problem given by equations (2-147) is the homogeneous 
version of the original problem (2-145), except the initial condition is modified 
by subtracting from it the sum of the solutions of the steady-state problems 
(2-146). 

Clearly, the problems defined by equations (2-146) and (2-147), when given in 
the rectangular coordinate system, are soluble with the techniques discussed in 
this chapter. The more general case will be discussed in Chapter 13 in connection 
with the general. method of solution of heat-conduction problems by the integral 
transform technique. 

Example 2-15 

A slab, 0 x L, is initially at temperature F(x). For times t > 0 the boundaries 

at x = 0 and x =- L are kept at constant temperatures Ti  and T2, respectively. 
Obtain an expression for the temperature distribution T(x, t) in the slab. 

in region R, 	t > 0 	(2-I45a) 

on boundary Sr, t > 0 	(2-145b) 

for t = 0, in region R 	(2-I45c) 

in region R 	(2- I46a) 

1 	for i =j 



in 	0 <x<L 	 (2-150a) 

T.,= T, 	at 	x = 0 

T,= 	at 	x L 

and to a homogeneous problem for Th(x t) given by 

(2-150b) 

(2-150e) 

(2-151a) 
a 2T, _I 37 

axe at 
in 	0 <x<L, t>0  

co 	2 L 

T(x, t) = T1  + (T2  - 	
x 
 +? E e -ago sin P„,x F(x') sin )3„,x' dx' 
L L.-1  

c° 2 
+ E e'fl2-1-1  sin /3,,,x IT2  cos 	T 

Lm=1 	13m 

where cos ma = (- 1)m and fl„, = tnir/ L. 

(2-156b) 

Example 2-16 

A slab, 0 4 x L, is initially at temperature F(x). For times t > 0, heat is 
generated in the solid at a constant rate of go  per unit volume, the boundary 
at x = 0 is kept insulated and the boundary at x = L is kept at zero temperature. 
Obtain an expression for the temperature distribution T(x, t) in the slab. 

Solution. The mathematical formulation'of this problem is given as • 

02•T 11 OT + -go  = 
Ox2  k 	a 0: 

in 	0 <x<L, t> 0 	(2-157a) 
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Solution. The mathematical formulation of this problem is given as 
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where the cigenfunctions X(flmx), the norm N(/l.) and -the eigenvalues fl. are 
obtained from Table 2-2, case 9, as 

321' 1 DT 

3x2   a 8t 
in 	0 < x < L, t > 0 (2-149a) 

X(p „„ x) = sin /3„,x, 
12 

N(Pm)L 
(2-155a) 

T = T , 	at • 	x = 0, 	t > 0 	 (2-149b) 

T= T2 	at 	x = L, 	t > 0 	 (2-149c) 

T= F(x) 	for 	t = 0, 	in the region 	(2-149d) 

Since the problem is one-dimensional, we split it into a steady-state problem 
for Ts(x) given as 

and the /3„, values are the roots of 

sin /3,„L= 0 
	

(2-155b) 

and the initial condition function f *(x) is defined as 

f*(x)--- F(x) Ti(x) = F(x) - T1 - (T2 - T1) cL 	(2-155c) 

The solution T(x, t) of the problem (2-149) is obtained by introducing equations 
(2-153) and (2-154) into equation (2-152). We find 

T(x, t) = T, + (T2  - T1)-
x   E 	sin fl,,x 
L.-1 

• 	[F(x) — Ti  ---(T2  — Ti) )51] sin fl„,x' dx' 
o 	 L 

Performing the integrations we obtain 

(2-156a) 

Th - 0 	 at 	x=0 and x L, t >0 (2-151b) 

Th = 17(x) - 'T,(x) = f *(x) 	for 	t = 0, in the region 	(2-151c) 

Then, the solution for the original problem (2-149) is determined from 

	

T(x, t) = Ts(x) + Th(x, t) 	 (2-152) 

The solution of the steady-state problem (2-150) is given as 

Ts(x)= T1  + (7; - 	Ex 	 (2-153) 

The solution of the problem (2-151) is immediately written from equation 
(2-36a) as 

T,,(-x, t) = E e 	X(P„,x) 	X (7,„x') f 	dx' 	(2-154) 
Ma Gm) 	0 1 
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aT 
.x — 

_0  
a 

T=0 

T= F(x) 

This problem is split up into a steady-state problem for T,(x) as 

d2T 
dx2- go = 0 	in • 0<x‹L 
 k (2-158a) 

and 	T= 0 	at 	x = L (2-I58b) 

and a homogeneous problem for Th(x, t) as 

a2Th  
— in 0 < x < L t > 0 axe 	a at 	

, 
 

at x = 0, Th  = 0 	at 	x = L, for t>0 (2-I59b) 

Th  = F(x)- Ti(x)nrqx) 	for 	t = 0, in 0 .< x L 	 (2-159c) 

Then, the solution of the original problem.(2-157) is determined from 

	

T(x, t) = Ts(x) + Th(x, t) 	 (2-160) 

The solution of the steady-state problem (2-158) is 

, 	I 
(2-161) TAxj=—goL-(1 	) 

2k 	1.2  

and the solution of the homogeneous problem (2-159) is obtained as  
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and the fl„, values are the positive roots of 

cos fir,L= 0 	or 	t nt  = i 	
(2m + 1)7t 

2L 	
= 0, 1,2... 	(2-162c) 

Introducing equations (2-161) and (2-162) into (2-160) and performing the 
integrations we obtain 

I. 
0 11.x, = f-1-1)L- 2  1 - X--2  + 	e-' ` cos 'U nix 	F(x') cos II,„x' dx' ( 

2k 	L2  L, o 	 o 

2g0  	1 
- 	E (- I )rn e-4-c   cos fti x 

kLni.o 	 P 3  „,  

2-13 USEFUL TRANSFORMATIONS 

In this section we present some transformations that are useful in reducing the 
.differential equation into a more convenient form. 

I. We consider an equation containing convective and generation terms in 
the form 

DT 	OT 

at — a-a-x-2 	+1'7  g  

where a, fl, and y are constants, P(OTIDx) represents a convective term and 
yT represents generation proportional to the local temperature. We define a new 
dependent variable W(x, t) as 

T(x, t) = W(x, t)exp [-Ex - (L32- - 7) t 
2a 	4a 	

(2-165) 

Then, under this transformations, equation (2-164) reduces to 

2a 	4a t  —7t =a—aa2xW2 +g.exPt 	 ) 1} 

at 	x = 0, 	t > 0 	(2-157b) 

at 	x = L, 	t > 0 	(2-157c) 

for 	t =0, 	in 0...... x -.<._ L (2-157d) 

dT, 
- =0 at x = 0 
dx 

(2-159a) 

OTh = 0  

OX 

(2-163) 

(2-164) 

(2-166) 

2 m' which is easier to solve than equation (2-164). The boundary and the initial 

' 
Th(x, t) - 	e"dicos "(nix f *(x` ) cos & x' dx' 	(2-162a) 	 conditions for the problem should be transformed with the same transformation.  L„0  

where 	 2. We now generalize the above procedure to three-dimensional equation 
given as 

( x2) Foo— —2k  goL2  1 - (2-I62b) 	 = - 	+ 2 	P 1 
DT (02T 02T a2T) „ DTx 132__OaTy 133__DaTz 77, + 

at 	Ox 2  ayi a, 	a 	
(2-167) 
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where a, )0„)1„133, and y are constants. We define a new dependent variable 
W(x, y, z, t) as 
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where the following dimensionless parameters are introduced 

T(x, — 
= 	

0 	
= dimensionless temperature 

— T,,, T(x, y, z) W(x, z, t)exp I [—x 	— y)t 
P 	

] 
2a 	4a 

=  = dimensionless coordinate 
/. (2-1610 •exp[fl2  t. 113 1)1 	

p[ 	• • 
a 4a 	la 	4 

Bi = 	Biot number 
k 

Under this transformation equation (2-167) reduces to 

r = 
L2 
—
at 

= dimensionless time or Fourier number 

(2-171a) 

(2-171.b) 

(2-171c) 

(2-171d) 

where 

	

fl2
a 	

133 	al G g • exp[— — 
2a
Jo' x + (

4a

-

13; Oti-exp [— 
2a  
—y + 	 — 

a
z —t] 

	

4 	2 	4a 

(2-169b) 

which is easier to solve than equation (2-167). 

2-14 TRANSIENT-TEMPERATURE CHARTS 

Temperature—time charts are useful for rapid estimation of temperature history 
in solids, and for some specific situations such charts can be prepared. Here we 
consider a plate of thickness 2L, initially at a uniform temperature Ti  and for 
times t > 0 it is subjected to convection from both its surfaces into an ambient 
at a constant temperature T,, with a heat transfer coefficient h. Because of 
symmetry, we choose the origin of the x coordinate at the center of the plate and 
consider only half of the plate. The mathematical formulation of this transient 
heat conduction problem is given in the dimensionless form as 

P 2 	00 
11.V 2  — Pr 

00 
-= 0 

dO 	. 
- 0 	at 	X = 1, 	for 	r > 0 

0= 1 
	

in 	0 zg.. X 1, for 	r = 0  

It is instructive to examine the physical significance of the dimensionless para-
meters r and Bi. 

The dimensionless time r is rearranged in the form 

(rate of heat conduction 

r1 1 k(1/L)L2 	across Lin volume L3, W/°C 

L2  pt. pL3  /t( rate of heat storage ) 
in volume 1.3,W I"C 

Thus, the Fourier number is a measure of the rate of heat conduction compared 
with the rate of heat storage in a given volume element. Therefore, the larger the 
Fourier number, the deeper the penetration Of heat into a solid over a given time. 

The physical significance of the Biot number has already been discussed in 
the previous chapter in connection with the lumped analysis. It represents the 
ratio of the "internal thermal resistance" to the "external thermal resistance." 

The solution of the transient heat conduction problem (2-170) is presented in 
the graphical form in Fig. 2-13 a,b. Here, Fig. 2-13 a gives the midplane tempera-

ture To  or 0(0, r) at X = 0 as a function of the dimensionless time r for several 
different values  of the parameter 1/Bi. The curve for 1/Bi = 0 corresponds to the 
case in which h co, or the surfaces of the plate are maintained at the ambient 
temperature T,.. For large values of 1/Bi, the Riot number is small, or the internal 
conductance of the solid is large in comparison with the heat transfer coefficient 
at the surface. This, in turn, implies that the temperature distribution within the 
solid is sufficiently uniform, and hence lumped system analysis becomes applicable. 

Figure 2-13 h relates the temperature at six different locations within the slab 
to the midplane temperature To  [i.e., 0(0,r)]. Thus, given T,, temperature at these 
locations can be determined. An examination of Fig. 2-13 b reveals that for values 
of 1/Bi larger than 10, or Ri < 0.1, the temperature distribution within the slab 
may be considered uniform with an error of less than about 5%; hence for such 

in 	0 < X < 1, for T = 0 

at 	X = 0, 	for 	r > 0 

(2-170a) 

(2-170b) 

(2-170c) 

(2-170d) 

014/ ( 02 W a2  W 
2 + 	 G 

ux 	ay- 	oz  2 (2-169a) 
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situations the spatial variation of temperature within the medium can be neglected 
and the lumped system analysis can be applicable. 

Example 2-17 

A 10 cm thick brick wall is initially at a uniform temperature Ti  = 240°C. At 
time t = 0, both' surfaces of the wall are subjected to convective cooling into 
an ambient at temperature Too  = 40°C with a heat transfer coefficient h= 
60 W/(m2•°C). Using the transient temperature chart, calculate the midplane 
temperature at 2 h after exposure to the cool environment. Take the physical 
properties as 

cc = 0.5 x 10 -6  M2/S; k --- 0.69 Wf(m•°C); p = 2300 kg/m3  

Sohnion. We determine L, r, and I/Bi. 

L= -
0.1 
 = 

2 
0.05m, 

1_ 

= at 	0.5 x 10-'1  
3600) = 1.44 = 	(2 x 

L2 . 	(0.05)2  

k 	0.69 _ _023 

0 

0  

rr 

en Cs. 

O §4  
d 0 

0 

ry 

Bi 	60 x 0.05 
92 
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From Fig. 2-13a, for r = 1.44 and 1/Bi = 0.23 we have 

PROBLEMS 95 

PROBLEMS 

To  - T _ To  - 40 = 
0.1 2 

°(°' = T 	-240-40 

Thus 

40 .1- 24 	64"C' 

Thus the midplane temperature is approximately 64°C. 

REFERENCES 

I. M. Philip Morse and H. Feshbach, Methods of Theoretical Physics, Part I, McGraw-
Hill, New York, 1953. 

2. John W. Dettman, Mathematical Methods in Physics and Engineering, McGraw-Hill, 
New York, 1962. 

3. Parry Moon and Domino Eberle Spencer, Field Theoryfor Engineers, Van Nostrand, 
Princeton, N.J., 1961. • 

4. R. V. Churchill, Fourier Series and Boundary Value Problems, McGraw-Hill, New 
• 	York, 1963. 
5. 11. S. Carslaw and .1. C. Jaeger, Com/tic/ion 401em in Solids, Oxford at the Clarendon 

Press, London, 1959. 
6. V. S, Arpaci, Conduction Heat Transfer, Addison-Wesley, Reading, Mass., 1966. 
7. M. N. azisik, Boundary Value Problems of Heat Conduction, International Textbook 

Company, Scranton, Pa., 1968. Also Dover Publication, New York, 1989. 
8. M. N. ozisik, Heat Conduction, 1st ed., Wiley, New York, 1980. 
9. M. D. Mikhailov and M. N. ozisik, Unified Analysis and Solutions of Heat and Mass 

Diffusion, Wiley, New York, 1984. 
10. P. Moon and D. E. Spencer, Q. Appel. Math. 16, 1-10, 1956. 
I I. A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricorn', Higher Transcendental 

Functions, McGraw-Hill., New York, 1953.• 
12. R. V. Churchill, Operational Mathematics, McGraw-Hill, New York, 1958. 
13. E. C. Titchmarsh, Eigenfunction Expansions, Clarendon Press, London, 1962. 
14. M. L. James, G. M. Smith, and J. C. Wolford, Applied Numerical Methods for Digital 

Computations ivith Fortran mu! CSM P, 2nd ed.. IEP. New York, 1977. 
15. Y. blurb', COMputer Methods Jun- Engineering, Allyn and Bacon, London, 1988. 
16. E. C. Thelimarsh, Fourier Integrals, 2nd ed.. Clarendon Press, London, 1962. 
17. B. B. Dwight, Tables of Integrals and Other Mathematical Data, 4th ed., Macmillan. 

New York, 1957. 
18. M. P. Heisler, Temperature Charts for Induction and Constant Healing, Trans. 

ASM E, 69, 227-236, 1947. 

2-1 	A slab, 0 < x L, is initially at a temperature F(x). For times t > 0 the 
boundaries at x = 0 and x = L are kept at zero temperature. Derive an 
expression for the temperature T(x, t) in the slab for times t > 0. Determine 
the temperature T(x, t) for the special case F(x) = To  = constant. 

2-2 	A slab, 0 < x < 	is initially at a temperature F(x). For times I > Q the 
boundary surface at x = 0 is kept insulated and that at x = L dissipates 
heat by convection into a medium at zero temperature with a heat transfer 
coefficient ft. Obtain an expression for the temperature distribution T(x, t) 
in the slab for times t > 0 and for the heat flux at the boundary surface 
x = L. 

2-3 	A slab, 0 15x L, is initially at a temperature F(x). For times t > 0 the 
boundary surface at x = 0 is kept at zero temperature, whereas the boun-
dary at x = L dissipates heat by convection into a medium at zero tem-
perature with a haat transfer coefficient h. Obtain an expression for the 
temperature T(x, t) in the slab and the heat flux at the boundary surface 
x = L for times t > 0. Also consider the case when F(x) = T0  = constant. 

2-4 	A semiinfinite medium, 0 <x < co, is initially at zero temperature. For 
times t > 0 the boundary surface at x = 0 is kept at a constant temperature 
T„. Obtain an expression for the temperature distribution 7'{x, t) in the 

slab for times t > 0. 

2-5 	A semiinfinite medium, 0 < x < oo, is initially at a uniform temperature 
To  and for times t > 0 it dissipates heat by convection from the boundary 
surface x = 0 into an environment at zero temperature. Obtain an expres-
sion for the temperature distribution T(x, t) in the medium for times t > 0. 
Determine an expression for the heat flux at the surface x = 0. 

2-6 	In a one-dimensional infinite medium, - co <x < co, initially, the region 
a < x < b is at a constant temperature T0, and everywhere outside this 
region is at zero temperature. Obtain an expression for the temperature 
distribution T(x, t) in the medium for times t > 0. 

2-7 	A rectangular region 0< x< a, 0 y b is initially at a temperature 
F(x, y). For times t > 0 it dissipates heat by convection from all its boundary 
surfaces into an environment at zero temperature. The heat transfer 
coefficient is the same for all the boundaries. Obtain an expression for the 
temperature distribution T(x, y, t) in the region for times t > 0. 

2-8 A region x > 0:y > 0, z > 0 is initially at a uniform temperature T0. For 
times t > 0 all the boundaries are kept at zero temperature. Using the 
product solution, obtain an expression for the temperature distribution 
T(x, y, z, t) in the medium. 

2-9 	A region x > 0,y > 0 is initially at a uniform temperature T0. For times 
> 0, both boundaries dissipate heat by convection into an environment 
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at zero temperature. The heat transfer coefficients are the same for both 
boundaries. Using the product solution, obtain an expression for the 
temperature distribution T(x, y, t) in the medium. 

2-10 A rectangular region 0 x a, 0 y s b is initially at a uniform tempera-
ture•To. For times t> 0 the boundaries at x = 0 and y = 0 are kept at zero 
temperature and the boundaries at x = a and y = b dissipate heat by 
convection into an environment at zero temperature. The heat transfer 
coefficients are the same for both of these boundaries. Using the product 
solution, obtain an expression for the temperature distribution T(x, y, t) n 
the medium for times t > O. 

2-11 A rectangular parallelepiped 0 <x a, 0 y s b, 0 z < c is initially at a 
uniform temperature To. For times t > 0 the boundaries at x = 0, y = 0, 
and z = 0 are insulated and the boundaries at x = a, y = b, and z = c are 
kept at zero temperature. Using the product solution, obtain an expression 
for the temperature distribution T(x, y, z, t) in the region. 

2-12 Repeat problem (2-11) for the case when the boundaries at x = a, y = b, 
and z = c dissipate heat by convection into an environment at zero tem-
perature. Assume the heat transfer coefficients to be the same at all these 
boundaries. 

2-13 Obtain an expression for the steady-state temperature distribution T(x,y) 
in a sentiinfinke strip 0 < x < a, 0 < y < rx,, for the ease when the boundary 
at x = 0 is kept at a temperature f ( y) and the boundaries at y = 0 and 
x = a are kept-at zero temperature. 

2-14 Obtain an expression for the steady-state temperature distribution T(x,y) 
in an infinite strip 0 x < a, — co < y < oo, for the case when the boundary 
surface at x = 0 is kept at a temperature f (y) and the boundary surface at 
x = a is kept at zero temperature. 

2-15 Obtain an expression for the steady-state temperature distribution T(x,y) 
in a rectangular region 0 .x -4. a, 0 < y < b for the following boundary 
conditions: the boundary at x = 0 is kept insulated, the boundary at y = 0 
is kept at a temperature f (x) and the boundaries at x = a and y = b 
dissipate heat by convection into an environment at zero temperature. 
Assume the heat transfer coefficient to be the same for both boundaries. 

2-16 Obtain an expression for the steady-state temperature distribution T(x, y, z) 
in a rectangular parallelepiped 0 x a, 0 y b, 0 < z c for the fol-
lowing boundary conditions: the boundary surfaces at x = 0 is kept at 
temperature To, the boundaries at y = 0 and z = 0 are kept insulated, the 
boundary at x = a is kept at zero temperature, and the boundaries at y = b 
and z = c dissipate heat by convection into an environment at zero tem-
perature. The heat transfer coefficient are the same for all these surfaces. 

2-17 Obtain an expression for the steady-state temperature distribution T(x,y) 
in a rectangular region 0 < x < a,0 <y<bin which heat is generated at 

a constant rate g(x, y) = go  = constant and subjected to the following 
boundary conditions: boundaries at x = 0 and y = 0 are kept insulated, 
whereas the boundaries at x = a and y = b are kept at zero temperature. 

2-18 A slab, 0 x L., is initially at zero temperature. For times t > 0 the 
boundary at x = 0 is kept insulated, the boundary at x = L. is kept at zero 
temperature, and there is heat generation within the solid at a .constant 
rate of go. Obtain an expression for the temperature distribution T(x, t) 

in the slab for times t > 0. 

2-19 Obtain an expression for the steady-state temperature distribution T(x,y) 
in an infinite strip 0 r y < b, 0 s x < co, for the case where the boundary 
at x = 0 is kept at zero temperature, the boundary at y = b is insulated 
and the boundary at y = 0 is subjected to a heat supply at a rate of f (x), 
W/m2. 

NOTES 

1. The properties of the following homogeneous boundary value problem, called a 
Sturm—Lionville problem, were first studied by J. C. F. Sturm and J. Lionville in Journal 
de M at liematique, 1836-1838. Here we present the orthogonality of the eigcnfunctions 

é [ 	dc1/(A,x)] 

dx 
10) dx 	[q(x) Aw(x)Ilr(A, 	0 	in 	a < x < 	(la) 

a 	(1b) 

dkA,x) 
B1 	+ B 21P(A,x) .0 

dx 

where the functions p(x),q(x), w(x) and dp(x)/dx are assumed to be real valued, and 
continuous, and p(x) > 0 and w(x) > 0 over the interval (a, b). The constants A1, Az, B„ 
are real and independent of the parameter A. Let 

d [ . . thit
dx  

(A, x) 
L[0(A,x)] 

d 
p(x) 	 + q(x)tfr(A, x) 

x  

We then write equation (I a) for any two eigenfunetions tp(A„„x) and >['(A,. x) as 

1,[0 m(x)] + A „MAI/ „,(x) = 0 

L(0„(x)] Anw(x)frn(x) = 0 

where 

tb„(x) .1P(A.„x) 

Al 
 rbp(A, x) 

+ A 21k(A, x) 0 
dx 

at 	x =b 	(Ic) 

(2) 

(3a)  

(3b)  



(4)  — ku.t111— (2 — )14 VI 
" 

(5)  
f t' 	i 

Loir.0„ dx = ; 	;;[P(CtC, 0.0:17 
ix=a 

	tix 

(6)  
for 	m n 

for 	m = IX AIV1P 	
{0 

N(.,1„) 

(3) 

r. 	L. 

	

N= Xodx= f 	L 
o. 

d2X{x) 
(la) 

(lb) 
d X 0  

dx 

+ /12  X(x) = 0 
m 

at 	x.--0 and x --= L 

in 	0 <x < L 
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We multiply equation (3a) by tP„(x) and equation {3b) by kli„,(x), then subtract the results 

Roth sides of equation (4) is integrated from x = a to x = h and the result rearranged 

For in 0 a. the argument of the integral on the right-hand side of equation (5) vanishes 
because of the homogeneous boundary conditions (lb) and (Ic) for the problem. For 

In= n  (i.e., ii•,„ ).„), the left-hand side of equation (5) is the norm N, but the right-hand 
side is indefinite because both the numerator and the denominator vanish. However, 
for the right-hand side is evaluated by L'Hospital's rule. Thus equation (5) is 
written more compactly as 

where 

which proves that eigenfunctions of the Sturm—Liouville system are orthogonal with 

respect to the weighting function w(x) in the interval (a, b). 
2. For a boundary condition of the second kind at both boundaries, the eigenvalue 

problem is given as 

From equation (I a) we have 

/0f X 2 (x)dx H_X 41X 	1(11X )2 	 (2) 
dx o 	o dx 

The first term on the right vanishes in view of the boundary conditions. Then /30  = 0 is 
also an eigenvalue corresponding to the eigenfunction X0(x) = constant # 0. For X0  = 
the norm N becomes 

3 
THE SEPARATION OF VARIABLES 
IN THE CYLINDRICAL 
COORDINATE SYSTEM 

In this chapter we examine the separation of the homogeneous heat conduction 
equation in the cylindrical coordinate system; determine the elementary solutions, 
the norms, and the eigenvalues of the separated problems for different combina-
tions of boundary conditions and systematically tabulate the resulting expressions 
for ready reference; discuss the solution of the one- and multidimensional homo-
geneous problems by the method of separation of variables; examine the solutions 
of steady-state multidimensional problems with and without the heat generation 
in the medium; and illustrate the splitting up of nonhomogeneous problems into 
a set of simpler problems. The reader should consult references 1-4 for additional 
applications on the solution of heat conduction problems in the cylindrical 
coordinate system. 

3-I SEPARATION OF HEAT CONDUCTION EQUATION 
IN THE CYLINDRICAL COORDINATE SYSTEM 

Consider the three-dimensional, homogeneous differential equation of heal con-
duction in the cylindrical coordinate system, 

a T I DT 1 0 2T 02T 1 DT 
(art  r Dr r2  a02 	az 2  a at 

where 7•_-  T(r, 0, z, t). Assume a separation of variables in the form 

T(r, 0, z, t) = r(r, 	z)r(t) 

NtAnt 	wtir? rix = f p 	
„ 

— — 
 

011, 	a2 4' 
h 

(7)  

(3-1) 

(3-2) 



Then, the separated equations and their elementary solutions become 

(12 Z ,12z = 0  
d

- 

z2  

d2'D 1,20 0  

d 2R, i dR,v , 

-cira-+; (7:1V12— ?)Rv =°  

Z(q, z): sin qz and cos qz 	(3-9a) 

0(i,, 0): sin vck and cos v4) 	(3-9b) 

R „(fl, r): J,Vir) and liar) 	(3-9c) 

and the function no satisfies equation (3-4), that is, 

. dr 	2  
aA = 0 Tit   r(t): e -a42( 	 (3-9d) 
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Equation (3-I) becomes 

( a20 I alp 	I (3211, a 2 111\ 	dr(9 
1k 	+ &Pi  + T27  ) = Wrif ) 	— 

Then, the separated equations for r(t) and 1,/, are taken as 

+ aPf(t)=. 
dt 

	

(324, 	I act, 	020 a20  
+— ++120 =0 

dr2  r Or r2  002  az2  

Equation (3-5) is the Helmholtz equation; we assume a separation in the form 

	

ifr(r, 	R(r)L(4)Z(z) 	 (3-6) 

Then equation (3-5) becomes 

	

R dr 2  r dr 	r2  (I) 0)2  Z dz2  

	

1 (d 2 R 	1 dR) 	I 1 d 2(1) 	1 d2Z 

	

+ 	+ 	 + 112  =0 
	

(3-7) 

The only way this equality is satisfied is if each group of functions is equated 
to an arbitrary separation constant in the form  

where 
22 = /32 + ,12 	 (3-9e) 

Here we note that the separation constant 22  does not include v2  because of the 
nature of the separation. Equation (3-9c) is called Bessel's differential equation of 
order v, and its solutions, J,(fir) and Yar), are the Bessel functions of order v of 
the first and second kind, respectively. Clearly, the order v of the Bessel functions 
is due to the presence of the separation equation (3-9b) resulting from the 
azimuthal dependence of temperature. 

A discussion of the properties of Bessel functions is given in Appendix IV; the 
reader should consult references 5-8 for further information on Bessel functions. 

Figure 3-I shows Jo(x),J i (x), Yo(x), and Yi(x) functions. Both .1 „(x) and Y,(x) 
functions have oscillatory behavior like trigonometric functions, but Yv(x) func-
tions become infinite at x = 0. 

Having established the separation equations associated with the r, 4i , z, and 
variables of the transient heat conduction equation (3-1), we now examine the 
separation equations associated with some special cases equation (3-1). 

1. Temperature has no 4)  dependence. Equation (3-1) becomes 

02T 1 i)T "02  T 1 OT 

r 	Oz2 	a at 
	 (3-10) 

The separated equations and their elementary solutions become 

— 22 (3-3) 

(3-4) 

(3-5) 

1 d 2Z 	1 d2(1). 	 1 (d2R, I dR„) v2 
= q2, - 	= - V2, and -- 	 — -2 	/32  (3-8) Z dz 2 	(13, 	 R„ dr2 	r dr 	r 

d

dz 

2Z 

 

• 

+ q2Z =0 Z(q, z): sin qz and cos riz 	(3-1 la) 

—as 
0 

mil ► 1111111•11111111■ 

NNEAMIIIIIMMEMI 

yi xi 111■■■11■■111 
5 
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Fig. 3-1 Jo(x), Yu(x) and .11 (x), Yi(x) functions. 
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where 
22 = 	q 2 	 (3-11d) 

For this particular case temperature has no 0 dependence, hence there is no 
separation equation for the 0 variable for v = 0. It is for this reason, the solutions 
for the separation are zero-order Bessel functions. 

2. Temperature has no z dependence. Equation (3-1) becomes 

02T 1 OT 1 02TI OT 

Or' 	r Dr r2  a02. « at 

The separated equations and their elementary solutions are 

(3-12) 

2  d(1) 

de 
+ v2(I) = 0 

d2R 	 p2 — V dR 	v2  

(173 	r dr 	r 2  

dr 
-I- oc22r = 0 

where • 

4)(v, 0): sin v0 and cos v0 	(3-13a) 

R JP, r): 3,(fir) and Yair) 	(3-13b) 

F(t): e-ivt 	 (3-13c) 
717 

12 = #2 	 (3-13d) 

3. Temperature has no time dependence. Equation (3-1) reduces to 

.327' 1 OT 1 01T 02T = u 
are r ar r2  De Dz2  

The separated equations and their elementary solution become 

(3-14) 

c12(1) 
VIP = 0 

d02  

d 2Z 
T", =LI 

d 2  

d2R, + 1 dR, ( 2 iv)R,„=0  

dr2 	r dr 	r 

(I)(v, 0): sin v0 and cos v0 	(3-15a) 

Z(n. z): sin nz and riz 	(3-15b) 

RA, r): Ar) and K Ar) 	(3-15c) 

d2R0 
+ 

1 dRo 
+ 13R°= 0 	Rai, r): J Or) and Yo(flr) 

dr2 	r dr 

dF 
—+ = 0 
dt 

(3-11b) 

F(t): 	 (3-11e) 
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Fig. 3-2 10(x , Kdx) and 11 (x), K, (x) functions. 

For this particular case the separation equation (3-15c) for the r variable is 
obtainable from that given by equation (3-13b) by setting fl = in where i= \ILL 
Then the solutions for equation (3-15c) can be written as ./,,(in) and 17,,(ii7); 
however, to alleviate the complex argument notation, these functions are denoted 
by /,(q) and KA), which are called the modified Bessel functions of order v of the 
first kind and of the second kind, respectively. Figure 3-2 shows a plot of 1„(x), 
11(x), KG(x), and K 1(x) functions. We note that /y(x) functions become infinite as 
x-■ co and Ic(x) functions become infinite as x i 0. A discussion of the properties 
of modified Bessel functions and their numerical values are given in Appendix 
IV. There is another possibility for the separation of equation (3-14), obtainable 
by replacing 212 by  2 / in equations (3-15b) and (3-15c). In this case, the ele-
mentary solutions for the Z separation are taken as e-  e' or sinh riz, cosh pp; 
the equation for the R separation becomes Bessel's differential equation of order 
v and its solutions are taken as: J,(qr), 11,(qr). 

4. The temperature has no t and z dependence. Then equation (3-I) simplifies 
to 

02T I DT 
are  r 	r

- 5 
	

= 0 
 

1 02T 
(3-16) 

The separated equations and their elementary solutions become 

1124) 	
,=0 1—  + '111  de 1(v, 0): sin v0 and cos v0 	.(3-17a) 

d 2R I dR 	Iry and r-" 	for v 0 — +---  —K=U 	 (3-17b) dr2  r dr P. 	 ci  + c2  In r 	for I. = 0 

2 

0 x 
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We note that for this particular case the equation for the function R(r) is Euler's 
homogeneous differential equation. 

3-2 REPRESENTATION OF AN ARBITRARY FUNCTION 
IN THE CYLINDRICAL COORDINATE SYSTEM 

Basic to the solutions with the orthogonal expansion technique is the representa-
tion of an arbitrary function in terms of the eigenfunctions of the resulting 
eigenvalue problems. In the cylindrical coordinate system we have three distinct 
eigenvalue problems associated with the separated differential equations (3-9a), 
(3-9b), and (3-9c). 

The eigenvalue problem associated with the differential equation (3-9a) is 
exactly the same as that considered in Chapter 2. Therefore, all the results 
presented in Chapter 2 for the rectangular coordinate system are applicable for 
this eigenvalue problem. 

The differential equation (3-9b) appears to be similar to equations (3-9a); but;  
the eigenvalue problem associated with it, for the case of full circular cylinder, is 
cyclic with a period of 2n. Therefore, we need to examine the representation of 
an arbitrary function F(0) in terms of the eigenfunctions of such an eigenvalue 
problem. 

Finally, the differential equation (3-9c) is Bessers differential equation which 
is different from those considered previously. Therefore, we need to examine the 
representation of an arbitrary function F(r) in terms of the eigenfunctions of the 
eigenvalue problem associated with Bessel's equation (3-9c). 

Stich representations are now developed for arbitrary functions F(r) and F(0) 
for use as ready reference in the solution of heat conduction equation with the 
separation of variables in the cylindrical coordinates. As we have done in the rectan-
gular coordinates, we develop such representations for each specific spatial domain 

• separately. The representation of F(r) is considered over the regions 0 r < b, 
0 r < co, a < r < co, and a < r < b, while the representation of F(0) is considered 
over the region 0 <rt. <2n with the condition of periodicity of solution with a 
period of 2n. 

Representation of F(r) over 0 -‘_r<b 

We consider the representation of an arbitrary function F(r) defined in a finite 
interval 0 r < b in terms of the eigenfunctions R,(P„,, r) of the eigenvalue problem 

Such an eigenvalue problem is encountered in the solution of heat conduction 
problem for a full solid cylinder with temperature varying with the azimuthal 
angle 4i. For generality, the boundary condition at r = b is chosen of the third 
kind. The results for the boundary conditions of the second and first kinds are 
obtainable from those for the third kind as special cases by setting H = 0 and 
H oo, respectively. 

The system (3-18) is a special case of the general Sturm-Liouville problem 
considered in Chapter 2. Therefore, the eigenfunctions R,.(/3,,, r) have the following 
orthogonality property: 

fo rRja„„ r)R,(fl„, r) dr = 50 	
for m n 

for m = 	
(3-19) 

We now consider the representation of an Nar(bflin't)rary function F(r) defined in the 
finite interval 0 < r < b in terms of the eigenfunctions Ram, r) in the form 

F(r) = E 
111 = 

The unknown coefficients cm  are determined 
equation (3-20) by the operator itrR 
relation (3-19). We find 

cm  = —
1

- 
N(13„,) 

where the norm, N(IJm) is 

r) 	in 	0 	r < b 	 (3-20) 

by operating on both sides of 
and utilizing the „(fin, r) dr 	 orthogonality 

rR ,(11„„ r)F(r) dr 	 (3-21) 
o 

N(11„,)= 	rK(iqm, r) dr (3-22) 

The substitution of equation (3-21) into (3-20) gives 

x 	1  
F(r) 	E R,•(fl„„ 	R,(16,,„ = 	 r)f r' r')F(r') dr` in 0 < r < b (3-23) 

N(I3m) 

where the function R,([3„,,r) is given by 

r) = .1,(flmr) (3-24) 

n
  

Cl
  C

)  

Here, the function Y,(I3„„r) is excluded from the solution, because the region 
includes the origin r = 0 where Yv(/Jmr) becomes infinite. 

The eigencondition for determining fin, is obtained by introducing equa-
tion (3-24) into the boundary condition (3-18b). We obtain 

fl„, • 9,,h) + HJ Omb) = 0 	 (3-25) 

d 2R,(r) + I dR•(r) (13, V 2 

r2
) R,(r) = 0 

dr2 	r dr 

+ HR,= 0 
dr 

in 	0 < r < b 	(3-18a) 

at 	r = b 	(3-18b) 
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where we defined 

J;(11,,h)=[—d  . v(1) 
dr 

with H and v are real constants and [5, p. 597] 

+ 

The cigenvalues fi„, are the positive roots of the transcendental equation (3-25). 
In this equation, the prime over the Besse' function denotes the derivative in the 
sense defined by equation (3-26). From equations (3-22) and (3-24) the norm 
becomes 

h 

N(13,„)= f rJ!(fln,r)dr 

When the integration is performed by utilizing the integration formula given by 
equation (25h) of the Appendix IV, the norm is determined as 

Note that, for the boundary condition of the second kind, Po = 0 is also an 
eigenvalue for v = 0; then the corresponding eigenfunction and the norm for 
this special case are 

) 	Ro(/lo•) = I 	and 	N(I3o)=  
b 	b2  
r dr = for /30  = 0 (3-31b) 

0 	2 

See note I at end of this chapter for a discussion of /10  = 0. 

Boundary Condition at r = b is of the First Kind. For this case we have 

= J,A)tr) (3-32) 

and the eigenvalues fin, are the positive roots of 

J,.(flmb)= 0 (3-33) 

The norm N(flm) is obtained from equation (3-28a) by utilizing equation (3-33). 

(3-26) 

(3-27) .  

V
2 

NUL) = —
132

[.1:Rfl„,b)+ ( I 	).1(13 b)] 
2 	 N.rh 2  

(3-28a) (3-34) N(fl.)=—
b2 

2 
 J?(I3Thb) 

In view of the transcendental equation (3-25), this relation may be written in the 
alternative form as 

	

b2  [11,2_ 	_Vi2  2  \ jwimb)  
Nifim) = 	/3! 1- 	11;,b 	

(3-28b) 

The above expressions for the eigencondition and the norm are developed for 
boundary condition of the third kind as given by equation (3-I8b). Expressions 
for the case of boundary conditions of the second and first kinds are obtained 
from these general expressions as special cases as described below. 

Boundary Conditon at r = h is of the Second Kind. For this special case we have 

	

R 	= .1•„,r) 
	

(3-29) 

the cigenvalues /1,„ are the positive roots of 

f,.(13„,h)= 0 
	

(3-30) 

The norm is obtained from equation (3-28b) by noting that for the boundary 
condition of the second kind we have H = 0: 

b2( 	1.2  

	

N(fim) = —•{\ — 	„b) 	for 	0 	(3-31a) 
2 	fl!,/)2 	' 

In Table 3-I we summarize the eigenfunctions .12,(11,„,r), the norms N(fi„,), 
and the eigenconditions. They will be needed in the solution of heat conduction 
problems for a solid cylinder 0 r < h when temperature varies with azimuth 
angle 4). 

For problems with aximuthal symmetry, the eigenvalue problem (3-18) is 
applicable with v = 0. Therefore, the results in Table 3-1 are also applicable for 
heat conduction problems in a solid cylinder with azimuthally symmetric tem-
perature if we set v = 0 in these- results. 

Representation of F(r) over 0 ..s".; r < co 

We now consider the representation of an arbitrary function F(r) defined in the 
infinite interval 0 r < oo in terms of the solutions of the following differential 
equation 

(12.12,(r) 	

r dRdr 	r2

y()

( 	
r 2 

dr  ' 
	 /32  —)R(r) = 0 

	
in 	0 r < co 	(3-35) 

subject to the condition that R,•(r) remains finite at r = 0. Expansions of this type 
will be needed in the solution of heat-conduction problems in a region 0 < r < co, 
0 < 4 < 27r in the cylindrical coordinate system with temperature varying radially 
and azimuthally. 



V 

ur 
0 

0 

S
u b

je
ct

  t
o
  t
he

  B
o

u
n d

ar
y  

C
o

n d
it

io
ns

  S
ho

w
n  

in
  
th

e  
T

ab
le

  B
e l

ow
  

B
ou

n d
ar

y  
C

o
n d

it
io

n  

-0 

II 

z 
r 

13„
, 1

0
„
, b

l+
  I
f 

„
, b

)  
0  

II 

g-I 45 

(-4 

0 

cy  

rr 

0 
II 

ti 

CI:), 

ri 

1

▪  

1 

0 

0 

I

- 

I 

C 

- 

a 

ao 

C a 
0 

200 

'5 

Fu 
. 04 

ra 

O 

II 

cc, 

ca 

ra 

REPRESENTATION OF AN ARBITRARY FUNCTION 	to  

The solution of equation (3-35) that remains finite at r = 0 is 

R y(f1, r) = J Or) 	 (3-36) 

An arbitrary function F(r) defined in the interval 0 s r < co can be represented 

	

in terms of .1,(fir) functions for v 	in the form [9, p. 88; 10, p. 52; 5, p. 453] 

= 	r 11211J,(1104.1 f 	r' ` 12 J.,(fir')F(1 dr' 	0 r < oo 	(3-37) 
P-0 	 r' 

if the integral fat'F(ride is absolutely convergent, and if the function F(r) is of 
bounded variation in the neighborhood'of the point r. 

If we now replace Ffri by r 112F(r) in the equation (3-37), we obtain 

	

F(r) = 	[

▪  

3.1„(fir) 	f 	r', 1,(I3r')F(r) dr' 	0....cr<co 	(3-38) 
e= 0 	 e• =0 

which is the representation of a function F(r) in the interval 0 r < co that will 
be needed for the solution of heat conduction problems in an infinite region 

r < co. 
For problems with azimuthal symmetry, the eigcnvalue problem (3-35) is 

applicable with v = 0. For such a case the representation (3-38) is applicable by 
setting v = 0. 

Representation of F(r) over a < r < co 

We now examine the representation of an arbitrary function F(r) defined in the 
interval a < r < co in terms of the solutions of the following problem 

(12Ro(r) 
+

1 dRo(r)
. + PRo(r)= 9 	in 	a < r < co 	(3-39a) 

dr' 	r dr 

— 
dR, 

H + Ro  = 0 	 at 	r = a 	(3-39b) 
dr 

such a representation is needed in the solution of heat conduction problems in 
the region a < r < co in the cylindrical coordinate system for an azimuthally 
symmetric temperature i.e., temperature does not depend on 4i. The representa-
tion of an arbitrary function F(r) in the region a < r < co in terms of the solutions 
Ro(f3, r) of the problem (3-39) is considered in reference [12] and the result can 
be written in the form 

 RF(r)= 	I P o(P,r)dP 	rRo(P, r')FV)dr' 	in 	a < r < co (3-40) 

	

= 0 MP) 	 r' = a 

ti 

r 

108 
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(3-45) 

(3-46) 

Ro(fl,r)= Jo(fir)Yo(fla) —  Yo(fir)Jo(fla)' 

and the corresponding norm becomes 

N(f3)=4(fia)-i- 

in 	a < r <b 	(3-47a) 
dRJR) 	dR,(r) 	r2 

2  
( /32  — 	R ,(r) = 0 

dr' 	r dr 	r2  
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Here, the norm N(f3), the function Ro(fl,r) depend on the type of the boundary 
condition at r = a; that is, whether it is of the first, second, or the third kind. We 
present the expressions for R0(13. r) and N(/i) for these three different types of 
boundary conditions at r = a. 

The Boundary Condition at r= a of the Third Kind. The solution of equation 
(3-39a) satisfying the boundary condition (3-39b) is taken as 

ROW, = J o(lir) [fi Yi  (fiti) H YoUlan — Yo(MULI 1(f30) HJ0(11a)] (3-41) 

and the norm N(P) is given by 

NU)) = [01(fia) -k Hia(finil 2  + Efl i(fla) + HYo(fia)] 2 	(3-42) 

The Boundary Condition at r =a is of the Second Kind. For this special case 
we have H= 0. The solution of equation (3-39a) satisfying this boundary condition 
is taken as 

Ro(13,4= Jo(fir)Y1(fla) 	Yo(fir)J1(fin) 	 (3-43) 

and the norm becomes 

MTh= d'(flet)-1- 	(fiu) 	 (3-44) 

The Boundary Condition at r =a is of the First Kidd. For this special case 
we have H —4 co. The solution of equation (3-39a) satisfying this boundary condi-
tion is taken as 

We summarize in Table 3-2 the above results for Ro(fi, r) and N(fi) for the 
boundary conditions of the first, second, and third kinds at r = a. 

Representation of •(r) over a <r < h 

We now consider the representation of an arbitrary function F(r) defined in a 
finite interval a <r <b in terms of the eigenfiinctions of the following eigenvalue 
problem: 
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—•dr v+11112,=0 

	

dR 	 • 
at 	r = a 	(3-47b) 

	

dR, + 
	=0  0 
	

at 	r = b 	(3-47c) 
dr 

The eigenvalue problem of this type is encountered in the solution of heat 
conduction for a hollow cylinder with azimuthally varying temperature distri-
bution. For generality, boundary condition of the third kind is chosen for both 
boundaries. Other combinations of boundary conditions are obtainable by setting 
the coefficients H,, H, equal to zero or infinity; thus, nine different combinations 
are possible. 

The system (3-47) is a special case of the Sturm-Liouville problem, hence 
the eigenfunctions R,.{/3,„, r) have the following orthogonality property 

E rR,.(fl„,, OR•, r) dr = $0 
	

for 	m 11 

for 	m=n 

where 

NW= I rR:.• (fl„„ r) dr 	 (3-49) 

Now we consider the representation of an arbitrary function F(r) defined in the 
interval a < r < b in terms of the eigenfunctions RA„,r) of the above eigenvalue 
problem (3-47) in the form 

F(r) = E c„,R,.(fl„„r) 	in 	a < r < b 	(3-50) 

The unknown coefficients c„, are determined by following a procedure described 
previously; then the representation (3-50) becomes 

cc 	I 

„, 
Fir) = E 	R,(13„,,r)i r'R,(/3„11;111 dr' 

Al(fl„)  
in 	a<r<b 	(3-51) 

We present in Table 3-3 the eigenfunctions R,(#„„r), the norm N(I3„,) and the 
eigenconditions of the eigenvalue problem (3-47) for four different combinations 
of the boundary conditions of the first and second kind at the boundaries. The 
boundary conditions of the third kind are not included in this table, because the 
resulting expressions are too complex to be practical for computational 
purposes. 

Representation of /7(4)) over 0 -44 < 2ff 

We now consider the representation of an arbitrary function F{4) defined in the 
interval 0 di < 2n in terms of the eigenfunctions of the eigenvalue problem 

associated with the separation equation (3-9b). We have the following eigenvalue 
problem 

2(1 cf 2 1,2 cp = 0 	in 	0 < < 2n 	 (3-52a) 
dq5 

The solution may be taken as 

(1)(v, = A, sin v4 + B, cos ► # 	 (3-21)) 

We now examine the representation of a function F(0) that is periodic in 4) 
with period 2rt in terms of 0(v%0) functions in the form . 

F(0) = E (A,. sin vrk + 13,,cos vO) 	in 	0 -4. ri) 4. 2n 	(3-53) 

The condition that F(0) is periodic in q5 with period 2n requires that the separation 
constants v should be taken as integers, that is 

v=0,1,2,3... 

To determine the coefficients A„ we operate on both sides of equation (3-53) by 
the operator sin v`q5d0 and utilize the orthogonality of functions sin v4. We 

obtain 

I 2n 

A = - f F(4) sin vch dO 	for 	v = 0, 1, 2, 3 ... 	(3-54a) 
n o  

since 120 K  sin' vib d(lo = ir and the integrals of the product of sin vih, cos vck vanish. 

To determine the coefficients B, we operate on both sides of equation (3-53) by 
the operator Encos VONS and utilize the orthogonality of functions cos v4. 
We find 

f RC cos VO dO 
n 	

for 	v = 1,2,3 	(3-54b) 

Bv  = • F 

2n 0  
- 	.. F(0)4 	for 	v 	 (3-54c) 

since LI. cos= vdr do is equal to n for v = I, 2, 3,... and equal to 2n for v = 0. 
The substitution of the above expressions for A,, and B„ into equation (3-53) 

yields the representation in the form 

1 co 	2n  

	

= —1— .12'
F(0' )(14; + E 	F(q5')(sin v4 sin v4.' + cos v0 cos vq5r) d41 

2n 0 	ny-1 f 	co  
F(4') 4 	E + - 	f 

2n 
 F(4) cos v(4 — 4:')dcY 	 (3-55a) 

2n 	 Try=1 o 

(3-48) 



v=0,1,2,3... (3-57a) in 	0 r < b, t>0 82T 1 aT 1 aT(r,t) 
- are 	r Or 	a 	Ot 
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This representation may be written more compactly in the form 
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I f 2ff 

F(19) = - 
n
E 	Rocos 	— 	do' 	in 	0 rfr 21r (3-55b) 

where 

0, 1, 2, 3 . „ 217-  
• 4 11T = 0 

Dr 

and replace it by 2n fin. v = 0. If we compare the representations given by 
equations (3-53) and (3-55b) we conclude that 

1 f 2rr 

• [A „sin v0 + Br  cos v0] - 	F(0') cos v(0 — 01 4' 
o 

where 

1. I 

Fig. 3-3 Boundary and initial conditions for a solid cylinder considered in ta) 

Example 3-1 and (b) Example 3-2. 

Solution. The mathematical formulation of this problem is taken as 

(3-56) 

and replace it by 2n fur v = 0. 
The representation of F(0) as given above will be needed in the solution of 

heat conduction in a full cylinder (i.e., 0 2n) with azimuthally varying 
temperature. 

Representation of F(cb) over 0 < < 00( < 2n) 

In the case of a portion of a cylinder the range of 0 variable is 0 < q < 00( < 2n). 
For such a case, equation (3-52a) should be solved over the range 0 < < 00( < 27r) 
with prescribed boundary conditions at the boundary surfaces 4 = 0 and 0 = 00. 
For such a case, the eigenvalue problem for the function (1)(0, v) is similar to that 
of a slab in the region 0 < < 00  and the results presented in Table 2-1 may be 
utilized to determine the eigenfunctions, the norm, and the eigenconditions. 

" --3=3 ---1-10M0d-ENEOUS PROBLEMS IN (r, 0 VARIABLE 

(yr 
—+HT=0 
Or 

at 	r=b,• 	t > 0 	 (3-57b) 

T 	1.(r) for 	— 0, 	in 	0 rib (3-57c) 

Separating the variables, it can be shown that the solution for the time 
separation is given by 

no = (3-58) 

and the space-variable fUnction R(/3,„,r) satisfies the following eigenvalue 
problem: 

d 2R0(r) 1 dRo(r) 
+ P2R0(r) = 0 in 	0 r < b 	(3-59a) 

dr' 	r dr 

Having_cstablished the representation of an arbitrary function F(r) in terms of 
the solutions of Bessel's differential equation as discussed previously, the solution 
of the one-dimeiisional hiimcigeiieous heat conduction problems-in-the 	 T-he-complete-solution  for T(r,..0 iss_gastructed as 

d Ro 
+ H120 = 0 at 	r = b 	(3-59b) 

dr 

variables becomes a straightforward matter as now illustrated with examples. 

Example 3-1 

A solid cylinder, 0 r b, is initially at a temperature F(r); for times t > 0 the 
boundary surface at r = b dissipates heat by convection into a medium at zero 
temperature as illustrated in Fig. 3-3a. Obtain an expression for the tempera-
ture distribution T(r, t) for times t > 0. 

T(r, t) 	 Ro(11,,„r) 	 (3-60) 
m 

The application of the initial condition gives 

CO 

F(r)= E c„,Ro(Jf„„r) 	in 	0..-.5.r<b 	(3-61) 



-") 

(3-62) 
co 

Tfr, t)= 	e-̀ 41?..` R„(11„,,r) f r'R0(13„,. r1F(r•1 dr' 
NO.) 

2 	 ,6 2J 0(13”,r) 	f b  
(1q, + 112)40mb) 0 1'J 0(fl„,r')F(rldr' 	(3-63) T(r, t) = 	E e 

„, 	
'fl- 

b 

+ H J 066 mb) = 0 or 	fli„. ,(,q„,b) = Hi o(fl„,b) 	(3-64) 

(3-65a) t) 
27'4, 

= • E 
b 111 .= 	 ((1,2, 	H2)4(11.b) 

(34515) 
	2H_To—E _ 	

1' 	  
„ j_f oui„,0 	 

=--- e 
b m= 	(13.2  + 112)-1  °ULM 

(3-66a) 

i T(r, t)= .:,-i  : _, 0  r' Ffr') dli + _3._ t e  -4,2,,,  
b2  .= 1 

Jo(Pmr)  f h  i.v a „,r1F(r') dr' 
4(P mb) r.= 0  

in 	a<r<b, t>0 	(3-69a) 
027 I OT I aT 

+---  
dr 2 	r car a at 

0 
Or 

at 	r = a,. 	t > 0 	(3-69b) 
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This is an expansion of an arbitrary function F(r) defined in the interval 
0 r < b in the same form as given by equation (3-20). The unknown co-
efficients cm  are determined by utilizing the orthogonality of the eigenfunction 
as given by equation (3-19). Then, the solution for the problem becomes 

where R0(/3„,., r), N(flm) and the eigenvalues 	are immediately obtainable from 
Table 3-I, case 1, by setting v = 0, because the eigenvalue problem (3-59) is a 
special case of the general problem (3-18) with v = 0. Then the solution (3-62) 
takes the form 

where the 13„, values are the positive roots of 

For the special case of F(r) = To  = constant, the solution (3-63) reduces to 

where we utilized equation (3-64) to obtain the alternative form given by 
equation (3-65b) 

Example 3-2 

A solid cylinder, 0 r b, is initially at a temperature F(r); for times t > 0 the 
boundary surface at r = h is kept insulated as illustrated in Fig. 3-3h. Obtain 
an expression' for the temperature distribution T(r, t) for. times t > 0. 

Sofia/on. The solution for this problem is written formally exactly in the same 
form as that given by equation (3-62); but, Ro(13,,, r), N(fi.) and eigenvalues fl,„ 
are taken from Table 3-1, case 2, by setting v = 0. We obtain 

HOMOGENEOUS PROBLEMS IN (rm VARIABLES 	119 

where the /3„, values are the positive roots of 

4(06„,h)=. 0 	or 	11(13„,b) = 0 	 (3-66b) 

The first term on the right-hand side of equation (3-66a) is due to the fact that 
fin  = 0 is also an eigenvalue for this special case. The region being insulated, 
heat cannot escape from the boundaries, hence the temperature. after the 
transients have passed, becomes the average of the initial temperature diStri-
bution over the cross section of the cylinder as given by the first term on the 
right-hand side of equation (3-66a). 

Example 3-3 

A solid cylinder, 0 r b, is initially at a temperature F(r); for times t > 0 the 
boundary surface at r = b is kept at zero temperature. Obtain an expression 
for the temperature distribution T(r, t) for times t > 0. 

Solution. The solution is written formally exactly in the same form as that 
given by equation (3-62); but, Ro(fl„„r), N(fl) and eigenvalues /1„, are taken 
from Table 3-1, case 3, by setting v = 0. We obtain 

2 t 	JO(Plitr)  fb 	(s.r1F(r`) dr' 	(3-67a) T(r, 
= n...1 e 	4fi.h) 	n 

where the /1„, values are the positive roots of 

J  °ULM=  0 	 (3-67b) 

For the case of constant initial temperature F(r)= To, equation (3-67a) becomes 

	

2A c° 	 11 r) 
T(r,t)= 

	

b m
E

1 	AJ 

 0(

wl i(13.b) 

Example 3-4 

A hollow cylinder, a < r < b, is initially at a temperature F(r) (Fig. 3-4). For 
times t > 0, the boundary surfaces at r = a and r= b are kept insulated. 
Develop an expression for the temperature distribution T(r, t) for limes t > 0. 

Solution. The mathematical formulation of the problem is given by 

 L) 

) 

) 

(3-68) 
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Fig. 3-4 Boundary and initial conditions for a hollow cylinder considered in 
Example 3-4. 

OT 

—0 

 

dr 
	 at 	r = b, 	t > 0 	(3-69c) 

T = F(r) 
	

for 	t = 0, 	in the region 	(3-69d) 

Separating the variables, it can be shown that the solution for the time variable 
function is given by exp( --4412mt), and the space-variable function R„(II„„ r) is 
the solution of the following eigenvalue problem: 

(PR°  1 dRo  . 2  

	

dr2 
+ 

r 
—
dr 

-1- ffR 0  s.÷- 0 " -in 	a < r < b 	(3-70a) 

dRo  
= 0 	 at 	r = a 	(3-70b) 

dr 

d Ro   

—0 

 

	

at 	r = b 	(3-70c) 
dr 

Then, the complete solution for T(r, I) is written as  

(3-70). The unknown coefficients c,, arc readily determined by utilizing the 
orthogonality of the eigenfunctions as given by equations 3-48 and 3-49. Then, 
the solution for the temperature T(r, t) is written as 

	

T(r•, I) = E -•.- 	R0(13„,, r) 	r' Ro(13„„ r')F(1 dr' 
m. NCO.)  

z 	I 	 b 	

(3-73) 

where the eigenfunctions R0(11„„ r), eigenvalues f1,,, and the norm N(fi„,) are 
obtained from Table 3-3, case I by setting v = 0. 

R 0(# m,r) = Jo(I3,nr)Yo(iimb) — mb)Y0(1 qmr) 	(3-74a) 

712. (3-74b) 
N(i3„,) 	2 J'o2(P„,a) — 	(1„,b) 

and the eigenvalues P„, are the positive roots of the following transcendental 
equation: 

.10 ma)r,(13  mb) JO(13mb)ro(li aia) = 0 	(3-74c) 

In addition, for this particular case 	= 0 i also an eigenvalue; then the 
corresponding eigenfunetion and the norm are taken as 

Ro(PD, r) = 1, 
	1 	2 

(3-75) 

Therefore, we start the summation in equation (3-73) from in = 0 and the 
solution becomes 

T(r, t) = 	r' F(e) dr' 
— a 2  a 

2  

+ 	
1 

E 	R0(13„„ r) 	r' Ro(fl„„ r')F(r') dr' 
	

(3-76) 
m= N(flat) 

T(r, t) = E c„,e'r4̀ Ro()3„„ r) 
m =1 

The application of the initial condition (3-69d) yields 

F(r) 	E c„,R0(13„„ r) 	in 	a < r < b 	(3-72) 
m=1 

This is an expansion of an arbitrary function F(r) defined in the interval 
a < r < b in terms of the eigenfunctions Ro(3„„ r) of the eigenvalue problem 

Example 3-5 

A hollow cylinder, a r b, is initially at a temperature F(r); for times t > 0 
the boundary surfaces at r = a and r b are kept at zero temperature. Obtain 
an expression for the temperature distribution T(r, t) for times t > 0. 

(3-70 	 where R0(13,„r) and N(I3„,) arc as defined by equations (3-74a, b). Note that, 
the first term on the right-hand side of the solution (3-76) represents the 
steady-stale temperature in the cylinder after the tempera lure transients have 
passed. It is the average of the initial temperature distribution over the region. 



is given by exp ( — WO, where fl is the separation variable. The space-variable 
function Ro(fl,r) is the solution of the following equation 

Solution. This problem is similar to the one considered above, except the 
- 	--boundary conditions•at-r= a--and-r-= b are both of-the-first kind. Therefore, 

the solution for T(r, r) is of the same form as given by equation (3-73); that is 

(3-77) 
I 

T(r, r)= 	 Ro([1„,•r) 	r' R 0(f1„,, r')F(r') dr' 
. - N{13.1 

(3-83) R o(fl. r) = 4(Pr) 

where 
(3-78a) 

T(r, = fc(fl)e 	060043 	 (3-84) • 
ti=l) 
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except 12„(11„„ r). 1■1(11,„) and the cigencondition should be obtained from ease 4 
of Table 3-3 by setting r = 0. Then the solution becomes 

n 2 	- 	/3.,/(i7„,a) 
T(r,= - 	 ) 	R 0{13m, r1F(r'}dr' 

2 	J6(fin,a)— 4,(p„,b) ' 	 a 

dR0  1 dR, 
— 132R0 •=. 0 	in 	0-4r<co 	(3-82) 

dr' 	r dr 

subject to the condition that Ro(fl,r) remains finite at r = 0. The solution of 

equation (3-82), which is finite at r = 0, is 

Then, the complete solution for T(r, t) is constructed as 

For the special case of F(r') T„ — constant, the integral in equation (3-78a) 
is evaluated, the resulting expression is simplified by utilizing the Wronskian 
relationship of Besse] functions given in the Appendix IV, equation (27). Then 
the temperature distribution for this special case becomes 

This is an expansion of an arbitrary function F(r) defined in the interval 

0 r a., in terms of J 0(11,.) functions. Such a representation was given in the 
previous section by equation (3-38) in terms of J,,(/3r) functions. Therefore, by 
setting v = 0 in equation (3-38) we obtain 

T(r, 1) = 	•E 	 Jama) e 	 r) 	(3-80) 

ti 

F(r)= 

By comparing 

The substitution 

By changing 
(Appendix 

f 	0(13r) 
= 0  

equations 

T(r, I) = 

the order 
IV, equation 

of equation 

d 11 

c(fJ) 

P 	0  

(3-85) 

of integration 
(24)) 

f 	r' 
r•-- 0 

= fl 

(3-87) 

e 

and 

dflr')F(r') 

(3-86) we 

f 	r'J 00-1F(?) 
r• 	0 

into equation 

and making 

dr 	in 	0 < r < co 	(3-86) 

find the coefficient e(13) as 

dr' 	 (3-87) 

(3-84) yields 

fr' 0(1101.1r1 	(3-88) 
=0 

use of the following integral 

R0(11 
ne= 	faina) + Jamb) 	Th.  

where R 0(f?„„ r) as given by equation (3-78h). 

Example 3-6 

An infinite region 0 <r < co is initially at a temperature F(r). Obtain an 
expression for the temperature distribution T(r, t) for times t > 0 

Solution. The heat conduction problem is given by 

02 T 	I DT 	1 OT _ 	_ 	 1> 	(3-81a) in 	0...5r<oo, 	0 
r i1r 	a it 

T= F(r) 	 for 	t = 0. 	in the region 	(3-81b) 

and subject to the condition that temperature remains finite at r = 0. Separating 
the variables, it can be shown that the solution for the time-variable function 

e- 	()WV o(f3r)dll = —
1 

exp 
pAo 	 2at 

r2 + r'2)
10
(

—
rr' ) 

(3-89) 
4at 	2at 

(3-78b) 

in 	0<r< co (3-85) 
(3-79) 

Ro(flmr)= Jo(13„:01V/3„,b) — Je(fin,b)Ye(fi„,) 

and the /3,„ values are the positive roots of 

J o{lima) 	— 0(13„,h)Y0(fima) = 0 

The application of the initial condition (3-81b) yields 

F(r) = 	c(f)J0(13r) d /3  
=0 
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the solution (3-88) becomes 

T(r, t) = —
1
- 

1 	tat 

For the special case of 

F(r) = 

the solution (3-90) takes the 

. 	T(r, t) 	1 
= 	exp 	— 

2ca 

0 

form 

• 
4ca 

r'exp 

IN CYLINDRICAL COORDINATE SYSTEM 

(3-90) 

(3-91) 

P 	(3-92) 

T0,constant 

	

r2 
-Fr 

'2) F(r'). 1 	dr' 0(.) 
4at 	2at 

for 	0 < r < b 
for 	r > b 

ra 	rr

r .4a( 	2a( 
r' exp 	

10 	
dr' 

This result is called a P junction, which has been numerically evaluated and 
the results are tabulated [14]. 

Example 3-7 

A region a r < co in the cylindrical coordinate system is initially at a tem-
perature Fir); for times t > 0 the boundary surface at r = a is kept at zero 
temperature. Obtain an expression for the temperature distribution T(r, () in 
the region for times t > 0. 

Solution. The heat-conduction problem is given by 

02T 1 aT l OT 

Dr C2( at 

T = 0 	 at 	r = a, 	t > 0 	(3-936) 

T F(r) 
	

for 	t = 0, 	in the region 	(3-93c) 

By separating the variables it can be shown that the time-variable function is 
given by exp(—aPt) and the space-variable function ROO is the solution 
of the following problem 

d2R0  1 dR 

dr' 	r dr , 

	= 0  in a<r<co 	(3-94a)  
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The application of the initial condition (3-93c) yields 

F(r) = f 	t.(13)Ru(15, r)d Li 	in 	a < r < x 	(3-96) 
P = 0 

This is an expansion of an arbitrary function F(r) defined in the interval 
a < r < co in terms of the solutions of the eigenvalue problem (3-94). Such an 
expansion was given previously as given by equation (3-40) for a more general 
case. By comparing equation (3-96) with equation (3-40), we obtain the 
expansion coefficient c(I1) as 

c(fl)-= 	# 1*  r'Ro( r')F(r') dr' 
NO) 	= a 

(3-97) 

The substitution of equation (3-97) into equation (3-95) gives 

# 	 T(► , t) = 	 .40 e- 	f Ro(fl, r) rip s  r' R 0(13, r')F(r') dr' 	(3-98) 
NO) 

The functions ko(f r) and N(fl) are obtained from Table 3-2 case 3; the 

solution (3-98) becomes 

T(r, t) = f 	e- 421  [400 Yo(fla)— Yo(13r)J 0(13a)] rift 
P 0 .41(fia)+ Y0a) 

f r' [Jar') Yo(fia) —110(E)LIffa)1F(r)clr'  
=4 

Example 3-8 

A region a r < co in the cylindrical coordinate system is initially at a tem-
perature F(r); for times t > 0 the boundary at r = a dissipates heat by convection 
into a medium at zero temperature. Obtain an expression for the temperature 
distribution T(r, t) for times I > 0. 

Solution. The heat conduction problem is given by 

in 	a < r < co, t> 0 
	

(3-93a) 
(3-99) 

= 0 at r = a 	 (3-94b) 
a 2T 1 DT 1 OT 

-a-rT T aat 
in 	u <r < oo, t > 0 	(3-100a) 

Then, the complete solution for T(r, t) is constructed as 
aT 

— + HT =0 at 	r = a, 	t > 0 	(3-100b) 

T(r, 1) = 	c(Me- 	Ro(fi,  r) 
	

(3-95) 
0 
	

T = F(r) 
	

for 	t = 0 	inar<co 	(3-100e) 



1 

Initially 

T = 0 

aT = 0 

Fig. 3-5 Boundary and initial conditions for a hollow cylinder considered in 
Example 3-9. 
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By carrying out the analysis as described in the previous example, the solution 
is written in the form as given by equation (3-98), that is 

T(7., t) = '-*-7-Le-'13"' R0(13, r) dief CO 
 r'R0(fl,r1F(7.1dr' 	(3-101) 

r. =a  

where the functions 1?0(/1,r) and N(/1) are obtained from Table 3-2, case I, as 

Ro(/3,r) = J0(1371[111" ,(fla) HY0(fla)] — Yar)ifif ,(fia)-1- 	Oa)) (3-102a) 

Mil) = LIU ' UM 11.1,,(flo)Y 	Y 1 (11a) 	l'„(ita)V 	(3-102h) 

3-4 HOMOGENEOUS PROBLEMS IN (r, z, t) VARIABLES 

The general solution of the homogeneous problems of heat conduction in (r,z,t) 
	variables is-eanstructed_h_y_the_sup_erposition of the separated solutions F(t), 
R0(/3, r) and Z(7), z) for the t, r, and z variables, respectively. The analysis is 
straightforward because explicit expressions for the separated solutions are 
available in tabulated form for various combinations of boundary conditions. 
That is. the functions Roifl...11,  the norm N(13„,), and the eigenvalues fl„, for finite 
regions (i.e., 0 r < u and a-.<..r‘_b) are obtainable from Tables 3-1 and 3-3 by 
setting r = 0; and the corresponding expressions for a semiinfinite region a r 
are obtainable from Table 3-2. Similarly, the expressions defining the functions 
Z(gr,:-..), the norm N(111,) and the eigenvalues ti p  for a finite region 0 z c are 
available in Table 2-2 and the corresponding expressions for a semiinfinite region 

0 < z < 00 are obtainable from Table 2-3. We illustrate below the application 
with several representative examples. 

Example 3-9  

A hollow cylinder of finite length, in the region a < r b, 0 z < c, is initially 
at a temperature F(r, z). For times t > 0, the boundaries at r = a and r = h are 
kept at zero temperatures, the boundary at z = 0 is insulated, and the boundary 
at z = c is dissipating heat by convection into a medium at zero temperature 
as illustrated in Fig. 3-5. Obtain an expression for the temperature distribution 
T(r, z, t) for times t > 0. 

Solution. The mathematical. formulation of the problem is given as 

D'T 	1DT 	02T 	1 aT _ in 

at 

at' 

at 

for 

a<r<b, 

r = a, 

z = 0, 

z 	e, 

t = 0, 

0<z<c, 	t>0 

r= b, 	t> 0 

t > 0 

t >0 

in the region 

(3-103) 

(3-104a) 

(3-104b) 

(3-104c) 

(3-104d) 

Or' 	r dr 	iiz 2 	u dt 

T = 0 

aT 	0  
ez 

+ 	= 0 
dz 

7' =- F(r,z) 

The separation of variables lead to a set of equations as given by equations 
(3-11); the separated solutions are taken as 

120((1„„r), 	and 	Z(ti,„ z) 	(3-105) 

Here, the eigenvalues fin, and 71, are discrete because the regions in the r and 
z directions are both finite. The complete solution for T(r, z, t) is constructed as 

c. 	cc. 
T(r,z,t)-= E 	c„,,,R„(/1„„ r)Z(//„. 	't(fl!, 4,11 

ni— p— 

(3-106) 

The application of the initial condition 1(3-I04d) yields 

06- 	a,  

F(r, 	E c„,,,R0(11„„r)Z(74„z) 	in 	a <r < h, 	< z < c • (3-107) 
p= 

The coefficients c„,,, are determined by operating on both sides of equation 



a so 
(3-110) Z(ri p,z1F(rc z')dz' dr' 

idwrilder 	consideredin Example-34 	0. Fig. 3-6 Boundary an• mina con r Mons or 

(3-111c) 

(3-111b) 

0 2T 10.1• 82T 1 or 
; T 0z2 =  IX at 

T = 0 

T = F(r, z) 

in 	0 r < b, 0 < z < 	t>0 (3-113) 

at 	r = b, 	z = 0 for t > 0 	(3-114a) 

for 	t = 0, 	in the region 	(3-114b) 

	 7r2 	nJO(fima)  
N(Pm) 	2 J1(13„,a)— .1,2,([1„,b) 

and the AN  values are the positive roots of 

Jo(fima)Yo(iq.b) —  Jo(Pn.b)Yo(flma)= 0  

2 t 
e

_ 
"'-. 4  ), Ro(19,„, r), 	and 	Z(ii, z) 	(3-115) 

where the eigenfunctions Ro(fl„„r), the norm N(fim) and the eigenvalues 
are obtained from Table 3-3, case 4 by setting v = 0. We obtain 

14„(11„„ r) = .1„(ft„,r)Yo(fl,„11)- .1 „(11„,b)Y„( ILO 	(3-11 la) 

Fig. 3-6. Obtain an expression for the temperature distributiop T(r,z,t) in 

the cylinder for times t > 0. 

Solution. The mathematical formulation of the problem is given as 

The eigenfunctions Z(ii p,z), the norm N(ri p) and the eigenvalues ti p  are 
obtained from Table 2-2, case 4, by making appropriate changes in the 
symbols. We find 

• Z(11,„ z) = cos tb,z 	 (3-1 12a) 

1 
	42 + H 2  

1(11 p) 	c(11 p2  + H 2) + H 

and the ri p  values are the positive roots of 

ti p  tan ri pe = H 	 (3-112c) 

Example 3-10 

A solid cylinder, 0 < r b, 0 z < co, is initially at temperature F(r, z). For 
times t > 0, the boundaries are kept at zero temperature as illustrated in 

The separated solutions are taken as 

Here we note that the eigenvalues fi,„ are discrete because the region in the 
r direction is finite, but the separation constant rj takes all values from zero 
to infinity because the region in the z direction is semiinfinite. 
The complete solution for T(r,z,i) is constructed as 

T(r, z, r) 	 17( 
.0%r 1113 

r,--‘11,z)e- 2u),2,-,+01 	(3-116) 
.= v= 

The application of the initial condition (3-114b) yields 

z 
F(r, 	.= E 	c,,(11)R0(11,„, r)Z(11, z) fig 

j"  
0 r < b, 0 <z<co 

	

=, 	1 	=- 
(3-117) 1 

(3-I 12b) 

(3-108) 

and utilizing the orthogonality of these eigenfunctions. We obtain 

r' =a .='= 0 

T(r,z,0= 	ommz(q„, z) b 
fr 

r` Ro(ff„„r') 
m= 1  P=1 N (IL)N(1  1 p) R  f 
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(3-107) successively by the operators 

rRo(fl,,,.,r)dr 	and Z(q p., z)clz fo 
rb c r 

C 	 =o  Carp = 	 rR„(II„„ r)Z(q„, z)F(r, z)dr dz 	(3-109) 

Then the solution (3-106) becomes 
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--• 	 NUL 
	f b  rR0(11,,„ r)F(r,z)dr 

) r= 0 

1 
e aef  sin riz sin nz'dq = 

(4trat)112  
(3-119b) 
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When the results in equations (3-122) and (3-123) are introduced into equation 
(3-121) and the order of integration is changed, we obtain 

 —  

°-  	b T(r, z, 	
4 c 10(1

I
3.6 e-oq 	 r'. 0(13„1F(r' , z`)dz' drs 7,2 JW„b) 	r•= 0 z•=) 

 

Both sides of equation (3-117) are operated on by the operator 

b 

Jr=0 
rR0 (13„,., r) dr 	 (3-118) 

and the orthogonality of 12,,(f3„„ r,) functions is utilized. We obtain 

f *(z) = f c„,(4)Z(7, z)dq 	in 	0 < z < co 	(3-119a) 

where we defined . 

• e °"'' sin nz sin /le dr, 
	 (3.-124) 

,,=o 

The last integral with respect ton is similar to the one given by equation 
(2-57d); then this integral is evaluated as 

The representation given by equation (3-119a) is exactly the same as that 
given by equation (2 51) for a semiinfinito region. Therefore, the unknown 
coefficient c„,(ri) is determined according to the result in equation (2-53); we 
find 

len" (z  4—ixzt')2\  expt (z -1-z12y1
— 	

Oat j 

and this result is introduced into equation (3-124). 

(3-125) 

*(z)dz 	 (3-120) 

The substitution of equation (3-120) together with equation (3-1 Oh) into 
equation (3-116) gives the solution for T(r, z, t) in the form 

	

e--ate „+,011 	 b 

T(r, z, t) = E 	Roo ,r)zot, z) dr, 	r R o(fl„„r') 
f,=0 N(fl„,)N(q) r'=0 z'=0 

•Z(r1, z').F(r',i)dz' dr 	 (3-121) 

The eigenfunctions Ro(14„,r), the norm N(Pl„,), and the eigenvalues ff„, are 
obtained from Table 3-1, case 3, by setting•v = 0; we find 

1 — 	2 	2 
	 (3-122a) Ra(p„„r)= J mr)• 	N 	b'.102(11„,b) ~ h 2J;(f1mh) 

and the ftm  values are the positive roots of 

	

J 	,,,b) = 0 	 (3-122b) 

The functions Z(q, z) and N(q) are obtained from Table 2-3, case 3, as 

	

Z(a, z) = sin az 	and 

3-5 HOMOGENEOUS PROBLEMS IN (r, efr, r) VARIABLES 

In the analysis of heat conduction problems involving (r, t) variables, the 
following two situations require different considerations: (1) the range of rk 
variable is 0 < (1) 4 2n as in the case of a full cylinder---in this case no boundary 
conditions are prescribed in (/) except the requirement that the temperature 
should be periodic in 4'  with period 2n; and (2) the range of 4  variable is 
0 < ri) 4 4i < 2n as in the case of a portion of a cylinder— in this case boundary 
conditions should be prescribed at 4) = 0 and rk = 

Example 3-11 

A solid, cylinder, 0 s r b,0 4 < 2n is initially at temperature F(r, 0). For 
times t > 0, heat is dissipated by convection from the boundary surface at 
r = b into an environment at zero temperature. Obtain an expression for the 
temperature distribution T(rs 0,i) in the cylinder. 

Solution. The mathematical formulation of this problem is given as 

02 T 1 DT 1 D2 T = 1 DT 

Or' r Dr r2  42  a Di 

aT 
FIT =0 

Or 
(3-123) 

in 	Ot<rb, 04.4).42n, r>0 (3-126) 

at 	r=b, 	t>0 	 (3-127) 



T F(r, 0) for 	t 0, 	in the region 	(3-128) 

— crfl' t e 	, i'(v, 0) = A sin r0 B cos v0, 	R•(11„„ r) 	(3-129) 

(3-134) f(0) f r R,( f3„„ r)F(r, 0)dr 

(3-138) 
1 	2 	Qm 

Ram, r) = J ,()6 „,r), 
N(13„,) ^ 

J:(fl,,,b)b 2(H 2  + fl ,t) — v2  

r) = J „( „,r),  
N(find 	1) 2J ;(fl„,1)) 

12 	
(3-140) 

v=0,1,2,3... (3-136) 	 The substitution of equations (3-140) into equation (3-137) gives the solution 
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The separated solutions are taken as 
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and replace 7r by 2a for v = 0. The substitution of equation (3-135) together 
with equation (3-134) into equation (3-130) gives the temperature distribution 
as 

The complete solution of T(r, q5,1) is constructed by the superposition of 
these elementary solutions as 

T(r, 0, t) = 	e-a' ,r(A„,„ sin rrk B„,, cos r0)R,(11„„r) (3-130) 
m 1 v-o 

The application of the initial condition (3-128) gives 

e -20.?„1 
T(r, 0, t) - 

: : 	
R„(fl„„ r) 

N (13  m) J 2 

r R 	„,, •') cos r(0 — 0')F(r',0')dr` dcP.' 

where 

= 0, I, 2, 3 ... 

45' 	r' 0 

(3-137) 

F(r, 0). E E (A., sin v0 + B„,„cos v0)R,(A,„r) 
tn= 

We now operate on both sides of this expression by the operator 

rR„(11„,,,r)dr 	 (3-132) 
fo 

and utilize the•orthogonality property of the functions Ram, r). We obtain 

f (0) = E(A,,„ sin v0 + B,„, cos v0)N (AO _ in 	0 < < 27r 	(3-133) 

where we defined 

Equation (3-133) is representation of a function f(0) periodic in 0 with period 
2ir similar to the representation considered by equation (3-53). We recall that 
the coefficienis of equation (3-53) are given by equation (3-56). Therefore, 
the coefficients of equation (3-133) are immediately obtainable from the result 
given by equation (3-56) as 

and replace it by 2it for v = 0. The eigenfunctions Ram, r), the norm N(p„,), 
and the eigenvalues fl„, are obtained from Table 3-1, case 1, as 

and the fl,,, values are the positive roots of 

13„,i• (13„,b) + HJ „([3„,b) = 0 	 (3-139) 

Example 3-12 

Repeat Example 3-11 for the case when the boundary surface at r = b is kept 
at zero temperature. 

Solution. The mathematical formulation of this problem is similar to the one 
given above except the boundary condition (3-.127) should be replaced .by 
the boundary condition T = 0 at r = b. Therefore, the general solution given 
above by equation (3-137) is also applicable for this case provided that the 
functions defining R„([1„„ r), N(13„,), and fl„, are obtained from Table 3-1, case 3, 
as 

in 0 <r< b, --50-< 

(3-131) 

6  

• — 

I 	24  [A., sin r0 B„,, cos v0iN(13„,) -- - 1 f (0') cos v(0 — 014' 	(3-135) j =0 
 

where 

and the jtI„, values are the roots of 
r"--1 

J ,(13.b) = 0 	 (3-141) 



ea) 
— v2cI) = 0 	in 	0 < < 00(0,, < 27r) 
de 

(1) ( 0) = 0 at 	= 0 and 	= rho 

(3-145a) 

(3-I45h.c) 
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as where the function 1(v, 0) is the solution of the eigenvalue problem 

2 v3 	e —gr 
T(r, 0, t) = 	E E 	J „,r) nb.„ m=1  j,:07mb)  

2n 

J 	
0' 	 0(1 s v(e/, 	011qe, 0')dr' ‘10' 	(3-142)  

and the function R,(11„,,r) is the solution of the eigenvalue problem 

where 

and replace n by 2n for v = 0, fin,'s are the positive roots of .1,((1,,,b)= 0. 

Example 3-13 

The portion of a solid cylinder, 0 r b, 0 < ch < 	< 27r is initially at 
temperature F(r, 0). For times t > 0 the boundaries at r = b, = 0 and 0 = 00  
are kept at zero temperature as illustrated in Fig. 3-7. Obtain an expression 
for the temperature distribution T(r, 0, t) for times t > 0. 

Solution. The mathematical formulation of this problem is given as 

d 2T 1 dT I D'T 1 DT 
are 	r Or r2  002  a at 

in 	0<r<b, 0<4)<00, t>0 	 (3-143a) 

T = 0 	at 	r=b, 	0=0, 0=00, t>0 	(3-143b) 

T = F(r, 0) 	for 	t = 0, 	in the region 	 (3-143c) 

The separated solutions are taken as 

e 	(1)(v, 0), 	and 	Ry(II„„r) 	(3-144) 

=0 

Fig. 3-7 Boundary and initial conditions for a portion of a cylinder considered in 
Example 3-13. 

	

(12  R'
(r) 

+ 
1 d R ,(r) 

+ 	—
v22) 

R (r) — 0 

	

dr2  r dr— 	r 

R. = finite 

R„ = 0 

The complete solution for T(r, 0, t) is constructed by the superposition of 
these separated solutions as 

T(r, 4, t) = E Ec„,,R,([1„„r)t(v, 0)e-°4,' 	(3-147) 
m=1 v 

The application of the initial condition (3-143c) gives 

F(r, 0) 	E ycm,R,.(fl„„r)0(v, 0) 	in 	0 r < b, 0<0<4)0  (3-148) 
m =1 v 

To determine the coefficients e„,„, both sides of equation (3-148) are operated 
on successively by the operators 

aSo 

	

111V 4)) dr) 	and 	rR,(11„,,, r)dr 
fP= 0 	 fr=0 

and the orthogonality property of these eigenfunctions are utilized. We find 

f f 
r.= 	

b 	
oo r R 	rYb(v,(14F(r, 0)(10dr 	(3-149) „„ 

A 1(11.)N(1') ,.o ,k=o 

This result is now introduced into equation (3-147) to obtain the solution for 
T(r, t) in the form 

T(r, t)= 
,„ 	N (13.)N (v)

R,(p., r)(1)(1., 

f b foo 
r'R„(13„„ rlit(v,0')F(r',0`)61.0' dr' 

Ir.!) e=o 

in 	0 r < b (3-146a) 

at 	r = 0 
	

(3-146b) 

at 	r = b 
	

(3-146c) 

(3-150) 

• ' J 



sin v¢o  = 0 	 (3- I52b) 

When the results given by equations (3-151) and (3-152) are introduced into 
equation (3-150) the solution becomes 

	

4 	 • „,(1.1„4 

	

T(r, t) = 2 	E Ee- a/4"t 	sin vrfi 

	

b 	(ko m=1 v 	rv2(11.b) 

rb .100 
r'J,,(13„,r1 sin 14' F(r', 0')d(p' dr' 

Jr' =0 Ife = 0 

(3-153) 

where the /1„, values are positive roots of J,.(11,,,b) = 0, and v values are given by 

V= 
nn 

n = 1, 2, 3 .. 

 

For the special case of F(r, 4)) = To  = constant, the solution (3-153) becomes 

8T11  .x. 	z  J,.(II„,r) sin v0 
Tfr, 0,0= - 	 r'J 

b 200.- v 	fv2(fl.b) v 	r• 

(3-154) 

where the Pm  values are the positive roots of J,(flb)= 0, and the v values are 
given by 

(2n — 1)n 
v= 	 

' 
n -= 1,2,3... 
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where R,(13,,„ r), N(/3.), and /3„,'s are obtained from Table 3-I, case 3, as 

N (Nm ) 
	b2̀ 1,.2(fl 
	(3-151a) 

and the /3,,, values are the positive roots of 

J ,([1,,,b)=-- 0 	 (3-151b) 

The expressions defining D(v, cb), N(v), and v are obtained from Table 2-2, 
case 9, by appropriate change of the notation. We find 

1)(v, 	= sin vO 	
1 

, 	=
2 	

(3-I52a) 
N(v) 

and the v values are the positive roots of  

3-6 HOMOGENEOUS PROBLEMS IN (r, z, 1) VARIABLES 

The general solution of the homogeneous heat-conduction problem in (r, z, t) 
variables is constructed by the superposition of all permissible elementary 
solutions; the resulting expansion coefficients are then determined by a procedure 
described previously. The analysis is straightforward because all the elementary 
solutions are now available and systematically tabulated for all combinations 
of boundary conditions. The application is illustrated with the following 
examples. 

Example 3-14 

A solid cylinder, 0 < r b, 0 < rp 2n,0 z c, is initially at a temperature 
F(r, 49, z). For times t > 0 the boundary at z =0 is insulated, the boundary 
at z =c is kept at zero temperature, and the boundary at r b dissipates 
heat by convection into a medium at zero temperature as illustrated in 
Fig. 3-8. Obtain an expression for the temperature distribution T(r, 49, z, t) 
for times t > 0. 

Solution. The mathematical formulation of this problem is given as 

in 	0 r < b, 0.4. 	2n, 

0< z < c, t > 0 	(3-155) 

aT + HT = 0 	 at 	r = b, 	t> 0 	(3-156a) 
Or 

_ 2 

Fig. 3-8 Boundary and initial conditions for a solid cylinder considered in Example 3-14. 

in 1 DT 1 iI2 T 0 2 T 1 DT 

	

• 	• 

	

are + 
	+ 
r Dr r2  00 + 2  0z2  a i/t 
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DT = 0 	
at 	z = 0, 	t > 0 	(3-156b) 

T = 0 
	

at 	z=c, 	t > 0 	(3-156e) 

T = F(r, z) 
	

for 	t =0, in the region (3-156d) 

The elementary solutions are taken as 

- AiNm +41ot. 	R,(13„„ r), 	Z(g „, z), 	(A sin vfli + B cos vch) 

The complete solution for T(r, di, z, t) is constructed by the linear super-
position of these elementary solutions as 

	

T(r, 4), z, t) = L E 	Ry(fi„ •  r)Z(rip, z) 

[/1„,,,,. sin v4 + Bmpv cos We-  .(1e, +11,)1 

The application of the initial condition yields 

F(r, di, z,) = E E ER on„ r)206,, z){.1„4,, sin v4 + B „q,„ cos v0] (3-15R) 
m=ip=1 

To determine the coefficients, we operate on both sides of this equation 
successively by the operators 

	

fo  r Ry(fin,• r) dr 	and 	„ z,,.,z)dz 

and utilize the orthogonality of the eigenfunctions R „(11„„ r) and 2(1) p, r). We 
find 

f (0) = E Ny1,000 

where we defined 

f (0) 

[A„, j„ 

f 

sin vyl, + B „, p  cos v4)] 	in 

b 	
rR„(fi„„ r)Z(11 p,z)F(r, 4), z) dr dz 

r = 0 

13--50<271. 

(3-159a) 

(3-159b) 
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coefficients of equation (3-159a) are obtained from the result in equation 
(3-56) as 

	

N(fl,,,)N(10[A „, p,„ sin v4)+ B„,,,„ cos v 4)] 	f (0') cos v(0 — 0)(10' 
n 0..0  

(3-160) 
where 

v = 0, 1, 2, 3 ... 

and replace n by 2n for v 0. The substitution of equation (3-160) into 
equation (3-157) together with equation (3-159b) gives the temperature 
distribution in the form 

T(r, 4,  z, t) =E
1  pEE 	R,([1„„r)Z(t),,,z) 

= v =0 MfljN(710  

12x• 

fir 

 fb 0.=o e=o 

	r'R,(13„„ r')Z(►i z) cos v(4) — 0') 

• F(r', 	z') dr dz' dch' 
	

(3-161) 

where 

= 0, 1, 2, 3 .. 

and replace it by 2ir for v = 0. The expressions defining R„(/I„„r), N(/1„,), and 
/1„, are obtained from Table 3-1, case 1, as 

1 	2 	Rz  R„(13„,,r)= .1,(13„,r), 	 (3-162a) 
NO.) J!([1,,b) b2(H 2  + 13!) — 

and the fin, values arc the positive roots of 

HJ,(fl„,b)= 0 	 (3-162b) 

and the expressions defining Z(u p,z),.N(ri p) and 1), are obtained from Table 
2-2, case 6, by making appropriate changes in the symbols. We find 

_ 2 
2(1),,,::),= cos tip:, 	

N..L
c 	 (3-163a) 

and the rlp  values are the positive roots of 

(3-157) 

Equation (3-159a) is a representation of function f(0) periodic in 4  with 
period 23T similar to the representation considered in equation (3-53); the 
coefficients of equation (3-53) are given by equation (3-56). Therefore, the 

cos 11 pC = 0 (or rip  — (2P 
 2c

1)7,  p = 1, 2, 3 ...) 	(3-163b) 
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3-7 MULTIDIMENSIONAL STEADY-STATE PROBLEM 	 and 
WITH NO HEAT GENERATION 

in 	0 < z < c 	(3-166a) 

The multidimensional steady-state heat conduction problem with no heat 
generation can be solved by the separation of variables if only one of the 
boundary conditions is nonhomogeneous. If the problem involves more than 
one nonhomogeneous boundary condition, it can be split up into a set of simpler 
problems each containing only one nonhomogeneous boundary condition as 
discussed in Section 2-10. To illustrate the application we consider the following 
examples. 

Z=0  at - = c  (3-166b} 

Then, the solution for T(r, z) is constructed as 

T(r, z) 	E 	sinh il,„(c — z)R0(i f„„ r) 
m= 

(3-167) 

Example 3-15 

Obtain an expression for the steady-state temperature distribution T(r, z) in 
a solid cylinder 0 < r b, 0 z < c, when the boundary surface at z = 0 is 
kept at a temperature f(r), boundary at z = c is kept at zero temperature, 
and that at r = b dissipates heat by convection into a medium at zero 
temperature. 

Solution. The mathematical formulation of the problem is given as 

a2T t OT 02T 
 

Or 2  r 
+ - - + 

Oz2  
- = 0 	in 	0 <r <b,0 <z<c 	(3-164a) 

Or  

oT 
+ HT=0 	 at 	r = b 	 (3-164b) 

or 

T= f(r) 	 at 	z = 0 	 (3-164c) 

T=0 	 at 	z c 	 (3-164d) 

In this problem the boundary condition at z = 0 is nonhomogeneous; looking 
ahead in the analysis we conclude that the nonhomogeneous part f (r) of the 
boundary condition should be represented in terms of the separated solutions 
110(13„„r). Therefore, in separating the variables the sign of the separation 
constant should be so chosen as to produce an eigenvalue problem for the 
functions R0(fl„„r). With this consideration the separated equations are taken 
as 

(12R0 1 dRo 
IP& = 0 

dr2  + r dr 

dR, 
dr 	- 

+ HR, 0 

The application of the boundary condition at z = 0 gives 

f (r)= E Am  sinh 13„,cR,(13„„ r) 	in 	0-4r<b 	(3-168) 
m=1 

where, the coefficients Am  are determined as 

l'R010dr 	(3-169) 
o 

1 

N(Jim)sinh 

 

Introducing equation (3-169) into equation (3-167) the solution becomes 

T(r, z) 	
1 sinh 	z) Rom,  0 b 

r'R,(0„„lf (r) dr' 	(3-170) 
1 N(lm) 	sinh fl„,c. 

where the expressions defining the functions Ro(ii„,,r),N(p„,), and f1„, are 
obtained from Table 3-I, case I, by setting v = 0. We find 

1 	2 	 (3-171a) R0(fl„„ r) = Jo(r3m, r), 	KrK) =  41(-:0-„,b) b 2(112  + 

and the /1„, values are the positive roots of 

Ilm.4(11„,b)+ HJ 0(fimb)= 0 	or 	timsl i (11„,b)= H.I 0(f3mb) 	(3-171 b) 

For the special case of f(r) 7(,= constant, the integral in equation (3-170) 
is performed and the solution becomes in 	0 < r < b 	(3-165a) 

at 	r = b 
T(r, z) 	2 	im.1 ,(13„,b) 	sinh [„,(c 	z)

Jo(lqn,r) 	(3-172a) 
(3-I65b)  

	

T, ^ 	b 	J4(fl.b)(H 2  +.13,1) sinh Nmc 



or, by utilizing equation (3-171b), we find 

T(r, z)— 2_, 2 ,°3 	sinh /3m(c — z) J  0(1LO  
To 	b..' H 2  + 	sinh 13,,,c .10(A„,b) 

(3-172b) 

Example 3-16 

Obtain an expression for the steady-state temperature distribution T(r, 4)) in 
a solid cylinder 0 r <b, 0 < yti < 2n, which is subjected to convective heat 
transfer at the boundary surface r= b with an environment whose tempera-
ture varies around the circumference. 

Solution. The mathematical formulation of this problem is given as 

32T 1 DT1 a2T 
— —= 0 

ere 	r Or r2  04)2  

OT 
—Or 

+ HT = f (0) 

The separated equations and their elementary solutions are as given by 
equations (3-17). The general solution for T(r,d)) is constructed in terms of 
these solutions as 

T(r,4))= E ry(C , sin vq) + D, cos v4)) 	 (3-174) 

where we excluded the elementary solutions r`" and In r because they diverge 
at r = 0. This solution is introduced into the boundary condition (3-173b); 
we find 

Eb"-' (v + Hb)(Cv sin 	+ 	D„ cos v4)) = f (0) 	in 	0 4 4) 4 2n (3-175) 

This equation is a representation of function f(4)) periodic in 4) with period 2n 
similar to the representation considered in equation (3-53); the coefficient of 
equation (3-53) are given by -equation(356). Therefore, by comparing 
equation (3-175) with equations (3-53) and (3-56) we conclude that the 
coefficients are given by 

+ Hb)(C, 	, sin v4) + Dcosv4)),7- r 	f (4)') cos v(4) — 4)') d4)' 	(3-176) 

) 

in 	0-4r<b, 04.042n (3-173a) 

at 	r b 	 (3-173b) 

. where 

v = 0, 1, 2, 3, ... 

) 
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and replace n by 2n for v = 0. When these coefficients are introduced into 
equation (3-174), the solution for the temperature becomes 

Tfr, = 12E( FY  1  f2x 	' ) cos 

	

f (Q6 	140 — 	dt15' 
n v  b v+Hb 0,0  

(3-177) 

where 

v = 0, I, 2, 3, ... 

and replace n by 2n for v = 0. 

Example 3-17 

Obtain an expression for the steady-state temperature T(r,z) in a solid 
cylinder 0 r b,0 < z < c, when the boundary at r = b is at temperature 
f(z) and the boundaries at z = 0 and z = c are at zero temperature. 

Solution. The mathematical formulation of this problem is given as 

02T 1 OT 02T A  
+ — — +

2' 
 =I) 

or2  r Or 	0 2  

T = f(z) 	 a t 	r = b 	 (3-.171111) 

T = 0 	 at 	z = 0 and z = c 	(3-178c) 

. The separated equations are taken as 

	

Z + n 2Z = 0 	in 	0<z<c 	 (3-179a) 
ez 

= 0 
	

at 	z=0 
	

and 	z = c 	(3-179b) 

and 

-- 112
dR0 +r••I dR, 

-- —e/t 0 =0 	in 	0 4 r < 	-- (3-180) 
r 2  	dr 

We note that the sign of the separation constant is so chosen as to produce 
an eigenvalue problem for Z(rbz), because the boundary condition function 
f(z) should be represented in terms of Z(ri,z). The general solution for T(r,z) 
is constructed as 

T(r,z)= E Aff,10(11„,r),Z(7m,z) 	 (3-181) 

in 	Occ_r<b, 0<z<c (3-178a) 



in 	0 <z<c 	(3-182) 
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The application of the boundary condition (3-178b) yields 

f (z) = 	A ./0(r/,,,b)zo,„„ z) 
m=1 

The coefficients Am  are determined as  

SPLITTING UP OF NONHOMOGENEOUS PROBLEMS 	145 

Example 3-18 

A solid cylinder, 0 r b. is initially at temperature F(r). For times t > 0, 
heat is generated within the solid at a constant rate of 90  and the boundary 
surface at r = b is kept at zero temperature. Obtain an expression for the 
temperature distribution T(r, t) in the cylinder for times t > 0. 

Solution. The mathematical formulation of this problem is given as 

Am = 	! 	Z(4„„ z)f (z) d: 	 (3-183) 
lo(t/mb)N(rT.) 

Introducing equation (3-183) into equation (3-181) the solution becomes 

1 	10(qmr) 
T(r,z)=. E    z(rin„ z) 	.Z(qm,f)f(z)dz' 	(3-184) 

N(qm) lo(qmb) 

(-12 	I OT 	1 	1 

are 
- - — --  

r or k
g o 	of 

in 	 t>0 (3-187a) 

T=0 	 at 	r = b, 	t> 0 	(3-187b) 

T = F(r) for 	t = 0, 	in the region 	(3-187c) 

where Z(11 „„ z), N(tb„), and tlm  are obtained from Table 2-2, case 9, as 

Z(ii„„ z) = sin rfinz, 
1 	2 

= 
N(q„,) C 

(3-185a) 

and the rl„, values are the roots of 

sin tlmC = 0 

Substituting equations (3-185) into equation (3-184) we find 

(3-185b) 

E 
/00-7„,r) 

T(r, z) 
2  
- E 	 . 	sin qmz f sin qmz'f(z')dz' 	(3-186) 
C m= 1 fo(rh„b) 

where 

11111 = — 
C 

This problem is split into a steady-state problem for T.,(r) as 

ti 2T, 1 dT, 1 

T I rT 4  - -1- - d 7 + fc 9° =0 	
in 	0 r<& 	(3-188a) ,._.. 

.-- 

T= 0. 	 at 	r = b 	 (3-188b) 	 ,- 

and into a homogeneous problem for Th(r, t) as 

a2T,, tan 1 ar„ 
are 

+ — = - 
r Or a at 

— 	in 	0 ,<... r < b, t > 0 	(3-189a) 

T = 0 	 at 	r= b, 	t > 0 	(3-188b) 

T.= 	Ts(r) 	for 	t = 0, 	in the region 	(3-189c) 

Then, the solution T(r,t) of the original problem (3-187) is obtained as 

T(r, t) = T,(r)d- Th(r, t) 	 (3-190) 

The steady-state problem is readily solved 

3-8 SPL1'ITING UP OF NONHOMOGENEOUS PROBLEMS 
INTO SIMPLER PROBLEMS 

When the heat conduction problem is nonhomogeneous because of the non-
homogeneity of the differential equation and/or the boundary conditions, it can 
be split into a set of simpler problems, as discussed in the Section 2-12, if the 
generation term and the nonhomogeneous part of the boundary conditions do 
not depend on time. 

	

9■1 	, 7;,(r)=--.4(b-  - r! ) 	 (3-191) 
4k 

The homogeneous problem (3-189) is exactly the same as considered in 
Example 3-3; hence its solution is immediately obtained from equation (3-67)  

as 	 -  

Th(r, t)= — E e-'17-' • ` --22— 	r'J o(fim r')[F(e)— T,(rljdr' (3-192a) 
b 2  „,,. 1  

2 	" 	2 J ,(f1 r)j." 	_..., 

J f(flm b) 0  
I 	. 



1.  a (R ao) ao 
Rt7R 	OR) at 

DO 0  

OR 

00 
+ Bi 0 = 0 

in 	O<R<I, fort> 0 	(3-198a) 

at 	R = 0, 	for r > 0 	(3-198b) 

at 	R= I. 	for r > 0 	(3-198c) OR 

0 = I 
	

in 	0 R < I, for r= 0 
	

(3-1914d) • 
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where the /3„, values are the roots of aTh
+HTh =0 

r 
at 	r = 1), 	t> 0• 	(3-196b) 

Jamb) 0 	 (3-192b) 

	

T(r, t)=
go(b2 — r2)  200 	_ 	00.0  E 	ap„,r 

4k 	bk 	fin3c1  1(13.b) 

2 °' 2 	)  

	

E 	Jo( n,r (fi
m 
 r')F(rldr' 

	

b' m= 1 	?( U) o
f 

° 

Th = Fir) — 	F(r) 	for 	t = 0, 	in 0 <r b (3-196c) 

Then, the solution of the problem (3-194) is given by 

T(r, t) =- Ts(r)+ Th(r,t) 	 (3-197) 

The solution TT(r) of the steady-state problem (3-195) is a straightforward 
(3-193) matter. The homogeneous problem (3-196) is exactly the same as the problem 

(3-57) considered in Example (3-1); therefore, the solution of Th(r, t) is obtain-
able from equation (3-63) by setting in that equation F(r) = F*(r) Ts(r). 

When the results in equations (3-191) and (3-192) are introduced into 
equation (3-190) and sonic of the integrals arc performed, we obtain 

Example 3-19 

A solid cylinder is initially at temperature F*(r). For times t> 0 heat is 
generated in the region at a constant rate of go  per unit volume and the 
boundary surface at r b is subjected to convection with an environment at 
temperature T33. Obtain an expression for the temperature distribution T(r, t) 
in the solid for times t > 0. 

Solution. The mathematical formulation of this problem is given as 

and the temperature should remain finite at r = 0. This problem is split into 
a steady-state problem for Ts(r) as 

(PT, (IT, eh, 
+ 	• ' - = 0 	in 	0 r < b 

r dr 	k  

3-9 TRANSIENT-TEMPERATURE CHARTS 

In the previous chapter we presented transient temperature charts for a slab 
of thickness 2.E, subjected to convection at both surfaces. We now consider one-
dimensional, transient heat conduction in a long cylinder of radius b, which is 
initially at a uniform temperature T. Suddenly, at time t = 0, the boundary 
surface at r = h is subjected to convection with a heat transfer coefficient h into 
an ambient at temperature 71„ and maintained so for t >0. The mathematical 
formulation of this heat conduction problem is given in the dimensionless form as 

027 1 aT go  1 DT 

arz ;T. 1( 

dT 
+ HT = HT°  

or 

T = F*(r) 

in 	0 <r<b, t<0 - 	(3-194a) 

at 	r = b, 	t > 0 	(3-194b) 

for 	t = 0, 	in 0 < r b (3-194c) 

(3-195a) • 

dT 
+ H Ts = HTc,, 	at 	r = b 

dr 
(3-195b) where various dimensionless quantities are defined as follows: 

lib 
Bi = — = Biot number 

k 

 

and into a homogeneous problem for Th(r, t) as 

 

(3-199a) 

O2Th  1 OTh  I071 = 
Or' 	r Or 	a at 

in 	0 r < b, t > 0 (3-196a) 	 r = —
at 

= dimensionless time, or Fourier number 	(3-199b) 
b2 
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Fig. 3-9 (Continued 
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R = = dimensionless radial coordinate (3-199d) 
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The solution of this transient heat c.onduction.problemis_tresentecl_in graphi-
cal form in Fig. 3-90. Here, Fig. 3-9a gives the centerline temperature 0(0, r) as 
a function of the dimensionless lime r for several different values of the parameter 
1/131. The curve for 1/Bi 0 corresponds to the case or the surface of the 
cylinder maintained at the ambient temperature T.4 . Figure 3-9b relates the 
temperature at six different locations within the cylinder to the cylinder centerline 
temperature 0(0, r). An examination of Fig. 3-9b reveals that for values of 1/Bi 
larger than 10 or Bi <0.1, the temperature distribution within the cylinder is 
considered uniform with an error of less than about 5%. For such cases, the 
lumped system is applicable. The use of the charts 3-9 is similar to that described 
in Example 2-17 for the case of a slab. 

0 

0 

0 

. 
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PROBLEMS 

3-1 	A hollow cylinder, a r S b, is initially at a temperature F(r). For times 
t > 0 the boundaries at r = a and r = b are kept insulated. Obtain an 
expression for temperature distribution T(r, t) in the solid for times t > 0. 

3-2 	A region a E r < co in the cylindrical coordinate system is initially at a 
temperature F(r). For times t > 0 the boundary at r = a is kept insulated. 
Obtain an expression for the temperature distribution T(r, t} in the region 
I'm' limes t > 0. 

3-3 	A solid cylinder, 0 E r E b, 0 E z < c, is initially at temperature F(r, z). For 
times t > 0, the boundary at z = 0 is insulated, the boundary at z = c is 
dissipating heat by convection into a medium at zero temperature, and 
the boundary at r = b is kept at zero temperature. Obtain an expression 
for the temperature distribution T(r, z, t) in the solid for times t > 0. 

3-4 	A semiinfinite solid cylinder, 0 E r E b, 0 Ez< co, is initially at tempera- 
ture F(r, z). For times t > 0, the boundary at z = 0 is kept insulated and 
the boundary at r = b is dissipating heat by convection into a medium 

at zero temperature. Obtain an expression for the temperature distribution 
T(r, z,t) in the solid for times t > 0. 

3-5 	A semiinlinite hollow cylinder, aErE b, 0 E z< co, is initially at tem- 
perature F(r, z). For times t > 0, the boundaries at z = 0, r = a, and r = b 
are all kept at zero temperature. Obtain an expression for the tempera-
ture distribution TV z, t) in the solid for times 1 > 0. 

3-6 	A solid cylinder, 0 E r b,0 E < 27, is initially at temperature F(r, 4)). 
For times t > 0, the boundary at r = b is kept insulated. Obtain an expres-
sion for the temperature distribution T(r, 0, t) in the solid for times t > 0. 

3-7 	A hollow cylinder, aErE b, 0 E 0 27r, is initially at temperature F(r, 44. 
For times t > 0, the boundaries at r= a and r = b are kept insulated. 
Obtain an expression for the temperature distribution T(r, 0, t) in the 
region for times t > 0. 

3-8 	A portion of a solid cylinder 0 E r E b, 0 4 b < 00(< 2tr) is initially at 
temperature F(r, 0). For times t > 0, the boundary at r = b dissipates heat 
by convection into a medium at zero temperature, the boundaries at 
4-= 0 and 4) 40  are kept at zero temperature. Obtain an expression 
for the temperature distribution T(r, 0, t) in the solid for times t > 0. 

3-9 	A portion of a hollow cylinder a E r < b,0 < 4)E 40  < 27t is initially at 
temperature F(r, 0). For times t > 0, the boundaries at r = a, r = b, rfl = 0, 
and 45 = 4) are all kept at zero temperature. Obtain an expression for 
the temperature distribution T(r, 4), t) in the solid for times t > 0. 

3-10 Repeat problem 3-6 for the case when the boundary at r = 1) is kept at 
constant temperature T0. 

3-11 A solid cylinder 0 r b,0 4 z 4 c, 0 E 	27r, is initially at temperature 
F(r, 0, z). For times t > 0, the boundary at z = 0 is kept insulated, the 
boundaries at a = c and r = b are kept at zero temperature. Obtain an 
expression for the temperature distribution T(r,z,qh,t) in the solid for 
times t > 0. 

3-12 A portion of a solid cylinder, 0 E r E b,04.4 00  < 21r,0 E z 4 c, as 
illustrated in Fig. 3-8, is initially at temperature F(r, 0,z). For times t > 0, 
the boundary surface at z 0 is kept insulated, the boundary at z = 
dissipates heat by convection into an environment at zero temperature. 
and the remaining boundaries are kept at zero temperature. Obtain an 
expression for temperature distribution T(r, 0,z, t) in the solid for times 

> 0. 

3-13 Solve problem 3-3 by using product solution for the case solid is initially 
at a uniform temperature T0. 

3-14 Obtain an expression for the steady-state temperature distribution T(r, z) 
in a solid cylinder, 0 E r E b, 0 E z E c, when the boundary at z= 0 is 
kept at temperature F(r), and there is convection into a medium at zero 



The first term on the right vanishes in view of the boundary condition (1b); then 

,02= 1 rbr (LI—RV dr  
0 dr ) 

f
b 

where 	N 	rR 2  dr 
o 

(4) 

Clearly, flo  = 0 is also an eigenvalue corresponding to Rao, r) = constant 0 0. Then, 

for Ro(flo,r)...-- 1 the corresponding norm becomes 

• 	1,1  
N (fiu)= (51 
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temperature from the surfaces r = b and z = c. Assume heat transfer coeffi-
cients to be the same for both of these surfaces. 

3-15 Obtain an expression for the steady-state temperature distribution T(r, z) 
in a hollow cylinder a..‹...r4b,042..c, when the boundary at r=a is 
kept at temperature F(z) and other boundaries at r = b, z 0, and z = c 
are kept at zero temperature. 

3-16 Obtain an expression for the steady-state temperature 7(r, z) in a hollow 
cylinder (74_ r b,0 < z < e, when the heat flux into the surface at r =. a 
is f (z) [i.e., — k(DT Mr) = f (z) at r = a] and the other boundaries at r = b, 
z = 0 and z = c are kept at zero temperature. 

3-17 Obtain an expression for the steady-state temperature distribution T(r, 
in a solid cylinder 0 r 4 b, 0 4 4) -4 2n, when the boundary at r = b is 
subjected to a prescribed temperature distribution fp). 

3-18 Obtain an expression for the steady-state temperature distribution T(r, z) 
in a solid, semiinfinite cylinder 0 r 4 b,0 z < co, when the boundary 
at r = b is kept at prescribed temperature f (z) and the boundary at z = 0 
is kept at zero temperature, 

3-19 Obtain an expression for the steady-state temperature, distribution T(r, z) 
in a solid, semiinfinite cylinder 0 r h,0 z < co, when the boundary 
at z = 0 is kept at temperature f (r) and the boundary at r = b dissipates 
heat by convection into a medium at zero temperature. 

NOTE 

1. Consider the eigenvalue problem 

I dd R(r)) 
  

(
13
, 	

R(r)= 0 	in 	0<r <b 	(Ia) 
r dr r  dr 	rz  

dR 
0 	at 	r = b 	 (lb) 

dr 

For equation (Ia) For v = 0, we find 

dR f rR 2(r)dr 	f R 	r---)dr 
dr dr 

(2) 

Integrating the right-hand side by parts, we obtain 

,O 2  J  rR2(r)dr = 	+ r(
dR

)
2 
dr 

0 	 dr , 	, 	dr 
(3) 



THE SEPARATION OF 
VARIABLES IN THE SPHERICAL 
COORDINATE SYSTEM 
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In this chapter we present the separation. of the homogeneous heat conduction 
equation in the spherical coordinate•system and examine the solution of homo-
geneous problems of spheres involving (r, I), (r, p, 0, and (r, p, 4), t) variables by the 
method of separation of variables. The solution of multidimensional steady-state 
problems on sphere is also presented. The reader should consult references l--7 
for further application of the method of separation of variables to the solution 
of homogeneous heat-conduction problems in the spherical coordinate system. 
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where T T(r, p,O,t). If we define a new dependent variable V as 

	

V = ri12T 	 (4-4) 

equation (4-3) takes the form 

	

O1V 10V IV I 0 0 	1 . 	OW 1 DV 
— 	+ - • [(I — p1) - i+ 	- 	= 	44-5) 

(1 

	

r Or 4 r2  r1  Op 	Op 	r2  — p2) DtP1  a Di 

Equations (4-3) and (4-5) are the two different forms of the heat conduction 
equation for sphere that will be considered in this chapter. Equation (4-5) will 
be used only when temperature depends on the (r, p, 0,1) or (r, p, t) variables. The 
reason for this is that, when equation (4-5) is used in such situations, the elementary 
solutions of the differential equation for R(r) become Besse, functions which have 
already been discussed in the previous chapter. However, if equation (4-3) is used, 
the elementary solutions are spherical Bessel functions. For all other cases, including 

the problems involving (r, p, )),(); (r. /), (r) variables, the governing equation will 
he obtained from equation (4-3). 

We now examine the separation of equations (4-3) and (4-5) for typical cases. • 

1. Temperature depends on (r, p,4), t). The heat conduction equation (4-3) for 
T(r,p, do) is transformed into equation (4-5) for V(r, p, 40) by the transfor-
mation (4-4). Thus we consider the separation of the following equation: 

021/ + _1 DV _LV 1110 112) 1?;.1  2  I  2  02112_ 10V 

ar e 	r 	4r2 	Op 	op 	r2(1 --p )044 	a at 

J 

•
I  

4-1 SEPARATION OF THE HEAT CONDUCTION EQUATION 
IN THE SPHERICAL COORDINATE SYSTEM 

Consider the three-dimensional, homogeneous heat conduction equation in the 
spherical coordinate system (r, 0, ()) given as 

1 	02T I DT 02T
, + 

2 87' 
+ , 

1 	0 (
sin 0-

0T
) + 	= 	(4-1) 

Or- 	r Pr r- sin 0 PO 	PO 	r 2  sin2  0 ile a (It 

where T T(r, 0, (I), t). This equation is put into a more convenient form by 
defining a new independent variable p as 

	

p cos 0 	 (4-2) 

Equation (4.1) becomes 

e2T 2 aT 1 a[ 	0T 	1 	D 2 7-  1 OT (1—p-)--i+ 
Or' 	r i r 	r-  ell 	 pp 	r 2(  _ 2)  e  

If we assume a separation of variables in the form 

V(r, p, 4), t) = F(t)R(r)M(p)D1)(1)) 

the separated equations become 

dF( 
dt 
 t) 

	

+ ct,121-(t)= 0 	 (4-7a) 

	

d24)(-4))- + m24)(0)= 0 	 (4-7b) 
d02  

(12 	 I dR 	 121 +2  —(n
) 

HR .0 	 (4-7c) 
dr2

.12 	

r dr 	 2 r2  

d [
(I p2)

dM
]+[n(n + 1) -L 1 p

2  
	114 = 0 	(4-7d) 

dp 	dp   
(4-3) 

(4-6a) 

(4-6b) 



(4-14) 

Yn + 1/2(2r) 

where T = T(r, p). 

r(t): 	• e--ax,,  

R(r): 	J,,+112(2r) 	and 

M(p): P.(1.1) 	and 	Q„(p) 

52T 20T 1 a [ 	2  aT (I _ 11 )_1= 0 
or2  r 	r2  Op 	ap 

!JO 	6.LYAKPII1U1N OF VAK111,01,=, liN JYIYCtUL L t_Uunuircti i calai my]. 

Equation (4-7c) is the Bessel differential equation of order (n 1), which has 
solutions Ji+112(Ar) and Y„+112(2!). When the order of the Bessel function is not 
zero or positive integer, the solution Ic ,12(2r) can be replaced by J_,,_ , /,(Ar) 
as discussed in Appendix IV. The differential equation (4-7d) is called Legendre's 
associated differential equation, its solutions P7 (p) and Q,",r(ii) are called associated 
Legendre functions of degree n and order in, of the first and second kind, respectively. 

The elementary solutions of the separated equations (4-7) can be summarized 
as 

e-aAar (4-8a) 

(1)(0): sin mck and cos m0 (4-8b) 

R(r): ii,(Ar) and Yn 	I/2(Ar)  (4-8c) 

M(P): PR  (p) and Q:7(.1) (4-8d) 

A brief discussion of.Legendre functions is given in the next paragraph. 

2. Temperature depends on (r, p, t). We consider the transformed heat conduc-
tion equation (4-5). For the case of no dependence on the azimuth angle 0, this 
equation simplifies to 

wr.021v +;i kw 41 rV2 	40 [(I p2)  vl ay 

	

api a at 
	(4-9) 

where V V(r, p,1). 
The separation of equation (4-9) results in the following equations 

dr(t) 
+ aA21-(t) = 0 

di 
	 (4-10a) 

d2R 
+ -

1dR 
+[A2  (n + 

ly 1
]R = 0 
	

(4-10b) 
dr2 	r dr 	 2 r2  

— P2) wi ]+ n(n + 1)M -= 0 
d 	

(4-10c) 

The elementary solutions of these equations arc taken as 

We note that when the temperature is independent of the azimuth angle 	the 

separated equation (4-10c) for the function M(p) becomes the Legendre's dif-
ferential equation. The solutions P „(p) and Q„(p) are called the Legendrefimctions 

of degree n, of the first and second kinds, respectively. 

3. Temperature depends on (r, p, 0). The governing heat conduction equation 
for this case is obtained from equation (4-3) by omitting the time derivative term 

	

02 7 2iIT

± 

 I a 	_ i4 2) [ 	 + 	1 	a'T 
(4-12) 

r 	r2  Op 	Op 	r2(1 — / 4 2) 002  

where T = T(r,p,4:)). 
Assuming a separation in the form 

T(r, p, 4)) = R(r)M(p) (1)(4)) 

The resulting separated equations becomes 

d 2
(I) + ni 	= v 
	 (4-13a) 

d2R 	2dR 	n(ti + 1) 

dr' 	
1

r dr 
— 	

• r2  

P2) dM j+[n(n + 1) 

R = 0 

m2 

(4: ISM 

= 	(4-13c) 

and their elementary solutions are taken as 

0(49): 	sin m4' and cos incl) 	 (4-13d) 

R(r): and r — n — 1 	 (4-13e) 

M(p): and Q„ (p) 	 (4-131) 

For this special case the separated equation (4-13b) for the function R(r) is an 

Euler-Cauchy type differential equation which has solutions rn and 1-' 1. 

4. Temperature depends on (r, p). The governing equation is obtained from 
equation (4-3) by proper simplification to yield 



The separation of this equation by setting T(r,p)= R(r)M(p) leads to the - - 
following separated equations 

d 2R 2 dR n(n  +  I) 
R 

dr2 
+ 

r d• 	r2  

[( I - p2 ) 11 -.Al i + n(rr + 1)M = 0 
tip 

and their elementary solutions are taken as 

(4-15a) 

(4-15b) 

R(r):r7 and 	r-n- 1 (4- 15c) 

M(p): P„(p) 	and 	Q,,(p) 

5. Temperature depends on (r, t). Equation (4-3) simplifies to 

02T 20T 10T = _ 
0r2 	r Dr a dr 

which is written in the form 

(rT) = 
r Or 	a at 

A new dependent variable is defined as 

U(r, t) = •T(r, t) 

Then equation (4-161)) is transformed into 

32 U 1 DU 
= 

a Pr 

(4-15d) 

(4-16a) 

(4-16b) 

(4-16c) 

(4-17) 

which is now the one-dimensional, time-dependent heat conduction equation in 
the rectangular coordinate system and the separation of which has already been 
considered in Chapter 2. 

Once the elementary solutions of the heat-conduction equation are avail-
able, the general solution is constructed by the superposition of the elementary 
solutions. 

P1(14 
E3(11 ) 4(5p3  - 3p) 
P5(p)=-1,(63p5  - 70p3  + 15p) 

- 5) P7 (p) = (429p7  - 639/15  
+315p3  - 35p) 

• 

(4-19) 
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4-2 LEGENDRE FUNCTIONS AND LEGENDRE'S 
ASSOCIATED FUNCTIONS 

In this section we present a brief discussion of the properties of the Legendre 
functions and Legendre's associated functions. The reader should consult ref-
erences 5-14 for detailed treatment of this subject. 

Legendre Functions 

It has been shown that the separation of the heat conduction equation for 
azimuthally symmetric temperature (i.e., temperature independent of 0) results 
in the Legendre's differential equation for M(p) as 

d r(  
dp 

- P2)—
dM

1+ n(n + 	=0 
dp 

(4-18) 

This differential equation is a special case of the Sturm-Liouville equation 
discussed in Chapter 2, with p(p) = 1 - p2, g(p).= 0, w(p) = 1, and A = n(n + I). 
Clearly, the separation constants + 1) are the eigenvalues, in which n, in 
general, is any number; depending on the nature of the problem, n can be a 
positive integer or fractional. 

According to the theory of linear differential equations, equation (4-18) has 
two linearly independent solutions. These solutions, denoted by the symbols 
P„(p) and Q„(p), are called Legendre fanctions of degree n, of the first and second 
kinds, respectively. 

For integer values of n the series defining the function P„(p) terminates at a 
finite number of terms, hence the Legendre function P„(1.1) becomes the Legendre 
polynomial P„(p), which is convergent in the interval -1 p I. The first few 
of the Legendre polynomials are given as [5, p. 86; 7, p. 151] 

P0(p) = 1  
P 2(11 ) =  1( 3142  - 1 ) 
P4(p) = i(35p4  - 30p2  + 3) 
P604= A(231p6 - 315p4  + 105p2  
P„(p)= ffi(6435p8  - 1201210 

+ 6930114  - 1260p2  + 35) 

Any other P„(p), when n is a positive integer, is obtainable from the following 
recurrence relation 

(n + 1)P„, i (p)- (2n + 1)/tP„(p) + nP,, _ (p) = 	(4-20) 

The Legendre polynomials Pn(p) are also obtainable from the Rodrigues' 
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formula [15] 

1 	dn  

P  - 	

( 	
1)" 	 (4-21) 
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This formula is useful to evaluate definite integrals involving Legendre poly-
nomials. We present in Appendix V numerical values of the first seven of the 
Legendre polynomials P„(p). 

The Legendre function Q„(p) being infinite at p = f I for all values of n, it is 
excluded from the solution on the physical grounds. 

Figures 4-1 and 4-2 show a plot of the first four of P„(p) and Qh(p) functions. 
Clearly, Q„(p) functions become infinite at p = t 1. 

Legendre's Associated Functions 

We have seen that the separation of heat conduction equation for sphere resulted 
in a differential equation for the M(p) variable in the form [see equation (4-7d)] 

rm -imp NI Q,(P) ■ 

■INMEI 
MINE 
prom 

Q0(, i 

Q21,-) 

ime 

at al 
IN ism 

IQ 
 3( "A■ 

EFQ0(p) 

1112 
riminsii 
11111N1/1111111 
111111111-  

omit m 
'(w  i 

EN 
• 

Q Q3(m) 
0.2 04 0.6 0.8 1.0 -1.0 -0.8 -0.6 -0.4 -02 	0 

Fig. 4-2 Legendre functions of the second kind, Q„(ii) for n = 0, 1, 2, 3. 
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Fig. 4-1 Legendre polynomials P.(14) for n = 0, I, 2, 3, 4. 

which is called Legendre's associated differential equation. The two solutions 
P7(p) and Q7 (p) of this differential equation are known as the associated Legendre 
fiutctions of degree n and order m, of the first and second kinds, respectively. Here 
the order rn of these functions has resulted from the separation constant associated 
with the separation of the 0 variable; therefore its values depend on the range of 
the 4, variable. When the range of 0 is 0 2n, the values of to are taken as 
positive integers On -= 0,1,2, 3, ...) to satisfy the physical requirement that the 
temperature remain periodic in 0 with period 2n. 

The first few of P7 (p) functions for integer values of rt and m over the range of 
- 1 	p 	1 are given by 

P 11(14 = -(I-p2)'' 2  

Pi(I1) = 3(1 - p2 ) 

P .1(11) = 1 511(I - fie ) 

Pi(f1) 
pl(t) = 

P3(it) 

3(1  _ p2)1/211  
_ p2)1/2(5p2 

- 15(1 - p2)3/2  

_ 1)  (4-23) 

Here i'l(p) are not included because they are the same as Legendre polynomials 
Pn(P)• 

The recurrence formula among P„"1(p) functions for integer values of m and n 
is given by [5, p. 304; 11, p. 360; 12, p.62] 

(n 	+ 1)17+  ,(p)- (2n + 1)r„"(y) + (n + nr)17_ 1 (p) = 0 	(4-24) 
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For m = 0, this expression reduces to the recurrence relation (4-20) for the 
Legendre polynomials. 

The P'."(y) functions can also be expressed in terms of the P„(p) functions by 
the following differential relation [5, p. 116; 12, p. 53]: 

1 	condition is needed for the problem of full sphere (i.e., — I < p 1) when tem- 
perature varies with both p and 0. We note that for m = 0, equation (4-29) reduces 
to equation (4-27). 

-The orthogonality of Legendre polynomials Pn(p) in the half range 0 4p‘.I 
is more involved and given by [5, p. 109; 6, p. 306; 7, p. 172] 

0 btu h !Ten or but h add. a / a' 

if n (4-31)' 
2n + I 

(— 1)(n +" 
(4-32) 

_ o(n  I) 0(11 2  (n' — 	\ 2  

2 2 	) 

	

t) 	In I 	rdot)o      " 

ilp"' 

	 (4-25) 

The Q:i(p) functions become infinite at p = ± 1 for all values of rt, whether 
integer on not; hence they are inadmissible as solutions on the physical grounds 
when the region contains p = 4- 1. 

4-3 ORTHOGONALITY OF LEGENDRE FUNCTIONS 

In heat conduction problems on spheres involving the variation of temperature 
with p or p, cp variables, the Legendre functions will appear in the solution; hence 
the orthogonality property of the Legendre functions will be needed. We present 
below some of these orthogonality conditions for ready reference later in this 
chapter. 
• The Legendre polynomials P„(p) have the following orthogonality property 

over the range —1 4 p 4 I [5, p.88; 12, p.51] 

P„ plPn . ( fi)dP 

if a even, n' odd 

where a and a' are positive integers. 

4-4 REPRESENTATION OF AN ARBITRARY FUNCTION 
IN TERMS OF LEGENDRE FUNCTIONS 

where 

{0 	for 
.1"
- 
 P.00.44/1)dit = 

N (a) for n = n' 

In the solution of a heat conduction problem with temperature depending on 
(4-26) the p and/or r/o variables, the representation of an arbitrary function F(p) or 

F(p, 4)) in terms of Legendre polynomials or the spherical harmonics is needed. 
Here we discuss such representations. 

.11 	 211+ 1 
	 (4-27) 

and n,n' are positive integers. This orthogonality condition is needed for the 
problem of full sphere (i.e., — 1 p I) when temperature varies with p but not 
with the azimuth angle 0. 

The orthogonality of the associated Legendre function P7(p) in the interval 
— I < It 4 I is given 

where 

by [5, p. 117; 6, p. 324; 12, p. 54; 14, p. 184] 

font 	n' 
137111)P7(//)tip = 

n) - 	 for n 

2 	(n +•/(1)1 

(4-28) 

(4-29) NO/1.M= [P':(p)]2 dp = 
- I 	 211 + 1 (a — m)! 

and a, a', nt are positive integers, zero being included, m n. This orthogonality 

Representation in Region — 1<p <11 

This region is encountered in the problems of the full sphere: we consider the 
following two cases: 

The Representation of F(p). When temperature depends on p but it is azimuthally 
symmetric, the representation of an arbitrary function F(p) defined in the interval 
—, 4, p 1 is needed in terms of the Legendre polynomials P„(p),a = 0,1, 2, ..., 
in the form 

F(p)= 	c„P„(p) 	in 	— I p 1 	 (4-33) 
n=0 

To determine the coefficients c„ we utilize the orthogonality of the Legendre poly-
nomials given by equation (4-26). If it is assumed that the series on the right 
of equation (4-33) can be integrated term by term over the range — l p 4, 1, 
we operate on both sides of equation (4-33) by the operator J' t  P„.(p)dp and 
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utilize the above orthogonality 

The substitution of equation 

Rio= E 	I 	P,AtOf 
n=oN(n) 

where 

N(n) 
 

IN SPHERICAL COORDINATE SYSTEM 

relation to obtain 

fl 

N(n) 	_1 
Pn(p)F(p)dp 

(4-34) into (4-33) yields 

P.01')Foidie 	in 	— I < I < 1 
- 

2 
n=0,I,2,3... 

(4-34) 

(4-35) 

(4-36) 

and utilize the orthogonality 

Bnin  = 
nN (m, 

where 

N(nr, a) = 

To determine the.coefficients 
successively by the operators 

REPRESENTATION 

2n  
it) 	0. = 0  

f 

f 	[P,;(p)Y 
—I 

properties 

A,,,,, 
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of trigonometric functions to obtain 

I  sin 14/3;: (ii')F(1/', 	 (4-39) 
„. 

+ i)! 2 	(a 	n 
dp = 	• 	,m 5 rr 	(4-40) 

2a + I (a — in)! 

we operate on both sides of equation (4-38) 

The Representation of F(p, cb). The representation of this type is generally needed 
in the problems of full sphere when the temperature is a function of both p and 

2rt 
COS 1T1'0 rick 	and 

o 

f 1 
P",,:(p)dp 

-1  

0 variables. Consider a function F(p, 0) defined in the interval — I < p < 1,0 and utilize the orthogonality properties of trigonometric functions to obtain 

< 27r to be represented in terms of the elementary solutions 

- P7(p) 	and 	(A cos m0 + B sin m0) 

where rn, a are positive integers, zero being included, with ni 4 a, in the form 

F(p, 0) = 	[A „P „(p) + 	(An,„ cos mcb B„,„ sin nuP)P7(p)] (4-37) 
n=0 	 m=1 

or 

	

no 	21 

	

F:(p, = E 	(A,,,,, cos m0 + B. sin m0)P7(p) 
n=0 m=0 

I j• 2n 	r i 

A„,„ = 	 cos r710' P„'"(p')F(p', 0')dp' (10' 
n N (tn, a) 	_„ „• . 

(4-41) 

where it should be replaced by 2n for ni = 0 and N (ni, a) is given by equation (4-40). 

When the coefficients A„,„ and B„„, as determined above are introduced into 
equation (4-38) and the trigonometric terms are combined as 

cos nnk cos tti0' + sin Inc/9 sin nuy = cos nt(0 — 0') 	(4-42) 

the representation (4-38) becomes 

	

in 	—I<p<1, 0.<0<27r 
	

(4-38) 

where 

	

n,rn 	0, 1, 2, ... 	and 	ni 	n 

To determine the coefficients A „„, and B„„, we utilize the orthogonality of 
the associated Legendre functions P,;(p) in the interval — I <, p < 1 given by 
equation (4-28). 

To determine the coefficients B„,„, we operate on both sides of equation (4-38) 
successively by the operators 

" 

1.2N  sin inti 'kfi 	and 	.1 r:(141dti 0   

n  prn(p) 12n 	r , 

F(p, cb) 	- E E 	 F(p', )P '(dl') cos tn(0 — 01(1)1'4' 
rrn= 0 m = 0 N (tn, n) L... J jf= 

(4-43) 

where it should be replaced by 21r .fin. rn = 0. By comparing equations (4-38) and 
(4-43) we write 

[An,,, cos nicl9 + Bnm  sin mop] 

/2. 	
F(p ,c/) )P (11 ) cos ni(0 fflrlit'dcb' 

	
(4-44) 

.r 
where it should be replaced by 21r for or = 0. 
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Equation (4-43) is now written more explicitly in the form 

F(ti, 0) = 	E (2n + 1)P„(p) f 	F(p',(1)')P„(pldp'dch' 
41r, o 	 0. 	tr' = — 1 

I 	̀4* 	
2n 

I cc 	n 	 (n — in)! 
4- 	7 E (2n + 1) 	p nrn ( u ) 

2n 	sn I 	 In • m)! r 2. 	

(4-45) F (p' , oV)P ( p') cos [m(0 — 491] d p' dr/9' 

in — I <p< f, 0 4 4) 4 27r 

This representation is valid for all values of p and 4  in the range —1 <p<1, 
0 4 0.4 27r, provided that the function F(p, (b) satisfies the conditions that would 
have to be satisfied if it were to be developed into a Fourier's series. 

Representation in Region 0 4 p 4. 1 

This region is encountered in the problems of the hemisphere as illustrated in 
Fig. 4-3. When temperature is azimuthally symmetric but depends on the p 
variable among other variables, it may be necessary to represent an arbitrary 
function F(p) defined in the interval 0 < p < 1 in terms of the P„fp) functions in 
the form 

F(p)=Ec,,P„(p) 	in 	0 <p < 1 	 (4-46) 

Here, the values of n should be so chosen that the boundary condition at p= 0 
is satisfied. We consider this expansion for the following two different boundary 
conditions at p = 0, the base of the hemisphere. 

1. For a boundary condition of the first kind at p = 0 we have 

Pjp) = 0 	at 	p = 0 	 (4-47) 

Fig. 4-3 Coordinates for a hemisphere. 

This requirement is satisfied if P,,(p) is chosen as the Legendre polynomials with 
n being odd positive integer (i.e., n = 1,3,5 ...). This is apparent from the definition 
of Legendre polynomials given by equation (4-19). 

2. For a boundary condition of the second kind at p = 0 we have 

dP (p) 
rip = 

0 
	

at 	p = 0 	 (4-48) 

This requirement is satisfied if Pn(p) is chosen as the Legendre polynomial with 
n being even positive integers, zero being included (i.e., n = 0,2,4,6...). This is 
apparent from the definition of the Legendre polynomials given by equation 
(4-19). 

To determine the coefficients c„ in equation (4-46), we utilize the orthogonality 
of Legendre polynomials in the interval 0 < p < 1 given by equation (4-31). 

The coefficients c„ are now determined by operating on both sides of equation 
(4-46) by the opetatut i(!P,e(p)dp and utilizing the orthogonality relations. We 
find 

= Noo  fo  Ff/4113.( 1)die 
	

(4-49) 

where 

	

N(n)- 	
1 
[P„(p.n 2 	

1 	
(4-50) 

2n + 1 

and the values of n are chosen as 

n = 1,3,5 ... for boundary condition of the first kind at p = 0 

n = 0,2,4...for boundary condition of the second kind at p = 0 

Introducing the coefficients c„ into equation (4-46), the representation of F(p) 
becomes 

	

F(p) = E (2n + 1)P„(p) 	F(p')P„Orldp' in 	0 < p < I (4-51) 
. 	 14•  ” 0  

where the values of n depend on the type of the boundary condition at the surface 
p = 0 as follows: 

1. When the boundary condition at p = 0 is of the first kind, take n 
1, 3,5, 7,..., that is, odd positive integers. 

2. When the boundary condition at p= 0 is of the second kind, take n = 
0, 2, 4, 6,..., that is, even positive integers, zero being included. 

u-o  
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4-5 PROBLEMS IN (r, t) VARIABLES 

The heat conduction problem for a sphere involving (r, t) variables can be trans-
formed into a problem of a slab or a semiinfinite medium by the transformation 
of the dependent variable as in equation (4-16c). Then, the resulting problem can 
be solved readily by the techniques described in Chapter 2. 

Solid Sphere 0 < r b 

Consider the heat conduction problem in a solid sphere 0 < r < b, with heat 
generation and subject to nonhomogeneous boundary condition of the third 
kind at the boundary surface r = b asillustrated in Fig. 4-4. The mathematical 
formulation of the problem is given as 

in 	0<r<b, t>0 
	

(4-52) 

at 	r b, 	t > 0 
	

(4-53) 

for 	t = 0, 	in0 
	

(4-54) 

A new dependent variable U(r, t) is defined as 

(r, t) = rT(r, t) 

Then the problem is transformed to 

a2c1 rg(
k

r) 	a 
a acs  + 	 in 	0<r <b, 

 ar2 
	 t>0 

U = 0 
	 at 	r = 0, 	t > 0 

Fig. 4-4 Boundary condition for a solid sphere. 
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au ( 
ar 	b 

+ H - :-)U bf 	at 	r = b, 	f > 0 	 (4-58) 

U = rF(r) 
	

for 	t 0, 	in 0 r b 	(4-59) 

This 'is a problem of heat conduction in a slab 0 r <, b, which can readily be 
solved by the application of the techniques described in Chapter 2. We now 
illustrate the application with the examples given below. 

Example 4-1 

A solid sphere of radius r = b is initially at temperature F(r) and for times t > 0 
the boundary surface at r = b dissipates heat by convection into a medium at 
zero temperature. Obtain an expression for the temperature distribution 
T(r, 0 in the sphere for times t > 0. 

Solution. The mathematical formulation of this problem is given as 

2  I 

r` 	a 
1 aT 

(r T) -
a  — 
	in 	0 < r < b, t > 0 	 (4-60) 

r a t 

OT 
+ HT =0 	at 	r = h, 	i > 0 	 (4-61 a) 

Or 

T = F(r) 	for 	= 0, 	in 0 < r b 	(4-6 I b) 

When this problem is transformed by the transformation U(r, t) = rT(r, t), the 
transformed system becomes 

a2uI au 
ar 	a at — 

	 in 	0 <r<b, t > 0 	(4-62) 

U=.0 
	

at 	r = 0, 	t > 0 	(4-63a) 

( 

H-)U=0 
	

at 	r = b, 	1 > 0 	(4-63b) 
ar 	b 

U = rF(r) 
	

for 	t = 0, 	in 0 < r < h (4-63c) 

This is a homogeneous heat conduction problem for a slab 0 r h; its 
solution for U(r, I) is readily obtainable by the approach described in Chapter 
2. After the transformation of the solution for U(r, t) to T(r, t) we obtain 

b(13, 2n  +  K2)  + K  sin Pm /. 	r' F(e) sin 13 r` dr' 
2 	 02 

T(r, t)= _ 	e-aar 	P„,+  K 

r 	
(4-64) 

r' = 0 

	

32 	OT 

	

r ar 	k g(r) aat 

T a 
— + HT f 
Or 

T F(r) 

(4-55) 

(4-56) 

(4-57) 



at 	r = a, 	t > 0 	(4-69b) 
Or 	a 

OU ( H 4.1)u  aft  
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where 

K H —
1 

b 

and the /In, values are the positive roots of 

/1„,b cot lc)) bK =0 	 (4-66) 

The roots of this transcendental equation are real if bK> — 1 (see 
Appendix II, the table for the roots of ,;coti; c = 0). When the value of K 
as defined above is introduced into this inequality we find OH — — 1, which 
implies that H > 0. This result is consistent with the requirement on the 
physical grounds that in the original sphere problem we should have H > 0. 
Therefore, in the pseudoproblem the coefficient (Hb 1) may be negative, 
but the quantity Hb is always positive. 

Insulated Boundary 

When the boundary at r = b is insulated, we have H = 0. For this special case 
flo  = 0 is also an eigenvalue. Then the term 

3 z f r F Nth. 
b ' 0  

resulting from the eigenvalue 	= 0 should be added on the right-hand side of 
equation (4-64). This term implies that, after the transients have passed, the 
steady-state temperature in the medium is the mean of the initial temperature 
distribution F(r) over the volume of the insulated sphere (see note 1 at end of 
chapter for further discussion of this matter). 

Fig. 4-5 Boundary conditions for a hollow sphere. 

Hollow Sphere a....5r‘..b 

We now consider the problem of heat conduction in a hollow sphere a <r < b, 
with heat generation and subject to nonhomogeneous boundary conditions of 
the third kind at r = a and r = b as illustrated in Fig. 4-5. The mathematical 
formulation of the problem is given as 

1 D2 	1 	1 DT 

r Dr2 	k 
( T) 4- - NO 

a at 
= 	in 	a <r < b, t > 0 	(4-6qa) 

ar — 	+ H I  T= f, 	at 	r = a, 	t >0 	(4-67b).  
er 

ar H,T = f, 	at 	r = b, 	t>0 	(4-67c) 

T— F(r) 	 for 	1 = 0, 	in at.< r < b (4-67d) 

A new dependent variable is now defined as 

U(r, t) = rT(r, t) 	 (4-68) 

Then equations (4-67) arc transformed into 

a2u rg(r) 	au 
ar2 	k ^ c at 

OU H 2 	u bf 2  
at 	r = b, 	t > 0 	(4-69c) 

Dr 	b 

U = rF(r) 	 for 	t = 0, 	in a < r < b (4-69d) 

If a shift in the space coordinate is introduced as 

x = r — a 	 (4-70) 

in 	0 < x < L, t >0 	(4-71a) 

at 	x =0, 	t >0 	(4-71b) 

(4-65) 

Dr 

in. 	a<r<b, t>0 
	

(4-69a) 

the system (4-69) becomes 

D2  U (a + x)g(x + a) IOU _ 
a at 

DU — Tx + = 

( 
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au 
—+ K2 U = bf2 at x=L, t>0 (4-71c) 

U = (x 	a)F(x + a) 

where 

for t = 0, in 	0 	x i  L (4-71d) 

K I =.111 +-, 
a 

K2 =1-12-
1  

and L = b - a (4-72) 
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where 
1 

K 1 	- 
a 

K2 = H2 — (4-76c) 

and the p„, values are the positive roots of 

fl - K K 2 
tan 11,,(b - a) - r"(K 
	K2) (4-76d) 

which is a problem of heat conduction for a slab, 0 < x < L, and can be solved 
by the techniques described in Chapter 2. We illustrate the application with 
examples given below. 

Example 4-2 

A hollow sphere a < r < b is initially at a temperature F(r), for times t > 0 heat 
is dissipated by convection from the boundaries at r = a and r = b into an 
environment at zero temperature. Obtain an expression for the temperature 
distribution T(r, t) in the sphere for times t > 0. 

Solution. This problem is a special case of the problem (4-67) with g(r) = 0 and 

ri = f2 = 0. Therefore the governing problem is obtained from equations 
(4-67) by setting 

g(r)= 0, 	f E  = 0, 	and 	f2  = 0 	 (4-73) 

Then the transformation of the resulting problem by the transformations 

U (r, t) = rT(r, t) 	and 	x = r - a 	 (4-74) 

leads to a system similar to (4-71), with g = 0, f 1  = 0, and J., = 0, which is 
a homogeneous heat conduction problem for a slab and can readily be solved 
by the method described in Chapter 2. When the solution for U(x, 0 is 
obtained and transformed back to T(r, t) by the transformations (4-70) and 
(4-68), the solution for the considered sphere problem becomes 

Insulated Boundaries 

When both boundaries at r = a and r = b are insulated, we have H = H2 = 0. 

For this special case flo  = 0 is also an eigenvalue. Then the term 

3 

b 3  a3  a 
1217(0dr 

resulting from the zero eigenvalue should be added on the right-hand side of 
equation (4-75). This term implies that, after the transients have passed, the 
steady-state temperature in the medium is the mean of the initial temperature 
distribution F(r) over the volume of the insulated sphere. 

Example 4-3 

A hollow sphere, a < r < b, is initially at temperature F(r). For times t > 0, the 

boundaries at r = a and r = b are kept at zero temperature. Obtain an ex-
pression for the temperature distribution T(r, t) in the sphere for times t > 0. 

.—Salutian,  The mathematical formulation of the problem is given as 

-
1 
---
02 

r are 
	

a at (rT)  in 	a < r < b, 	r > 0 	(4-77a) 

for 	t 0, 

	(4-77b) T = 0 	 at 	r = a and r = b , t>0  

T = F(r) 	 in a 	(4-77c) 

x. 	1 
T(r, t) = - E e-.p I 	

 

R(/Jm, r) f 	r'F(e)R(13„„ r') dr' 	(4-75) 
r m 1 	N(110 	r' .11 

where the R(11„„ r), V(' li„,), and jf„,-values are obtained from Table 2-2, case I, as 

R((„„ r) = Pm  cos fi„,(r - a) + K 1  sin 13„,(r•- a) 	(4-76a) 

1 	 2  

N(11,„) (fl + K1)[(b - a) + K2An + 	+ K 	
(4-76b)  

This system is now transformed successively by the application of the trans-
formations 

Ufr, = 	0 	and 	x=r-a 
	

0-78) 

We obtain 

a2u i au 
ax2 	at 

= 	 in 0 < x < (b - a), 	t > 0 	 (4-79a) 



0 

0 
) 

( 

) 
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U = 0 
	

at 	= 0 and x = b — a, t > 0 
	

(4-79b) 

U = (x a)F(x for t = 0, in 0 ...‹..x<b— a (4-79c) 

This equation for U(x,t) is readily solved as described in Chapter 2 and after 
the transformation to T(r. t) according to equation (4-78) we find 

2 	•=c' 
T(r, t) 	> 	sin fir„ (r — a) 	r' F(r') sin fl„,(r' 	a)dr' 

	

1'(b —a),n = 1 	 r = 

(4-80a) 

where the fl„, values are the roots of 

sin f3„,(b — a) = 0 	 (4-80b)  
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Defining a new dependent variable V(r,p,t) as 

r112T 	 (4-82) 

the problem (4-81) is transformed into [see equation (4-9)] 

D2  V 1 D V I V 1 d[ 	011 1 DV 
-1- - — — -- + — — (I — P2) —  = - ,- 

Or 2  r Or 4 r2  r2  aft 	Op 	a ot 

in 	0<r<b, —1 --.5. p ...<„ I, t > 0 	(4-83a) 

V=0 	at 	r=b, t>0 	 (4-83b) 

V = 7.' 12  F(r, p) 	for 	t = 0, in the sphere 	 (4-83c) 

The elementary solutions of equation (4-83a) are given by equations (4-11). 
The solutions Q„(p) become infinite at p = ± 1 and Y.+112(A.r) [or J n  112(Ar)] 
become infinite at r = 0; therefore they are inadmissible as solutions on the 
physical grounds. Then, the elementary solutions that are admissible for this 
problem include 

or 

119  = 
mn 

P1 
b

— a.  
M = 1, 2, 3 ... (4-80c) 

4-6 HOMOGENEOUS PROBLEMS IN (r, p, t) VARIABLES 

In this section we illustrate with examples the application of the method of the 
separation of variables to the solution of homogeneous heat conduction problems 
involving Cr. it, t) variables, for example, T T(r, p, t). 

Problem of a Full Sphere 

Example 4-4 
• 
Obtain an expression for the temperattire distribution T(r, p, t) in a solid 
sphere, — I p < 1, 0 r < b, which is initially at a temperature F(r, p) and 
for times t > 0 boundary surface at r = b is kept at zero temperature 

. Solution. The mathematical formulation of this problem is given as 

	

(VT 2 ilT 1 0 	01 I OT 
- 	--[(1 — p2) 	= -- 

0r2  r 	r2  Op 	p 	a at 

	

in 	0<r<b, —1<p<1. t >0 	(4-81a) 

T = 0 	at 	r = b, for t > 0 	 (4-81b) 

T = 	p) 	for 	t = 0, in the sphere 	 (4-81c)  

e -a  n 	
J„ „a(Ar), 	and 	Pn(p) 

where P,,(p) is the Legendre polynomial as defined by equation (4-19) with 
n = 0, 1,2, 3,.... The complete solution for V(r, p, t) is constructed as 

V(r,p,t)= E E Cape-  "41J . 4. ,12(,).„pr)Pn(p) 
	

(4-84) 
n=0,13^1 

where the coefficients env  and the eigenvalues ,tap  are to be so determined that 
the boundary condition (4-83b) and the initial condition (4-83c) are satisfied. 
If the Anp  values are taken as the positive roots of 

J nn. 11,R,,,b) = 0 	 (4-85) 

the boundary condition at r = b is satisfied. The application of the initial 
condition (4-83c) gives 

r 112  F(r, 10= E E e„pJ„+ 	 in 
n=0p.i 

(4-86) 

To determine the coefficients c„,, we operate on both sides of equation (4-86) 



o Ti„,„ o 

Fig. 4-6 Boundary and initial conditions for a hemisphere in Example 4-5. 
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successively by the operators 

5 P..(p)dp , 

	

and 	ri „4. ii,(2„p.r)dr 
fa 

and utilize the orthogonality relations (4-26) for the Legendre polynomials ' 
and (3-19) for the Besse! functions. We obtain 

	

e„,= iv-- (71-)-N-1--(An-p-)  :,0 i:,_,  r312.1,. . , 12(A„pr)P„(p)F(r, p)dittir 	(4-87a) j.  

where the norms are defined as 

1 	 a 
N(n) -&-. 5 [P„(p),]2  d ,u 	and 	N(.l„p) .,=- f r./,1, 11 

	

1/2•11//r)dr 	(4-87b) 
- i 	 o 

The coefficient c„,, as given above is introduced into equation (4-84) and the 
resulting expression is transformed to T(r, it, t) by the transformation (4-82). 
We find 

ar.., 
T(r, t) 	E E 	e-"4P`r-1/2,/ AI 	iu 	f 

+ 1 /2 v-npria 
= 0 p = 1 N(n)N(A„p) 

r.312J 	1/2 (A r')Pri  (it')F(r', 	dr' tip  

r.  =0 p' — I 

where the An,,  values are the positive roots of 

1 /2(Anpb) = 0 
	

(4-89a) 

the norm N(n) is obtained from equation (4-27) as 

2n + 1 
	 (4-89b) 

and the norm N(A„„) is obtained from equations (25) of Appendix IV by 
utilizing the condition (4-89a) as 

b2  
N(,1„,1) = — .2  J„. , 12(2„,,b)./„ „/,(A„,,b) 	if equation (25a) of 

Appendix IV is used 	(4-89c) 

2 

= —
2 
 [I 

112 
 (A„pb)] 2 
	

if equation (25b) of 
Appendix IV is used 	(4-89d) 

and the n values are positive integers, zero being included.  

We note that the eigenfunctions J„÷  ,/2().„,,,r), the norm N(ii„,,) given by 
equation (4-89d), and the expression (4-89a) for the eigenvalues are the same 
as those obtainable from Table 3-1, case 3, with v = n +1. Therefore, Tables 3-1 
and 3-3 arp useful for the determination of the eigenvalues, the eigertfunctions, 
and the norms associated with the r variable in the solution of equation (4-83a) 
for a solid and hollow sphere, respectively. 

Problem of a Hemisphere 

Example 4-5 

Obtain an expression for the temperature distribution T(r, p, t) in a solid 
hemisphere, 0 p 1,0 r b, which is initially at a temperature F(r, p) and 
for times t > 0 the boundary surfaces at r = b and p = 0 are kept at zero 
temperature as illustrated in Fig. 4-6. 

Solution. The mathematical formulation of this problem is given as 

a2T 2aTt a 	al I aT2   [  _ 
are  r dr r2 	au 	a at 

in 	0 E r c b, 0 c p 1, for t > 0 	(4-90a) 

T = 0 	at 	r = b and p = 0, for t>0 	(4-90h) 

T = F(r, p) 	for 	t = 0, in the hemisphere 	 (4-90c) 

A new variable V(r, 11,1) is defined as 

V =r' 12 T 	 (4-91) 

Then, the problem (4-90) is transformed into 

02 11  1DV 1V 	I   a F 	
j

_l ay 

4i+ v
,1 _ 	

-TrY 	; 	(i  a at 

	

in 	0 r < b, 0< us 1, for t > 0 (4-92a) 

(4-88) 

N(n)= 
2 



P 

=o 

11 	0 

2IN= 0 = 0 

Fig. 4-7 Boundary and initial conditions for a hemisphere in Example 4-6. . 
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V = 0 	at 	r = b and p = 0, for t > 0 (4-92b) 

V = r' 12  F(r, p) 	for 	t = 0, in the hemisphere 	(4-92c) 

The elementary solutions of equation (4-92a) that are admissible for this 
problem are 

The coefficient cni, as given above is introduced into equation (4-94) and the 
resulting expression is transformed into T(r, p, t) by the transformation (4-91). 
We obtain 

1 	e_„..v.,fr 	ii2(2.rr)Pn(p) T(r, r) = n= 	,X1 NoON(.1„p) 
e  

+ /2 (M. and 	P.(p) 	(4-93) 1 
,1/2 	1 	'i n i n  kr.' 

+ 1121/911pr),  (4%-98) 
where P„(p) is the Legendre polynomial as defined by equation (4-19). To 
satisfy-the boundary. condition of-the-first kind at the-surface.p-= 0 (Le., the 
base of the hemisphere) the degree n should be taken as odd positive integer 
(i.e., a = 1,3, 5,...) for reasons discussed in Section 4-4. Then, the complete 
solution for V(r, p, t) is constructed as 

V(r, p, t) 	 7A4,'J + 1,()„pr)P„(1) 	(4-94) 

where the eigenvalues .1.„1, are the positive roots of 

+ 112(Anpb) =0  (4-99a) 

N(n) is determined from equation (4-31) as 

II 

J„.,,2 (1„,b)--- 0 

N(n) 	
1 	 (4-99h) 

2n + 1 

and N(2„,,) is obtained by using equation (25a) of Appendix IV and by utilizing 
(4-95) 	 the result (4-99a) 

which satisfies the boundary condition at p = 0. It will also satisfy the boundary 
condition at r = b if the 2„,, values are taken as the positive roots of 

The application of the initial condition (4-92c) to the solution (4-94) gives 2 
N (A.„r,) = —

b 

2 
J ii,(A„pb)J (4-99c) 

.3 	.0 
r 112 F(r,p)= 	E 	E en,./„+,,,(A„pr)P.(m) 	in 	0 rcb,0<p 1 

n.1,3.5....p=1 

(4-96) 

To determine the coefficients cm, we operate on both sides of equation (4-96) 
successively by the operators 

Pb 

and 	' 0  a „ + ,12().„p.r)dr 

where n' = LIS__ and utilize the orthogonality relations (4-31) and (3-19). 
We obtain 

f b 	/ = 	r32J 	(,I,,,,r)P„(p)F(r, p)d p dr 
N (71)N (2,,„) r . 0 	o 	” 

(4-97a) 

where the norms are defined as 

1 

N (n) -=- 	[P,s (p)] 2  dp 	and 	 rJ!, it , (1„pr)dr 	(4-97b) 
0 	 0  

and the n values are odd positive integers, that is, n = 1, 3, 5,.... 

Example 4-6 

Obtain an expression for the temperature distribution T(r, p, t) in a hemi-
sphere, 0 .1.5.p 1,0 5 r b, which is initially at temperature F(r, p) and for 
times t > 0 the boundary surface at r = b is kept insulated and the boundary 
surface at p = 0 (i.e., the base of the sphere) is kept at zero temperature as 
illustrated in Fig. 4-7. 
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fo  PA/1)(1/( 	and 	Erin +112 (Anp' Ofir 
..--, 
\,_... 

where n' = 1,3, 5,... and utilize the orthogonality relations (4-30), (4-31) and 	 ,..... 
(3-19). We obtain 	 r--. 

0,_, 

1 	r 	. 	 1  

\— c = 	 rip 	 r3  2.1 	(2 r)P (p)F(r p)d p dr 	(4-105a) 
N(n)N(A„p)i,....,1,. 	n  + "2  " n 	' 	 C 

	

If this problem is transformed with the transformation (4-91), the differential 	 where 	 r- 
equation is transformed to that given by equation (4-92a) and the boundary 

b and initial conditions (4-99) are transformed into 

	

N(n) f 113„(p)r dp 	 N(Arrp) -= j
o

ri .2  + 112(Anpr)dr 	(4-105b) and 

V -= 0 	 at 	p = 0 (the base), t > 0 	 (4-101a) 	
o ,.—. 

0V 	I 	 resulting solution is transformed ifiwr(r, p, 	t) by-thc-tramsfo-rmatioll-(4-91). 	1 — 
81

-:— 5  v = 0 	r = b, 	 t > 0 	 (4-101b) 

	 The coefficient e „p  as given above is introduced into equation (4-102) and the 	1 

We obtain 	
'.., 
,---, 
',._..) 

	

. 	-,..  
V = r i 12  Fir, p) 	for 	t = 0, 	in the hemisphere 	(4-101c) 	 T(r,p, 0 = 	E 	E ._ __....1  ..... .... e  —14y— 1i2 jui_ ,,2(4,,•)P„(p) 	 ,---) ,...„ 

n = i ,3.5.... p= 1 N(n)N(A„p) 

	

The elementary solutions of this problem are the same as those given by 	 ,..._, 
equation (4-93) and the complete solution for Y(r, p, t) is constructed as 	

../ 1  I • 1 	
T t311.1 n + 112(11nprf)P „(p)F(r', p')d p' dr' 	(4-106) 

	

r* ,- 0 L•=° 	 `,._..., 

	

V(r, p, t) = 	E 	E enpe-34-v.+112(Anp•P.(4) 	(4-102) 	 where the eigenvalues Anp  are the positive roots of 
1 

If the eigenvalues 	are taken as the positive roots of 

 

11,ifer.+1,2'1.4pb) —  5 Jr1-1- 112 (AnPb)  = (4-107a) 

" d
+ 2(Ar,

P 
b) —

2b 
 J 

112(A 
 b) = 0 

P  
(4-103a) the norm N(n) is obtained from equation (4-31) as 

1 

N " Jr — +1 

 

or 

 

(4-10.7b) 

Solution. This problem is similar to the one considered in Example 4-5 except 	 To determine the coefficients c„p  we operate on both sides of this equation 
the boundary surface at r = b is now insulated. The differential equation is the 	I 	 successively by the operators  
same as that equation (4-90a); therefore we give only the boundary and initial 	 ..- 
conditions ,--- 

E 
T = 0 at p = 0(the base), 1 >0 (4-100a) 

/17- 
= 0 

Or 
at r = b (spherical surface), 1 > 0 (4-100b) 

T = F(r, p) for  t = 0, in the hemisphere (4-100c) 

Anlern I 1/2 (An •I1)-2b" • 2(2  , b) = 0 
	

(4-103b) 

the boundary condition (4-101b) at r b is satisfied. The application of the 

The norm N(A„,,) is determined by using equation (25a) of Appendix IV as 

(4- I Ole) 1b2{.1,!+,,,(A„,,b)— n— 112(A,,Pqj  n+ 312(4Phll 

and the n values are odd positive integers (i.e., n = 1,3, 5, ...). initial condition (4-101c) to equation (4-102) gives 

r I12F(r, p) = 	E Cnpi ni-1/2(2.,,r)P„(p) 	(4-104) 	 We note that the general form of the solution (4-106) is exactly the same as 
that of equation (4-98) of the previous example except the expressions defining 



and 	1,, p = v 	+ 11, 1 
21) 

flIcgion 

F(r, p)r2  drdp 

r2  drdp 
Loon 

that results from the zero eigenvalue should be added to the solution. This term 
implies that, after the transients have passed, the steady-state temperature in the 
medium is the mean of the initial distribution F(r, p) over the volume of the 
insulated region. 

(4-108a) 

(4-1086) 

(4-108c) 

a27-  219T 1 0 [ 	2  DT 	1 	027-  1 DT 
—+--+-- (I — 11 )-1+ 	2 	= 8r2 r 	r2  Op 	Op 	r2(1 — p2  )002  a at 

in 0<r<b, —1 <p< 1,0 -44)<27tfort> 

T=0 	at r b, for t > 0 - 

T = F(r, p, 4)) for t = 0, in the sphere 

(4-110a) 

(4-110b) 

(4-110c) 

The problem (4-108) is transformed into 

il 2  V 	101' 	1 1/ 	I it 	(1V 	I 	i)2, V 	111V 
i 	 = 

ilr2 	r Or 4 r2 
-+ 

r 2  Dp
[(I p2) 

Dp
1+ 

r2(1 — p2)D02  a 0: 

in 	0<r<b, —1 <p<1, 

0 < 4).< 2n, for t >0 

(4-112) 

n=0 p -= 1 no=0 

.(A„,„, cos tmfi B„,„p  sin rn6k) 

(4-113) 

This solution satisfies the differential equation (4-110a) and remains bounded 
in the region —1 < p < 1, 0 < 4 < 2n, and 0 r < b. If the eigenvalues 1„,'are 
chosen as the positive roots of 

• n 112 (A^P b)  = 

(4-114) 

r'l2F(r, p, 4)) =EE 	1 112(A„pr)P ,T(p)(A,;,„,, cos ni) B,,,,,r, sin m4)) 
n=0p.lm=0 

in —1<...p..<1,0 

at 	r b, for t > 0 V = 0 

t = 0, in the sphere V = r 112 F(r,p,4)) 	for 
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A new variable V(r, p, d), t) is defined as 

V= r 1̀2 T 	 (4-109) 

The elementary solution of equation (4-110a) that are admissible on the physical 
grounds are [see equations (4-8)] 

e 	 112(2r), 	.1)7(p), 	(A cos nub + B sin n4) 	(4-111) 

where P (p) is the associated Legendre function of the first kind defined by 
equation (4-25), with n and m being positive integers (i.e., n, m = 0, 1, 2, 3, ...) 
and m n. The choice of m as positive integer satisfies the requirement that 
the temperature T (or V) is periodic with period 2n in the interval 0 .< < 2n. 
Then the complete solution for V(r, p, t) is constructed as 

0 	It 

V(r, p, cb,t) =EE E e^ "41,  I 1120nAP:1(4)  

it also satisfies the boundary condition at r = b. The expansion coefficients 
A „,„p  and B„,„p  are to be determined so that the initial conditioh for the problem 
is satisfied. The application of the initial condition (4-110c) to equation (4-112) 
gives 
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the eigenvalues A„, and the norm N(.1,, p) are different. The eigenfunctions 

jitt+112(.1„,), the eigenvalues 2„,„ and the norm N(.I.„,,) if determined by using 
equation (25b) of Appendix IV are the same as those obtainable from Table 3-1, 
case 1, by setting 

All Boundaries Insulated 

When all the boundary surfaces of the region are insulated, the analysis is 
performed in a manner similar to those illustrated above with other boundary 
conditions; but for this special case 20,,, = 0 is also an eigenvalue. Then the term 

4-7 HOMOGENEOUS PROBLEMS IN (r, tu, (/), r) VARIABLES 

In this section we illustrate with examples the solution of the homogeneous 
problems of heat conduction involving (r, p, t) variables. 

Example 4-7 

A solid sphere of radius r = b is initially. at temperature F(r, p, 0). For times 
t > 0 the boundary surface at r = b is kept at zero temperature. Obtain an 
expression for the temperature distribution T(r, p,1), t) in the sphere for times 
t > 0. 

So/ntion. The mathematical formulation of this problem is given as 
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To determine the expansion coefficients we operate on both sides of equation 
(4-114) by the operator 

rJn+ 1 /2 (Aniy r)dr (4-115) 

I c) cc 	' 1  
11
E 
	e —  24,P' 

T(r, p, 0, e) = - 	E
m n 
	 r-112J p+ 	r).1(p) /2 'AP 	A 

n.0 P . I ..0 N(, )N(A„p) 

(4-109). We obtain 

and utilize the' orthogonality relation (3-19). We obtain 
• 

f 1 2,r 

r' 312  J ii,(.1„pr')P 7(p') cos m(0 — 0') 

• 1.1r', p , 0')de,b' die dr' (4-118) 

Ap, 0) = E E • P7(p)[A,p„, cos nr4 + B„,„, sin m0] N 
n.A0 m=0 

in —1 (4-116a) 

where n should be replaced by 2n for in = 0, and the eigenvalues A„p  are the positive 
roots of 

4+ii2(A.pb) = 

the norms N(m, n) and NR,) are given by 

(4-119) 
where 

b 

f(p, 	 F(r, p, 0)J „, , i.,(2„pr)dr 	(4-116b) 

f
e 	 b2 
 rJL. il,(,1„pr)dr = --

2 
J

12
(.1„pb)J „+31,(A„pb) (4-116c) 

Here we utilized equation (25a) of Appendix I V together with equation (4-113) 
to evaluate the norm N(And. 

Equation (4-116a) is a representation of a function f(p, 4) defined in the 
interval —1 Lc p ..<„ 1,0 2n in terms of P7 (p), sin nu/9 and cos mck. Such an 
expansion was considered previously in equation (4-38) and the expansion coeffi-
cients were given by equation (4-44). Therefore, the expansion coefficients in 
equation (4-116a) are obtained from equation (4-44) as 

N(A„,,)[A„,„p  cos en0 + B„,„p  sin rup] 	
1 	2rt 	1 

nN(m,n) 	.= i f(ii', 0') 

• P7(p)cos[m(0 0')]dp' (10' 	(4-117a) 

where n should be replaced by 2n for or = 0, and the norm N(m, n) is as given by 
equation (4-40): 

( 	
2 	) (n + ni).1. 

N(nr,n)= - 	-- ------ 
2d+ 1 (n — m)! 

(4-120) 

2  
N(2„,,) 	2(),„ b),1 r,„ 2(2„ r) 

2 - "  
(4-121) 

and n, m are positive integers, zero being included. 

4-8 MULTIDIMENSIONAL STEADY-STATE PROBLEMS 

In this section we illustrate with examples the solution of multidimensional, 
steady-state heat conduction equa tion with no heat generation subject to only 
one nonhomogeneous boundary condition by the method of separation of 
variables. 

Example 4-8 

Determine the steady-state temperature distribution T(r, p, 0) in a solid sphere 
of radius r = b with its boundary surface at r = b is kept at temperature f (p, 0). 

Soiution. The mathematical formulation of this problem is given as 

1 
[P,T(p)]2  dp = f 	2  1(11  mil 

-1 	 + 1)(n — my 

02 T 2 aT 1 
(4-117b) 	 + - —+— 	--It2 

aT 	a2T 
)1+ 	 

	

p 	r2(1 — ii2) 302 = ° 
a 

are  r or 	al 
in 0 ...‹r<b, 	 (4-122a) 

The coefficients given by equations (4-117) are introduced into equation (4-112) 
and the resulting expression is transformed into T(r, p, j, t) by the transformation T = f(p, 0) 	at 	r = b 	 (4-122b) 
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Fig. 4-8 Boundary conditions for a hemisphere in Example 4-9. 
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The elementary solutions of equation (4-122a) are given by equations (4-13d, 
e, f). The solutions r' and QT (p) are to be excluded, because the former 
becomes infinite at r = 0 and the latter at p = + 1. Then the solutions that are 
admissible include 

(4-124) the solution becomes 

ir 2n + 1 (n — m)l(r 
T(r, p, = 

n m = 	2 (n + in)! b P7(11)  

(4-123) 	
r  2N 	r 

P7(111) cos m(r) — 4)1f(p',4011p' JO' (4-127) 

where it should be replaced by 2n for m = 0, in = 0,1, 2, 3, .. . , n = 0, 1, 2, 3, , 
m < n. 

i'. 
pap.). 	and 	(A cos nu) + 11 sin 

where P",,'(p) is the associated Legendre function of the first kind as defined by 
equation (4-25), with n and m being positive integers (i.e., n, in = 0, 1, 2...) and 
ni n. The choice of in as positive integer satisfies the requirement that the 
temperature T is periodic with period 2n in the region 0 < 4 < 2ir. The 
complete solution for T(r, p, 4)) is constructed as 

T(r,p,o)= E E r"P7(p)(A„,„ cos nigh + B,,, sin in 0) 
n=0 m = 0 

	 (4-124) 

which satisfies the differential equation (4-122a) and remains finite in the 
region — 1 < p <, I, 0 < 4 < 2ir, 0 r < b. The coefficients Amn  and B„,„ are to 
be determined so that the boundary condition at r = b is satisfied. The applica-
tion of the boundary condition (4- I 22b) gives 

J 	4)) = E E P,','(p)(A.„ cos nil) + B„,„ sin nt4))b" 
= 0 m =0 

in —1 <p<1, 0<c/o4.2n 	(4-125) 

Equation (4-125) is a representation of a function f(p, 0) defined in the interval 
—I < p ‘. 1 , 0 ‘. 4 2n in terms of the functions /377(p), sin mch and cosnuk. 
Such a representation was considered previously in equation (4-38), and the 
expansion coefficients were given by equation (4-44). Therefore, the co-
efficients in equation (4-125) are obtained from equation (4-44) as 

	

[A „,„ cos nich + B„,„ sin nirbj = 	 
27c 	I 	fo , 	pvie)  

nN(ni, II) 0.= 0 	1 	b" 

cos [m(4) — 4;')] dp' 	 (4-I26a) 

where it should be replaced by 2n for in = 0, and the norm N(111, a) is as given 
by equation (4-40): 

2 	(it + in)! 	
(4-1266) 

When the coefficients given by equation (4-126a) are introduced into equation 

Example 4-9 

Determine the steady-state temperature distribution T(r, p) in a solid 
hemisphere of radius r = b, in the region 0 r b, 0 < p 1, with its spherical 
surface at r = b kept at temperature f(p) and its base at p = 0 is insulated 
as illustrated in Fig. 4-8. 

Solution. The mathematical formulation of the problem is given as 

02T 2 aTa 	, T 
Dr' r ar r2  Op 	Op 

+ - — 	—[(1 	
a 	

0 in 0‘_r<b,0<p--51 

DT = 0 	 at p = 0 

T=f (p) 	 at r = b 

(4-128a) 

(4-128b) 

(4-128c) 

The elementary solutions of equation (4-128a) are given by equations 
(4-15c,d). The solutions r-°-  iand Q,,(p) are inadmissible, because the former 
becomes infinite at r = 0 and the latter becomes infinite at p = 1. Then, the 
elementary solutions that are admissible are taken as 

rn 	and 	P„(0) 	 (4-129) 

EP,T(p)r dp = 
- 	 2n + 1 (ii — in)! 
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where Pn(p) is the Legendre polynomial as defined by equations (4-19). The 
complete solution for T(r, is constructed as 

T(r, p) = > c„e13„(p) 	 (4-130) 

The application of the boundary condition at r = b gives 

= E r„vrnoi) in 	0 	1 	(4-131) 

n=0,2,4... 	 (4-132c) 

for the boundary condition of the second kind at p = 0. Introducing c„ into 
equation (4-130) the solution becomes 

where 

This is a representation of a function f(p) defined in the interval 0 ,c..p 1 in 
terms of the Legendre polynomials. Such a representation was considered 
previously in equation (4-46) and the expansion coefficients were given by 
equation (4-49). Therefore, the coefficients c„ in equation (4-131) are readily 
obtained from equations (4-49) as 

T(r, = 	t (2n + 	r YPi(P) f (P)P,Atil die 	(4-133) 
= 0.2,4,— 	 \b/ 	u' =0 

N(n) 	[P„(p)]2 	= 
2n + I 

e„ 	
AO— P (p')dp' 

N(n) a  b" 

(4-I 32b) 

(4-132a) 

or if n is replaced by 2n, this result is written as 

2n 

T(r, p) = n (4n + 1 	P2 n(p) f 	f (p')P 2,,(12') d p' 
= o 	)( b ) 

= 0  

(4-134) 

in equation (4-134) we have n = 0,1,2,3, ... 
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4-9 TRANSIENT-TEMPERATURE CHARTS 

Transient-temperature charts similar to those considered for a slab and a long 
solid cylinder can also be constructed for the case of a solid sphere by solving 
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Fig. 4-9 (C'ontinued) 

the following transient heat conduction problem 

in 	O<R< 1, for r> 0 	(4-135a) 

at 	R=0, 	for r> 0 	(4-135b) 

at 	R = 1, 	for r = 0 	(4-135c) 

in 
	

0 s R 1, for r= 0 	(4-135d) 

Here, the dimensionless parameters43i,r, 0, and R are as defined by equations 
3-199a,b,c and d, respectively. In this case h is the sphere radius., The results 
are shown in Fig. 4-9a,h. Figure 4-9a shows the dimensionless center 
temperature 0(0, r) for the sphere as a function of dimensionless time r for several 
different values of the parameter 1/Bi. Figure 4-9b relates the temperatures at 
different locations within the sphere to the center temperature 0(0,r). The use 
of these charts is similar to that described in Example 2-17 in Chapter 2. 
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PROBLEMS 

4-1 By making use of the Rodrigues' formula given by equation (4-21) show 
that the integral 

	

1 	.f(11)P.(11)(111 

when performed by repeated integrations by parts can be expressed in 
the form 

	

I (-1 	, 	

1r 

tindfii(14 41 

4-2 Consider the heat conduction problem for a spherical cavity a r < co 

R2  DR 	OR 

ao
- 0 

 

OR 

DO 
4-Bi0=0 

0 = 1 



a-  a... • a •,-.- 11 	 aaaaaaa ,••••-••,.• 	 ‘-.S......•••••■••,•• • 	1-■ • 	• •-•••• 

given in the form 

in 	a<r<co, t>0  

at 	r = a, 	t > 0 

for 	t = 0, 	in a < r < co 

By utilizing the transformations U = rT and x = r — a, transform the 
above problem to the problem of heat conduction in a semiinfinite 
medium in the rectangular coordinate system. 

	

4-3 	A hollow sphere a r < b is initially at temperature F(r). For times / > 0 
the boundary surface at r = a is kept insulated and the boundary at r = b 
dissipates heat by convection into a medium at zero temperature. Obtain 
an expression for the temperature distribution T(r, t) in the sphere. 

	

4-4 	A solid sphere of radius r = b is initially at a temperature F(r). For times 
t > 0 the boundary surface at r = b is kept at zero temperature. Obtain 
an expression for the temperature distribution T(r, t) in the sphere for 
times t > 0. 

	

4-5 	Obtain an expression for the temperature distribution T(r, t) in a solid 
sphere of radius r = b that is initially at temperature F(r,p) and for times 
t > 0 the boundary surface at r = b is kept insulated. 

	

4-6 	Obtain an expression for the temperature distribution T(r, p, t) in a solid 
hemisphere, 0 p s 1,0 < r b, which' is initially at temperature F(r, p) 
and for times t > 0 the boundary at the spherical surface r = b is kept at 
zero temperature and at the base p = 0 is kept insulated. 

	

4-7 	A solid sphere of radius r = b is initially at a temperature F(r, p, 0). For 
times t > 0 the boundary surface r = b dissipates heat by convection into 
a medium at zero temperature. Obtain an expression for the temperature 
distribution T(r, it, 4, t) in the sphere for times I > 0. 

4-8 Solve Problem 4-7 for the case when the boundary surface at r = b is 
kept insulated. 

	

4-9 	A solid sphere of radius r = b is initially at temperature F(r). For limes 
t > 0 the boundary at r = b is kept insulated. Develop an expression for 
the temperature distribution T(r, t) in the sphere for times t > 0. 

4-10 By separating equation (4-6a), show that the resulting separated equations 
are as given by equations (4-7). 

4-11 By separating equation (4-3), develop the resulting separated equations. 

4-12 Consider a region b < r < co (i.e., a region bounded internally by a sphere 
of radius r = b). Initially, the region is at a temperature F(r). For times 

> 0, the boundary surface at r = b is kept at zero temperature. Develop 
an expression for the temperature distribution T(r, t) in the medium for 
times t > 0. 

4-13 Determine the steady-state temperature distribution T(r, p) in a solid 
hemisphere of radius r = b, in the region 0 r b, 0 p < 1, with its 
spherical surface at r = h kept at temperature f (p) and its base at p = 0 
is kept at zero temperature. 

4-14 Obtain an expression for the steady-state temperature T(r, p) in a solid 
sphere of radius r = b when the boundary surface at r = b is kept at 
temperature f(p). 

4-15 A solid sphere of radius r = b is initially at a uniform temperature F(r). 
For times t > 0 the boundary surface at r = b is kept at a constant 
temperature Tb. Obtain an expression for the temperature distribution 
T(r, t) in the sphere. 

4-16 A solid sphere of radius r = b is initially at temperature F(r). For times 
t > 0, the heat transfer at the boundary surface r = b is given by 
(aT/ar)-F HT= fb, where f b  is constant. Obtain an expression for the 
temperature distribution T(r, t) in the sphere. 

4-17 A hollow sphere a r -.51) is initially at temperature F(r). For times t > 0, 
heat is generated in the region at a constant rate of go  per unit volume 
and the boundary surfaces at r = a and r=b are kept at uniform 
temperatures Ta  and Tb, respectively. Obtain an expression for the 
temperature distribution T(r, t) in the sphere. 

4-18 Repeat problem 4-12 for the case when the boundary surface at r = b is 
kept insulated. 

4-19 Consider a region b < r < co (i.e., a region internally bounded by a sphere 
of radius r = b). Initially the region is at zero temperature. For times 
t > 0, the boundary surface at r = b is kept at a constant temperature To. 
Develop an expression for the temperature distribution T(r, t) in the 
region for times 1 > 0. 

NOTE 

1. Equations (4-32) for H = 0 become 

in 	0<r<b, r >0  

at 	r =0, 	t > 0 

1 a2 	g(r)1 aT 
r Or 
- —i(rT) + 17= 

at 

—
O 
 + HT= f i  
r 

T = F(r) 

02 U 1 OU 
are  a at 

Ur--0 

In
n
 r

--,
  (

--,,
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U(r,1)= ° 	E 	R(13 ,r) f R(13„„r1e F(r') dr' 	(4) 

.,-1 N(fi„,) r  
dr' 

r r' 2  F(r)de 

Jo 
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au 1 
-U= 0 at 

ar b 
r = b, 	t > 0 

rF(r) 	for 	t = 0, 	in 0 ..- r b 

Appropriate cigenvalue problem for the solution of this system is given as 

R 
m +ti2 R =0 in 	0<r<b 

dr'-  

R„, .-- 0 	at 	r = 0 

d R 	1 
-R „,= 0 	at 	r = b 

dr b - 

The solution of system ( I) is obtainable according to equation (2-13) of Chapter 2 as 

1 
U(r, t) = E 	

2
-R(0„„r)f R(13„„ Ir'F(e) dr' 

„=0 	N(f3.) 

where 

N(f3.) = 	[R(fin„ Or dr 	 (3b) 

and n= 0, 1,2, 3,.... For Pm  0 0, the eigenvalues fi,,, and the eigenfunctions R(fi„„ r) are 
obtainable from Table 2-2 of Chapter 2. However, for /3„, = 0, equations (2) have a 
solution R(13„„ r) = r. Then the solution (3) includes a term corresponding to the zero 
eigenvalue and takes the form 

where U(r, t) is related to the temperature by U(r, :1= rT(r, t); then equalion (4) becomes 

	

D(r, r) =
0 	 r 

F(r) dr + E  	r)f R(fi„„ tirT(Ildr' 
 o b 	N(fl.)  

	

'h  	"' 	-'13! 1  
(5) 

Thus, the first term on the right is the mean of the initial temperature distribution over 
the volume of the sphere.  

5 
THE USE OF 
DUHAMEL'S THEOREM 

So far we considered the solution of heat conduction problems with time-
independent boundary conditions and energy-generation term. However, there 
arc many engineering problems such as heat transfer in internal-combustion 
engine walls and space reentry problems in which the boundary condition 
functions are time-dependent. In nuclear reactor fuel elements during power transi-
ents, the energy-generation rate in the fuel elements varies with time. Duhamel's 
theorem provides a convenient approach for developing solution to heat conduc-
tion problems with time-dependent boundary conditions and/or time-dependent 
energy generation by utilizing the solution to the same problem with time-
independent boundary conditions and/or time-independent energy generation. 
The method is applicable to linear problems because it is based on the super-
position principle. A proof of Duhamel's theorem can be found in several re-
ferences [1; 2, p. 162; 3, p. 30]. The proof given in reference 1 considers a general 
convection-type boundary condition from which the cases of prescribed heat flux 
and prescribed temperature boundary conditions are obtainable as special cases. 
Here we present a statement of Duhamel's theorem and then illustrate its appli-
cation in the solution of heat conduction problems with time-dependent boundary 
condition function and/or heat generation. 

5-1 THE STATEMENT OF DUHAMEL'S THEOREM 

Consider the three-dimensional, nonhomogeneous heat conduction problem in 
a region R with time-dependent boundary condition function and heat genera-
tion given in the form 

(lc) 

(Id) 

(2a)  

(2b)  

(2c)  

(3a) 
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T(r, + —
1

g(r, 0 - 
aT(r, t) 

a at in 	region R, 	t > 0 	- 	(5-1a) 
tion under the integral sign; we obtain 

aT 
On + h

1T = fi(r, t) 
( 	• 

on 	boundary Si, t > 0 	(5-1 b) 

since 

T(r, t) = F(r) 	
a
— (Kr, t — r, r)tir 

=o at 
(5-4) 

T(r, t) = F(r) 
	

for 	t = 0, 	in region R 	(5-1c) 	
CD(r, I — r, r)I, _ = 	0, r) = F(r) 

where Dian, is the derivative along outward-drawn normal to the boundary 
surface Si, i = 1, N and N being the number of continuous boundary sur-
faces of the region R. Here ki  and hi  are coefficients that are assumed to be 
constant. By setting ki  = 0 we obtain boundary condition of the first kind, and 
by setting hi  = 0 we obtain boundary condition of the second kind. 

The problem given by equations (5-I) cannot be solved by the techniques 
described in the previous chapters because the nonhomogeneous terms g(r, t) and 
fi(r, t) depend on time. Therefore, instead of solving this problem directly, we 
express its solution in terms of the solution of the simpler auxiliary problem as 
now defined. Let 3)(r, I, r) be the solution of problem (5-1) on the assumption that 
the nonhomogeneous terms g(r, r) and fi(r, r) do not depend on time; namely, 
the variable r is merely a parameter but not a time variable. Then, (Kr, t, r) is the 
solution of the following simpler auxiliary problem 

1 
172(„D(r, 1, 	

k
r) + — g(r, 

ki 
04)(r, t, r} 

hi4)(r, + 

1 0(1)(

at

r, t, r) 
in 

on 

for 

region R, 

boundary Si, 

t = 0, 

t > 0 

t > 0 

in region R 

(5-2a) 

(5-2b) 

(5-2c) 

= 
a 

t, r) = fi(r, r) art 

(Kr, t, r) = F(r) 

where il/Oni  and Si  as defined previously, and the function (1)(r, t, r) depends on r 
because g(r, z) and fr(r,r) depend on r. 

The problem (5-2) can be solved with the techniques described in the previous 
chapters because g(r, r) and f (r, r) do not depend on time. Suppose the solution 
1(r, t, r) of the auxiliary problem (5-2) is available. Then, Duhamel's theorem 
relates the solution T(r, 1) of the problem (5-1) to the solution (1)(r, 1, r) of the 
auxiliary problem (5-2) by the following integral expression 

We now examine some special cases of Duhamel's theorem given by equation 
(5-4). 

1. Initial temperature zero. For this special case we have .F(r) = 0 and 
equation (5-4) reduces to 

f 	a  
T(r, t) = 	(1)(r, t — T, r)dr 

T =0 at 
(5-5) 

2. Initial temperature zero, problem has only one nonhomogeneit y. The solid 
is initially at zero temperature and the problem involves only one nonhomogeneous 
term. Namely, if there is,  heat generation, all the boundary conditions for the 
problem are-homogeneous; or, if there is no heat generation in the medium, only 
one of the boundary conditions is nonhomogeneous. For example, we consider 
a problem in which there is no heat generation, but one of the boundary 
conditions, say, the one at the boundary surface Si  is nonhomogeneous. 

1 aT(r, t) 
 V 2  T(r, t) = in 

on 

for 

region R, 

boundary Sr, 

t = 0, 

1 > 0 

> 0 

in region R 

(5-6a) 

(5-6b) 

(5-6e) 

a 	at 

k 
0 T 

+ hi T = 	, i fi(t) 
On;  

T(r , t) = 0 

where i = 1,2, , N and 	is the Kronecker delta defined as 

	

10 	06 I 
a,r — 

	

1 	i = I 

• rl 

1.
1  

n
 n
 r
 
n

  

a i s 
T(r, t) = 	(Kr, t — T)dr 

at ,=,, 
(5-3) The corresponding auxiliary problem is taken as 

This result can be expressed in the alternative form by performing the differentia- 
V2  cp(r, t) 	

1 3(1)(r, t) 

a Or 
in 	region R, 	t > 0 	(5-7a) 
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Fig. 5-1 Boundary-condition function f(t) with discontinuities. 
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on 	boundary SI, t> 0 	(5,1b) 

 

  

 

(l)(r, t) = 0 for 	t = 0, 	in region R 	(5-7c) 

 

Then, the solution T(r, t) of the problem (5-6) is related to the solution (I)(r,t) of 
the problem (5-7) by 

	

a(I)(r, t 	
r) dr T(r, t) 	f(t)— 

r= 0 	Of 

The validity of this result is apparent from the fact that if 41)(r, t, r) is the solution 
of the problem (5-7) for a boundary condition 3 iifi(r), then (Kr, t, r) is related to 
(1)(r, t) by 

(5-8) 

(I)(r, t, T) = f(r)(1)(r, t) 	. 	 (5-9) 

When equation (5-9) is introduced into equation (5-5), the result (5-8) is obtained. 

If the boundary condition function Pt) has discontinuities, say, at times 
t = ri(j= 0, I, 2,...), then the time integral in equation (5-8) needs to be broken 
in parts at the points of discontinuities with proper cognizance of the effects of 
step changes in surface condition to the temperature in the medium. This matter 
will be discussed further in the next section. 

The physical significance of the function (6(r, t) governed by the auxiliary 
problem (5-7) is dependent on the type of boundary condition considered for 
the physical problem (5-6). If the boundary condition is of the first kind [i.e., 
T=6,i f f(t)], then the boundary condition for the auxiliary problem is also of 
the first kind, [i.e., (I) = S i;]. Then, the function 1(r, t) represents the response 
function for a solid initially at zero temperature and for times t > 0, one of the 
boundary surfaces is subjected to a unit step change in the surface temperature. 
If the boundary condition for the physical problem is of the second kind [i.e., 
prescribed heat flux, MDTIOni). SuPt)], then the boundary condition for the 
auxiliary problem is also of the second kind; hence (I)(r, t) represents the response 
function for a unit step change in the applied surface heat flux. 

5-2 TREATMENT OF DISCONTINUITIES 

If the boundary condition function f (t) has discontinuities resulting from step 
changes in the applied surface temperature, heat flux, or ambient temperature, 
then the integral appearing in Duhamel's theorem (5-8) needs to be broken into 
parts at the points of such discontinuities. Here we illustrate how to break the 
integral into parts at the points of discontinuities by integration by parts and 
come up with an alternative form of Duhamel's theorem. 

Consider, for example, the boundary condition function f(t) that has three 
discontinuities at times t = 0 , To  and 12 over the time domain 0 - < t < r3, where 
0' denotes approaching the origin from the right and 0-  approaching from the 
left as illustrated in Fig. 5-1. In addition, f - denotes the limiting value of f at 
the discontinuity as it is approached from the left and f + denotes the limiting 
value of f as it is approached from the right. It is assumed that the medium is 
initially at zero temperature. 

We consider Duhamel's theorem given by equation (5-8) as 

04)(r t r) 

	

T(r, t) = 	_l( t) 	- 	dr 	 (5-10) 
r =0 	 Dt 

By differentiating the function (I)(r, t r) with respect to t and r and comparing 
the resulting expressions, we note that the following relationship holds 

845(r, t — -r)_ 	(r, t r) 

	

at 	= at 

Then equation (5-10) is written as 

a(I)(r, t — 
T(r, 1) 	— 	..f(r) - 	•- -

r) 
 dr 

o 

Suppose the function f(t) has three discontinuities as illustrated in Fig. 5-1 and 
we wish to have the solution T(r,t) to be determined over the time interval 
12 < t < r3. Then the integral is broken into parts at the discontinuities at 
t = 0, r1 , and 12  and equation (5-12) is written as 

T(r, t) 	{j"  + fr2 + f'iff (T) '9121)(r. I —1)dt 	(5-13a) l• 

	

=o 	J,, 	Ji2.1( 

(5-11) 

(5-12) 
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Fig. 5-2 Stepwise varying boundary condition function .f(1). 
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where r2  < t <13. Each of these integrals is performed by parts to yield 

T(r, t) = f +(0)(D(r, — 0) — f Art  )(1)(r, t 	r, ) + 	(1)(r, t — r) (--1-/A9- dr 

	

0 	dr 

df(r) 
+(r )(1)(r, — )— f (T2)(D(r,t — r2 )+ 	(I)(r, t — r) — dr 

dr 

d f( 
+ f +(r2)(1)(r, t — T2 ) — f -(t)0(r, 	+ 	(1)(r, t — r) 	

r
-
) 
dr 	(5-13b)  

Collecting the terms and 
takes the form 

T(r, i) = (1)(r, t)f *(0) 

4D(r,r- 

which is written more compactly 

T(r, t) = f 

noting that (1)(r,t 	t) 

+ (Kr, t 	TI)Lf +(r ) 

'EAU +(TO- I (r2)] + 

as 

df(r) 
(I)(r, t — T --- --- dr + 

r = 0 	dr 	f 

1- 7 

= (1)(r, 0) = 0, equation (5-13b) 

f -(r, )] 

(I)(r, t 	r)
df(r)

dr 	(5-14) 
r-- 
	F
0 	dr 

2 
E (Kr, t — Ti)Afj 	(5-15) 
=0 

where N is the number of discontinuities over the time domain 0 < t < rN  and 
the temperature T(r, t) is for times t in the interval 

'Ts _ I  < 1 < TN 

Equation (5-16) is the alternative form of Duhamel's theorem (5-8). In consists 
of the integral and summation terms and is called the Stielttes integral. 

All Step Changes 

We now consider a situation in which the boundary condition function f (I) 
consists of a series of step changes Afj  occurring at times T j -ThjAt, but has no 
continuous parts as illustrated in Fig. 5-2. For this specific case the integral term 
drops out and the solution (5-16) reduces to 

N- I 

T(r, I) = E (D(r, t —jAt)Af j 	 (5-17a) 

where t is in the time interval (N — 1)At < t < NM. This result can be written in 
a more general form as 

T(r,t) 	(1)(r, t —/At)Af jU(t jAt) 
j= 0 
	 (5-17b) (  

n
 

 

where t lies in the interval T2  < t < T3  and the following definitions are used: 

Af j = f +(ri)— f -(ri) 	with 	f -(0) = 0 

Tj = the times at which a step change of magnitude Afj  
occurs in the surface condition 

In equation (5-15), the integral term is for the contribution of the continuous 
portion of the boundary condition function f(t) and the summation term is for 
the contribution of finite step changes Afj  occurring in . f (t) at the discontinuities. 

Generalizition to N Discontinuities 

In the preceding example, we considered only three discontinuities in the bound-
ary condition function f(t) over the time domain 0 < t < r3. Suppose the function 
f(t) has N discontinuities over the time domain 0 < t < TN and the temperature 
T(r, t) is required over the time interval TN _ I  < t < Try. The specific result given 
by equation (5-15) is generalized as 

11- I  
T(r, 1)= f 4)(r, t — r)

df(r) 
— dr + E (1)(r, t — T j)Af j  

J rr=0 	 j=0  
(5-16) 

where 

U(t —JAL) = the unit step function 

1 
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5-3 APPLICATIONS OF DUHAMEL'S THEOREM 

We now illustrate with examples the application of Duhamel's theorem for the 
solution of heat-conduction problems with time-dependent boundary condition 
function and/or heat generation in terms of the solution of the same problem for 
time independent boundary condition function and/or heat generation. 

Example 5-1 

A slab of thickness L is initially at zero temperature. For times t > 0, the 
boundary surface at x = 0 is kept at zero temperature, while the surface at 
x = L is subjected to a time varying temperature f (t) defined by 

becomes 

82471)(x, t) 1 .90(x, t) 

ax2  - a at 

at 	x = 0, 	t > 0 

at 	x = L, 	1 > 0 

for 	t = 0 

The solution for the auxiliary problem (5-20) is determined as 

in 	0 <x<L, t>0 (5-20a) 

(5-20b) 

(5-20c) 

(5-20d) 

x  *3  2 
(1)  (X, 	- 

2 E e-̀11'^o(- 1r-  sin fi x 
L L..1 	P. 	m  

(5-21a) 

as illustrated in Fig. 5-3. Using Duhamel's theorem, develop an expression for 
the temperature distribution T(x, t) in the slab for times (i) t < T 1 and (ii) t > -r 1. 

Solution. The mathematical formulation of this heat conduction problem is 
given by 

8 2  T(x, t) 1 OT(x, t) 

axe
_ 

x2 =  a di. 
	in 	0 < x < L, t > 0 	(5-19a) 

at 	x = 0, 	t > 0 	(5-19h) T(x, t) = 0 

at 	x = L, 	t > 0 	(5-19c) T(x,t)= f (I) 

for 	t = 0 	 (5-19d) T(x, t) = 0 

where f(t) is defined by equation (5-18). The corresponding auxiliary problem 

At) 

CI 

Fig. 5-3  Variation of surface temperature f(t) with time for Example 5-I.  

where 
ms  

Pm = 

The function (1)(x, t - r) is obtained by replacing t by t - T in equation (5-21a). 

x 2 	 (- 
(1)(x, - r) = - + - E e-̀4(̀ -  `) --- sin /Jinx 

L Lm= 	fi. 
(5-22) 

Duhamel's theorem can now be applied either by using the form given by 
equation (5-10) or (5-16). Here, the latter is preferred since the contribution of 
discontinuity to the solution appears explicitly. The solutions for times t < r i  
and t > r I  are considered below separately. 

i. Times t < r1. The boundary condition function f(t) has no discontinuity; 
thus the summation term in equation (5-16) drops out to give 

T(x, t) = 	(1)(x, t r) 	 - dr 
r0  

df (r) 

	

dr 	
for 	<I I 	(5-23) 

where [d f Whir] = h and 4:0(x, t r) is obtained from equation (5-22). 
Then equation (5-23) becomes 

L I L
x 
- +2 - E e-ald( f-T)- 1)m  sin /3„,x b dr (5-24) 

 e° 
T(x, t)= 	

fi. 

The integration is performed to give 

°g•')sin Anx 	(5-25) 
„,- 	( 

x 	2 X'  - 1 r 
T(x, t)=b-

L 
 t-Fb-

L 
 E 	 t — 

for t < r i . 

(5-21b) 

	

j.(t)  = bt 	for 	0< t < r1  

	

10 	for 	t > (5-18b) 

(5-18a) 



Introducing equations (5-34) and (5-35) into equation (5-33), we obtain 

(5-36) 
4ati in 	0<x<co, t>0 (5-29a) 

The auxiliary problem is taken as 

02(I)(x, t)=  I 0(13(x, t) 

axe 	cc at 

T(x, t) = 	.1 	e 	f (t 

	

x 2 	 

fir skI4co 
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ii. Times t > T1. The boundary surface function f (t) has only one disconti-
nuity at time t = r, and the resulting step change in f(t) is a decrease in 
temperature, that is, Af — br,. Then equation (5-16) reduces to 

T(x, t) = (I) (x, t 
t =o 

df 
r)—dr 

dr 

f 	d f 
(I)(x, t — r)-L- dr + (1)(x, t — r, ),Af 

r, 	dr 
(5-26a) 

where (df /dr) = b for the first integral, (df /dr) = 0 for the second integral, 
and Aft  = — br ,. Substituting these results into equation (5-26a), we find 
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(1)(x, t)= 1 at x = 0, t > 0 (5-29b) 

(1)(x, t) = 0 for t = 0, in 0t.c.x < ao (5-29c) 

Then the solution of the problem (5-28) is given in terms of the solution of the 
auxiliary problem (5-29), by the Duhamel's theorem (5-8) as 

T(x, = f f 	- 	dr 
r= 0 	 at 

a(D(x.,t — r) (5-30) 

T(x, t) = f (1)(x, t r)(b)dt + 0 — ()(x, t — r, )br, 	(5-26b) 
r=o 

where V(x, t — r) and 4)(x, t — r1) are obtained from equation (5-22). 
Then equation (5-26b) takes the form 

c° 
T(x, t) 	_ _ E  e-ap!,o-o(— 	sin /3„,x b dr 

fT,_0{x 
2  

 L Lm=1 	/3m 	JJ1 

— br , [ 
	2 	1)m 

- + - E e-4-(̀ -̀ ' )
(— 

 - - - sin fim x
1 

 
L Lai.' 	 IL. 
	 (5-27) 

Clearly, the integral is similar to the one given by equation (5-24) except the 
upper limit is r1; hence it can be performed readily. 

Example 5-2 

A semiinfinite solid, 0 x < co, is initially at zero temperature. For times t > 0 
the boundary surface at x, = 0 is kept at temperature f (I). Obtain an expression 
for the temperature distribution T(x, t) in the solid for times t > 0 assuming 
that f (t) has no discontinuities. 

Solution. The mathematical formulation of this problem is given as 

02  T(x, t) 1 aT(x, t) 
= - 	in 	0 < x < co, t > 0 	 (5-28a) 

ox2 	a at 

T(x, = f(t) 	at 	x = 0, 	t > 0 	 (5-28b) 

2'(x, 0= 0 	 for 	t = 0, 	in 0 -.x<oo 	(5-28c)  

The solution (1)(x, t) of the auxiliary problem (5-29) is obtainable from the 
solution T(x, 0 given by equation (2-58e) by the relation (1)(x, t) = I — T(x, t), 

and setting in equation (2-58e) To  = 1. Thus we obtain 

2 f' 

	

to x, .-- — erf(---) = erfc 	= -7, 	e
_ 

dg 

	

Oat 	 4cct 	v 	xi,. 42r 

Then 

a(I)(x, t — r) = 	x 	 x2  

	

__ 	 (5-32) __ _ 	_ 
.0t 	14tca(t --03/2 	4a(t — r) 

Introducing equation (5-32) into equation (5-30) the solution of the problem 
(5-28) becomes 

x 	 ,2 

T(x, t) — 	 f` 	f(T)  exp [ — ----7---- --iiir 	(5-33) 
Wra Jr=o(t— Tr" 	4a(t — r) 

To express this result in an alternative form, a new independent variable ti is 

defined as 

r1 = 	 
,14,CC(t — 

X 	 (5-34) 

Then 

	

t —r= 
4C0/2 	

• and 	dr = (t — -0dg X2 	 2 	 (5-35a,b) 

TI 

(5-31) 



Periodically Varying f(t). We consider the surface temperature f(t) be a 
periodic in time in the form 

f (t) = To  cos(cot - J3) 	 (5-37) 

The solution (5-36) becomes 

ilr  
t. 

ixt..;4.r 	
4ari TA 	

.= 
N■f • 

	 COS[(1)(t — 	)— 	(hi 
5  

T(x.t) 	2 	 x2 
(5-38) 

- k —
OT 

f(t) 	at 	x = 0, 
Ox 

t > 0 	(5-42b) 

OT = 0 	
at 	x = L, 	t > 0 	(5-42c) 

ax 

T(x, t) = 0 
	

far 	t = 0 	 (5-42d) 

where f (I) is defined by equation (5-41). The corresponding auxiliary problem 

— 
2  f

o  

x/,4ar 
e cos[co(t - —

x2 
- 	 )- flidtt 

4an 2  
(5-39) 
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or 

— 	 COS to t - 
T(x,Tot) 

= 
	f 	 x

n

2 
— 131d n 

v/TE 	 4ct 

The first definite integral can be evaluated [3, p.65]; then 

T(x, t) 1/2 

To 	
exp [ - x(-)1/21cos[cot -x 

2a
) 	p 

2a  

e - "' cos[to(t - - 
X 
 -) - Pith) 	(5-40) 

r  xl,:4at 	 2 

— ij 0 	 4C012 

Here the second term on the right represents the transients that die away as 
t-> co, and the first term represents the steady oscillations of temperature in 
the medium after the transients have passed. 

y 

a24)(X, r)oCX, 
in 	0 <x<L, t>0  

t > 0  

t>0 

(5-43a) 

(5-43b) 

(5-43c) 

(5-43d) 

(5-44) 

a.X2 	— a 	dt 

aft) 

	

= 	at 	x = 0 
ox 

a(1) 0 at. 	x 	L, 
ax-  

	

(Der, t) = 0 	 for 	t = 0 

The solution for the auxiliary problem is 

	

a 	2 	c° cos 	x 

	

(I)(x, t) = - - 	- - 	E 	0 — 

	

Lk 	Lk 	13 .2  

Example 5-3 

A plate of thickness L is initially at zero temperature. For times t > 0, the 
boundary surface at x = L is kept insulated while the surface at x = 0 is 
subjected to a heat flux f(t) varying with time as 

for 	0 < t < r 	 (5-41a) 
for 	1 > r, 	 (5-4! b) 

Using Duhamel's theorem, develop an expression for the temperature distri-
bution T(x, t) in the slab for times: (i) t < T1 and (ii) t > r 1 . 

Solution. The mathematical formulation of this heat conduction problem is 
given by 

in 	0 < x < L, t > 0 	(5-42a) 

where AT, = (inn/ L). Duhamel's theorem given by equation (5-16) is now 
applied. 

i. Times t < r 1. The boundary-condition function f (t) has no disconti-
nuity; then the summation term in equation (5-16) drops out and we 
obtain 

f 	
. 	d f

(
r)

r 	for 	r < T 1 	(5-45) T(x. I) = 	,t - r) --- d 
t  - e.

(I)(x 
	dr 

where [d f Midi] = I and (1)(x, t r) is obtainable from equAtion (5-44) 
by replacing t by (t - r). Then, equation (5-45) becomes 

T(x,t)=f 	(t-r)+— E 	2  
t. 0 Lk 	

gAi.11 -0 dr 2 *3  cosfindc 2 	cos fl „,x _ 

	

Lk m.1  fl. 	Lkm-1  fl! e  
(5-46) 

ft 
= PO= 0 

a2T(x, t) ,_.  1 OT 
Px2  - a Or 
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The integration is performed to give 

a 2 	2 a) cos& x 
 t 	

2 	cos finix 
T(x, t)= —t 	E 	E 	(1 e-ag,) 

2Lk 	Lk 	fizt 	a Lk „,., 31 

for 	t < T, 	 (5-47) 

ii. Times t > r 1. The boundary surface function f (0 has only one disconti-
nuity at time t = r, and the resulting change in f(t) is a decrease in the 
amount Af,  , = - r1 . Then, Duhamel's theorem (5-16) reduces to 

df d f 
T(x, t) f 	(I)(x, t - r) --- dr + 	(I)(x, t r)-:- dr + 41)(x, t 	)Af, 

T=0 	 dr 	Ti 	 dr 
(5-48) 

where (df /dr) = 1 for the first integral, (df Mr) = 0 for the second integral, 
and Af 	Ti. 

Substituting these results into equation (5-48), we obtain 

	

T(x, t) =
t 
 (I)(x, t - r)dr + 0 - (1)(x, t - r,)r, 	(5-49) 
=o 

where the functions il)(x, t - r) and 4)(x, t - r,) are obtainable from equation 
(5-44). Then equatiOn (5-49) becomes 
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T= f(t) 
	 at 	r = b, 	t > 0 	(5-5 ib) 

T = 0 
	

for 	t 0, 	in 0 r b 	(5-51c) 

and the auxiliary problem is taken as 

a24)(r, t) 1 nfr, 0 1 ao(r, 
dr' 	r ar 	a at 
	in 	0--cr<b, t> 0 	, 	(5-52a) 

at 	r = b, 	I > 0 	(5-52b).  = 

= 	 for 	t = 0, 	in 0 r b 	(5-52c) 

Then, the solution of the problem (5-51) can be written in terms of the solution 
of the auxiliary problem (5-52) by Duhamel's theorem given by equation (5-8) as 

T(r, t) = 
	f(r)

Mr, t - 
r) dr 

T=1) 	 as 
(5-53) 

If 0(r, t) is the solution of the problem for a solid cylinder, 0 e r b, initially 
at temperature unity and for times t > 0, the boundary surface at r = b is kept 
at zero temperature, then the solution for VI (r, s) is obtainable from the solution 
(3-68) by setting To  = 1 in that equation; we find 

a , 	, 	2 „--,u° cos fl„,x 	2 	cos fl„,x e-°p - 	dr T(x, t) 	—(t - 	L 	2  Lo  [Lk 	Lk.- 	Lk .. )6 Th2  

2na 
111(r, = - E e aent 	o(fl.r)  

b 	m.! 1(Q ,,,b) 
(5-54a) 

	

a 	2 ,°) cos /3,,,x 	2 	cos fl„,x e  
	 -AL-Jr - TO 

1  + 	L [Lk 	Lk m=a Qm 	Lkm=1 II! 
(5-50) 

The integral is similar to that in equation (5-46); hence can readily be per-
formed. 

Example 5-4 

A solid cylinder, 0 r b, is initially at zero tempe'rature. For times t > 0 the 
boundary surface at r = b is kept at temperature T = f(t), which varies with 
time. Obtain an expression for the temperature distribution T(r, t) in the 
cylinder for times t > a Assume that f(t) has no discontinuities. 

Solution. The mathematical formulation of this problem is given by 

az T(r, t) I aT(r, 0 1 aT(r, t) 
	+ 

r or 	a at 

where the )6„, values are the positive roots of 

Jo(fl„lb) = 0 	 (5-54b) 

The solution OM of the auxiliary problem (5-52) is obtainable from the 
solution NT., ()given by equation (5-54) as 

2 
(1)(r, t) = 1 - or, 5) = - - E 	4(11.0  

b 	 1(13.b) 
(5-55) 

introducing equation (5-55) into equation (5-53), the solution of the problem 
(5-51) becomes 

T(r, t)= x e '9 1 j °Cam°  elatf(r)dr 
b 1 	m  GU) 

where the fl„, values are the roots of 0(fl„,b) = 0. The solution (5-56) does not 
in 	0‘.r<b, 1>0 	(5-51a) 

(5-56) 
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explicitly show that T(r, t)—■ f(t) for r h. To obtain alternative form of this 
solution, the time integration is performed by parts 

2 cc' 	.1 0(13 r) 
Tir, t) = f(t)• E -  

b 

2 c° 	J 0 (13 r) 
- 	 (0)e 	e-°1+2.''''df(r) 

b 

We note that the solution (5-54a) for t = 0 should be equal to the initial 
temperature 11/(r, 0) = 1; thus we have 

(1) 

 

=0 for t = 0, in 0 r b (5-61c) 

Then, the solution of the problem (5-60) is related to the solution of the 
auxiliary problem (5-61) by Duhamel's theorem as 

T(r, t) = 	ger)
OrD(r, t — T) (5-62) 

r 	 dt 
	dt 

The solution of the auxiliary problem (5-61) is obtainable from equation 
(3-193) by setting go  = 1 and F(r) = 0; we find 

(5-57) 

2 c° a r)  1 =-  m 
bm=1 fl„,, l (fin,b) 

	

b2  — r2 	2 c° 	Jo(fl„,r) 

(5-58) 	
Cr, t)— 	 

4k 	bk m> l e 	fi., 1(13„,b) 
(5-63a) 

which gives the desired closed-form expression for first series on the right-hand 
side of equation (5-57). Then, the solution (5-57) is written as 

2 t° 	o(P„,r) 
T(r, t)= f(t)   f (0)e 	f e 	̀) d f (r)] 	(5-59) 

b m- 113.-1  t(16,..b)[ 	 a 

The solution given in this form clearly shows that T(r, t) = f (I) at r = h. 

where the 	values are the positive roots of 

fo((lmb) = 0 

Introducing equation (5-63a) into (5-62) we obtain the solution as 

2a °3 	10(.11,„r) 
T(r, t) = 	E e 	 g(t)eatI'di 

i(fl bk m pR  
mb) c=o 

(5-63b) 

(5-64) 

Example 5-5 

A solid cylinder, 0 r 4 h, is initially at zero temperature. For times t > 0 heat 
is generated in the solid at a rate of g(t) per unit volume and the boundary 
surface at r = h is kept at zero temperature. Obtain an expression for the 
temperature distribution T(r, 1) in the cylinder for times t > 0. Assume that 
g(t) has no discontinuities. 

Solution. The mathematical formulation of this problem is given by  

T(r, t) 	E 071r, t) 	g(t) 	i (?T(r, t) 

1.1r 2 	r 	k 	x 	14 

T = 0 

T = 0 

and the auxiliary problem is taken as 

02 0(r, t) dcD(r, r) 	1 	1 ad)(r,t) 
+ 

in 

at 

for 

in 

at 

	

0 	r < h, 

r = b, 

t= 0, 

0 4 r < b, 

	

r 	b, 

t > 0 

t > 0 

inO4r4b 

t> 0 

t>0 

(5-600 

(5-60b) 

(5-60c) 

(5-61a) 

(5-61b) 

2r1 	
+ 

r 	5r 	k
— 

a 	at 

(1) --- 0 
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PROBLEMS 

	

5-1 	A slab, 0 x < L, is initially at zero temperature. For times t > 0, the 
boundary surface at x = 0 is subjected to a time-varying temperature 
f(t) = b ct, while the boundary surface at x = L is kept at zero tempera-
ture. Using Duhamel's theorem, develop an expression for the temperature 
distribution T(x, t) in the slab for times t > 0. 

	

5-2 	A semiinfinite solid, 0 x < oo, is initially at zero temperature. For times 
t > 0, the boundary surface at x = 0 is kept at temperature T = Tot, where 
To  is a constant. Using Duhamel's theorem obtain an expression for the 
temperature distribution T(x, 0 in the region for times t > 0. 
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1 

5-3 	A slab, 0 x L, is initially at zero temperature. For times t > 0 the 
boundary at x = 0 is kept insulated and the convection boundary condition 
at x = L is given as (DT /0x) HT = f(t), where f(t) is a function of time. 
Obtain an expression for the temperature distribution T(x, t) in the slab 
for times t > 0. 

5-4 	A solid cylinder, 0 r 4 b, is initially at zero temperature. For times t > 0 
he boundary condition at r = b is given as ilT/i/r 4- HT = f(t), where Pr) 

is a function of time. Obtain an expression for the temperature distribution 
T(r, t) in the cylinder for times t > 0. 

5-5 	A solid sphere, 0 r b, is initially at zero temperature, for times t > 0 
the boundary surface r = b is kept at temperature f(t), which varies with 
time. Obtain an expression for the temperature distribution T(r, t) in the 
sphere. 

5-6 	A solid cylinder, 0 r b, is initially at zero temperature. For times t > 0, 
heat is generated in the solid at a rate of g(t) per unit volume whereas the 
boundary surface at r = b dissipates heat by convection into a medium at 
zero temperature. Obtain an expression for the temperature distribution 
T(r, t) in the cylinder for times t > 0. 

5-7 	A rectangular region 0 <x < a, 0 < y < b is initially at zero temperature. 
For times t > 0 the boundaries at x = 0 and y = 0 are kept insulated, the 
boundaries at x = a and y= b are kept at zero temperature while heat is 
generated in the region at a rate of g(t) per unit volume. Obtain an expres-
sion for the temperature distribution in the region using Duhamel's theorem. 

5-8 	A slab of thickness L is initially at zero temperature. For times t > 0, the 
boundary surface at x = Lis kept at zero temperature, while the boundary 
surface at x = 0 is subjected to a time varying temperature f(t) defined by 

f(0= 
ct for 0 t < r, 

0 for t > r, 

Using Duhamel's theorem, develop an expression for the temperature 
distribution T(x, t) for times (1) t < Ti and (ii) t > T1, 

5-9 	A semiinfinite medium, 0 < x < oo, is initially at zero temperature. For 
limes t > 0, the boundary surface at .v -,-- 0 is subjected In a time-varying  
temperat ure:  

f(t) = ct for 0 < t< r i  

0 for t > r, 

Using Duhamel's theorem, develop an expression for the temperature 
distribution T(x, t) for times (i) t < r, and (ii) t > t1. 

No 
	Aro 	Aro 

t 	t  
0 	,If 	2.11 	31' 

	
4rAt 	5.5t 
	

6,1/ 	7.1t 

Fig. 5-4 Periodically varying surface temperature. 

5-10 A slab of thickness L is initially at zero temperature. For times t > 0, the 
boundary surface at x = 0 is subjected to a time-varying temperature f (t) 

defined by 

a + bt for 0 < < Ti 
f(r) =' 

0 	for t > Ti 

and the boundary at x = L is kept insulated. Using Duhamel's theorem, 
develop an expression for the temperature distribution in the slab for times 
(i) t < r, and (ii) t > r1 . 

5-11 A semiinfinite medium, x > 0, is initially at zero temperature. For times 
t > 0, the boundary surface at x = 0 is subjected to a periodically varying 
temperature as illustrated in Fig. 5-4. Develop an expression for the tem-
perature distribution in the medium at times (i) 0 < t < 6t, (ii) At < t < 2At, 
and (iii) 6At < t < 76t. 

5-12 Repeat Problem 5-5 for the case of surface temperature f (t) varying with 
time as 

Ibt for 0<t<r, 
.1(0 = 0 for t > r, 

and determine the temperature distribution T(r, t) in the sphere for times 
(i) t < r, and (ii) t > r,. 
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where aldn, denotes differentiation along the outward-drawn normal to the 
boundary surface Sr, i = 1, 2, ..., N, and N is the number of continuous boundary 
surfaces of the region. For generality it is assumed that the generation term g(r, t) 
and the boundary-condition function f l(r, t) vary with both position and time. 
Here, lc, and h, are to be treated as coefficients that are considered constants. 

To solve the preceding heat conduction problem we consider the following 
auxiliary problem for the same region R: 

THE USE OF GREEN'S FUNCTION  1 1 
G(r, t I r', + - b(r — 150 t)= — —

DG 

a at 	
in 	region R, t> T 	• (6-2a) 

k, 
- 

+11,G = 0 
aqi 

on 	Si, 	t > I 	(6-2b) 

Green's function in the solution of partial differential equations of mathematical 
 physics  can be found in several references [1-11]. In this chapter we first  discuss 

the physical significance of Green's function and then present sufficiently general 
expressions for the solution of inhomogeneous transient heat conduction problems 
with energy generation, inhomogeneous boundary conditions, and a given initial 
condition, in terms of Green's function. Application to one-, two-, and three-
dimensional problems of finite, semiinfinite, and infinite regions is illustrated with 
representative examples in the rectangular, cylindrical, and spherical coordinate 
systems. Once Green's function is available for a given problem, the solution for 
the temperature distribution is determined immediately from the analytic ex-
pressions given in this chapter. 

6-1 GREEN'S FUNCTION APPROACH FOR SOLVING 
NONHOMOGENEOUS TRANSIENT HEAT CONDUCTION 

We consider the following three-dimensional nonhomogeneous boundary-value 
problem of heat conduction: 

obeying the causality requirement that Green's function G be zero for 	[2]. 
The source in equation (6-2a) is a unit impulsive source for the three-dimensional 
problem considered here, the delta function b(r r') represents a point heat source 
located at r', while the delta function (50 — T) indicates that it is an instantaneous 
heat source releasing its energy spontaneously at time t = T. 

In the case of two-dimensional problems, 5(r r') is a two-dimensional delta 
function that characterizes a line heat source located at r', while .for the one-
dimensional problems (5(x — x') is a one-dimensional delta function which 
represents a plane surface heat source located at xfr. 

Three-Dimensional Problems 

The physical significance of Green's function G(r, t I r', r) for the three-dimensional 
problems is as follows: It represents the temperature at the location r, at time t, 
due to an instantaneous point source of unit strength, located at the point r', 
releasing its energy spontaneously at time t = T. The auxiliary problem satisfied 
by Green's function is valid over the same region R as the original physical 
problem (6-1), but the boundary conditions (6-2b) is the homogeneous version 
of the boundary conditions (6-1b) and the initial condition is zero. 

On the basis of this definition, the physical significance of Green's function 
may be interpreted as 

1 	1 a T(r, t) 
V 2  T(r, in 

on 

region R, 

Si, 

t > 0 

1 > 0 

(6-1a) 

(6- 1 b) 

t) + - g(r,t) = 
k 	a 	at 

k- —
aT 

+ /I, T = hi Tx.;  ..- Pr, t) 
I  On;  

T(r, t) = F(r) for t = 0, in 	R (6-1 c) 

214 

G(r, t1r, T) = G(effect I impulse} 	 (6-3) 

The first part of the argument, "r, t," represents the "effect," that is, the temperature 
in the medium at the location r at time t, while the second part, "r', T." represents 
the impulse, that is, the impulsive (instantaneous) point source located at r`, 
releasing its heat spontaneously at time T. 

The usefulness of Green's function lies in the fact that the solution of the 
original problem (6-1) can be represented only in terms of Green's function. 
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Therefore, once the Green's function is known, the temperature distribution 
T(r, t) in the medium is readily computed. The mathematical proof for the 
developments of such expressions can be found in the texts [1, 2, 6]. Here we 
present only the resulting expressions, illustrate their use with representative 
examples and describe a very simple approach for the determination of Green's 
functions. 

In the case of three-dimensional transient, nonhomogeneous heat conduction 
problem given by equation (6-1), the solution for T(r, t) is expressed in terms of 
the three-dimensional Green's function G(r, t I r', r) as 

f T(r, t)=- 	G(r, t le, r)I,=  oF(e)do' 
.1: 

+ J r  dr f G(r, t I r', r)g(e, 
k r=o 	R 

+ixf dti G(r, I r', r)lr. Pr' ,r)ds; (6-4) 
r= 0 i= 1  Sr k, 

where R refers to the entire volume of the region considered; Si  refers to the 
boundary surface Si  of the region R, i = 1, 2, ..., N and N is the number of conti-
nuous boundary surfaces; and do' and ds; refer to differential volume and surface 
elements, respectively, in the r' variable. The physical significance of various 
terms in the solution (6-4) is as follows: 

The first term on the right-hand side of equation (6-4) is for the contribution 
of the initial condition function F(r) on the temperature distribution; that 
is, Green's function evaluated for"-r = 0 is multiplied by F(r) and integrated 
over the region R. 

The second term is for the contribution of the energy generation g(r, t) on the 
temperature T(r, t); that is, Green's function G(r, r) multiplied by the 
energy generation g(r, r), integrated over the region R and over the time 
from r = 0 to t. 

The last term represents the contribution of the nonhomogeneous terms 
r) of the boundary conditions on the temperature. I t consists of Green's 

function evaluated at the boundary, multiplied by .fi(e, r), integrated over 
the boundary surface and over the time from r = 0 to t. 

For generality, the physical problem (6-1) is formulated by considering a 
boundary condition of the third kind (i.e., convection) for which fi(r, 
hi T 	t), where T„,;(r, t) is the ambient temperature. The solution (6-4) is also 
applicable for the boundary condition of the second kind (i.e., prescribed heat flux 
if ff(r, r) is interpreted as the prescribed boundary heat flux. For such a case, we 
first set h;  T,,;  ft(r,t) and then let h j  = 0 on the left-hand side. In the case of 
boundary condition of the first kind, some modification is needed in the third 

term on the right-hand side of the solution (6-4). The reason for this is that the 
boundary condition of the first kind is obtainable from equation (6-1 b) by setting 
1(1 = 0; then h, cancels out and fi(r, r) = T„,i(r, r) represents the ambient tempera-
ture. For such a case, difficulty arises in setting lc, = 0 in the solution (6-4), because 
k, appears in the denominator. This difficulty can be alleviated by making the 
following change in the last term in the solution (6-4): 

Replace 	-G 
	

by (6-5) 

 

ri 

 

  

The validity of this replacement is apparent if the boundary condition (6-2b) of 
the auxiliary problem is rearranged in the form 

—G = — -- 
k, 	kali;  

	

18G 	
on surface 	Si 	 (6-6) 

We now examine the application of the general solution (6-4) for the cases of 
two- and one-dimensional problems. 

Two-Dimensional Problems 

The problems defined by equations (6-1) and (6-2) are also applicable for the two-
dimensional case, if V' is treated as a two-dimensional Laplacian operator and 
b(r r') as a two-dimensional delta function, that is, 6(r — r') = S(x x')6(y — y') 
in the (x, y) coordinate system, and so forth. 

For such a case, the physical significance of the two-dimensional Green's 
function is as follows: It represents the temperature T(r, t) at the location r, at time 
t, in the two-dimensional region R, due to an instantaneous line source of unit 
strength, located at r', releasing its energy spontaneously at time t = r. This 
interpretation is similar to that for the three-dimensional problem considered 
previously, except the source is a line heat source of unit strength, ..... 

For the two-dimensional case, the solution (6-4) reduces to 

T(r,t)-= 	G(r, tie , 	F(e)dA' 
,A 

+ c!- f i  dr I G(r, tie, r)g(r', -r)dA' 

	

k ,. = 0 	A 

I 	

N 	 I 

+ C4 	dr 	Boundary G(r,  I I l'',  r)lr' = ri k Atili 
	(6-7) 

	

r= 0 	1=-1 	path i 	
i 

 

where A is the area of the region under consideration, dl;  is the differential length 

	

along the boundary path of the boundary i, i = 1, 2, 	N, and N is the number 
of continuous boundary paths of the region A. For a boundary condition of the 
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first kind at the boundary, say, i =j, the term { 1/ki)Gl r, should be replaced by 
- 

— (1./h j)(aGiani) r , r;  for the boundary i =j in accordance with equation (6-5). 

We note that the space integrations over the initial condition function F(r) 
and the energy-generation function g(r, t) are surface integrals instead of the 
volume integrals, while the integration over the boundary-condition function f1  
is a contour integral instead of a surface integral. 

One-Dimensional Problems 

6-2 REPRESENTATION OF POINT, LINE, AND SURFACE 
HEAT SOURCES WITH DELTA FUNCTIONS 

The energy source will be called an instantaneous source if it releases its energy 
spontaneously or a continuous source if it releases its energy continuously over 
time. In the definition of Green's function, we also refer to a point source, a line 
source, and a surface source of unit strength, in addition. to the customarily used 
volume heat source that has the dimension W/m•. 

In order to identify such energy sources with a unified notation we introduce 
the symbol 

For the one-dimensional temperature field, the problems defined by equations 
(6-1) and (6-2) arc applicable if V 2  is considered as.one-dimensional Laplacian 
operator and 5(r — as one-dimensional delta function, that is, (5(r —11 = 
b(x — x') for the (x) coordinate, and so on. Then, Green's function G(x,tlx',r) 
represents the temperature T(x, t), at the location x, at time t, due to an instantaneous 
surface heat source of strength unity, located at x', releasing its energy spontaneously 
at time t = T. 

For the one-dimensional case, the solution (6-4) reduces to 

where the superscript A refers to 

A = 

Es(instantaneous) 

and the subscript B denotes 

Or 

or (continuous) 

T(x,t) f x' FG(x, t Ix' , r)1,=  oF(x)dx' 
r. 

f e
c 	

dr 	x' PG(x,t[x', r)g(x', r)dx' 
 t= o 

i  

	

+a fdr 	[x' PG(x,t1 x', z)]x  
k 

ft 
T=0 	=1   

where x'' is the Sturm—Liouville weight function such that 

P=1-

0 slab 
1 cylinder 
2 sphere 

Here L refers to the thickness or radius of the one-dimensional region and 
G(x, t l x', refers to the value of G evaluated at the boundary points x' = xt. 
For a boundary condition of the first kind at the boundary, say, i = j, the term 
(1/10Glx..„, should be replaced by —(1//ti)(aG/ani)1„,xj, for the boundary i =j 
in accordance with equation (6-5). 

We note that, in equation (6-8) the space integrations over the initial condition 
function F(x) and the energy-generation function g(x, t) are line integrations, 
while the boundary-condition functions ft  are evaluated at the two boundary 
points. 

gpi  = instantaneous point source 

g; = continuous point source 

gi  instantaneous line source 

gs = continuous surface source 

= instantaneous volumetric source 

g = volumetric source 

and so forth. 
In the analytic solution o( temperature T(r,t) in terms of Green's functions 

given by equations (6-4), (6-7) and (6-8), the energy-generation term g(r, t) appears 
under the integral sign. In order to perform the integration over a point source, 
surface source, instantaneous source, and so on, proper mathematical representa-
tions should be used to define such sources. 

Here we describe a procedure for the identification of such sources with the 
delta-function notation and the determination of their dimensions. 

B= p, 	L, 	or 

(point), (line), or (surface) 

and no subscript will be used for the volumetric source. Thus, based on the above 
notation, we write 

(6-8) 
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Three-Dimensional Case 

Rectangular Coordinates. Consider an instantaneous point heat source gpi  located 
at the point 2.') and releasing its entire energy spontaneously at time t = r. 
Such a source is related to the volumetric heat source g(x, y, z, t) by 

g'1,6(x — x')6(y — y')6(z — zlo(t — r) g(x, y, z, t) (6-9a) 

where 6(.) is the Dirac delta function. A brief description of the properties or 
Dirac's delta function is given in Appendix VII. 

When the dimensions are introduced into equation (6-9a), we obtain 

g o(x — x')6(y — y')(5(z — z')(5(t — r) g(x, y, z, t) 	(6-9b) 

yr m  - 	 m -1 
 s-r 	W m 

Hence the dimension of an instantaneous point source g:, is Ws. 

Cylindrical Coordinates. In the case of (r, z) cylindrical coordinates, equation 
(6-9b) takes the form 

Pr 

1 
o(r r1c5(4) — 016(z — z')6(t — r) = g( •, z, t) 

m- 	s- W m 

Hence gpl  has the dimension Ws. The term r- I  appearing in equation (6-9c) is due 
to the scale factors associated with the transfdrmation of the reciprocal of the 
volume element (d V)-  1  from the rectangular to a curvilinear coordinate system 
according to equation (l-25b): (dV)-1  -= (a ,a 2a 3  dui  due  du 3)-  L. In the case of 
the cylindrical coordinate system, we have (aro 	= (1. r • 1)-  = r - 1. 

Spherical Coordinates. In the case of (r, 4), 0 spherical coordinate system, equation 
(6-9b) takes the form 

gp 	-

1 

	b(r r')6(4) — (//)(5(p — 1 ')6(1 — z) g(r, 4,, p, r) r2..)/ /  _ 

it:, in 	- r 	 s ' 	W in 

(6-9d) 

Hence gp has the dimension Ws. The term (r2.11 — it2)-  ' appearing in equa-
tion (6-9d), as stated above, is associated with the transformation of (dV)-  from 
the rectangular to the spherical coordinate system. That is, (a,a,,,a0)-  = 
(1.r sin 0- r)-  = (rVi — /12) ', where p = cos 0. 

In the case of continuous point source 4, the representation has no delta 
function with respect to time; hence the dimension of 4 is W. 

One-Dimensional Case 

We now examine the representation of an instantaneous energy source in the 
one-dimensional rectangular, cylindrical, and spherical coordinates. 

Rectangular Coordinates. An instantaneous plane-surface heat source cji, is re- 

presented by 

1/1,6(X — r) 	 SAN. t) 
	

(6-10a) 

g in 	s- ' 

Hence 0! has the dimension (Ws)/m 2. 

Cylindrical Coordinates. An instantaneous cylindrical-surface heat source g's  is.  

represented by 

. 	1 
g:— ofr r' )8(t — "-== 	 (6- 10b) 

2rzr 
s-i 

Hence an instantaneous cylindrical-surface heat source has the dimension (Ws)/m. 
In equation (6-I0b), the variable r appearing in the denominator is associated 

with the scale factor of the transformation. That is, g: represents the strength of 

the cylindrical surface source per unit length and the quantity far represents 

the source strength per unit area. 

Spherical Coordinates. An instantaneous spherical-surface source g4 is represented 

by 

 
g's---6(r — r')6(t r) = g(r,t) 	 .(6-10c) 

gym- 2m  - i s  - 1 	win  - 3 

Thus an instantaneous spherical-surface heat source has the dimension Ws. The 

variable r2  appearing in the denominator is associated with the scale factor of 
the transformation. That is, 4/41Er2  represents the spherical surface source of 
strength per unit area. 

6-3 DETERMINATION OF GREEN'S FUNCTIONS 

Once Green's function is available, the temperature distribution T(r, ()in a medium 
is determined from the expressions given by equations (6-4), (6-7), and (6-8), 
respectively, for the three-, two-, and one-dimensional transient linear heat 

(6-9c) 

Wm 3  

Wm' 
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conduction problems. Therefore, the establishment of the proper Green's function 
for any given situation is an integral part of the solution methodology utilizing 
the Green's function approach. Reference 1 uses the Laplace transform technique, 
and reference 2 describes the method of images for the determination of Green's 
functions. Here we present a very simple, straightforward yet very general ap-
proach that utilizes the classical separation of variables technique for the deter-
mination of Green's functions. 

We consider the following, three-dimensional, homogeneous transient heat 
	eonduetion-problem: 

I aT(r,t) 
TO., t) = in 

on 

for 

region R, 

Si, 

t = 0, 

t > 0 

t > 0 

in region R 

(6-11a) 

(6-11b) 

(6-11c) 

	

a 	at 

OT
-I- HIT =0 

Cpl , 

T(r, 	= F(r) 

The solution of this problem has been extensively studied in the Chapters 2-4 
by the method of separation of variables, and a large number of specific solutions 
has been already generated for a variety of situations. Suppose the solution of 
the homogeneous problem (6-11) is symbolically expressed in the form . 

geneous part of the transient heat conduction equation in the form given by 
equation (6-12), represents Green's function evaluated for r = 0: G(r, 	0). 

Therefore, the solutions developed in Chapters 2-4 for the homogeneous 
transient heat conduction problems can readily be rearranged in the form given 
by equation (6-12) in order to obtain G(r,tlr',0). That is, to obtain G(r, tle, 0), 
the appropriate homogeneous problem is solved and rearranged in •  the form 
given by equation (6-12). 

The general solution given by equation (6-4) requires that Green's function 
G(r, f(r', r) should also be known in order to determine the contributions of the 
energy generation and nonhomogeneous boundary conditions on the solution. 

It has been shown by Ozisik 161 that Green's function G(r,t1e,r) for the 
transient heat conduction is obtainable from G(r, t Ire, 0) by replacing t by (t - r) itt 

the latter. 
The validity of this result will also be shown in Chapter 13. 
We now illustrate the determination of Green's function from the solution of 

homogeneous problems with specific examples. In order to alleviate the details 
of the solution procedure, examples are chosen from those problems that have 
already been solved in the previous chapters .  

Example 6-1 

Determine the Green's function appropriate for the solution of the following 
nonhomogeneous heat conduction problem for a solid cylinder: 

T(r, t) = 	K(r, r', t)'.F(e)thi 
R 

(6-12) 
I a (. DT) I 	1 DT 

r — -g(r, t) = - — 
r Or 	ar 	k 	a at 

in 	0‘..r<b, t>0  (6-15a) 

The physical significance of equation (6-12) implies that all the terms in the 
solution, except the initial condition function, are lumped into a single term 
K(r, r', t), that we shall call the kernel of the integration. The kernel K(r, r', t), 
multiplied by the initial condition function F(r') and integrated over the region 
R, gives the solution to Problem (6-I 1). 

Now we consider the Green's function, approach for the solution of the 
problem (6-11). It is obtained from the general solution (6-4) as 

T= f(t) 
	

at 	, r=b, 	t>0 	(6-15b) 

T = F(r) 	 for 	t = 0, 	in 0 r h 	(6-15c) 

Solution. To determine the desired Green's function we consider the homo-
geneous version of the problem defined by equations (6-15) for the same region 
given as 

T(r. t) = J G(r. 	r)1._.„ • F(e)rit? 
R 

(6-13) 
1 D 

r
ektr) 	I Otp 

-- 
r Pr 	Pr 	a at 

in 	0 s r< b, t> 0 	(6-16a) 

since the generation and the nonhomogeneous boundary condition functions are 
all zero. 

A comparison of the solutions (6-12) and (6-13) implies that 

G(r, t r', 	=, 	K(r, r', t) 	 (6-14) 

Then, we conclude that the kernel K(r, r', t), obtained by rearranging the homo- 

= 0 
	 at 	r = b, 	t > 0 	(6-16b) 

= F(r) 
	

for 	t= 0, 	in 0 ‘..r b 	(6-16c) 

This homogeneous problem can readily be solved by the method of separation 
of variables; or its solution is immediately obtainable from equation (3-67) of 
Example 3-3. We write this solution in the same general form as given by 



(6-17) 
b 	2 

tb(r, t) = 	 E e-agt 
r' 0[ b2  i 	(7 " .04:N1.01F V') dr` 

(6-27a) 
02,1, 	1 ,9v, 

0<x<L, t> 0  
dx2 = a at 

at 	x = 0, 	t >0  (6-27b).  

(6-25) Then, replacing t by (t r) in equation (6-19) we obtain the desired Green's 
function as 
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equation (6-12), namely, as 

where the /f„, values are the roots of J 0(11„,b) = 0. 
The solution of the homogeneous problem (6-16) in terms of Green's 

function is given, according to equation (6-13), as 

2 
G(r, t I r', r) = 	e-aalf-  

„,.t.-1  

Example 6-2 

Determine the Green's function appropriate for the solution of the following 

nonhomogeneous transient heat conduction problem: 

a20 	ay/  

axe — a 
in 0 < x < co, t > 0 (6-22a).  

= 0 at x = 0, t > 0 (6-22b) 

= F(x) for t = 0, in 	0 < x < co (6-22c) 

11. 

)1  

)1= 

Sri 

CIF 

qtr 
flat 

)11  

).1 

(0-  

Irk 
.1K 

1[0 

) 

Example 6-3 

(6-20) 	 Determine the Green's function for the solution of the following nonhomo- 

geneous transient heat conduction in a slab of thickness L. 
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The solution of this problem is obtained from equation (2-58a) and rearranged 

in the form 

x 	
1 	[ 	(x — x')2)  

ex 	 ex p
( (x x')2

F(f)dx' OPr) = 
(47tat)1/2 	 4at 	 4at 

T I 	I en- 
ic g(x' s)  Otai 

T = f(t) 

T = F(x) 

in 	0 <.x < GO , t>0 

at 	x = 0 

(6-21a) 

(6-21 b) 

for 	t = 0, 	in 0 < x < 	(6-21c) 

Sulutitin, We consider the homogeneous part of this problem given by 

T 1, , 1 aT 
- gtx, t," -- 

ax 2  k 	a at 

aT =11(t) 
ax 

T = F(x) • 

in 	0<x < L, t> 0  

at 	x = 0, 	r > 0 

at 	x= L, 	t > 0 

(6-26a) 

(6-261)) - 

(6-26c) 

for 	t = 0, 	in 0 < x < L 	(6-26d) 

Solution. We consider only the homogeneous version of this problem given by 

(6-23) 

By comparing this solution with equation (6-13) we conclude that (;(x, t 	, 

is given by 

(6-18) 	 1 	rexp( (x 42)  exp( (x x')2)1 
G(x, (Ix` , 0) = 	 (6-24) 

(4=0112  L 	Oaf 	Oat ) 

By comparing the two solutions (6-17) and (6-18) we find the Green's function 
for T = 0. 	 Green's function G(x, t Ix', T) is determined by replacing t by (t — t) in this 

equation: 

G(r,i 	r)1,_, = -E e-al74,1 	0( i mr). ,(11„,K) 	(6-19) 	 (x — x')2 	 (x x'12  ) t12 m  =1 	J (fi ni b) 	 G(x, t Ix', r) = 
[4rea(t — r)] 1 / 2 	4a(t — .r) 	 j 4a(t T))  

aT 
+ HT = .1-2(t) ax 

 Jk 
Cr, t)= 	r'Or, IV!  .01, oF(Ildr. 

0 
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T = F(x) for 	t = 0, 	in the region (6-3 lb) 

in 	co <x<oo, t>0 (6-32a) 

tG = F(x) cos fl„,x cos fl„,x' 	(6-29) G{,x, t I x', 0) = E 	/3.2 + H2 

L(Q?„+H2)+H 
for 	t = 0, 	in the region 	(6-32b) 

-(6-36) G(x, t I x', r)= [42ra(t r)]-1/2exp
( (x 42) 

4a(t — r) 

IN/ 
— HiP = 0 	at 	x L, 	t > 0 	 (6-27c) ax 

cif = F(x) 	for 	t = 0, 	in 0 < x < L 	(6-27d) 

"------ -The-solution of this problem is-obtained from equation (2-45a) and rearranged 
in the form 

r. 	 Rm  

x'= 0 [m=1 	
Lom2 + H2) + H  

2 + H2 
Ili (X, t)= 2 

i 	
E e 	 cos x cos fl„,x' F(x')dx' 

(6-28) 

By comparing this solution with equation (6-13) we conclude that G(x, t Ix', 0) 
is given by 

per unitwolume Obtain an expression for the temperature distribution T(x, t) 
for times t > 0 by the Green's function technique. 

Solution. The mathematical formulation of this problem is given as 

02  T(x,t) 1 , , 1 BT 
- -

Dx2  
— - --- +

k 
 igtx, t i =

a Ot  
- — 	in 	— co < x < co, t >- 0 	(6-31a) 

To determine Green's function we consider the homogeneous version of this 
problem given as 

020(x, t) 	1 alP(x,  t) 
ox 2 	a at 

and Green's function G(x, t Ix', r) is obtained by replacing t by (1 — r) in the 
expression 

n2 

G(x, 	T) = 2 E e —afl!,(s—T, 	pm+ n 
cos 13 x cos P„,x' (6-30) 

m 	Lom2 + H2)  + H  

In the following sections we illustrate the application of Green's function 
technique for the solution of nonhomogeneous boundary-value problems of heat 
conduction in the rectangular, cylindrical, and spherical coordinate systems. 

6-4 APPLICATIONS OF GREEN'S FUNCTION 
IN THE RECTANGULAR COORDINATE.SYSTEM 

In this section we illustrate with examples the application of the Green's function 
technique in the solution of nonhomogeneous boundary-value problems of heat 
conduction in the rectangular coordinate system. For convenience in the deter-
mination of Green's function we consider, as examples, those problems for which 
solutions are available in Chapter 2 for their homogeneous part. 

Example 6-4 

An infinite medium — co < x < co is initially at temperature F(x); for times 
> 0 there is heat generation within the solid at a rate of g(x.t) per unit time, 

The solution of this homogeneous problem is obtainable from equation (2-70) 
as 

tli(x, r) = f a -  [Omar' 112  exp 	
4:t12)] :11 

F(x ) xa. 	(6-33) 
—  

The solution of the problem (6-32) can be written in terms of Green's function, 
according to equation (6-13), as 

= 	G(x, t I x', T)L,,F(x)dx' 
= - 

A comparison of equations (6-33) and (6-34) yields 

G(x, t l x', = o  = Omar 'I' ex 

The desired Green's function is obtained by replacing t by (t r) in equation 
(6-35); we find 

Then the solution of the nonhomogeneous problem (6-31), according to 

(x  x')2  

• 	Llat 

(6-34) 

(6-35) 
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equation (6-8), is given as 

T(x, t) = (4mat)-  "2 	exp[ (x x,)2] F(x')dx' 
Oar 

[Lbra(t — r)] 	exp[ 	x')21g(x',r)dx'. 
4a(t — 

(6-37) 

We now examine some special cases of the solution (6-37). 

1. There is no heat generation. By setting g(x', r) = 0, equation (6-37) reduces 
• 	to 

equation (6-37) reduces to 

[ (x — a) 2  
T(x, t) = 

a 
- 	[4rta(r — r)] -1/2  exp 

r _ o 	 4a (t r)] 
(6-43) 

Example 6-5 

A slab, 0 	L, is initially at temperature F(x). For times t > 0, the 
boundaries at x = U and x = L arc maintained at temperatures f ,(t) and .1',11) 
respectively, whereas heat is generated in the medium at a rate of g(X, 1) Wpm'. 
Obtain an expression for the temperature distribution T(x, t) in the slab for 
times t > 0. 

Solution. The mathematical formulation of this problem is given as 

a ft 	ao 

k o 	x.  -co 

T(x, t) = (47rat)-  
(x — x')2  

exp 
[ 

F(x')dx' 	(6-38) 	 a2T(x,t) 	1 a T(x, t) 
+

1 
g(x, t)= in 0<x<L, t>0 (6-44a) 4at 	j= - OD k 	a 	at 

which is the same as that given by equation (2-70). 	 T = f 1(t) at x = 0, t > 0 (6-44b) 
2. Medium is initially at zero temperature, an instantaneous distributed 

heat source of strength g'(x) Ws/m3  releases its heat spontaneously at 	 T = j2(t) at x=L, t >0 (6-44c) 
time t = 0. By setting 

T = F(x) for t = 0, in 	04 (6-44d) 

F(x) 

equation (6-37) reduces 

T(x, t) = (4irat)- 14  .1 

A comparison of equations 

= 0, 	g(x, 	= g'(x)6(1 

to 

(x — 

— 0) 

(xl]dx' 
k  

that 

(6-39) 

(6-40) 

(6-41) 

To determine the appropriate Green's function, we consider the homogeneous 
version of this problem as 

a21fr (X, 	= 184/(x, 
in 	0<x<L, 	t > 0 	(6-45a) exp

[ 	 

4at 
X 	CO 

(6-38) and (6-40) reveals 

F(x') 	= 

	

k2 	a 	at 

	

1,1/ = 0 	 at 	x=0 andx=L, 	t>0 	(6-45 b) 

F(x) 	 for 	t 	0, 	in 	0 	(6-45c) 

Equation (6-41) implies that the heat-conduction problem for an instan-
taneous distributed heat source gi(x) releasing its heat at time t -= 0 is 
equivalent to an initial value problem with the initial temperature distri-
bution as given by equation (6-41). 

3. Medium is initially at zero temperature; for times t > 0 a plane surface 
heat source of strength g.:(t)W/m2  situated at x = a releases its heat 
continuously. By setting 

The problem (6-45) is 
its solution is obtainable 

where 

exactly 

r. 

from 
the same as that given by equations (2-151), and 

equations (2-154) and (2-155a,b) as 

.• 

fi40  sin 11„,x sin 	F(x')dx' 	(6-461 
m=1 

F(x) = 0, 	g(x, t) = g:(1)6(x — a) 	(6-42) Q. = - rrr = 1, 2,3,... 
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-I- a- E e 41' fl „, sin 13 „,x 	1 (-r)dr 
L.=1 	 t=o 

2 Also, the solution of problem (6-45) in terms of Green's function is given, 
according to equation (6-13), as 

2 °3  
- - E (- 1)me col.,'fl,„ sin ilmx 	e'Plif 2(r)d-c 	(6-51) 

L„„.1  

where 
A comparison of equations (6-46) and (6-47) gives 

2 c° 
G(x. t Ix', r)I, 	r - E e 'fl;1` sin P„,x sin ilmx' 

L„,. 

(6-48) 

a
m- 

mn 

. L '  
m = 1, 2, 3, ... 

ifr(x, t) 	G(x, t Ix', r)1,=,F(x1dx' 
= 

(6-47) 

The desired Green's function is obtained by replacing t by (t - in equation 
(6-48); we find 

2 c° 
G(x, 	, r) = - E e-4,(1-̀ )  siniLx sin fi'„,x' 

L„,. 
(6-49) 

Then the solution of the nonhomogeneous problem (6-44) is given in terms of 
the Green's function, according to equation (6-8), as 

f 
 L. 

T(x, t) = 	G(x, t Ix' , .01 r.,,,F(x)dx' 
x. =o 

+a- 	dr 	G(x, II x' ,r)g(x', r)dx' 
k =0 	x•= 0 

' 	5G(x,tlx',T) + 	 f ,(r)dt 
x. =0 

(6-50) 

We note that in the problem (6-44) the boundary conditions are both of the 
first kind. Therefore, in the solution (6-50), we made replacements according 
to equation (6-5) in the terms involving the boundary-condition functions 

. f ,(T) and .f2(r). Namely, we replaced G by +(OG/Dx')Ix._.0  for the terms 
involving f,(r) and G x. 	by - (DG/Dx')I x, =, for the term involving f2(t). 

Introducing the above expression for Green's function into equation (6-50) 
we obtain the solution in the form 

2 mi 
T(x, r) = - E e -41' sin P„,x 	sin fi „i x' F(x1rIx' 

L ,,= 1  

a2 'D 	 L 
+ 	e-47-' sin j „,x 	dr 	sin P,„x'g(x', r)dx' 

kL„,-, 	 t=o 	o  

The solution (6-51) appears to vanish at the two boundaries x = 0 and x = L, 
instead of yielding the boundary conditions functions f ,(t) and f 2(t) at these 
locations. The reason for this is that these two terms involve series that are 
not uniformly convergent at the location x = 0 and x = L. Therefore, the above 
solution is valid in the open interval 0 <x < L. Such phenomena occur when 
the solution derives its basis from the orthogonal expansion techniqud with 
the boundary condition being utilized to develop the eigencondition. Similar 
results are reported in pages 102 and 103 of reference 1. This difficulty can be 
alleviated by integrating by parts the last two integrals in equation (6-51), and 
replacing the resulting series expressions by their equivalent closed-form 
expressions. Another approach to avoid this difficulty is to remove the non-
homogeneities from the boundary condition by a splitting-up procedure as 
described in Section 1 7 of Chapter 1, We now examine some special cases of 
solution (6-51): 

1. The medium is initially at zero temperature. The boundaries at x = 0 and 
x = L are kept at zero temperature for times t > 0, and a distributed heat 
source of strength gi(x)Ws/m3  releases its heat spontaneously at time 
t = 0. For this special case we set 

F(x) = 0, 	.f 1 (t) = 0, 	f z(t) = 0, 	and 	g(x, t) = gi(x)(5(t - 0) 
(6-52) 

Then, the solution (6-51) reduces to 

2 .0 L  

	

T(x, t) 
= L 

- E a-'' "sin /1„,x f 	[-gi(x')] sin /1„,x'dx'. (6-53) 
.1 	 k 

A comparison of this solution with the first term in equation (6-51) 
reveals that the problem of heat conduction for an instantaneous distri-
buted heat source gi(x)Ws/m3  releasing its heat at time! = 0 is equivalent 
to the problem in which the medium.is initially at a temperature 

1 
F(x') - 

a 
 gi(x') = 	gi(x') 

k 	pep  

Dx' 

a
OG(x, t Ix', r)1 

f2(r)dt 
fr=.0 

(6-54) 
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2. Medium is initially at zero temperature; for times t > 0 boundaries at 
x = 0 and x = L are kept at zero temperature and a plane surface heat 
source of strength g:(t)W/in2  situated at x = a(< L) releases its heat 
continuously. For this case we set 

F(x) = Ii(t) = f2(c) = 0 	and 	g(x, t) = g:(1)6(.x — a) 	(6-55) 

Then equation (6-51) reduces to 

The problem (6-58) is the same as that given by equations (2-87); its solution 
is obtainable from equation (2-92) as 

0(x, y,z, ()= f 	rb  J. 
	

2_. E 
0 

8  
abc,„=„= 1  

.sin /3„,x sin ).„y sin ri pz sin fl„,x' sin Tny sin (1,z' 

- 	y', :1(1 x' y' dz' 	 (6-59) 

1 aT az T a2 T  a2T + l ox, y, z, 	f; 
at ax2 ay' az2  k 

in 	0<x<a,0 <y<b,0<z<c, 

T = 0 	at 	all boundaries, 

T = F(x, y, z) 	for 	t = 0, in the region 

To determine the appropriate Green's function, we consider the homogeneous 
version of this problem as 

(VIP 	1724/ 	I all/ 

Example 6-6 

A rectangular parallelepiped, 0 < x < a, 0 y b, 0 z < c, is initially at 
temperature F(x, y, z). For times t > 0 heat is generated in the medium at a 
rate of y(x, y, z, t) W/m3  while the boundary surfaces are kept at zero tempera-
ture. Obtain an expression for the temperature distribution in the solid for 
times t > 0. 

Solution. The mathematical formulation of this problem is given as 

rfr = F(x, y, z) 	for 

ax  2 a 2y 	az2 a at  

in 

=0 

where 

"' 
T(x, 0 2a = — E a-4'm' sin /3„,x sin flnia 	efl oy,;(1-)di-  (6-56) 

„,. i 	 = 0 

at 

0<xca,0<y<b,0 <z <c, for t> 0 (6-58a) 

Then the solution of the nonhomogeneous problem (6-57) is given in terms of 
the above Green's function, according to equation (6-4), as 

• 

all boundaries, for t > 0 (6-58b) T(x, y,z, t)=. G(x, y, z, I Ix', y', a', T)1,,_, 

t = 0, in the region. (6-58c) • F(x', y', z')dx' dy' dz' 

rn = 1, 2, 3,... 

for t > 0 	(6-57a) 

for t > 0 	(6-57b) 

(6-57c) 

In 7C 

= Pm 
a 

Also the solution of the problem 
according to equation (6-13), 

nn 
—
b 

as 

a 

11 p  = 

(6-58) 

pn with (in, n, p) = 1, 2, 3, 4 .. 

in terms of Green's function is given, 

1 (x, y, z, r)= 
ic 

G(x, y, z, tJx', y', a', 

• F{x', y', z')d x' dy' dz' 	 (6-60) 

A comparison of equations (6-59) and (6-60) gives 

8 	co 	co 	oo 

G(X, y, z, t 1 x', 	z', = 	E e-.(pk+ YA+7 11,11  
abC ni= 1 n= 1 p= 1 

-sin fim x sin y„y sin n 

-sin /3„x' sin La' sin ri pz' 	(6-61) 

The desired Green's function is obtained by replacing t by 	— r) in equation 
(6-61); we find 

F 8 	rg• 	 VC. 
rz+ gloti — 

G(X, ji, 24 IX% Y.1 T) = 
abc., „= 

where 

-sin fl,„x sin yuy sin ii pz 

sin ll„,x' sill 7,,y' sin ri (6-62) 
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is obtainable from equation (3-67a) as 

k r 0 fre=0 	J 
— 	dr 
f' 
	a 	fb 

• G(x, y, z, t I x',  y', 1, r)g(x', y', z', r)dx' d ►' dz' 	(6-63) 

where Green's function is defined above. 

6-5 APPLICATIONS OF GREEN'S FUNCTION 
IN THE CYLINDRICAL COORDINATE SYSTEM 

In this section we illustrate with examples the application of Green's function in 
the solution of nonhomogeneous boundary-value problems of heat conduction 
in the cylindrical coordinate system. For convenience in the determination of 
Green's function, we have chosen those problems for which solutions are avail-
able in Chapter 3 for their homogene_ous_pari  

tli(r,t)= 	r 	L e-20-` 4(13"111  J0(11„,1]F(1 dr' 	(6-66) ._,, 
. i 	466,„b) 

where the /1„, values are positive roots of Jo(fl„,b)= 0. Also the solution of 
problem (6-65) in terms of Green's function is given, according to equation 
(6-8), as 

t) = 	r' G(r, t I r', r) oF(rldr (6-67) 
r' =  

where r' is the Sturm-Liouville weight function. A comparison of equations 
(6-66) and (6-67) yields 

-2 c° 	_ 	.10(fl„,r) 
G(r, 	r)1,„.0  = 	E e 43- 2 	J 00„,e) 

b- 	1 	.• (fimb) 
(6-68) 

Example 6-7 

A solid cylinder, 0 r b, is initially at temperature F(r). For times t > 0 there 
is heat generation in the medium at a rate of g(r, t) Winn' while the boundary 
surface at r = b is kept at temperature f(t). Obtain an expression for the 
temperature distribution T(r, t) in the cylinder for times t > 0. 

Solution. The mathematical formulation of this problem is given as 

The desired Green's function is obtained by replacing t by (t r) in equation 
(6-68); we find 

2 ct) 	2 	J 0(11„,r) 
G(r, I r', r) = 	E 	J O( ke). 

b2  „, 	 J(1)„,b) 
(6-69) 

	

1 	1 aT 02T 
+ -

1 LT 
+ g(r, t) - — 

Or' 	r er k 	a at 
in 	04r<b, t> 	 (6-64a) 

T = f(I) 

T= F(•) 

at 	r = b, 	for t > 0 	(6-64b) 

for 	t = 0, 	in 0 r h 	(6-64c) 

To determine the appropriate Green's function, we consider the homogeneous 
version of this problem as 

02111 	I ihfr 	1 Dip 
dr' r Or a et 

in 	0 r < h, t > 0 	(6-65a) 

Then the solution of the nonhomogeneous problem (6-64) in terms of the 
above Green's function is given, according to equation (6-8), as 

I T(r, t) 	f 	G(r, tir',T)ir= oF(e) dr' + 	dr 	r'G(r, t I r', r)g(r., r) dr' 
r-  =0 	 k r = 	r' = 0 

- 	[r' 13-9 	•f(r)dr 
0 	i.'r'1„ 0  

Here, the boundary condition at r = b being of the first kind, we replaced 
[G],•,„h  by - [OG/Priz.. = I, according to equation (6.5). 

Introducing the above Green's function into equation (6-70) and noting 
that 

(6-70) 

(6-71) 
'c J (11 r) 

i.V r =b 	h m = r 	J ,(11„,b) 

we obtain 

The problem (6-65) is the same as that considered in Example 3-3. Its solution T{r, t) -2- iu 	jj°((pfla.mbr)-)
h
. or J ,(13„,r)F(r) dr 

b2  

= 0  

= F(r) 

at r = b, 	r > 0 	(6-65b) 

for 	t = 0, 	in 0 r b 	(6-65c) 
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2a 	J00.0  f elia' dr 	r'J 00„,r1g(r', r) dr' 
J1(13mb) 	 = 0 

e- agt 	OUlmr) 	ear f (.0 dt 	 (6-72) 
b „, = 	m  amb) r=izi 

where the Am  values are the positive roots of J o(fl„,b)= 0. In this solution the 
first term on the right-hand side is for the effects of the initial condition 
function F(r), and it is the same as that given by equation (3-67). The second 
term is for the effects of the heat generation function y(r, t). The last term is 
for the effects of the boundary-condition function f (t). This solution (6-72) 
appears to vanish at the boundary r = b instead of yielding the boundary 
condition function f(t). The reason for this is that the last. term in equation 
(6-72) involves a series that is not uniformly convergent at r = b. This difficulty 
can be alleviated by integrating the last term by parts and replacing the 
resulting series by its closed-forth expression. An alternative approach would 
be to split up the original problem as discussed in Section 1-8 of Chapter I in 
order to remove the nonhomogeneity from the boundary condition. We exa-
mine some special cases of the solution (6-72). 

I. Cylinder has zero initial temperature, zero surface temperature, but heat 
is generated within the solid at a constant rate of go  W/m3. 

By setting in equation (6-72), F(r) = 0, f(t)= 0, and g(r, O.= go, we 
obtain 

2g(2 	Jo(f3„,r) 	2g0 	_ 2 J 0(fl„,r) 
T(r, t)= — E 	

, 
e 4-1 	 . (6-73) 

kb .= nJ i(Anb) kb m 	/3,3,11(13J) • 

For t-). co, the second term on the right-hand side vanishes and the first 
term must be equal to the steady-state temperature distribution in the 
cylinder, namely 

2g0 	J o(fl„,r) _go(b2 	. 
- T(r, cc.?) = 	y 

kb n.: 	 4k 
(6-74) 

Introducing (6-74) into (6-73), the solution becomes  

t > 0. For this special case we set in equation (6-72) 

F(r) = 0, 	f (t) = 0, 	and 	ti(•', r) = gl(r) • - 	(r' - 0) 
2111.' 

Then, equation (6-72) reduces to 

(6-76) 

3. Cylinder has zero initial temperature, zero surface temperature, but 
there is an instantaneous volume heat source of strength g1 (r) Ws/m3  
which releases its heat spontaneously at time t = 0. For this case we set 
in equation (6-72) 

F(r) = 0, 	f(t)= 0, 	and 	g(t-', z) = Ar')(5(r - 0) 

Then equation (6-72) reduces to 

2 	 eU 
T(r, t) = 	E e 	

../0( 	
r'..1,(9„,r.) c4g1(r')  dr' 	(6-77) 

b2 ,2.-, 	J7(Pmb) 

A comparison of this solution with the first term in equation (6-72) reveals that 

= F(r) 

Namely, an instantaneous volume heat source of strength g'(r) Ws/m3  releasing 

its heat spontaneously at time t = 0 is equivalent to an initial temperature 
distribution a gi (r)/ k. 

Example 6-8 

A hollow cylinder, a r b, is initially at temperature F(r). For times t > 0 
there is heat generation in the medium at a rate of g(r, t) Wit-a' while the 
boundary surfaces at r = a and r = 1, are kept at zero temperatures. Obtain an 
expression for the temperature distribution T(r, t) in the cylinder for times 

> 0. 

Tfr, t) = 	 •-- 	e 	fc-,(z) dr 2  °UV 	 . a 

krtb 2  m 	 mb) - 0 

T(r, t) = 
yo(b2 - r2) 2 J 0()1mr) 

4k 	kb m= 1 r 	nJamb) 
(6-75) Solittimi. The mathematical formulation of this problem is given as 

2. Cylinder has zero initial temperature, zero surface temperature, but 
there is a line heat source of strength 4(t) W/m situated along the 
centerline of the cylinder and releasing its heat continuously for times 

a2T l aT aT 
+- —+ Or, I) — 

ari  r ar k 	a at 

T=0 	 at 	r=a, r=b, t>0 	(6-78b) 

in 	a<r<b, 	t>0 	(6-78a) 
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T= F(r) for 	t =0, 	in the region (6-78c)  this Green's function is given, according to equation (6-8), as 

To determine the appropriate Green's function, we consider the homogeneous 
version of this problem as 

a 2 	1 a IP 	1 ay, 
Pr- 	r it a lit 
	in 	a < r < h. 	t > 0 	 (6-79a) 

=0 	 at 	r = 	r = b, t > 0 	 (6-79b) 

tl~ = 1(r) for t in the region (6-79c) 

The problem (6-79) is the same as that considered in Example 3-5; the solution 
is obtainable from equation (3-78) as 

2 	/32 J20, a) 
t) = 	E e r‘l?  '  2 	° ni2 	R 0(13„,r)R,([1,/)1F(e) dr' 

_ 2 m= 	idlfistia) JiArlb)  

where 

R0W,,,,O=Ja„,0Yamm- Jamb)YoKA 
	

(6-80b) 

and the /I„, values are the positive roots of 

	

Jo(i3nia) NI Lb) 	inMY 	= 0 
	

(6-80c) 

Also the solution of the problem (6-79) in terms of Green's function is given, 
according to equation (6-8), as 

	

t) = 	r'G(r,t ir', r)I,_ o F(r) dr' 	 (6-81) 
= 

A comparison of equations (6-80a) and (6-81) yields 

G(r,t r' r11, 	e 	 okr Th 2 	-ten,'.: 	 13„,- dfi.,(1) 	pp in 10. 

Fc;(fl ma} - J;,(11.11) 
	 (6-82) 

The desired Green's function is obtained by replacing t by (1- r) in equation 
(6-82); we find 

7r  2 m 13  rt.] o(13,,,a) G(, , rli '„ ) - 	 R-0(13,r)R 0(11-,J). 	(6 83) 
2 „,,- 1 	JCifignia) -  4(iin,b)  

	

b 	 a  j't 	fb 

	

T(r, t) = 	r'G(r, tir' , r)ir. oF(e) dr' + - 	dr 	r' G(r, t ir' , rb(r' , r) dr' f 
k r  _ 0 	r• = a 

(6-84) 

	

= 	cta an: jj:::fl::) fl0_(.:jj.f((  )flitib  

Introducing the foregoing Green's function into equation (6-84), the solution 
of the problem (6-78) becomes 

	

T(r, t) 	 12 JP r) 
2 „,.1  

e 	4,03.a) Jgflmb) ° m  

2 	cc, 

2k n,.i 	
:/f

3 r:RdArilF(1)) 
dr, 

6 
ea dr 	r'Ro(f3„,e)g(r., r) dr' 

	
(6-85) 

0 	r'.= 

6-6 APPLICATIONS OF GREEN'S FUNCTION 
IN THE SPHERICAL COORDINATE SYSTEM 

In this section we illustrate with examples the application of Green's function in 
the solution of nonhomogeneous boundary-value problems of heat conduction 
in the spherical coordinate system. For convenience in the determination of 
Green's function we have chosen those examples for which solutions are available 
in Chapter 4 for their homogeneous parts. 

Example 6-9 

A hollow sphere a s r (b, is initially at temperature F(r). For time t > 0 heat 
is generated within the sphere at a rate of g(r,t) W/m3  while the boundaries 
at r = a and r = h are kept at zero temperature. Obtain an expression for the 
temperature distributicin T(r, t) in the sphere for times 1 > 0. 

Solution. The mathematical formulation of this problem is given as 

2 o 

' 	

1 	OT 
- 	k g(r, t)=-

1 
 — 	in 	a<r<h, 	t > 0 	(6-86a) 

r Pr 	at 

T=0 	 at 	r = a and r = b, t > 0 	(6-86b) 

(6-80a) 	 where Ro(fl,„, r) as given by equation (6-80b) and the fl„, values are the roots 
of the transcendental equation (6-80c). Clearly, several special cases are ob-
tainable from the solution (6-85). 

Then the solution of the above nonhomogeneous problem (6-78) in terms of T= F(r) 	 for 	t =0, in 	a<r-.-.c.b (6-86c) 
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I a= 	i ay, 
2(4)= 	 a - — 	in 	< r < b, 	t > 0 

r ar 	a at 	
(6-87a) 

tfr = 0 	 at 	r = a and r = b, i > 0 	(6-87b) 

tfr 

 

= F(r) for t = 0, in a -..c, r 2.5, 6 (6-87c) 

This homogeneous problem is the same as that considered in Example 4-3; 
its solution is obtainable from equation (4-80) as 

Ifr(r, t) = 	 r' 
[r'r(b 	

m` sin /3„,(K — a) sin fl„,(r — a) FV) dr' 
o  

(6-88a) 

where the fir„ values are the positive roots of 

f b 
	ft 	fb 

TV, t) --. 	r' 1  G(r. tIr', r)1,,, „ r- (r') dr' + 	dr 	r' 2  G(r, 11 I '' , -c)o(r',1 dr' 
k ,._ 0 	,. „ 

(6-92) 

Introducing the above Green's function into equation (6-92), the solution 
becomes 

2 
T(r, 1) = 	E 	sin ,6„,(r — a) 	r' sin fl„,(r' — a)F(r') dr' 

r(b — a) „, 

a 	2 	•x E e .5414.1  sin )3 „Jr — a) • 	e4,-` dr 
k r(b— a)m=1 	 = 

• r' sin N(T.' 	a)g(r', r) dr' ft' = 
(6-93a) 

To determine the Green's function we consider the homogeneous version of 
this problem as 

function is given, according to equation (6-8), as 

sin fi,,,(b a) = 0 	 (6-88b) 

or 

f3rn = 
b — a 

tnn 	
m = 1,2,3... 	 (6-88c) 

The solution of the problem (6-87) in terms of Green's function is given, 
according to equation (6-13), as 

where the I'm  values are the positive roots of 

sin 13 „,(b — a) = 0 
	

(6-93b) 

We now consider some special cases of the solution (6-93). 

1. The medium is initially at zero temperature, the heat source is a spherical 
surface heat source of radius r 1  (i.e., a < r1  < b) of total strength g5(t)W, 
which releases its heat continuously for times t > 0. In this case we set 
in equation (6-93a) 

ri ( r 	= 	r' 2G(r, fir, .01,, oF(r) dr' 	 (6-89) F(r') = 0, 	9(r',  r) O(r' 	r 1 ) 
4trr'' 

(6-94) 

where r' 2  is the Sturm-Liouville weight function. A comparison of equations 
(6-88a) and (6-89) gives 

and perform the integration with respect to the variable r'. We find 

	

a 	1 

	

T(r, t) = - 	 E e 	sin tf,„(r — 
k 2rcrr1(b — 

• 2 	cu 
G(r, t r' , 	G 	

' 	
atil f  -sin fl„,(r' — a) sin fl„,(r — a). 

rr(b — a). 
 

The desired (ii een's function is obtained by replacing I by (I 	r) in cquin un 
(6-90); we find 

2 
G(r, t I r, r) 	 E Cag.('-') •sin 	a)sin fl „(r — a). 

r, r(b — a) = 1 

(6-90) 

(6-91) 

.1
,  

-sin 11„,(r , -... a) 	(,40 .0.  4(r)11 r 
, 0 

((i-95a) 

where 

//in 
fl„. = b — a , r11= 1, 2, 3 ... (6-95b) 

Then the solution of the nonhomogeneous problem (6-86) in terms of Green's 2. The medium is initially at zero temperature, the heat source is an 



1111r 
m - I, 2, 3 ... 	 (6-976) 

mn 
I'm = b ' m= 1, 2, 3 ... 

(6-101) ib(r, t) 	r' 2  G(r, 	, r)I,= 0F(r') dr' 
.r• = 

A comparison of equations (6-100a) and (6-101) gives 

(6-102) 
2 

G(rair',T)it- 0 = 	e-  '40  •sin /1„/ sin I 1,,,r 
r'rb ... 

(6-103) G(r, t I r', r) = — E 	-11  sin 	sin 13„,r 
r'rb 
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problem or directly 

4r,1) = f 

where the /I „, values 

Or 
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from the solution (4-64) by setting K 	co. We find 

7 	to 

r,2[ 	E e -Gil.' sin /3„,r' sin il„,r1F(e) dr' 	(6-100a) 
r,=0 	tirb .= 

are the positive roots of 

sin 11,,,h = 0 	 (6- 1 QM) 
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instantaneous spherical surface heat source of radius r1  (i.e., a < r, < b) 
of total strength g! Ws, which releases its heat spontaneously at time 
t = 0. In this case we set in equation (6-93a) 

F(r') = 0, 	a(r'. r) = 	• 	
1• 
	; 5(r' - r ,)5(r 	0) 	(6-96) 

4/W- 

and perform the integrations with respect to the variables r' and r. We 
find 

1 	cc, 
T(r,t) -

a 
	 E e-  '4' sin /3„,(r - a) sin /3„,(r, - a)u; (6-97a) 

k 2irr• ,(b - a) 

where 

Example 6-10 	 1 

A solid sphere 0 < r b is initially at zero temperature. For times I> 0 heat 
is generated within the sphere at a rate of g(r, t) W/m3  while the boundary 
surface at r = h is kept at zero temperature. Obtain an expression for the 
temperature distribution in the sphere by the Green's function approach. 

Solution. The mathematical formulation of this problem is given as 

2 1  0 1 , 	1 OT 
- 	 .... — (r7) + -g(r, t) = - — 	in 	0 r < b, t > 0 	 (6-98a) 
r are 	k 	a at 

T=.-0-- 	 at 	• =h, 	t > 0 	 (6-98b) 

T = 0 	 for 	t ,-1- 0, 	in 0 -.<.. r ...c. h 	(6-98c) 

To determine the Green's function we consider the following homogeneous 
problem: 

Also the solution of the problem (6-99) in terms of Green's function is given, 
according to equation (6-13), as 

The desired Green's function is obtained by replacing t by (t - r) in equation 
(6-102): 

Then the solution of the nonhomogeneous problem (6-98) in terms of Green's 
function is given, according to equation (6-8), as 

T(r, 1) = 
a 
- 	dr j. 	r' 2G(r, tir',t)g(e,t)dr (6-104) 
k 

 ' 

t = 0 	r. = o  

Introducing the Green's function given by equation (6-103), into equation 
(6-104). the solution of the problem (6-98) becomes 

b - a 

1a2 	lad 
--- 	

a Ot 

	

ai.2 
(rifi)=  — 	in 	0 f.--.:', r < b, 1 > 0 	(6-99a) 

r  

1p .- 0 	 at 	r = b, 	t > 0 	(6-99b) 

ip = F(r) 	 for 	I = 0, 	in 0 -- c . r -<, h 	(6-99c) 

The solution of the problem (6-99) is obtainable by converting it to a slab 

a 2 	 t. 
T(r. 	

f 
= - — E e-  '114.1  sin /1„, 	 r' sin //„,r'g(r.,r) dr' (6-105) 

k br = 1 	 r = 0 	 r-=0 

where 

m= 1, 2, 3 ... 

We now consider some special cases of the solution (6-105). 
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1. The heat source is an instantaneous volume heat source of strength 
(Ws)/m3  that releases its heat spontaneously at time t = 0. By setting 

in equation (6-105) 

g (r, r) = gl(e)b(r — 0) 	 (6-106) 

and performing the integration with respect to the variable r we obtain 

a2 	') 
T(r, 0 = 	e- 414.1  sin (1„,r 	r'gi(r) sin (3 „,r' dr' 	(6-107) 

kbr„,., 	 r'=1) 

2. The heat source is an instantaneous point heat source of strength 	Ws, 

GREEN'S FUNCTION IN THE SPHERICAL 

this problem as 

__a2tp + _2 Lk& ÷ 1 _a _[(i  
are 	r ar 	r2  al, ap 

in 

	

= F(r, p) 	for 	t = 0 

This homogeneous problem is the same 

the solution is obtainable from equation 

;fr 

 

=0 	at 	r = 
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a at 

—1 ‘41‘.. 1, 	for 	t>0 	(6-111a) 

1 > 0 	 (6-11 1 b) 

in the sphere 	 (6-111c) 

as that considered in Example 4-4; 

(4-88) as 

which is situated at the center of the sphere and releases its heat spontane-
ously at time t = 0. By setting in equation (6-105). 

g(r',r) = -- 
g
E At.' — 0)6(r — 0) 

4rcr'' 
(6-108) 

and performing the integrations with respect to the variables r' and r, we 
obtain 

	

cc 	1 

	

T(r, =- 	j 	̀41  m sin r.g' 	 (6-109) 
k 2rb2  „,- 

where fin, = nig/b. 

Example 6-11 

A solid sphere of radius r = b is initially at temperature F(r, p). For times t > 0 
heat is generated in the sphere at a rate of g(r, p, W/m3, while the boundary 

surface at r = b is kept at zero temperature. Obtain an expression for the 

temperature distribution T(r, p, t) in the sphere for times t > 0. 

(if (r, 	t) = 

- 

b f 1 	
aA4 pt 

E E 
e — 

[ 

(6-112a) 

.(6.)-  

e=0./w. - 1 	n= o p= 1 NOP Y (dnp) 

"2 J„+ 1/2(Aiipl1P.(14 )J„+ 1 .. 2(2„„r)P .(11.) 1 
, p')dp' dr' 

1 

where the A„„ values arc 

and the norms N(n) and 

N(A7, 

• 

the positive roots of 

+ 112 ( 2,I P 	.= 

N (A.„„) are given as 

2 

(6-1 t2b) 

(6-112c) N(n) 
2n + 1 

) 	— 	(2 , b). „ P 	2 	-1/2 	P 

	

. 	(A„ b). 

	

+ 3,2 	p (6-112d) 

Sohition. The mathematical formulation of this problem is given as 	 The solution of the problem (6-1 H ) in terms of Green's function is given. 

according to equation (6-13), as 

a2T 	28T I ,9 
ap 	al 	1 	1 a T 

[(I — 142 ) 	+ - Or, E,,  t) = - 
r2 	ap 	k 	a at 

in 	0 -4.5. r < b, 	--- 1  -.<.. fc ...c., 1, 	1 > 0 	(6-110a) 

at 	r = b, 	t > 0 	 (6-1I0b) 

for 	t = 0, 	in the sphere 	(6-110c) 

function, we consider the homogeneous version of 

0(6/0)-- 

A comparison of 

G (r, p, 

= 0 

equations 

0 

f 1 
r' 2G(r, p, 	Ir' , p', 	/7(r', p')dp' dr'. 	(6-113) 

- 

(6-112a) and (6-113) yields 

X = E 

+ 	+-- — -- 
Or' r ar 

T = 0 

T = F(r, p) 

To determine the Green's 

0 p _N(n)N(A„„) 

r)-  112 J„., 112(2.„,,r)P„(i1)J, , /2(2„,,r1P„(,11') 	(6-114) 



Introducing the above Green's function into (6-116), the solution becomes 

T(r, t)= E E -----1 ----- e c 2:2,t tr- 112 J „2(1„,,r)P„(p) 
ri.o r= I  N(n)N(2„,) 

r 1 

CC. 	 CC. 
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The desired Green's function is obtained by replacing t by (t — r) in equation 
(6-114); we find 

G(% p. t I r', 	T) = 	E „. p - I N(n)N()..„,.1 

fr'•) 	1. 2 (A„,,r)1',.(111.1  „ 	1.2(A,,,d11),.(111 	(6'115) 

Then the solution of the nonhomogeneous problem (6-110) in terms of thiS 
Green's function is given, according to equation (6-7), as 

h 	r I 

T(r, p, t) = r' 2G(r, p, 1 I r',  p',T)I c _,F(r', Odle dr' 
r. 

 
=0  L.  = – 1 

+ C(  f 	dT 'h 	i 1 	1-'2  G(r, p, t ft', p', r). i I.,  1. -=.0 	r" = 0 le = - I 

• g(r', p, r)dg dr'  
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Rectangular Coordinates 

The three-dimensional Green's function G(x, y,z,tlx',y',z',T) can be obtained 
from the product of the three one-dimensional Green's functions as 

z, t I x', ►  z', r) = G ,(x,t Ix', T)• G2(y, t I y', 1)- G 3(7, t I ::', T) 	(6-118) 

where each of the one-dimensional Green's functions G,, (i3, and 63  depends on 
the extent of the region (i.e., finite, semiinfinite, or infinite) and the boundary 
conditions associated with it (i.e., first, second, or third kind). We present below 
a tabulation of the three-dimensional Green's functions in the rectangular co-
ordinates as the product of three one-dimensional Green's functions. 

Region: 0 <x-....c..a,O■y<b,0 tc_z‹c 

[ co 
	 1 

G(x, y, z, I I x' , y' ,z',T) = 	E e afiD1-  r)  — -- X (fi„„ x}X(ilm, .0 
m= t 

0:1 	03 

(6-116) N(f1„,) 

[

.[

E e 	-`)—
N(y.) 	

Y{Y., Y')] 
= 

e-'41'-`) 	I  Z(n 	z'd 
P =  t 	N(11,) 

(6-119) 

 it 
• I 	rr3' 2  n+ :2(2urra)P,hilF('', plelpa dr' 

- E E 	1 	e 	r - 112, n+ 1,2(i.„,,r)P„(P) 
k 	p= L  N(n)N(A.p) 

1=0 	J.11' =-1

• e.)-4t (it 
b 	f 

rr312.1,i+ 	Prtrill3n(111 

g(r`, p',T)dp' dr' 	 (6-117) 

Clearly several special cases are obtainable from this solution. 

6-7 PRODUCT OF GREEN'S FUNCTIONS 

The multidimensional Green's functions can be obtained from the multiplication 
of one-dimensional Green's functions for all cases in the reetangulai coordinate 
system and for some cases in the cylindrical coordinate system; but the multipli-
cation procedure is not possible in the spherical coordinate system. We illustrate 
this matter with examples in the rectangular and cylindrical coordinates. 

where the cigenfunclions, eigcnconditions, and normalization integrals arc 
obtainable from Table 2-2. In each direction there are nine different combinations 
of boundary conditions; therefore the result given by equation (6-I 19) together 
with Table 2-2 represents 9 x 9 x 9 = 729 different cases. 

Region: — co <x<ao,04.y b,0 z c 

[ 
	(x — x')2  11 . 

G(x, y, z, t Ix', y` , z', T) = Om* — r)} -1/2-exp — ------ 
. 4a(1 — r) 

[ . 	t e- a.y!li – .1 ___1  
a= I 	N(). „) 

-[

E 	
, 	

- 	Z(ti ,z)Z(ri,„ 211 	(6-120) 
p= 1 	N (11) 

where the infinite medium Green's function, shown inside the first bracket, is 
obtained from equation (6-36). The result given by equation (6-120) when used 
together with the Table 2-2 represents 9 x 9 = 81 different cases. 



(6-121) 
llr  

= 

X (II, x) = fi cos fix H 1  sin fIx 

1 	2 	1 
 

N(II)
= 

 71112
- 
 H 

• [ E 	̀) 
I 

Z(r1p, :VW r, :1 
N(71(,) P=1 

This result, together with Table 2-2, represents nine different cases. 

Region: - co < < co , co < y < 03 , -oo<z<oo 

G(x, y, z, 	 {41ra(t - 1) } -1'2 -exp 	- 	  

4a(t 	r) 

'[{47ra(t - .0}-1/2.expl 	
I] 

4a(t - r) 

49(: - r)f __I [

• (4not(t - )) - 11;  • exp ft  (6-122) 

Region: 0 c x < oo 
En the foregoing expressions for the three-dimensional Green's functions, if any 
one of the region is semiinfinite, the Green's function for that region should be 
replaced by the semiinfinite medium Green's function given below. 

1. Boundary condition at x = 0 is of the first kind [constructed from equation 
(2-58a)]: 

2. Boundary condition at x = 0 is of the second kind [constructed from 
equation (2-63c)]: 

G(x, I Ix`, 0= [Lin'a(r - T)]-112[ exp (x -42 ( - 
4a(t - r)) + 

exp
42(r r) 

(6-1231)) 

3. Boundary condition at x = 0 is of the third kind [constructed from 

G(x, 	= [4nrc(t - 	112  [exp( (
x  _ xr)2) exp( (xt 1,12 No 

4a(t - r) 	 - r)) 

(6-123a) 

•[- E e-'161` t)  sin iipz -sin 
C p,- 1 

(6-124a) 
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Region: - co < x < co, - ao < y < oo,0 z c 

(x - x)2  
G(x, y, z, t I x' , y', z', = [ {41roc(t - 1)1- 112  • exp 	 1 

4a(r - r) 

• [{47ta(t - r)) '12 .exp.{ _ 	- 	1] 
4x(t - r) 
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equation (2-54)]: 

G(x, t Ix' , r) = 	
1 
	X(fl, x)X(fi , x')e 	(6-123c) 

u=o 	N(fl) 

where 

Example 6-12 

Consider a rectangular parallelepipedon-the-region-0 	< a, 
z c initially at zero temperature. For times i > 0, all boundaries are 

maintained at zero temperature while energy is generated in the medium at 
a rate of g(x,y, z, r)W/m3. Develop the three-dimensional Green's function 
needed for the solution of this heat conduction equation with the Green's 
function approach. 

Solution. The Green's funaioli for this problem- is -obtairrable-as-a-product 
of three one-dimensional finite-region Green's functions subjected to the 
boundary condition of the first kind. We use the formalism given by equation 
(6-119) together with case 9 of Table 2-2 to obtain 

2 W 2  
G(x, y,z,ilx', y', z', r) = 	E e

_ 
2P-(")  sin fl„,x• sin fl„,x'i 

am= 1 

•[

2  
- L. e Y. 4": " Sin 11,Y2.Sin 

where the eigenvalues /3,,„ y„, and zi p  are the positive roots of the transcendental 
equations 

sin limo = 0, 	sin Li b = 0, 	sin 	= 0 	(6-124b) 

Cylindrical Coordinates 

The multiplication of one-dimensional Green's functions in order to get multi- 
dimensional Green's function is possible if the problem involves only the (r, z, t) 
variables, that is if the problem has azimuthal symmetry. When the problem 

rV 
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' ) 

....... 

(6-125) 

involves (r, z, 4, t) variables, it is not possible to separate the Green's function 
associated with the r and 0 variables. 

We present below a tabulation of two-dimensional Green's functions in the 
(r, z, I) variables in the cylindrical coordinates developed by the multiplication of 
two one-dimensional Green's functions. 

Region: 0 <r < h,0 -4:: < c 

1 -.4,(1- is ___1  
r'po(fin„r)Ro(13„,,r) 

NUL) 

P 1  e 
	—1 

) 
Z(si p,z)Z(n p, z)] 

1, = 	 10 

where the eigenfunctions, eigenvalues, and normalization integrals for the r 
variable are obtained from Table 3-1 by setting v = 0 in the results given in this 
table and for the z-variable are obtained from Table 2-2. Table 3-I involves three 
'different cases and Table 2 2, nine different cases; hence the result given by 
equation (6-125) represents 3 x 9 = 27 different cases. 

Region: 0 < r < co ,0 Ar.„; z < c 

	

( 	r2 	-  I - r' 2  
[ 	

rr' )1 
G(r,z,111),z', r) = (2a(t — Tr 1  i'' exp 	 10  

4a(t — T)) - (2441— r))i 

-[

i e-°q,r' -') 	I   Z(il,„ z)Z(iip, z')] 
p---1 	N(r/ p) 

where the Green's function for the r variable is constructed from the solution 
given by equation (3-90) and the eigenfunctions, eigenvalues, and normalization 
integrals associated with the z variable are obtainable from Table 2-2. Therefore, 
the result given by equation (6-126) represents 9 different cases. 

Region: a ..<,.r < b,0<z-<c 

[ G(r,z, tir', z', r) --- 	E e-4,2-(̀ -̀ 1  
no , 1 	 N(13,„)r' R

0(1)„„ r)R0(fl„„ re)] 
1  

E e  .n,u - 0 . — 1 
. Z01,,,z)Z(q p,:') 

P=1 	 N(11 p) 

where the eigenfunctions, eigenvalues, and normalization integrals for the r 
variable are obtainable from Table 3-3 and for the z variable, from Table 2-2. In 
Table 3-3, only the boundary conditions of the first and second kind are considered, 
because the results for the boundary condition of the third kind are rather 
involved. 

Region: a r < co ,0 < z c 

.[

ct' e-sera-,s  I  Z(tlp, Z)Z(tip, Z11 
P 1  (q 

where the Green's function for the r variable given inside the first bracket is 
obtained-from -the-rearrangement-of equation-(3-98). The eigenfunctions, eigen-
values, and the normalization integral associated with the r variable are given in 
Table 3-2 for three different boundary conditions at r = a, and those associated 
with the z variable are given in Table 2-2 for nine different combinations of 
boundary conditions. Therefore, the result given by equation (6-128) represents 
3 x 9 = 27 different cases. 

In the foregoing expression for the two dimensional Green's function in the 
cylindrical coordinates, we considered only a finite region 0 z c for the z 
variable. If it is semiinfinite or infinite, the corresponding Green's function is 
obtained from those discussed for the rectangular coordinate system. 
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[ G(r, z, tar, z', r)= E e 
.-,1 

(6-126) 

(6-127) 

G(r, z, tar', z',r)= [ 	e 
n:o 

fit =0 	NO3) 
4241- 	11 etto(Ar)Ro(fi.e) 

(6-128) 



a 
-- 

a
-
r  

+H,T= 
y 

T = 0 

T = F(x, y) 

approach: 

	

02T I 	IOT 
+ - g(x, t) = 

	

k 	a at 

T = 0 

in 	0 < x < 	> 0 

at 	x = 0, 	t > 0 

at 	x L, • 	t > 0 

for 	1 = 0, 	in 0 x L 

DT
+ HT =0 

Ox 

T = F(x) 

6-7 	A rectangular region 0 < x c a, 0 s y b is initially at temperature F(x, y). 

For times t > 0, heat is generated within the solid at a rate of g(x, y, t) 
Whi', while all boundaries are kept at zero temperature. Obtain an 
expression for the temperature distribution T(x,y, t) in the region for times 
t>0.  

6-8 	A three-dimensional infinite medium, - co <x < co, - x < y < cc-, 

— CO < z < CC), is initially at temperature F(x, y, z). For times f > 0 heat is 

generated in the medium at a rate of g(x, y, z, t) W/m3. Using Green's 

function approach obtain an expi.ession for the temperature distribution 

T(x, y,z,t) in the region for time r > 0. Also consider the .following special 

cases: 

1. The heat source is a point heat source of strength cir. tt) W situated 

at the location (x1, y,,_7 i  ), that is, g(x, y,:, r) 	gc,,(t)5(x 	x 1 )1)(4,  - y ,) 

- z1 ) releases its heat for times t > 0. 
2. The heat source is an instantaneous point heat source of strength g1,. 

Ws, which releases its heat spontaneously at time t = 0, at the location 

(x1 y, 	). that is, itlx, 	= 	0)6(x 	yi) 6(z - .7,1. 

6-9 	Solve the following heat conduction-problem for a solid cylinder 0 r h 
by Green's function approach: 

02T I aT I 	l OT 

Or are  +7' 	
+ g(r,t)- a at 
	in 	0 r < b, t> 0 

7-,  

1-̀  
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PROBLEMS 

6-1 	A semiinfinite region 0 x < co is initially at temperature F(x). For times 
> 0, boundary surface at x = 0 is kept at zero temperature and heat is 

generated within the solid at a rate of g(x, r)W/m 3. Determine the Green's 
function for this problem, and using this Green's function obtain an 
expression for the temperature distribution T(x, t) within the medium for 
times t > 0. 

PROBLEMS 	hni 

at 	0, 	t>0 

at 	y = b, 	t > 0 

for 	r = 0, 	in the region 

6-6 	Solve the following heat conduction problem by 	using Green's function 

6-2 	Repeat Problem 6-1 for the case when the boundary surface at x = 0 is 
kept insulated. 

6-3 	A slab, 0...c x L, is initially at temperature F(x). For times r > 0, heat is 
generated within the slab at a rate of g(x, t) W/m3, boundary surface at 
x =0 is kept insulated and the boundary surface at x = L dissipates heat 
-by convection into-a -medium -at -zero -temperature. Using- the- Green's- -- 
function approach, obtain an expression for the temperature distribution 
T(x, t) in the slab for times t > 0. 

6-4 	Using the Green's function approach solve the following heat conduction 
problem for a rectangular region 0 x a, 0 y b: 

in 	< x < a, 0 y< b, t> O  

at 	x = 0, 	t> 0  

at 	x = a, 	t> 0 

at 	y = 0, 	r > 0 

at 	y = b, 	t>0  

for 	t = 0, 	in the region 

6-5 

	

	Solve the following heat conduction problem by using Green's function 
approach: 

02T 
+ 2

02 	 aT 
+  in 	0<x<ce, 0<y<b, r>0 

ax 	ay k 	a at 

T = 0 	 at 	x = 0, 	[>0 

a2T 027-  I 	1 07' 

dx2 
+ 

0y2  k
ox, J.', = 

Of r11  

aT =0  
ax 

ar 
Ox 

+ H2 T = 0 

T=0 

T 
- - + H 4 T= 0 
ay 

F(x,y)  



D 

C.) 
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0 • 	 aT 
—+ HT= 0 	 r = b, 	t > 0 
Dr 

T = F(r) 	 for 	t = 0, 	0.‹..r‹b 

6-10 Solve the following heat conduction problem by Green's function 
• I 	 approach: 

DT = 0  
az 

DT 
+ HT =0 

az 

7' = F(r,z) 

at 

at 

for 

z = 0, 

z = c, 

I= 0, 

PROBLEMS 	255 

t > 0 

t > 0 

in the region 

e2,T2. 	er  aT 	gb,,)=13T e   

a at 
in 	0 r < co, t>0  

6-14 Solve the following heat conduction problem for a solid cylinder by 
Green's function approach: 

T = F(r) 
	

for 	t = 0, 	in the region 

Also consider the following special case: Medium initially at zero tempera- 
.- -- tiire-,-thheat-S0-1.1TCe" is -an instantaneous line-heat source of strength gio  

Ws/m situated along the z axis and releases its heat spontaneously at time 
t = 0, that is, 

02T l DT I 02T 1 	aT   
51. 
	

r Dr i +kg
(r 	at . 

aT 
+HT= 0 

Or 

in 	0 ....cr<b, 

t > 0 

at 	r=b, 	t>0 

T = 0 	 for 	t = 0, 	in the region 

6-15 Repeat problem (6-14) for the case when the boundary surface at r = b is 
kept at zero temperature. 

	

Or, t) =
.2 	

0)3(t — 0) 
7tr 

6-11 Solve the following heal conduction problem by Green's function 
approach: 

6-16 Solve the following heat conduction problem by Green's function 

0 2T 1 DT 1 	10T 	 approach: 

	

+ - + -q(r,t) - — 	in 	a < r < co, t > 0 
Dr' r Or k . 	a Of 	 D2T 1 DT 1 a2T 1 	1 DT +--Dr2r —Orach2+ —k g(r. 0,0= 

a
-- 

in 	0 r < b, 0 < q < 00, (oo < 27r)t > 0 
T = F (r) 	 for 	t = 0, 	in the region 

0 

	

6-12 Repeat problem (6-1 I) for the boundary condition: 	
T = 0 	at 	r = b, 	=0, 	= 00, t > 

 

DT T = 0 	for 	t = 0 	in the region , 

	

— + HT = 0 	at r = a 
6-17 A solid sphere 0 r b is initially at temperature F(r). For times t > 0 

6-13 Solve the following heat conduction problem for a hollow cylinder by 	
heat is generated in the sphere at a rate of g(r, t) W/m3  while the boundary 
surface at r =1) dissipates heat by .convection into a medium at zero 

Green's function approach: 	 temperature. Obtain an expression for the temperature distribution in the 

D'T 1 oT (VT 1 	1 DT 	in 	
sphere. 

	

+ - — + — + -g(r, z,t)= 	 a < r < b, 0 < z < c, 
01. 2  r car Dz2  k 	a at 	 6-18 Solve the following heat conduction problem for a solid hemisphere: 

t>0 

T = 0 	 at 	r a, 	r b, 	

_021-  4,  _2 _DT +I 11[(1 1.12)—OT1+1. gfr, 14  = _1 LT 
are 	r Dr r2  DIA 	Op • k 	at 

t > 0 	 in 	0 <r<b,</t-...c.1, for t>0 

T = 0 
	

at 	r = a, 	t > 0 
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T=0 	at 	r = b and p = 0, 	for r>0 

T.-- F(r, /.1.) 	for 	t = 0, in the hemisphere 

6-19 Solve the following heat conduction problem for a hemisphere: 

02 T 	2 aT 
ar 2 	r Or 

I 	0 
r2 ap [o — P9 1-3-I-] 

k 	a at

a-r- 
gfr 	t)- 

ay- 

in 0 	r < b, 0<p 	1, 	for 	1> 0 

ar 
at r = b, t > 0 

T = 0 at p = 0, t>0 

T = F(r, p) for t = 0, in the hemisphere 

6-20 Solve the following heat conduction problem for a hollow sphere using 
Green's function 

in 	a < r < b, t > 0 

at r = a, 	t > 0 

at 	r b, 	t > 0 

for 	I = 0, 	in a....cr‘Jo 

Also consider the following special case: The heat source is an instan-
taneous, spherical surface heat source of radius r, (i.e., a <r, < b) of total 
strength gsi Ws that releases its heat spontaneously at time t = 0, i.e., g(r, t) 
can be taken as 

y(r',r)= g! 
4 
 - (5(r' 	r, 	- 0) 
rrel  

6-21 Construct the Green's function for a region 0 x a, - ors < y < co, 
whose boundaries are kept at zero temperature, as a product of one-
dimensional Green's functions for the regions 0 x a and - co < y < co. 

6-22 Construct the Green's function for a hollow cylinder a 5  r b, 0 z e, 
whose boundaries are kept at zero temperature as a product of one-
dimensional Green's functions for the regions a r b and 0 z c. 

The method of Laplace transform has been widely used in the solution of time-
dependent heat conduction problems, because the partial derivative with respect 
to the time variable can be removed from the differential equation of heat 
conduction by the Laplace transformation. Although the application of Laplace 
transform for the removal of the partial derivative is a relatively straightforward 
matter, the inversion of the transformed_ solution generally is rather involved 
unless the inversion is available in the standard Laplace transform tables. 

In this chapter we present a brief description of the basic operational properties 
of the Laplace transformation and illustrate with numerous examples its appli-
cation in the solution of one-dimensional transient heat conduction problems. 
The orthogonal expansion technique and the Green's function approach discussed 
previously provide a much easier and straightforward method for solving such 
problems, but the solutions converge very slowly for small times. The Laplace 
transformation has the advantage that, it allows for the making of small time 
approximation in order to obtain solutions that are strictly applicable for small 
times, but are very rapidly convergent. This aspect of Laplace transformation 
will be emphasized later in this chapter. 

The-reader should-consult references.1-7 fora ino.r.e.deiailed discussion of the 
Laplace transform theory and references 8•12 for further applications of the 
Laplace transformation in the solution of heat conduction probleinN, 

7-1 DEFINITION OF LAPLACE TRANSFORMATION 

The Laplace transform and the inversion formula of a function F(t) is defined by 

Laplace transform: Y[F(t)] -- F(s)= 	e'F(tlicle 	(7-1a) 
t•-• 

257 

a2 
- 	r--( T)+-g(r, t)= 

 

r ar2 	 a at 

OT 
- —+ H 1 T = 

Or 

—
aT

+ H2 T = 0 
ar 

T = F(r) 
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i.r 

Inversion formula: F(t)= 	
r 	

es'F(s)ds 	 (7- lb) 
girt 

	—where_s_is_the_Laplace_transfor m variable, i = ,J-1,7 is a positive number, and 
the bar denotes the transform. 

Thus, the Laplace transform of a .function F(t) consists of multiplying the 
function F(t) by c 5' and integrating it over t from 0 to .x•$. The inversion formula 
consists of the complex integration as defined by equation (7-1b). 

Some remarks on the existence of the Laplace transform of a funUion F(t) as 
defined by equation (7-1a) might be in order to illustrate the significance of this 
matter. For example, the integral (7- fa) may not exist because, (1) F(t) may have 
infinite discontinuities for some values of t, or (2) F(t) may have singularity as 
t 0, or (3) F(t) may diverge exponentially for large t. The conditions for the 
existence of the Laplace transform defined by equation (7- la) may be summarized 
as follows: 

' 1. Function F(1) is continuous or piecewise continuous in any interval t, 	t 
t2 , for t, > 0. 

2. tlF(t)I is bounded as t 0* for some number n when a < I. 

3. Function F(t) is of exponential order, namely, 	F(5)1 is bounded for 
some positive number p as I -> 

For example, FM .= e' 2  is not of exponential order, that is, e"-el" is unbounded 
at t o for all values ofy, hence its Lapkie transform does not exist. The Laplace 
transform of a function F{t) = t", when a - 1, does not exist because of condition • 
(2), that is f;e't'dt for n - 1 diverges at the,origin. 

Example 7-1 

Determine the Laplace transform of the following functions: F(t)= 1, 
and t" with a > - 1 but not necessarily integer. 

Solution. According to the definition of the Laplace transform given by 
equation (7-1a), the Laplace transforms of these functions are given as 

F(t) = 	15(s) = f 

F(t) = 5: P(s)= 

F(t) = 	.17  (s) = 

F(t) = t", 	a > - 1: 

o 

f4. 
n  

e'dt = - 
s 

re 	"tit 	
1  = • 
s2  

f 	= 
o 

fx
,  

:17(s) = 	l'e" 

	

• 	o 

0 

di 

= -1  
0 	s 

e"'s*"dt = 
1 --  

S -T- a 

(7-2) 

(7-3) 

(7-4) 

(7-5a) 

Now let = st and cg = sdt; then 

f(n + 1) r(s) 
s"-" 	.1 	4c1 - 

sn 

	

o 	
+ I 

where the integral 1“4e-4i.le is the gamma function, rot 4- 1). The gamma 
function has the property r(55 + 1) = anti); if n is an integer, we have 
r(n + 1) = al. 

7-2 PROPERTIES OF LAPLACE TRANSFORM 

Here we present some of the properties of Laplace transform that are useful in 
the solution of heat-conduction problems with Laplace transformation. 

Linear Property 

If F(s) and G(s) are the Laplace transform of functions F(t) and G(t) with respect 

to the t variable respectively, we may write 

Y[c ,F(t)+ c2G(t)] = ci  F(s) + c2G(s) 	 (7-6) 

where c1  and c2  are any constants. 

Example 7-2 

By utilizing the linear property of the Laplace transform and the Laplace 
transform of e I°1  given by equation (7-4), determine the Laplace transform of 
the functions cosh at and sinh at. 

Solution. For cosh at we write 

Fi(t)-= cosh at = 	+ 	 (7-7) 

	

1( 1 	1 	s 
Ft (s) - 	+ — • - 

2 s-a s+a s2  - 

Similarly 

/7 2(t) --• sinh at = 	e') 	 (7-9) 

t,-2(s)=-1(-  1 _ 1 \ = a

s - a s+a) s2 -a1 
	 (7-10) 

Laplace Transform of Derivatives 

The Laplace transform of the first derivative dF(t)/dt of a function F(t) is readily 
obtained by utilizing the definition of the Laplace transform and integrating it 

(7-5b) 

(7-8) 
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by parts: 

2[F(r)] 	Ft(r)e-s' dt = [F(t)e ']o + s 	F(t)e -3' dr 	(7-11a) 
0 	 0J 

2[F(r)] = sF(s) — F(0) 	 • (7-11 b) 

where the prime denotes differentiation with respect to t and F(0) indicates the 
value of F(t) at t = 0*, namely, as we approach zero from the positive side. Thus, 
the Laplace transform of the first derivative of a function is equal to multiplying 
the transform of the function by s and subtracting from it the value of this 
function at t = 0+ . 

This result is now utilized to determine the Laplace transform of the second 
derivative of a function F(r) as 

29[F"(r)] = sY[Flr)] — F'(0) = s[sF(s) F(0)1 F'(0) 

-= s2  F(s) — s F(0) — F(0) 	 (7-12) 

Similarly, the Laplace transform of the third derivative becomes 

.7111.10]...s3ns). 521.(0) syn. 110) 	(7-13) 

In general, the Laplace transform of the nth derivative is given as 

_F[FN(t)] = ei(s)—sn - I F(0)— 	2  F(1'(0)—s"- 3  F121(0)— - - • — F(" -  ' 1(0) (7-14)  

since y(0) = 0. After rearranging, we find 

J(s)2'[11 F(r) dr = 1  F(s) 	 (7- l7) 

This procedure is repeated to obtain the Laplace transform of the double 
integration of a function F(t) 

211 
f 	

F (rOdr,dr+--F(s) 	 (7-18) 
o o 

In general, the Laplace transform of the nth integral of a function F(t) is given as 

	

2'[
f • • • E"  bir ,  ,) dr 	• dr „= 

s
"• P(s) 

o 	o  

Change of Scale 

Let F(s) be the Laplace transform of a function F(t). Then, the Laplace transforms 
of functions F(at) and F[(1/a)(], where a is a real, positive constant, are determined 
as 

.1[F(a/)]-= 	/:(w)e 	 F(u)r '''""' 	= 1•'(.7) 
	

(7-20n) 
0 	 a 	 a a 

where we set I/ = at. Similarly. 

0 

(7- 1 9) 

where 

d"F(t) 
F('''(r) -- -- dr" 

,ELe ( t ) 	F(-)e-  " = I F(u)e-"" = P(as) 
a 	a 

where we set a = 

(7-20W 

 

   

Laplace Transform of integrals 

The Laplace transform of the integral froF(r) dr of a function F(r) is determined 
as now described. Let 

Or) = f F(r) dr 	 (7-15a)  

Example 7-3 

The Laplace transform of cosh I is given as it[coslu] = 	— 11. By utilizing 
the "change of scale" property, determine the Laplace transform of the functions 
cosh at and cosh (r/a). 

Solution. By utilizing equation (7-20a) we obtain 
0 

then 

glt) = F(r) 	 (7-15b) 

' 
.r 	

1 	(s. a) 
[cosh at] = 	— -- 

a (s/a)2 	1 	52  — (12  
(7-21a) 

We take the Laplace transform of both sides of equation (7- I 5b) and utilize the 
result in equation (7-I lb) to obtain 

sj(s) = F(s) 	 (7-16)  

and by utilizing equation (7-20b) we find 

52 

a 	(a .9)2  — 1 	s2  — l/a)2  
21cosh r  1— a  as (7-21b) 



.9're '1  cos br] = 	
s + a 

 
U(t - a)F(t - a). f ol(t  - a)  

for r > a 

for t < a (7-23) 
(s + a)2  + b2  

(7-25) 
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Shift Property 

When the Laplace transform F(s) of a function F(t) is known, the shift property 
enables us to write the Laplace transform of a function ei'F(t), where a is a 

_ constant; A hat .is 
Fit) 

rr 

1 e 1 "' Mil 1 	4 .  "(. 1 "1 1.(1)(11 
I.) 

= F(s a)  

e 	41,1.10 fir 

0 
(7-22) 	 (a) 

Fit — a) 

1 
0 

(b) 

Example 7-4 

The Laplace transform of cos bt is given as .2 [cos bt] = s/(s2  + b2). By utilizing 
the "shift property" determine the Laplace transform of the function e'•cos bt. 

Solution. By equation (7-22) we immediately write  

Fig. 7-2 The translation of a function F(t): (a) the function F(t) and (b) the translation 
of F(t) fromt=0toI= a.  

translated by an amount t = a in the positive t direction; namely 

Laplace Transform of Translated Function 

The unit step function (or the Heaviside unit function) is useful in denoting the 
translation of a function. Figure 7-1 shows the physical significance of the unit 
step functions U(t) and U(t - a); namely 

> 
U(t) = {0  

1 <0 

Ulf - a)= 
101 	

t> a 

t < a 

We now consider a function F(t) ddfined for t > 0 as illustrated in Fig. 7-2a and 
the translation of this function from t = 0 to t = a as illustrated in Fig. 7-2b. The 
translated function 	- a)• F(t - a) represents the function F(t) defined for t > 0. 

The Laplace transform of this translated function is determined as 

Y[U(t - a)F(t - a)] = f e-"U(t - a)F(t - a) dt 

= f e-"F(t - a)dt 
r=a 

= 	

r. co 

e -"'")F(q)dri = e-" 
in =0 

. 

= e-"F(s) 

where a new variable ri is defined as ri = t - a. This result shows that the Laplace 

(7-24a) 

(7-24b) 

ft 

e--"F(ti)tbi 

(7-26) 

Pitt 
	 V* —a 

yid 

0 

         

       

       

4 — 

Fit) 
3 — 

    

       

    

f 
2 

  

        

       

	)-1 

    

2 	3 	4 	5 

 

7 

         

Fig. 7-1 Definition of the unit step functions U(t) and Ult - a). Fig. 7-3 The function defined by equation (7-28). 
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transform of a translated function U(r - a)F(t - a) is equal to the Laplace trans-
form F(s) of the function F(t) multiplied by e-". 

Similarly, the Laplace transform of a unit step function U(r - a) is given by 

2'[U(t - a)] = 	1 
s 

Example 7-5 

Determine the Laplace transform of the following function 

	

0 	for 	t < 0 

for 	0 < r < 

	

F(t) = 5 	for 	i « < 4 

	

2 	for . 	< 

for 	r > 6  

Laplace Transform of Convolution 

Let f(t) and g(t) be two functions oft defined for t > 0. The convolution integral 
or briefly the convolution of these two functions is denoted by the notation f *g 
and defined by the equation 

	

J.* y = f tf (t - -r)y(r)d-r 	 (7-34) 

= 	f(r)g(t 	r)d-r 	 (7-35) 

Thus we have the relation f = g* f. The Laplace transform of the convolution 
f *g is given by 

*g] f 	= (s)g(s) 	 (7-36) 

(7-27) 

(7-28) 

and the Laplace transform of this function becomes 

That is, the Laplace transform of the convolution is equal to the product of the 
Laplace transforms f (s) and 6(s) of these two functions. 

Derivatives of Laplace Transform 

(7-29) 	 We now derive an expression for the derivative of the Laplace transform of a 
function. Consider the Laplace transform F(s) of a function F(t) given by 

which is illustrated in Fig. 7-3. 

Solution. The function given by equation (7-28) is represented in terms of the 
unit step functions as 

F(t)= IA/ - 0) + 4E(1 - 1) - 3U(r - 4) - 20( - 6) 

11 
F(s) - + 4e 

I 
- 3e-  - 2e' 

s 
(7-30) 

F(s) = for 

 C'E(t)(it (7-37) 

Laplace Transform of Delta Function 

The delta function (50C) is defined to be zero everywhere except at x = 0 such that 

6(x) = 0, 	x 0 	 • 	(7-31) 

and 

By differentiating both sides of equation (7-37) with respect to s we obtain 

111(5) -, 	 , 
(s) = 	(- t)e 	F(t) (It 

(Is 

F'(.5) = Y'[(- ORO] (7-38a) 

ii(s)(1x = (7-32) 	 or by differentiating equation (7-37) n limes we obtain 

The Laplace transform of the delta function 6(x) is given by 
d"F(s) 

1."(s) = YU- r)" F(r)],. 
(Is" 

n= 1,2, 3... 	(7-38b) 

.21[6(x)] = (Rs) = 	e'r5(x)dx = 1 
0 

The properties of the delta function are given in Appendix VI.  

(7-33) 	 Thus, the nth differentiation of the Laplace transform E(s) is equal to the Laplace 
transform of (- rrF(r). This relation is useful in finding the inverse transforms 
with the aid of partial fractions and in many other applications. 
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Example 7-6 

The Laplace transform of F(t) = sin 13t is given as F(s) = /3/(s2  (32).Petermine 
the Laplace transform of the function "t sin fit." 

Solution. By applying the formula (7-38a) we write 

.14( t)Ht)1 	F(s) 
(Is 

d'-. 

t sin  fit]  = 
[ 

ds .s 2  + /3- 	(s2  + 13-)-  

s 	
(7-39) 

01 

..4'9[t sin fill = 	
2fls 	

for 

	

(s _ 	132)2 
	s > 0 	 (7-40) 

The Integration of Laplace Transform 

Consider the Laplace transform of a function F(t) given by 

. 	F(s) = I e 5T(t) dr 
	

(7-41) 
0 

We integrate both sides of this equation with respect to s from s to b and obtain 

f b 	
f■ 

14" (.31tW ,= 	e-s.' Fit) dt ds' 
ff oo 

3 o 

— 
 .I

x F(t)[ b  a' ds'idt = 17'  -F-(!)-(e' — P — 1" ) d i 
	

(7-42) 
o 	5 	 o 	1  

If the function F(t) is such that F(t)/t exists at t —> 0, the integral uniformly 
converges. Then, letting b gp, equation (7-42) becomes 

	

17(s') ds' = 4 +x"' 	le-sr dt ..co[ F1 	(7-43) 

	

o 	t 

Thus, the integration of the Laplace transform F(s) of a function FM with respect 
to s from s to cc, is equal to the Laplace transform of the function F(t)/t. This 
result is useful in the determination of the Laplace transform of the function F(t)/t 
when the Laplace transform F(s) of the function F(t) is known. 

Example 7-7 

The Laplace transform of sin fit is given as fl/(s2  fi2). Determine the Laplace 
transform of ( 1 /t) sin fit. 

Solution. We utilize the formula (7-43) 

F(t)] 
= 

JS
~ F(s]ds  

t 

Introducing the function as given above we obtain 

[ si11111 	= 	. 	
/1 

	'  s' ' . . = 
it 

 
t 5  s' ' + /32 	/3 , 	2 

7-3 THE INVERSION OF LAPLACE TRANSFORM.  
- USING -THE-INVERSION-TABLES 

In heat conduction problems, the Laplace transformation is generally applied to 
the time variable. Therefore, an important step in the final analysis is the inversion 
of the transformed function from the Laplace variable s domain to the actual 
time variable t domain. To facilitate such analysis comprehensive tables have 
been prepared for the inversion of the Laplace transform of a large class of 
functions PI We present in Table 7-1 the Laplace transform of various functions 
which are useful in the analysis of heat-conduction problems. 

If the Laplace transform F(s) of a function FM is expressible in the form 

F 
(— 	G s) 

(s)= H(s) 	 (7-45) 

where G(s) and H(s) are polynomials with no common factor, with G(s) being 
lower degree than H(s), and the factors of H(s) are all linear and distinct, then 
equation (7-45) can be expressed in the form 

As) = 	 + • + 	 
H(s) s — a, s — a2 	s — an  

G(s) = 	 c 	c2 	C, 	
(7-46) 

Here the c, values are independent of .s. Then, by the theory of partial fractions 
c, values are determined as 

et  = lim [(s a,)P(s)] 
	

(7-47) 

Clearly, if a function F(s) is expressible in partial fractions as in equations (7-46), 
its inversion is readily obtained by the use of the Laplace transform table. 

Also, there are many occasions that the transformed function F(s) will not 
appear in the standard transform tables. In such cases it will be necessary to use 
the inversion formula (7-1b) to determine the function. Such an inversion is 

(;) 

	

(7-44) 
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TABLE 7-1 (Continued) 

No. 	 F(s) 
	

F(r) 

17 

18 

19 

s(s 2  + a') 

1 

s 2(S 2  + a') 

(s' + tr 212  

1 1 

2
—(1 - cos at) 
cr 

1 
(at - sin at) 

0 2  

1 
(sin 	— at COS at) 2a  

20 	
(52 + 

.5 2  
21 	

(52 + a2)2 

52 a l 

22 	____ 
(.52  + a2)' 

23 
+ a 

, 24 
s a2  

25 
+ 02  

1 
26 

a2) 

27 	

Is(s + a2 ) 

b=  - 

(s - az )(b + vs) 

1 

5(,/ s + ti) 

1 

(5 + a),/s b 

is

s + 2a 

t 
—sin at 
2a 

1 
--(sin at + at cos at) 
2a 

I cos at 

— aerir erfc 

ittr 

1 
+ at," err a v/t 

Jnt 

1 	2a
e' 
 . „ 	ep. 

ltt 	\ 	o 

1 
e°1' err rift a-  

2 
(IA 

e"[b - a cr.( aj] - 	erfc bit 

e" erl'c 

I 	
e at erf(vib - av't) 

a 

ae -n r [11(w) + I darn 

28 

29 

30 

31 

1
. 

C.• 

C 

C. 
C .  

C 
C. 

• 

C  
C • 

I 
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TABLE 7-1 A Table of Laplace Transform of Functions 

No. 	 F(s) 	 F(t ) 

1 

1 
2 

3 	(n 	1, 2. 3, ...) 
(a - I)! 

4 

•/$ 	 int 

5 	s- 3/2 

	

6 	5 -  (n + 1122,  tit = 1,2,3,...) 	 in-  1/ 2 
 

[1-3.5•...•(2n - 1)] fit 

7
( 
n > 0) 

sr. roo 

	

8 	
1 	

e 
s + a 

1  

	

9 	 (n =1, 2, 3,...) 
(s + a)" 	 (n - I)! 

r(k) 

	

10 	(k > 0) 	 e-  "1  
(s + 

1 

	

11 	 (alb) 
(s + a)(s + b) 	 b - a 

	

12 	
s 	

a # b) 
ae-°' - be 

(s + a)(s + b)
( 
	 a - b 

1 

	

13 	 -sin at 
.5 2 + a2 	 a 

	

14 	 cos at 
s2 + a= 

1 	 1 

	

15 	 - sinh at 
.2 — a 2 	 a 

	

16 	 cosh at
s2 

s 

 a2  - 

2" 
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TABLE 7-1 (Continued) 

No. 	 F(s) 
	

F(t) 

32 
	 nun a - b 

\Is 1- a.„'s + h 
	

2 

33 	. 	 J„(arl 
I 

- .■ 	 v? + a=  

J 	 kis27--T,1  - ,r 
34 	 _._ .. :.7 	(I' > - 1) 	aV rfai) 

."'∎ 	 .,..s 2  -I- o l  

\ 
_,.) 	 35 	 (i > 	1) 	el Jar) 

-) 	
\Is' - ai  

36 	
I
-e- ks 	 I* — k) 

1 
37 - e - 4T 	 (i — k)rr(i - k) 

r
---) 	 s2 
 
---, 
VI 	38 	

I 
- e-k.  ' .10(2,/ Z.) 
s 

✓.-..  

) 	 1 
39. 	- e '''(o > 0) 

sP 	

(

k

)In 110 j, r, 	. 

_,(2.11a) 

1-.  5. 	 40 	•- e -k  'Cli > 0) 
k ) 

1 
I p  _ ,(2..fit) 

s"  
--4 

-) 	 41 	e-  k..' 	
k 

(1:>. 01 	
,exp _ 1( 2  

3 	4t 

) - 	 1 	 k 

'-} 	 42 	e erfe ---; - - '"(k ?... 0) 	 --  
...... 	 s 	 .2„...'t 

_., 
43 	--_- e'lk ?.- 0) 	

1 ex _ (}2  
-- 	

) ) 	 1 	, 

--■ 	 /-- P ve ru 	4r) 
../s 

_.,,, 	 • 44 s3-2 - - e,  i"(k ?...- 0) 	 2 \/-1-- exp (- k2 - kerfc - 
It 	4t 

'''' 	 1 

2 it ---, ) 
✓ ,- 	k -,,, 	 = 2.ir ierfc—

r 1 ,1 
. 	 --... 

i 	 k 
45 	- - e'"in = 0.1, 7 	k ?.-..0) f4tr'r erfc -- 

- 	 si . 2 ,.-- 	 2,it  

TABLE 7-1 (Continued) 

No. 	 F(s) 	 F(t) 

46 a -
k,j 

-••-c{k 0) 	
1 

Trtexp (- —k41t )- ae"e"'' erfc(a,ir 	
k 

".  

47 	 (k 0) ?.. 	 e"a"'' erfc (es.,/r + vk li ) 

e. i  kisl:i  
-J.  ; . s .-1:7; -__ Fr. -7,   ; a ?.-- 48 

49 	=(k?..- 
v s 2 + a 2 

e-lo.'sTai 
50   (k ?,- 

,l.s2  - a2  

AC k..; 
51 	---- 	, (k ?.., 

s(a + .1s) 

I 
52 	- e-k`'' 	 (1+k

2
)erfe( k  r)-k( 1)"2  exp / - k2 

 5

2 	 2\fr 	g 	 4t 

53 	-Ins 
	 -y - In 1(' = 0.57721 56649... 

Euler's constant) 

+ a 	 1 
54 	In 	• 	 • (C hi - e-") 

s b 

 
' 	55 	In ---

• 	

n2 
	 -(1 - cos nt) 

s2 	 I 

al 	 2 • - 
56 	In 	 -(1 -cosh dr) 

s- 
1 

57 	KAs)(k > 0) 	 — I* - k) 
tz- 

58 	K. 0(kvi.j)(k > 0) 	
2r

lexp  ( 

 4i 

59 	
1 

K i(kfs)(k >0) 	
1 

exp 
k 	4t 

0) e7lizi oq-nji:Tt 2)11(1-  k) 

0) Jo(a.P - k2)u(t - k) 

0) I 0{a,/t 2  - Ic2)u(t - k) 

. 
k k 

0) -eke"'`erfc aft + —7_ + erfc ---7 
2 	. .,p lir 
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generally performed by the method of contour integration and the calculus of 
residues that require rather elaborate analysis. Therefore, the use of inversion 
formula (7-1b) will not be considered here. 

Example 7-8 

Determine the function whose Laplace transform is  

Example 7-9 

A semiinfinite medium, x 0, is initially at zero temperature. For times t > 0, 
the boundary surface at x = 0 is subjected to a temperature T (t) that varies 
with time. Obtain an expression for the temperature distribution T(x, t) in the 
medium for times t > 0. 

Solution. The mathematical formulation of this problem is given us 
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F(s) = 5(52b 
+b  2) 
	 (7-48) 

Solution. This function is not available in the Laplace transform table in this 
form; but it can be expressible in partial fractions as 

F(s) = 	= 
S(S 2  b2) 	s 	s2  b2  

b2 	C1 C25 + C3 	
(7-49) 

Then 

c" 3 T(x, t) 	1 C1T(x, t) 

ax 2 	at 
in 	0 < x 	t > 0 	(7-53a) 

T(x, t) = f(t) 

T(x, t) = 0 

T(x, t) = 0 

at 	x = 0, 	r > 0 	(7-53b) 

as 	x .-4 rz, 	t > 0 	(7-53c) 

for 	r = 0, 	in x ..>. 0 	(7-53d) 

1 b 2 	c 3 s -1- (c 	2)s2 	 (7- 50) 

Equating the coefficients of like powers of s, we obtain c i  = 1, c2  = — 1, and 
c, = 0. Hence 

1 
	

s 
F(.5) — --- s  52. + 

We recall that this problem was solved in Example 5-2 by the application of 
Duhamel's method. Here the Laplace transform technique is used to solve the 
same problem, and the standard Laplace transform table is utilized to invert 
the resulting transform. Taking the Laplace transform of equations (7-53) we 
obtain 

s) s 
7-(x , s) = 0 	in " 0 <•:56: < oo -- 	(7-54a) 

dx 2 	61 

(7-51) 

Each term on the right-hand side is readily inverted using Table 7-1, cases 1 
and 14; we find 

F(t) = 1 — cos bt 	 (7-52)  

s) = f (s) 

T(x, $) = 0 

The solution of equations (7-54) is given as 

at 	x=0 (7-54b) 

as 	x 	 (7-5-1e) 

7-4 APPLICATION OF LAPLACE TRANSFORM IN THE SOLUTION 
OF TIME-DEPENDENT HEAT CONDUCTION PROBLEMS 

T(x, s) = 1(s)• g(x. (7-55a) 

la this section we illustrate with representative examples the use of Laplace 
transform technique in the solution of time-dependent heat conduction problems. 
In this approach, the Laplace transform is applied to remove the partial derivative 
with respect to the time variable, the resulting equation is solved for the transform 
of temperature, and the transform is inverted to recover the solution for the 
temperature distribution. The approach is straightforward in principle, but gene-
rally the inversion is difficult unless the transform is available in the Laplace 
transform tables. In the following examples, typical heat-conduction problems 
are solved by using the Laplace transform table to invert the transform. 

where 

(7-55h) 

Since the functional form of f(s) is not explicitly specified, it is better to make 
use of the convolution property of the Laplace transform given by equation 
(7-36) to invert this transform. Namely, in view of equation (7-36), we write 
the result in equation (7-55a) as 

-Ax,$)=.-A5)--6(x,,)-2'[f (t)*Ax, 	 (7-56) 
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The inversion of this result gives 

	  T(x, t) = f (t)* g(x, t) 	 (7-57a) 
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2. f(t)= Tot'''. The transform of this function is obtained from Table 

7-1, case 5 as Ps) = To(fJ2)s-312, Introducing this result into equation 

(7-55) we obtain 

and utilizing the definition of the convolution f *g given by equation (7-35) 
equation (7-57a) is written as 

‘FT 
T'ae--"75  (x, s) = To 	s  

This result is inverted by utilizing Table 7-1, case 44; we had 

(7-60a) 

T(x. t) = 	f (r)g(x,t — r) dr 	 (7-57b) 
Jo 

To complete the solution of this problem we need to know the function g(x, t). 
However, the Laplace transform d(x,$) of this function is given by equation 
(7-55b); then, the function g(x, t) can be determined by the inversion of this 
transform. The transform j(x.$) is readily inverted by utilizing Table 7-1, case 
41; we find 

g(x, t)   e- .==i-sxr 

2v net' 

T(x, I) = To[ t 112e-  x2t-sw 	erfc x 	x 

2 cc
-  

. v at 
(7-60b) 

Example 740 

A semiinifinite medium, 0 	< co, is initially at zero temperature. For times 

t > 0, the boundary surface at x = 0 is subjected to convection with an environ-
ment at temperature T, . Obtain an expression for the temperature distribution 

T(x, t) in the solid for times t > 0. 

So/it/ion. The mathematical formulation of the problem is given as 

(7-57c) 

After replacing t by (t z) in this result, we introduce it into equation (7-57b) 
to obtain the desired solution as 

T(x, t)= 
 

f(r) 	
exp — • (IT 	(7-58) 

Llra 4a(t ,.- oft — 1) 3' 2  

This result is the same as that given by equation (5-33) which was obtained 
by utilizing the Duhamol's theorem. The temperature T(x, t) can be determined 
from equation (7-58) for any specified form of the function f(t) by performing 
the integration. Sometimes it is easier to introduce the transform f(s) of the 
function f(t) into equation (7-55a) and then invert the result rather than 
performing the integration in equation (7-58). This matter is now illustrated 
for some special cases of function f (t). 

1. f(t)= To  = constant. Then. the transform of f (I) = To  is .1(s) = To/s. 
Introducing this result into equation (7-55) we obtain 

i? 2  T(x,t)= 
 1 DT(x, t) 

Px2 	a at 
in 	0<xtoo, t > 0 	 (7-61a) 

i7.  
— k 	11T = 

t'x 
at 	x = 0, 	r>O 	(7-6(h) 

T = 0 

T = 0 

as 	x —I,  co, 	t > 0 	 (7-61c) 

for 	t = 0, 	in 0 x < 0 	(7-61d) 

The Laplace transform of equations (7-61) becomes 

d 2 	0  

ifx 2  
in 	0 <x<co 	, (7-62a) 

 
— k 	I 
	

at 	x = 0 	 (7-62h) 

T(x, s) = 	" 	 (7-59a) 	
T = o 	 as 	x 	 (7-62c) 

The transform (7-59a) is readily inverted by utilizing Table 7-1, case 42. 
We obtain 

T(x, t) = To  erfc (x//Toit) 	 (7-59b) 

The solution of equations (7-62) is 

T(x,$) = H  

T. 

e-(x),;bi 

s(H a + 
(7-63a) 



F(t) 
a„= n! lim 	lim + r  F(s) 

r • 	 s -,o  
(7-66b) 

The relations given by equations (7-66) indicate that the large values of s in the 

Laplace transform domain correspond to small values of t in the time domain. 

Although the results given above are derived for a 'function F(t), which is a 

polynomial, they are also applicable for other types of functions. Consider, for 
example, the following function and its transform 

F(t).---- cosh kt 	and 	F(s)= 	 (7-67a) 
s2  — k1  

which satisfies the relation 

lim cosh kt = lim s 
(-0  s-' k 2  

(7-67b) 

and this result is similar to that given by equation (7-66a). 
These facts can be utilized to obtain an approximate solution for the function 

F(t) valid for small times from the knowledge of its transform evaluated for large 

values of s as illustrated in several references [16; 4, pp. 82-85; 6; 8]; that is the 

transform of the desired function can be expanded us an asymptotic series and 

then inverted term by term. For example, in the problems of slab of finite 

thickness, the transform of temperature T(-'c, s) contains hyperbolic functions of 

,fira. These hyperbolic functions may be expanded in a series of negative 

exponentials of „/s/a and the resulting expression is then inverted term by term. 

The solution obtained in this manner will converge fast for small time. In the 

problems of a solid cylinder of finite radius, for example, the transform of 

temperature involves Besse! functions of .1s/a. Then, the procedure consists of 

using asymptotic expansion of Besse! functions in order to obtain a form involving 

negative exponentials of .,1;ja with coefficients that are series in (1/, 'Six). The 
resulting expression is then inverted term by term. The solutions obtained in 

this manner will converge fast. Many examples of this procedure is given in 
reference 16. 

Example 741 

A slab. 0 	L, is initially of zero temperature. For times 	U, the boundary 
at x = 0 is kept insulated and the boundary at x = L is kept at constant 
temperature To. Obtain an expression for the temperature distribution-7'(x, t) 
which is useful for small values of time. 

e' 2T(x,t) 	1 a T(x, t) 
e,x2 	a 	at 

in 0 < x < L, r>0 (7-68a) 
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where if h/k. The inversion of this result is available in Table 7-1, case 51; 
then the solution becomes 

T(x,t) 
— erfc 	— 	 H /xt 	 (7-63b) 

T 	 -f a( x, 	.i4at 	 et N.,  

7-5 APPROXIMATIONS FOR SMALL TIMES 

The solutions of time-dependent heat conduction problems for finite regions, 

such as slalis or cylinders of finite radius, are in the form of series which converge 

rapidly for large values of t, but converge very slowly for the small values of t. 
Therefore, such solutions are not suitable for numerical computations for very 

small values of time. For example, the solution of the slab problem given by 

	

1(x, t) 	x) 2 	sin/i x 
= 1 — 	— L -s 11 

" 	• 	• 

	

7.1 	L 	L„. 1 	tin 

converges very slowly for the values of at/L2  less than approximately 0.02. 

Therefore, for such cases, it is desirable to develop alternative forms of the 

solutions that will converge fast for small times. 

When the Laplace transform is applied to the time variable, it transforms the 

equation in t into an equation in s. Therefore, it is instructive to examine the 

values of t in the time domain with the corresponding values of s in the Laplace 

transform domain. With this objective in mind we now examine the Laplace 

transform of some functions. 

Consider a function F(t) that is represented as a polynomial in t in the form 

t 	 [ It 	 ir  2 	 er 

1"( i) 	E aii. = ao  + a, + 	+ ••• ai, 
it=0 	k! 	 11 	2! . 	a! 

(7-65a) 

Since the function has only a finite number of terms, we can take its Laplace 

transform term by term to obtain 

E a 	=a
" 	

, 	• •• .1. a„ 
I  

= 	S 	
stl 

according to the transform Table 7-1, case 3. 

The coefficients a, and an  may be determined from equation (7-65a) and 

(7-65b) as 

a, = lim F(t) = lim sF(s) 	 (7-66a) 
r--0 

where 	fi„ = 	(7-64) 

t7-65h) 

APPROXIMATIONS FOR SMALL TIMES 	277 



278 	THE USE OF LAPLACE TRANSFORM 

OT 
= 0 	 at 

(X 

T = To 	 at 

7' 	0 	 for 

The Laplace transform of the equations 

	

d'Av,$) 	s 
, 	— • T(x, s) = 

rix- 	x 

(VT 
=C)  

T0 

The solution of equations (7-69) is 

s) enslitx = 
Tu 	s cosh 

The inversion of this transform in this 
is slowly convergent for small values of 
for very small times we expand this 

negative exponentials of ,./.5•'/ as given 

t(x,$) 	ex. I, 	e  -.r, 5,5 	. 

To 	s[e1  

[e 	e -11.4 
S 

last term is expanded in binomial 

71X. S) 	I-IL- 	e-  IL  + Als-51 
To 	s • 

1 	4  = 	E (__ ire  -lir' + 2.1 -AIN S . 3 

Srl-,0 

The inversion of this transform is available 

	

.v = 0, 	t > 0 

	

x=L, 	t > 0 

	

i - 0, 	i n 	1) 

(7-68) is 

0 	in 	0 ...5x 

	

at 	x = 0 

at 

Is/a) 

1/ 'v 

form yields a solution 
time. To obtain a solution 

transform as an asymptotic 
below. 

[ 	e  

series 

	

E (— 	s 

„=0 
 

+ 1   
( .— I reIW 4-  2,14*.; 

S I3 =  0 

in Table 7-1, case 

(7-68b) 

(7-68c) 

I. 	(7-68d) 

L 
(7-69a) 

(7-69b) 

(7-69c) 

(7-70) 

for 	t) which 
applicable 

series in 

1 (7-71) 

; 
(7-72) 

42. Inverting 
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term by term we obtain 

( 	irerre(L(1 + 2n) + x) T(x, t) 	co 	
4. 2n)  — x) 	::', 

To 	— no(-1r erfc (MI 	
+ ,.., 

	

Oat 	n=0 	 Oat 	.1 
(7-73) 

which converges rapidly for small values Of 1. 

Example 7-12 

	

A slab, 0 c x 	L, is initially at uniform temperature To. For times t > 0, the 
boundary surface at x = 0 is kept insulated and the boundary at x = L dissi-
pates heat by convection into an environment of zero temperature. Obtain an 
expression for the temperature distribution T(x, t) which is useful for 'small 
times. 

Solution. The mathematical formulation of this problem is given as 

02  T(x, t) 	I OT(x,t) 	
in 	0 <x<L, 	t>0 	(7-74a) 

are 	at 

aT =u 	 at 	x=-0, 	t>0 	(7-74b) 

OT 
• 	HT=0 	at 	x = L, 	t > 0 	(7-74c) 
Ox 

T = To 	 for 	t = 0, 	in 	0 ‘..x 	L 	(7-74d) 

The Laplace transform of these equations gives 

	

d 2 .11X, 	S Toc, 	= 	To  
in 	0<x<L 	(7-75a) 

	

dx 2 	Ix 	 f)f 

	

0 	 at 	x = 0 	(7-7511) 
dx 

dr 

	

-I- 	= 0 	 at 	x = L 	(7-75c) 
dx 

The solution of equations (7-75) is 

7(.x, s) 	1 	H 	 cosh(x 
(7-76) 

T, 	s 

Of 	a 	 a 
s[Isinh(LA H cosh(L1)] 



T(r, t) 	b 	h(1 + 2n)- r 	b(1+2n)+ r  
	- 1 - E erfc 	 erfe,  

To 	r 0 LTat 	 .14at 

This solution converges fast for small values of times. 

(7-85) 
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Since the solution is required for small times, we need to expand this transform 
as an asymptotic series in negative exponentials and then invert it term by 
term. The procedure is as follows: 

T(r, t) = 0 

T(r,t)= To 

Arl'KUAIMAI IUIVa r Ur. .,v,/1.I..,. / mica 

at 	r = h, 	t > 0 	(7-80b) 

for 	t= 0, 	in 0 r E b (7-80c) 

T(x,$) 	 ex,•.sla 	sti 	 The Laplace transform of equation (7-80) gives
H 

TO 	s 	s[isia(eL̀ Is1' 	 + e-L"')] 
d2  - s - 	To  

- 	+ 	 H 	, sia 	- 	 - — (rT)- T(r, s) = - 	in 	0 r b 

= - 

	

1+ 	e  _I., xrs 	(7-77) 	 r dr2  
s s 	.11 + .1s/a 	L 	H + visia 

Expanding the last term in the bracket in binomial series we obtain 
s) = 0 	 at 	r = b 

(7-81a) 

(7-81b) 

21.11, 3/2 T1X, Si 1 	H e - --o,c5 e- cz.÷ 

To  s s 	H + Nis7 
	(- 	 j:55 

	

rr =0 	R

H_ 

+

- sloc)" 

(7-78a) 

or 

T(x,$) 	I 	H 	 e-11.+J ►s.i5 
•  

To 	s s 	H + /six 

HH + re- CIL 	 e. 	 (7-78b) 
N 	+ N/S/04}2  

The first few terms can readily be inverted by the Laplace transform Table 7-1, 
case 1 and 51; we obtain 

The solution of equation (7-81) is 

	

f(r,$)1 	b sinh (rv's/a) 

	

=  	
To 	s 	sinh (b.,./sla) 

(7-82) 

To obtain a solution that converges rapidly for small times, we expand this 
transform as an asymptotic series in negative exponentials, and then invert 

term by term. The procedure is as follows: 

it. , .0 b 	Ala 

= - 
To 	S r 	- 

• b 1 	-48 	 - +1-).„ sfa] [ 	e- 
s rs 

T(x,t)  
-. -er fc 

L - xo-.1 ,11=,.   / 	L - x 
= I - 	—_ e 	erfc H, at +-.= 

7 0 	 v
4
a  	 N,4 

• 

i

•-• erre-- - e"r2.+x' +"3'1 -erfc(H / xt + - 	- ) + • • • N, 	 (7-79) 	 fir s) 	1 	b 1 	 -- [ L + x 	L + x 

14c
erfc 
	 v  Ltat 

	

;- - 	lb - r),STx _ e- (6 -Fr), sil 	''. e -2.bn„'.;,,2 
To 	s r s 	 ri = o 

This solution converges fast for small times. 

S = 0  

1 	b •'• 11 	 1 
c -01 l i 2n1 -rj., Sfa _ . e  - IN 1 + 2+,11 r]..stx 

s 	r„, 

. 

s 

This transform is readily inverted by utilizing the Laplace transform Table 
7-1, case 42; we find 

I 82  
( 	

t 
r- 	T) = - 	

) 	
in 	0--5r<b, t>0 

r are 	cc at 

The last term in the bracket is expanded in binomial series; we obtain 

Example 7-13 

A solid sphere of radius r = b is initially at a uniform temperature T11. For 
times t 0, the boundary surface at r= b is kept at zero temperature. Obtain 
an expression for the temperature distribution T(r, t) which is useful for small 
times. 

Solution. The mathematical formulation of this problem is given as 

(7-80a) 

(7-83) 

(7-84) 

r 
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PROBLEMS 

7-1 A semiinfinite medium, 0 x < co, is initially at uniform temperature To. 
For times t > 0 the boundary surface at x = 0 is maintained at zero tempera-
ture. Obtain an expression for the temperature distribution T(x, t) in the 

medium for times t > 0 by solving this problem with the Laplace transfor-
mation. 

7-2 A semiinfinite medium, 0 x < co, is initially at a uniform temperature 
To. For times t > 0 it is subjected to a prescribed heat flux at the boundary 
surface x = 0: 

k DT = fo  = constant 
ex 

Obtain an expression for the temperature distribution T(x, t) in the medium 
for times t > 0 by using Laplace transformation. 

7-3 A semiinfinite medium, 0 x < co, is initially at uniform temperature To. 

For times t > 0, the boundary surface at x = 0 is kept at zero temperature 
while heat is generated in the medium at a constant rate of go  W/mA. 
Obtain an expression for the temperature distribution T(x, t) in the medium 
for times r > 0 by using Laplace transformation. 

7-4 A slab, 0 x L, is initially at uniforn; temperature Tn. For times t > 0, 
the boundary surface at x = 0 is kept insulated and the boundary surface 
at x = Lis kept at zero temperature. Obtain an expression for the tempera-
ture distribution T(x, t) in the slab valid for very small times. 

7-5 A slab, 0 x 4 L, is initially at zero temperature. For times t > 0, heat is 
generated in the slab at a constant rate of go  W/m3  while the boundary 
surface at x = 0 is kept insulated and the boundary surface at x = L is 
kept at zero temperature. Obtain an expression for the temperature 
distribution T(x, t) in the slab for very small times. 

7-6 A slab, 0 x L. is initially at zero temperature. For times t > 0, the 
boundary surface at x = 0 is kept insulated while the boundary surface at 
x = L is subjected to a heat flux: 

3T 
k = f c, = constant 

dx 

Obtain an expression for the temperature distribution T(x, 1) in the slab for 
very.small times. 

7-7 A solid cylinder, 0 4 r b, is initially at a uniform temperature To. For 
times t > 0, the boundary surface at r = b is kept at zero temperature. 
Obtain an expression for the temperature distribution T(r, t) in the solid 
valid for very small times. 

7-8 A solid cylinder, 0 r -4 b, is initially at a uniform temperature To. For 
times t > 0, the boundary.  surface at r = b is subjected to convection 
boundary condition in the form 

DT 
--+ HT=0 
6r 

Obtain an expression for the temperature distribution T(-, t) in the solid 
valid for very small times. 

7-9 A solid sphere, 0 r h, is initially at a uniform temperature To. For times 
t > 0, the boundary surface at r = b is kept at zero temperature. Obtain an 
expression for the temperature distribution T(r, t) in the solid valid for very 
small times. 

at x 0 

at x=L 

at r = h 
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k 

8 
ONE-DIMENSIONAL 
COMPOSITE MEDIUM 

The transient-temperature distribution in a composite medium consisting of 

several layers in contact has numerous applications in engineering. In this 

chapter. the mathematical formulation of one-dimensional transient heat con-

duction in a composite medium consisting of M parallel layers of slabs, cylinders, 

or spheres is presented. The transformation of the problem with nonhomogeneous 
boundary conditions into the one with homogeneous boundary conditicins is 

described. The orthogonal expansion technique is used to solve the homogeneous 

problem of composite medium of finite thickness; while the Laplace transformation 
is used to solve the homogeneous problem of composite medium of infinite and 

semiinfinite thickness. 
The Green's function approach is used for solving the nonhomogeneous 

problem with energy generation in the medium.  
The reader should consult references 1-13 for the theory and the application 

of the generalized orthogonal expansion technique and the Green's function 
approach in the solution of heat conduction problems of composite media. The 

use of Laplace transform technique in the solution of composite media problems 

is given in references 14-17 and the application of the integral transform technique 

and various other approaches can be found in the references 18-38. 

8-1 MATHEMATICAL FORMULATION OF ONE-DIMENSIONAL 
TRANSIENT HEAT CONDUCTION IN A COMPOSITE MEDIUM 

We consider a composite medium consisting of M parallel layers of slabs, 

cylinders, or spheres as illustrated in Fig. 8-1. We assume the existence of contact 

conductance h, at the interfaces x = xi, i= 2. 	M. Initially each layer is at a 

284 

Hg.8-1 Al-layer composite region. 

specified temperature 7',(x, = FAA in x, < x < 	i = 1, 2, 3, ... , 144, for t = 0. 

For times t > 0, energy is generated in each layer at a rate of gi(x,t), Willa', in 

< x < 	1, = 1, 2,3,..., M, while the energy is dissipated with convection 

from the two outer boundary surfaces x = x, and x = 	+1, into ambients at 

temperatures f,(t) and f at + ,(0, with heat transfer coefficients 111 and hZ 
respectively. 	 . - . - 	  

The mathematical formulation of this heat conduction problem is given as 

follows. 
The differential equations for each of the M layers are 

I 0 ( 	07;) r17;(x, tl  
XP 	L  gi(X1 = 	 ill 	< X < / 	> 

X P  UX 	1.J.X 
(8-1) 

where 

0 slab 

p = I cylinder 

t 2 sphere 

Subject to the boundary conditions 

— kiK 
OT, 	

h* T, 	11'1' f,(t) 
ex 	I  , eT. 1 Ki -1,

1
4+,(Ti—Ti.1) 

(ix 

kM
Li  

= ht i fm +1(0 at the outer boundary, 
ax 	 t> 0 

at the outer boundary 
x =x,, 	t > 0 (8-2a) 

(8-2b) 
at the interfaces 

t> 0 (8-2c) 

(8-2d) 
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and the initial conditions: 

t) = F;(x) 	for 	t = 0, in Ni < X < Xi+  1, 1= 1, 	M 	(8-3)  

subject to the boundary conditions 

kt 
&Pax)

+ 01 (x)= hr 	at 	x =x i  
dx 

(8-5b) 

where T(x, t) is the temperature of the layer i, i = 1,2,..., M. The problem contains 
M partial differential equations, 2M boundary conditions and M initial condi-
tion s. hence it is mathematically well posed. 

In order to distinguish the coefficients associated with the boundary conditions 
for the outer surfaces from those k and li for the medium and interfaces, an 
asterisk is used in the quantities /it, ht.+ 1 , k f, and kt, appearing in the boundary 
conditions for the outer surfaces. The reason for this is that these quantities will 
be treated as coefficients, so that the boundary conditions of the first and second 
kind will be obtainable for the outer boundary surfaces by setting the values of 
these coefficients properly. 

	

, d0; 	41+  
=iti+1 

	

dx 	dx 

d0. 	, 
 

dx 1. 
J 

at the interfaces 

• i = 1, 2,...,M — 1 	(8-5d) 

)< If 	 + h* Al = 0 Al+ 1 dx 
at X = +1 (8-5e) 

8-2 TRANSFORMATION OF NONHOMOGENEOUS 
BOUNDARY CONDITIONS INTO HOMOGENEOUS ONES 

It is more convenient to solve the problems with homogeneous boundary 
conditions than with nonhomogeneous boundary conditions. The problem of 
liitn cpendyn-t—hea t conduction for—a—M—layer—composite—medium—Mth heat  
generation and nonhomogeneous outer boundary conditions can be transformed 
into a problem with heat generation but homogeneous boundary conditions by 
a procedure similar to that described in Chapter 1, Section 1-7 for the single-layer 
problem. 

The problem defined by equations (8-1)—(8-3) has nonhomogeneous boundary 
conditions at the outer surfaces. In order to transform this time-dependent 
problem into a one with homogeneous boundary conditions, we consider Ti(x,t) 
constructed by the superposition of three simpler problems in the form 

Tax, = Oax, t) + Oi(x),Ti(t) Ifri(x)fAr +1(0 

in 	xt < x < xi+ 	= 1,2 ..... M, for t > 0 (8-4) 

Where the functions 0,(x). ifr,(x), and 0,(x, t) are the solutions of the following 
subproblems: 

1. The functions (/),(x) are the solutions of the following steady-state problem 
for the same region, with no heat generation, but with one non-homo-
geneous boundary condition at x = x1 . 

dx 	dx 
d 	

in 	x, <x < 	1, 2.... , M 	(8-5a)  

2. The functions t//,(x) are the solutions of the following steady-state problem 
for the same region, with no heat generation, but with one non-homo-
geneous boundary condition at x = XM+ 

TA . P 	
=0

eTcj 
d 

x

dC\ 	
in 	 i=1,2,...,M 

	
(8-6a) 

subject tTrihc boundary conditions 

- dx 

der 	
at 	x = x, 

• 

- Kj-  = 	1LIP 	I+ 
L  &PI „./.

) 

dx 	 at the interfaces 
X X.  

, dip = t 	&Pt+ 
	

i=1,2,...,M-1 
dx 	dx 

dip , 

dx 
	+ 1 — m + h* 
	

X = XM 1 

3. The functions 0,(x, t) are the solutions of the following time-dependent heat 
conduction problem for the same region, with heat generation, but subject 
to homogeneous boundary conditions 

1 	( 	DO; 	 .00;(x, t) 
X r  fi  .V 	(IX 	 Pi 

in 	x, < x < xi+  ,, i = 1, 2 	M, for t > 0 	(8-7a) 

(8-6b) 

(8-6c) 

(8-6d) 

(8-6e) 
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where 

	

df i 	(1.i5f (1)1 gr(x,t) , - gi(x,t)- thi(x) 	+ OA)  

	

k, 	 dt 	dt 

Subject to the boundary conditions 

(10 , 
le; +101 =0 

ax 

001  
ki — = 111-1-1(01 -0f+i) 	 (8-7c) 

lax 	 at the interfaces 

, au. 	0°1+ 	for 	t > 0 (8-7d) 
ax 	ax 

k* ax  + h* Om  =0 	at 
	X = Xm 	1 >0 

	
(8-7e)  

and k 2  be the thermal conductivities, and a, and a, the thermal dinsivities for 
the first and second layer, respectively. Initially, the first region is at tempera-
ture F ,(x) and the second region at F2(x). For times t > 0 the boundary surface 
at x = 0 is kept at temperature f, Wand the boundary at x = h dissipates heat 
by convection, with a heat transfer coefficient lq into an ambient at tempera-
ture f 3(t). By applying the splitting-up procedure described above, separate 
this problem into (i) two steady-state problems each with one nonhomo-
gencous boundary condition, tincl (i i IC11( P1 1111.11/ with 
homogeneous boundary conditions and the initial condition. Figure 8- 2 slums 
the geometry coordinates and the boundary conditions for the original problem. 

Solution. The mathematical formulation of this problem is given as 

01'2  a TAX, t) 
a2  

ax2  = at 
in 	a < x < b, t > 0 	(8-8b) 

subject to the boundary conditions 

at 	X 	 t > 0 (8-7b) 

02T, aT,(x,t) 
t  > 0 	(8A)  

 

  

and the initial conditions 

TO, 0 =fiN 
	

at 	x = 0, t > 0 • 	(8-8c) 

;(x, 	- [OA)] 101 + i(x),I.  + 1(0) a Fr (x),  

for 1=0, in x,<x<xii. 1, i= 1.2, 	M 	(8-70 

The validity of this superposition procedure can readily be verified by introducing 
the equation (8-4) into the original problem given by equations (8-1)-(8-3) and 
utilizing the above three subproblems defined by equations (8-5)-(8-7). 

Example 8-1 

A two-layer slab consists of the first layer in 0 x s a and the second layer in 
a x h, which are in perfect thermal contact as illustrated in Fig. 8-2. Let k, 

Fig. 8-2 Two-layer slab with perfect thermal contact at the interface. 

T, (x, t) = T2(x, t) 	 at 	x a, t>0 	(8-8d) 

aTi 	T2 
k 1 - = k,— 	 at 	x= a, t > 0 	(8-8e) 

ax 	ax 

aT 
1k1- 

ax 
 + T2 = /143̀ f3(t) -! 
 

at 	x = b, t > 0 	(8-81) 

and the initial conditions 

T,(x,t)= F ,(x) 	for 	1 = 0, 0 < x < a 
	

(8-8g) 

T2(x, t) F 2(x) 	for 	t = 0, a < x < b 
	

(8-8h) 

	To-tr-ansform t his-problenirwe-construct-t he-solution-0 	i-=--I,  2, by tl 
superposition of the following three simpler problems in the form 

t)= 0,(x,t) + (iii(x)f (t)+ C(x)f 3(t) 	in 	x, < x < 	i 1,2 

(8-9) 

where x, = 0, x2  = a and x3  --- b. 
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The functions Oi (x), (//i(x), and 0,(x, t), for i =- 1, 2 are the solutions of the 
following three simpler problems, respectively. 

1. The functions C(x), i = 1, 2 satisfy the steady-state heat conduction 
problem given as 

(PC06 = 0  
in 	0 < x < a 	(8.10a) 

dx2  

d20. (v) 
in 	a < x < b 	(8-10h) 

dx2  

subject to the boundary conditions 

01(x) = 1 	 at 	x = 0 	(8-10c) 

0 ( (x) = 02(x) 

	

/ 	

(8-I 0d) 
at the interface  

x = a 
k 41  — k 442 	 (8-10e) i 	- — d,,c 	2 -dx  

(10 
k 2 	+ if * fk .=,: 0 	at 	x = b 	(8- I on 2 dx 	.1 2 

2. The functions tit i(x), i = 1, 2 satisfy the steady-state heat conduction 
problem given as 

i(x) = 0  
in 	0 < x < a 	(8110) 

dx2  

d202(x) 

	

= u 	in 	a < x < b 	(8-1 1 b) dx 2 
 

subject to the boundary conditions 

,(x) = 0 	 at 	X = 0 	(8-11c) 

((x) = 02(x) 	 (8-11d) 
at the interface 

dib 	 x = a 

dx 
k 	- = k 2 

dx 	
(8-11e) 
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3. The functions 01(x, t), i = I, 2 are the solutions of the following homo-
geneous problem 

	

0201 	50,(x, t) 
= 
 at 	

+ er(x, t) 	in 	0 < < a, t > 0 (8-12a) 
dx 2  

	

0202 	.002(x, I) 

	

cc2
dx 	Dt 	

-I-  g,(x. n 	in 	a < x < b, t> 0 	(8-12b) 
2   

	

where, gr(x, t) 	[¢9,(x) dfildt k ,;(x) dAldt]. i = 1, 2 
Subject to the boundary conditions 

0,(x, t) = 0 
	

at 	x=0, t> 0 	(8-12c) 

0,(x, t)= 02(x, t)} 
at the interface 	

(8-12d) 
 

x=a, t>0 

2 
1(42, 

t9 + h302 = 0 	at 	x = b 	 (8-12f) 
ax 

and the initial conditions 

01(X, t) = Fi (X) — 8(0)0 I (X) - f3(0)01(x) = Ft(x) 

	

for 	t = 0, 	in 	0‘..x<a 	(8-12g) 

02(x, = F 2(x)— f 	2(x) — f 3(0)0 2(x) = Ft(x) 

	

for 	t = 0, 	in 	a..‹..x<b 	(8-12h) 

The validity of this superposition procedure can be verified by introducing 
the transformation given by equation (8-9) into the original problem (8-8) and 
utilizing the definition of the subproblems given by equations (8-110)—(8-12). 

Clearly, the time-dependent probleM (8-12) has homogeneous boundary 
conditions. 

Solving Steady-State Problem of M-Layer Slab, Cylinder, or Sphere 

We consider a steady-state problem with no energy generation, one nonhomo-
geneous boundary condition of the type given by equation (8-5), but for a M-layer 
slab, cylinder, or sphere. The mathematical formulation is given by • 

, 00, ,
2  0

02  
k 2 ax Ox 

(8-12e) 

fr 
kth + Ii*tfr 	b3* 	at 	x = b 	(8-11f) 2 dx 	3 2   

d 0  
dx 	dx j 

in 	xi  <x <• j4. 1, i=1,2,...,M 	(8-13a) 
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Fig. 8-3 A f-layer composite Ng oil. 

spheres in contact as illustrated in Fig. 8-3. For generality we assume contact 
resist a n ce-a-t-t-he-i ntef faces-and-cotweetion-from-ih e-ou ter botin-dari cs7-Let-h-i- be 	 
the arbitrary film coefficient at the interfaces x = xi, i = 2, 3,..., M, and h7 and 

the heat transfer coefficients at the outer boundaries x = x1  and x = 
respectively. Each layer is homogeneous and isotropic and has thermal properties 
(i.e., p, C p, k) that are constant within the layer and different from those of the 
adjacent layers. Initially each layer is at a specified temperature T,-(x, t)=Fi(x), 
in xi  < x < 	i= 1, 2,..., M. For times r > 0, heat is dissipated by convection 

from the two outer boundaries into environments at zero temperature. There is 
no heat generation in the medium. We are interested in the determination of the 
temperature distribution Ti(x, 1), in the layers i= 1,2 	M, for times t > O. The 
mathematical formulation of this heat conduction problem.is given-by. 	- 

ar 
- -- + hTi  =0 

Ox 	I  

a — T, 
ni+L(Ti— T1,1) ax 

OT, 	OT, 
ox 	Ox 
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subject to the boundary conditions 

dOi(x) 
— 	+ hl'ep,(x)= hr 

dx 

= 	0 1-4,  if+1 	i+i) 
dx 

(141• 	(ICa 1 
ki 	= 	+ 

dx 	• 	dx 

kM 
dx 

where 

0 	slab 

P =f 1 	cylinder 

at 	x = x, 

at the interfaces 

= 	F 	• 
1,2,...,M— I 

(8-1 3b) 

(8-13c) 

(8-13d) 

2 	sphere 

• at' 	•—• xm 	i (843t) 

(8-13f) 

1 

The solution of the ordinary differential equation (8-13a), for any layer i is given 

in the form 

Slab: 	 Af + Bix 

Cylinder: 	di,(x)= Ai+ B, In x 

B, 
Sphere: 	• ciii(x)= A i + — 

x 

a (
YA aT

aTjx, 
p ax 	ax ) in 

	
< x < 	I , 

for 	t > 0, i = 1,2,...,M 	(8-15) 

(8-14a) 

(8-14b) 

(8-14c) where 

The solution involves two unknown coefficients A l  and B, for each layer i; then, 

for a M-layer problem, 2M unknown coefficients are to be determined. Substi-

tuting the solution given by equations (8-14) into the boundary conditions 
(8-13b,c,d,e), one obtains 2M equations for the determination of the 2M unknown 

coefficients A ,, B. for = I, 2, ... , M. 
The solution of the homogeneous transient heat conduction problems of the 

type given by equations (8-12), but for the M-Iayer medium, is described in the 

next section. 

8-3 ORTHOGONAL EXPANSION TECHNIQUE FOR SOLVING 
M-LAYER HOMOGENEOUS PROBLEMS 

We now consider the solution of the homogeneous problem of heat conduction. 

in a composite medium consisting of M parallel layers of slabs, cylinder, or 

C 

{L0 slab 

p = 1 cylinder 

2 sphere 

subject to the boundary conditions 

at the outer boundary x=x,, for t > 0 (8-16a) 

at the interfaces x = xi., 1, 

,(8-16b) 

for- 	->-0- 	 (1--16e) 



at the outer boundary x=x, . 	(8-22n) 

at the interfaces x = xi +1, 
where 
= 1, 	M 1 

(8-22h) 

(8-22c)- 
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number of discrete values of the eigenvalues Pi <P2 < < <••• and the cor-
responding eigenfunctions th„. 

The boundary conditions for equations (8-21) are obtained by introducing 
equation (8-19a) into the boundary conditions (8-16); we find 

07-Af  
k* 	+ hit 4. I  Tai = 0 

and the initial conditions 

at the outer boundary x = Xm 1, for t > 0 

(8-16d) 

'/;( vi) 	1.*,(‘) 	for 	 in 	 I . 	I   Al (8- 17) 

The finite value of interface conductance 	in equations (8-16b) implies 
that the temperature is discontinuous at the interfaces. The boundary conditions 
(8-16e) represents the continuity of heat flux at the interfaces. 

When the interface conductance hi+ I. co. the boundary condition (8-16b) 
reduces to 

, 
— " -I- 14'0 hi= 0  

d L  Oi
n  - rui 	= n14- 	

,,II,,
in — 	1 ad 

dx 

difrn 	 „ 
Hi 	= Ki+ 1 	 

tlX 	 dx 
Ti = Ti+ at 	x = x,+1, i = 1, 2, 	, M 1 for t > 0 	(8-18) 

which implies the continuity of temperature or perfect thermal contact at the 
interfaces. 

To solve the above heat conduction problem, the variables are separated in 
the form 

Ti(x.t) = i(x)r(t) 	 (8-19a) 

When equation (8-19a) is introduced into (8-15) we obtain 

k* 	h*14 +1 Mn = 0 	at the outlier boundary x 	 (8-22d) 
dx 

Equations (8-21) subject to the boundary 'conditions (8-22) constitute an eigen-
value problem for the determination of the eigenvalues flu  and the corresponding 
cigenfunction tfr in. 

The eigenfunctions gii„ of the cigenvalue problem defined by equations (8-21) 
and (8-22) satisfy the following orthogonality relation [13] 

1 	I 	d 	dtfr 	I Mt)  P 	 p2 
ifri(x) dx 	dx 	lit) .dt 

(8-19b) 
ki 	xi • s 
-- 	

xPtil in(x)tiri,.(x)dx = 

	

1= 1 1; x= x, 	 Nn 

for 	n r 

for 	n 
(8-23a) 

where the norm N„ is defined as 

mk 	2  
N„= E 	x,o,„(x)x 

I= 1 xj x j  

(8-23b) 

and iki„,01,. are the two different eigenfunctions. 
The solution for the time-variable function F(t) is immediately obtained from 

equation (8-20) as 

e 	 (8-24) 

and the general solution for the temperature distribution Ti(x,t), in any region 1, 
is constructed as 

Tjx, = E c„e 	i„(x), 	i= 1, 2 ..... M 	(8-25) 
n=1 

where [1 is the separation constant. We recall that, in separating the variables for 
the case of a single-layer problem, the thermal diffusivity a was retained on the 
side of the equation where the time-dependent function r(t) was collected. In the 
case of composite medium, ; is retained on the left-hand side of equation (8-I9b) 
where the space dependent function iit i(x) are collected. The reason for this is to 
keep the solution of the time dependent function r(t) independent of xi  since it is 
discontinuous at the interfaces. 

The separation given by equations (8-19b) results in the following ordinary 
differential equations for the determination of the functions fit) and CW.4 

dr(t) 
- 	fl,! 1-(t) = 0 	for 	t> 0 	 (8-20) 
tt 

i/X 	dx 
	P:•?2 	= 0 	in 	x;  <x < Xi, , i — 1. 2 	 Al 	(8-21) 

where iit i„ tpi(fl„,x). The subscript n is included to imply that there are an infinite where the summation is over all eigenvalues flu. This solution satisfies the 
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differential equations (8-15) and the boundary conditions (8-16). We now constrain 
this solution to satisfy the initial conditions (8-17), and obtain 

	

F1(x) = E c,ohn(x) 
	

in 	< x < 	1= 1,2..... M 	(8-26) 
n = I 

The coefficients c„ can be determined by utilizing the above orthogonality relatiOn 
as now described. 

We ()penile on both sides of equation (8-2(1) by the operator 

k, fx"' 
— 	xPlfr „.(x)dx 
ar 22, 

and sum up the resulting expressions from i = 1 to M (i.e., over all regions) to 
obtain 

" k, 	 k, fx'+ E — 	ApaxwAx)dx= E ca, E 	xivir(x)odx)dx] (8-27) 
i=1 (Xi x, 	 rr = 1 	i= I 0=I 

In view of the orthogonality relation (8-23), the term inside the bracket on the 
right-hand side of equation (8-27) vanishes for n r and becomes equal to N„ for 
n = r. Then the coefficients c, are determined as 

1 of ki  ft'. 
Cn  = - E - 	xPlit,„(x)F,(x)dx 	 (8-28) 

	

Nn 	cc, x, 

Before introducing this result into equation (8-25), we change the summation index 
from i to j, and the dummy integration variable from x to x' in equation (8-28) 
to avoid confusion with the index i and the space variable x in equation (8-25). 
Then, the solution for the temperature distribution Ti(x, t) in any region i of the 
composite medium is determined as 

2 	1 	k- cf. ' 
Ti(x, t) = 	 E 	x'Pt,12 .„(x')F;(x') dx' 

N„ 	1= 	.•=x) 	j  

in 	xi  < x < 	,, 	i=1,2,...,M (8-29a) 

where the•norm N, is defined as 

• 	M 	k, xi" 
N„= E —4  j

.  

i= i ai 
x'"kii2„(xldx' 

xi  
(8-29b) 

and 

0 	slab 
p = 	1 	cylinder 

2 	sphere 
(8-29c) 

An examination of this solution reveals that, for M = I, equations (8-29) reduce 
to the solution for the single-region problem considered in the previous chapters 
if we set /1,,2  = a.42  where cc is the thermal diffusivity. 

Green's Function for CiimpcisiteTtleaium 

The solution given by equation (8-29) can be recast to define the composite 
medium 'Green's function. That is, the solution (8-29a) is rearranged as 

T,(x,r)= 	c" 	e 11,1,1  -1-0 ,h(x)tP j„(x')ix'PF, (x')dx' 
J. 	off  n 	N 

notation as 

	

Ti (x,1)= E 	Ix', r)I, = 0Fi(x') d x' 	(8-31a) 

	

.i=1 	.2•=x1  

where )(I' is the Sturm-Liouville weight function and Go(x, fix', r)1,., (, is defined 
ns 

2 t k 
G ri(x, 	=0 = E 	Obifx/IPJ, ,(x') 

n = 1 	Nn  Cti 

0 slab 

1 cylinder 
2 sphere 

in the region x;  < x < 	I , = 1, 2 ..... M. Thus G,i(x, r I , r)l, = ,0  represents the 
Green's function evaluated for r = 0 associated with the solution of one-
dimensional homogeneous composite medium problem defined by equations 
(8-15)-(8-17). 

To solve the nonhomogeneous composite medium problem, such as the one 
with energy generation, the Green's function Go(x, tIx', r) is needed. It is obtained 
from equation (8-31 b) by replacing r by ft r). Thus the Green's function for the 
problem becomes 

1 k 
G kr(x, ( 	= E 	P4" — cl r„(x)tii J.(xl 

N „ 
(8-32) 

in the region x1  e x 	1, i = I, 2, ... , M. 
The use of Green's function in the solution of nonhomogeneous one-dimen-

sional composite medium problems will be demonstrated later in this chapter. 

P= 

(8-31b) 

(8-31c) 

C. 

in xrcx<x,...,; i= 	..... M 	 (8-30) 

This result is now written more compactly, by introducing- the Green's function • • 
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i 

C 

8-4 DETERMINATION OF EIGENFUNCTIONS 
AND EIGENVALUES 

The general solution 1,G,„(x) of the eigenvalue problem given by equations (8-21) 
and (8-22) can he written in the form 

IhJx) = 	Bi„0;„(x) 	In " 	< < xi4 	= 1.2 	 Al (8-33) 

where (pi„(x) and 0,„(x) are the two linearly independent solutions of equations 
(8-21) and A,„, B, are the coefficients. Table 8-1 lists the functions 0,„(x) and (lax) 
for slabs, cylinders, and spheres. The heat conduction problem of an M-layer 
composite medium. in general, involves M solutions in the form given by equation 
(8-33); hence, there are 2M arbitrary coefficients, A, and = 1,2 M to be 
determined. The boundary conditions (8-22) provide a system of 2M, linear. 
homogeneous equations for the determination of these 2M coefficients: but, 
because the resulting system of equations is homogeneous, the coefficients can 
be determined only in terms of any one of them (i.e., the nonvanishing one) or 
within a multiple of an arbitrary constant. This arbitrariness does not cause any 
difficulty, because the arbitrary constant will appear both in the numerator and 
denominator of equation (8-29) or equation (8-31); hence it will cancel out. 
Therefore, in the process of determining the coefficients ,4,„ and B,„ from the 
system of 2A1 homogeneous equations, any one of the nonvanishing coefficients, 
say, A b., can he set equal to unity without loss of generality. 

Finally, an additional relationship is needed for the determination of the 
eigenvalues 13,.. This additional relationship is obtained from the requirement 
that the above system of 2 M homogeneous equations has a nontrivial solution, 
that is, the determinant of the coefficients A i„ and B„ vanishes. This condition 
leads to a transcendental equation for the determination of the eigenvalues 

	

11<fl2<133<--<13.<.-- 
	 (8-34) 

TABLE 8-1 Linearly independent Solutions 0,(x) and 0,-„(s) 
of Equation (8-21) for Slabs, Cylinders, and Spheres 

Geometry 	 v) 	 a..( -ti')  

Clearly, for each of these eigenvalues there are the corresponding set of values 
of A in  and BM, hence of the eigenfunctions tP,,,(x). Once the eigenfunctions kti,„(x) 
and the eigenvalues fin  are determined by the procedure outlined above, the 
temperature distribution Ti(x, t) in any region i of the composite medium is 
determined by equations (8-29). 

Example 8-2 

Consider transient heat conduction in a three-layer composite medium with 
perfect thermal contact at the interfaces and convection at the outer boundary 
surfaces. Give the eigenvalue problem and develop the equations for the 
determination of the coefficients A,„, B, of equation (8-33) and the eigenvalues 

131<fl2<fl3<•--<fl.<-• 

Solution. The eigenvalue problem for this transient heat conduction is similar 
to that given by equations {8-21) and (8-22), except M = 3, and the interface 
conductances are taken as infinite: 11,—* oo,113  —b. co. Then, the eigenvalue 
problem becomes 

x° dx 	dx 	a, 

1 d xpdukin + 13,,2  ( 	
= 	in 	xi <x<xi”, i= 1,2,3 (8-35) 

Subject to the houndary conditions, 

— dkbi h*tit in  = 0 	at the outer boundary x = xi   dx 
	 (8-36a) 

at the interfaces x = x1+ 1, 	(8-36b) 

dtfri 	ili+  ki 	= ki+ th 	

(8-36c) 
dx 	dx 	

= 1, 2 
 

dx 	
3„.= 0 141,11 	at the outer boundary x = x4 	(8-36d) 

where the eigenfunctions /P1„(x) are given by 

(Pax) = in411.(x) + B4O,(x), i = 1, 2, 3 	(8-37) 

and oin (x) and 01,,(x) are as specified in Table 8-1. 
The first step in the analysis is the determination of the six coefficients 

A with i = 1, 2. 3. Without loss of generality, we set one of the nonvanishing 
coefficients, say, A,„ equal to unity: 

A,„ = 1 	 (8-38) 

Slab 

Cylinder 

Sphere 

Win = 	l.n 



C 

C. 

c  

( • 

C. 
C 
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The eigenfunctions ifr i„(x) given by equation (8-37) with A,,, = 1 are introduced 
into the boundary conditions (8-36). The resulting system of equations is 
expressed in the matrix form as 

X, 

In 

In 

Y, 

O ln 

k1(11,, k242n  

0 	0 

— 15 2n 	— 02„ 

—k 

0 

0 

0 

0 

0 
0 

— 	— 
1 

Bin 

A 2„ 
0 

0 
0 0 422„ 0 211 — 03n 03n B,„ 0 
0 0 k2412n 1c2i72. A,„  0 
0 0 0 0 X3 Y3 B,„   0 

(8-39) 

Where 

X1 = —  +140,„ + hr0,„ 	(8-40) 

X3 = h',143n  Y3 = 140;„-E /10311 	(8-41) 

and the primes denote differentiation with respect to x. Only five of these 
equations can be used to determine the coefficients. We choose the first five 
of them; the resulting system of equations for the determination of these five 
coefficients is given in the matrix form as 

YI  

k10 in  

0 

0 

0 

—k 2 4/2n  

02„. 

 ' k2q5,, , 

0 

—0211  

0211 

0 

0 

0 

311 

k 3c,„ Y 

0  

0 

. 0 

—0311 

t 3  

A2„ 

B2n 

A3,, 
B 

L 3"— 

= 

— — X1 —  

49  In 

1 	111 

0 
0 

(8-42) 

Thus, the solution of equations (8-42) gives the five coefficients B111,  A,„, B2„, 
A3„, and B3„. The transcendental equation for the determination of the eigen-
values P I  < 132  < -• • < fl„ < • • is obtained from the requirement that the deter-
minant of the coefficients in the system of equations (8-39) should vanish. This 
condition leads to the following transcendental equation for the determination 
of the eigenvalues, /I, < fl2 < 	< • < /111 < 

X, Y, 0 0 0 0 

491. Oln — 02n — 0211 0 0 

k i 491,„ k 1 0'1„ —1c20'2„ — 0 0 
= 0 (8-43) 

0 0 029 6 211 — 03n 03n 

0 0 k24)211 k O'2„ — k — k3 03. 
0 0 0 0 X3 Y3  

8-5 APPLICATIONS OF ORTHOGONAL 
EXPANSION TECHNIQUE 

In this section we illustrate the application of the orthogonal expansion technique 
described previously for the solution of transient homogeneous heat conduction 
problems of a two-layer cylinder and a two-layer slab. 

Example 8-3 

A two-layer solid cylinder as illustrated in Fig. 8-4 contains an inner region 
0 r a and an outer region a r b that are in perfect thermal contact; k, 
and k2  are the thermal conductivities, and cc, and a, are the thermal diffusivities 
of the inner and outer regions, respectively. Initially, the inner region is at 
temperature 0 j(r, = F,(r) and the .  outer region at temperature 0 2(r,t) = 
F 2(4 For times t > 0, heat is dissipated by convection from the outer surface 
at r = b into an environment at zero temperature. Develop an expression for 
the temperature distribution in the cylinders for times I > 0. 

Solution. The mathematical formulation of the problem is given by 

21 8 ( LSO, 	801 (r.,t) 

r Or d r) 
in 	0 < r < a, t > 0 	(8-44a) 

in 	a < r < b, t > 0 	(8-44b) 

• a02 	• 2 	+h3a2 = 0 

Fig. 8-4 Two-layer cylinder with perfect thermal contact at the interface. 

— 	— az 0  ( (302) 802(r, 1)  

r Or 
r 
 Or 	Ot 
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The boundary condition (8-45c) requires that Bin  = 0. Then the solutions 'Par) 
for the two regions become 

Subject to the boundary conditions 

	

01(r, t) = finite 	at 	r = 0, t>0 	(8-44c) 

	

0 1(r, t) = 02(r, t) 	at 	r= a, t> 0 	(8-44d) 

PO, 	O 2  
k , 	k ,

P 	
;it 	r 	a, 	t -, 0 	(8-44e) 

ill- 	Or  

13. 
= Jo(r

) 

Fi t  

02„(•) 	.4 2.-/e( 	r)-} /12„Yo( 	r) 
V -2 	 V/Cf  2 

in 	 (8-47a) 

in 	a <r < b 	(8-4710 

d02  

	

/110, 	= 0 	at 	r h, t > 	 (8-44f) 
- 

and to the initial conditions 

	

t) = F ,(r) 	for 	t = 0, 0 < r < a 	(8-44g) 

	

02(r, t) = F2(r) 	for 	t = 0, a < r < b 	(8-44h) 

The corresponding eigenvalue problem is taken as 

d 1( 	p„,2 4,,i(o= 0  
r 	dr ) al  

• d 	dtl,2„) 	132  
r - 	+ 	IP -.„(r) = 0 

r dr 	dr 	a2 - 

Subject to the boundary conditions 

0,„(r)= finite 

1,(1) = 2.01 

412  k 	k 2  
dr 	dr 

in 	0 s r < a 	(8-45a) 

in 	a < r b 	(8-45b) 

at 	r=0 	 (8-45c) 

at 	r = a 	(8-45d) 

at 	r = a 	 (8-45e) 

eltit 
le; 	+ b*klt = 0 	at 	r b 

dr 	3  
(8-4511 

The general solution of the above eigenvalue problem 8-45, according to Table 
8- I, is taken as 

where we have chosen 4„,=I for the reason stated previously. The require-
ment that the solutions (8-47) should satisfy the remaining three boundary 
conditions (8-45d,e,f) leads, respectively, to the following equations for the 
determination of these coefficients 

J0 1  fi  " a  — A 2„. 0(-11 ) + B2„110( 
\r” ' 	 a 2  

ILp.i,(.)=.A„.7,(13`-.2-)+B2„YI(/#1) 
k2  a, 	\Fe, 	 /G—(1. 	v 4X2 

[ A 2„J 1  -13- ,..ìb  : + B2rIYI fiilb  — :-. 
\ /a2 	 A 

± )e- (2 [A„.1„(Pn!!:)+B2r.170( P1!)]=-0 
141),, 	V412 	V 112 

These equations are now written in the matrix form as 

where we 

Job') 

KJ,(y) 

0 

defined 

— Jo( g20).  

--4(r1)— .1 1(7) 

ail „ b fin  

Ye(b7) 

)11 (t1) 

— Yo(P1) — 	'(r1) 

I _ 	K 	k  
k* 2 	k2 

A 2n  

B2„ 

'12  
a, 

0 

0 .  

0 

°t ja2  

(8-48a) 

(8-48b) 

(8-48c) 

(8-49) 

(8-50) 

Any two of these equations can be used to determine the coefficients A 2„ and 
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2rr We choose the first two and write the resulting equations as 

J o(211) 	Yo(
b
e2- I1) of -0  A 2„1 

(S-51) 
, 	ri) B, ,, K. i t-A 

Then, A 2.„ and B2„ are obtained as 

A 2n  —[J 0(7)Y (—a  11 )  K i(y)Y0(q)1 
A 	b ) 

APPLICATIONS 

where 

= 1  f 
as 

tfr in(r) = Jo( 

2,i(r) = A2„4( 

OF ORTHOGONAL 

a  r',,k ;„(r)dr' 
o 	 C4 .2 

r) 
V at 

v ,„-- r) 	2,,Yo( 1±-1 ) 

EXPANSION TECHNIQUE 

b  r'ifr:;„(r)dr' 

r--  
-v 	2 

305 

(8-54b) 

(8154c) 

(8-54d) 

(8- 52a) 

This result is now written more compactly in terms of the Green's function as 
a 	 a 

Ben = i[KJ 1014
b
q) — 009,1  1(

b 

)1  
(8-52b) 

,, 
01(r, t) = i r'G ;J(% t I r', r)1, ---0 oF,1 dr' 

o 

j'a 
 

+ 	r'G i 2(r, t V , -di, = o F ,(K) dr' , i = 1,2 	(8-55a) 
J 

where 

A = Jo( b 
	b 	b
u)Yi(!//)--11 ( -11) 110( tiJ  b 

(8-52c) 

Finally, the equation for the determination of the eigenvahies is obtained from 
the requirement that in equation (8-49) the determinant of the coefficients 
should vanish. Then, the fl„ values are the roots of the following transcendental 
equation 

where Gii(r, dr', r)(,- „ is defined its 

k • 
Gu(r, 	r)Ir=o = L 	

„2  1 	
clibi(OP;n01 

	

n=1 	Pit, al 
(8-55b) 

Jo(Y) 

KJ 1(y) 

0 

—Jot fLril) 

; (_a 

— 4(r1) — J t(t1) 
rl 

— 	o ((- - )1) 

— l',(a  is) 

IOW) 
1, 

=0 (8-53) 

- Having established the relations for the determination of the coefficients 
A 2„, B,„ and the eigenvalues /1„, the eigenfunctions iir,„(r) and tfr,„(r) are ob-
tained according to equations (8-47). Then, the solution for the temperature 
Oi(•, t), i = 1,2 in any of the regions is given by equations (8-29) as 

	

0;(r, t) = E 	I  

	

n= 	I 

k, 

a2 

2 	[ 
e-finitfra r) 

r' 	2„(e)F 
a 

ki 
— 

Cif i 
" sf 
0 

dr' 

r'tfr ,„(r')F I V) dr' 

, 	= 1,2 - (8-54a) 

Example 8-4 

A two-layer slab consists of the first layer in 0 x a and the second layer 
in a x b, which are in perfect thermal contact as illustrated inl,tg. 8-5. Let 
k 1  and k2  be the thermal conductivities, and a s  and a2  the thermal diffusivities 
for the first and second layers, respectively. Initially, the first region is at 
temperature F i (x) and the second region at F2(x). For times t > 0 the boundary 
surface at x = 0 is kept at zero temperature and the boundary surface at x = b 
dissipates heat by convection into a medium at zero temperature. Obtain an 
expression for the temperature distribution in the slab for times t > 0. 

Tht.: mathematical formulation of (Ids problem is given 

02  

8x2

T, 01-,
8t  
(x, t) 

in 	0 < x < a, t > 0 	(8-56a) 

in 	a < x < b, t > 0 	(8-56W 
82 T2 	1-2(x, t) 
8x 2 	at 
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I 

.4 • 

-., 

	 Fig. 8 5 Twe-layer-stab-with-perfect-thermal_contact_at theinterface 	  

subject to the boundary conditions 

7.1 (x, t) = 0 	at 	x=0, t> 0 	(8-56c) 

T, fx, t) = T2(x, t) 	at 	x = a, t > 0 	(8-56d) 

a T2 
k, 

DT,  
= k2— 	at 	x = a, t > 0 	(8-56e) 

	

ax 	Ox 

k
07'2

A-iiT2 = 0 	at 	x=b, t>0 	(8-56f) 

	

2  (ix 	3  

and the initial conditions 

	

(x, t)= F, (x) for 	t = 0, 0 < x < a 	(8-56g) 

T2(x, t) = F 2(x) 	for 	t = 0, a <x<b 	(8-56h) 

The corresponding cigenvalue problem is taken as 

d

dx2

20 	p2 
	+ 	D(x) = 0 	in 	0 < x < a 	(8-57a) 
 a, 

d202.  #2. 
"In( V) = 	in 	a < x < b 	(8-57h) 

	

dx- 	-  

k: 	h1412.= 0  
dki,  
dx 
	 at 	x = b 	 (8-57f) 

The general solution of the above eigenvalue problem, according to Table 8-1, 
is taken as 

tfr ,„(x).--- A 1„ sin( 	x).t. B,„ cos( fin 	 = L 2 	(8-58}

N/e4 i 	 N/c(i 

The boundary condition (8-57c) requires that B,„= 0. Then, the solutions Oh, 

	forthe two regions are reduced to 

itr,„(x) = sin( 	x) fin 

	

2n(X) = A 2„ 	 + Bu COS ( ft. x) 	in 	a < x < b (8-59b) 
•,/a2 	 a2 

where where we have chosen A l„ =1 for the reason stated previously. The require-
ment that the solutions (8-59) should satisfy the remaining boundary condi-
tions (8-57d, e, f) yields the following equations for the determination of these 
coefficients. 

k1

sin()
= A 2„ sin(--2—Ir )-F 132,, cos( 1----F) 	(8-60a) /1 a 	 11 a 	 li a 

	

A px2 	 -10c2 

i 1:1 •cos P-11 - .A,„cos P4 —B2,,sin /34,,_ 	(8-60b) 

	

k2 	a t 	/Y(1 	 -ie(2 	 Nef  fiC2 

[A .2,, COS ( 11"--b- ) — B2ff  cin( /1-"b. )] 
-..b2 	/22 

+ h'3IVZ A2 sin  ,6„b + n  ._,.. 13„b 	..= 0  [ 

W. 	" IZ D2 et"' 
,17.-2"' 

These et nations are now written in the matrix from as 

• A 
in 	t) < x < a (8-59a) 

(8-60c) 

sin y 

K cosy 

0 

— sin(!q) 

- cos (
a  
-II ) 

H 
- sin 4 + cos q 

b 

— cos ( a- /1) 

sin (-a
b 
 ri) 

H 
- cosi, - sin q 

1 

A  2n 

B2„ 

0 

0 

subject to the boundary conditions 

- . 	) 
.„.• 

' ) 
.--...; 

-- , 

In(x) = 0  

tii1n(x)= tP2.(x) 

, 	dIP in 	, 	dlfr 2h  

at 

at 

at 

x = 0 

x = a 

x = a K L 	= I.0 2 
dx 	dx 

s 

(8-57c) 

(8-57d) 
(8-61a) 

(8-57e) 
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where we defined 

	

ag„ 	bp„ 
y — 1 • - - H 	K - 

	

Tci 	via; 'k2 	kz a, 
(8-61b) 

We choose the first two of these equations to determine the coefficients A z„ 
and B2„; these two equations are written as 

(a 
sin - ri ) • cost-

a 
ri) . 

cos(- a q) -sin( 
b  
•`:1.■) 
	

B2„ 

Then, A„ and B2„ are determined as 

A,„ -
1 
 [- siny sin 

(a  
-JO - K cosy cos(-a  q)] 

	
(8-63a) 

B2 	 in = ! [K cosy sin
(
-
a
t )- sin y cos(- 

a 
q)] 	(8-63b)  

are known and the temperature distribution Ti (x,i), r = 1, 2 in any one of the 
two regions is determined according to equation (8-29) as 

where 

zr., 
T(x, t) 	- e-1';'11Phi(x) 

N, 

+ 1,1'4,E11/2 ,.(x')F2(x')dx'1,  

N„=  k
" 

' J 
	

2,„(4dxr  

IL 
in(x) = sin( ---,_-.: x 

Va l  

02„(x) .= A 2„ sin ( 13. 

\ 	2 

, 

11 

k 

0 .2 

.132„ 

r" 
i„(xVi(x')dsx' 

x =0 

i= 1,2 

tg,,(x')dx 

13 cos 	. x) fat 

(8-65a) 

(8-65b) 

(8-65c) 

(8-65d) 

This result can be written more compactly in terms (Idle Green's function as 

A,„ 

K cos y 

sin y 

(8-62) 

where 

A = - sin2(--
a

q)- cos2(-
a  
ii)= - 

Finally, the equation for the determination of the eigenvalues at, is obtained 
from the requirement that in equation (8-61a) the determinant of the coefficients 
should vanish. This condition yields the following transcendental equation for 
the determination of the eigenvalues 11„ 

a 
sing 	- sin (!-I• q 	-

( b
) 	cos - .11 

) 
 

where Gu(x, six', 	the Green's function evaluated at r = 0, is given by 

1 k • 
t)i r . 0 	E e 	ii/in(xPitirAx') N„a j  

where N,„ tfr,„(x), i= 1,2 are defined by equations (8-65b, c, d). 

(8-66b) 

(8-63c) 

= f "  

G i2(X,r Ix', 	oF,Mdx% 	i = 1,2 	(8-66a) 

K cosy 	- cot;  si
) 

H 

sin(a  q) 

0 	- sin /1

( 
b  

+ cos I/ -
If 

cosq - sin ri 
11 	 11 

= 0 	(8-64) 

The formal solution of this problem is now complete. That is, the coefficients 
and B2„ are given by equations (8-63), the eigenvalues )3„ by equation 

(8-64). Then, the eigenfunctions ifr„(x) and 412„(x) defined by equations (8-59) 

8-6 GREEN'S FUNCTION APPROACH FOR SOLVING 
NONHOMOGENEOUS PROBLEMS 

The use of Green's function is a very convenient approach for solving non-
homogeneous problems of transient heat conduction in a composite medium, if 
the general expression relating the solution for the temperature T1(x, I) to the 
Green's function is known and the appropriate Green's function is available. The 
general procedure is similar to that described for the case of a single-region 



—kT-- 	 =0  
d 

hi I 	 1,0 

	

&Phi 	thil+  I n 

	

k1
-- 	4. I 

	

dx 	dx 

m  dx d hf + 1Afn =  ° 

at the outer boundary, x = x, 	(8-68b) 

(R-68c) 
at the interfaces 

x_= Xr+i 

1 = 1, 2 	M — 1 	 (8-68d) 

at the outer boundary, x = 	+1  (8-68e) 

,ix 
k

ip,„ 
, 
d 
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medium, except the functional forms of the general solution and the Green's 
function are different. 

In the following analysis, we assume that the nonhomogeneity associated with 
the boundary conditions is removed by a splitting up procedure described 
previously; hence the energy generation term is the only nonhomogeneity in the 
problem. 

We consider i he following transient heat conduction problem for a M-layer 
composite medium with energy generation, homogeneous boundary conditions 
at the outer surfabes and contact condUctance at thE interfaces 

1 a ( aT) «..: 	aTi(x,t)--

in 	xi <x<xi+ ,, 	> 0, 
xP ax 	ax 	 at 

= 1.2,...,14 	(8-67a) 

where 

/0 slab 
p = 1 cylinder 	 (8-67b) 

2 sphere 

Subject to the boundary conditions 

DT, •* _ 	T, =0 	at the outer boundary x x 1 , 	1 >0 (8-67c) 
C
-1
X 

ar 
— kr --I  =11141(Ti — Ti+1) 

ax 
:=Ltf 
--. 	 . 	a T 
A 	 ki

DT
' .-- .= ici ., , 	- 111. 

) 	 ilx 	(fix 1 
D..I 

1 
k Ai' 

ar , 
I  I) 	* --='-- 	* 	T x  +11 Af + Af = 0 	 at the outer boundary x = xm+ 1, t > 0 (8-67f) 

Subject to the boundary conditions 

The solution of this multilayer transient heat conduction problem in terms of the 
composite medium Green's function Gi.,(x,tix',r) can be obtained by proper 

rearrangement of the general solution given by Yener and Ozisik [25] and Ozisik 
[8]. We write the resulting expression in the form 

j+1 
Ti(x,i)= 	ff 	x'PlGii(x,tlx',r)I f"F;(4dx' 

x)e I 	 [a 
dr f 	x`PG,;(x, 	r) 	g;(x',r) dx1 

r = 0 	xj 	 k; 

	

in xi <x<xi+1, i= 1,2,...,M 	 (8-69a)  

where the composite medium Green's function 60(x, t I r', r) is defined as 

kj  
Gii(x, fix', r) = E 	2 

`) — - — tii,„(x)0;„(x') 	(8-69b) 
n= 1 	N n ot;  

and 

/0 slab 
p= l cylinder 

2 sphere 
(8-69c) 

The norm N„ is given by 

at the interfaces x — xi+1, 
i = I, 2,... , M — for 

(8-67d) 

t > 0 	(8-67e) 

).1
) 

) 	

and the initial conditions 

Fi(x) 	for 	r = 0, in xi  < x < 	= 1 . 2 	M 	(8-67g) 

Appropriate eigenvalue problem for the solution of the above heat conduction 

N„= E 	x'Ptirj,,(x`)dx' 
" k • r, 

(8-69d) 
problem is taken as 

.i- I 

(-'1'1-16) 	Oin{x) = 0 
XP  dx 	dx 	

in 	xi  < x <11+1, 1= I,2,...,M (8-68a) 
where iiii„(x) and 0.,„(x) are the eigenfunctions, the fin  values are the eigenvalues 
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of the eigenvalue problem (8-68), G,;(x, tl x', '04_, is the composite medium 
Green's function evaluated at T = 0, and Gip, t Ix', r) is the composite medium 
Green's function. 

The function G,j(x, t Ix', r)1,,0  is obtainable by rearranging the solution given 
by equations (8-29), of the homogeneous problem defined by equations (8-15)-
(8-17), in the form 

j" hf 	xi + I 	, 	., 	I k .  
Ticx, t) = E 	x',  E cP,0 	,,,& ;„( x)c;,(v) F,ix'}d.,' 	(8-70a) 

i ' 1  xj 	 „°I 	N„ a; 	 jJJ 

where 	is the Sturm-Liouville weight function with p = 0, 1 and 2 for slab, 
cylinder, and sphere, respectively. Then, the function inside the bracket in 
equation (8-70a) is Gu(x, x', z)l„...„, that is 

1 k. 
0(x, t I x', 	E e 	- -4 clr,„(x)1,1i ;„(x') 

n 1 	N„ xi  

and the Green's function is obtained by replacing t by (1 — r) in this expression: 

Gu(x, Ix', r) = E e-fl 4"-̀ l 	thi(x)c/ii„(x') 	(8-70c) 
Nn a;  

We now illustrate the use of Green's function approach for developing solu-
tions for the nonhomogeneous transient heat conduction problems of composite 
medium with specific examples. In order to alleviate the details of developing 
solutions for the corresponding homogeneous problems, we have chosen the 
examples from those considered in the previous sections for which solutions are 
already available for the homogeneous part. 

Example 8-5 

A two-layer solid cylinder contains an inner region 0 r a and an outer 
region a‘...r‘.b that are in perfect thermal contact. initially, the inner and 
outer regions are at temperatures F, (r) and F 2(r), respectively. For times t > 0, 
heat is generated in the inner and outer regions at rates fli(r, t) and g, (r, r} 
W/m3, respectively, while the heat is dissipated by convection from the outer 
boundary surface at r = b into a medium at zero temperature. Obtain an 
expression for the temperature distribution in the cylinder for times t > 0. 

ti‘thoriotr. The mathematical formulation of ibis problem is given is  

subject to the boundary conditions 

T,(r, t) = Tz(r, t) 

i7 
k, ------1  = k, .--= 

at 

at 

r = a, 

r = a, 

I > 0 

f > 0 

(8-71c) 

(8-71d) 
Or 	- Or 

k 	
(17'2 

+ /1 .11.2 = 0 at r = b, > 0 (8-7 Id) 
Or 

and the initial conditions 

T, (r, t) 	F,(r) for 7 = 0 in 0 .<._r< a (8411) 

T2(r, t)= F 2(r) for t = 0 in a < r < b (8-71g) 

The solution of this problem is written in terms of the Green's function, 
according to the general solution given by equations (8-69), in the form 

a 
f

b 
Ti(r', r) -= 	r [ G,1 (r,ilr',1)],=0 • F ,(rldr` + 	r'EG i2(r, t le , r)i,--.3,F 2(11firr  

	

r.  = 0 	 r'•=n 

u + f 	cir [f 	r'G,,(r,tir', r)• lf i (r' , T) dr' 

+ 	f b 
r'G12fr,Ilr. r/I/21f1, 'Odd, 1= 1, 2 (8-72a) 

where the Green's function Gu(r, t Ir., r)is obtainable from the solution of the 
homogeneous version of the problem. The -homogeneous_s_ersian_OLLili 

problem is already considered in Example 8-3; hence the G(r, tlr', Til,,o is 
obtainable from equation (8-55b) and G(r, tir', r) is obtained by replacing in 
the expression, G(r, t I r', t by (t — r). Thus the Green's functions become 

, 
Gufr,tir f,  r)= 	e - P"" - 	

1 k 
)0,,,(r)tii„(11 

N „ a;  
(8-72b) 

G,Ilr•Ilr..r11„, - Er* 
I k,

0,„1/11fr,„(r') 
N a;  

(8-70b) 

(11-72e) 

1 a ( 87
Or  
'1 ) a t  • , 	aT,(r, t) 

a, - — r 	gi kr, 	— 
r Or 	k t 	at 

1 a ( 8T2\ a2 	, 	T2(r, 
r 	+ 	g 2 (r, t) 

r 	Or 	k2 	at  

in 	0 < r < a, t > 0 	(8-71a) 

in 	a<r<b, t > 0 	(8-71b) 

where the norm N„ is obtained from equation (8-54b) as 

	

f 	
k I 

	

N„ = -
k 

1 
a 	

r'tfrl. „(rldr.  + 1 	r'clIL(Orlr' 

	

i 0 	 2 u 

(8-72d) 



tP2a(d= A 2„J o( 	- r) B 2n 
 y 0  

2 	 /2 

(8-75b) 

in 	0 <x<a, t> 0 	(8-73a) 

in 	a<x<b, r > 0 	(8-73b) 

at 	x=0, t> 0 	(8-73c) 

at 	x = 	t > 0 	(8-73d) 

at 	x= a, r> 0 	(8-73e) 

at 	x=b, t> 0 	(8-73f) 

	

irT, 	a,, aT i (x,t) 

	

oti ---- 2 	
k

01(x‘ t/ = 

02  T2 al-2(x, t) 
2 

( X 

Subject to the boundary conditions 

7-1 (.v,t1= 0 

T, (x, 	T2(x,r) 

aT, 	07-.2  
- = 

Px 

a T2 
~ 1,;T2 = 0  

ex 

where the norm N„ is obtained from equation (8-65b) as 

k 
N „ = -

k f 
IPL(x)dx'  

ai  o 	• 	 (x

,

2 a 

The eigenfunctions t/f,„(x) and th„(x) are obtained from equations (8-65c) and 
(8-65d), respectively, as 

„(x) = sin ( /3," x) 	 (8-75c) 

\Pr I 

2,,(x)= A 2„ sin (1' —1._ x) + B,„ cos 	x) 	(8-75d) 
ct2 	 /a, 

The coefficients A2,, and B2„ are given by equations (8-63) and the eigenvalues 
/3„ are the positive roots of the transcendental equation (8-64). 
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and the initial conditions 

T,(x, t) = ,(x) 	for 	t = 0, •  in 	0 < x < a 	(8-73g) 

(8-72e) 	 T2(x,r) = F2(x) 	for 	t = 0, in 	a <x < h 

This heal conduction problem is a special case of the general problen(18g-7iv3ehn)  

(8-72f) 	 by equations (8-b7). Therefore, its solution is immediately obtainable in terms 
of the Green's functions from the general solution (8-69) as 

The eigenfunctions Jr) and ,„(r) are obtained from equations (8-54c) and 
(8-54d), respectively: 

The coefficients A 2„ and 13,„ are given by equations (8-52a) and (8-52b), 
respectively. The eigenvalues /3,, are the roots of the transcendental equation 
(8-53). 

Example 8-6 

In a two-layer slab, the first (0 < x < a) and the second (a < x < h) layers are 
in perfect thermal contact. Initially, The first layer is at temperature F 1(x) and 
the second layer is at temperature F,(x). For times t > 0, the boundary at x = 0 
is kept at zero temperature, the boundary at x = h dissipates heat by convection 
into a medium at zero temperature, while heat is generated in the first layer 
at a rate of q t  (x, I) W/m3. Obtain an expression for the temperature distribution 
in the medium for times > 0. 

a 
Ti(x, r) = f 	[Gii (x,11 x', 	i (x1dx' + 	[Gi2(x, t Ix', -0],_,F2(x1dx' 

.e =0 	 •=- 

f dr l G „(x, t Ix' , r) g ,(x',-r)dx' , = 1,2 (8-74) 
= ..=o  kl 

where the Green's function is obtainable from the solution of the homogeneous 
version of the heat conduction problem given by equations (8-73). Actually, 
the homogeneous version of this problem is exactly the same as that considered 
in Example 8-1 given by equations (8-8). Therefore, the desired Green's function 
is obtainable from the result given by equation (8-66b) by replacing t by (t — r) 
in this expression. We find 

Solution. The mathematical formulation of this problem is given as , 	1 k 
Gu(x, t Ix' , -r) = E CP.(' -w) 	th,(x)tfr j„(x') 

n=1 	 N „a j  
(8-75a) 



Fig. 8-6 Two semiinfinite regions in perfect thermal contact. 
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8-7 USE OF LAPLACE TRANSFORM FOR SOLVING 
SEMIINFINITE AND INFINITE MEDIUM PROBLEMS 

The Laplace transform technique is convenient for the solution of composite 
medium problems involving regions of semiinfinite or infinite in extent. In this 
approach, the partial derivatives with respect to time are removed by the application 
of the Laplace transform, the resulting system of ordinary differential equations 
is solved and the transforms of temperatures arc inverted; but the principal 
difficulty lies in the inversion of the resulting transform. in this section, we 
examine the solution of two-layer composite medium problems of semiinfinite 
and infinite extend by the Laplace transform technique and consider only those 
problems for which the inversion of the transforms can be performed by using 
the standard Laplace transform inversion tables. 

Example 8-7 

Two semiinfinite regions, x > 0 and x < 0, illustrated in Fig. 8-6 are in perfect 
thermal contact. Initially, the region I (i.e., x > 0) is at a uniform temperature 
To, and the region 2 (i.e., x < 0) is at zero temperature. Obtain an expression 
for the temperature distribution in the medium for times t > 0. 

Solution. For convenience in the analysis, we define a dimensionless tempera-
ture 01(x, t) as 

0,(x,t)=
T;(x, I) 

i = 1,2 
T„ 

(8-76) 

Then, the mathematical formulation of the problem, in terms of 01(x, 0, is given 
as 

0201 	1 00,(x, t) 
in 	x> 0, t> 0 	(8-77a) 

axe  a, 	at 

7-2(X, 11 

Hellion 2, 
initially lit 
zero temp. 

0202  

a2  

191(x.01,.0. 

conditions 

USE 

 	 -
r ) 
	 in 

DI 

, 
k 

OF LAPLACE TRANSFORM 

x < 0, 	r > 0 

t > 0 

I > 0 
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(8-77b) 

(8-78a) 

(ti-78b) 

axe 

Subject to the boundary 

— k, 
Ox o = 

00, 00, = = 0 t > 0 (8-78c) 
ax 

the initial condition and 

X-. 	
Ox - 

01(x, 	= 	for 	t = 0, x> 0  (8-78d) 

02(x, t) = 0 	for 	t = 0, x < 0 (8-78e) 

The Laplace transform of equations (8-77) is 

d201x,$) I [A(x.$) — 1] 	in in • x > 0 (8-79a) 
d.x2 	a l  

d 20 2(x,.$) I 	- 

a2
2( 
	

in x < 0 (8-79b) 
dx 2  

and the Laplace transform of the boundary conditions gives 

0, (0*, s)= 02 (0 	s) (8-80a) 

— k, 
(102 

= 2 — (8-80b) 
dx v 	o • 	dx x=0-  

dC1, ta2 
= 0 (8-80c) 

dx • dx 

The solutions of equations (8-79) subject to the boundary conditions (8-80) arc 

Ti ix, ti 

Iiimem I, 
Initially it 
temp. 2",,, 

x 
1 	1 	I 

(T, (x,$) 	- — 	_ e  - tsi.x , 2x 

S 	1  + f3 s 	• 

I 
62(xis)= i3- e-tsi"`"Ix1 

I + fi s 

for 	x> 0  

for 	x < 0 

r • 



0202  = 1 002(x, t) 

0x 2  a2 Ot 
in 	x>L, 	t>0 	(8-84b) 

subject to the boundary conditions 

(8-85a) 
- 

(8-85b) 

(8-85c) 

02(x, t)-0 	as 	x co, t>0 	(8-85d) 

and the initial conditions 

0 1 (x;t) = I - for -- t =0; -in 	0 < x < L - 	(8-85e)- 

02(x, t) = 0 	for 	= 0, in 	x > L 	(8-851) 

The Laplace transform of equations (8-84) is 

erl,(x,$) 	I 
= 130 i(x,$)- 11 	in 	0 < x <L 	(8-86a) 

dx 2 	a, 

DO, 
 - 
_ 0  

at 
Ox 

0,(x,t)--- 02(x, t) at 

DO, 	502 
K — it 2 	at 

Ox 	Ox 

x=0, t>0 

x = L, t > 0 

x = L, > 0 
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where 

p
k, (a2)112  _ 
.1c, 	cc, 

(8-81c) 

given as 

020, = atmx,t)  
axe  a, et 

in 	0 < x < L, t > 0 	(8-84a) 

These transforms can be inverted using the Laplace transform Table 7-1, cases 
I and 42. The resulting expressions for the temperature distribution in the 
medium become 

Ti (x,t) 
for 	x > 0 	(8-82a) 0,(x,t).= 	= I - ---erfc(  x  ), 

To 	1 + 11 	2 /Lt 

02(x,  r) 	
7'n

oT2 (X, t) 	+  errC  	 for 	x<0 	(8-82b) 

Example 8-8 

A two-layer medium illustrated in Fig. 8-7 is composed of region 1,0 < x < L, 

	

and region 2, x > L, which are in perfect thermal contact. Initially, region 1 is 	I 

tl
i
. 

1
;
L. 

	

	
at a uniform temperature To  and region 2 is at zero temperature. For times 
t > 0, the boundary surface at x =0 is kept insulated. Obtain an expression 

V . 	- 	 for the teMpefature distribution in the medium for times t > 0 

:1 • , L.. 	 Solution. We define a dimensionless temperature Oi(x, t) as 

r-i.  
i 	 0,(x, r) = T

'
.(x,t) 

i = 1,2 	 (8-83) 
,..4.!)  ,s, 	 To 

--) 

	

-.4, 	 d282(x, s) 	1 - 

-' 

	

) 	 dx2 - 
s02(x,$) 	in 	x > L 	(8-86b) 

	

-i 	 a2 

) 
-", 

	

_., 	 The Laplace transform of the boundary conditions gives 
.) 

T2 (x, t) 	 a, _ 0  

	

..„. 	 1 	 at 	x=0 	 (8-87a) 

	

■ 	 dx  -1 

lil = 62 	 at 	x = L 	 (8-87b) .._." 	 zero temp. 
1 
- 

i 	 de, 

') 	 icl ddeldx "2  -dx 	
at 	x = L 	 (8-87c) 

-, 	 Fig. 8-7 A finite region and a semiinfinite region in perfect thermal contact. 	 W2 -40 	as 	X -I' CO (8-87d) 

Then, the mathematical formulation of the problem in terms of 0,(x, t) is 

Region 2, 

Insulated 	initially initially at  
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The solution of equation (8-86a) that satisfies the boundary condition (8-87a) 
is taken in the form 

s
— 	in 	0 	x < L 	(8-88a) 

	

gi(x,$)= 
1  
- 	A cosh (xi 

	

S 	 xi 

 ) 

and the solution of equation (8-86b) satisfying the boundary condition (8-87d) 
as 

	

I 	7 	-L  

	

U2(X, 5) = 	E 

	

2 	n -4,0 

The inversion of these transforms 
Table 7-1 as cases I and 42. After 
in the medium becomes 

REFERENCES 

e- ar2nL 	pf.s. – 	
e 	211. 44 141A 	I.)1 

--------- ------ - - -  

	

in 	x > L 

are available in the Laplace transform 
the inversion, the temperature distribution 
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(8-9114 

	

( 2(x, s) = Be -"s '1221 	in 	x > L 	 (8-88b) 

The constants A and B are determined by the application of the remaining 
boundary conditions (8-87b,c); we find 

	

I — 	e"il- 
A =  	 (8-89a) s  [ ye- 2aL 

	

1 + y 	I 	e  - 2 al. 

	

B = - - e'"E  . 	. 
2s 	_ ye- 2 a./..  

01(X, I) 	 _ 	E yr,  errc 
To 	2 n = 0 	 Wai f 

erfc 
[(2n  1)L-1- xi} 

in 	0 < x <L 	(8-92a) 
2.oTt 

02(x, r) 
T2(x, r) 1 + 	fc  2nL +1.(x — L) 

2 	i  To 	 n  er  

E(2ft 2)L+ Ax — L)] 
in 	x > L (8-92b) 

2.aI  r 
(8-89h) 

where where y and p are defined by equations (8-89). 
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Introducing equations (8-89) into (8-88) we obtain 

s 	2s 	I _ ye – tai. 

II — y 	e- alt.+ x) 	
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PROBLEMS 

8-1 	A two-layer solid cylinder contains the inner region, 0 r a, and the 
outer region, a 4 r b, which are in perfect thermal contact. Initially, the 
inner region is at temperature F1 (r) and the outer region at temperature 
F2(r). For times t > 0, the boundary surface at r = b is kept at zero tem-
perature. Obtain an expression for the temperature distribution in the 
medium. Also, express the solution in terms of Green's function and 
determine the Green's function for this problem. 

8-2 	A two-layer slab consists of the first layer 0 x 4 a and the second layer 

a s x 4 b, which are in perfect thermal contact. Initially, the first region is 

---at temperature Fi(x) and the second region is at temperature F2(x). For 

times t > 0, the outer boundaries at x = 0 and x = b are kept at zero tem-

peratures. Obtain an expression for the temperature distribution in the 
medium. Also determine the Green's function for this problem. 

8-3 	A two-layer hollow cylinder consists of the first layer a r b and the 

second layer h 4r c, which are in perfect thermal contact. Initially the 

first region is at temperature F,(r) and the second region at temperature 

F2(r). For times t > 0, the outer boundaries at r = a and r = c are kept at 

zero temperature. Obtain an expression for the temperature distribution 
in the medium. Also, determine the Green's function for this problem. 

8-4 Repeat Problem 8-2 for the case when boundary surface at x = 0 is kept 

insulated and the boundary surface at x = b dissipates heat by convection 

into an environment at zero temperature. Also determine the Green's 

function for this problem. 

8-5 Repeat Problem 8-3 for the case when the boundary surface at r = a is 

kept insulated and the boundary surface at r = c dissipates heat by convec-

tion into an environment at zero temperature. Also determine the Green's 

function for this problem. 

8-6 	A two-layer solid cylinder contains the inner region, 0 r 4 a, and the 

outer region, a < r b, which are in perfect thermal contact. Initially the 

inner region is at temperature F l(r), the outer region at temperature F2(r). 

For times t > 0, heat is generated in the inner region at a rate of g,(r, t) 

W/m3  while the boundary surface at r = b is kept at temperature f(t). By 

following an approach discussed in Example 8-5 transform this problem 

into a one with homogeneous boundary condition at r = b. 

8-7 	A two-layer slab consists of the first layer 0 s x 4 a and the second layer 

a x s b, which are in perfect thermal contact. Initially the first region is 

at temperature F ,(x) and the second region at temperature F2(x). For 
times t> 0, heat is generated in the first region at a rate of gl (x, t), Wirn3, 
and in the second region at a rate of g2(x, t), W/m3, while the outer 
boundary surfaces at x = 0 and x = b are kept at temperatures IVO and 
f2(t) respectively. Split up this problem into a steady-state problem and a 
time-dependent problem with heat generation, subject to homogeneous 
boundary conditions by following the procedure discussed in Section 8-2. 

8-8 	Solve Problem 8-1 with the additional condition that heat is generated 
in the inner region, 0 r 4 a, at a rate of g,(r, t), W/m3. Utilize the 
Green's function constructed in Problem 8-1 to solve this nonhomogeneous 
problem. 

8-9 	Solve Problem 8-2 with the additional condition that heat is generated in 
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the first and second layers at a rate of gjx,t) and g2(x,t), W/m3  respec-
tively. Utilize the Green's function constructed in Problem 8-2 to solve this 
problem. 

8-10 Solve Problem 8-3 with the additional condition that heat is generated in 
the first and second regions at a rate of g1(r, t) and g2(r, t), W/m3, respec-
tively. 

9 
APPROXIMATE ANALYTIC 
METHODS 

Analytic solutions, whether exact or approximate, are always useful in engineering 
analysis, because they provide a better insight into the physical significance of 
various parameters affecting the problem. When exact analytic solutions are 
impossible or too difficult to obtain or the resulting analytic solutions are too 
complicated for computational purposes, approximate analytic solutions provide 
a powerful alternative approach to handle such probleins. 

There are numerous approximate analytic methods for solving the partial 
differential equations governing the engineering problems. In this chapter we 
present the integral method, the Galerkin method, and the method of partial 
integration, and illustrate their applications with representative examples. The 
accuracy of an approximate solution cannot be assessed unless the results are 
compared with the exact solution. Therefore, in order to give some idea of the 
accuracy of the approximate analysis, simple problems for which exact solutions 
are available are first solved with the approximate methods and the results are 
compared with the exact solutidns: The applications to the solution - of more-  - -- 
complicated, nonlinear problems are then considered. 

9-1 THE INTEGRAL METHOD—BASIC CONCEPTS 

The use of integral method for the solution of partial differential equations dates 
back to von Kaman and Pohlhausen, who applied the method for the approxi-
mate analysis of boundary-layer momentum and energy equations of fluid mecha-
nics [1]. Landahl [2] used it in the field of biophysics to solve the diffusion 
equation in connection with the spread of a concentrate. Merk [3] applied this 
approach to solve a two-dimensional steady-state melting problem, and Goodman 
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[4, 5] used it for the solution of a one-dimensional transient melting problem. 
Since then, this method has been applied in the solution of various types of 
one-dimensional transient heat conduction problems [6-16], melting and solidi-
fication problems [16-25], and heat and momentum transfer problems involving 
melting of ice in seawater, melting and extrusion of polymers [26-29]. 

The method is simple. straightforward, and easily applicable to both linear 
and nonlinear one-dimensional transient boundary value problems of heal con-
duction for certain boundary conditions. The results are approximate, but several 
solutions obtained with this method when compared with the exact solutions 
have confirmed that the accuracy is generally acceptable for many engineering 
applications. In this section we first present the basic concepts involved in the 
application of this method by solving a simple transient heat conduction problem 
for a semiinfinite medium. The method is then applied to the solution of various 
one-dimensional, time-dependent heat conduction problems. The application to 
the solution of melting, solidification, and ablation problems is considered in a 
later chapter on moving-boundary problems (Chapter 11). 

When the differential equation of heat conduction is solved exactly in a given 
region subject to specified boundary and initial conditions, the resulting solution 
is satisfied at each point over the considered region; but with the integral method 
the solution is satisfied only on the average over the region. We now summarize 
the basic steps in the analysis with the integral method when it is applied to the 
solution of one-dimensional, transient heat-conduction problem in a semiinfinite 
medium subject to some presCribed boundary and uniform initial conditions but 
no heat generation. 

1. The differential equation of heat conduction is integrated over a pheno-
menologic distance c.5(t), called the thermal layer in order to remove from the 
differential equation the derivative with respect to the space variable. The thermal 
layer is defined as the distance beyond which, for practical purposes, there is no 
heat flow; hence the initial temperature distribution remains unaffected beyond 
Mt). The resulting equation is called the energy integral equation (i.e., it is also 
called the heat-balance integral). 

2. A suitable profile is chosen for the temperature distribution over the 
thermal layer. A polynomial profile is generally preferred for this purpose; 
experience has shown thaI there is no significant improvement in the accuracy 
or the solution to choose a polynomial greater than the fourth degree. The co-
efficients in the polynomial are determined in terms of the thermal layer thickness 
Ott) by utilizing the actual (if necessary derived) boundary conditions. 

3. When the temperature profile thus constructed is introduced into the 
energy integral equation and the indicated operations are performed, an ordinary 
differential equation is obtained for the thermal-layer thickness 0(t) with time as 
the independent variable. The solution of this differential equation subject to the 
appropriate initial condition [i.e.. in this case 6(t)= 0 for t = 0] gives 0(t) as a 
function of time. 

4. Once t5(t) is available from step 3, the temperature distribution T(x, t) is 
known as a function of time and position in the medium, and the heat flux at the 
surface is determined. Experience has shown that the method is more accurate 
for the determination of heat flux than the temperature profile. 

• 9-2 INTEGRAL Nlgri101)—APPLICATION 
TO LINEAR TRANSIENT HEAT CONDUCTION 
IN A SEMIINFINITE MEDIUM 

To illustrate the mathematical details of the basic steps discussed above for the 
application of the integral method, in the following example we consider a 
problem of transient heat conduction in a semiinfinite medium with no energy 
generation. 

Example 9-1 

A semiinfinite medium x 0 is initially at a uniform temperature Tf. For times 
t > 0 the boundary surface is kept at constant temperature To  as illustrated 
in Fig. 9-1. Develop expressions for the temperature distribution and the surface 
heat flux with the integral method by using a cubic polynomial approximation 
for the temperature profile. 

Solution. The mathematical formulation of this problem is given as 

a2T(x,t) 	1 OT(x,t) 
.1 2 	a 	at 
	in 	x > 0, t > 0 

T(x,t)--- To 	 at 	x = 0, t>0  

T(x,t)= 
	 for 	t = 0, in x 0 

We solve this problem with the integral method by following the basic steps 
discussed above. 
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C 1. We integrate equation (9-1a) with respect to the space variable from 
x = 0 to x = (5(t) 

at x = 0; then the derivative of temperature with respect to the time 
vanishes at x = 0 and we obtain 

(9-2a) 
OT 

Oxix=0)  ax 
I r4)  aT 

= - 	dx 
x=o 	x=o at 

a27:1 	= 0 ax2  ,13 
(9-6b) 

When the integral on the right-hand side is performed by the ride of 
di fferent ha ion under the integral sign we obtain 

ari  o Tdx)_ ,T1 _a] 	(9-2b) 
ax =4  oX Ix =0

= 
ol
r ( 

dt
f 

x_, 	 dt 

By the definition of thermal layer as illustrated in Fig. 9-1 we have 

OT 
ax x=d 

 = 0 	and 	T 
	

(9-3a) 

and for convenience in the analysis we define 

00) 
0 	T(x, 	 (9-3b) 

A 	(1 

Introducing equations (9-3) into (9-2b) we obtain 

— T =  —
d  

(0 — T, (5) 
a 

ax x=0  dt 
	 (9-4) 

which is called the energy integral equation for the problem considered 
here. 

2. We choose a cubic polynomial representation for T(x, t) in the form 

T(x,t). a + bx ex 2  + dx3 	in 	0 x (3(0 • 	(9-5) 

where the coefficients are in general functions of time. Four conditions 
are needed to determine these four coefficients in terms of 0(t). Three of 
these conditions are obtained from the boundary conditions at x 

• and at the edge of the thermal layer x = 0(1), as 

Clearly, the fourth condition could also be derived by evaluating the 
differential equation (9- I a) at x = 0(t) and utilizing the fact that  T = T1 = 
constant, by definition, at x = 0. This matter will be discussed later in 
the analysis. The application of the four conditions (9-6) to equation 
(9-5) yields the temperature profile in the form 

	

T(x, t) - T _ 	3x + i(x)3  

	

TO -Tr • 	2 
	 (9-7) 

3. When the temperature profile (9-7) is introduced into the energy integral 
equation (9-4) and the indicated operations are performed, we obtain 
the following ordinary differential equation for 6(0 

	

4a = 5—
db 	

for 	t > 0 

	

dt 
	 (9-8a) 

subject to 

6 = 0 	for 	I = 0 
	

(9-8b) 

The solution of equations (9-8) gives 

5 =18at 	 (9-9) 

4. Knowing 0(t), we determine the temperature distribution T(x, t) accord-
ing to equation (9-7) and the heat flux q(0, t) at the surface x = 0 from 
its definition 

	

AT 	3k 

	

q(0, t) = — k=-1 	—(To  T•) 	(9-10a) Ox I x ., 0  26 
where 

19 - ION 

x-d 

CT 
= 
	

= 0 
x=a ax 

The fourth condition may be derived by evaluating the differential equa- 
tion (9-la) at x = 0 and by making use of the fact that T= To  = constant 

Other Profiles 

In the foregoing example we considered a cubic polynomial representation for 
T(x, t) that involved four unknown coefficients and required four conditions for 

. their determination. Three of these conditions given by equation (9-6a) are the 

= To, T 
Ix= 0 

(9-6a) 
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natural conditions for the problem, and the fourth condition equation (9-6b) is 
a derived condition obtained by evaluating the differential equation at x = 0. It 
is also possible to derive an alternative fourth condition by evaluating the 
differential equation at x = S yielding 

(9-6W) 

Therefore, it is also possible to use the above three natural conditions (9-6a) 
together with the alternative derived condition (9-61i) to obtain an alternative 
cubic temperature profile in the form 

T(x, 1)- T1  

= (1 x To- 7-, s) 
where 

6 =- 24at 	 (9-I lb) 

If a fourth-degree polynomial representation is used for T(x, t), the resulting 
five coefficients are determined by the application of the five conditions given 
by equations (9-6a), (9-6b), and (9-613'), and the folloWing temperature profile is 
obtained 

T(x,t)- 	(x) 	(x 3 	x 
=1 -2 -5,  + 2 ) - (- 

b 	5) 7-0 — T1  

where 

(10 
= 

3 

Comparison with Exact Solution. In the foregoing analysis we developed two 
different cubic temperature profiles given by equations (9-7) and (9-11) and a 
fourth-degree profile given by equation (9-12)..One can also develop another 
approximate solution by utilizing a second-degree polynomial representation. 
The question regarding which one or dim approximate solutions is more accurate 
cannot be answered until each of these solutions are compared with the exact 
'solution of the problem given by 

T(x,t)-T, 

To - T, 	r- .\/4at 

Figure 9-2 shows a comparison of these approximate temperature distributions 
with the exact solution. The agreement is better for small values of the parameter 
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Fig. 9-2  9-2 Comparison of exact and approximate solutions for a semiinfinite region. 

x/.,Plat. The fourth-degree polynomial approximation agrees better with the 
exact solution. The cubic polynomial representation utilizing the condition at 
x = 0 seems to agree with the exact solution better than the one utilizing the 
condition at x = 5. 

The heat flux at the boundary surface x= 0 is a quantity of practical interest, 

and for the various temperature profiles considered above it may be expressed 
in the limn 

aT 	- 
4(0= - k — 	 = c k(T T) 

Ox x -0 	ja 
(9-13b) 

Table 9-1 gives the values of the constant C as calculated from the above exact 
and approximate solutions. The fourth-degree polynomial approximation re-
presents the heat flux with an error of approximately 3%, which is acceptable 
for most engineering applications. 

Cylindrical and Spherical Symmetry. The use of polynomial representation for 
temperature, although giving reasonably good results in the rectangular coordi-
nate system, will yield significant error in the problems of cylindrical and spherical 
symmetry [1 I]. This is to be expected since the volume into which the heat 
diffuses does not remain the same for equal increments of r in the cylindrical and 
spherical coordinate systems. This situation may be remedied by modifying the 

i2T 
d.v 1  

(9-1 la) 

(9-12a) 

(9-12b) 

(9-13a) 
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(9-15b) TABLE 9-1 Error Involved in the Surface Heat Flux 

C as Defined by 

Temperature Profile 
	

Equation (9-13b) 

Exact (equation 9-13)
I

▪ 

 =0.565 

N/ Ir  

Cubic approximation (equation 9-7) 	
3 	

0.530 
2\/8 

Cubic approximation {equation 9-I 1) 	

- 

= 0.612 
Yi 

Fourth-degree approximation.(equation 9-12) 	--
2
- = 0.548 

J40 

temperature profiles as 

- - 

T 	To . 

T = 

The integration of equation 

aT 
- a — 

where we utiliied the condition 

at 	x=0, 

for 	t = 

(9-15a) from x = 0 to x 

+ -g(t)(5(t) 	
It 

=dO -T 
1,) 

dT/dx = 0 at x = 6, 

t>0 

0, 	x?.- 0 

= i(t) gives 

dd 

cif 

and defined 

Percent Error 

Involved 

0 

6 

8 
d(I) 

0 	T(x, t)dx 
3 
	

a•=0 

(9115e) 

(9-16) 

(9-17) 

3 	 We note that equation (9-16) is similar to equation (9-2b) except for the 
generation term. 
tial equation (9-15a) at x = 61-01 FTPTP.-. 75T1ax 	= 0, and-ttren-integrating the  
resulting ordinary differential equation from t = 0 to t subject to the condition 
T = Ti  for t = O. We find 

The term is now determined by evaluating the differen- Tlx ,.„ d  

Cylindrical symmetry: 

- 	 --- - -• 	Spherical-symmetry: 

T(r, I) = (polynomial in r)(1n r) 

1111,1)- 
polynomial in /. 

(9-14a) 

(9- I41-1) 

Tlx .6 = 	°Tc:G(t) (9-i8a) 

where-we-clefirre-d 

Since the problems with spherical symmetry can be transformed into a problem 
in the rectangular coordinate system as discussed in Chapter 4, one needs to be 
concerned with such a modification only for the cylindrical symmetry. 

Problems with Energy Generation 

The integral method is also applicable for the solution of one-dimensional 
transient heat conduction problems with a uniform energy generation that may 
be constant or time-dependent over the region. The following example illustrates 
the application to a problem with energy generation in the medium. 

Example 9-2 

A semiinfinitc region, x> 0, is initially at a constant temperature T. For 
times t > 0 heat is generated within the solid at a rate of 11(1) Wirt• while the 
boundary at x = 0 is kept at a constant temperature To. Obtain an exprdssion 
for the temperature distribution T(x, t) in the medium using the integral 
method. 

Solution. The mathematical formulation of this problem is given as 

82T a 	aT 
in 	x > 0, t > 0 	(9-15a) 

axe  ig(f) 	at  

G(t)-.=- f r  g(e)dt' 	 (9-18b) 

We also note that the term g(t)6(1) on the left-hand side equation (9-16) can 
be written as 

g(t)o(t) 	6(t)
dG(t) 

di 

Equations (9-18) and (9-19) are introduced into equation (9-16) 

	

aT 	dO a ( 	,da) 	do 

	

-a— 	 G— — — 

k 	dt
-f- 0 

 dt 	dt 

or 

ax „0  dr[ 

 
= 	

a 
0 - 

k
-G6 - T;61 
	

(9- 20) 

which is the energy integral equation for the considered problem. Now, we 
assume a cubic polynomial representation for T(x, t) in the form 

T(x,t)= at  + a2x + a3x2  + 04x 3 	 (9-21) 

(9-19) 



12F2  = (r6)
d(FD)  

dt 

DT 
= 0, 

cx L=6  

Equation (9-28) becomes 

DTI 

ax lx = o  
(9-29) 

(9-30a) 
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and choose the four conditions needed to evaluate these four coefficients as 

T 

Then, 

where 

DT 
= To. 

the temperature 

T(x, t}= 

= 0 	
02T 

x= a 	aX2 

profile is determined 

Tc, +' I — 	1 —; [ 

F 	(Ti— 

x = 

3  

TO)+ °iG 

= 0, 

as 

F in 

x= 
= 

0 Lc. x ,... 

a 
G(t) 

6 

(9-22) 

(9-23a) 

(9-23b) 

Introducing equation (9-23) into equation (9-20) and performing the indicated 
operations, we obtain the following differential equation for 6 

for 	t> 0 	 (9-24) 

The solution of equation (9-24) subject to 6 = 0 for t = 0 gives 

1°  F
2  dt 

= 24a F2 (9-25) 

Equation (9-23) together with equation (9-25) gives the temperature distribu-
tion in the medium as a function of time and position. For the special 
case of no heat generation, equations (9-23) and (9-25), respectively, reduce to 

of the integral method to the solution of nonlinear heat conduction problems. 
In the first example the nonlinearity is due to the boundary condition, in the 
second due to the differential equation. 

Exaniple 9-3 

A semiinfinite medium is initially at uniform temperature T,. For times t > 0, 
the boundary surface at x = 0 is subjected to a heat flux that is a prescribed 
function of time and surface temperature. Obtain an expression for the surface 
temperature T„(t) for times t > 0. 

Solution. The mathematical formulation of this problem is given as 

a2T 	1 aT 

ax 	a at 
in x > 0, for t > 0 (9-27a) 

— —
OT

= f (T„, t) 
ax 

at x=0, for t> 0 (9-27b) 

T = for• t = 0, in x 	0 (9-27c) 

Here the boundary-condition function f(T„t) is a function of time t and the 
boundary-surface temperature T,(t).-÷.7. T, at x = 0. 

The integration of the differential equation (9-27a) over the thermal layer 
6(0 gives' 

1  [ d  T dx) — .111 (9-28) 
x =0 ef 	di 0 x=d dt 

In view of the conditions 

= _ 
T0  — 	6) 

6 = \ /-271Ttt 

which are exactly the same as equations 0-11:0). 

(9-26a) 

(9-26b) 

9-3 INTEGRAL METHOD—APPLICATION TO NONLINEAR 
TRANSIENT HEAT CONDUCTION 

Another advantage of the integral method is that it can handle the nonlinear 
problems quite readily. In the following two examples we illustrate the application 

where 

0- 	Tdx 
	

'(9-30b) 
x=0 

which is the energy integral equation for the considered problem. To solve 



D-T  " - (i - 
3 	8-  

in"0 -..c.x-46 
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this equation we choose a cubic polynomial representation for T(x, t) as 

T(x, t) = a ;  + a 2x + a ,x 2  + a ‘,...x 3 	 (9-31) 

These four coefficients are determined by utilizing the three conditions (9-29) 
together with the derived condition 

=0  

ax21„ =, 

The resulting temperature profile becomes 

and for x = 0, this relation gives 

bf (Ts, t) 
T,(t) - T, 	 

3 

From equations (9-33) and (9-34) we write 

T(x, i) - T, f 	xy 

Ti 	6 

Introducing equation (9-35) into equation (9-30), performing the indicated 
operations, and eliminating (5 from the resulting expression by means of 
equation (9-34) we obtain the following first-order ordinary differential equa-
tion for the determination of the surface temperature T3. 

4 	d
T

Td1 
3 
- otf (Ts, t) = -

dt 	
for 	t>0 	(9-36) 

f( 5, t) 

with 

T, = T, 	for 	t = 0 	 (9-37) 

Equation (9-36) can be integrated numerically if the boundary condition 
function f (T3, t) depends on both the surface temperature and the time. For 
the special case of f(7,, t) being a function of surface temperature only, namely 

f (Ts, t) = f (Ts) 	 (9-38) 

equation (9-36) is written as 

4 d [(T , - 	di; 
-3cf./.  (Ts) = 	

f(7 ) j dt 

for 	t > 0 (9-39a) -
4

a = 
2(T,- Tdf (Ts) - (Ts). (Ts - Ti)2 d7  

3 	 f 3(T3) 	 dt 

a ( k a—T) c  a T 

ax ax P  

- k  ax 
f(t) 

in 	x > 0, t > 0 	(9-41a) 

at 	x-0, 1: 0 	(9 41b) 

The system (9-41) is transformed into 
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Ts  = T 	for 	t = 0 	 (9-39b) 

The integration of equation (9-39) establishes the relation between the surface 
temperature T,(t) and the time t as 

'jat =
F2(7; - Tilf (,f)3(Ts

- f
;

(71)•(T' - T')2  dT, 
3 	r, 

where f denotes differentiation with respect to Ts. 

Example 9-4 

A serniirifinite medium, x > 0, is initially arzerci temperature. For times t > 0, 
the boundary surface is subjected to a prescribed heat flux that varies with 
time. The thermal properties k(T), c(T), and p(T) are all assumed depend on 
temperature. Obtain an expression for the temperature distribution in the 
medium. 

Solution. The mathematical formulation of this problem is given as 

T= 0 	 for 	t= 0, x>.-0 	(9-41c) 

where k k(T), C 	C ,(T), and p =_ p(T). By applying the transformation 

pC p dT 

in 	x>0, 

at 	x = 0, 

t> 0  

t> 0 

(9-42) 

(9-43a) 

(9-43b) 

C 
c 

• U = 
0 

(a el.1) au 

ax ax ) at 

—=— ax
au 

a
1(t) 
, 

(9-40) 

or 

with 

(9-32) 

(9-33) 

(9-34) 

(9-35) 
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U = 0 with for t=0, x?..0 	(9-43c) 

for 	t 	.. 	(9-501?)._ 
where a = a(U) and a, refers to the value of a at the boundary surface x = 0. 

Equation (9-43a) is integrated over the thermal layer 5(r) The solution of equation (9-50) is 

. 	d 
= 

dt 

U 	=0, 

dB 

dt 

x= a 
 

I
U dx 

. 	0 

[a - - 
ax 

= f(t) 

U
.(5l 

= 
x=0 

(9-44) 

f (t) 	(9-45) 

(9-46a) 

0. U dx (9-46b) 

Equation (9-44) becomes 

where 

which is the energy integral equation for the considered problem. To solve 
this equation we choose a cubic polynomial representation for U(x, t) as 

U(x, t) = a, ÷ a2x + a 3x 2  + a4x 3 	 (9-47) 

The four coefficients are determined by utilizing the following four conditions 

    

U = 	u  0, - - 
 Px 

a 	au 
o 	a., 	ex x=a 

= — 	— 	= 0 (9-48) I(t) 02 U 

 

Then, the corresponding profile becomes  

(5= - 	jr(e)de 
r 12af 
	i/2 	

(9:51) 

This equation cannot yet be used to calculate the thermal layer thickness /5 
directly, because it involves a, the thermal diffusivity evaluated at the surface 
temperature, Us, which is still unknown. To circumvent this difficulty an 
additional relationship is needed between a, and U1; such a relationship is 
obtained as now described. 

For x = 0 equation (9-49) gives 

6.f(t) 
	

(9-52) 
3; 

Eliminating 5 between equations (9-51) and (9-52), we obtain 

U, Ja , r 4. I 
3 	

(9-53) 

The computational procedure is as follows: 

1. 2., is known as a function of T, and hence of U1. Then the left-hand side 
of equation (9-53) can be regarded to depend on a, only. 

2. Then use Eq. (9-53) to compute a, as a function of time. 

3. Knowing ; at each time, use equation (9-51) to calculate S. 

4. Knowing (5, calculate U from (9-49). 
5. Knowing U, determine the actual temperature T(x, t) from equation 

(9-42). 

In view of the conditions 

DU 

ax 
--- 0, 

x 

( y 
LI(N, r) = f(t) I — 

x 
3; 	(5  

9-4 INTEGRAL METHOD—APPLICATION 
TO A FINITE REGION 

in 	0 x S 	(9-49) 

By substituting of equation (9-49) into equations (9-46) and performing the 
indicated operations we obtain the following differential equation for the 
determination of the thermal-layer thickness (5(t): 

d rPf(t)].._. f(t) 	for 	t > 0 	 (9-50a) 
dti_ 12a,  

In the previous examples we considered the application of the integral method 
for the solution of transient heat conduction in a semiinfinite medium in which 
the thickness of the thermal layer (5(0 would increase indefinitely. However, for 
the problem of a slab, in 0 < x L, with the surface x = L insulated, the analysis 
is exactly the same as that described for a semiinfinite region so long as the 
thickness of the thermal layer remains less than the thickness of the plate; but, as 
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soon as the thickness of the thermal layer becomes equal to that of the slab, that 
is, SW = L, the thermal layer has no physical significance. A different analysis is 
needed for (5(0 > L. This matter is illustrated with the following example. 

temperature profile becomes 

(9-56a) 

Example 9-5 

A slab, 0 ‘..V < L, is initially at a uniform temperature T. For times t > 0, the 
boundary surface at x = 0 is kept at a constant temperature T, and the 
boundary at x = L is kept insulated. Obtain an expression for the temperature 
distribution in the slab for times t > 0 by using the integral method. 

Solution. The mathematical formulation of this problem is given as  

where 

= 	tixr 
	 (9-56b) 

This solution is valid for 0 x 6, so long as 6 L. The lime t E  when 41 = 2. 
is obtained from equation (9-56b) by setting 6 = L. that is 

C  

02T 	1 OT 

axe = a at 

T(x, t)= To  

=0 
Ox 

T(x, t) 	T, 

in 

at 

at 

for 

0 < x < L, 

x = 0, 

x 	L, 

I = 0, 

i> 0 

t > 0 

t>0 

in 

(9-54a) 

(9-54b) 

(9-54c) 

(9-54d) 

For the reasons discussed above the analysis is now performed in two stages: 

1. The first stage, during which the thermal-layer thickness is less than the 
slab thickness (i.e., 6...54. 

2. The second stage, during which 6 exceeds the slab thickness L. 

The First Stage. For the case 45(t) < L, we integrate equation (9-54a) civet the 
thermal layer thickness and obtain 

where 

— a--
OT  

Ox 

a• 

x"0  

f
6 

= — (0  
dt 

T(x, 

T;6) 

dx 

(9-55a) 

(9-55b) 

The energy integral equation thus obtained is exactly the same as that given 
by equation (9-4) for the semiinfinite region. We choose a cubic profile for the 
temperature as given by equation (9-5), apply the conditions given by equations 
(9-6) to determine the coefficients, and utilize equation (9-55) to obtain the 
thermal-layer thickness as discussed for the semiinfinite region. The resulting 

L2 	
(9-57) 

Clearly, the solution (9-56) is not applicable for times t > t L. 

The Second Stage. For times t > t1,, the concept of thermal layer has no 
physical significance. The analysis for the second stage may be performed in 
the following manner. We integrate the differential equation (9-54a) from x = 0 
to x = L; we find 

—z 
(1 -1 

ex 
	= 

d 
(0 — 

dt 

where 

f
r. 

	

 T(x,t)dx 
	

(9-58b) 

A comparison of equation (9-,58) with equation (9-55a) reveals that in the 
latter, the plate thickness L has replaced 6(t), hence there is no thermal layer. 
The temperature T{x, t) is again expressed by a polynomial: Suppose- we --
choose a cubic polynomial representation in the form 

	

TV, = a + bx + CX-2 	in 	0 < x < L, t>1L 	(9-59) 

where the coefficients are generally function of lime. In this case we have no 
thermal layer to be determined from the solution of the differential equation 
(9-58). Therefore, we choose only three conditions 

T = To, 

	

aT 	 02T 

	

and 	 = 	(9-60a,b,c) 
'=0 	

• 

	

ay 	= 0 ax.2 ,,0  

These conditions are applied to the cubic profile given by equation (9-59) and 
all the coefficients are expressed in terms of one of them, say b h(r). We find 

(9-58a) 
C.: 

Ci 

C. ). 
C.) 

C 
• U 

C 

C. 
C. 



the following profile 

T(.x, t) = TO  + bL L - 1  (-x
L  )

31 
3-   

in 	O x L, for t tL  (MI) 

x = Lat the time t =1' 1, = L2/8a should be equal to the initial condition T= Ti ; 
we find 

L2  

	

ii(t) = - -
3 	

for 	t t, = 

	

2 	 8a 
(9-64) 

itft)= - ex r2c.4 t - 3  ) 
2 	

_o 
0-L2 P L 	0/1

1  (9-65) 

Thus equation (9-62a) with ij(t) as given by equation (9-65) represents the 
temperature distribution in the slab for times t > tL  = L2/8a. Figure 9-3 shows 
a comparison of the exact and approximate solutions. 

9-5 APPROXIMATE ANALYTIC METHODS OF RESIDUALS 

Lb(t) 
(9-62b) 

ro-T  

When the profile (9-62a) is introduced into equation (9-58a) and the indicated 
operations are performed, the following ordinary differential equation is ob-

- 	 tained for the determination of n(t): 

(9-63) 

The initial condition needed to solve this differential equation is determined 
from the requirement that the temperature defined by equation (9-62a) at 

d(t)  5

12a
ti(t)= 0 	for 	t 

dt 	! 

t 11111613 = 
IN 

iiks, ihia  
0.294 IIII 

0.125 
wil  
11.1 

11 - Exact 	• 	0.0312 --- Integral 
I I 

.,NII 

0.4 	0 6 
	

0.8 
	

1.0 

-I 

a. 

0.2 

Tl 
a 
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which is expressed in the dimensionless form as 

To  - T
T = 	n(t)P-

icy] 	
in 	0 x L (9-62a) L 3 L 

T(x, t) -  The solution of the differential equation (9-63) subject to the initial conditiou 
(9-64) gives 

where 

When the exact solution T cannot be obtained for an ordinary or partial 
differential equation, a trial family of approximate solution Tcontaining a finite 
number of undetermined coefficients c 1 ,c2,...,c„ can be constructed by the 
superposition of some basis . fitnctions such as polynomials, trigonometric func-
tions, and similar. The trial solution is so selected that it satisfies the essential 
boundary conditions for the problem; but, when it is introduced into the differen-
tial equation it does not satisfy it and leads to a residual R, because it is not the 
exact solution. For the true solution the residuals vanish identically. Therefore, 
the problem of constructing an approximate solution becomes one of determining 
the unknown coefficients ei ,e,,...,c„ so that the residual stays "close" to zero 
throughout the domain of the solution. Depending on the number of terms taken 
for the trial solution, the type of base functions used and the way the unknown 
coefficients, are determined, several different approximate solutions are possible 
for a given problem. 

Different schemes have been proposed for the determination of the unknown 
coefficients,e,.e_ r5  associated with the construction of the trial family of 
approximate solution T To illustrate the basic apptoaches followed in various 
approximate methods of solution, we examine the following simple problem 
considered in reference 55: 

dT 

(If  

(t) 
T(t) = 0 	for 	t > 0 	 (9-66a) 

Fig. 9-3 Comparison of exact and approximate temperature profiles for a slab of thick-
ness L. (From Reynolds and Dolton [7].) T(t)-= 1 

	
at 	t = 0 	 (9-66b) 

Th 
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The exact solution of this problem is given by 

	

T(i) = e 1 	 (9-67) 

We wish to obtain an approximate solution for this problem in the interval 
0 <1 < I. To construct a trial solution T(t), we choose the basis Junctions to be 
polynomial in t (i.e., t,12  , )  The trial solutimr that contains only two undeter-
mined coefficients r, and e,, arid satisfies the condition (9-66b) for all values of 
r, and e.. is taken as 

T(r) = I + c, r + (•21 2 
	

(9-68) 

Here', the first term on the right-hand side is included in order to satisfy the 
nonhomogeneous part of the boundary condition (9-66b). 

The trial solution (9-68) satisfies the boundary condition (9-66W for all values 
of e, and c,; but, when it is introduced into the differential equation (9-66a) it 
yields a residual R(•, , c2, 1) as 

R(c,,r 2t)= I +(1 + Or, +(2r +12)r, 	 (9-69) 

_This residual..vanishes_only..wth Ihe.exact solution for the problem. Now, the 
problem of finding an approximate solution for the problem (9-66) in the interval 
0 < r < I becomes one of adjusting the values of c, and r, so that the residual 
Ric,,r2,11 stays "close" to zero throughout [he interval 0 <1 < 1. 

Various schemes have been proposed for the determination of these unknown 
coefficients; when c i  and r 2 are known, the trial solution T(r) given by equation 
(9-68) becomes the approximate solution for the problem. 

We briefly describe below some of the popular schemes for the determination 
of the unknown coefficients. 

I. Collocation Method. If the trial solution contains n undetermined coeffi-
cients, it different locations are selected where the residual R(t) is forced to vanish, 
thus providing a simultaneous algebraic equations for the deterMination of the 
coefficients r The basic assumption is that the residual does not 
deviate much from zero between the collocation locations. For the specific 
example considered previously, suppose we select the collocation locations 3 and 

3' Introducing these values into the residual equation (9-69) we obtain 

Introducing these 
solution for the problem 
method as 

2. Least-Squares 
the coefficients c i  
of the square of Ike 
the interval 0 < t 

28c i  

1 	a  
i 5T2  

APPROXIMATE ANALYTIC 

coefficients into equation 
(9-66) in the 

T(r) = l — 0.9310t 

Method. Referring 
and c2  are determined 
residual R(e, , (.2 ,1) 

< I. That is, we set 

f I  R2(c,,c2,t)dt = 
0  

1  122(c 	c 	t)dt= f 
c, 	1' 

c2 
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(9-68), we obtain the approximate 
interval 0 < r < 1, based on the collocation 

	

+ 0.31031' 	 (9-70c) 

to the simple example considered above, 
from the requirement that the integral 

given by equal(9-0) is minimized over 

f R aR  dt = 3 +
3- 

 + 9  2 	(9-71a) 
0 	ec, 	2 	 = 

1  RaR  dt= 4 + 9 c, + 38 c, = 0 	(9-71b) 
o 	ac2 	3 	4 	- 	15 	- 

1 	C.. 

C. 
1 

C 
C 

and again we have two algebraic equations for the determination of the two 
unknown constants e, and c2. A simultaneous solution gives 

• i  = — 0.9427, 	c2  = 0.3110 

Introducing these values into equation (9-68), we obtain the approximate solution 
for the problem (9-66) in the interval 0 < t< I as 

t(r) = 1 — 0.9427t + 0.3110/ 2 	 (9-71c) 

3. Rayleigh-Ritz Method. This method requires the variational formulation 
of the differential equation so that the boundary conditions for the problem are 
incorporated into the variational form. Once the variational form is available, 
the trial solution given by equation (9-68) is introduced into the variational 
expression .1(c c 2) and this result is minimized as 

a.i(ci.c2) 
ac, 
	 (9-72a) 

1 I le, I ,;(.2 	0 	 (9-70;) 

R(c,,c2,4)=1 +3c, +-Tr 2  =0 	 (9-70b) 

Thus we have two algebraic equations for the determination of the two unknown 
coefficients r, and c2; or simultaneous solution gives 

r, = — 0.9310. 	r2  = 0.3103 

01(c, , c2) 
=0 

Or2  
(9-72h) 

Thus, we have two algebraic equations for the determination of the two unknown 
coefficients c, and c2. Generally, the difficulty with this approach is the deter-
mination of the corresponding variational expression. if the variational form 
cannot be found, the scheme is not applicable. The principles of variational 
calculus are discussed in several texts [32-36], and the application to the solution 

T. 
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of heat conduction problems can be found in several other references [37-56]. 
Next, we consider the Galerkin method, which leads to the same approximate 
solution as the Rayleigh—Ritz method without requiring the variational form of 
the problem. 

4. Go!erkin Method. The method requires that the weighted averages of the 
residual Rh, c,. t) should vanish over the interval considered. The weight func-
tions w,(t) and wa(t) are taken as the basis functions used to construct the trial 
solution T(t). For the specific problem considered here, t and t 2  are the weight 
functions to be used for the integration of the residual R(c i ,c,,t) over the interval 

< t < 1. Thus, the Galerkin method becomes 

1 

!MC I C2, t)dt f tEl +(1 + t)c i  +(2t + t2 )cdtit 

•=4.4_ ici+ 41c2_0 

solution of differential equations. Here we focus attention on the Galerkin method, 
especially on its application to more general problems and the methods of deter-
mining the trial functions. 
The method is perfectly universal; it can be applied to elliptic, hyperbolic and 
parabolic equations, nonlinear problems as well as complicated boundary condi-
tions. The reader should consult references 116, 37, 53-551 for a discussion of 
the theory and application of the Galerkin method and references 158-691 for its 
application in the solution of various types of boundary-value problems. 

Application to Steady-State Heat Conduction 

We consider a steady-state heat conduction problem given in the form 

V2 T(r) + A T(r) + 
1  
—g(r)= 0 
	

in 	R 	(9-75a) 
(9-73a) 

0 t
2 R(c„c,,t)dt = 	1 2 [1 + (1 + t)c i  + (21+ t 2 )c,]dt k —

DT 
+IIT= f(rs) 

an 
on boundary S 	 (9-75b) 

J
 l  

J
  
)
 

)  

= i + 125 ± ioc2 = 0 	 (9-73b) 

Equations (9-73) provide two algebraic equations for the determination of the 
unknown coefficients r, and c2 . A simultaneous solution gives 

— 11.9143 	— 0.2857 

introducing these coefficients into equation (9-68), the approximate solution 
becomes 

T(t) = 1 — 0.9143r + 0.285712 	 (9-73c) 

We also note that, the weight functions wi(t) and w2(t) can be interpreted as 

11 ;(1) 

	

	 i = 1,2 
(lc;  

The Galerkin method does not require I he variational form of the problem, and 
yields the same result as the Rayleigh. Ritz method, therefore the problem setup 
is easier and more direct. We now present further applications of the Galerkin 
method and discuss the construction of the basis functions. 

9-6 THE CALERKIN METHOD 

In the previous section, we illustrated with a simple example the basic concepts 
in the application of some of the popular approximate analytic methods for the 

where a/an denotes derivative along the outward drawn normal to the boundary 
surface S. 

Clearly, the problem defined by equations (9-75) covers a wide range of 
steady-state heat conduction problems as special cases. 

Let tki(r),j= 1, 2,3 ...., be a set of basis functions. We construct the n-term 

trial solution Tn(r) in the form 

i"„(r) = tit o(r) + 	c jOi(r) 	 (9-76) 
1=1 

where the fimetion th(r) is included to satisfy the nonhomogeneous part of the 
boundary condition (9-75b) and the basis functions (I)j(r) satisfy the homogeneous 
part. When all the boundary conditions are homogeneous, the function th(r) is 
not needed. The subscript n in the trial solution /;:(r) denotes that it is an n-term trial 

solution. 
When the trial solution (9-76) is substituted into the differential equation 

(9-75a), a residual 12(t. L . i• 2 , . . r) is left, because t(r) it is not an exact solution. 
We obtain 

V 2 t(r)+ Atn(r)+ g(r) R(c„c2 ,...,c„; r) 0 	(9-77) 

Then the Galerkin method for the determination of the n unknown coefficients 

c1 ,c2,...,c„ is given by 

SR 41(r)[027t„(r)+ A T„(r) + g(r)] du = 0; 	j= 1, 2, , n 	(9-78a) 

(9-74) 
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which is written more compactly in the form 

1. 4 (r)R(c,,c2,..:,c„; r) chi = 0; 	j = I, 2, ..., n 	(9-786) 

Equations (9-78) provide n algebraic equations for the determination of n un-
known coefficients e l , e2,...,c„. 

If the problem can be solved' by the separation of variables and the basis 
functions C(r) are taken to be the eigenfunctions for the problem, then the 
solution generated by the Galerkin method becomes the exact solution for the 
problem as the number of terms n approaches infinity. However, in general, the 
eigenfunctions for the problem are not available, hence the question arises 
regarding what kind of functions should be chosen as the basis functions to 
construct the trial solution. 

The functions C(r), (j = I, 2,... , n) should satisfy the homogeneous part of the 
boundary conditions and should be linearly independent over the given region 
R. The functions (/).) (r), j = I, 2,..., ti, if possible, should belong to a class of 
functions that are complete in the considered region. They should be continuous 
in the region and should have continuous first and second derivatives. They may 
be polynomials, trigonometric, circular, or spherical functions, but they should 
satisfy the homogeneous part of the boundary conditions for the problem. 

Construction of Function 49(r) When Boundary Conditions 
Are All of the First Kind 

In regions having simple geometries, such as a slab, cylinder, sphere, or rectangle, 
the functions C(r) can be taken as the eigenfunctions obtained by the separation 
of variables that are available in tabulated form in Chapters 2-4. Thus, the 
functions efii(r) can be used as the basis functions to construct the trial solution 
T(r) for the problem. However, there are many situations in which the boundaries 
of the region are irregular; as a result, it becomes very difficult to find basis 
functions C(r) that will satisfy the homogeneous boundary conditions. Here we 
present a methodology to construct the basis functions cbi(r) for such situations 
in two-dimensional problems. 

Let a function w(x, y) be a continuous function and have continuous derivatives 
with respect to x and y within the-region, and in addition satisfy the•omogeneous-
boundary condition of the first kind at the boundaries of the region: 

w(x, y) > 0 	in 	R 	 (9-79a) 

to(x, y) = 0 	on boundary S 	 (9-79b) 

Once the functions w(x,y) are available, the basis functions C(x,y) can be 
constructed by the products of w(x, y) with various powers of x and y in the form 

01 = (t). 	02 = COX, 	d's = coY, 	W 4 = (0x2, 	05= 	 (9-80)  

I HL 	 rpou 	7 

The functions dri(x. 3-).j = 1.2 	n constructed in this manner satisfy the homo- 
geneous part of the boundary conditions for the problem, have continuous 
derivatives in x and y. and it is proved in reference 53. [p. 276] that they constitute 
a complete system of functions. Then, the problem becomes one of determining 
the auxiliary functions w(x, y). These functions can be determined by utilizing the 
equations for the contour of the boundary as now described. 

1. Region Haring It Single Conriluurus Contour. If the region has a single 
continuous contour such as a circle, the equation of the boundary can lie 

expressed in the form 

F(x,y) = 0 
	on boundary S 	 (9-81) 

Clearly, the function 	y) is continuous, has partial derivatives with 
respect to x and r, and vanishes .at the boundary of the region R. Then, 

the function w(x, y) can be chosen as 

m(N. y)= ± F(•• 	 (9-82) 

For example, for a circular region of radius R with center at the origin. 
the equation for the contour satisfies the equation 

2. Region Haring a Contour as Convex Polynomial. Consider a region in the 
form,of a convex polynomial and let the equations for the sides be given 
in the form 

F i  =aix+hit• +di =0 
	

19-84a) 

F, a2x +1)2y 	=0 
	

(9-8-4b) 

F. a a„N b„y 	0 
	

OPP c 

Then. the function to(x, y) chosen in the form 

w(x,y) = 	F,(x, y)F2(x.y)... 	F„(x, 	 (9-85) 

vanishes at every point on the boundary and satisfies the homogeneous 
part of the boundary conditions of the first kind for the region. 

3. Region Haring a Contour as Nonconrex Polynomial. The construction of 
the function w(x, y) for this ease is more involved, because the function 

R 2 	s' 
	y2 	(1 
	

(9-83a) • 

and the function w(x, y) is taken as 

2 
	

(9-83b) 



x 

fa) Rectangular region 

(h) Triangular region 

cl Triangular region 
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w(x,),) has to be assigned piecewise in different parts of the region. Further 
discussion of this matter can be found in reference 53 [p. 278]. 

Example 9-6 

Construct the functions w(x, y) as discussed above for the four different geo- 
	 tneitiessb  own La. Fig. 9-4. 

Sonainn. The equations of the con tours for each of the four geometries shown 
in Fig. 9-4a,b,c,(1 are given, respectively, as 

a—x=0, a+x=0, h—y=0, b+y= 0 	(9-86a) 

x = 0, y 0, 	— 	= 0 	 (9-86c) 
a b 

— — y2  = 0, 	(x — L)2  — y2  = 0 	(9-86d) 

Then the corresponding functions ca(x,y) for each of these geometries shown in 
Fig. 9-4u,b,c,d arc given respectively as --- 

w(x0,) (.1r 2 x2)(h2 y2) 	 (9-87a) 

w(x,y)-- (y— cex)(Y + /M(L —  x) 
	

(9-87b) 

y—ax= 0, y+(3x=0, L—x=0 	 (9-86b) 

(J) A crescent shaped region between 
two intersecting circles 

Fig. 9-4 Regions having boundary contour in the form of a convex polygon and a region 
bounded by two circles: (a) rectangular region; (b) triangular region: (c) triangular region: 
Id) a crescent-shaped region between two intersecting circles. 

w(x, y) = x y(1 —
a  
1c -- b 
	

(9-87c) 

w(x,y) = (It? x2  — y9[1?; (x 	— y2] 	(9-87d) 

Construction of Functions rh(r) for Boundary Conditions 
of the Third Kind 

We consider one-dimensional steady-state heat conduction in a slab of thickness 
I. subjected In convection into a medium at zero temperature. The boundary 

conditions at x = 0 and x = I, arc 

1i l  [— 
d
--
T  
+l =0 

dx 	x=o 

[dT 
— +112T] =0 
dx 	xmL 

If such a heat conduction problem is to be solved by the Galcrkin method, the 
first two trial functions q51  (x) and 02(x) must be chosen as 

(

0 1  = x2 x  _ 	
2 + 11 2 /. 
	 (9-89a) 

02 = (1-• — x)2(x 	L 	 (9-89b) 
2 +h i L 

and the remaining (1),, 	can be taken as 

49i = 	x)2, 	j= 3:4,5... 	 (9-89c) 

9. 

9 

9 

9 

9 

Th 

(9-88a) 

(9-88b) 
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Then, the trial solution constructed as 

tri(x)= 0, +02+ E 
1= 3  

in 	0 x L (9-89d) 

(9-90) 
k! inl 

k(L xr dx = 	Lk  ""1  
(k m + 1)1 

T=0 

(.1 2T 
4 A.7  T+Bx=0 

dx` 
in 	0 < x < 1 	 (9-91a) 

at 	x = 0 and x = 1 	(9-91b) 

C 
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I. One-Term Trial Solution. We choose the trial solution as 

1-1(x) = ci 	 (9-94a) 

where the 
conditions 

Then we have 

Introducing 
Galerkin method 

Performing 

Then the one-term 

For the ease 

2. Two-Term 

where the basis 

basis function 	(x), satisfying the homogeneous boundary 
(9-91b), is taken as 

(9-94 b) 

	

"1",(x)= c,x — c, x2 	 (9-94c) 

d 2 1-1  
• 	-;• 	— 2c1 	 (9-94d) 
dx- 

equations (9-94c,d) into equation (9-92), 	the one-term 
of solution gives 

[— 2c1 	A(c l x 	c i x2) 	Bx](x — x l)dx = 0 	(9-95a) 
= 0 

this integration and solving for el , we obtain 

B 
(9-95b) 

4[1 — (A/10)] 

trial solution becomes 

B 

	

I-1(x)= x(1 	x) 	
(9-96a) 

A = B = 1, this result reduces to 

(9-96b) 

Trial Solution. The trial solution is taken as 

T2(x) = c1  01 (x) 	cz 02(x) 	 (9-97a) 

functions 01 (x) and rfi, (A) are chosen as 

rbi(x) ---  x(1 — 	02(x) =x2(1 -x) 	(9-97b) 

C 

C 

(: 

C. 

C 

C 

satisfies the boundary conditions (9-88a,b) for all values of ci,j 3. 
For other combinations of the boundary conditions of the first. second, and 

third kinds, functions chi  are constructed with similar considerations. 

Integration Formula 

In performing computations associated with the application of the • Galerkin 
method, the following integration formula is useful [53, p. 269! 

Example 9-7 

Consider the following one-dimensional steady-state heat conduction problem 

where A and B are constants. Solve this problem by the Galerkin method 
using one and two term trial solutions and compare the approximate results 
with the exact solution of the problem for the case A =13 = 1. 

Solution. The application of the Galerkin method gives 

11112 + AT+ Bx]Oi(x)dx = 0, 	i = 1, 2, 	 
x 	(IX 	

(9-92) 
-  

where clo i(x) are a set of basis functions and T(x) is the trial solution. The basis 
functions are chosen as 

= x(1 — x), 	4z= x2(1 — 	 (9-93) 

which satisfy the homogeneous boundary conditions (9-9 1 b) for the problem. 



3. The Exact Solution. The exact solution of the problem is given by 

T(x)= 
Brin A112x  x] 

A sin /1112  

For A = B = 1, the solution becomes 

(9-101a) 

+ At2(x) + Bx =(— 2c, + 2c2 — 6c2x) 
dx2  

+ A(ci x — c, x2  +c2x 2  — c2 x3)+ Bx 
(9-99c) 

When the integrations are performed, equations (9-99a,b) provide two 
algebraic equations for the determination of the two unknown co-
efficients c, and c2: 

( 	17:21))ci 	TA)  ) c2  = 

(1  A \ c —6 _ A\ 	3 B  
T:)) 	15 	71)c2  

For the case of A = B = 1, these coefficients are 

c 	71 	7 

369' 	e2  

(9-99d) 

(9-99e) 

then, the two-term trial solution becomes 

/ 	 ) 
72(x)  = x(1  — x) 71 

	

7 x 3 	41 
(9-100) 

"Th 

Th 
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Then we have 

t,(x ) = cl (x — x2) c2(x2  — x 3) 

d 2 T2(x) 	• 
	= 2c, + 2c2  Sc2x 
d.v2  

Introducing equations (9-98a, b) into equations (9-92) we obtain 

TABLE 9-2 A Comparison of Approximate and Exact Solutions of Example 9-7 
for A =B=1 

x  
T 

Exact 
Ti  

Approx. Error 
T2  

Approx. Error 

0.25 0.04400 0.0521 +18.4 0.04408 +0.18 

0.50 0.06974 0.0694 — 0.48 0.06944 —0.43 

0.75 0,06005 0.0521 —13.2 0.06009 +0.06 

0.85 0.04282 0.0354 —17.3 0.04302 +0.46 

(9-98a) 

(9-98b) 

I L  [t. -d27-22  + A1-2(:c)+ Bx](x — x 2)dx = 0 	for i= 1 	(9-99a) 

J [ e -d21•22  At2(X)+ BX](X 2  —x3)dx= 0 	for i= 2 	(9-99b) 

where 
T(x) 1.1884 sin x — x 	 (9-101b) 

We present in Table 9-2 a comparison of the one- and two-term approximate 
solutions with the exact result. Clearly, the accuracy is significantly improved 
using a two-term solution. 

Example 9-8 

Consider the following steady-state heat conduction problem for a solid 
cylinder: 

1 d (r  dT\ 

	

, 	1 	1  )T=O 	in 	1 < r < 2 	(9-102a) 
r dr dr / l 	r2  

T = 4 
	

at 	r =1 	(9-102b) 

T=8 	 - at 	r = 2 	(9-102c) 

Solve this problem by the Galerkin method using one-term trial solution and 
compare this approximate result with the exact solution of the problem. 

Solution. The application of the Galerkin method gives 

	

i r 	+ (1 — 1471);(r)dr = 0 	(9-103) 

The one-term trial solution is taken in the form 

	

7'1(r) = tfro(r) + c,4,(r) 	 (9-104a) 



 

5 cilk 

8a 	b 

   

Hence, the one-term approximate solution becomes 

5  
(x, y) = 8 (1   - 2

glk
b2 (a 2  — x 2)(b2  — y2) (9-109) 

C 

C. 
The exact solution of this problem is 

  

cosh (111,, 	• cos(f3,1 

Tx y) = [  2  g a —x2-  2a2 	(-1)" 	
b 	a 

k 	2 	j"=0 /1, 
cosh (ti„ 

fl 

(9-110) 

 

  

where 

    

 

(2n + 1)ir 

  

2 

   

To compare these two results we consider the center temperature (i.e., x = 0, 
y = 0) for the case a = b, and obtain 

 2.  

Approximate: T, (0,0) = T6 	= 0.3125 
-

g

IC - 
(941 la) 

Exact: T(0, 0) = 	— 2 
	Q,3 cosh 
	 = 0.293 gi2- 	(9-11 1 b) 

T
- 2 	i _ 0  pr, 	h 

	

The error involved with one-term solution is about 6.7%, For a two-term trial 
	 C. 

solution, the temperature distribution may be taken in the form 

72(x, y)-- (ci  + c2x2)(a2 _ x2)(62 y2) 	 (9-112) 

and the calculations are performed in a similar manner to determine the 
coefficients r, and c2. 
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where the function ih(r) that satisfies the nonhomogeneous part of the 
boundary conditions (9-102b,c) is taken as 

' 0(r) = 4r 	 (9-104b) 

and the first basis function CO that satisfies the homogeneous parts of the 
boundary conditions is taken as 

where the function 49, is obtained from equation (9-87a) as 

45 , (x, .1) = (a' — x 2)(b2  — 3.2 ) 	 (9-108c) 

Introducing this trial solution into equation (9-108a) and performing the 
integrations we obtain 

o i (r) = (r — 	
2) 
	

(9-104c) 

Substituting the trial solution (9-104) into equation (9-103) for i = 1, perform-
ing the integration and solving the result for c 1  we obtain r — 3.245. Then, 
the .one-term approximate solution becomes 

	

T1 (r) = 3.245(r — 1)(2 — r) + 4r 
	

(9-105) 

The exact solution of this problem is 

	

T(r) = 14.43J, (r) + 3.008 Y1 (r) 
	

(9-106) 

where J (r) and Y1(r) are the Besse! functions. A comparison of the approximate 
and exact solutions al the locations r = 1.2, 1.5, and 1.8 shows that the 
agreement is within 0A13!:,',. Therefore, in this example even the one-term 
approximation gives very good result. 

Example 9-9 

Solve the steady-state heat conduction problem in a rectangular region 
(— n, a; — b, b) with heat generation at a constant rate of g W/m3  and the 
boundaries kept at zero temperature using the Galerkin method and compare 
the result with the exact solution. 

Solution. The mathematical formulation of the problem is 

x2  ay'  
- 	- + - 

k 
 g = 0 

i.l 2T 1 	
in 	— a < x < a, — b < y < b 	(9-107a) 

T = 0 
	

at x= + a . 	and 	+ h 	(9-107b) 

The.solution of this problem by the Galerkin method is written as 

s
. 	c b 	[a2,-/-- 027, 	i  

---i  -i- — -- + -- g 49,(x, Ad x dy = 0 	(9-108a) 
., _,,,j,,._ b  ex 	ay  

We consider one-term trial solution taken as 

(x, = ci01(x, 	 (9-108b) 
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9-7 PARTIAL INTEGRATION 

In the previous section, the Galerkin method has been applied to the solution of 
two-dimensional steady-state heat conduction problems by using a trial solution 
f(x, y) in the x and v variables; as a result, the problem has been reduced to the 
solution of a set of algebraic equations for the determination of the unknown 
coefficients r (. 2 r„ A more accurate approximation is obtainable if a one-
dimensional trial function is used either in the x variable i'(x) or the y vari-
able T(y), and the problem is reduced to the solution of an ordinary differential 
equation for the determination of a function Y(y) or X(x). One advantage of such 
an approach is that, in situations when the functional form of the temperature 
profile cannot be chosen a priori in one direction, it is left to be determined 
according to the character of the problem for the solution of the resulting 
ordinary differential equation. 

The partial integration approach is also applicable for the approximate 
solution of transient heat conduction problems. 

We illustrate the application of the partial integration technique with some 
representative examples. 

Example 9-10 

Solve the steady-state heat conduction problem considered in Example 9-9 
with the Galerkin method using partial integration with respect to the 
variable and solving the resulting ordinary differential equation in the x 
variable. 

Solution. The Galerkin method when applied to the differential equation 
(9-107a) by partial integration with respect to the y variable, gives 

02:3-- 025 	0  

_ b  [aX2 ay2 -10.(y)dy = 0 	in 	-a<x<a (9-113) 

We consider only a one-term trial solution "i", (x, y) chosen as 

Ti  (x, y) = cb ,(y)X(x) 	 (9-114a) 

where 

Ot(y)= b2  - y2 	 (9-I 1413) 

This trial solution satisfies the boundary conditions at y = + b; the function. 
X(x) is yet to be determined. Introducing the trial solution (9-114) into 
equation (9-113) and performing the indicated operations we obtain 

5 	5g 

X"(x)  2b2  X(x) 	41,21( 
in 	-a<x<a 	(9-1 I 5a) 
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Subject to the boundary conditions 

X(x) = 0 	at 	x= ± a 	 (9-115b) 

where the prime shows differentiation with respect to x. The solution of the 
problem given by equations (9-115) is 

X(x)= 	1 

	

2k 

[ 

	

cosh(   .,/2.5 l'
b
c-,  ) 

Then the one-term trial solution becomes 

[

ti  (x, y) = . c  (b2  - y2) 1 

and the temperature at the center (i.e., x = y = 0) for a = b becomes 

Ti  (x, y) = 0.3026 Ya.2  -k - 	 (9-118) 

This result involves an error of only approximately 3.6%, whereas the one-
term approximation obtained in the previous example by the application of 
the Galerkin method for both x and y variables involves an error of approxi-
mately 6.7%. Thus the solution by partial integration improves the accuracy. 

Example 9-11 

Consider the following steady-state heat conduction problem for a segment 
of a cylinder, 0 r < 1,0 4 0 4 00, in which heat is generated at a constant 
rate of q W/m3  and all the boundary surfaces are kept at zero temperature. 

1 el 	t77') 	I irT g 
r— + — — =U 

r Or 	ar 	ae2 k 
in 	0 --cr<1, O<O<O, 	(9-119a) 

T = 0 	 at 	r =1 	0=0, 0=00  (9-119b) 

Solve this problem using the Galerkin method by partial integration with 
respect to the 0 variable. Compare the approximate result with the•exact 
solution. 

cosh( 	a  

(9-116) 

cosh( 	1-  
b 

(9-117) 

cosh(.IB 

 



Then the solution for F(r) is obtained as 

4g r2  - r11 
 

14-(r) = 
- 4 

and the one-term trial solution f(r, 0) becomes 

' 
r= 	n0 

	

1(r, (1) 	 sin 
nk (7r/00 )2  — 4 	0.t) 

The exact solution of the problem (9-119) is 

	

4g 	1 r2 	ringt0.1 

	

T(r,O) = • - 	- - - 	sin 

	

irk 	n (nit/00)2  - 4 	00  

(9-124) 

(9-125) 

(9-126) 

The one-term approximate solution obtained above represents the first term 
in the series of the exact solution. 

Example 9-12 

Solve the steady-state heat conduction problem with constant rate of heat 
generation for a region bounded by = 0, x = a, y = 0, and y = .f(x) for the 
boundary conditions as shown in Fig. 9-5, using the Galerkin method by 
partial integration with respect to the y variable. - 

Solution. The mathematical formulation of this problem is given as 

a2T 32T  
+?— 0 	in 	0 < x < ct, 0 < y < f(x) ax2 012 + k (9-I27a) 

aT —0  
ay 

Fig. 9-5 Region considered in Example 9-12. 
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Solution. The Galerkin method is now applied to the differential equation 
(9-I 19a) by partial integration with respect to the variable 0. 

`'" [i a ( zit) 	a2 T g 
r 	+--+-  10,(0)(10 = 0 	in 	0. < 1 	(9-120) 

fo o tar 	ar 	 1-2  002  k 

we consider a one-term trial solution taken as 

f(r, 0) = 17(r)4 ),(0) 	 (9-121a) 

where 

01 (01= sin(7-r-9-) 	 (9-121b) 
00  

The trial solution thus chosen satisfies the boundary conditions at 0 = 0 and 
= 00; but the function F(r) is yet to be determined. Introducing the trial 

solution (9-121) into (9-120) and performing the integration we obtain 

I d r — 
dF) 	 4g 

F(r) - 	in 	0 r < 1 	(9-122a) 
r dr dr 	r2 	kn 

F(r} = 	 at 	r = I 	(9-122b) 

where 

It 

- - 
0 

A particular solution of equation (9-122a) is 

F  4g r2  

P  irk 12  - 4 

and the complete solution for F(r) is constructed as 

„ 4g r2.  
F(r)= ci t.° + e 2r-  + 

- 4 

Here, cz  = 0 from the requirement that the solution should remain finite at 
r = 0; c1  is determined by the application of the boundary condition at r = I 
to give 

4g 1 
c, - 

irk 12-4 

.(9-122c) 

(9-123) 
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T= 0 	 at 	x= 0, 	x= a, and y= f (x) (9-127b) 

e•T 
= 	 at 	y = 0 	 (9-127c) 
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9-8 APPLICATION TO TRANSIENT PROBLEMS 

We now illustrate the application of the Galerkin method to the solution of 
time dependent problems with the following two examples. 

The Galerkin method is now applied to the differential equation (9-127a) by 
partial integration with respect to the y variable. We obtain 

rfuor

t a27 g  

Px- 	Py-  k 
	 (9-128) 

We consider one-term trial solution taken as 

7-1(x, .0= X (x).  1(r) 	 (9- I29a) 

where 

CO') = [v2  — . f 2(x)] 	 (9- 129b) 

Clearly, this trial solution satisfies the boundary conditions at y = 0 and 
y =f(x): but the function X(x) is yet. to be determined. Introducing the trial 
solution (9- 129) into equation (9-128) and performing the indicated operations 
• we obtain the following ordinary differential equation for the determination 
of the function X(x). 

1.2  X" + 211-  + 	+1'2  — I)X = 
2k 	

in 	0 <.v <a 	(9-130) 

subject to 

X = 0 	at 	x=0 and x = a 	(9-131) 

Once the function .1(x) defining the form of the boundary arc is specified. this 
equation can be solved and the function X(x) can be determined. For example, 
the case y= f (x) = 17, corresponds to a rectangular region and the equation 
(9.130) reduces to 

in 	0 < < a 	 (9-132) 

Example 9-13 

A slab in it x 	l is initially at a temperature 71x,t) 	x 2 ). For times 
t > 0, the boundary at x = 0 is kept insulated and the boundary at x = 1 is 
kept at zero temperature. Using the Galerkin method combined with partial 
integration, obtain an approximate solution for the temperature distribution 
t(x,t) in the slab and compare it with the exact solution T(x, t). 

• Solution. The mathematical formulation of this problem is given as 

a27- 	1 or(x.t) 
u  in 

at 

at 

for 

0 tx< 1, 

x = 0, 

x = I. 

r = 0, 

t>0 

t > 0 

i > 0  

in 	0 ‘„ x --.‹., I 

(9-135a) 

(9-135b) 

(0-135e) 

(9-135d) 

Px= 	x 	Pt 

al: =0 
cox 

7' ,,, 0 

T= To(1 —x2) 

We apply the Galerkin method to equation (9-135a) with partial integration 
with respect to x and obtain 

j
i [a2.7" I Pi' 

, — - - 4),(10dr = 0 	 (9-136) 
„..0  l'x'. 	x Or 	- - 	 - 

and choose a one-term trial solution t,(x, 0 as 

	

7.1(x, t) = Tof (1)01(x) 	 (9-137a) 

where 

at 	x = 0 and x = a 	(9-133) 

which is the same as that given by equations (9-115): and the one term 
approximate solution becomes 

1-L (..0 = (.1.2 	b2) X(x) 	 (9-134) 

where X(x) is as given by equation (9-116). 

4 1(x)= 	x2 	 (9-137b) 

f(t) = I 	for 	r = 0 	 (9- I 37e) 

and the function f Nis yet to be determined. Clearly, the trial solution chosen 
as above satisfies the initial condition and the. two boundary conditions for 
the problem. Substituting the trial solution (9-137) into equation (9-136) and 

5 	 5i1 

2i) 2 	-tb'k 

Y = 0  
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performing the indicated operations we obtain the differential equation for 
I'M as 

f(1)= 

f (t).  5ctf(t)= 0  

dt 	2 
for 	t > 0 

for 	1 =0 ( 9- 1 38 b) . 

(9-138a) 

The solution for (1) is 

PO= e-oxrzn 

and the one-term approximate solution T, (x, 0 becomes 

T(r t) = 	— x2.)e-(5:20 
To  

(9-140) 

(9-139) 

We list in Table 9-3 a comparison of this approximate solution with the exact 

solution. Even the one-term approximate solution is in reasonably good 
agreement with the exact solution. Improved approximations can be obtained 
by choosing a higher-order trial solution in the form 

where 

The exact solution of the problem (9-135) is obtained as 

T(x, t) 	 1 
= 4 E (— 	- e-04,  cos to 	(9-141a) • 

To 	n=(.1 

(2n + 1)a 

2 
(9- 141 b) 

7 (x.1) = To E fif1)(hif.v1 
1.1 

(9-142) 

Where the functions (Mx) satisfy the boundary conditions for the problem and 

TA HI .E 9-3 A Coin puriNoie of Approximate nail 
E.xuet Solutions of Example 9-13 

[(1", — TV T] x 100 

= 0.01 = 0.1 xr = I 

0.2 
0.6 +2 

—I 

+5.5 

+4A 
+3.1 

the function AN with JAW= I is determined from the resulting ordinary 
differential equations obtained after the application of the Galerkin method 
with partial integration with respect to the x variable. 

Example 9-14 

The transient heat conduction problem for a solid cylinder, 0 r I, with 
heat generation within the medium is given in the dimensionless form as 

I (' ( 	I) 
= 

r Or 	Or 

T= finite 

T = 0 

T = 0 

t 
in 

Ct 

at 

at 

for  

0 	r < 1, 

r = 0, 

r = 1, 

t = 0, 

t > 0 

r > 0 

t > 0 

0 -4 r ..‹... 1 

(9-143a( 

(9-143W 

(9-143c) 

(9-143d( 

Solve this problem by the combined application of the Laplace transform and 

the Galerkin method. 

Solution. The Laplace transform of this problem with respect to the time 

variahle.is 

	

1:  - 	 I  rG(r) -= 0 

	

LL(T).= (1- 	r a:1  -) lsr. + 

	

dr 	dr 	s 
( 

T(r, 5) = finite 

T( r,5) = 0 

in 

at 

at 

0 < r < 1 

r = 0 

r= 1 

(9-144a) 

(9-144b) 

(9-144c) 

where T(-, s) is the Laplace transform of T(r•, t) and s is the Laplace transform 
variable. 

The application of the Galerkin method to equation (9-I44a) is written as 

1.0 	sOrpi(•)dr = 0 
	

(9-145) 

where 7'{.,$) is the trial solution l'o• rt•,$) and 1),(0 arc the functions that 
satisfy the boundary conditions for the problem and from which the trial 
solution is constructed. In this example we show that if the proper function is 

chosen for Oft) and sufficient number of (I) t(r) are included to construct the 
trial solution, it is possible to obtain the exact solution for the problem. 

We choose Oi(r) as 

Oft) = 00 (9-146a) 
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and the fl;  values are the roots of or 

Jo(ili)= 0 	 (9-146b) 

Then, each of the functions Ot(r) satisfies the boundary conditions (9-144b, c) 
for the problem. We construct the trial solution T(r,$) in terms of the (Mr) 
functions as 

i=Ec,rhj(r) = crio(flir) 	 (9-147) 
J 

where the summation is taken over the permissible values of Ai  as defined by 
equation (9-146b). Introducing equations (9-147) and (9-146a) into equation 
(9-145) we obtain 

f
I 

L[Eci, 0(flir)1-..10(flir)dr = 0, 

	

r=0 	
i= 1, 	(9-148a) 

Or 

[E 
 

cif 
E cif 	 — i•••)— sr.] dflird. n(fli r)dr + -1  11  rG(r)Jo(fir r)dr = 0 
J 	r-ti 	 dr 	 s 

(9-148 b) 

or 

— 	+s] 	rJo(133410(13,0dr - 	rG(r)J0(flir)dr = 0 (9-148c) 
r - O 	 S r=0 

The first integral is evaluated as 

f rJ (flir)J 0 (13;r)dr = ° . 	 (9-149) 
i Of 

f=o ° - 	 Pi(i3i) 	i =i 

Introducing (9-149) into (9-148c), the summation drops out and we obtain 

et  = 	 rG(r)Jo(flintlr 
s(s f fl?)..1(1301-0 

2, 	
(9-150) 

We introduce equation (9-150) into (9-147) after changing i to j and r to r' to 
obtain 

fir. s) = 2E 	1  	Jo(13jr)  f 	r,G(r)J 0(13jr,)dr,  

s(s fq) foi) r•-= 0 
	 (9-151a)  

s) = 2E-1 	— 	) cki-br)  11  ' - 	r G(0.10(llirlde (9-151b) 
-TM)  

The Laplace transform can be inverted by means of the Laplace transform 
Table 7-1, cases 1 and 8; we obtain 

1 	Jo(fi-r) t(r, t) = 2E •(1 e Ps') 	eG(1.10(13/)d? (9-152d) 
fli 	 e=o 

where the summation is over all eigenvalues Pis which"are the positive roots of 

° 	(9- 152b) 

We note that, the solution obtained in this manner is in fact the exact solution 
of this problem. 
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PROBLEMS 

9-1 A semiinfinite region x > 0 is initially at zero temperature. For times 
t > 0, the convection boundary condition at the surface x = 0 is given as 
— k(eTitlx)+ hT = fa ,  where .1.1  = constant. Obtain an expression for the 
temperature distribution T(x, t) in the medium using the integral method 
with a cubic polynomial representation for temperature. 

9-2 A semiinfinite medium x > 0 is initially at a uniform temperature 	For 
times 1 > 0, the boundary surface at x = 0 is subjected -to a prescribed heat 
flux, that is, — WTI ar) = .f(t) at .v .= 0, where f(t) varies with time. Obtain 
an expression for the temperature distribution 7-(x. t) in the medium using 
the integral method and a cubic polynomial representation for 7(-v, t). 

9-3 A region exterior to a cylindrical hole of radius r = h (i.e., r > h) is initially 
at zero temperature. For times t > 0 the boundary surface at r = h is kept 
at a constant temperature To. Obtain an expression for the temperature 
distribution in the medium using the integral method with a second-degree 
polynomial representation modified by In r for T(x,1). 



T = 0 	 on the boundaries 

using the Galerkin method and a one-term trial solution chosen in the form 

TE  (x, y) = c 1(y ax)(y jJx)(L - x) 

9-8 Solve the following steady-state heat conduction problem 

d2 T 02 T 
+ — + -g =u 

Ox- 	tly2  k 
in the region shown in Fig. 9-4c for a = b = I 

T = 0 	 on the boundaries 

using the Galerkin method and a one-term trial solution. 
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9-4 A semiinfinite medium .v > 0 is initially at zero temperature. For times 1 > 0 
heat is generated in the medium at a constant rate of g W/m3, while heat 
is removed from the boundary surface at x = 0 as k(DT/ox) = f = constant. 
Obtain an expression for the temperature distribution T(x, t) in the medium 
for times t > 0, using the integral method and a cubic polynomial represen- 

t ` 	 • tation for T(x, t). 

9-5 Consider a heat conduction problem for a scmiinfinite medium x> 0 with 
the fourth-power radiative heat transfer at the boundary surface x = 0  
defined as 

‘3 27 	1 DT 

a 01 
in x > 0, t > 0 

OT 
k 	= crE(T, - Tt) at = 0, t > 0 

T = T, for t = 0, x 	0 

where Ts  is the surface temperature. Apply the formal solution given by 
equation (9-40) for the solution of this problem. For the case of T. --- 0, by 
performing the resulting integration analytically obtain an expression for 
the surface temperature Tr  as a function of time. 

9-6 Consider the following steady-state heat conduction problem for a rect-
angular region 0 < x < a, 0 < y < b: 

a 2 T  a2 T  

ay2 	 in 	0 < x < a, 0 < y < b 

-1 	 T= 0 	 at 	y = 0, 	y= b 

= 0 
	

at 	x=0 

•-■ 	
T = To  sin ( at 	x = a 

Solve this problem by the Galerkin method using partial integration with 
respect to the y variable for a trial function chosen in the form Ti(x, y) = 
f (x) sin(37ty/b) and compare this result with the exact solution. 

9-7 Solve the following steady-state heat conduction problem: 

0 2 T 	1t27- 	1 	r, 
— -F — -g = 0 ix 	(1).2 	k  in the region shown in Fig. 9-4b 



10-1 MATHEMATICAL MODELING OF MOVING 
HEAT SOURCE PROBLEMS 

A moving heat source, depending on the physical nature of the problem. can be 
modeled as a point, line, surface, or ring heat source that may release its energy 
either continuously over the time or spontaneously at specified times. As discussed 
in Chapter 6, we use the following notation to identify various types of continuous 
heat sources: 

g; = point source, W 
g`,.= line source, W/m 
g; = surface source, W/m2  

where the superscript c refers to a continuous source. For an instantaneous 
source we change the superscript c to i.and alter the units of the source accordingly 
as discussed in Chapter 6. 

The spatial distribution of the strength of the heat source depends on the 
physical nature of the source. For example, the energy distribution in a laser 
beam generally is not uniform spatially. It may have a Gaussian distribution (i.e., 
intensity decreasing exponentially from the center of the beam with the square 
of the radial distance) or a doughnut shape or a combination of these two shapes. 
Also, it may be a continuous source over the time or activated as pulses for short 
periods of time. 

In this section we present the mathematical modeling of the determination of 
temperature fields in solids resulting from a moving point, line, and surface heat 
sources under the quasi-stationary state conditions. 

A Moving Point Heat Source 

We consider a point heat source of constant strength g; watts, releasing its energy 
continuously over the time while moving along the x axis in the positive x 
direction with a constant velocity u, in a stationary medium that is initially at 
zero temperature.- Figure. I0-la illustrates.the .geometry and. the. coordinates._ _ 

The three-dimensional heat conduction equation in the fixed x, y,: coordinate 
system, assuming constant properties, is taken as 

2 -r 02T 02T 1 	 1 

2 	dy2  
1- 	

2 	
tic %, 

0.1: 	k 	• 	a dr 
(10-1 ►  

where T -a T(x, y, z, t). 
Let the heat source be a point heat source of constant strength gep  watts, 

located at y = 0, z = 0 and releasing its energy continuously as it moves along 
the x axis in the positive x direction with a constant velocity u. Such a point heat 
cource_is_relaital_t_cithe volumetric source u(x z,1) by the delta function  

10 
MOVING HEAT SOURCE 
PROBLEMS 

There are numerous engineering applications, such as welding, grinding, metal. 
cutting, firing a bullet in a gun barrel, flame or laser hardening of metals, and 
many others in which the calculation of temperature field in the solid is modeled 
as a problem of heat conduction involving a moving heat source. Following the 
pioneering works of Rosenthal [1-4] on the determination of temperature 
distribution in a solid resulting from arc welding, numerous papers appeared on 
the subject of heat transfer in solids with moving heat sources [5-29]. 

In machining, grinding, cutting, and sliding of surfaces, the energy generated 
as a result of friction heating can be modeled as a moving heat source. The 
determination of temperature field around such heat sources has been studied 
by several investigators [14-23]. . 

More recently lasers—because of their ability to produce high-power beams—
have found applications in welding, drilling, cutting, machining of brittle materials, 

' and. surface hardening-of metallicallays..For.exaruple, in.surface..hard_ening,a. 
high-power laser beam scans over the surface and unique metallurgical structures 
may be produced by rapid cooling that occurs subsequent to the laser heating. 
The determination of temperature field around a moving laser beam has been 
studied in several references [24 321. 

The id)jeel ive of ibis chapter is to ini roduee the mai 	formulation 
and the method of solution of heat conduction problems involving a moving heat.  
sourceby considering simple, representative examples for which analytic solutions 
are obtainable by the method of separation of variables under quasi-stationary 
conditions. 

372 



since (tN/at)= — u. The derivatives with respect to x becomes 

oT 
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but the partial derivatives with respect to y and z remain unaltered. Then, the 
heat conduction equation (10-1a) in the coordinate system ,y,z moving with 
the source is given by 

02 7-  D.2 T 0 27-  1 0)=1 oT ti aT 
+ 	+ 	+ - g`,5( 	0)3(3.,  — 0)3(z 	 (10-4) 

P.f.2 	Oy- 	k 	 a at 	at 

We note that this equation is a special case of the heat conduction equation for a 
moving solid given by equation (1-56) in Chapter 1. In equation (10-4), the solid 
is moving with a velocity u in the negative t direction with respect to an observer 
located arfhe source: this is-the reason for the negative sign_ in front of the velocity- ------ 
in equation (10-4). 

  

(n) 	 (h) 

Fig. 10-1 A moving point heat source: (a) fixed coordinates x, y, z; (6) moving coordinates 

notation as 

g(x, y, z, t) g p̀ 4:5(y — 0)5(z — 0){5(x ut) 

1 	1 	1 

in3 m m m 

Quasi-Stationary Condition. Experiments have shown that, if the solid is long 
enough compared to the penetration depth to heat transfer field, the temperature 
distribution around the heat source soon becomes independent of time. That is, 
an observer stationed at the moving origin 0' of the ,y, z coordinate system fails 

(10-1b) to notice any change in the temperature distribution around him/her as the 
source moves on. This is identified as the quasi-stationary condition [3] and 
mathematically defined by setting DT/at = 0. Therefore, the quasi-stationary 
form of equation (10-4) is obtained by setting aT/dt = 0 as 

where (S(*) denotes the Dirac delta function. 

Transformation of the Origin. In the solution of moving heat source problems, 
it is convenient to let the coordinate system move with the source. This is 
achieved by introducing a new coordinate t  defined by 

	

= x — ut 
	

(10-2) 

Figure 10-lb illustrates the new coordinate system y, z that moves with the 
source. The heat conduction equation (10-1a) is transformed from the fixed x, y, z 
coordinate system with fixed origin 0 to the moving coordinate system ,y, z with 
moving origin 0' by the application of the chain rule of differentiation given by 

0 
y, z, t) aTag dT d aT d aT d = 

	
DT DT 

+ 	+ 	- — u -  
fit 	Py t 	it 	at If 	(14; 	at 

1 2 T 02T a2 T. 

+ 	i4(5()14.05(0 , 	8 1.! 17  
rt (N 

(10-5) 

where (5(y) 5(y — 0), and so forth. 
Equation (10-5) can be transformed into a more convenient form by introduc-

ing a new dependent variable 	y, z) defined as 

z) = 	y, z)e — 04244 

Then equation (10-5) takes the form 

320 320 .920 ( u  ), 2 	I 
- 0 + -a` 6g)(5(y)(5(z)e(42')4  = 0 0,1,2 	oz2 	2a 	k P  

(10-6) 

(10-7) 

Here, the exponential e"'12": appearing in the source term can be omitted, since 
the term vanishes for 1 # 0 because of the delta function a(15) and the exponential 
becomes unity for 15 = 0. 

(10-3b) 
A Moving Line Heat Source 

(10-3c) 	 We now consider a line heat source of constant strength gE W/m, located at the 
x axis and oriented parallel to the z axis as illustrated in Fig. 10-2a. The source 
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releases its energy continuously over the time as it moves with a constant velocity 
u in the positive x direction. The medium is initially at zero temperature. We 
assume (8T/az)= 0 everywhere in the medium. Then the two-dimensional heat 
conduction equation in the x,y coordinates is taken as 

32T a'r I 
---+- 9(x,Y,t) = 
axe 	01,2 	k 	a Or 

	 (10-8a)  

Quasi-Stationary Condition. As discussed previously, the quasi-stationary form 
of equation (10-10) is obtained by setting (07/at) = 0. We find 

82T a'T 	I 	 u 	
(10-11) 

This equation is transformed into a more convenient form by introducing a new 
dependent variable 0(,;, p) defined as 

where T a-  T(x,y, r). The line heat source ffil W /m is related to the volumetric 
source 0(x, y, t) by the delta function notation as 19 = o(„;,y)e- t.12,14 	 (10-12) 

g(x, y,t) = 	— 0)6(x w) 
W 	W I 

m 

(10-8b) 	 Then equation (10-11) takes the form 

 

 

820  + 
ay2 2a 
320  —KO + -1

k 
 G =o ae 	 L  

 

 

(10-13a) 

Transformation of the Origin. This heat conduction problem is now transformed 
from the x, y fixed coordinates to new y coordinates moving with the line-heat 
source by the transformation 

= x — Fit 	 (10-9) 

as illustrated in Fig. 10-2. 
By following the procedure described previously, we transform the heat 

conduction equation (10-8) to the moving coordinate system y) as 

a 2T 821-  
-a--e+ 	_ 

1 	1 	a 
ay, k gLov(y)= -( —T  — u -8T) 

a at 
(10-10) 

4 

0' 

z 

rat 	 (b) 

Fig.10-2 A moving line heat source: (a) Fixed coordinates x,y; (b) moving coordinates 

where 

GL = 9;,(5g)(5C11 	 (10-13b) 

We note that the term e("/ 22'4  [hat would have appeared on the. righ i-hand side 
of equation (10-13b) is omitted for the reason stated previously. 

A Moving Plane Surface Heat Source 

We now consider a plane surface heat source of constant strength g; W/m 2, 
oriented perpendicular to the x axis, as illustrated in Fig. 10-3. The source 
releases its energy continuously over the time as it moves with a constant velocity 

in the positive x direction. For the one-dimensional case considered here we 
assume (aTiay) = (3T /0z) = 0 everywhere, hence the differential equation of heat 

4 

0 

(a) 	 (b) 

Fig. 10-3 A moving plane surface heat source: (a) fixed coordinate x: and (h) moving 
coordinate 

1r 

.1 
	

U 



subject to the boundary condition 

d7 

d 
as 	e--). + co 	 (10-21) 

Applying the transformation (10-18), equation (10-20) lakes the form 

1120 	u  20 4. 0,,,r5() 	0  

del 	22) 	k 

which is the same as that given by equation (10-19). The solution of this equation 
for 	0, where the source term drops out, is taken as 

0((;)= Cie  - 	c2ellanal4 	for 	rk < < r, 	(10-23) 

in 	— co < < 	(10-22) 

and with the application of the transformation 

710 = a(tDe 

• equation (10-17), takes the form 

(120 	/I 2  0  4_  gc3m  = 0  

k 

(10-18) 

(10-19) 

where the exponential exp((u/2ot)E), which would appear as a multiplier to the 
source, is omitted for the reason stated previously. 
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10-2 ONE-DIMENSIONAL QUASI-STATIONARY PLANE conduction-reduces-to  

	

a2T 1 	1 aT 

	

k 	a at 
(10-14a) 

where T-= T(x,t). The moving continuous surface heat source qt is related to the 
volumetric source g(x, I) by 

g(x, 1) g:c5(x — ut) 

W 1 
3 -7,  m- 

HEAT SOUR CE-PR-OREEM- 

In the problem of arc welding, the energy generated by the arc causes the 
electrode to melt, hence the problem of temperature distribution around the arc 
can be modeled as a problem of moving heat source. If the electrode is long 
enough with respect to its diameter, the heat transfer in the first few inches of the 
electrode can be envisioned as being of a quasi-stationary nature. if we assume 
there are no surface losses from the electrode (i.e., electrode is partially insulated), 
the corresponding heat transfer problem can be modeled as a one-dimensional 
moving heat source problem governed by the heat conduction equation (10-14). 
If we further assume that the quasi-stationary condition exists, the governing 
differential equation for this problem is taken as 

(10-14b) 

Transfo•tnation of the Origin. The heat conduction equation (10-14) is trans-
formed from the fixed x coordinate to the moving e coordinate by the transfor-
mation 

tI 2T 	 dT 
1 g :6(a = 

u 

k • 	a de . 
in 	— oo < < oc 	(10-20) 

= x — tit 	 (10-15) 

By following the procedure described previously, the heat conduction equation 
(10- 14) is transformed to the moving e coordinate as 

D;f72.  kl 	_I ( DT 	aT\ 

	

(C)  c( at 	" e) 
(10-16) 

Quasi-Stationary Condition. Assuming quasi-stationary condition, equation 
(10-16) reduces to 

d2T 

k • s 

1 	u dT 

rlZ 
- (OM— 

. 
(10-17) 

Introducing this result into equation (10-18), we obtain 

T(,;) = Cl  e 	+ C2 	for 	co < < 	(1024) 

This solution is now considered separately for the regions e < 0 and e > 0 in the 
form 

7--(‘;)= Ci e-("1') 	C: 	for 	e <0 	. (10-25a) 

7 f (L:). 	 C: 	for 	e > 0 	(10-25b) 

and the unknown coefficients are determined by the application of the following 



dT 
- 

T-  = T +  

as 	i; -4 + x 	 ( I 0-26a,b) 

at 	= 0 (continuity of temperature) 	(l0-26c) 

(10-26dj 
dT - 	dT 

k 	- k 	= y: 	at 	s=0 (jump condition) 
d■; 

(l0-27a) 
T-(s)= C2 	for 	i; < 

= X - (10-32) 

(10-28) 
g 

CZ =C; 	= —g: 
uk 

Then the solution for the problem becomes 
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boundary conditions: 

The last condition is obtained by integrating equation (10-20) with respect to ,;= 
from = 	to = + E and then letting e-)0. 

The application of the boundary conditions (10-26a, b) and the fact that 
7-1" -) 0 as 	+ oo gives C = 0, C2.-E  =0; then 

ONE-DIMENSIONAL QUASI-STATIONARY PLANE HEAT SOURCE PROBLEM 	381 

Fig. 10-4 Qtlasi-siationary temperature distribution around a moving surface heat 

source. 

except assume that heat is lost by convection from the lateral surfaces of the rod 
into an ambient at zero temperature with a heat transfer coefficient It. ff the rod 
has a uniform cross section A and perimeter P, then the governing one-dimen-
sional heat conduction equation allowing for convection losses from the lateral 

C 
c 

surfaces is given by 

,02.t. 1 	aT Ph 
-g(x,t)= 	T 

ax 2  ks 	a at 	Ak 

where the last term on the right-hand side represents convection heat losses from 
the lateral surfaces of the rod. The surface- heat source--4--is--related to .-the... -
volumetric source g(x, t) by 

g(x, t) = g: 6(x - ut) 	 (10-31b) 

The equation is transformed from the fixed coordinate x to the moving coordinate 
i; by the transformation 

Then the heat conduction (10-31) takes the form 

(10-31a) 

Figure 10-4 shows a plot of the temperature profiles given by equations (10-29) 
and (10-30). Here, the rate of melting of the electrode is equivalent to the speed 
at which the arc moves along the electrode. The term T (c=) represents the tem-
perature of a point at a distances from the arc. The maximum value of tempera-
ture occurs at the moving source: if = 0. The medium remains at this maximum 
temperature after the source has moved further, because no surface losses have 
been allowed in the problem. 

Effects-  of Surface Heat Losses. To illustrate the modeling of this problem for 
the case allowing for heat losses from the surfaces, we consider the same problem 

a2 T 	 (eT 	ci s 	Ph 
- g:d(s-)= 	- 	- T 
k 	g al 	Ak 

and for the quasi-stationary condition we have 

d 2 T 4. 10:6(0= _ c_!dT + Ph T  

a 	Ak 

dT 
--)0 	for 	S-•+ co 	 (l0-34b) ds 

1 

r(0= 	e-lum4 	for 	s > 0 	 (I0-27b) 

The requirement of continuity of temperature (10-26c) and the fact that 7-*•0 
as i; if..•, gives ( = .S.21 C. The unknown eon:Aunt Cis determined by lhe 
application of the boundary condition (10-26d) to give 

a 
T-(0=

uk 
 g: 

T ijo  = 
uk 

for 	s<0 

for 	5>0 

(10-29) 

(10-30) 

(10-33) 

(10-34a) 



(10-41c) 

We now examine a two-dimensional situation in which heat flows in the x and 
y directions while a line heat source of constant strength W/m oriented parallel 
to the z axis moves along the x axis in the positive x-direction with a constant 
velocity it. We assume (ilT/az)— 0 everywhere. 

Assuming quasi-stationary conditions, the transformed energy equation is the 
two-dimensional version of equation (10-19); that is 

	

020 0,0 	), 

	

ay2 	
fic05(t)6(y) = (I0-42a) 
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Applying the transformation 

TM= do( )e -(142a)4  

equation (10-34) takes the form 

'120(Z) 	 1 

rk;' 	
, 	

-1- 	11:6(,;) = 0 	in — 

1 /2 

< < oo 

(10-35) 

(10-36a) 

(10-36b)  

where 

( 11  )2 	ph 
m = 	— 	+-- 

2a [ 	Ak 
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(10-40) to equations (10-39) gives the solutiiin as 

T() .=„ 	elm -(42.m 
2km 

T+()= g: 	o,12.014 	for 	> 0 
2km 

vhere 
; )2 

2; 	

ph 

kA 

Clearly, equations (10-41) reduce to equation (10-30) for h = 0. . / 

--\ 

---. The solution of equation (10-36a) for t; 00 where the source term drops out is 

for 	<0 

given by 	 10-3 TWO-DIMENSIONAL QUASI-STATIONARY LINE HEAT 
-\ 	 SOURCE PROBLEM _} 

7:) 	
0(0 = C e ""4  + C 2e+  '''`f 	for 	—co< < co and X00 (10-37) 

Introducing this result into equation (10-35), we obtain 

1"1 	+ ( 20" fW2"114 	for 	 (10-36) 

It is convenient to consider this solution for the regions <0 and > 0, separately, 
as 

—5 
	 T cin = C 	to 3 EC + C;erm -(11/7-0111 

	

ful 	t; <0 	(I0-39a) 	
where 

T (f.) = 	e I"' " 22114  + C 2+  el''''2'•*1 	for 	>0 	(10-39b) 	 t; = x — ut, 	0 	y) 	 (10-42b) 

and the boundary conditions for the determination of these four unknown 
coefficients are taken as 

as 	 (10-40a,h) 

at 	= 0 (continuity of temperature) 	(10-40c) 

at 	=0 (jump condition) 	 (t0-40d) 

T = 

dT- 	dT 4  
k 	— k 	= gc 

(It; 	tit! 

and 0(,),) is related•o the temperature Tg, y) by 

	

Tg, 	w,  ),)e  wiz rag 
	

(10-42c) 

Since the boundary conditions for T(4. y) at infinity are given by 

	

--' 0 
	for 	oo 	 (10-43a) 

	

aT 
—+ 0 	for 	y 	op 	 ( I 0-43b) 

Here, the last condition is obtained by integrating equation (I0-34a) from = 
— c to = e and then letting E 0. The application of the boundary conditions 	 and equation (10-42a) is symmetric with respect to the and ). variables; then, the 
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Fig. 10-5 Moving ring heat source. 

r 
1 

I 	0 

/ 
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function (Ai:, y) depends only on the distance r from the heat source. To solve this 
problem, we write the homogeneous portion of the .differential equation (10-42a) 
in the polar coordinates in the r variable as 

I d ( dO 	u)2„ 

r dr dr 	2a 
in 	0 < r < x 	(10-44a) 

Hence the solution for 0(r) becomes 

1 	u 
001= - gf K 0 ( - r 

2nk - 	2a 
(10-47) 

and T(•,a is determined according to equation (10-42c) as 

and heal (lie source term as a boundary effect at r • O. To obtain a boundary 
condition at the origin, a circle of radius r is drawn around the line heat source, 
the heat released by the source is equated to the heat conducted away, and then 
r is allowed to go to zero. We find 

lim (-2nrk 
dO 	

4 
dr 

d(1-f0 
 

dr 

as 	r--+ 0 

as 	.1" 

(10-44b) 

(10-44c) 

Equation (10-44a) is a modified Bessel equation of order zero and its solution 
satisfying the boundary condition (10-44c) is taken as 

	

V(r)= Clio( 
2a  
- r) 	 (10-45) 

where K0  is the modified Besse[ function of order zero. 
Introducing the solution ( [ 0-45) into the boundary condition (10-44b) we find 

- C 2nk lim [r
d
- Ko(--u-r)] =Ji 

	

r-o 	r 	2a 

	

(C 2nk)(1)=g 	or 	C= 
27rk 

since 

0(

u r)-) -In( u  I.  

	

2a 	2a 

for small arguments and 

d[ (u )1 	[ 2a 
r-

r 
 In 	=(r) — -=1 

d 	2a 	ur 2a1  

I 	. 	ir 

2nk 
Tfr. 	K„( 	1.),. 	2 ,1:. 

. ' 	2a 
(10-481 

The two-dimensional temperature field given by equation (10-48) can have 
application in the arc welding of thin plates along the edges. 

For large values of r, equation (10-48) can be simplified by using the asymptotic 
value of K o(z) for large arguments: 

g.r e-"" 	for large; 	 (10-49) 

10-4 TWO-DIMENSIONAL QUASI-STATIONARY RING HEAT 
SOURCE PROBLEM 

-There  a re_man_y_engineering_applicati_ons_in_wh 	ng beat  source can  
be modeled as a moving ring heat source. Consider, for example, the turning 
operation for a cylindrical workpiece on a lathe in order to reduce its diameter. 
The thermal energy released from the cutting process will cause the heating of 
both the tool and the workpiece. In such turning operations the relative velocity 
of the tool with respect to the workpiece is large in the circumferential direction. 
Therefore, the heat generated during the turning operation t411 be iegai tied as a 
ring heat source moving along the outer boundary in the negative z direction as 
illustrated in Fig. 10-5. We assume azimuthal symmetry and a ring heat source 
of constant strength Q, watts, releasing its energy continuously as it moves with 
of constant velocity u along the outer surface of the cylinder. We allow far 
convection from the outer surface of the cylinder into an ambient at zero 
temperature and choose the initial temperature of the solid as zero. 

(10-46a) 

(10-46b,c) 

• 

( • 

ti 



u 	at 	r=0 
Or 

OT 
1:— +hT= 0 	at 	r=h 

Or 

(R04/ 	a2,/, 

R  t'RV iltz)± 	45( 1Z - 1)6(0= P-e  in 	0<R<1. 

(10-54a) 

subject to the boundary conditions 

=o 	at 	R = 0 	 (I0-54b) 
OR 

ark Bi 

0
—

R 
+ —

2
tt = 0 	at 	R=1 	 {10-54c) 

ark 0 
	as 	n + CO 	 (10-54d) 

ail 

where various dimensionless quantities are defined as 

Qo = 	R == 
h' 	A' 	

A . 
k27th 

(10-55) 
-2b 

Pe 
u
— = Peclet number, 	Bi = 

h-2b 
= Biot number 

With the application of the transformation 

q) = 0(R, q)e-  'Pc" 

the differential equation (10-54a) is transformed to 

(10-56) 
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The mathematical formulation of this problem is given as 

	

D 2 	I 	 E.T.  I -°--(r—T  )+ a 	T 
+ - 	 S(r -05(z + 110= 

1  
- 

r Or car 	az 	k 27th 	 a at 

oT 	
as 	+ cc 	 (10-53d) 

This problem is now expressed in the dimensionless form as 

in 	0<r<h, -co <z<co 
	

(10-50) 

subject to the boundary conditions 

°T  - 0 	at 	r = 0 	 (10-51a) 
Or - 

T 
kO  - + hT= 0 • at 	r =b 	 (10-51b) 

er 

D- -, t) 	as 	z-i + co 	 (10-51c) 
Pr 

T=0 	 for 	t =0 	 (10-5Id) 

This problem has been solved in reference 23 by using the integral transform 
technique. Here we describe its solution by the classical separation of variables 
technique. In equation (10-50), the delta function o(r - b) denotes that the source 
is located of the outer surface of the cylinder and 5(z + tit) shows its position at 
lime t along the z axis. 

The fixed coordinate system r,z is now allowed to move with the source by 
introducing the transformation 

= z 	tit 	 (10-52) 

In the moving coordinate system assuming quasi-stationary condition, equation 

(10-50) reduces to 

a 
r-- + - + - 	- h)6()= - — 

Or . 11  

1 a (aT) 32T I Qo 
,,c, 2 	k 27ri) 

u DT 
in 	0<r<b, -co<<co 

r  
(1 0-53a) 2  

(1R 	(I R ) 01) 2 	4 

I 0 t R  00 	(V() (Pc) i ,s(R 06000  

subject to the boundary conditions 

tI• 141, 
	

0 	(10-57) 

where 6.-"''`"" appearing in the source term can be omitted because the source 
term vanishes for t/ 0 0 and exp [ - (Pe/4)4] becomes unity for r1 = O. Therefore 
we need to consider the solution of the homogeneous equation 

l a ( e 	a'~0 	2 0 _ C12)0=0 
OR OR ) 	4 

(10-53b) 

(10-53c) in 	0<R<1, -oo<ii<co (10-58a) 
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subject to the boundary conditions 

0 	
at 

aR —  

, 
0 -R  +-iv=0 	at 

as 
Oti 

R = 0 

R = 1 

ri 	+ cc. 

(10-58b} 

(10-58c) 

(10-58d) 

in the regions < 0 and q > 0. Let 0 0-  be the solution for the region it < 0 

and 0 0 +  be the solution for the region q > 0. The unknown coefficients 

associated with these solutions are determined from the requirement of continuity 

of temperature 

(I -  = 0 + 
	

at 	= 0 	 (10-59a) 

and the jump condition 

00" (70  
— 	= . — f ) 	aL.. 	= 	 (l(}-59h) 

This jump condition is obtained by integrating equation (10-57) from rJ = e to 

i/ 	+ E and then letting € —1' 0. 
Once 0f are determined, the dimensionless temperature I is determined 

according to the transformation given by equation (10-56). 

Finally, the solution for the dimensionless temperatures IP ±(R,ti) are deter-

mined as 

ex p Pc  F 

Cl/  (R,  q) = 
	Joni?) 	• 7-1-  - 

	

2 	
2 J0(13  

—2) + fln  

where the fin  values are the roots of 

11/1„) h 
Bi

./ u(tin ) 

and F is defined by 

F..„.\/(. e'\ 2  

with plus and minus signs denoting the regions ti > 0 and ri < 0, respectively. 

(10-60a) 

(I 0- 60b) 

(10-60c) 
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Here the Peclet number is a measure of the ratio of convective diffusion (i.e.. 
due to the velocity of the moving source) to the conduction diffusion. Therefore, 
for the smaller Peclet number. the temperature field penetrates considerably 

farther "upstream" from the source than with the larger Peclet numbers. 
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PR OBI, F..1% IS 

10-1 Consider the three-dimensional quasi-stationary temperature field 7(, y,z) 
governed by the differential equation (10-5) with the boundary conditions 
at infinity taken as 

a T 
0 for v 	co, 

Dy 

c7 T 
for z — ± co 

Pz 

and the transformed equation (10-7) for the temperature field 8(, y, z). In 
equation (10-7), which is symmetric with respect to the variables c,y, and 
z, the function O(, y. z) depends only on the distance r from the point heat 
source. Then 

1. Equation (10-7) can be written in the polar coordinates with respect to 
the r variable only; write this equation without the source term. 

2. Develop the boundary condition at r = 0 for this equation by drawing 
a sphere of radius r around the point heat source, then equating the 
heat released by the source to the heat conducted away and letting r—> 0. 

3. By solving this equation in the polar coordinates, develop an expression 
for the quasi-stationary temperature field T(r, around the moving 
point heat source. 

10-2 Develop equation (10-31a) by writing an energy balance for a bar of 
uniform cross section with energy generation in the solid and heat dissipa-
tion from the lateral surfaces by convection with a heat transfer coefficient 
/Onto an ambient at zero temperature. 

10-3 The temperature distribution in the gun barrel resulting from the firing of 
a bullet can be regarded as a problem of a point heat source moving with 
a constant velocity ti along the axis of a solid cylinder of radius h if the 
base of the barrel is small enough compared to the outside radius of the 
barrel. 

Assuming (1) constant speed and the rate of heat release by the point 
source, (2) no heat losses from the outer surface of the cylinder, and (3) 
cylinder long enough with respect to the diameter so that quasi-stationary  

state is established, develop the governing differential equations and the 
boundary conditions needed for the solution of the quasi-stationary tem-
perature distribution in the cylinder. 

10-4 Consider a boring process in order to increase the inside diameter of a 
hollow cylindrical workpiece. Such a problem can be modeled as a mooing 
ring hew source advancing axially along the interior surface of a hollow 
cylinder. Assume a source of constant strength Q0  watts, releasing its 
energy continuously as it moves with a constant speed u along the inner 
surface of the cylinder and heat loss by convection from the outer surface 
of the cylinder with a heat transfer coefficient It into an ambient at zero 
temperature. Initially the solid is also at zero temperature. Give the gover-
ning differential equations and the boundary conditions for the determina-
tion of the quasi-stationary temperature field in the cylinder. Note that 
this problem is analogous to that considered in Section 10-4, except the 
ring heat source is moving along the inside surface of the cylinder. Assume 
negligible heat loss from the inner surface of the hollow cylinder. 

OT 
—, 0 	for 
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11 
PHASE-CHANGE PROBLEMS 

Transient heat transfer problems involving melting or solidification generally 
referred to as "phase-change" or "moving-boundary" problems are important in 
many elighicering applications such as in the making of ice, the freezing of Incd, 
the solidification of metals in casting, the cooling.of large masses of igneous rack_ 
thermal energy storage, processing of chemicals and plastics, crystal growth, 
aerodynamic ablation, casting and welding of metals and alloys, and numerous 
others. The solution of such problems is inherently difficult because the interface 
between the solid and liquid phases is moving as the latent heat is absorbed or 
released at the interface; as a result, the location of the solid—liquid interface is . 
nut known a priori and must follow as a part of the solution. In the solidification 
of pure substances, like water, the solidification takes place at a discrete tempera-
ture, and the solid and liquid phases are separated by a sharp moving interface. 
On the other hand, in the solidification of mixtures, alloys, and impure ma-
terials the solidification takes place over an extended temperature range, and 
as a result the solid and liquid phases are separated by a two-phase moving 

region. 
Early analytic work on the solution bf phase-change problems include those 

by Lame and Clapeyron [I] in 1831 and by Stefan [2] in 1891 in relation to the ice 
formation. The fundamental feature of this type of problem is that the location of the 
boundary is both unknown and moving, and that the parabolic heat conduction 
equation is to be solved in a region whose boundary is also to be determined. 
Although references 1, 2 are the early published works on this subject, the exact 
solution of a more general phase-change problem was discussed by F. Neumann 
in his lectures in the 1860s, but his lecture notes containing these solutions were 
not published until 1912. Since then, many phase-change problems have appeared 
in the literature, but the exact solutions are limited to a number of idealized  

situations involving semiinfinite or infinite regions and subject to simple boundary 
and initial conditions [3]. Because of the nonlinearity of such problems, the 
superposition principle is not applicable and each case must be treated sepa-
rately. When exact solutions are not available, approximate, semi-analytic, and 
numerical methods can be used to solve the phase-change problems. We now 
present a brief discussion of various methods of solution of phase-change 
problems. 

The integral method, which (10 Ies buck to von K. .11-111:in and l'ohlhatisen, who 
used it for the approximate analysis of boundary-layer equations, was applied 
by Goodman [5, 6] to solve a one-dimensional transient melting problem, and 
subsequently by many other investigators [7-15] to solve various types of 
one-dimensional transient phase-change problems. This method provides a rela-
tively straightforward and simple approach for approximate analysis of one-
dimensional transient phase-change problems. The variational formulation derived 
by Biot [16] on the basis of an irreversible thermodynamic argument, was used 
in the solution of one-dimensional, transient phase-change problems [17-21]. 
The moving heat source (or the integral equation) method, originally applied by 
Lightfoot [22] to solve Neuman's problem, is based on the concept of representing 
the liberation (or absorption) of latent heat by a moving plane heat source (or 
sink) located at the solid—liquid interface. A general formulation of moving heat 
source approach is given in reference 23, and various application can he found 
in references 24 28. The perturbation method has been used by several in vesti-

.. ga.tors [29- 34]; however,.the analysis becomes very.complicated-if higher-order  
solutions are to be determined; also it is difficult to use this method for problems 
involving more than one dimension. The embedding technique, first introduced 
by Boley [35] to solve the problem of melting of a slab, has been applied to solve 
various phase-change problems [36-41]. The method appears to be versatile to 
obtain solutions for one, two, or three dimensions and to develop general starting 
solutions. A variable eigenvalue approach developed in connection with the 
solution of heat conduction problems involving time-dependent boundary con-
dition parameters [42,43] has been applied to solve one-dimensional transient 
phase-change problems [44]. The method is applicable to solve similar problems 
in the cylindrical or spherical symmetry. The electrical network analog method 
often used in early applications [45-49] has now been replaced by purely 
numerical methods of solution because of the availability of high-speed digi-
tal computers. A large number of purely numerical solutions of phase-change 
problems has been reported [50 81]. 

Reviews of phase-change problems up to 1965 can be found in references 
82-84. Extensive list of references and treatments of the fundamentals of solidifi-
cation can be found in standard texts [85-891 

Experimental investigation of phase-change problems is important in order 
to check the validity of various analytic models, but only a limited number of 
experimental studies are available in the literature [90-94]. 
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11-1 MATHEMATICAL FORMULATION 
OF PHASE-CHANGE PROBLEMS 

To illustrate the mathematical formulation of phase-change problems, we consi-
der first a one-dimensional solidification problem and then a melting problem. 

Interface Condition for One- and Multidimensional Phase Change Problems 

Solidification Problem. A liquid having a single phase-change temperature T„, 

is confined to a semiinfinite region 0 <x < cc. Initially, the liquid is at a uniform 
temperature T, which is higher than the phase-change temperature At time 
= 0, the temperature of the boundary surface x = 0 is suddenly lowered to a 

temperature To, which is less than the melt temperature Tm  and is maintained at 

that temperature for times t > 0. The solidification starts at the boundary surface 

x = 0 and the solid--liquid interface x = s(t) moves in the positive x direction. 
Figure 11-la shows the geometry and coordinates for such a one-dimensional 

solidification problem. The temperatures T,(x, t) and T,(x, t) for•the solid and 
liquid phases, respectively, are governed by the standard diffusion equations 
given by 

in 	0 < x < s(t). 	t > 0 	(11-1a) 

is the location of the solid—liquid interface which is not known a priori, hence 
must be determined as a part of the solution. The subscripts s and I refer, 
respectively, to the solid and liquid phases. Therefore, the problem involves three 
unknowns, namely, Ts(x, t), TI(x, t), and s(t). An additional equation governing 
s(t) is determined by considering an interface energy balance at x = s(t), stated as 

aT, 	DTI 	ds(t) 
k 	= pL— 	at 	x = s(t), t > 0 	(11-2b) 

• ax 	ax 	dt 

where L is the latent heat per unit mass [i.e., (Ws)/kg] associated with the phase 
change. For the time being we neglected the density difference for the solid and 
liquid phases and assumed pi  = p,= p at the solid—liquid interface. 

The continuity of temperature at the solid liquid interface is given by 
02 T,(x,t) .1 OT,(x,t) 

--- px  2 	0, 

112 7;(x,t) . 1 DT,(x,t) 
-; 
et 

in 	.s(t) 	x < 	>0 	(II-lb) TJx. = Ti(x,i)=1;„ 	at 	x = s(t) 	 (11-3) 

where we assumed constant properties for the solid and liquid phases. Here, s(t) 

Fig. 11-I Geometry and coordinates for one-dimensional (a) solidification and (h) melting 

problems. 

where Ts(x,t) and Ti(x, t) are the solid and liquid phase temperature at x = s(t), 
respectively, and Tm  is the phase-change temperature. 

Summarizing, equations (11 I a), (11 lb), and (11 2b) provide three differential 
equations that govern the temperature distributions in the solid and liquid phases 
and the position s(t) of the solid—liquid interface. 

Equation (11-3) provides two boundary conditions. Other boundary condi-
tions and the initial conditions are specified depending on the nature of the 
physical conditions at the boundary surfaces. This matter will be illustrated later 
in this chapter with specific examples. 

Melting Problem. We now consider a solid having a single phase-change tempe-
rature T„, confined to a semiinlinite region 0 < x < co. Initially, the solid is at a 
uniform temperature T, that is lower than the phase-change temperature T„,. At 
time t = 0, the temperature of the boundary surface x = 0 is suddenly raised to 
a temperature TG, which is higher than the melting temperature T,,, and maintained 
at that temperature for times t > 0. We assume that the coordinate system for 
this melting problem is arranged as illustrated in Fig. 11-lb, so that the solid—
liquid interface moves in the positive x direction as in the case of the solidification 
problem. The governing differential equations for this problem, assuming 
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constant properties for each phase, are given by 

in 	0 < x < s(t), 	t > 0 	(11-4a) 

in 	s(t) < x < cc., t > 0 	(1 I-4b) 

the positive x direction, and for p, > pi  the motion of the liquid is in the opposite 
direction. Then, the energy balance at the interface allowing for the contributions' 
of various diffusive and convective energy transfer becomes 

aT 	
, ax' 
 , 

	

— i— = 	p,H,)v.„ — AI 
ax

, K 
 ax 

at 	x = s(t) 	(11-6) 

The mass-conservation equation at the interface May be written as 

a2T,(x,t) I a Nx, t) 

axe 	at  at 

	

02 T,(x, 	I aTjx,t) 

	

ax2 	a, 	dt 

(11-7a) (Pi — Ps)P.3.- = Pit't and an energy balance at the solid—liquid interface x = s(t) shows that the 
resulting interface energy balance equation is exactly the same as given by 
equation (11-2b); hence we have 

DTDTI 	ddti) 
h 	 — pL 

5  ax 	ax  
at 	x = s(t), t > 0 	(11-4c) Eliminating vi  from equation (11-6) by means of equation (I 1-7b) we obtain 

L'= Ps —  Pi 
 V, 

• 	Pi 
(11-7b) 

Thus, equations (11-4a,b,c) provide three differential equations for the determi-
nation of the three unknowns T,(x,t), Ti(x,t), and s(t) for the melting problem 
considered here. Appropriate boundary and initial conditions need to be specified 
for their solution. 

We note that, in the interface energy-balance equation (11-2b) or ( I I-4c), the 
term tis(t)/ilt represents the velocity of the interface in the positive x direction, 
hence we write 

k a7; k 871  — o 
t' 
• 

Ox 	ax 

since 

L = the latent heat 	 (11-8b) 

which is similar to equation (I 1-4e) except p is now replaced by p,. 

(11-8a) 

(1 I-5a) 
ds(t) 

dt .vx(t)  

Then the interface energy-balance equation can be written as  

Effects of Convection. Consider the solidification problem illustrated in Fig. 
11-1a. If the heat transfer from the liquid phase to the solid—liquid interface is 
controlled by convection, and hence diffusion in the liquid phase is neglected, 
the interface energy-balance equation (1 I-2b) takes the form 

(I 1-5b) 
aT 	aT, 

k 	— 	pLo
x 
 (t) 	at 	x = s(t) 

ax 	ax  

aT, 	 tis(1) 
k, 	— h(T„,— T„,)= pL dt  at 	x = s(t) 	(11-9) 

Effects of Density Change. The difference in the density of phases at the interface 
during phase change gives rise to liquid motion across the interface. Usually 
p,> pi, except for water, bismuth, and antimony, for which p, < pl. 

To illustrate the effects of density change, we consider the one-dimensional 
solidification problem illustrated in Fig. 11-la. Let p,> pi  and 

v„ = velocity of the interface 

vj  = velocity of the liquid at the interface 

H„111  =enthalpies per unit mass of the material for the solid 
and liquid phases at the interface 

In the physical situation considered in Fig. 11-1 a, the interface velocity v„ is in 

where h is the heat transfer coefficient for the liquid side, Tom, is the bulk tempera-
ture of the liquid phase, and Tr, is the melting-point temperature at the interface. 

In the case of the melting problem illustrated in Fig. 11-1b, if convection is 
dominant in the liquid phase, equation (11-9) is applicable if the minus sign before 
h is changed to the plus sign. 

Nonlinearity of Interface Condition,-The interface-boundary-conditions given by 
equations (1 I-2b) and (11-9) are nonlinear. To show the nonlinearity of these 
equations, we need to relate ds(t)Idt to the derivative of temperatures. This is 
done by taking the total derivative of the interface equation (11-3) 

	

[ aT 	OT 
—!dx + 

	

ax 	at 	
=[— fix + —at 

, 	aT, 
= 	(11-10a) 

x =std. 	 at 



	

ax d 	
+ 	- 0---at 	x  	(11-10b) 	 

	

t 	at 	dt 	at 

which can be rearranged as 

Or 

	OT„ ds(t) 8T5  aTi ds(t) DT, 

tis(1)_ 	D7',/dt 
dt 	DT,/ox 

ds(t) 	Dl/at 

dt - 	/ax 
and 

Introducing these results, for example, into equation (1 I-2b) we obtain 

Interface 
t) = 0 

Fig. 11-2 Solidification in three dimensions. Interface is moving in the direction n. 
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k,
DT,  - (7

07:1= — pL
oT,/at 

 = pL 	 
ax 	 T,/ &lc 	oTs/Ox 

The nonlinearity of this equation is now apparent. 

Generalization to Multidimension. The interface energy-balance equation deve-
loped above for the one-dimensional case is now generalized for the multidimen-
sional situations. Figure 11-2 illustrates a solidification in a three-dimensional 
region. The solid and liquid phases are separated by a sharp interface defined by 
the equation 

	

F(x, y,z, t) = 0 	 (1I-11) 

The requirement of the continuity of temperatures at the interface becomes 

Tjx, y, z, t) = T(x, y, z, t) = Tr„ 	at 	F(x, y,z, t) = 0 	(11-12) 

The interface energy-balance equation is written as 

where 0/On denotes the derivative at the interface along the normal direction 
vector n at any location P on the interface and pointing toward the liquid region 

 and an-is-the-velocity_eiLthig  interface at the location P in the direction n. Here 
we assumed that the densities of the solid and liquid phases are the same. 

The interface energy-balance equation (11-13) is not in a form suitable for 
developments of analytic or numerical solutions of the phase-change problems. 
An alternative form of ibis equation is given by [95] 

[1 + -12  + 	[ks —a71  - 	]= p LO3(
rx 	

] 	 - 
Os 	az 	ii 
	at 	z = s(x, y, t) ( I 1-14) 

This form of the interface energy balance equation is analogous to the form given 
by equation (1 1-2b) for the one-dimensional case; therefore, it is more suitable 
for numerical or analytic purposes. We now examine some special cases of 
equation (11-14). 

For the two-dimensional problem involving (x, z, t) variables, if the location 
of the solid-liquid interface is specified by the relation F(x, z, t) = z - s(x, t) = 0, 
then equation (11-14) reduces to 

[ 1 + ( as)21i- 	k, 	pL-as  
05 	i1z 	at 

at 	z = s(x, t) 	(11-15) 

This equation is the same as that used in references 25, 38, and 39 for inter-
face boundary condition in the analysis of two-dimensional phase-change 
problems. 

For the one-dimensional problem involving (z, t) variables, if the location of 
the solid-liquid interface is given by F(z, t) = z - AO= 0, equation (11-14) reduces 
to 

(11-t 0e) 

(11-I0d) 

aTs . 	 aT, 
k,— - k,— = pLv„ 	at' 	F(x, y, z, t) = 0 	(11-13) 

On 	Ott  

DT 	DT, 	ds 
---=pL  

1.15 	dt 
at 	z=s(t) 	 (11-16) 

which is identical to equation (I 1-2b) if z is replaced by x. 
In the cylindrical coordinate system involving (r, qry, t) variables, if the location 

of the solid liquid interface is given by /qr. = r 0,1) 0, then the corres-
ponding form of equation (11-14) becomes 

[I+.1(asyl[ks s—k,a-7-11--pL_Os s2 	 Or 	at 
at 	r 	s(O, t) (11-17) 

In the cylindrical coordinate system involving (r, z, t) variables, if the location 
of the solid-liquid interface is given as F(r, z, t) = z - s(r, t) = 0, the interface 



C 

SIAM 	 Supoicticillni liquid 

0 	s 
•Fig. 11-3 Solidification of supercooled liquid in a half-space. One-phase problem. 

400 	PHASE-CHANGE PROBLEMS EXACT SOLUTION OF PHASE-CHANGE PROBLEMS 	401 

equation takes the form 

[14.(
ar
2aylks—a 

az
.11— kia 

az
l 	

plat 
	at 	z = s(r, 0 (11-18) 

Dimensionless Variables of Phase-Change Problem 

The role or dimensionless variables in phase-change proh1cnis is envisioned 
better if the interface energy-balance equation (11-26) is expressed in the dimen-
sionless form as 

80, ki  8O1  = 1 

ari k, aq Ste dr 

s 	t)— 

	

00(ron = 	i = s or I; 	tl = 41); 
Tm —T0  

	

6(r) = 	
a„t 

, 	z = 	• 
b2 
	Ste =ps(TM — T„) 

L 

Here, b is a reference length, Lis the latent heat, C,,„ is the specific heat, Tm  is the 
melting temperature, T„ is a reference temperature, s(t) is the location of the 
solid—liquid interface, and Ste is the Stefan number, named after J. Stefan. The 
above dimensionless variables, other than the Stefan number, are similar to those 
frequently used in the standard heat conduction problems; the Stefan number is 
associated with the phase-change process. . 

The Stefan number signifies the importance of sensible heat relative to the 
latent heat. If the Stefan number is small, say, less than approximately 0.1, the 
heat released or absorbed by the interface during phase change is affected very 
little as a result of the variation of the sensible heat content of the material during 
the propagation of heat through the medium. For materials such as aluminum, 
copper, iron, lead, nickel, and tin, the Stefan number based on a temperature 
difference between the melting temperature and the room temperature varies 
from I to 3. For melting or solidification processes taking place with much 
smaller temperature differences, the Stefan number is much smaller. For example, 
in phase-change problems associated with thermal energy storage, the tempera-
ture differences arc small; as a result the Stefan number is generally smaller than 
0.1. 

11-2 EXACT SOLUTION OF PHASE-CHANCE PROBLEMS 

The exact solution of phase-change problems is limited to few idealized situations 
for the reasons stated previously. They are mainly for the cases of one-dimensional 
infinite or semiinfinite regions and simple boundary conditions, such as the 

prescribed temperature at the boundary surface. Exact solutions are obtainable 
if the problem admits a similarity solution allowing the two independent variables 
x and t merge into a single similarity variable xit "2. Some exact solutions can 
be found in references 3 and 4. We present below some of the exact solutions of 
phase-change problems. 

Example 11.1 

Sitlidificafion (•a Supercooled Liquid in a 114:Sin/C• (Ont.-1'114'st. Problem). A 
supercobled liquid at a uniform temperature Ti  which is lower than the 
solidification (or melting) temperature Tm  of the solid phase is confined to a 
half-space x > 0. It is assumed that the solidification starts at the surface x = 0 
at time t = 0 and the solid—liquid interface moves in the positive x direction. 
Figure 11-3 illustrates the geometry, the coordinates, and the temperature 
profiles. The solid phase being at the uniform temperature T. throughout, 
there is no heat transfer through it; the heat released during the solidification 
process is transferred into the super-cooled liquid and raises its temperature. 
The temperature distribution is unknown only in the liquid phase; hence the 
problem is a one-phase problem, In the following analysis we determine the 
temperature distribution in the liquid phase and the location of the solid liquid 
interface as a function of time. 

Solution. Before presenting the analysis for the solution of this problem we 
discuss the implications of the supercooling of a liquid. If a liquid is cooled 
very slowly, the bulk temperature may be lowered below the solidification 
temperature and the liquid in such a state is called a supercooled liquid. After 
supercooling reaches some critical temperature, the solidification starts, and 
heat released during freezing raises the temperature of the supercooled liquid. 
Little is known about the actual condition of the solid—liquid interface during 
the solidification of a supercooled liquid. During the solidification of super-
cooled water the interface may grow as a dentritic surface consisting of thin, 
plate-like crystals of ice interspersed in water rather than moving as a sharp 
interface [96]. As a result, it is a very complicated matter to include in the 
analysis the effects of irregular surface conditions. Therefore, in the following 
solution only an idealized situation is considered. Namely, it is assumed that 

(11-19) 

(1 I -20) 
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the solid-liquid interface is a sharp surface whose motion is similar to that 
encountered in the normal solidification process. The mathematical formula-
tion for the liquid phase is given as 

P 2  T, 	T,(x, r) 
in 

ai 

7;( v. r) 	 as 

7-1 (x. r)= T, 	for 

and for the interface as 

T,(x, t) = T„, 

a 71(x, r) 	ds(r) 
- k, - 	= pL -d t 

PA:  

MO< x < oo, 

x 	oo, 

r = 0, 

at 	x = s(r), 

x = s(t), 

t > 0 

r > 0 

in 	x > 0 

t >0 

r > 0 

(11-21) 

(11-22a) 

(11-22b) 

(11-23a) 

(11-23b) 

The interface equation (11-23b) states that the heat liberated at the interface 
as a result of solidification is equal to the heat conducted into the supercooled 
liquid. No equations are needed for the solid phase because it is at uniform 
temperature T„,. Recalling that erfc[x/2(al t)1 / 2] is a solution of the heat-
conduction equation (11-21), we choose a solution for 71(x, r) in the form 

Ti(x.1) = 	+ B erfc [x/2(ai t)112] 	 (11-24) 

where B is an arbitrary constant. This solution satisfies the differential equation 
(11-21), the boundary condition (11-22a), and the initial condition (11-22b) 
since erfc (co) I-- 0. If we require that the solution (11-24) should also satisfy 
the interface condition (11-23a), we find 

Tm  = T, B erief1) 	 (11-25a) 

where 

(11-25b) 

Since equation (11-25a) should be satisfied for all times, the parameter 2 must 
be a constant. Equation (11-25a) is solved for the coefficient B 

T - T-
B =- 	' 

erfc (2) 

and this result is introduced into equation (11-24). We obtain 

	

t) - 	 erfc [ x/2(alt)112] 

Ti  erfc (A) 

Finally, the interface energy-balance equation (11-23b) provides the additional 
relationship for the determination of the parameter A. Namely, substituting 

s(r) and "I;(x, r) from equations (11-25b) and (11-27), respectively, into equation 
(11-23b) and after performing the indicated operations, we obtain the following 
transcendental equation for the determination of 

erfc (A) = Ae'v 	
C(Tr" - T,) 

(11-28) 

TABLE 11-1 Tabilation of Equation (11-28) 

C (T- Ti) 
erfc (A) 

Lf 
0.00 0.00000E + 00 
0.10 8.96457E - 02 
0.20 1.61804E - 01 
0.30 2.20380E - 01 
0.40 2.68315E -01 
0.50 3.07845E - 01 
0.60 3.40683E - 01 
0.70 3.68151E-01 
0.80 3.91280E- 01 
0.90 4.113878E - 01 
1.00 4.27584E - 01 
1.10 4.41904E - 01 
1.20 4.54245E - 01 
1.30 4.64935E - 01 
1.40 4.74241E-01 
1.50 4.82378E - 01 
1.60 4.89525E - 0l 
1.70 4.95828E - 0! 
1.80 5.01408E - 01 
1.90 5.06368E - 0! 
2.00 5.10791E - 01 
2.50 5.27016E - 01 
3.00 5.37003E - 01 
3.50 5.43528E- 01 
4.00 5.47998E -01 

s(r) 

2(,1) I  '2  

(11-26) 

(11-27) 
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and A is the root of this equation. Knowing A, we can determine the location 
of the solid—liquid interface s(t) from equation (I I-25b) and the temperature 
distribution Tf(x, t) in the liquid phase from equation (11-27). 

In Table 11-1 we present the values of Aeerfc (A) against 2. Thus, knowing 
the Stefan number, A is determined from this table. 

Example 11-2 

Melting in a Half-Space (One-Phase Problem). A solid at the solidification (or 
melting) temperature T. is confined to a half-space x > 0. At time t = 0, the 
temperature of the boundary surface at x = 0 is raised to To, which is higher 
than Tm  and maintained at that temperature for times t > 0. As a result melting 
starts at the surface x = 0 and the solid—liquid interface moves in the positive 
x direction. Figure 11-4 shows the coordinates and the temperature profiles. 
The solid phase being at a constant temperature T. throughout, the tempera-
ture is unknown only in the liquid phase, hence the problem is a one-phase 
problem. In the following analysis the temperature distribution in the liquid 
phase and the location of the solid—liquid interface are determined, as a 
function of time. 

Solution. The mathematical formulation for the liquid-phase is given as 

	

iPTI(x, 0 	1 DT;(x,t) 

5.x2 	cti 	at 

Ti(x,t)= To  

and for the interface as 

Ti(x,t)= T,, 

	

TI 	ds(t) 
—

,D
= 

in 
 

pL 

at 

at 

at 

< x < s(t), 

x = 0, 

x = s(t), 

x 	s(t), 

r>0 

t >0 

t > 0 

t >0 

(11-29a) 

(I1-29b) 

(I1-30a) 

(11-30b) 
ox 	dt 

To 

o 	 s t) 

Fig. 11-4 Melting in a half-space. One-phase problem.  

No equations are needed for the solid phase because it is at the melting 

temperature Tm  throughout. If we assume a solution in the form 

T,(x, r) = 	+ B erf[x/2(x,r)1 ' 2] 	 (11-31) 

where B is an arbitrary constant, the differential equation (II -29a) and the 
boundary condition (I1-29b) are satisfied since erf(0)= 0. If we impose the 
condition that this solution should also satisfy the boundary condition 

(11-30a) at x = SW, we obtain 

T.= To + Berf(;,) 	 (11-32a) 

where 

.5(t) = 2A(ail)1,2 	(I 1-32b) 

Equation (11-32a) implies that A. should be a constant. Then the coefficient B 

is determined from equation (11-32a) as 

B 	To  

erf (A) 

Introducing equation (11-33) into (11-31) we obtain 

7',(x, t) — To  erf [x/2(xi t) 

T„, — To 	erf (2) 

Finally, we utilize the interface condition (t 1-30b) to obtain an additional 
relationship for the determination of the parameter A. When s(t) and T,(x, t) 

from equations (I I-32b) a nc(11-34), respectively, are introduced into equation 
(11-30b), the following transcendental equation, similar to equation (11-28). 
is obtained for the determination of A 

C (To  — T ) 
erf (A) = - 	 (11-35) 

Lig 

and A is the root of this equation. K [lowing A, NW is determined from equation 
(1 1-32b) and Ti(x, t) from equation (11-34). 

In Table 11-2 we present the values of 2e erf(A) against A. Thus, knowing 
the Stefan number, A is determined from this table. 

Example 11-3 

Solidification in a Half-Space (Two-phase Problem). A liquid at a uniform 
temperature Ti  that is higher than the melting temperature Tm  of the solid 

s(t)  
2 	 or 

2(cr i t)112  

(11-331 	• 

(11-34) 
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Fig. 11-5 Solidification in a half-space. Two-phase problem. 

for the liquid phase as 

02 T, 	1 D'T,(x, t) 

ex2 	a l 	at 

TI(x, 

Ti fx, t) 

in 	s(t) < x < co, 

as 	co, 

for 	t= 0, 

and the coupling conditions at the interface x = s(t) as 

T,(x, t) = T1(x, t) = Tn, 

	

aTs 	aT, ds(t) 
ks 	 =Jcl  

ax 	ax 	dt 

at x=s(t), 

at x = s(t), 

If we choose a solution for Ts(x, t) in the form 

Ts(x, t) = To  + A erf[42(ast)112] 
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TABLE 11-2 Tabulation of Equation (11-35) - 

	

0.00 
	

0.00000E +00 

	

0.10 
	

1. t 3593E - 02 

	

0.20 
	

4.63583E - 02 

	

0.30 
	

1.07872E - 01 

	

0.40 
	

2.01089E - 01 

	

0.50 
	

3.34168E -01 

	

0.60 
	

5.19315E - 01 

	

0.70 
	

7.74470E -01 

	

0.80 
	

1.12590E + 00 

	

0.90 
	

1.61224E + 00 

	

1.00 
	

2.29070E + 00 

	

1.10 
	

3.24693E + 00 

	

1.20 
	

4.61059E +00 

	

1.30 
	

6.58039E +00 

	

1.40 
	

9.46482E + 00 

	

1.50 
	

1.37492E + 01 

	

1.60 
	

2.02078E + 01 

	

1.70 
	

3.00928E + 01 

	

1.80 
	

4.54593E + 01 

	

1.90 
	

6.97291E+01 

	

2.00 
	

1.08686E + 02 

	

2.50 
	

1.29451E + 03 

	

3.00 
	

2.43087E + 04 

	

3.50 
	

7.31434E + 05 

	

4.00 
	

155444E + 07 

phase is confined to a half-space x > 0. At time t = 0 the boundary surface at 
x = 0 is lowered to a temperature To  below Tn, and maintained at That 
temperature for times t > 0. As a result,. the solidification starts at the sur-
face x = 0 and the solid-liquid interface moves in the positive x direction. 
Figure 11-5 illustrates the coordinates and the temperatures. This problem is 
a two-phase problem because the temperatures are unknown in both the solid 
and liquid phases. In the following analysis we determine the temperature 
distributions in both phases and the location of the solid- liquid interface. This 
problem is more general than the ones considered in the previous examples; 
its solution is known as Neumann's solution. 

Solution. The mathematical formulation of this problem for the solid phase 
is given as 

t > 0 (11-37a) 

t > 0 (11-37b) 

in 	x>0 (11-37c) 

t>0 (11-38a)  

t > 0 (I 1-38b) 

(11-39) 

the differential equation (11-36a) and the boundary condition (11-36b) are 
satisfied. 

• If we choose a solution for TA') in the form 

7;(x, t) = Ti  + B erfc[x/2(a,t)"2] 	 • (11-40) 

in 	0 <.x < s(t), t > 0 	(1 I-36a) the differential equation (11-37a), the boundary condition (11-37b), and the 
initial condition (1 1-37c) are satisfied. The constants A and B are yet to be 

at 	x = 0, 	t > 0 	(11-36b) 	 determined. 

071(xt  t) 
cts  

T,(x, t) = To  
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Equations (11-39) and (11-40) are introduced into the interface condition 
(11-38a); we find 

1‘2  

	

To + A erf(A)= 	erfc[2(5)1 = T, 	(11-41a) 
u, 

where 

2(a51)'11 
	or 	s(t) = 22(xst)112 

	
I-41b) 

Equation (11-41a) implies that A should be a constant. The coefficients A and 
B are determined from equations (I 1-41) as 

A = 

	

erf (A) 	erfc [A(aja,)112] 

Introducing the coefficients A and B into equations (11-39) and (11-40), we 
obtain the temperatures for the solid and liquid phases as 

7;(x, t) — Tc, erf [x/2(ast)1 /2] 

	

• T„,,--7„ 	erf(A) 

	

T1(x, t) — 	erfc [x/2(10'12] 

	

T„,—T, 	erfc [A(a./4112] 

The interface energy-balance equation (11-38b) is now used to determine the 
relation for the evaluation of the parameter A. That is, when s(t), T,(x, t) and 
71(x, t) from equations (11-41b), (1 I -43a), and (11-43b), respectively, are substi-
tuted into equation (11-38b), we obtain the following transcendental equation 
for the determination of 

(11-44) 
erf (2.) 	T„, — To  erfc [A(as/cc)112] Cps(To.,— T0) 

Once A is known from the solution of this equation, s(t) is determined from 
equation (11-41b), T,(x, t) from equation (11-43a) and Ti(x, t) from equation 
(1 1-43b). 

Example 11-4 

Solidification by a Line Heat Sink in an Infinite Medium with Cyclindrical 
Symmetry (Two-Phase Problem). A line heat sink of strength Q, W Im is located 
at r= 0 in a large body of liquid at a uniform temperature T1  higher than the 
melting (or solidification) temperature T„, of the medium. The heat sink is 
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Fig. 11-6 Solidification by a line heat sink in an infinite medium with cylindrical sym-
metry. Two-phase problem. 

activated at time t = 0 to absorb heat continuously for times i > 0. As a result, 
the solidification starts at the origin r—+0 and the solid—liquid interface moves 
in the positive r direction. Figure 11-6 shows the coordinates and the tempe-
rature profiles. The problem has cylindrical symmetry, and the temperatures 
being unknown in both regions, it is a two-phase problem. In this example, 
the temperature distributions in the solid and liquid phases, and the location 
of the solid liquid interface as a function of time will be determined. 

Solution. Paterson [97] has shown that the exact solution to. the above 
problem is obtainable if the solution of the heat conduction equation is chosen 
as an exponential integral function in the form Ei(— r214at). The function 
— Ei(— x) is also denoted by E l (x) [99]. A tabulation of E, (x) function is given 
in Table 11-3 and a brief discussion of its properties is given in the note at the 
end of this chapter. 

The mathematical formulation of this problem is given for the solid phase 
as 

1 	( 	aT:,) 	1 	ar,(r•,i) 
r 	Or 	as 	lit 

for the liquid phase as 

1 	0 (1 irnr,t)

i. 
in 

r 	Dr ) 	at 

T,(r,t)—* 	 as 

T,(r,t)-= Tf 	 for 

in 	< r < s(t), 	t >0 

s(t) < r < 	> 0 

r 	 > 0 

t 	0, 	in 	r > 0 

(11-45) 

(11-46) 

( 1 1 -47a) 

(11-47b) 

s(t) 
A = 

To Ti 
B—  	 (11-42) 

(11-43a) 

(1 I-43b) 

k, 	T,„ — 	-Azt...tao 	)L fir 



1-49d }  
OT,(r, t) 	2C 

-
-- 

1' 

(11-50a) lim[2nrks 	Q 

(I 1-48h) at 	r = s(r). 	> 0 

( T,(t-, 11 = A - BEi II I: -2  
4:1Q Id.  

in 	. 0 < r < s(t) 	(1 I -49a) 

A = T  • 

	 A2) (11-52a) • 
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TABLE 11-3 	Ei(x) or - Ei(- x) Function° 

x EA) E ,(x) x E, (x) E ,(x) 

0.00-  oo 015 1.0442826 0.50 0.5597736 1.60 0.0863083 
0.01 4.0379296 0.26 0.0138887 0.55 0.5033641 1.65 0.0802476 
0.02 3.3547078 0.27 0.9849331 
0.03 2.9591187 0.2/1 0.9573083 0.60 0.4543795 1.70 0.0746546 
1) 11.1 2 (1812(117 0.29 0.9.1091142 0.0 0.11151 70 1.75 0.009.11)8 7 

0.05 2.4678985 0.30 0.9056767 0.70 0.3737688 1.80 0.0647131 
0.06 2.2953069 0.31 0.8815057 0.75 0.3403408 1.85 0.0602950 
0.07 2.1508382 0.31  0.8583352 
11.08 2.0269410 (1.33 0.8361012 0.8(1 0.3105966 1.90 0.0562044 
0.09 1.9187448 0.34 0.8147456 0.85 0.2840193 1.95 0.0524144 

0.10 1.8229240 0.35 0.7942154 0.90 0.2601839 2.0 4.89005( - 2) 
0.11 1.7371067 0.36 0.7744622 0.95 0.2387375 2.1 4.26143 
0.12 1.6595418 0.37 0.7554414 
0.13 1.5888993 0.38 0.7371121 1.00 0.2193839 2.2 3.71911 
0.14 1.4241457 0.39 0.7194367 1.05 0.2018728 2.3 3.25023 

0.15 1.4644617 0.40 0.7023801 1.10 0.1859909 2.4 2.84403 
0.16 1.4091867 0.41 0.6859103 1.15 0.1715554 2.6 2.18502 
0.17 1.3577806 0.42 0.6699973 
0.18 1,3097961 043 0.6546134 1.20 0.1584084 2.8 1.68553 
0.19 1.2648584 044 0.6397328 1.25 0.1464134 3.0 1.30484 

0.20 1.2226505 045 0.6253313 1.30 0.1354510 3.5 6.970141-3) 
0.21 1.1829020 0.46 0.6113865 1.35 0.1254168 4.0 3.77935 
0.22 1.1453801 047 0.5978774 1.40 0,1162193 4.5 2.07340 
0.23 1.1098831 0.48 0.5847843 1.45 0.1077774 5.0 1.14830 
0.24 1.0762354 0.49 0.5720888 1.50 0.1000196 ce 0 
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and the derivatives of these solutions with respect to r are given as 

OT,(r,t) - r214a.1 2B 
e 	 (11-49c) 

The solution (II-49a) for Ts(r,t) satisfies the differential equation (11-45), while 
the solution (11-49b) for Ti(r, t) satisfies the differential equation (11-46), 
the boundary condition (11-47a), and the initial condition (11-47b) since 
Ei( - 0. The remaining conditions are used to determine the coefficients 
A, 13, and C as now described. The energy balance around the line-heat sink 
is written as 

Introducing equation (11-49c) into (11-50a) we find 

= - Q/Lbrk 	 (1 I-50b) 

Equations (11-49a), (I I-49b), and ( I 1-50b) arc introduced into the interface 
condition (I I-48a) 

A +  Q -Ei( A2) -= 	C .EI(
- A2a 

 - Tm 	(11-51a) 
47rk, 

where 

dr 

and for the solid-liquid interface as 

T(r, t) = 	t) = Tn , 

, PT, 	,dTt 	 ds(t) 
p 

dr 	dr 	rlt 

-1-2) 
t) = T, - CEi( 

4a1 t 

at 	r = s(t), t > 0 	(11-48a) 

in 	s(t) < r < or_s 	(11-49b) 

, 	 Si) = - 
2(as

(
2.  t)" 

= - 

Ei(- 

The derivative of s(t) is obtained from equation (11-51b) as 

ds(t) 2;22  

d 	s 

The figures in parentheses indicate the power of 10 by which the numbers to the left. and those below 

in the same column. are to he multiplied. 
(11-51b) 

We now choose the solutions for the solid and liquid phases in the forms (1 I-52b) 

(11-52c) 

Since equation (11-51a) should be valid for all values of time, we conclude that 
2 must be a constant. The coefficients A and C are solved from equations 
( 1 1-51a); we find 



(off)1/2  
e
-r Mar 1,1/2 ace  

r 	2 n' 

2(at)1,2  

r 
C 

C. 
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Introducing equations (11:52a) and 111:52n) into equations 111:49a,b) the 
solutions for the temperatures in the solid and liquid phases become 

,2 

Tjr,r)=7.1- 	Ei 	- 	• 
4rrk, 	4oct 

T.- T 
Ti(r, 	T, - 	 Ei 

Ei(-- Pada,) 

- Ei(- /12) 

4$11 1 
), 

in 

in 

0 <r<sto 

s(t)< r < 

111-53a) 

(11-53b) 

Finally, when equations (11-52c) and (11-53) are introduced into the interface 
energy-balance equation (1 l-48b) the following transcendental equation is 
obtained for the determination of A 

Q 	ki (Ti  T.) 
^ 2 	r e 	- -e 

47E 	Ei(- 
(11-54) 

and A is the root of this equation. Once A is known, the location of the solid-
liquid interface is determined from equation (11-51 b); and the temperatures 
in the solid and liquid phase, from equations (1 I-53a) and (I 1-53b), res-
pectively. 

A scrutiny of the foregoing exact analyses reveals that in the rectangular 
coordinate system exact solutions are obtained for some half-space problems 
when the solution of the heat conduction equation is chosen as a function 
of xt -1/2, namely, as erf[x/2(ott)112] or erfc[x/2(ca)"]. In the cylindrical 
symmetry the corresponding solutions are in the form 

r2  

4cct) 

which is again a function of rt -112. Paterson [97] has shown that the cor-
responding solution of the heat conduction equation in spherical symmetry 
is given in the form 

11-3 INTEGRAL METHOD OF SOLUTION 
OF PHASE-CHANGE PROBLEMS 

The integral method provides a relatively simple and straightforward approach 
for the solution of one-dimensional transient phase-change problems and has 
been used for this purpose by several investigators [5-15]. The basic theory of 
this method has already been described in the chapter on approximate solution 

- of hear conduction problems-: When it isapplied. to the solution of.phase-change 
problems, the fundamental steps in the analysis remain essentially the same, 
except some modifications are needed in the construction of the temperature 
profile. In this section we illustrate the use of the integral method in the solution 
of phase-change problems with simple examples. 

Example 11-5 

fife/tiny hr a 114f-Space (One-phase Problem). To give some idea on the 
accuracy of the integral method of solution of one-dimensional, time-depen-
dent phase-change problems, we consider the one-phase melting problem for 
which exact solution is available in Example 11-2. The problem considered, is 
the melting of a solid confined to a half-space x > 0, initially at the melting 
temperature Tm. For times t > 0 the boundary sur,face at x = 0 is kept at a 
constant temperature T0, which is higher than the melting temperature 7;„ of 
the solid. The melting starts at the surface .x = 0 and the solid-liquid interface 
moves in the positive x direction as illustrated in Fig.,11-4. In the following 
analysis we determine the location of the solid-liquid interface as a function 
of time. 

Solution. The mathematical formulation of this problem is exactly the same 
as those given by equations (11-29) and (11-30). Namely, for the liquid phase 
the equations are given as 

02 11 	1 07 1(x, t) 

axe = at 

Ti(x, t) = To  

and for the interface as 

Ti(x, t) = T,, 	at 	x=s(t), t> 0 	(11-56a) 

x -=s(t), r > 0 	(1 1-56b) 

We recall that the first step in the analysis with the integral method is to define 
a thermal layer thickness beyond which the temperature gradient is considered 
zero For practical purposes. !terming to Fig. 11-4, we note that 'he location 
of the solid- liquid in terface.x.= s(t).is identical lo.t he den nition of (13e thermal  
layer, since the temperature gradient in the solid phase is zero for x > s(t). 
Hence, we choose the region 0 <x ‘..s(t) as the thermal layer appropriate for 
this problem and integrate the heat conduction equation from x = 0 to x = s(r) 

to obtain 

aT, 	ds(t) 
- 	= pL------ 	at 

ax 	dr 

aTf 	aT 

ex s-3a1—  ax 

1 d [(f 5(1)  
— 	Tdx - T 
ad( 

s(t)] 	(11-57) 

 

in 	0 <x<s(t), t>0 	(I 1-55a) 

at 	s = 0, 	t >0 	(11-55b) 



This relation, together with the boundary conditions at x = 0 and x = s(t) 

T = To 	at 	x=0 	 (11-63a)  

T= 7:„ 	at 	x = s(t) 	 (11-63b) 

provide three independent relations for the determination of three unknown 
coefficients in equation (11-59); the resulting temperature profile becomes 

T(x, t)= T„, + b(x — s) + c(x — 5)2 	 (11-64a) 

(11-64b) 

(I I-64c) 

P =(To  — TT„) —
2C p(To — T,n) 

(11-64d) 
2k 

apL 

Substituting the temperature profile (11-64) into the energy-integral equation 
(11-58) and performing the indicated operations we obtain the following 
ordinary differential equation for the determination of the location of the 
solid—liquid interface s(t) 

with 

s—
ds

= 6a 
1 — (I +p)1 /2  +p  

dt 	5 +(1 +1)1 J2  +p 
(11-65a) 

s=0 	for 	t=0 	 (11-65b) 

The solution of equation (11-65) is 

s(t) = 2.1jcit 	 (11-66a) 

where 

/1=[3 I HI +1°2 +1"2  
5 +(I + i)" + p (11-66b) 

We note that the approximate solution (11-66a) for s(t) is of the same form as 

where 

b= —
apL

[1 — (I +14112] 
ks 

bs + (To  — T.) 	• c = 
S  
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J 

r' 

) 

.J• 

For simplicity we omitted the subscript "1" and it will be done so in the 
following analysis. We note that equation (11-57) is similar to equation (9-2b) 
considered in Chapter 9. In view of the boundary conditions (11-56a) and 
(11-56b) the equation (11-57) reduces to 

pLds(t) 

tlx1 

1d 
[0 - 7;„01 

a dt 
(I I-58a) 

where 

Sur 
0 -== 	T(x,t)dx 	 (11-58b) 

a 

Equation (11-58) is the energy-integral•equation for this problem. To solve this 
equation we choose a second-degree polynomial approximation for the tem-
perature in the form 

	

T(x, t)= a + b(x s) + c(x — s)2 	 (11-59) 

where s = s(t). Three conditions are needed to determine these three coefficients. 
Equations (11-55b) and (11-56a) provide two conditions; but, the relation 
given by equation (1 1-56b) is not suitable for this purpose. because if it is used, 
the resulting temperature profile will involve the ds(t)/di term. When such a 
profile is substituted into the energy integral equation, a second-order ordinary 
differential equation will result for s(t) instead of the usual first-order equation. 
To alleviate this difficulty an alternative relation is now developed [51 The 
boundary condition (11-56a) is differentiated 

DTDT , , 
+—tit J 	=0 	 (11-60a) 

ox 	Lit 	x=sU) 

or 

ds(t) ilT 
— + --• = u 
Dx 

( I I-60b) 

where we omitted the subscript I for simplicity. The term ds(t)Idt is eliminated 
between equations (I 1-56b) and (11-60b) 

(07)2  pLOT 
= 	— 	at 	x = s(t) 	 (11-61) 

cox 	k It 

and eliminating OT/at between equations (I 1-55a) and (11-61) we obtain 

aT 	xpLa2 T 
Px 	k Ox 2  

at 	x 	s(t) 	 (11-62) 
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Fig. 11-7 A comparison of exact and approximate solutions of the melting problem in 
half-space. (From Goodman [5].) 

the exact solution of the same problem given previously by equation (1 I -32b); 
but the parameter d is given by equation (I 1-66b) for the approximate solution, 
whereas it is the root of the transcendental equation (11-35), that is, 

;le
°  erf(A.) 

C (To  T
m) 

2.177i 

p 	
(11-67) 

for the exact solution. Therefore, the accuracy of the approximate analysis can 
be determined by comparing the exact and approximate values of A as a 
function of the quantity p. Now, recalling the definition of the Stefan number 
given by equation (11-20) we note that the parameter p is actually twice the 
Stefan number. Figure 11-7 shows a comparison of the exact and approximate 
values of A as a function of the parameter p. The agreement between the exact 
and approximate analysis is reasonably good for the second-degree profile 
used here. If a cubic polynomial approximation were used, the agreement 
would he much closer [5]. 

11-4 VARIABLE-TIME-STEP METHOD FOR SOLVING 
PHASE-CHANGE PROBLEMS—A NUMERICAL SOLUTION 

When analytic methods of solution are not possible or impractical, numerical 
techniques, such as finite differences or finite element is used for solving 

phase-change problems. The numerical methods of solving phase-change problems 
can be categorized as follows: 

Fixed-grid methods, in which the space-time domain is subdivided into a finite 
number of equal grids Ax, At for all times. Then the moving solid-liquid 
interface will in general lie somewhere between two grid points at any given 
time. The methods of Crank [101] and Ehrlich [102] are the examples 
for estimating the location of the interface by a suitable interpolation 
formula as a part of the solution. 

Variable-grid methods, in which the space time domain is subdivided into 
equal intervals in one direction only and the corresponding grid side in the 
other direction is determined so that the moving boundary always remains 
at a grid point. For example, Murray and Landis [52] chose equal steps 
At in the time domain and kept the number of space intervals fixed which 
in turn allowed the size of the space interval Ax changed (decreased or 
increased) as the interface moved. In an alternative approach, the space 
domain is subdivided into fixed equal intervals Ax, but time step is 
varied such that the interface moves a distance Ax during the time interval 
At, hence always remains at a grid point at the end of each time interval 
At. Several variations of such a variable time step approach have been 
reported by [52, 66, 79, 80]. 

Front -fixing method, used in one-dimensional problems. This is essentially a 
coordinate transformation scheme which immobilizes the moving front 
hence alleviates the need for tracking the moving front at the expense of 
solving a more complicated problem by the numerical scheme [77, 101]. 

Enthalpy method, which has been used by several investigators to solve phase-
change problems in situations in which the material does not have a distinct 
solid-liquid interface. Instead, the melting or solidification tattoo place over 
an extended range of temperatures. The solid and liquid phases are separated 
by a two-phase moving region. In this approach, an enthalpy function, 
H(T), which is the total heat content of the substance, is used as a dependent 
variable along with the temperature. The method is also applicable for 
phase-change problems involving a single phase-change temperature 
[73-76]. 

In this section we present the modified variable-time-step (MVTS) method 
described by Gupta and Kumar [79]. 

We consider the solidification of a liquid initially at the melting temperature 
T.*, confined to the region 0 x B. For times t > 0, the boundary surface at 
x = 0 is subjected to convective cooling into an ambient at a constant temperature 
T. with a heat transfer coefficient h, while the boundary surface at x = B is kept 
insulated or satisfies the symmetry condition. The solidification starts at the 
boundary surface x = 0, and the solid-liquid interface moves in the x direction 
as-illustrated in-Fig. 11.-8. 

 L 



418 	PHASE-CHANGE PROBLEMS VARIABLE-TIME-STEP METHOD FOR SOLVING PHASE-CHANGE PROBLEMS 419 

Temperature 

SW 	 x =B 

Fig. 11-8 Geometry and coordinate for single-phase solidification. 
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Fig. 11-9 Subdivision of x- t domain using constant Ax, variable At. 
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Temperature T(x, t) varies only in the solid phase, since the liquid region is at 
the melting temperature TX,. We are concerned with the determination of the 
temperature distribution T(x, t) in the solid phase and location of the interface 
as a function of time. The mathematical formulation of this solidification problem 
is given as follows: 

t>0 (11-68a) 

t >0 (11-68b) 

> 0 (11-68c) 

t> 0 (11-68d) 

where h is the heat transfer coefficient, s(t) is the location of solid-liquid interface, 
p is the density, L is the latent heat of solidification (or melting). k is the thermal 
conductivity, and a is the thermal diffusivity. 

To solve the above problem with finite differences, the "x - t" domain is 
subdivided into small intervals of constant Ax in space and variable At in time 
as illustrated in Fig. 11-9. The variable time step approach requires that at each 
time level t„ the time step At„ is so chosen that the interface moves exactly a 
distance Ax during the time interval At„, hence always stays on the node. Therefore, 
we are concerned with the determination of the time step At = tn+i  - t„ such 
that, in the time interval from ti, to t„,. ,, the interface moves from the position  

nAx to the next position (n + 1)Ax. We describe below first the finite-difference 
approximation of this solidification problem, and then the determination of the 
time step At„. 

The finite-difference approximation of equations (11-68) is described below: 

Differential Equatitm (1 I -01a). differential equation can be approximated 
with finite differences by using either the implicit scheme or the combined method. 
For simplicity we prefer the implicit method and write equation (1 l-68a) in 
finite-difference form as 

Tr: - 27" + 	1 Tr' - 

(Ax)2 	- a 	At„ 
	 (11-69a) 

where the following notation is adopted 

T(x, t„)= 
	 (I I-69b) 

Equation (11-69a) is rearranged as 

[ r„ 	+ (1 + 2r„)T7' 	 = 	(11-70a) 

where the superscript p over the bracket refers to the pth iteration, and the para-
meter r„ is defined as 

aAt„ 

2  
rn=

(Ax) 
	, 	i = 1, 2,3,..., 	At 	t„ 	- t„ 	(11-70b,e) 

Solid region: 

Interface: 	T(x, t) = T,t 

D'T
= 
 1 DT 

Dx2  a t7t 

DT 	ds(t) 
k — 

dt 

oT 
k + hT = hTon  

Ox 

in 

at 

at 

at 

0 <x<s(i), 

x = 0, 

x = sit), 

x = sit), 
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Boundary Condition at x = O. The convection boundary condition (11-68b) is re-
arranged 

The following explicit expression is obtained for At,. 

(11-73) dT 
= HT — HTo, where 	H = 

11 

k 

pLAx(1 + H AN) 
k H(rit— T„) (11-71a) 

(11-71b) 

and then discretized as 

Tre-1 I _1'n f. 

Ax 	
(; 

 

This result is rearranged in the form 

[T1+1  — (1 + H Ax)7.7,1- 1 ]IP1  — H AxT, 	(11-71c) 

where superscript p over the bracket denotes the pth iteration. The finite-difference 
equation (11-71c) is first-order accurate. 

Interface Conditions. The condition of continuity of temperature at the interface, 
equation (11-68c), is written as 

= 	= melting temperature 	 (I l-72a)  

where At, 

'Time Step At,. We set i= 1,n 	I in equation (11-70a) and note that TI = Tz = 
T. Then equation (11-70a) becomes 

[— r i T+ (1 + 2r,)71]1P)  = (1 + t- 11' 1)T.* 	(II-74a) 

and from the boundary condition (11-71c) for n = 1, we-obtain 

[— (I + H 	+ TUP)  = — H Ax Tx 	(11-74b) 

To solve equations (1I-74a) and (11-70) for V, and T.,2, the value of r1,P1  is needed; 
but r1f1 -defined -by.equation_(1.1,70b) _depends. on At 1f ). Therefore, iteration is 
needed for their solution. To start iterations, we set 

At, 

which is valid for all times. The interface energy balance equation (I I-68d) is dis-
cretized as 

Tnn+  _pL Itx 

Ax 	k 4t„  

Then, rT)  is determined from equation (11-70b); using this value of 	equations 
(11-74a,b) are solved for ro  and Ti. Knowing 71, we can compute At from 
equation (11-72c). Iterations are continued until the difference between two 
consecutive time steps 

[Air 1)  — Atc,P11 
(11-72b) 

which is rearranged in the form 

[pt.](r+ 11 =ALr...0,2 -,(p) 

k [ 
(11-72c) 

since T,",++ 1 = T.* = melting temperature. 

Determination of Time Steps 

We now describe the algorithms for the determination of time step At„ such that 
during this time step, the interface moves exactly a distance Ax. 

Starting Time Step At,. An explicit expression can be developed for the calcula-
tion of the first step At, as follows. Set n = 0 in equations (11-71c) and (11-72c), 
and eliminate T,1, between the resulting two equations and note that T 

1.. The starting time step At at the time level t, is calculated directly from the 
explicit expression (11-73) since all the quantities on the right-hand side of 
this equation are k nown. 

2. The time steps At„ at the time levels i„, r1= 2, 3, ... are calculated by iteration. 
A guess value At is chosen as 

AtIt°1 = At„__ „ 	n = 2, 3, ... 	 (11-75a) 

The system of finite-difference equations (11-70), (11-71c), together with the 
condition (11-72a) are solved for i = 1,2, 3,..., n by setting p = 0 and a first 

satisfies a specified convergence criteria. 

Time Step Ain. The above results are now used in the following algorithm to 
calculate the time steps Atn  at each time level tr„ n = 2, 3,.... 
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estimate is obtained for the nodal temperatures 

	

[Tr 14°1, 	for 	1 = 1, 2,...,n 	(11-75b) 

We note that the system of equations is tridiagonal, and hence readily 
solved. 

3. The values of [Tr 11')  obtained from equation (1 I -75b) arc introduced 
into equation (I t-72c) for p = 0 and a first estimate for the time step At„m 
is determined. 

4. At!," is used as a guess value and steps 2 and 3 are repeated to calculate a 
second estimate for the time step At i,(2). 

5. The steps 2, 3, and 4 are repeated until the difference between two consecutive 
time steps 

lAti„ 	,, " " - AtP)1 

satisfies a specified convergence criteria. 

Example 11-6 

Consider a single-phase solidification problem for a liquid initially at the 
melting temperature confined to the region 0 x -4 B. Solidification takes 
place as a result of convective cooling al the boundary surface x = 0, while 
the boundary surface at x = B is kept insulated. The mathematical formulation 
of this problem is given in the dimensionless form as follows: 

Solid region: - = 
32T aT 

	

at 
	 in 	0 < x < s(t), t > 0 

oT 
10T = 0 
	

at 
ax 

	

Interface: T(xt t)= I 
	

at 

OT ds 	
at 

ds dt 

Calculate the time step At required for the solid-liquid interface s(t) to move 
one space interval Ax = 0.1 and the temperature of the boundary surface at 
x = 0 for the interface positions s(t)= 0.1. 0.2, 0.3 ..... 1.0. 

Solution. This problem has been solved [79] by using the variable time step 
approach described above, and their results are listed in Table 11-4. For 
example, the first time step Ato, needed for the interface to move from s(t) = 0 
to s(t) = 0.1, is determined directly from equation (11-73). The numerical 

TABLE 11-4 Time Step Ar Required for the Interface Position to 
Move by One Space Interval Ax and Temperature of the Boundary 
Surface at x= 0 

Interface 
Position s(t) Time Step At T(0, t) 

Number of 
Iterations 

0.1 0.0200 0.5000 0 
0.2 t).0356 0.3596 4 
0.3 0.0494 0.2770 4 
0.4 0.0627 0.2242 4 
0.5 0.0759 0.1879 4 
0.6 0.0890 0.1616 4 
0.7 0.1021 0.1416 4 
0.8 0.1152 0.1260 4 
0.9 0.1282 0:1135 4 
1.0 0.1413 0.1032 4 

values of various parameters appearing in this equation are determined by 
comparing the mathematical formulation of this example with that given by 
equations (11-68). We find 

= 1, U = 	0, T,, = 0, 
pL 

= I 

and the space step is chosen as Ax = 0.1. Introducing these numerical values 
into equation (11-73), the starting time step Ato  is determined as 

Ato = 
pLAx(1 H Ax) 0.1(1 + 10 x 0.1) 
	  0.020 

k H(T:, - Tj 	10 x (1 - 0) 

The next time step At, needed for the interface to move from the position 
s(t) = 0.1 to the position s(t) = 0.2 is determined by an iterative procedure 
described previously. According to Table 11-4, a value of At, = 0.0356 is 
obtained with a maximum error of 0.05%. The remaining time steps are 
determined iteratively and listed in Table 11-4. Also included in this Table is 
T(0, t), the temperature of the boundary surface at x = O. 

11-5 ENTHALPY METHOD FOR SOLUTION 
OF PHASE-CHANGE PROBLEMS-A NUMERICAL SOLUTION 

In the solution of phase-change problems considered previously, the temperature 
has been the sole dependent variable. That is, the energy equation has been 
written separately for the solid and liquid phases and the temperatures have been 
coupled through the interface energy balance condition. Such a formulation gives 

t > 0 

t > 0 

> 0 



at 
p

rni(-7:) 

HIT) 

111  

H 

T 
Tm 

(al 	 (b) 

Fig. 11-10 Enthalpy—temperature relationship for (a) pure crystalline substances and 
eutectics and (b) -glassy substances and alloys. 

where L is the latent heat, and T, and T, are the solid- and liquid-phase tempera-
tures, res ectively. 
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rise to the tracking of the moving interface, and it is a difficult matter if the 
problem is to be solved with finite differences. 

An alternative approach is the use of the enthalpy form of the energy equation 
along with the temperature. The advantage of the enthalpy method is that a single 
energy equation becomes applicable in both phases; hence there is no need to 
consider liquid and solid phases separately. Therefore, any numerical scheme 
such as the finite-difference or finite-element method can readily be adopted for 
the solution. In addition, the enthalpy method is capable of handling phase 
change problems in which the phase change occurs Over an extended temperat tire 
range rather than at a single phase-change temperature. 

Figure 11 -10. shows enthalpy—temperature relations for (a) pure crystalline 
substances and eutectics and (b) glassy substances and alloys. For pure substances 
the phase change takes place at a discrete temperature, and hence is associated 
with the latent heat L Therefore, in Fig. (11-10a) a jump discontinuity occurs at 
the melting temperature T.*; hence alf/aT becomes infinite and the energy equation 
apparently is not meaningful at this point. However, it has been shown that [73] 
the enthalpy form of the energy equation given by 

(11:76) 	 

is equivalent to the usual temperature form in which the:lint conduction equation 
is written separately for the liquid and solid regions and coupled with the energy 
balance equation at the solid—liquid interface. Therefore, the enthalpy method 
is applicable for the solution of phase-change problems involving both a distinct 
phase change at a discrete temperature as well as phase change taking place over 
an extended range of temperatures. 

Figure I 1-113b shows that for alloys and glassy substances there is no single 
melting-point temperature Tm* because the phase change takes place over an 
extended temperature range from T. to T1, and a mushy zone exists between the 
all solid and all liquid regions. 

To illustrate the physical significance of the enthalpy function H(T), .1;kg 
(joules per kilogram), in relation to the case of pure substances having a single 
melting-point temperature Tm*, we refer to the plot of H(T) as a function of 
temperature as illustrated in Fig. 1 l -10a. When the substance is in solid form at 
temperature '1, the substance contains a sensible heat per unit T*,), 
where the melting-point temperature T: is taken as the reference temperature. 
In the liquid form, it contains latent heat L per unit mass in addition to the 
sensible heat, that is, C,,(T — T:)+ L. For the specific case considered here, the 
enthalpy is related to temperature by 

H 
 = I

C p(T — Ti) 	for 	T < Tm 
CF(T — 	+ L for 	T > 

(II-77a) 

(I 1-77b) 

Conversely, given the enthalpy of the substance, the corresponding temperature 
is determined from 

T* + for H <0 (11-780 
C p 

T= T: for 0 	.11 L (I I-78b) 

H L 
T*. + for 11 > L (11-78c) 

6'p 

In the case of glassy substances and alloys, there is no discrete melting-point 
temperature, because the phase change takes place over an extended range of 
temperatures as illustrated in Fig. I Mob. Such relationship between H(T) and 
T is obtained from either experimental data or standard physical tables. In 
general, enthalpy is a nonlinear function of temperature. Therefore an enthalpy 
versus temperature variation need to be available. Assuming linear release of 
latent heat over the mushy region, the variation of H(T) with temperature can 
be taken as 

H= 

1 

C' T 

C T+ T—Ts .L. 
P 	T1 —  T, 

C D T + L 

for 

for 

for 

T-- T, 

T,...<,. T -<.. T1  

T> T1  

solid region 

mushy region 

liquid.region 

( II -79a) 

(11-79b) 

(11-790 

K-. 

C 
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To solve the phase-change problem with the enthalpy method, an explicit or 
an implicit finite-difference scheme can be used. The implicit scheme is generally 
preferred because of its ability to accommodate a wide range of time steps 
without the restriction of the stability criteria. We present below, the implicit 
enthalpy method for solving one-dimensional, two-phase solidification problem 
for a substance having a single phase-change temperature T,*„. 

Implicit Enthalpy Method for Solidification 
at a Single Phase-Change Temperature 

We consider one-dimensional solidification of a liquid having a single melting-
point temperature T:kn  and confined to the region 0 x 13. Initially, the liquid 
is at a uniform temperature To  that is higher than the melting temperature T.* 
of the liquid. For times r > 0, the boundary surface at x = 0 is kept at a temperature 
I that is lower than the melting temperature P. of the substance. The boundary 
condition at x = B satisfies the symmetry requirement. For simplicity, the pro-
perties are assumed to be constant. 

The enthalpy formulation of this phase-change problem is given by 

in 0 < x < B, t > 0 (11-80a) 

at x = 0, r > 0 (11-80b) 

at x = B, t > 0 (11-80c) 

for 1 = 0, 0 ‘_.v...<..B (11-80d) 

To approximate this problem with finite differences, the region 0 s x s B is 
subdivided into M equal parts each of width Ax = B/M. 

The finite-difference approximation of the differential equation (11-80a) using 
the implicit scheme is given by 

	

PP* 	Tr 	, + = k 	- 	 + 1 	 (11-81) 
A/ 	 (Ax)2  

	

where the subscript i = I, 	Al — I denotes the spatial discretization and the 
superscript a = 1, 2,... denotes the time discretization. The solution of equation 
(11-81) for the enthalpy 	gives 

kAt 

	

H7 4-1  -- 	 2F*(H7+ ) 
PIAx}2  

+ F*(M':)], 	1,2,3,...,M —1 	(11-82)  

where the notation 

T = F*(H) 	 (11-83) 

denotes that the temperature T is related to the enthalpy H. The system of 
equations (11-82) can he written more compactly in the vector form as 

II" ' 1  = I I" + 	' 1 ) 	 (I I-84a) 

where H is a vector whose components are the nodal enthalpies 11, and F' is a 

function with ith component given by 

• 	= 	
k 

CP(Hi _ 1)— 2F*(11;)+ F*(H,,,)] 
p(Ax)2  

(11-84b) 

For a substance having a single phase-change temperature T*., the temperature 

is related to the enthalpy by 

 

H 	
H <C pT:, (1 I-85a) 

(11-85b) 

(I 1-85c) 

T = 	 C 	H ‘.(C pT: + L) 

 

H — L 

Cl, 
	H > (C ;11+ L) 

 

Equivalently, equation (11-85) can be written as 

17(7,)  = 1CpT 	T <T: 

CpT - L 	T > Tit 
	 (11-86) 

The difference between these equations and that given by equations (11-78) is 
that in the latter temperature T.* is used as the reference temperature. The 
finite-difference equations (11-84), together with the appropriate boundary and 
initial conditions for the problem and the "temperature enthalpy" relations 
given by equations (11-85), constitute a set of equations for the determination of 
nodal enthalpies 1/7 4-1  at the time level n + 1, from the knowledge of the enthalpies 
1/ 2; in the previous time level. These equations being nonlinear, an iterative 
scheme is needed to solve for H`r"• Furthermore, if it is required that the 
solid—liquid interface move one and only one spatial step Ax during each conse-
cutive time step At, iteration becomes necessary to establish the magnitude of 
each time step accordingly. Voller and Cross [74] used enthalpy formulation for 
a one-dimensional solidification problem with a single phase-change temperature 

aH ezT 
p = 

fit 	r?x - 

T = f 

aT 

el 

T = 7-4,(or H = H„) 
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which led to very accurate solutions. We present below, the equations needed to 
perform such iterations. 

Equation (11-84) is written in the form 

+ A/F(-1"i) — 	 (11-87) 

To calculate 	the modification of Newton's method is applied 

C( 	F 1.11 
Hn I ,k 	= tin I 1,1i 

G'(Hn+ 1 .1) 
(11-88a) 

where co is the relaxation parameter, the superscript k denotes the number of 
iterations, and n is the number of discretization steps on time. The derivative 
G' with respect to H''+'." is determined as 

where Fi(H") is as defined by equation (11-84b). Iterations are carried out by using 
equations (11-90) until a specified convergence criterion is achieved. 

Also we need to perform iterations on the size of the time step At, such that 
the interface will move one and only one grid point over the duration of this time 
step. This requirement can be satisfied by noting that at each time step one and 
only one nodal enthalpy takes the value + 

Suppose the calculations are carried out up to the time level a and that the 
nodal enthalpies Hi are determined for all nodal points i at time t, namely, the 
time level a. Let. At, denote the lime step during which the interface moves by 
one spatial step AN, from the node i to the node i + I. Then 

At,=ti+r — ti  

Then the iterations on the size of the time step At is performed in the following 
manner: 

(11-88b) 	 1. The initial guess for the size of the time step At,' is taken as 

J — 	 (II-88c) 

where I is the identity matrix and J is the Jacobian matrix whose components 
are given by _ 

A  

Jo= at 
oF, 
all, Li= WI+ I,k 

(11-89) 

where Fi(H) is as defined by equation (11-84b). 
Then the equation for the determination of the ith component of enthalpy 
+ 1  'k  + 1  becomes 

H7 +1,1+1 	Hria+1,k .117.k  — H7+1.4  + AtFi(H.+ Lk) 

l —f a  
(11-90a) 

where 

Jii -= -
o
-
Ff  

OM 	I•k 

The Algorithm 

To start the iterations on H, an initial estimate on the components of enthalpy 
is chosen as 

H7+  "a  =1-17 + AtF,(1-11 	 (1 I-91)  

--=6,11_ 1  

2. The enthalpy distribution 114+-":", where the superscript or on At refers to 
the 'nth iteration on the time step, is determined from the solution of 
equations (11-90) and (11-91). Here,- the mt h time step At;"-is .computed using 
an iterative scheme given by 

0(71+1  = AtT 1 
w*A1' 	

11+i  

	

CT"*, + 	(i 
	1 
.L.12) 	I 

) 

whereto* is the relaxation parameter associated with the time step iterations. 

3. When the value of fil+,.;'7 converges to [CT.*, + (L/2)], the corresponding 
enthalpy values at all nodes are considered to be the solution for the time 
r + At;". 

4. Once the enthalpy values are available at the nodes, the corresponding 
values of node temperatures Ti  are determined from the temperature-
enthalpy relation given by equations (11-85). 

Implicit Enthalpy Methud for Solidification Over un Extended 
Temperature Range 

If the phase change takes place over an extended temperature range, there is a 
mushy zone between the solidus and liquidus regions. In such a case, the enthalpy 
H(T) is a smooth continuous function or piecewise continuous function. Assuming 
a linear variation of latent heat over the mushy region, the variation of H(T) with 

(11-90b) 

(11-92) 
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temperature can be taken as that given by equations (11-79): 

1/ = 

C pT 

T — T 
C-,,T + --- - 

7-1  — T, 

C 	L 

L 

for 

for 

fur 

T < T, 

T-5 T 

T > 7; 

solid region 

mushy region 

liquid region 

(11-93a) 

(11-93b) 

(11-93c) 

and the corresponding relations for temperature as a function of enthalpy 
becomes 

T= 

H 

Cp  

H( 	— Ts) L 

for 

for 

for 

H < CU T, 

C pl 	H < (C 

H > (C 	+ 

(I 1-94a) 

L) (1 I-94b) 

(11-94c) 

C p(TI  — 

H — 

Cp
- 

+ L 

Then the algorithm described previously is applicable if equation (11 - 84h) is used 
together with equations (11-94). 

Readers should consult reference 74 for a comparison of explicit enthalpy and 
implicit enthalpy methods of solution for phase change at a single temperature 
and constant properties with the exact analytic solution of a one-dimensional 
solidification problem. 
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PROBLEMS 

	

I-1 	Verify that the interface energy-balance equation (11-2c) is also applicable 
for the melting problem illustrated in Fig. 11-1b. 

	

11 -2 	In the melting problem illustrated in Fig. 11-1b, if the heat transfer on 
the liquid side is by convection and on the solid phase is by pure 
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conduction, derive the interface energy-balance equation. Take the bulk 
temperature of the liquid side as Tx  and the heat transfer coefficient as h. 

	

11-3 	Solve exactly the phase-change problem considered in Example 11-2 
for the case of solidification in a half-space x > 0. That is, a liquid at 
the melting temperature Tit is confined to a half-space x > 0. At time 
= 0 the boundary at X = 0 is lowered to a temperature T, below 7'*„ 

and maintained at that temperature for times t > 0. Determine the tempe-
rature distribution in the solid phase and the location of the solid-liquid 
interface as a function of time. 

	

11-4 	Solve exactly the problem considered in Example 11-3 for the case of 
melting. That is, a solid in x> 0 is initially at a uniform temperature 7.; 
lower than the melting temperature T. For times t > 0 the boundary 
surface at x = 0 is kept at a constant temperature T0, which is higher 
than the melting temperature Determine the temperature distribution 
in the liquid and solid phases, and the location of the solid-liquid 
interface as a function of time. 

	

11-5 	Solve exactly the problem considered in Example 11-4 for the case of 
melting. That is, a line heat source of strength Q, W/m is situated at 
r = 0 in an infinite medium that is at a. uniform temperature T,. lower 
than the melting temperature T... The melting will start at r -).0, and 
the solid liquid interface will move in the positive r direction. Determine 
the temperature distribution in the solid and liquid phases, and the 
location of the solid-liquid interface as a function of time. 

	

11-6 	Using the integral method of solution, solve the solidification Problem 
11-3 and obtain an expression for the location of the solid-liquid interface. 
Compare this result with that obtained in Example 11-5 for the case of 
melting. 

	

11-7 	A solid confined in a half-space x > 0 is initially at the melting temperature 
T. For times t > 0 the boundary surface at x = 0 is subjected to a heat 
flux in the form 

temperature T.* of the substance. The boundary at x = B satisfies 
the symmetry requirement. The properties are assumed to be constant. 
Develop the finite-difference formulation of this problem by using the 
explicit enthalpy method; that is, use the explicit finite difference scheme 
to discretize the differential equations. 

11-9 	Repeat Problem 11-8 for the case of a material.having phase change 
over an extended temperature range. 

11-10 A liquid having a single phase-change temperature T.* is confined to a 

semiinfinite region 0 < x < oa. Initially, the liquid is at a temperature 
T1(> T*.). At time t-= 0, the temperature of the boundary surface at x = 
is suddenly lowered to a temperature T0(< T.*) and maintained at that 

temperature for times t > 0. Determine the location of the solid-liquid 
interface and the temperature at a position x = x0  as a function of time 
by using (a) exact analytic solution, (b) explicit enthalpy method, and 
(c) implicit enthalpy method. Numerical values for various quantities 
are given as 

	

T.= 0°C, 	T, =  2°C, 	T0 = -10°C 

L = 100 MJ/kg, 	{pCi,),= 2.5 MJ/(kg•°C), 	(pCp),= 1.5 MJ/(kg•°C) 

	

K i  = 1.75 W /(m.-C), 	k, = 2.25 Wfirri."C), 	X0 = 50cm 

(See Figures 3 and 7 of reference 74 to compare your results.) 

NOTE 

The exponential-integral function — Ei( — x) or E1(x) is defined as 

f. e- II 	jr CO 
— Ei( — x) -=7..- E,(x) = 	-- du = 	. — di 	for 	x > 0 	'ID 

	

x 	a 	1 	t 

t3T 
- k 

(Ix 
= H __= constant The function — Ei(— x), which is also denoted by E i (x), decreases monotonically from 

the value E1(0) = oo to E,(co) = 0 as x is varied from x = 0 to x—) co as shown in 
Table 11-1. The derivative of — Ei(— x) with respect to x is given as 

Using the integral method of solution and a second-degree polynomial 
approximation for the temperature, obtain an expression for the location 
of the solid-liquid interface as a function of time. 

11-8 	Consider one-dimensional solidification of a liquid having a single mel- 
ting-point temperature Tn*,, confined to the region 0 s x B. Initially 
the liquid is at a uniform temperature T0  that is higher than the melting 
temperature Tm of the liquid. For times t > 0, the boundary surface at 

= 0 is kept at a temperature T = J that is lower than the melting 

Ei(— 	 .. e  dui=—.!L!. 	 12) 
dx 	 dx x  u x 

The notation E t(x) has been used for —Ei(—x) function in reference 99 [p. 228], and 
its polynomial approximations are given for 0 x 1 and I x<co [99,p.231]. A 
tabulation of E,(x) function is given in references 99 [p. 239] and 100 [p. 515]. 



12 
FINITE-DIFFERENCE METHODS 

Numerical methods are useful for solving fluid dynamics, heat and mass transfer 
problems, and other partial-differential equations of mathematical physics when 
such problems cannot be handled by the exact analysis because of nonlinearities, 
complex geometries, and complicated boundary conditions. The development of 
the high-speed digital computers significantly enhanced the use of numerical 
methods in various branches of science and engineering. Many complicated 
problems can now be solved at a very little cost and in a very short time with 
the available computing power. 

Presently, two major approaches used in the numerical solution of partial-
differential equations of heat, mass, and momentum transport include the finite-
difference method (FDM) and the finite-element method (FEM). Extensive amount 
of literature exist on the application of FDMs [1-27] and FEMs [28-35]. Each 
method has its advantages depending on the nature of the physical problem to 
be solved. Finite-difference methods are simple to formulate, can be readily 
extended to two or three-dimensional problems, and are very easy to learn and 
apply to the solution of partial-differential equations encountered in the modeling 
of engineering problems, More recently, with the advent of numerical grid gene-
ration [36-41] approach, the FDM have become comparable to FEM in dealing 
with irregular geometries, while still maintaining the simplicity of the standard 
11)Ms. II ere we consider the application of FI)Ms to the solution of heat 
conduction problems. Despite the simplicity of the finite-difference representation 
of governing partial-differential equations, it requires considerable experience 
and knowledge to select appropriate finite-differencing scheme for a specific 
problem in hand. The type of partial differential equations, the number of 
physical dimensions, the type of coordinate system involved, whether the govern-
ing equations and boundary conditions are linear or nonlinear, and whether the  

problem is steady-state or transient are among the factors that affect the type of 
the numerical scheme to be chosen from a large number of available methods. 
The tailoring of a numerical method for a specific problem in hand is an 
important first step in numerical solution with a:finite-difference method. There-
fore, we also present a classification of partial-differential equations encountered 
in the mathematical formulation of heat, mass, and momentum transfer problems 
and discuss the physical significance of such a classification in relation to the 
numerical solution of the problem. 

12-1 CLASSIFICATION OF SECOND-ORDER 
PARTIAL-DIFFERENTIAL EQUATIONS 

In the solution of partial-differential equations with finite differences, the choice 
of a particular finite-differencing scheme also depends on the type of the partial-
differential equation considered. Generally, the partial-differential equations are 
classified into three categories, called elliptic, parabolic, and hyperbolic. To illus-
trate this matter we consider the following most general second-order partial-
differential equation in two independent variables x, y given by Forsythe and 
Wasow [6]: 

2(.6 	0d, 	(7, d, 

A - + B 
2 

+ C --
2
L + D

a 
 + E

a 
 + F + G(x, y} = 0 	(12-1) 

axe 	Dx ay 	ay' 	 tly 

Here we assume a linear equation (this restriction is not essential), that is, the 
coefficients A, B, C, D, B, and F are functions of the two independent variables 
x, y, but not of the dependent variable 0. 

The classification is made on the basis of the coefficients A, B, and C of the 
highest derivatives in equation (12-1), according to whether the determinant 

A B 

B C 

is negative, zero, or positive. The differential equation is called 

Elliptic if 132  — 4A C < 0 (12-2a) 

Parabolic if 82 	4 AC = 0 (12-2h) 

Hyperbolic if B2  — 4AC > 0 (12-2e) 

For example, the steady-state heat conduction equation with no energy generation 

a27-  (VT 
= 0 
	

(I2-3a) 
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is elliptic. The steady-state heat conduction equation with energy generation 

0 27" 32  

dx2 	

T I 
+ 

(.73,2 
— + 

k  
- a(x, y) 0 

is also elliptic. The characteristic of the elliptic equation is that it requires the 
specification of appropriate boundary conditions at all boundaries. 

The one-dimensional time-dependent heat conduction 'equation 

027' I OT 
al(' a Ot 

is parabolic. 
The second-order wave equation 

192ck 	a20 

2 = c 2 n Dx c ut-

where t is the time, x is the space variable, and c is the wave propagation speed, 
is hyperbolic. 

The non-Fourier heat conduction equation 

a27-  I a2T 	OT =  
Ox 2 	at2 a at 

which is a second-order damped wave equation, is hyperbolic. 

Physical Significance of Parabolic, Elliptic, and Hyperbolic Systems 

In the foregoing discussion we considered a purely mathematical criterion given 
by equations (12-2) to classify the second order partial-differential equation 
(12-I) into categories called parabolic, elliptic, and hyperbolic. We now discuss 
the physical significance of such a classification in computational domain. 

Consider, for example, the steady-state heat conduction equation (12-3a) or 
(12-3b), which has second-degree partial derivatives in both x and y variables. 
The conditions at any given location are influenced by changes in conditions at 
both sides of that location, whether the changes are in the x variable or the y 
variable. Thus, the steady-state heat conduction equation is elliptic in both x and 
v space coordinates, and simply called elliptic. 

Now let us consider the one-dimensional time-dependent heat conduction 
equation (12-4), which has a second-degree partial derivative in the x variable 
and a first-degree partial derivative in the time variable. The conditions at any 
given location x are influenced by changes in conditions at both sides of that 
location; hence the equation is regarded elliptic in the x variable. However, in  

the time variable t, the conditions at any instant are influenced only by changes 
taking place in conditions at times earlier than that time; hence the equation is 
parabolic in time and called parabolic. 

The computational advantage of the parabolic system lies in the fact that 
significant reduction in computer time and computer storage can be realized. For 
example, in finite-difference solution of two-dimensional time-dependent heat 
conduction equation, which is parabolic in time, one needs to consider only a 
two-dimensional network for the temperature field. As the temperature field at 
any time is not affected by temperature field at later times, one starts with a given 
initial temperature field and marches forward to compute the temperature fields 
at successive time steps. 

In the case of hyperbolic equation, however, it does not seem to be possible 
to relate it to be some distinct computational advantages in finite-difference 
solutions as in the case of parabolic systems. As it will be apparent later, the 
solution of hyperbolic heat conduction equation exhibits a wave-like propagation 
of the temperature field with a finite speed in contrast to the infinite speed of 
propagation associated with the parabolic heat conduction equation. Therefore, 
the solution of hyperbolic equations with finite differences requires special con-
siderations and special schemes. 

12-2 FINITE-DIFFERENCE APPROXIMATION OF 
DERIVATIVES TIIROUGH TAYLOR'S SERIES 

The idea of finite-difference representation of a derivative can be introduced by 
recalling the definition of the derivative of the function F(x, y) at x = xo, y = yo 
with respect to x: 

— = Urn 
F(xo+ ex, yo) — F(xo. Yo) 

eX A."0 	Ax 
(12-4) 

Clearly, if the function F(x, y) is continuous, the right-hand side of equation (12-4) 
can be a reasonable approximation to OF/8x for a sufficiently small but finite Ax. 

We consider the Taylor series expansion of the functions fix + h) and fix - h) 
about the point x, as illustrated in Fig. 12-1, given by 

11 

!

2 	11 3  
f ix + h) = f (x) + hf '(x) + 	

3 
f "(x) + f "lx) 	( I 2-5a) 
21 

h 3  
fix - h)= f (x)- hflx) + —

h2 
f"(x)- — flx) 

3!' 

where primes denote derivatives with respect to x. The first- and second-order 
derivatives f'(x) and f"(x) can be represented in the finite difference form in many 

(12-3b) 

(12-3c) 

(12-3d) 

(12-3e) 

(12-5b) 



440 	FINITE-DIFFERENCE METHODS DERIVATIVES THROUGH TAYLOR'S SERIES 	441 

Fig. 12-1 Nomenclature I& a Taylor series representation. 

different ways by utilizing Taylor series expansions given by equations (12-5) as 
now described. 

First Derivatives 

The forward and backward first-order derivatives of f (x) are obtained by solving 
equations (I 2-5a) and (I 2-5b) for f '(x): 

Fig. 12-2 Nomenclature for finite-difkrenee representation of f(x). 

Here the notation 0(h) is used to show that the error involved is of the order 
of h; similarly, 0(0) is for the error of the order of F. 

If we now introduce the notation 

x = ih, 	x + h = (f + 1}11, 	x h 	— 1)11, 	etc. 	(12-8a) 

f(x) = fi, 	f(x h) 	1, 	.f — 	f, 	etc. 	(12-8b1 

. 	f (x + h) — f (x) Jr . 	h 2  
.(X) = 	- - - 	- f"'( x) • • • 	(forward) 	( I 2-6a) 	 as illustrated in Fig. 12-2, then the finite-difference representation of the first 

2 	 derivative of function f(x) about x, given by equations (12-7a,b,c), are written, 
respectively, as 

f '(x) — 	
2 	2 

f  (x) — f (x — h) 
+ 

h 
 f "(x) — — 

6 

112 
f 

„
'( x) + • • • (backward) 	(12-6b) 

1 

Subtracting equations (12-5a) and (12-5b), the first-order central-difference 
approximation is determined as 

f`(x)— 
f (x + It)

2/t  f 

 (x  L  Ir) It 
f 

,
"(x) — • • • (central) 

 6 
(12-6e) 

These three results are written more compactly as 

.1,,(1.)  .f (x + h

h

) — .f (x) 
+ 0(h) 	(forward) 	(12-7a) 

j(x) — f (x 	h)  
f '(x) — 	 + 0(h) 	(backward) 	(12-7b) 

h 

f ' (x) — f (x  +  h)  —  f (x  — 11)  + 0(h2  
2h 	

) 	(central) 	(12-7c)  

f;=
fi+ t — f

t  + 0(h) 	(forward) 

r_ 0(h)  (backward) 
it 

= f14 	- + 0(h 2) 
	 (central) 

211 

Second Derivatives 

We now proceed to the finite-difference representation of the second derivative 
r(x) of a function f (x) about the point x. To obtain such results we consider a 
Taylor series expansion of functions f (x + 2/t) and f(x — 2h) about x as 

f(x + 2/1) =f (x) + 2/1r(x) + 2/12f "(x) + 	'"(x) + • • • 	(12-12a) 

f (x — 2h) = f(x) — 21r f '(x) + 2h 2f"(x)-03f-(x)+ ••• 	(12-12b) 

(12-9) 

(12-10) 
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Eliminating f'(x) between equations (12-5a) and (I2-12a) we obtain 

	

f"(x)=f(.x)+ fx + 
h  
2h)—  2f(x  + 

h) hf"(x) 
	

(12-13) 

similarly, eliminating f(x) between equations (12-5b) and (12-12b) we find 

lx1= 	 '"(x) 
f(x —210+ f 

11(2  
	+ h./

)-2f(x —11) 	. 	
(12-14) 

Eliminating flx) between equations (12-5a) and (12-5b) we obtain 

.1"N= 	 h.art f(x —  h)+ f(x + h) — 2f(x) 	
(12-15) 

The results given by equations (12-13)-(12-15) are written more compactly as 

= ft- 2.fi  +,1 + f.
+" 

 .4_ 0(h) 	forward difference 	(12-16) 

- 2
h 

	
+ 0(h) 	back ward difference 	(12-17) 

= 

	

	tf!.t.4. 0021 	central difference 	(12-18) 
1 2  

where  

Two-Point Formulas 

ft+ I -.1-1 

	

+ 0(h) 	F 	 (12-19a) 

(t2-19h) • = 	- • + 0(h) 

fl=
f1+1 - -  + 0(h2) 	C 	 (12-19c) 

2/1 

Three-Point Formulas 

f;=-2ii( 3.fi+ 4A+ t Jr1+ 2) -1-  0(112) 	F 	(12-20a) 

fl= 211
(ft- 2 — 4.fr- + 3f1)+ 0(112) 	B 	(12-20b) 

1 
f;= 211(6+t  - 	0(112) 	 C 	(12-20c) 

Four-Point Formulas 

f;=-
61
-

1
(-11fi + 18fi+1 —9A+2 + 2.ft+3) + 003) 	(12-21a) 

fl -= -6);( 2.ft -1 3fi + 	+ 	2) + 0(h3) 
	

(12-21b) 

, 

I = 	 +3f1 +2fi+ 1)+ 0(10) (12-21c) 

We note that the central-difference representation is accurate to 0(h 2) whereas 
the forward and backward differences to O(h). 

In die foregoing finite-difference expressions. two-point formulas are used for 
the first derivatives and three-point formulas for the second derivatives. It is 
possible to use more points in order to obtain more accurate finite-difference 
expressions. 

Summary of First Derivatives 

In the following formulas, the symbols B, C, and F denote backward, central, 
and forward, respectively. 

Summary of Second Derivatives 

I 	, 
.17 = /12(2fi 	+ 4.I;+ 2 — fit 3) + 0012 ) 	17 	(12-22a) 

1 
- 	ft -3 + 4.ft-2- 5A-1 + 2tf) + 0(112) 	B 	(12-22b) 

f = -(f —2.11+.ii+ 	002) 	 (12-22c) 
122 
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Mixed Derivatives 

Often it may be necessary to represent mixed partial derivatives, such as 
02 f /ax ay, in finite differences. The finite-difference approximation can be deve- 
loped by successive application of Finite-differencing of the first derivative in the 
x and y variables. 

For illustration purposes, we consider finite-difference approximation of the 
mixed partial derivative 0 2.f/Ox and use the central difference formula 
equation ( I 2-11) to discretize the first derivative for both the x and y variables. 
We write 

(")— I  ("I 	)-F 00,x)2 a"--x 	2Ax 	.; 

TABLE 12-1 Finite-Difference Approximation of Mixed Partial Derivative alf/ar Oy 

Difierencing 

Scheme° 

Order of the 
Case No. 	 Finite-Difference Approximation 	 Error 

2 

3 

F 

I,  

F 

F 

B 

C 

fr+ t.1+1 f11+1 — 11.1 

Ax 	Ay 	 Ay 

I 	Ell + P .1 	ll I 1.1 	1 _ /14 	11,1 	1 

Al! 	

) 

AY 	 Ay 

I 	(fit 1.1+-1 	ff + 1.1- 3 	AI+ t - .13.1- 1 ) 

0[Ax, Ay] 

0 fAx, Ay] 

0[Ax,tAye] 
Ax 	Thy 	. 	 2A).  

4 

5 

6 

B 

B 

B 

F 

C 

I  (JO+  I - fI.1 	ft-  14+1-  J 4  -Li)  0[Ax, Ay] 

O[Ax, Ay] 

0[6%0011 

Ax k 	Ay 	 Ai,  

I 	(hi  — ,64-1 	fo-1.1 —'  A - 1.1- 1)  

Ax 	Ay 	 Ay 

1 	t 	fru-  t 	A-14+1 	A-1.1-1) (fi.i+  

AX 	2Ay 	 2Ay 

7 

It 

9 

(• 

C 

C 

F 

B 

C 

I 	(fi+ WI . —.f.,.. 1.1 	ff- 1 j q 1 - fi - Li 

At 2Ax 	Ay

) 

I 	(A.,.1 j — fit i.j- 1 	J.- ..)— I.- LI - .) 
2Ax 	Ay 	 Ay 

1 	 1.4-1 	 fi-14-1) (4+1,1+1  

OrIAx1', Ay] 

0[16x)=, Ay] 

0[(Ax)=,(Ai)l] 
2Ax 	2Ay 	 2Ay 

where the subscripts i andj denote the grid points associated with the discretiza-
tion in the x and y variables, respectively. Applying the central difference formula 
once more to discretize the partial derivatives with respect to the y variable on 
the right-hand side of equation (12-23) we obtain 

i1? (_..°00 = 7.AI  x  (f.!.  .1 •i+12-60.,f. ! +. 147! _ -1..!: !*i1: !2—A..11-  ! •J.7.! + 0 [(Ax)2,0j12] ( 

(12-241 

which is the finite-difference approximation of the mixed partial derivative 
a2flax ay using central differences for both x and y variables. The order of 
differentiation is immaterial if the derivatives are continuous; that is 5 2f /0x Cy 

and 0 2  f ?Ix are equal. 
In the above illustration we applied central differences for both derivatives in 

x and Jr. flail possible combinations of forward, backward, and central differences 
are considered, nine different cases arise for finite difference approximation of 
a2f /ax ay. Table 12-1 lists the finite-difference approximations for each of these 
nine different cases. 

12-3 ERRORS INVOLVED IN NUMERICAL SOLUTIONS 

In the numerical solution of partial-differential equations with finite differences, 
errors are involved in the discretization process as well as during the solution of 
the resulting algebraic equations with a computer. These errors can be classified 
as the truncation, discretization, and round-off errors. 

The round-off error, as the name implies, is caused by rounding off of the 
numbers by the computer during the solution process. The discretization error 
is caused by replacing the continuous problem satisfied by the PDE by a discrete 
problem satisfied by the finite-difference approximation, including the contribu-
tions of the differential equation and boundary conditions, but without the 
round-off errors. 

Consider, for example, the steady-state heat conduction equation 

02T 027.  L(T) 	= 
ax 2  ay' 

(12-25a) 

and its finite-difference approximation given by 

LFID(T) 	 +  
Ti _ 	Tri.j + TH. 	— 2 Ty.-F 

(12-25b) 
(Ax) 	 0,Yr 

(12-23) 

C 

'F = forward difference, B = backward difference, C --central difference. to be solved over a domain subject to some specified boundary conditions. 



 

solution of finite- 
difference equation 

without 
round-offerror 

( Exact solution 
of PDE 

 

L(T) 	 L FD(T) 
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If the heat conduction problem is solved over the domain exactly by using the 
PDE and by using the finite-difference equations without any round-off error, 
the results will not be equal. The difference is called the discretization error caused 
by the truncation errors associated with finite-difference approximation of the 
differential equation and the boundary conditions for the problem. 

The terminology, truncation error is used to identify the error resulting from 
the discretization of file PDC only: 

(

truncation) 
error (12-26) 

TE 

Clearly, the truncation error is the difference between the exact solution of PDF 
and its finite-difference solution without the round-off error, and hence is a 
measure of the accuracy of representing the partial differential equation in the 
finite-difference form. 

Table 12-2 lists truncated leading error terms in the finite differencing of the 
first and second derivatives using forward, backward, and central differencing 
schemes. Clearly, the leading error is of the order 0(Ax) for the forward and 
backward differences, while of the order 0[(Ax)2] for central difference. 

The total error involved in finite-difference calculations consists of the dis-
cretization error plus the round-off error. The discretization error increases with 
increasing mesh size. while the round-off error decreases with increasing mesh 

TABLE 12-2 Various Differencing Schemes and the Corresponding Truncated 
Leading Error Terms 

Truncated Leading 
Derivative 	 Finite-Difference Form 	 Error Termsa 

f(x + Ax) — f(x) Ax 	(dx)2  
(forward) 	 "- Ax 	 2 f 	6 

f(x) 	— A.x) . 	 (Axle  

A\ 	
(backward] 	 r 

f(x + Ax)—f(x —Ax) 	 (Ax)- f
" 

— - •-• ----- -- ---(central) 
— 2Ax 	 6 ) 

(6,x12  .„,, f(x — '6")— 
-
2
-
/
-
(x

.
)d- As + AM 

(central) 
(AN)2 	 — ii j  
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size. Therefore, the total error is expected to exhibit a minimum as the mesh size 
is decreased. 

Example 12-1 

The following numerical representation of f(x) is given at equally spaced 
intervals Ax = h = 1. 

x 0 1 2 3 4 5 

fix) 15 18 12 10 1 —6 

Using finite differences, determine 	f'(x = 	f'(x = 	5) and 

f"(x = 0) accurate to the order 11 2. 

Solution. The first-order derivatives accurate to 0(h)2  are given by equations 
(12-20a) and (12-20b). The forward difference formula (12-20a) is used to 
determine f'0  because no points are available in the backward direction and 
the backward-difference formula (I2-20b) is used to determine f 5 because no 
points are available in the forward direction. Hence we have 

	

= 4(— 310  + 4f , 12)=41— 45 + 72 — 12) = 7:5 0(1)2 	(I2-27a) 

f 	-- 414 + 3 J.0 = 1(10 — 4 — 11)= — 6 	0(1)2 	(12-27h) 

Formula (12-23a) is used to determine f'; we find 

= 4(2f 0  — 5f + 4.1 2  — .13) = 4(30 — 90 + 48 — 10) = 11 0(1)2  (12-27c) 

12-4 CHANGING THE MESH SIZE 

In most engineering applications, one will often have some idea of the general 
shape of the solution, especially of the locations where the profile will exhibit a 
sudden change in the first derivative. Therefore, to obtain higher resolution in 
the region where the gradients are expected to vary rapidly, it is desirable to use 
a finer mesh over that particular region rather than refining the mesh over the 
entire domain. To illustrate this matter we consider the simplest situation involv-
ing a change in mesh spacing only in one direction at some point in the region. 

Figure 12-3 shows a change of the mesh size from Ax, to tlx2  at some node 
i. A Taylor series expansion about the node i can be used to develop finite 

Ay] 

df(x) 
dx 

d'f(x1 
(ix= 

°Primes denote differentiation with respect to x. Fig. 12-3 Change of mesh size from Ax, to Axe  at node i. 



448 	FINITE-DIFFERENCE METHODS 

difference approximation. That is, the function f(x) is expanded about the node 
i in forward and backward Taylor series, respectively, as 

d f 	(Ax,)' (121 (Ax 03  (13  I 
fa+ , = fi  Ax2 	 ---'- 

dx 	21 dx 	3! dx' 
0[(IV2 )-] 	(12-28a) 

 

(Ax1 )3 d3./ 
0[(Ax, 	(12-28b) 

31 dx' ,  

volume and conserving the specific physical quantity such as mass, momentum, 
or energy over the control volume. The basic concept is analogous to heat 
balance over a small volume surrounding a grid point commonly used by 
elementary textbooks on heat transfer to derive the finite-difference form of the 
heat conduction equation. 

To develop the control-volume statement for a small finite region, it is 
instructive to work backward from the partial-differential equation governing 
the specific physical quantity. For illustration purposes we consider the transient 
heat conduction equation with energy generation given in the form 

f 

dx 
F 	

21 	(ix' 
(Ax i  )2  el 

To obtain a difference approximation for the second derivative at the node 
i, equation (I2-28b) is multiplied by (Ax2/Ax,)2  and the resulting expression is 
added to equation (12-28a) to give 

aT 
pGp

a
= 	+g 

t 
(12-31a) 

df 	2 f 
fi+, efi.„ = (1 -I- Of;  + (1 — E)A.x,-.=1 	(Ax2)2 i. 

dx 	d 

6 	

c1 3  f 
—(dx 2 — Axi )(Ax2)

2

x3 
 + 0 [(Ax)4] 

where the heat flux vector q is related to the temperature T(r, t) by the Fourier law 

	

q= —kVT 	 (12-31b) 

(12-29a) 	 and g is the volumetric energy generation rate. 
We integrate equation (12-31a) over a small fixed volume V 

where 

Ax2  
1; = 

Ax, 

and 0 [fAxf] means the largest of 0[(Ax, )4] or 0[(Ax2 )4]. The finite-difference 
approximation for the second derivative is obtained by solving equation (12-29a) 
for (el /dx2)I, to yield 

d 2f = 	—(1 — 	ef r _ 	1.— s df 

dx2 1(  (Ax2)2  Ax2  dx 

This expression is accurate to first order at i if I — E = 0{(Ax1 )23. The above 
finite-difference approximations imply that, unless the mesh spacing is changed 
slowly, the truncation error deteriorates rather than improves. 

12-5 CONTROL-VOLUME APPROACH 

In the previous section it was assumed that the given partial-differential equation 
was the correct and appropriate form of the physical conservation law governing 
the problem and Taylor• series approach was used as a purely mathematical 
procedure to develop the finite difference approximation to the derivatives. 

In the alternative control-volume approach, the finite-difference equations are 
developed by constraining the partial-differential equation to a finite control- 

OT 
pC„- 	= 	V-qdV 	qdV 

al 
02-310 

The integral on the left-hand side can be removed by means of the mean value 
theorem for integrals. Similarly, the integral over g is also removed. The volume 
integral over the divergence of the heat flux vector is transformed to a surface 
integral by means of the divergence theorem. Then equation (12-31c) becomes 

vpc p a-T.= -J q.ndS+ V7  at 

where S is the surface area of the control volume. Introducing the heat flux vector 
q from equation (12-31b) into equation (12-32) we find 

V pc,
0

— = i kaT (IS + VU 	 112-33a) 
at J 5  an 

since 

VT•n=L
T  

On 
	 (12-33b) 

Here V is a small control volume; n and (8/an) are, respectively, the outward-drawn 
normal unit vector and derivative along the outward-drawn normal to the 

(12-29b) 

+ 0[(Ax2  — Ax,)] 	(12-30) 
(12-32) 

S 
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surface of the control volume; T and fi are suitable averages over the control 
volume of temperature and the energy generation rate, respectively. 

We have developed above a control-volume energy conservationequation for 
physical phenomena involving transient heat conduction. Similar conservation-
expressions can be developed for the conservation of mass or momentum and 
include situations involving convective transport. 

Once the control-volume conservation equation is available, the corresponding 
finite-difference equation over the control volume is readily obtained by discre-
tizing the derivative terms in this conservation equation. 

The control-volume approach for the development of finite-difference equa-
tions has distinct advantages for being readily applicable to multidimensional 
problems, complicated boundary conditions and to situations involving variable 
mesh and physical properties. On the other hand, the accuracy estimates with 
the control.-volume approach are difficult compared to that with the Taylor series 
expansion method which provides information on the order of the truncation 
error involved. 

When applying the control-volume approach to develop the finite-difference 
equations, the finite difference nodes must be established first and then the 
control volumes must be identified. 

Example 12-2 

. Consider the following one-dimensional steady-state heat conduction problem 
with variable thermal conductivity: 

d 	k dT) 	

(—

x) 	0  

dx 	dx )  

— k 	+ ho T = ho T 0  
dx 

dT 
k 	+ 	= 

dx 

in 

at 

at 

0 < x < L 

x = 0 

x 	L 

(I2-34a) 

(12-34b) 

(12-34c) 

Using the control volume approach write the finite-difference form of this 
problem. 

Solution. Figure 12-4 shows the finite-dilThrence nodes constructed over the 
region. The integration of equation (12-34a) over the control volume about 

Fig. 12-4 Control volumes for one-dimensional case.  

an internal node i gives 

	

ll k 	— (k 	_ 	Ax 9r=0 
dT 	dT 

dx 	dx 1-112 
	 (12-35) 

and expressing the derivatives in the discrete form we obtain 

ki+ 1,12 	ex 

	

- 	k
1-112

— 	+ Ax4,=0, 	i=1,2,...,M 
 AX 

(12-36) 

where oi  is a suitable average value of g over the control volume about i. The 
integration of equation (12-34a) over the control volumes associated with the 
boundary nodes at x = 0 and x = L, respectively, gives 

(k  d7) 	(k dT) ,6  

dx )112 . 	 dx)o  2 

	

+ 0,  = 0 	
(12-37a) 

dT 

	

k 	—
dT

) 	+-Axdm =0 	(12-37b) 
m 	 j r, i n 	2 

Utilizing the boundary conditions (12-34b,c), the finite-difference representa-
tion of the boundary conditions at x = 0 and x = Lis obtained from equations 
(I2-37a) and (12-37b), respectively, as 

—  
K112 	

Ax
To ho(Tcoo — To)

1
Ax = 0 	(I2-38a) 

	

/11.(TwL 	 kM - 1/2 
TM — T m -1  +1  Ax  gni  = 0 	(12-3.8b) 

Ax 	2 

Thus equations (12-36) together with the boundary-condition equations 
(12-3810) provide M - t 1 algebraic equations for the determination of Al 4 1 
unknown node temperatures, 7!, (i = 0,1 Al). For constant thermal con-
ductivity, this system of equations reduces to 

2T1  — 2/3o  To  = — (2y0  + Go), 	i= 0 	 (12-39a) 

	

—2T1 + TH. 1 = — Gi, 	i = 1, 	M I (12-39b) 

2 TA1 1 2f'L TM = — (2yL  + Gm), 	i = M 	 (12-39e) 
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Ti 	To 	T1 	T2 

F- 
Sc 	1r 	St• 

TA, -1 	T.0 	Tar • 

7s 	Sc 

= 0 	 r L 

Fig. 12-5 Fictitious nodes — 1 and Al + I at fictitious temperatures T.. 1  and 

—2/3 2 0 - 	• 0 
1 —2 1 0 
0 1 —2 1 0 

[A] = 

0 1 
0 0 0 

0 	0 
0 	0 
0 	0 

—2 	1 
2 —21J,. 

known 
•-•-• coefficient (12-42a) 

matrix 

I. 	+ 1 — 	a p – I 
It 	 p 	 = 11 

2Ax 

(Ax)26, 
G

I
= 
 k 

This system of equations can be expressed in the matrix form as 

[A]MT} = {13} 	 (12-41) 

where 

Figure 12-5 shows that the region 0 < x L is extended outward by a distance 
Ax to the left and to the right giving rise to two fictitious nodes —1 and M + 1 
at fictitious temperatures T_ 1  and TM  ,, respectively. Then the application of 
the second-order accurate central-difference formula (12-19c) to discretize the 
first derivatives in the boundary conditions (12-34b,c), respectively, yields 

T_, 
— k 	- + ho To = ho T.,0 

2Ax 
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where 

	

= 1 + 
Ax ho 	Axho  
		Yo 

	

Ax /I L 	Axir, 
1 

k 	' 	k 
(12-40) 

(12-43a) 

(12-43b) 

The finite-difference equation (12-39b) is evaluated for i = 0 and i = M to give, 
respectively 

(Ax)2Y0 T_ 1 — 27'0  + T1  + 	= 	 (12-44a) 

• (Ax)2y, 
Tar-1 --- 2 TA/ Tm 	— =0 (12-44b) 

The elimination of T_, and T„, between equations (12-43) and (12-44) results 
in the following two finite-difference equations 

IT} = 
unknown = 
vector, 

—(Go  + 

—al 

— (Gm + 2/L) 

    

known = 
vector 

(12-42b,c) 

2T, —2130 7'0 + (27, + Go) =0 at 	x = 0 	(i = 0) 	(12-45a) 
It is to be noted that the system of algebraic equations (12-39) or (12-42) are 
second-order accurate, namely 0[(Ax)2]. If the boundary conditions (12-34b,c) 
were discretized by using first-order accurate, two-point forward and backward 
differencing, the resulting equations would be first-order accurate, specifically, 
()•x]. 

12-6 FICTITIOUS NODE CONCEPT FOR DISCRETIZING 
BOUNDARY CONDITIONS 

An alternative approach for developing second-order accurate finite-difference 
form of the convection boundary conditions (12-34b,c) is through the use of 
fictitious node concept. 

_ — 2 it-Tif ± ( 24 + G A11= 0 	at 	x = 	(i =- M) 	(12-45b) 

where the coefficients Po, /1„, qo , 7, are as defined by equations (12-40). We note 
that equations (12-45a,b) are the same as equations (12-39a,c). 

12-7 METHODS OF SOLVING SIMULTANEOUS 
ALGEBRAIC EQUATIONS 

So far we illustrated the basic steps in the transformation of a partial-differential 
equation and its boundary conditions into a system of algebraic equations. The 
methods of solving such a system of algebraic equations can be put into one of the 
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-j 

2 

:-..-------hvo-ea.-tegeTies:-(-1-)-tke_direct_rnethods in which a finite number of operations is 
1 involved in the solution and (2) the iterative techniques in which answers become 

progressively more accurate as the number of iterations is increased provided 
that the convergence criteria related to the diaoona1 dominance of the coefficient 
matrix is satisfied. 

The reader should consult reference 42 for detailed description of various 
methods for solving systems of algebraic equations and the FORTRAN programs 
and the subroutines associated with them. 

We present here briefly some of the direct and iterative methods of solving 
systems of algebraic equations. 

Direct Methods 

Generally, the direct methods are preferred for systems having banded matrix 
coefficients and for problems involving relatively simple geometries and boundary 
conditions. They are very efficient, but require large computer storage and give 
rise to the accumulation of round-off error if the number of equations is large. 
There is a wealth of literature on the subject of solving systems of simultaneous 
algebraic equations because of the importance of this subject in scientific compu-
ting. Here we present a brief discussion of some of these direct methods. 

Cramer's Rule. One of the most elementary methods of solving a set of algebraic 
equations is by employing Cramer's rule. The method is not practical to use for 
large number of equations because it .  involves large number of operations. To 
solve a set of N equations, the number of basic operations needed is to the order 
of 0(N4). It implies that doubling the number of equations to be solved would 
increase the computer time on the order of 24, or 16 times. Even if the computer 
time were available, the accuracy would be destroyed by round-off errors. There-
fore, in comparison to other methods disCussed below, this method is completely 
impractical and should not be used in the solution of finite difference equations; 
it is mentioned here in order to bring into attention its such a shortcoming. 

Gauss Elimination Method. This is a commonly used direct method for solving 
simultaneous algebraic equations. In this method, the coefficient matrix is trans- 
formed into an upper triangular matrix by systematic application of some algeb- 
raic operations under which the solution to the system of equations remains 
invariant. Two principal operations applied include ( I) multiplication or division 
of any equation by a constant and (2) replacement of any equation by the sum 
(or difference) of that equation with any other equation. Once the system is 
transformed into upper diagonal form, the solution starts from the last equation 
and proceeds upward by back substitutions. 

the procedure we consider the following simple example involving 
three unknowns, 7-1 , T2 , and T3: 

i 	+ 	tt1 T3 = d, 	 (12-46a)  
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an  T, + a, 2 T2 + a23 T3 = d2 	 (12-46b) 

	

Ti  + a32. T2 + an T3 = d3 
	 (12-46c) 

We choose the first equation as the "pivot" equation and use it to eliminate T, 
from the second and third equations. That is, the first equation is multiplied by 
a 2,/o„ and subtracted from the second equation to eliminate T, from that 
equation. Then, the first equation is multiplied by //_, , and subtracted from 
the third equation to eliminate T1  from that equation. We obtain 

et,,T, +.a„T, 0, 37-3 = d i  (12-47a) 

0 + 427'2+ 43T3  = (l2-47b) 

0 + 427'2  + a33T3  = (12-47e) 

To eliminate T2 from the third equation, the second equation is used as the 
"pivot" equation. That is, the second equation is multiplied by a32/42  and 
subtracted from the third equation. Then the system (12-47) takes the diagonal 
form 

a, 	-F ai2T2  +0,33'3  =d, 

a'227'2 + 437.3 '11'2 

a',3T3  = d'3  

The unknowns Ti  are immediately determined from this system'by sta 
the last equation and the back substitution. We obtain 

T3 = 
dt 

033 

T2 =
c1'2 — a'2  T3 3  

a22 

x = 
— 013 771 — a l2 T2  

- • 	 '• 
all 

The above procedure is readily generalized to a system of N simultaneous 
equations. 

Thomas Algorithm. In the case of a tridiagonal system of algebraic equations, 
such as the one encountered in the solution of one-dimensional heat conduction 

(12-48a) 

(12-481)) 

(12-48c) 

ting from 

(12-49a) 

(12-49b) 

(12-49c) 
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problems, the Gauss elimination method can be further simplified by taking 
advantage of the zeros of the tridiagonal coefficient matrix. This modified pro-
cedure, generally referred to Thomas algorithm, is an extremely efficient method 
for solving tridiagonal system of equations. 

In Appendix VI we present a computer program written in FORTRAN for 
solving tridiagonal systems by Thomas algorithm. 

a2 , T, + C12, T2 + C123 T3  = d2 

a31T1  + an  T2 + (133 T3 = el, 

where a1  0 for i = 1-3. 
Equations are successively solved for the main diagonal unknowns: 

(12-50b) 

(12-500 

(12-51a) 

(12-51b) 

(12-51c) 

Iterative Methods 

When the number of equations is very large, the coefficient matrix is sparse but 
not banded•and the computer storage is critical, an iterative method is preferred 
to the direct method of solution. If the iterative process is convergent, the solution 
is obtained within a specified accuracy of the exact answer in a finite but not 
predeterminable number of operations. The method is certain to converge for 
system having diagonal dominance and a discussion of diagonal dominance will 
be given later in this section. 

Iterative methods have rather simple algorithm, are easy to apply and are not 
restricted for use with simple geometries and boundary conditions. They are also 
preferred when the number of operations in the calculations is so large that the 
direct methods may prove inadequate because of the accumulation of round-off 
errors. 

Gauss—Seidel Iteration. This is a very simple, efficient point-iterative procedure 
for solving large systems of algebraic equations. The Gauss—Seidel iteration is 
based on the idea of successive approximations, but it differs from the standard 
iteration in that the most recently determined values are used in each round of 
iterations. Basic steps are as follows: 

1 
TI 

 

	

 
= 	,— a ll  I-2 — 1113111) 

a I , 

1 

	

T2 = 	(12 — a 21 111 — a23T3) a 22 

T3 = 
as3 
	— a3  T, — a32  T2 ) 

Initial guess values are chosen as 

71,°1, T(1°)  2 , 	3 

These guess values are used together with the most recently computed values to 
complete thefirst round of iterations as 

Till= 
l 

fd — 	" 27' 	I .3 TV) (12-53a) 
all 

1121= 1  (/2 — a2 711]  — a /3  3.13°.) 	 (12-53b) 
a22  

(12-52) 

1. Solve each equation for the main diagonal unknown. 

2. Make an initial guess for all the unknowns. 

3. Computations begin with the use of the guess values to compute a first 
approximation for each cif the main diagonal unknowns solved-successively 
in step 1. In each computation, whenever possible, the most recently 
determined values are used and the first round of iterations are completed. 

4. The values determined from the first round of iterations and, whenever 
possible, the most recently computed values are used to complete the 
second round of iterations. 

5. The procedure is continued until a specified convergence criterion is satisfied 
for all the unknowns. 

To illustrate the procedure we consider the following three equations 

ait T, +a,2 T2  + a,,T3  =di 
	 (12-50a)  

73" = 	(d 3  — a3i T11" — a32712") 	 (12-53c) 
a33 

These first approximations are used together with the most recently computed 
..____...values.to_complete the second round of iterations as 

ri21 	al 2 712"  a I 3 r3") 	 (12-54a) a l l 

TI22' = --(12 — a21  TV)  — a23 71311) 	 (I 2-54b) 
a22 

T31= 	((13 a217r —  a32  VP) 	 (12-54c) a33  

The iteration procedure is continued in a similar manner. 
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necessary for selecting proper value of w for a given problem. With the proper 
choice of w, it may be possible to reduce the computation time by an order of 
magnitude; therefore, when the number of equations is large and reduction of 
the computation time is important, some experimentation with different values 
of w is worthwhile. 

The physical significance of the relaxation parameter co is as follows. For 
= 1, the Gauss Seidel computed value of the unknown is stored as the current 

value. For underrelaxation, 0 <w < I, a weighted average of the Gauss-Seidel 
value and the value from the previous iteration are stored as the current value. 
For overrelaxation, 1 < cv < 2. the current stored value is essentially extrapolated 
beyond the Gauss- Seidel value. For co > 2, the calculations diverge. 

Iterative techniques are used to solve very large systems of equations, because 
round-off error is much smaller with iterative techniques than with direct solution 
techniques. With direct techniques, round-off errors occur with each mathemati-
cal operation and accumulate until final answers are obtained. With iterative 
techniques, for all practical purposes, the round-off error in the final converged 
solution is due to that accumulated in the final iteration. 

12-8 ONE-DIMENSIONAL, STEADY-STATE HEAT CONDUCTION 
IN CYLINDRICAL AND SPHERICAL SYMMETRY 

We now examine the finite-difference representation of one-dimensional, constant-
property, steady-state heat conduction equation with cylindrical and spherical 
symmetry. The governing heat conduction equation is given by 

or 

where 

1 _d (rp dT) + 1 go 0  

P r dA dr ) k 

dr
T p dT I 

; Tr. 
icg(r) = 0 

r 00 	 (12-60a) 

r 0 	 (I2-60b) 

rectangular 
cylindrical 
spherical 

and the term g(r) represents the volumetric energy generation rate (i.e., W/m3). 

Solid Cylinder and Sphere. For a solid cylinder and sphere, equation (12-60b) 
has an apparent singularity at the origin r = 0. However, an examination of 
equation (12-60b) reveals that both r and dT/dr becomes zero for r = 0; hence we 

HEAT CONDUCTION IN CYLINDRICAL AND SPHERICAL SYMMETRY 459 458 	FINITE-DIFFERENCE METHODS 

A general expression for the (a + 1)111 round of iterations of the above system 
is written as 

Tu,+ = 1 rd, - a l 	- a 371V] 

all 

1 
' = 	- 0217.1r 

I 
	

a23 
7  r-1 

0,, 

+ 	[d3  _ 031  Ty+ I) a  rn 1 
3 2 	7 	.1 

a  3 3 

(12-55a) 

(12-55b) 

(12-55c) 

In the general case of M equations, the (a + 1)thround of iterations can be written 
as 

	

1 	I - 1 
TO1 Ti." 4  t )  = 	d,- E 	" 	 for 	i =1 to M (12-56) 

J 	au 
j. 1 	 i 1+ 

The criterion for convergence can be specified either as the absolute convergence 
crierion in the form 

I 	+ _ 71,0 4  

or as relative convergence criterion in the form 

DP+ 1)  TS")  
VII 1) 

which should be satisfied for all Ti. 

Successive Overrelaxation. The Gauss -Seidel method described previously, 
generally does not converge sufficiently fast. The successive overrelaxation is a 
method that can accelerate the convergence. 

In this method, the iteration procedure is written as 

R 	(right-hand side) of Gauss-Seidel 

	

T. + = w 	 +(1 - w)Tr 
iteration given by equation (12-56) 

for 	I to M (12-59) 

Here w is the relaxation parameter. 
Clearly, the case w = 1 corresponds to Gauss-Seidel iteration. The choice of 

the relaxation parameter effects the speed of convergence, but the determination 
of the optimal value of w is a difficult matter. Some numerical experimentation is 

(12-57) 

(12-58) 



(12-61) 
r=0 
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have g ratio at the origin. By the application of L'Hospital's rule it can be shown 
that this ratio has the following determinate form: 

(d/dr)(9 
( I dr) 	dr 	= d2T 

dr 	{dldr)(r) ,.=0 	dr2  

Then, equation (12-60b), at r = 0, becomes 

d 2T(r) 	1 
(1 t  p)- 

dr' 
 + 

k
-g(r)= 0, 
 • 

To approximate this equation in finite differences, a network of mesh size 6, as 
illustrated in Fig. 12-6, is constructed over the region. Then by using the second-
order accurate finite-difference formula, the first and the second derivatives are 
directly discretized. The resulting finite-difference approximation to equation 
(12-60b) becomes 

	

—2T1+ Ti-Fi P 	— g,— 0 
6 2 	icS 	26 

for 	i — 1, 2, ..., M 	I, 0(62 ) 	(12-61) 

This system provides M — 1 algebraic equations for the M + I unknown node 
temperatures Ta, Tm _ i,Tm. Two more relations are needed. 

An additional relationship is obtained by discretizing equation (12-62) at r = 0. 
In order to use a second-order accurate central-difference formula at r = 0, a 
node is needed to the left of the origin r = 0. This is achieved by considering a 
fictitious node "— I" at a fictitious temperature T_ 1  located at a distance 6 to 
the left of the r axis. The resulting finite-difference approximation of equation 

Fig. 12-6 Nomenclature for finite-difference representation for cylindrical and spherical 
symmetry. 
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(1 2-62) at r = 0 becomes 

(1+ p)
T_, —2T,
------ 	

T,
----I- kg°  =0, 	i=0 	(12-64a) 

where the fictitious temperature T_ 1  is determined by utilizing the symmetry 
condition at the node i = 0; 

	Introducing_equa lion (12-6413) into (12-64a), the additional finite difference equa- 
tion 	

= 	= 0, 	giving 	1  = T, 	(12-64b) 
dr 	26r 

tion is determined as 

2(1 + p) 
Ti  To 

+ 
k  

i
g0=0 for 	i = 0 	(12-65) 

Equations (12-65) and (12-63) are now rearranged, respectively, as 

	

2(1 + p)(Ti  — To) +62go 0, 	for 	i = 0 (12-6.6) 

I— P )T 2'TH-( 	
i

1 3-)Ti " + 2g1
= 

n for 	= 1, 2, ... , M 

(12-67) 

where 

One more equation is needed to make the number of equations equal to the 
number of unknowns. It is obtained by considering the boundary condition at 
the node i = M (i.e., r = b). The following possibilities can be considered at the 
node M: 

I. The temperature Ti, is specified at the boundary r = b. Then we have 

Tlr  = Tb = known 	 (12-68) 

and the system of equations (12-66), (12-67) and (12-68) provide M 1 relations 
for the determination of (M 1) unknown node temperatures. 

2. The boundary condition at r = his convection into an ambient at a constant 
temperature T,, b  with a heat transfer coefficient hb. The boundary condition is 

r = 0 (12-62) 

C 

{1 cylinder 
P= 

2 sphere 



Fig. 12-7 Fictitious node M +I at fictitious temperature 

given by 

dT(r) 
= known 	at 	r = h 	(12-69) 

dr 

To discretize this equation about the boundary node M with a second-order 
central-difference formula, an additional node is needed to the right of the node 
M. This is obtained by considering an extension of the region by a distance (5 to 
the right of the node M, giving rise to a fictitious node M +1 at a fictitious 
temperature Tu+, as illustrated in Fig. 12-7. Then the discretization of equation 
(12-69) about the node M with the central difference formula gives 

— Tfid hi,Tm
=  111,Tw.b (12-70) 

An additional relationship needed to eliminate Tit+t  is determined by evaluating 
equation (12-67) for i = M. We obtain 

(1— P  )T — 1  —2TM + (1 P ) T
"+` 	k 

+--629E 
2 	

k—=0 	(12-71) 
11.1  

The elimination of Tx! + 1 between equations (12-70) and (12-71) gives 

where 

27'm  — 	+ 2y„„ + Gm.  = 0 	for 	1= M 

13" = + (1  + LYkh"  

= (I P  )
k 
 h T 

2M  

= 62g1  Gar t1  

(12-72a) 

(I2-72b) 

(I2-72c) 

(12-72d) 

462 	FINITE-DIFFERENCE METHODS HEAT CONDUCTION IN CYLINDRICAL AND SPHERICAL SYMMETRY 	463 

which is accurate 0(b2). Equations (12-66), (12-67), and (12-72) provide M1- I 
relations for the determination of M I. unknown node temperatures for convec-
tion boundary conditions at r= b. 

3. Boundary condition arr = b is a prescribed heat flux boundary condition. 
For this case, the steady-state solution does not exist unless the energy generated 
in the medium equals to the total heat removal rate from the boundaries. Even 
for such a case, the steady-state solution for a solid cylinder or sphere not 
unique: such a situation will not be considered. 

Example 12-3 

A 10-cm-diameter solid steel bar of thermal conductivity k= 40 Wi(m•"C) 
is heated electrically by the passage of electric current which generates 
energy within the rod-at a rate of g=.  4'x 106  Wirti3. Heat is dissipated 
from the surface of the rod by convection with a heat transfer. coefficient 
h = 400 W/(m2•°C) into an ambient at temperature 7',„„ = 20°C. By dividing 
the radius into Five equal parts, develop the finite-difference equations for this 
heat conduction problem. Compare the finite-difference solution with the 
exact analytic solution for the cases when thefirsi-order and the second-order 
accurate differencing are used for the convection boundary condition. 

Sniution. The problem involves six unknown node temperatures, Th  I= 
0,1,...,5, since the region 0 <r b is divided into five equal parts. The six 
finite-difference equations needed for their determination arc obtained as 

	

4(T1  — To) + I 0 = 0, 	i=0 	 (12-73) 

(1 — 

2
i )T, _ 	+ (1 + yi)T1+1 + 10=0, 	i= 1, 2, 3,4 	(12-74) 

For the boundary condition at i = M = 5, one can use either the first-order 
accurate formula 

T5
1

(T4  +2), 
1.1 

(I2-75a) 

or the second-order accurate formula (c) 

T4 — 1.1 1 T5 + 7.2 = 0, 	1=5 	 (12-75b) 

The exact solution of this problem is given by 

g 	gb2  
+— 

4k [ ( 2h
b 	

021. 	
(12-76a) 
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TABLE 12-3 Comparison of Results with Exact Solution for Example 12-3 

M = 5 	 M=I0 

b 	 Exact 	 Accurate 	Accurate 	Accurate 

1st-Order 	2nd-Order 	1st-Order 

0.0' 332.50 307.50 332.50 320.00 
0.2 330.00 305.00 330.00 317.50 
0.4 322.50 297.50 322.50 310.00 
0.6 310.00 285.00 310.00 297.00 
0.8 292.50 267.50 292.50 280.00 
1.0 270.00 245.00 270.00 257.50 

Or 

TO= 20 + 250 + 62.5[1 -( r )2] 
	

(12-766) 

Table 12-3 shows a comparison of finite-difference solutions with the exact 
results for the cases when the first-order and second-order accurate formulas 
are used for the convection boundary condition. Gauss elimination method 
is used to solve the resulting algebraic equations. The numerical results 
obtained with the second-order accurate formula are in excellent agreement 
with the exact solution; but the solution with the first-order formula is not so 
good; it underpredicts temperature from about 7 to 9%. Increasing the number 
of subdivisions from Al = 5 to M = 10 improves the accuracy of the results 
with the first-order formula to about 4%. .  

Hollow Cylinder and Sphere. We now consider heat conduction in a hollow 
cylinder and sphere of inner radius r = a, outer radius r = b. To solve this problem 
with finite differences, a finite-difference network is constructed over the region 

T.1( 

0 
	

0 1 2 	i-I ii+I 
	

M-1 M 

r=a 	 r = h 

Fig. 12-8 Nomenclature for finite-difference representation for hollow sphere or cylinder. 

as illustrated in Fig. 12-8. The governing heat conduction equation is given by 

p dT 1 
+ - 	+ . a(r) = 0 	in 	a < r < b 	 (12-77) 

dr-  r dr k 

For finite-difference representation of this equation, the region a r h is divided 
into M subregions each of thickness (5 given by 

= 
b- ii 	 (12-78) 

The differential equation is discretized by using the second-order accurate central-
difference formula for both the second and the first derivatives. We obtain 

- 2T, + 	. p Ti  , - 1';  _ , 	I 
(52 	a + i6 	26 

	 (12-79) 

which is rearranged in the form 

[1 - 	 _ - 2Ti  +[1 + 	
Pa; 

T + ,+--=0 (12-80) 
2[(a/o)+ i] 	 2[(a16) + 	 k 

	

for 	i =   - 1 

where 

P= 
{1 cylinder 

2 sphere 

Equations (12-80) provide M - 1 algebraic equations, but involve (M 1) 
unknown node temperatures T, i = 0, 1, 2, ... , M. The additional two relationships 
are obtained from the boundary conditions at r = a and r= b. The following 
possibilities are considered for the boundary conditions: 

1. Temperatures 	and Tb  are prescribed at the boundaries r = a and r = b. 
Then the system of equations (12-80) provide M - 1 relations for the 
determination of M - 1 internal node temperatures, since To  = T„ and 
Tm = Tb are known. 

2. The boundary conditions at r = a and77--. b are convection into ambIttns 	 
at temperatures T,..„ and 	with heat transfer coefficients 11.1  and 
respectively: 

dT 
- k- + haT = haT,a  = known, 	r = a 	(12-81a) 

dr 

d 
k- 

dT 
 + hb T = hbT,G .b  = known, 	r = b 	(12-81b) 

r 
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at 	y -= b 	 (12-85e) 
These boundary conditions are discretized with the second-order accurate central-
difference formula by using the fictitious node concept. The resulting finite-
difference form of equations (12-81) becomes 

	

2T, — 2fl0  To  + 2),0  Go  = 0, 	for 	i = 0 	(12-82a) 

2 T„ i 	2fi, T„,, -I 2y,„ I G m 	0. 	for 	i 	Al 	(12-8211) 

where 

110  = 1 -41 —
p 	oha

-  
2(a/i5) 	k 

l 	
fim = I +[ 1  + 

2[(a/(5) Al] _1
1° 

k
jib 
	

(12-83a) 

= L I — 	-(h T
'X 
 ), 	Est =[ 1  + 	 

	

2( a/5) k a ''a 	 2[(olo)+ M]ik 	
h) 	(12-83b) 

--) ,...., 
62g0 	6 

k

m  2g  ..., 
Go  = 	 -, 	Gm  = 	 (12-84) 

k  
--) 

and a > 6. 
---■ 	 . Summarizing, equations (12-80) and (12-82) provide M + 1 algebraic equations : ...-, 

for the determination of M + I unknown node temperatures T, i = 0, I, 2, ..., M. 

T = 0 

Write the finite-difference form of this problem using second-order accurate 
differencing scheme. 

Solution. Figure 12-9 shows the finite-difference net drawn over the region. 
We let 

71x, y) -= T(iAx, jAy) 	 (12186) 

where i 0,1, 2 	M and j = 0, 1, 2,... , N. We assume Ax = Ay 1. 

The finite-difference equations for various grid points are determined as 

follows: 

1. Internal Nodes, 1 i M — 1; 1 < j N — 1. The differential equation 
is discretized to yield the following finite-difference equations: 

	

T;-1.1 — 2Ti j+ Ti+14 Ti,j— 1 2.111 + T4+1±  1 	= 
0 	(12-87a) 

(Ax)2 	 (Ay)2 	k 

For the case Ax = Ay = 1, these equations reduce to 

1 2  
(T- 1,1+ Ti+ id+ Ti.j-i+ To+ 	4T13) —k g13• =0  (12-87b) 

fl 

CD 

12-9 MULTIDIMENSIONAL STEADY-STATE HEAT 
CONDUCTION 

The extension of one-dimensional finite-differencing scheme for the discretization 
	 G,N 

of multidimensional steady-state heat conduction equation is a straightforward 
matter which is now illustrated with examples. 

Example 12-4 

Consider the following steady-state heat conduction problem. 

62T 	D 2 T - 1 
;.--g(x,y)= 0 	in 	 0 	 (12-85a) 

dx 2 	
. 	

k 

= f 	 at 	x = 0 	 (12-85b) 

D 
k—

T 
 + h,T = 	 at 	x = ❑ 	 (12-85c) • 

OT  
— 	4-  /12 	= /12 i 	at 	y 	0 	 (12-85d) 

17y 

0,) 

0,1 

i,N 111,N 

IM + D.) 

1,1 

—0 tM + 11,0 

M,-1 

Fig. 12-9 Finite-difference network for Example 12-4. 

cir = 1 
■ ■ 

A.1' = 1  

• • 
1. 

• 

M, .1 

I 

1,0 M,0 

., 



= 

(7(11.1 + 11..1 

0 

= N 

till C- Uir EttEVILt. MC 

2. Boundary Nodes 04 Jar j= 0 to N — 1 and i, N Jbr I = 0 to M. Because 
temperatures are prescribed at these boundaries, no equations are needed. 

3. Boundary Nodes 114,j,for j= 1 to N — 1. This boundary is subjected 
to convection. The finite-difference equations are developed either by 
writing an energy-balance equation for a control volume about the node 
M,j or by considering a fictitious node M + 1,j at a distance 1 outside 
the region at a fictitious temperature T,„ Li  as illustrated in Fig. 2-9. 
We prefer the latter, and discretize the boundary condition (12-85c) 
using central differences as 

k
Tm,, 

2/ 	
(12-88a) 

To eliminate Tm + 1,i, an additional relationship is obtained by evaluating 
equation (I2-87b) for i = M: 

Tat _1.1+Tar+ + Tm.i+ 	4T, . + 61 nr,j = 0 	(I2-88b)1 

Eliminating Tat , .1  between equations (I2-88a) and (12-88b), the finite-

difference equations for the nodes on this boundary becomes 

( 	
2h ,1) _ 	2h ,1_, 	12  

2 Tm  _ Li  + T,,,rj _ , + 7-51.1+ 1  — 4 -I- 1.---;-- i „..i  = — Tc  - i .„., — Tc g31,1 

for 	j= 1 to N —) 	(12-88c) 

4. Boundary Nodes i3 O for i= I, 2,...,M — 1. By following a procedure 

sham to that in case 3, the finite-difference equations for nodes on this 
boundary are determined as 

211,1 
2T., T1+t,o —  (4  +—

k
)7. 	

—21t21 — —

k'
0 (12-89) 

5. Node /14,0 at Intersection of Two Conmetion Boundaries. The finite- 

	

difference equation (12-87b) is evaluated for 	A1,j=0. The resulting 
equation contains fictitious temperatures T„. _, and To,+ ,,,0  at the ficti-

tious nodes M, —1 and (M + 1), 0. Two additional relation needed to 
eliminate these fictitious temperatures are obtained by discretizing the 

boundary conditions (I2-85c) and (I2-85d) at the node M, 0 by central 
differences, using these fictitious nodes. After the fictitious temperatures 

are eliminated, the resulting finite-difference equation for the node M, 0 

PAUL I 11)1 rdtP4.31ULNAL. 3 I 	I 	 ry • a- 	 • 

becomes 

211t, 
,.„ + 2T„., —(4 + k  + k  T.„.„ 

2111, 	) 
= —(- -- 	--= T , -- 

k 	
(12-90) :.T + k 

	k 
+ g„ 

"
„ 

C. 
Example 12-5 

Consider the following two-dimensional steady-state heat conduction for a 

solid cylinder of radius b in the r, f variables 

e2 T 	1 i'7” 	1 0 2T 	I 

	

- 	 0) = 0 	in 	0 ..<„.r < b, 	0 (1, 2n 

Dr' 	r 	rl  ark2  k 
(12-91a) 

at 	r 

and T is periodic in 0 with a period 27E 

Fig. 12-10. An (r,4) network in cylindrical coordinate system and the fictitious node 

"M + 1,j" 

C. 

DT 
k + 11T = hT,, 
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Figure 12-10 shows the finite-difference network in 4r, At Write the finite-
difference form of this problem using second-order accurate differencing 
scheme: - 

Solution. Temperature T(r, 4) at a

' 

 grid point (i,j) is denoted by 

nr,41) 	ThAr,./A}) 

for 	i = 0,1, 2, ... , A/I; j 	0, 1, 	N 

Various derivatives in this problem are discretized by using second-order 
accurate central difference formula. The resulting finite-difference equations 
for various grid points are determined as follows: 

1. Internal Nodes, 1 i M — 1; 0 	N. Discretization of equation 
(12-91a) gives 

Tr 	
2 Tij  Tr.j+1 	1 TH. - Ti _ j 

(Ar)2 	iAr 	2Ar 

1 	(T1 J _ I  — 27; + 'rid+ i) 1 	
0 	  +k gi.j = 	(12-93a) 

▪ i 2(4r)2 	(A0)2  

After rearranging we find 

1 	I-.)T,_ — 271i  + (1 + -1. T 
(6,r) 	— 2-i 	 2i 	'+''' 

1 ▪ i2(6,r,64)2 (Tij_ — 271;  + Ti.  ,) + 	0 	(12-93b) 

and the condition that temperature is periodic in 4  with a period 27r 
requires  

nodes this circle intersects the x and y axes. Then the finite difference 
form of this equation about r = 0 becomes 

T, - + T3 + T4 — 4T0—  1 

k (Ar)2 	

▪  

go= 0 
 

(12-94b) 

wilh a I ru neat ion error of the order of (AO'. The.ro ta ion of I he Ox and 

Oy axes about r = 0 also leads to a similar difference equation. If we now 
denote T, as the arithmetic mean of the temperatures around the circle' 
of radius Ar,, then equation (12-94b) becomes 

4 
 .7 — To 

+ 
I
go= 0 	at 	r=0 	(12-94c) 

(Ar)2 	k  

where ti  is the arithmetic mean of the values of Ti.j  around the circle 
of radius Ar with center at r = 0, To  is the value of temperature at r = 0. 
Thus, equation (12-94c) is the finite-difference form of equation (12-91a) 
for the central node at r = 0. 

3. Boundary Nodes (M,j), for j = 0 to N. The finite-difference equation 
(12-93b) is evaluated for i = M: 

1  

2M)

1     
'  	. + (1   +---) T 	— 2(1+---   ----)T„   . 
m-  ''' 	2M im  "'I 	(MA19)2 	'i  

1 	 1 (Ar)2gm 
- 
, 

+ ' 	= 0 	(12-95a) 
(MA0)2  mj-  ' M(40)2 '4+r 	k 

An additional relation needed to eliminate the fictitious temperature 
T(ni+ 1).j is obtained by discretizing the boundary condition (12-91b) 
about the node (M,j) with central differences using the fictitious node 
(M + 1),j. We obtain 

112-920 

(12-92b) 

7111 =  (12-93c) 
k  7{m1-1),j —  Tm-i,i + hT = hT 

2Ar 	Ar.1 

2. The Center Node,Ty = T„. Equation (12-91a) appears to have singularity 
at the origin r O. To deal with this situation, equation (12-91a) is 
replaced by its Cartesian equivalent: 

6 2T 02T 1 
+-g=0 

0.x 2 	01,2 	k  
as 	r 	(12-94a) 

or solving for the fictitious temperature 7;„, „ 

2h
k
Ar 

Tm..f+ k  
2h Ar 

(12-95b) 

We construct a circle of radius, Al•, center at r = 0. Let T0  be the 
temperature at r = 0 and T1 , T,, T,, T4 be the temperatures at the four 

Equation (12-95a), together with equation (12-95b), provides a second-order 
accurate finite-difference equations for the nodes M,j for j= 0, N on the 
convection boundary. 
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12-10 ONE-DIMENSIONAL TIME-DEPENDENT 
HEAT CONDUCTION 

In this section we present the finite-difference representation of one-dimensional 
transient heat conduction equation. There are several schemes available to 
express the time-dependent heat conduction equation in finite-difference form; 
for example, 13 different schemes are listed in reference 5. Each of these schemes 
has its advantages and limitations. We shall discuss some of these schemes with 
particular emphasis to the finite-difference approximation in the rectangular 
coordinates. Applications for the cylindrical and spherical symmetry will be 
presented afterward. 

Explicit Method 

We consider the one-dimensional, time-dependent heat conduction problem for 
a finite region 0 x < L given as 

a T 02T 

at 	8x2 
	in 	0 < x < L, t > 0 	(12-96) 

Subject to the boundary and initial conditions 

T(x,t)= T,„ = known 	at 	x 0, I > 0 
	

(12-97a) 

T(x; t)= TL = known 	at 	x L, t > 0 
	

(12-97b) 

T(x, t) = F(x) = known 	for 	t = 0 
	

(12-97c) 

The differential equation (12-96) is represented in finite-difference form by using 
central differences to discretize (32 T/axe  and forward differences to discretize 
aT/at. We obtain 

UiNt-LnIVICINJI.V14.11.L. 	I ■■••.--1-...-N 	 - 	- - 

where 

r 
	aAt 	 (12-99b) 

(Ax)` 

n = 0, 1, 2, ... 	and 	i= 1, 2, ... , 	— 1 

with a truncation error of order 0 [At , (Ax)2]. 
The finite-difference representation given by equations (12-99) is called the 

explicit form because the unknown temperature T'l +  ' at time step (n + 1) can be 
explicitly determined from the knowledge of the temperatures 7_ , and T7+ , 
at the previous time step a according to equation (12-99a). The only disadvantage 
of this method is that, once a and Ax are fixed, there is a maximum permissible 
time-step size At which should not exceed the value imposed on by the following 
stability criterion: 

0 < r 	- 
(Ax)2  2 

aAt 	1 	
(12-100) 

That is, for given values of a and Ax, if the time step At exceeds the limit imposed 
on by the above criteria, the numerical calculations become unstable resulting 
from the amplification of errors. Figure 12-1 1 illustrates what happens to the 
numerical calculations when the above stability criterion is violated. In this 
figure, the numerical calculations performed. with a time step satisfying the 
condition r = Ist 

 < z is in good agreement with the exact solution; whereas the 
numerical solution of the same problem with slightly larger time step which 
violates the above stability criterion (i.e., r = v > 1), results in an unstable solution. 

Finite difference 
solution with r 

•". 

 

•••• 

• - 

 Exact solution 

	

ShOW i in i till 	ence 

&fitli II Pi 	

Nrs,...,  solution with r • • 

Tn+  — T" T" 	+ 
= a 	 -  0 [At, (Ax)2] 

At 	 (Ax)2  

where 

T(x, t) = 

Equation (12-98a) is rearranged as 

T7+1  =rT~_1 +(1 — 2r)T7 + rT7 , 

(12-98a) 

(12:98b) 

(12-99a) 
Fig. 12-11 Effects of parameter r = aAll(Ax)2  on the stability of finite-difference solution 
of the one-dimensional time-dependent heat conduction equation. 
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Fig. 12-13 Fictitious nodes —1 and M +1. 
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Fig. 12-12 The finite-difference molecules for the simple explicit scheme. 

When the boundary conditions are prescribed temperatures at both boun-
daries, as is the case of the problem defined by equations (12-96) an (12-97), then 
the number of finite-difference equations (12-98) become equal to the number of 
unknown node temperatures. Figure 12-12 schematically illustrates the finite-
difference molecules associated with the explicit scheme. 

The computational procedure is as follows: 

I. Start the calculations with 11 - 0. Compute the 7 f, i == 1,2, „ M 	1, at 
the end of the first time step from equation (12-99a). since the right-hand 
side of this equation is known from the initial condition. 

2. Set II 1 and calculate 7?,i = 1,2 	M - 1, at the end of the second time 
step from equation (12-99a), because the right-hand side of this equation is 
known from the previous time step. 

3. Repeat the procedure for each subsequent time step and continue calcula-
tions until a specified time or some specified value of the temperature is 
reached. 

Convection Boundary Conditions. Consider the boundary surfaces at x = 0 and 
x L are subjected to convection with heat transfer coefficients hc, and hL  into 
ambients at temperatures T. 0  and Tx... L, respectively. We have 

- 	= 	= known, 	at 	x=0 	.(12T10Ia) 
t. .x• 

k- - h LT 1r,T,L = known, 	at 	x =L 	(12-10Ib) 

where the temperatures at the boundary nodes 1= 0 and i = M are unknown. 
Two additional relations are obtained by discretizing these two boundary condi-
tions. 

A very simple approach to discretize these boundary conditions is to use 
forward differencing for equation (12-10Ia) and backward differencing for equa-

.,tion.(12,10.1b); but the results are only first-order accurate, 0(Ax). 
A second-order accurate, that is, 0[(Ax)2], differencing of these boundary 

conditions is possible if central differencing is used to discretize the first deriva-
tives in these boundary conditions. To apply the central differencing, we consider 
a fictitious node "- 1" at a fictitious temperature Tn, and a fictitious node M +1 
at a fictitious temperature TL obtained by extending the region by Ax to the 
left and right, respectively, as illustrated in Fig. 12-13. 

Equation (12-99a) is evaluated for 1= 0 and i = M, the resulting fictitious 

temperatures Ti and 71„ are eliminated by utilizing the equations obtained 
by discretizing the boundary conditions (12-101a) and (12-10Ib) with central 
differences about the nodes 0 and M+ 1, respectively. Then the following, 
second-order finite-difference equations are obtained for the convection boundary 
conditions 

Tr =(I - 200 )71 -I- 2rTn, + 2rYo, 
	for 	i=0 	(12-102a) 

T"„i 	, A- (1 -2rflOrm  2ryy, 	for 	i = M 	(I2-102b) 

where 

flo = 1  + 
Ax 110  	

= 	- / 
„, 

	

Ax h0 	
(I2-103a) 

Ax hL 	Ax /I L 	
(12-103b) fiL = 1  + 	. YL —k 

ctAt 	 (12-103e) 
(Ax)-  

Thus, the finite-difference equations (12-99) together with equations (12-102) 
provide M I expressions for the determination of M + 1 unknown node tem-
peratures at each time step. 

For the second-order accurate finite-differencing of the convection boundary 
conditions considered here the stability criteria (12-100) should be modified as 

Known 
values 
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follows equation (12-99a) the coefficient (1 — 2r) should satisfy the following criterion 

1 
1 — 2r/10  0 or 0<r< 	— 	  

2,60  2 + 2[(Ax ho)/k] 

for the boundary condition at x = 0, and 

I —2r/J r, 0 or 0 r < 1= 
2/f, 2 + 2[(Ax 

(12-104a) 
I — 	0 or 

aAt 	I 

(Ax)2  2 
(12-107a) 

112-104b) 

which is the same as given previously by equations (12-100). Such a restriction on 
the maximum value of r imposes the following limitation to the maximum size 
of the time step 

for the boundary condition at x = L. 
Clearly, the stability criterion imposed on by equations (12-104a,b) is more 

restrictive than that based on r I. The smaller value of r obtained from 
equations (12-104a,b) should be used as the stability criteria for the solution of 
the problem. 

Heuristic Argument of Stability. Computers cannot perform calculations to 
infinite accuracy. Therefore, in the numerical solution of finite-difference equa-
tions with a digital computer, round-off errors are introduced during calculations. 
The mathematical analysis of stability is concerned with the examination of the 
growth of errors while the computations are being performed. For an unstable 
system the error grows larger without hound, but for a stable system it should 
inn grow without a bound. 

Before presenting a rigorous analysis of the stability of the solution of finite-
difference equations, it is instructive to give a heuristic discussion of the stability 
requirements. 

We consider the explicit finite-difference equations (I2-99a) 

Tr1  — .77.1 , I (1 	207'7 I rT7.,., 	 (12 105a) 

Suppose at any time level n, the temperature 77__ , and T:1„. , at the nodes i 1 
and i + 1 are equal. Equation (12-105a) is arranged as 

(Ax)2  
At <— 

2cc 

A similar physical argument can be applied to examine the stability conditions 
for the solution of finite-difference equations (12-102a). Consider equation 
(12-102a) for = 0, which corresponds to convection into an ambient at zero 
temperature. We obtain 

= 2r T", +(I —2r16.0)7-'oi 	 (12-108a).  

Suppose at any time level, the temperatures of the nodes 0 and 1 be, respectively, 
T", = 100°C and T", = 0°C. Equation (5-108a), to be used for predicting the tem-
perature TV' of the node 0 at the next time level a-1- I, becomes 

TV' = 2r x 0 + (1 — 200 )100 = (1 — 2/110 )100. 	(12-108b) 

The physically meaningful situation for the problem requires that the temperature 
TV1  can assume values between 0°C and 100°C, but cannot go below the 0°C 
temperature of the neighboring node and of the ambient. An examination of . 
equation (I2-108b) reveals that a negative value of the paiainetca (1 — 2r/lo ) 
violates this requirement. Therefore, to obtain physically meaningful results from 
the solution of the finite-difference equation (12-108) the following criteria should 
be satisfied 

(12-107b) 

7+ = 7_, + (1 — 2r)(7.' 	 (12-105b) 

For illustration purposes, let 	1  = T7+ ,= 0°C and 77 = 100°C. Equation 
(12-1056) is now used to calculate the temperature 7+ 1  of the node i at the next 
time level 71 + I as 

Tr' =0 + (1 — 20(100 0) = (1 — 2r) 100 	(12-106) 

The physical situation requires that the temperature Tr cannot go below the 
temperature of the two neighboring nodes, 0°C. An examination of equation 
(12-106) revels that a negative value of (1 2r) violates such a requirement. 
Therefore, to obtain meaningful results from the solution of the finite-difference 

— 2r/10  0 	 (12-109) 

which is the same as that given by equation (12-104a). 

Fourier Method of Stability Analysis. We now present rather straightforward 
but more rigorous analysis of the stability of finite-difference equations by using 
the Fourier (or Neumann) method of stability analysis. 

In the Fourier method, the errors are expressed in a finite Fourier series, and 
then the propagation of growth of errors with time are examined. The method 
does not accommodate the effects of boundary conditions; but it is simple, 
straightforward and can readily be extended to multidimensional probleriis. 



(12-110) 
ri÷ 	Trì ._ 1  — 2 
	 = 
At 	 (Ax)2  

(12-117b) 	. 
ccAt e1P-Ax 	

I
)• 

1— 2 	 
(Ax)2 	2 

where the numerical solution must satisfy the difference equation (12-110). Sub-
stitution of equation (12-111) into the difference equation (12-110) and noting 
that TE should also satisfy the difference equation, we obtain 

Noting that 

2 

(12-112) 

(12-118) cos(fimAx)—
' efP"'" 

E + I  — 
= J-1 — 7Eq + 1+1  

di 	 (A.02 

c( jAx, (12-113) r (Aix) 2 (12-119b) 

478 	FINITE-DIFFERENCE METHODS 

Consider the one-dimensional transient heat conduction equation (12-96) 
expressed in finite-difference form by using the explicit method 
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For this definition of the error term c7 will not increase without a bound as I 
increases if 

where thesubscripi/ is the discret izat i on index for the space variable (i.e., x =fAx) 
and the superscript n for the time variable (i.e., t = nAt). The numerical solution, 
TN, of the problem can be written as the sum of the exact solution, TE, of the 
problem and an error term E in the form 

TN =TE -I- E (12-111) 

con,t,I.1„ +1 	—  aAt   etp...,..m.xneip„,ax._ 2 e 	(12-117a) 
(Ax)2  

and after cancellation and some rearrangement we obtain 

1 

Machine computations introduce error almost at every stage of the calculations. 
Assume I hat the errors introduced al pivotal points along the initial (i.e., t = 0) 
line could be expressed in a finite Fourier series in terms of sine-cosine or 
complex exponentials. Here we prefer to use the latter. To.examine the propaga-
tion of errors as time increases, one needs to consider only a single term in the 
series, because the finite-difference equations are linear. With these considerations 
one needs to examine the propagation of error due to a single term expressed in 
the form 

liqua lion (12-117) is written as 

= I —2r(1 — cos fin,Ax) 	 (12-119a) 

where 

Ill 	1 	 (12-116) 

We substitute the error terms given by equations (12-114) into equation (12-1 12) 

nAt = t, and jAx = x. This equation is expressed in the form 
where i 	/3„, are the Fourier modes, y is in general a complex quantity, 

Similarly, we write 

where 

1.;±  = 	 I SAX 

li+ = 	leifi,„jAg 

En.  = nefig,,,jax 

r = eY'r 

equation (12-115), the initial errors will not be amplified and the finite-difference 

(12-114a) 	 calculations remain stable if the condition 11 < 1 is satisfied for all values of fi„,. 
Applying this restriction to equation (12-119a) we obtain 

I 1 — 2/(1 • 	cos fl„,Ax)j < 1 	 (12-1200 
• 	(12-114b) 

or 
(12-114c) 

— 	{1 — 2r(1 — cos /1„,Ax)} < I 	 (12-120b) 

which must be satisfied for all possible Fourier modes f3„,. The right-hand side 
(12-115) of this inequality is satisfied for all possible values of flan. To satisfy the left-hand 

Here the parameter is called the amplification factor. Recalling its definition.by 
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side under most strict conditions we must have 1 — cos p„4x = 2. Then we have 

at‘t 	I 
— 1 	(1 --- 4r) or 	

(Ax)2  2 
(12-121a,b) 

which is the criteria for stable solution of the explicit finite-difference equation 
(12-99a) 

Implicit Method 

The explicit method discussed previously is simple computationally, but the 
maximum size of the time step is restricted by stability considerations. If calcula-

tions arc to.be performed over a large period of time, the number of steps, hence 
the number of calculations needed may become prohibitively large. To alleviate 
this difficulty, finite-difference schemes that are not restrictive to the size of the 
time step At have been developed. One such method is the implicit method. We 
consider the one-dimensional diffusion equation 

OT a2T 

at — axe 
	 (12-122) 

The finite-difference representation of this equation with the implicit scheme is 
given by 

— 	"' 	' 	1+  T — 2T " + '. 1-1 	.1 	_ 	I 
	

(12-123) 

which is accurate to 0[(Ax)2, At] and unconditionally stable. This is an implicit 
scheme, because at each time level algebraic equations are to be solved simul-
taneously in order to determine the nodal temperatures at the next time level. 

Fig. 12-14 The finite-difference molecules for the simple implicit scheme. 

Figure 12-14 illustrates the expansion point (Or + I) and the surrounding 
finite-difference molecules. If the problem involves M unknown node tempera-
tures, a simultaneous solution of M equations is required at each time step. Such 
a solution procedure is more involved computationally than that of the explicit 
scheme; but the method is advantageous in that there is no restriction on the size 
of the time step At by the stability considerations. 

&ability Analysis. We apply the Fourier method of stability analysis to demons-
trate that the simple implicit scheme is unconditionally stable. 

As discussed previously, the numerical solution TN  is the sum of the exact 
solution, Ts, of the problem, plus an error term E, given in the form 

TN = TE E 
	

(12-124) 

We introduce equation (12-124) into (12-123) and note that TE  should also satisfy 
the difference equation. We obtain 

E} +1 —En  _ 	2E7 + 1 + €1:1 
At 	 (Ax)2 
	 (12-125) 

where we replaced the space variable index i by j. The error terms E T.; are re-
presented.as given by equations (12-114). Introducing the values ci  from qua [ion 
(12-I 14) into (12-125) and after cancellations and some rearrangement, we obtain 

I = 	 1 
(Ax)2 	2 

2a At (eifin'' + e-IP"%x 	
(12-126) 

where i= 	Noting that 

cos (fl„,Ax) — 	
2 

e-ip„,Ax 	

(12-127) 

equation (12-126) is written as 

— 1 = 2rY(cos /12,Ax — 1) 

Or 

y I = — 4rY sin 2 C1L A-1 
2 

where 

t. = 	 
(Ax) 2  

	

ccAt 	
(12-129b) 

Unknown 
values 
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Equation (12-129a) is solved for 

	

= [ I + 4r sin2(16"411-1 
	

(12-130) 

For stability we need 1,;[ •,,,= 1 and this condition is satisfied for all positive values 
ai r Therefore, the simple implicit finite-difference  approximation is stable for 
all values of the time step At. However, the time step At must-be kept reasonably  
small to obtain results sufficiently close to the exact solution of the partial-
differential equation. 

Combined Method 

A combination of the explicit method given by equation (12-110) and the implicit 
method given by equation (12-123) is written as 

T?+1 	[ 7-1!+  — 27+ 	+ 	 — 	,
0F(1 0) 	"+ 

At 	 (Ax)2  
(12-131) 

where the constant 0(0< 0 I) is the weight factor which represents the degree 
of implicitness. That is, equation (12-13!) reduces to the simple explicit form for 
0 = 0, to the Crank Nicolson method for 0 =1 and to the simple implicit form 
for 0 = 1. 

The order of accuracy of various difference schemes corresponding to specific 
values of 0 are given by: 

I. 0 = 0, the explicit method: 0 [At, (Ax)2] 
2. 0= I, the implicit method: 0 [AL. (AM 2] 
3. 0 	the Crank—Nicolson method: 0 [(A1)2, (Ax)2] 

(Ax)2  
4. 0 	— 	0[(At)2,(Ax)4] 

2 	11:4Ar 

Clearly. finite-ditTerence schemes of various degree of accuracy are obtainable 
from the combined method by proper choice of the value of the weight factor O. 

The stability criterion for the combined method depends on the value of the 
weight factor 0 as given below: 

0 -4 1: unconditionally stable for all values of r 	(12-132a) 

0 0 < -1: stable only if 0 r 2 
	

(12-132b) 
— 

1
40  

Fig. 12-15 The finite-difference molecules for the combined scheme. 

where r = (aAt)/(Ax)2. Figure 12-15 shows the finite-difference molecules for the 
combined method. 

To solve equation (12-131), all the unknown temperatures r+i are moved 
on one side and all the known temperatures T" on the other side. We obtain 

— rO7r +(1 + 2r0)77+1  — rOT7V 

= r(1 — 	+ [I — 2r(I — 0)]T7+ 	0)P,'„ 	(12-133) 

where r = (aAt)/(Ax)2. The resulting system of equations (12-133) have a tridiago-
nal linear coefficient matrix, hence can be solved with any one of the algorithms 
discussed previously. 

When temperatures are prescribed at all boundaries, the system (12-133) 
provides complete set of algebraic equations for the determination of all the 
unknown intetual nude temperatures. With convection or prescribed heal flux 
boundary conditions, the temperatures at the boundary nodes are not known. 
Additional equations are obtained by either discretizing the boundary condition 
directly about the boundary node or the application of conservation principle 
for a control volume about the boundary node. 

12-11 MULTIDIMENSIONAL TIME-DEPENDENT 
HEAT CONDUCTION 

The finite-difference schemes such as the explicit, implicit, Crank—Nicolson, and 
combined methods presented previously with applications for the solution of 
one-dimensional transient heat conduction problems can readily be generalized 
for the solution of multidimensional transient heat conduction problems. 
Consider, for example, that a three-dimensional transient heat conduction problem 
is to be solved with an implicit method in order to alleviate the restriction 
imposed on the size of the permissible time step and suppose that there are N 

o 
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interior nodes in each direction. Then the N 3  x N 3  matrix must he solved for 

each time level and the procedure becomes impractical for large N. To alleviate 

such difficulties various alternative approaches have been proposed for the 

solution of multidimensional transient heat conduction problems. They include, 

among others, alternating-direction-implicit (ADI) methods advanced by 

Peacernan and Rachford [4], Douglas and Gun [43], Douglas [44], and a closely 

related method described by Yanenko [45]. 

it fternaany-direerion-explicir (ADE) methods have been proposed by Saul'ycv 
[47], Barakat and Clark [46], Larkin [12], and Allada and Quon [13]. Several 
alternative schemes have also been proposed [48-50]. 

In this section we first illustrate the generalization of the explicit and combined 
methods for the solution of multidimensional transient heat conduction, and 

then present the AD1 method applied for the solution of two-dimensional transient 

heat conduction. 

Explicit Method Applied to Two-Dimensional Heat Conduction 

Consider two-dimensional transient heat conduction equation with energy 

generation in the rectangular coordinate system taken as 

aT J  l  2 T 02T I.-

Ot 	. .d.x 2 	aye  k ) 
	 (12-134) 

where T= T(x, y, t) and g = (x,y, t), subject to some specified boundary and 

initial conditions. TO discretize this differential equation we introduce the notation 

T(x, y, t) = T(iAx, 	77.1 	 (12-135) 

Then, the finite-difference approximation of the differential equation (12-134) at 
a grid point (x, y) by the simple explicit method using forward-time-central-space 

(FTCS) discretization gives 
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For a square mesh Ax = Ay = 6, equation (l2-137a) reduces to 

TI.j+  = r(T7_ , + 	 + 7714  ,) + (1 — 4,-)T7J  + 	(12-138a)  el 

where 

aAt 	62„%i 
r ----, G". .= 

(5 2 	k 
(12-138b) 

Equation (12-137) or (12-138) provides explicit expression for the determination 
of 77 1  at the time level n + I from the knowledge of grid-point temperatures 

at the previous time level ri. If temperature is prescribed at all boundaries, the 

number of equations arc equal to the number of unknown grid temperatures; 

hence the problem is soluble. 

For derivative boundary conditions, such as convection. or—prescribed_heat 

flux, the temperatures at the boundary nodes are not known. For such cases, 
additional relations are developed by discretizing the boundary conditions. The 

discretization of the derivative term in the boundary condition can be made 

either by one-sided differences by using a backward or forward formula that is 

only first-order accurate. A second-order accurate discretization of the boundary 

condition is possible by introducing a fictitious node and using a central-difference 

formula. Alternatively, the control volume approach and conservation principle 

can be used to develop finite-difference approximation for the boundary 

conditions. 

Stability. To obtain meaningful results from the solution of the difference 

equations (12-137a), the stability criterion associated with them should  be estab-
lished. We rewrite equation (12-137a) in the form 

T'1.,+ = T`j.k + 	 + 	Lk) + 	— 274  + 7-3.„ ,) 

(12-139a) 

77,7 — Ft; 	
L 	

— 271, + T74.  , + 7-7 — 2 

At 	 (Ax)2 	 (4)2 	k' " 
(12-136) 

This expression is rearranged in the form 

where 

eAt 	ocAt 

(Ax)2 	(Ay)2  
(12-139b) 

Here the generation term is neglected because it does not influence I he growth 
and propagation of errors, and the subscript i is replaced by j in order to 

distinguish the subscript from i = 1, which will appear in the analysis. 
The Fourier stability analysis described previously is now generalized for the 

two-dimensional case considered here by choosing the error term in the form 

aAt rr + 	2rd  + 	 , — 27'7.j + 	k  

(12-137a) 

where 

E" = 	e1  r. 	where ■:,". = er't  (12-140) 

ctAt 	thr 
r ^, r 

(Ax)2 	Y  (Ay)2  
(12-137b) 
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and t= 1=7, ,f3„, and rh, are the Fourier modes. In view of the definition 
of c, the error term will will not increase without bound as t increases, pro-
vided that 

IsI 	I 	 (12-141) 

The error term should also satisfy the finite dclTercncc equation (12-I39a). There-
fore, equation (12-140) is-substituted into equation (12-139a) and after cancella-
tions wembtain 

1 -I- rx(e-111-Ax 	e'll"""x - 2) 	(e '4.°Y + e4'' 	2) 	(12-142) 

which can be written as 

	

= 1 - 2rx(1 - cos /3„,Ax) - 2ry(1 - cos tin Ay) 	(12-143) 

since cos z = 	et`). 
The applicatibn of the stability criterion equation (12-141) to equation 

(12-143) yields 

Example 12-6 

Develop the stability criterion for the finite-difference approximation by the 
simple explicit method of the three-dimensional linear diffusion equation in 
the x, y, z rectangular coordinates. 

Solution. The finite-difference equation (12-139) and the corresponding error 
term equation (12-140) are readily generalized to the three-dimensional ease. 
The error term is substituted into the finite-difference equation and a procedure 
similar to that described previously is applied. The stability criterion 

(rx +ry + rr)‘..1 	 (12-146a) 

or 

L(Ax)2  (Ay)2  (Az)2  -- 2 

itht 	aAt 	ccAt 1 < 	
(12-146b) 

results. For the case Ax = Ay = Az = 6, the stability criterion becomes 

- 1 	- 2r„(1 - cos /3„,Ax) - 2r3.(1 - cos ri Ay)] 1 

which nuts! he satisfied for all values of /1„, and IL,. The right-hand side is satisfied 
always. To satisfy the left-hand side under most strict conditions we must have 
1 - cos /1,,,Ax = 2 and 1 - cos ,?„Ay = 2, yielding 

- 1 [1 - 4r, - 4ry] 	 (12-I44a) 

or 

(r, 	•y) < z 	 (12-144h)  

ccAt 	1 
r = — - 

5 2  6 

which is thrice as restrictive as the one-dimensional constraint r 

T 

 (

02  T 0 	r 2 T1 
x 	Dy  2 az  2 

(12-146c) 

(12-147) 

Combined Method Applied to Three-Dimensional Diffusion 

We consider a three-dimensional linear diffusion problem in an isotropic solid 
governed by the partial-differential equation 

or with appropriate boundary and initial conditions. To discretize this equation we 
introduce the notation r  aAt 	aAt 

_ 
1 

L(Ax)
,_, 	

(Ay)-, 
	

2 
(12-144c) 

For the case Ax = Ay = 6, the stability criterion becomes 

ctAt 	1 
r =

(5 2  
(12-145) 

	

71x, y, z, t) = T(fAx, jAy, kAz, net) 	 (12-148) 

Then, the finite-difference approximation of the differential equation (12-147) 
with the combined method, by using FTCS, becomes 

Tr2 -  
77.1
" 

2 + A,. 	+ 	] 
mAt  

which is as twice restrictive as the one-dimensional constraint r + (1 - 0) [Ax., 77.  + ArrTZi., + Az,. T7.i.,] 	(12-149) 
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where the weight factor 0 
operators Axx, An, and A,„ 

tk 

Ayyri,j,k 

Tr:pc = 

METHODS 

assumes values 
are defined 

-• 	-
1
- - 

(Ax)2  

I 	, 
(A), ) ,[ Ij 

0 4 0 4, 1, and the finite-difference 
as 

— 2791 	+ Ti- 1,j.k 	i..k 	 . 	] 	(I 2-150a) 
j  

(12-1501,) 

	

1 .4 	21.7.1d, 

	

4-1 — 	+ 	- 	(12-150c) 

Clearly, depending on the value chosen for the weight factor 0, the simple explicit, 
the simple implicit, and the Crank—Nicolson methods are readily obtained as 
special cases: 

= 0: The simple explicit scheme. The truncation error is 0[At,(Ax)2,(Ay)2, 
(Az)2] and the stability constraint on the time step At is 

[

aAt 	aAt 	aAt 	1 
(*Ex.)2. 602 (71z)2 

0 = 	The Crank-Nicolson scheme. The truncation error is 0[(At) 2, (Ax)2, 
(Ay)2,(Az)2] and the finite-difference equations are unconditionally 
stable. 
The simple implicit scheme. The truncation error is 0 rAt,(Ax)2, (Ay)2, 
(Az)2] and the finite-difference equations are unconditionally stable. 

For values of 0.5 < 0 4 1, the scheme is unconditionally stable. 

ADI Method Applied to Two-Dimensional Heat Conduction 

We now present the alternating-direction-implicit (ADI) method for the solution 
of two-dimensional transient heat conduction in the rectangular coordinates. 
The principal advantage of the method lies in the fact that, the size of the matrix to 
be solved in each time level is reduced at the expense of solving a reduced matrix 
many times. 

Wt.i 'consider the following transient heat conduction equation 

• 1 OT a27-  a2 T 1  

 = 	
vitx,y, 	 (12-152) 

a at  

subject to appropriate boundary and initial conditions, and introduce the notation 

	

T(x, y, t) = T(iAx, jAy, ;LAO sa 	 (12-153) 

WI 1/ L. I I LlIWILI 	 1,4 tX.0._.“. ■ • "...or.. •- 	 • • 	 • ••-• • - 

The finite-difference approximation of the differential equation (12-152) with the 
ADI method is based on the following concepts. 

Suppose the computations are to be advanced from the Nth time level to the 
(a + 1)th time level. The simple implicit method is used for one of the directions, 
say, x, and the simple explicit method is used for the other direction, y. Then, the 
advancement from the (a + 1)th level to the (it + 2)th level is done by reversing 
the directions of the implicit and explicit methods. The-computational procedure 
is continued by alternatively changing the directions of the explicit and implicit 
methods. 

We now illustrate the application of the ADI method for the discret izat ion of 
equation (12-152). Suppose the implicit scheme is used in the x direction and the 
explicit scheme in the y direction to advance from the nth to the (11 + 1)th time 
level. The finite-difference approximation of equation (12-152) is given by 

711.) 1 — Ti,1 — T,±k . j-2T;,j  I  + T1.1.- L; 	— 271; + TV.J+34_ 1 , 

ctAt 	 (Ax)2 	 (A.02  
(12-154a) 

where 	is the average of y,..1  for the current and next time steps. 
For the next time level, an explicit formulation is used for the x direction and 

an implicit formulation for the y direction. Then, the finite-difference approxi-
mation Cm oquittion (1 2-1 52) from the (tt + 1)11110 tile (a -1 2)m1 time step becomes 

T7J  2  — 	T?_.+Li — 2 T7,1-  + 	• T'jt...? )  — 2 	-I,  711.-f%21  
•  + k g,.1 

aAt 	 (Ax)2 	 OA 2  
(12-154b) 

This equation utilizes the results from the previous time level a + I to calculate 
the temperatures at the time level a + 2. 

For computational purposes, it is convenient to rearrange equations (12-154a) 
and (12-154b) such that at each time level, the unknown quantities appear on 
one side of the equality, say, on the left and the known quantities on the other 
side, on the right. Equations (12-154a) and (12-154b), respectively, become 

— r,T7± + (1 + .21-.,)T7r; — r,77: = ryT,L 71- (1 - 2r y).17.i  

aAt 
rs ri' 1 	+ k  ( I 2-155a) 

for the time level a + 1 and 

— 	+(I + 2r y)77.1" 2  — y TriF  .2  1 = 	+ (1 — 	T711  

aAt 
+ 	. + --g• • 

k 

(12-151) 

it = 1: 

(12-1 55b) 
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1
 

for the time level a + 2, where 

ccAt 	 _ aft = 	and 
(Ax)2 	 (Ay)2  

(12-156) 

When solving the problem. equations (12-155a) and (12-155h) are repeated 
alternatively. 

The advantage of this approach over the fully implicit or Crank-Nicolson 
methods is that, each equation, although implicit, is only tridiagonal. That is, 
equation (12-155a) contains implicit unknowns 7711, 1r,`,3, and while 
equation (12-155h) contains implicit unknowns 77.,4. 2, 71'1 2 ,, and 711+4.21 . There-
fore, the coefficient matrix is tridiagonal for each equation; hence the computation 
scheme is more efficient than those that are not tridiagonal. 

If temperatures are prescribed at all boundaries, equations (12-155a,b) are 
sufficient to determine the unknown internal node temperatures. 

For convection, prescribed heat flux boundary conditions, temperatures at 
the boundary nodes are unknown. For such cases, additional relations are 
obtained by applying the conservation principle to a control volume about each 
boundary node at which the node temperature is not known. 

12-12 NONLINEAR HEAT CONDUCTION 

In principle, there is no difficulty in applying finite-difference methods to non-
linear parabolic systems; but the resulting finite-difference equations become 
nonlinear and difficult to solve. The diffusion-type problems become nonlinear 
due to the nonlinearity of the governing differential equation, or the boundary 
condition or both. Consider, for example, the heat conduction equation 

V • [k(T)V + g(T) = p C p(T)
OE 
 in region R, t > 0 (12-157) 

which is nonlinear because the thermal properties and the energy-generation 
term depend on temperature. Consider the bouildary condition given in the form 

07' 
•(T,) on boundary 

4-in 

where 0/011 is the derivative along the outward-drawn normal to the boundary 
surface and T, is the boundary surface temperature. This boundary condition 
becomes nonlinear if the function J.  (Ts ) involves a power of T„ as in the case of 
radiation boundary condition 

a T 
k = ca(T4  Tt) 

an 

or the natural-convection boundary condition 

DT 
k O = c(IT - T.1)114 0" - T,0) n 

where e is the emissivity, a is the Stefan-Boltzmann constant, and Tv, is the 
ambient temperature with which radiation or free convection lakes place. 

Various schemes are available for finite-difference approximation of non-
linear diffusion problems as a system of linear algebraic equations. They include, 
among others, the lagging of temperature-dependent properties by one time step, 
the use of three-time-level finite-differencing, and the linearization procedures. 
Here we consider the simplest procedure the lagging of temperature dependent 
properties by one time step. 

Lagging of Properties by One Time Step and Extrapolation Schemes 

We consider the nonlinear diffusion equation given in the form 

	

pC„(T)—ar 	[kcr:  
at ax 	ax 

where the specific heat C p(T) and the thermal conductivity k(T) vary with 
temperature. This equation can he discretized by using any one of the finite-
difference schemes described previously. Here we prefer to use the combined 
method because of its versatility to yield the simple explicit, simple implicit, 
Crank-Nicolson, and other methods merely by the adjustment of a coefficient. 
The finite-difference representation of equation (12-161) with the combined 
method is given by 

	

(PC p),
Tr " -: 77=  O[kt _, 	- " + k,,, 1  1+1 ' 

At 	 12 	(Ax)2 	/2 	(Ax)2 
T."' - Tr2+1] Tr '  - T"'" 

	

„_ ,, -- 	, 	1-:" ---  -  [ 	1   - (A.,o2 .,. 112 ' 

(Ax)2 i  

where the constant (1(0 -41? ‘.. 1) is the weight factor that represents the degree of 
implicitness. The values of 0 = 0, 1, and 1, respectively, correspond to the ex pl icit,• 
Crank-Nicolson, and implicit schemes. 

We note that the thermal properties (pC p), and k, i
l  I
, depend on temperature; 

but at this stage of the analysis it is not yet specified how they will be computed. 
This matter will be discussed later on. 

Equation (12-162).can be written more compactly in the form 

77 ' - T1,1  = 0[A ,T7+  ,1  - Mi r,' ' + ATI': I] 

+(I - 0)[/1,1-7,_ , - 213; 7 + .1),T7,,1 ] 

(12-1511) 

(12-159) 

(12-160) 

(12-161) 

(12-162) 

(12-1.63) 
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where 

k. 	At 
A - = 1-1;2  

(pc);  (Ax)2  

. 	At D. =  
(PCdi 

1 	1 k 	+ k!" B. - (Al ;  + 	! -!14. .. 
2 	2 	(pC)r 	(Ax)2  

Equation (12-163) is now rearranged so that all unknown temperatures (i.e., those 
at the time level ri + 1) appear on one side and all the known temperatures (i.e., 
those at the time level a) on the other side. 

— 0A;T7 +  +(1 +20BdTr ODITIV 

(1 — 0)A 	+[I• 2(1 — 0)B,]P: + (1 — 0)1.),T + 	(12-165)  

REI- EKtNUEN 

tivities at the nodes i and i ± 1: 

ki± 1 = - 	1  
+ k" 

2 
(12-167b) 

A more accurate approach for calculating the temperature dependent properties 
is the use of an extrapolation scheme as described below. 

Consider, for example, that the thermal conductivity k" 	at the time level 
rt + 1 is expanded in term of that a I the time level II in the form 

kn 	kn + ("1-)n  Al 
ar 

.1 " 	
Dk y (DT)" 

At = k -1- 
• G'T 	cat 	• 
	 (12- 161la) 

The time derivative of temperature is approximated by 

(12-164a) 

(12-164b) 

(12-1640 

(an" 7— T"-  

Dr j 	At 
(12-168b) 

We note that for the case of constant thermal properties we have 

= Di= 
k At 	xAt 

pC p  (Ax)2  (Ax)2  
(12-166) 

Introducing equation (12-168b) into (12-168a), the following expression is obtain-
ed for the determination of thermal conductivity at the time level n + I from the 
knowledge of k": 

and equation (12-165) reduces to the linear case given by equation (12-133). 
Assuming that the coefficients Ai,D,, and BE  are available, the system (12-165) 
provides a complete set of equations for the determination of the unknown 
internal node temperatures when the temperatures at the boundary surfaces are 
prescribed. For the case of prescribed heat flux or convection boundary conditions, 
the lenipeiatui es at the boundaries arc unknown; additional relations arc devel-
oped by discretizing such boundary conditions. Since equations (12-165) have a 
tridiagonal coefficient matrix, any one of the algorithms discussed in Chapter 3 
can be used for their solution provided that the coefficients Ai, B1, and Di  are 
known at the time level n + 1. The following approaches can be used to compute 
the properties. 

The simplest, but less accurate, method for computing these coefficients is to 
lag the evaluation of the temperature-dependent properties by one time step. 
That is, to perform the computations at the time level a + 1, the coefficients arc 
evaluated at the previous time level a: 

A; 	A7, 	137, Di 	D1,1 	 (12- I67a) 

The thermal conductivity Ic1± 	can.  be  evaluated at the time level a, either at 
the average temperature (T7±  + T7)/2, or as the average of the thermal conduc- 

k"+1  k" + (— (T"— T"- 1) aT (12-169) 

A similar expression can be written for the specific heat: 

+ 	+ (a8C71( — T" 	 (12-170) 

Clearly, if the second terms on the right-hand side of equation (12-169) and 
(12-170) are neglected, the result is equivalent to the lagging of the coefficients. 

The computation time for solving the system of equations (12-165) resulting 
from the nonlinear differential equation is longer than that resulting from .the 
linear system, because the temperature-dependent thermal properties k(T) and 
C r(T) need to be evaluated at each time step a + 1 from their known value:i at 
the time level n according to equations (12-169) and (12-170). 
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PROBLEMS 

12-1 	Using a Taylor's series expansion, show that a forward-difference repre- 
sentation of df Mx, which is accurate to the order of 0(10) is given in 
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subscript notation as 

=
2 +3  — 9fi+ 2 + 18f1+  — 1 I ff

+ 00
3

) 
6h 

	

12-2 	Consider the function f(x) = 2ex. Using a mesh size Ax = h = 0.1, deter- 
mine f at x = 2 with the forward formulas (12-19a) accurate to 0(h) 
and the central-difference formula accurate to 0(h)2  arid compare the 
results with the exact value. 

	

12-3 	Write the finite-difference form of the heat conduction equation 

2T 02T 1 
ox2 

+ —
42 

+ 
k
-g(x, y) = 0 

for the 12 nodes, i= 1,2,...,12, subject to the boundary conditions 
shown in the accompanying figure. Here, the temperatures f l , f 2 , and 
J., are prescribed. 

insulated 

PT = 
ay 

7'3 	Tb /7.9  

T2  T5 T8 T1 1 

T1 T4 7'7 TICI 

Convection 

-k --i-hr=hT„  

T=0 
	

at x = 0, 	x= 1  

c'T = 0  
ay 
	 at 	y = 0 

at 	Y = 1  T= sin ax 

	

12-6 	Consider the two-dimensional, time-dependent heat conduction equation 
given in the form 

02T 02T _ l OT 

Let the temperature T(x, y, t) be represented by 

T(x, y, t) T(jAx, kAy, 

Write the finite-difference representation of this heat conduction equation 
for an internal node (j, k) using (1) an explicit method, (2) an implicit 
method, and (3) the Crank --Nicolson method. 

12-7 . By assuming that an error term can be represented in the form 

— a I 	P i .1 I lot.) 

where t = nAt,x =jAx, y = kAy, show that in the Problem 12-6, the ex-
plicit finite-difference representation is stable if 

,tht  
(Ax)2  (Ay)2J 2 

	

12-8 	Consider the following heat conduction problem for a solid cylinder: 

TN,  

Convection tl 

T k a— + hT = 
ax 

12 Prescribed 
temperatures 

f3 

12-4 	Solve the following set of algebraic equations by the Gauss elimination 
method: 

2T 1 OT 1 , I aT 
_ gkr,, = - — 

at r2  r er k 	a  

T=0 

in 	 t>0 

at 	r=b, 	t>0 
+ 3T2  + T3 = 10 

2T, — 2T2  + 3T3 + T4 = I I 
+47', - 27 3  -- 214 = 	2 

+4T3 +2T4  —20 

12-5 	Solve the following steady-state heat conduction equation by finite dif- 
ferences using mesh sizes Ax = Ay = 0.25 and 0.1; compare the center 
temperature with the exact solution: 

02 
T =  42  

T = F(r) 	 in 	0 -.<., r b, 	= 0- 

Let the temperature T(r, t) be represented by 

T(r, t) = T(jAr, 

with j = 0 representing r = 0 and j= N representing r = b. Write the 
finite-difference repres6ntation of this heat-conduction problem using (1) 
the explicit method and (2) the implicit method. 

12-9 	Repeat Problem 12-8 for a solid sphere of radius r = b. 
in 	0 <x< 1, 0 <y< 1 



12-14 Consider the following one-dimensional heat conduction problem in the 
. 	dimensionless form: 

32TaT 
l-ax 	Dt 

T = 0 

T= sin rex 

in 

at 

for 

0<x<1, 

x = 0, 

r = 0, 

t>0 

x 	1 

in 	0 

for t < 0 

Solve this problem with finite differences using an explicit scheme by 
taking Ax = 0.1 and r = At/(Ax)2  = 0.1. Compare the results with the 
exact solution at time t -= 0.01 at the locations .x = 0.1 and 0.2. 

12-15 Solve Problem 12-14 using the Crank—Nicolson method and the explicit 
method by taking Ax = 0.1, At = 0.005 and compare T(0.2, 0.01) with the 
exact solution. 

12-16 Consider the following transient radial heat conduction in a solid cylinder, 
0 < n < 1, given in the dimensionless form as 

02T 1 dT OT 
De 	r1 8t1 	Or 

07 = 0  
Dr, 

in 	0 < < 1, t > 0 

at 	rl =0, 	t > 0 

T = 0 	 at 	= 	t > 0 

T= 100J0(a1/1) 	for 	r = 0, 	0 s ti < 1 

where .1 0(z) is the zero-order Besse' function of the first kind and P i  is 
the first root of Jo(z)= 0. The exact analytic solution of this problem is 
given by 

T(ri, t) = 100 J0(/3, We-Fir 

By dividing the solution domain into five equal parts and using the simple 
explicit scheme, solve this problem with finite-differences and compare • 
the center temperature T(0, t) with the exact solution at dimensionless 
times t = 0.2, 0.4, 0.6, ..., and 1.6. 

12-17 Consider the following transient heat conduction problem given in the 
dimensionless form as 

02T DT = 
ox- 	at 

in 0 <x< 1, t>0  
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12-10 Consider the heat conduction equation in the cylindrical coordinates 
given as 

	

32T 	DT 1 02T 1 	1 DT 

	

6.2 	17., 707 	_g(r.
" 

- _ . 

615 	k 	ot 

and let the temperature T(r, 0;  t) be represented by 

T(r, t, t) = T(iAr.jA(1), !JAI) TZJ  

Write the finite difference form of this heat conduction equation for a 
node (i,j) using ( I) the explicit scheme and (2) the implicit scheme. 

12-11 Consider the heat conduction equation given as 

82T +  I LT + _.02T 
9(r' 

 z)  = 1 8T  

	

ar2 	r Or 	dz' k a 8r 

where T(r, z, t) is represented by 

T(r, z, t) = T(iAr, kAz, nAt) ,—= 

Write the finite-difference form of this heat conduction equation for a 
node (1, k) using, the Crank Nicolson method. 

12-12 Consider the following heat conduction equation 

	

0 ( 0Tl 	 DT 

	

-- • k 	+ 	I) = pC 
 cox 	 Gar - 

where T(x, r) is represented by 

T(x, t) = T(jAx, uSr) Tni  

Write the finite-difference form of this heat conduction equation for a 
node (j) using (1) the, explicit method and (2) the implicit method. 

12-13 Consider the finite-difference form of the heat conduction equation 02T/ 
( Ila)(0770/) given in the form [see equation (12-131)] 

T'l *  ' — 1'1 	[ T'!_t 1  — 2P +1  + T'',t1 
----- = a 0 " 	, 	) + (1 0)

T3._ 1 — 277; + T3+1] 

At 	 (Ax)- 	 (Ax)2  

Using the Four er series method, show that for 1 < 0...‹. I the solution is 
unconditionally stable and for 0 < 0 -.< it is stable if 

	

eAt 	1 
r 	 

(Ax)2  2(1 — 20) 
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T=0 at x = 0, t > 0 

T=0 

lOsin 2nx 

at 

for 

x= I, 

t = 0, 

t > 0 

0 	x 	1 

The exact analytic solution of this problem is 

T(x,t)= 10e 4"'rsin22rx 

Solve this problem with finite differences using the explicit method, 
taking 

(a) Ax = 0.1, r = 0.25 	At = 0.0025 

(b) Ax = 021, r = 0.50 .'• At = 0.0050 

and compare the temperature at the location x = 0.3 with the exact 
results. 

12-18 Perform the first three iterations of the Gauss—Seidel method for solving 
the following system of equations: 

67', I 72 •1 3T = 17 

T, — 10T2  + 4T3  = —7 

+ T2 + 3 T3 12 

12-19 Consider the following transient heat conduction problem in a slab given 
in dimensionless form as 

02T = 
in 0 <x< 1, t>0 axe —  at 

--3.;( —0  at x =0, t > 0 

T=0 at x= 1, r > 0 

T= 100 cos[ %) for t 	0, 0 	x < 1 
2 

Solve this problem numerically with the explicit finite-difference scheme 
by dividing the region 0 ‘,..x < 1 into five equal parts by using (a) a first-
order accurate and (b) a second-order accurate finite differencing schemes 
for the boundary condition at x = 0. The exact solution of this problem 

is given by 

T(x, t) = 100 cos ( 2  x) exp — 
4 

Compare the temperature of the insulated surface obtained by finite-
difference solution with the exact solution given above. Take r =1- for 
numerical calculations. 

12-20 A I0-cm-diameter solid steel bar of thermal conductivity k 40 
is heated electrically by the passage of electric current that generates 
energy within the rod at a rate of g = 4 x 106  W/m3. Heat is dissipated 
from the surface of the rod by convection with a heat transfer coefficient 
h = 400 W/(m2•cC) into an ambient at temperature T„ = 20 °C. By divid-
ing the radius into five equal parts, develop the finite-difference equations 
for this heat conduction problem. Compare the finite-difference solution 
with the exact analytic solution for the cases when first-order and 
second-order accurate differencing are used for the convection boundary 
condition. 

12-21 Repeat Problem 12-20 for the case of a solid sphere. 

12-22 Consider the following one-dimensional, time-dependent heat conduction 
problem for a slab 0 < x < L subject to the boundary conditions of the 
third kind al both boundaries 

a2T a 	= 
axe 	at 

OT 
ax 

k2 ax +112T=f2  

T= F(x) 

in 

at 

at 

for 

0 < 	< 

x=0, 

x = L, 

= 0, 

t > 0 

t>0 

t > 0 

in 	0 

Using the explicit method for the finite-differencing of the differential 
equation, simple forward and simple backward differences for the boun-
dary conditions at x = 0 and x = L, respectively, write the finite-difference 
representation of this heat conduction problem. 

12-23 Write the finite-difference representation of the heat conduction Problem 
12-22 using the explicit method' for the differential equation and the 
central differences- fiat-111e -boutidary.condi tions: 

12-24 Write the finite-difference representation of the heat conduction Problem 
12-22 using the Crank—Nicolson method for the differential equation and 
the central differences for the boundary conditions. 
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an arbitrary function in terms of the eigenfunctions of the corresponding eigen-
value problem. Therefore, the eigenfunctions, eigenvalues, and the normalization 
integrals developed in Chapters 2-4 for the solution of homogeneous problems 
will be utilized for the construction of the integral transform pairs. 

The fundamental theory of the integral-transform technique is given in several 
texts [1-3] and a summary of various transform pairs and transform tables are 
presented in various references [4- a]. The literature on the use of the integral-
transform technique for the solution of heat conduct ion problems is eve rgrowi tig. 
The reader should consult references 9-23 for the general solution of three-
dimensional problems of finite regions. Its applications for the solution of specific 
heat conduction problems in the rectangular [24,25], cylindrical [26-29], and 
spherical [30] coordinate systems arc also given. Some useful convolution pro-
perties of integral transforms are discussed in references 31-34. 

In this chapter a general method of analysis of three-dimensional, time-
dependent heat conduction problems of finite region by the integral-transform 
technique is presented first. Its applications for the solution of problems of finite, 
semiinfinite, and infinite regions in the rectangular, cylindrical, and spherical 
coordinate systems are then presented systematically. More recent applications 
can be found in references 37-40. . 

The solution of partial-differential equations of heat conduction by the classical 
method of separation of variables is not always convenient when the equation 
and the boundary conditions involve nonhomogeneities. It is for this reason that 
we considered the Green's function approach for the solution of linear, nonho-
mogeneous boundary-value problems of heat conduction. The integral trans:limn 
technique provides a systematic, efficient, and straightforward approach for the 
solution of both homogeneous and nonhomogeneous, steady-state, and time-
dependent boundary-value problems of heat conduction. In this method the 
second partial derivatives with respect to the space variables are generally 
removed from the partial-differential equation of heat conduction by the applica-
tion of the integral transformation. For example, in time-dependent problems, 
the partial derivatives with respect to the space variables are removed and the 
partial-differential equation is reduced to a first-order ordinary differential equa-
tion in the time variable for the transform of the temperature. The ordinary 
differential equation is solved subject to the transformed initial condition, and 
the result is inverted successively to obtain the solution for the temperature. The 
inversion process is straightforward, because the inversion formulas arc available 
at the onset of the problem. The procedure is also applicable to the solution of 
steady-state heat conduction problems involving more than one space variable. 
In such cases the partial differential equation of heat conduction is reduced to 
an ordinary differential equation in one of the space variables. The resulting 
ordinary differential equation for the transformed temperature is solved, and the 
solution is inverted to obtain the temperature distribution. 

The integral-transform technique derives its basis from the classical method 
of separation of variables. That is, the integral transform pairs needed for the 
solution of a given problem are developed by considering the representation of  

13-1 THE USE OF INTEGRAL TRANSFORM IN THE SOLUTION 
OF [EAT CONDUCTION PROI3LEMS 

In this section we present the use of the integral-transform technique in the 
solution of three-dimensional, time-dependent, nonhomogeneous boundary-
value problems of heat conduction with constant coefficients in finite regions. 
We consider the following heat conduction problem 

1 
T(r. t)+ 

ki 
i9T{r 	t) 

1 aT
P

(r,t) 
in region R, 

on boundary Si, 

for t = 0, 

t > 0 

r> 0 	• 

•  in region R 	, 

(13-1a) 

(13-1b) 

113-tel  

t) = 
ai 

hiT(ri, t) = 	t) 
On, 

'1'(r, 	— F(r) 

where, i = 1, 2, ..., N and N is the number of continuous boundary surfaces of the 
region R (s = 1 for a semiinfinite medium, N = 2 for a slab, N = 4 for a rectangular 
region, etc.); a/arui  denotes the normal derivative at the boundary surface Si  in 

the outward direction; hi  and ki  are the boundary-condition coefficients at the 
boundary surface Si; k is the thermal conductivity; a is the thermal diffusivity; 

t) is a specified boundary-condition function; F(r) is a specified initial condi-
tion function; and g(r, t) is the heat-generation term. 
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The basic steps in the solution of this problem with the integral-transform 
technique can be summarized as follows: 

I. Appropriate integral-transform pair is developed. 
2. By the application of integral transformation, the partial derivatives with 

respect to the space variables are removed from the heat conduction 
equation, thus reducing it to an ordinary differential equation for the 
transform of temperature. 

3. The resulting ordinary differential equation is solved subject to the trans-
formed initial condition. When the transform of the temperature is inverted 
by the inversion formula the desired solution is obtained. The procedure 
is now described in detail. 

1. Development of Integral-Transform Pair. The integral-transform pair needed 
for the solution of the above heat conduction problem can be developed by 
considering the following eigenvalue problem 

in region R 	 (13-2a) 

on boundary S1  	(13-2b) 	. 

	

i = 1, 	N, and ki, Dian, are as defined previously. We note that this eigenvalue 
problem is obtainable by the separation of the homogeneous version of the 
heat-conduction problem (134). The eigenfunctions tfr().„„ r) of this eigenvalue 
problem satisfy the following orthogonality condition (see note I at the end of this 
chapter for a proof of this orthogonality relation) 

111(2,„ r)1,1/(2„, r)do -- I 
LN(A„,) 

where the normalization integral N(A„,) is defined as 

N(Am) = 	itit(;t„„ r)j2  dt.) 
	

(I3-3b) 
R 

We now consider the representation of a function T(r, 1), defined in the finite 
region R, in terms of the eigenfunctions 14,1„„ r) in the form 
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by the operator 

tit(2„, r) de 
R 

[that is, multiply by 111(2„, r) and integrate over the region R] then utilize the 
orthogonality relation (13-3) to obtain 

jr 	r)Ttr, di' R   (13-5) 

This expression is introduced into equation (13-4) and the resulting representation 
is split up into two parts to define the integral-transform pair in the space variable 
r for the function T(r, t) as 

Inversion formula: 	T(r, t) Elk(4,  r) T—(An„ t) 
N(2„,) 

Integral transform: 	T(2„„ t) = I 1,1.4,1„„e)T(r', t) do' 
	 R 	  

where i(2„„ t) is called the integral transform of the function T(r, t) with respect 
to the space variable r. It is to be noted that in the above formal representation, 
the summation is actually a triple, a double, or a single summation; and the 
integral is a volume, a surface, or a line integral for the three-, two-, or one-
dimensional regions, respectively. In the cartesian coordinate system, the 
eigenfunctions tfr(2,,„ r) and the normalization integral N(Am) are composed of 
the products of one-dimensional eigenfunctions and normalization integrals, 
respectively. 

2. Integral Transform of Heat Conduction Problem. Having established the 
appropriate integral-transform pair as given above, the next step in the analysis 
is the removal of the partial derivatives with respect to the space variables from 
the differential equation (13-1a) by the application of the integral transform 
(13-6b). That is, both sides of equation (13-1a) are multiplied by tku(r) and integrated 
over the region R 

1 	 I a 
1,tr„,(r)V 	(r, t) de + 	titi,„(r)y(r, tide 	f tp,„(r)T(r, 	fit, 	(13-7) f,, 	11' 	k R 	 cat R 

• 

V2tfr(r) + 221,4r) = 0 

k 0(11 r
i) 

+ hikr = 
On, 

for 	min 

for 	tn = n 
(13-3a) 

C 

where tk„,(r) iff(/1„„ r). By utilizing the definition of the integral transform (13-6b) 
this expression is written as T(r, 1)= 	C,,(t)0(A,„ r) 

	
in R 	 (13-4) 

where the summation is taken over all discrete spectrum of eigenvalues 2m. To 
determine the unknown coefficients we operate on both sides of equation (13-4) J 0„,(r)V2 T(r, t) do 	t) = 

a

dT( 
 dt 
 t) 	

(13-8) 



where 

a 	C.(ra  fi(r,  t)ds,  
A(2„„ t) K- - - j(1., t) + a E 	 (13-13b) 

k 	r=1 s, 	ki 	' 	i  

Thus by the application of the integral-transform technique, we removed from 
the heat-conduction equation (13-1a) all the partial derIvatives with respect to 
the space variables and reduced it to a first-order ordinary differential equation 
(13-13a) for the transform 1(2„„t) of the temperature. In the process of integ-
ral transformation, we utilized the boundary conditions (13-1b); therefore the 
boundary conditions for the problem are incorporated in this result. The integral 
transform of the initial condition (13-1c) becomes 

T(2„, t) = f tP„,(r)F(r) dv RA„,) 	for 

	

R 

	 t =0 	(13-13c) . 

3. Solution for Transform and Inversion. The solution of equation (13-13a) 
subject to the transformed initial condition (13-13c) gives the transform T(2,„ t) 

of temperature as 

	

T(',„,t)= 	[ Rim) + 	ego.  A(2„ t') de] 
a 	

(13-14) 

Introducing this integral transform into the inversion formula (13-6a), we obtain 
the solution of the boundary-value problem of heat conduction, equations (13-1), 
in the form 

e caLttli .(r)[f(2.) + 	ell' A (A., ) d 	(13-15a).  
.-1 N(A.) 

where 

A(2., e) :0(A„„ t') + 	l'n(ist )  f,(r' ,e)ds; 
i -. 1 	s, 	ic, 

F(A.) = 	tlf„,(11F(r) 

j(2„,, t') = I tit„,(e)g(r', 	du' 
• R 

N(A„,)=- L [Ur „,(e)r dv' 

(13-15b) 

(( 3-15c) 

(13-15d) 

(13-15e) 

 

T(r, t) = Y 	I  
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where OP.„„ t) and .7.(2„„ t) are the integral transforms of the function g(r, t) and 
T(r, t), respectively; defined as 

j(A„„ t) = f 0„,(r)g(r, t) du 
R 

• 
TV,„„t) = 	tp,„.,(r)T(r, t) dr 

The integral on the left-hand side of equation (13-8) can be evaluated by making 
use of the Green's theorem expressed as 

lkdr)V2 T(r, t) do = f T V2 V/„,(r) dv + 
i= 1 

f 
SI 

Ji m — TLfrili)ds; 
i 	ani 

(13-10) 

where i = 1, 2 	N and JV is the number of continuous boundary surfaces of the 
region R. Various terms on the right-hand side of equation (13-10) are evaluated 
as now described. The integral SR T is evaluated by writing equation 
(13-2a) for the eigenfunction t/' (r), multiplying both sides by T(r, t), integrating 
over the region R and utilizing the definition of the integral transform. We find 

1. f TV 20.dr = —A.' 	TO ,,, d r = — 2,,,1" (A, t) 
R 

(13-1 Ia) 

The surface integral in equation (13-10) is evaluated by making use of the 
boundary conditions (13-1b) and (13-2b). That is, equation (13-1b) is multiplied 
by Vr„,(r), equation (13-2b) is multiplied by T(r, t) and the results are subtracted; 
we obtain 

	

DT 	Alf„,(i) 
— T — = 	f,(r., t) 

	

m 
an, 	On, 

1: qua( ions (13-11) are introduced into equation (13-10) 

Substituting 

tifrn WV' T(r, t) d = 	t) + E 

equation (13-12) into (13-8) we obtain 

d7.(2 	t) 
- 	+ a2z T(2„ t) = 	t) 	for 

d t 

e) 
(13-12) 

(13-13a) 

fi(e,,t)ds; 
s, 	k 

1 > 0 

(13-I lb) 



OnAel) 
k t  

by 

(13-17a) (13-15f) 
- T(x t) = E 	in,xi)  T(/.1„„ t) 

in- i NO.) 

Toni , = 	iv(:ei )tfr(fl„„ x',)T(x',, t) 	(13-17h) 
xr 

Inversion formula: 

Integral transform: 

) 

h1  an, 

The validity of this replacement becomes apparent if we rearrange the boundary 
condition (13-2b) of the cigenvaluc problem for i = I, in the loft 

• • • A...JAW • E.+ • • itl.• •• •■-• 	 "..,1■•••.• 111 

and the summation is taken over all eigenvalues. This solution is derived formally 
for a boundaty condition of the third kind for all boundaries. If some of the 
boundaries are of the second kind and some of the third kind, the general form 
of the solution remains unchanged. However, some modification is needed in the 
term A(Il„, t' ) if the problem involves boundary conditions of the first kind. 
Suppose the boundary condition for the surface i = 1 is of the first kind;• this 
implies that the boundary-condition coefficient k J, should be set equal to zero. 
This situation causes difficulty in the interpretation of the term A(2„„ t') given by 
equation (13-15b), because k 1  appears in the denominator. This difficulty can be 
alleviated by making the following change in equation (13-15b): 

When k 1  = 0, replace  

where 

N(1„,) J }I'(xa)L'Y(1'm,x1)]Z dx1 
	 (13-16b) 

Suppose we wish to represent a function T(x „ t), defined in the finite interval R 
in terms of the eigenfunctions 11/(/3„„x1). Such a representation is immediately 
obtained by utilizing the above orthogonality condition and the result is written 
as 

T(x 1, t 	Nu3.) 	JR,  w(x;,)V/(/3„„ 	t ) xi)  f 
	

in region R 1  

(13-16c) 

The desired integral transform pair is constructed by splitting up this representa-
tion into two parts as 

1 

C.(ri.) 	I 	 
k, 	h1  an, 

on boundary S1. Finally, when all boundary conditions are of the second kind, 
the interpretation of the general solution (13-15) requires special consideration. 
The reason for this, 20  = 0 is also an eigenvalue corresponding to the eigenfunction 
(fr o  . constant 00, for this particular case. This matter will be illustrated later in 
this section. 

One-Dimensional Finite Region 

We now consider the one-dimensional version of the heat conduction problem 
(13-1) in the space variable x l  (x, y, z,r, etc.) for a finite region R 1 . Let 0(11,,„ xi ) 
be the eigenfunctions, M/3„,) be the normalization integral, /1„, the eigenvalues, 
and w(x.,) the Sturm.- Liouville weighting function of the one-dimensional version 
of the eigetivalue problem (13-2). As was discussed in note 1 of Chapter 2, the 
eigenfunctions 1,/,(11„„ x i ) are orthogonal with respect to the weighting function 
iv(x i ): 

x1)0(13., x dx — 
N( am) 

The solution of the one-dimensional version of the heat conduction problem 
(13-1) is obtained from the general solution (13-15) as 

where 

T(x„ t) = 	'1°n" x  `) 	-41'Llf(firr,) + e'Pri-r.  A( 

xi) 

fl„„ t') de] 

.11(e) 

(13-18a) 

(13-18b) 

(13-I8c) 

(13-18d) 

(13-18e) 

A(1?„„ t')=: 

RA') = 

#(fini ,t') 

N(Y) 

MP.) 

g(P„„1') ÷ 0: 	[ w(x'1)11(16m, 

xd 
-F[w(x'd tPUL, 

k, 

f2(t r)} 

dxr, 

dx, 

k2 	1S2 

$iVedtP( 3.m, xi)F(x'd 
RI 

w(x',),/0„„..4)y(xl, 

x;)]2  dx1 
for 

for 	2,n  
(13-16a) 
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If the boundary condition is of the first kind at any of the boundaries, the 
following adjustment should be made in equation (13-18b): F(20) = J F(e) du' 

R 

(13-23b) 

When k = 0 replace ' eplace 
0(13., xi)  by 

ki  

) 

1 	(13-19) 
hi 	Orti  

N 	fi(r',,t1) 
ds' A(20, t') = - 	g(r',1')dv' + a E 	 

k R 	 i =1  Si 	ki 
(13-23c) 

where i = I or 2, and eVdni  denotes derivative along the outward-drawn normal 
to the boundary surface. - 

Boundary Condition of the Second Kind for All Boundaries 

When the boundary conditions for a finite region are all of the second kind, that 
is all hi  values are zero in the heat conduction problem (13,0, then the eigenvalue 
problem (13-2) takes the form 

and the functions /1(2„„ l'), F(21„), and N,,, arc as defined 'by equations (13-15h), 
(I3-15c), and (13-ISe), respectively. 

The average temperature over the region R is defined as 

f T(r, t)dv 

Tuft) = 	 

1. dv 

(13-24a) 

V' kr) 	= 0 	in region R 	 (13-20a) 

Otfr(r;) 
= 0 	 on all boundaries Si 	 (13-20b) 

On;  

For this particular case, .10  = 0 is also an eigenvalue corresponding to the 
eigenfunction = constant 0 0. The validity of this statement can he verified by 
integrating equation (13-20a) over the region R, applying Green's theorem to 
change the volume integral to the surface integral and then utilizing the boundary 
conditions (13-20b). We obtain 

12  f 	= — 	VI/y(0dt,  = — 	ds,= 	(13-21) 
I. f S r en; 

Clearly, ).0  = 0 is also an eigenvalue corresponding to the eigenfunction tfro  = 
constant 0 0. We can set 1,//0  = 1, because tir o  will cancel out when it is introduced 
into the solution (13-15) for the eigenvalue /1.0  = 0. Then, the general solution 
(13-15) for the case of all boundary conditions are of the second kind [i.e., 
DT/071, = (1/1(;)fi(r, t)] on all takes the form 

T(r,  f) = -0  [P(20) f‘  /1(4, 

N m 
	r) [RAJ + eaki,e Ap.„„e)de] Jr 

	

3 

	 (13-22) 

where 

(13-23a) 

and the solution (13-22) is introduced into this expression. If we take into account 
the following relations obtained from equation (13-21) 

f tp(2.„„ r) dv = 0 
	

for 	2„, 0 0 	 (13-24b) 

=  I dv 	since 	1b 0  = I for A0 =0 	(13-24c) 

then equation (13-24a) gives 

T..„,_ 	  

E,(,i.0),sA(20,odd t 
(13-25a) 

du 

This result implies that the first term in the solution (13-22) resulting from the 
eigenvalue Ao  = 0 is the average value of T(r, t) over the finite region R. For the 
special case of no heat generation and all insulated boundaries (i.e., OT/Oni  = 0), 
the quantity A(Ao, r) vanishes and equation (I3-25a) reduces to 

F(r')dv 

T„,.(t)= 	 (13-25b) 

fR di) 

= 	dr' 
Clearly, the expressions given by equations (13-25) are the generalization of the 
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where 

L  
N(18,,,)=-• 	EX(Y, x)j2  dx (13-27c) 

13-2 APPLICATIONS IN THE RECTANGULAR 
COORDINATE SYSTEM 

The general analysis developed in the previous section is now applied for 
the solution of time-dependent heat conduction problems in the rectangular 
coordinate system. The one-dimensional cases are considered first for the finite, 
semiinfinite, and infinite regions. The multidimensional problems involving any 
combinations of the finite, semiinfinite, and infinite regions for the x, y, and z 
directions are then handled by the successive application of the one-dimensional 
integral transform. 

One-Dimensional Problems of Finite Region 

We consider the following heat conduction problem for a slab, 0 x L: 

z 

ax2 	

1 aT(

at

x,t) 
— + —g(x, —

a 	
in 	0 < x < L, t > 0 	 (13-26a) 

k  

> 	 (13-20h) 

k2 —+ h 2 T = f2(t) 
OT 

ox 
	 at 	x=L, 	t>0 	 (13-26c) 

for 	t = 0, 	in 0 < x L 	(13-26d) T(x, = F(x) 

The eigenvalue problem associated with the solution of this problem is exactly . 
the same as that given by equations (2-32). Clearly, 'this eigenvalue problem is 
the one-dimensional version of the general eigenvalue problem (13-2). To con-
struct the desired integral-transform pair for the solution of the above heat con-
duction problem, we need the representation of an arbitrary function, defined in 
the interval 0 < x L, in terms of the eigenfunctions of the eigenvalue problem 
(2-32). Such a representation has already been given by equation (2-36). Then the 
integral-transform pair for the function T(x, t) with respect to the .v variable is 
readily obtained by splitting up the representation into two parts as 

Inversion formula: 	T(x, t) 	E 	T(fl,„, t) X(11., x) — 

N(IL) 
	 (13-27a) 

L 

Integral transform: 	t(fl„„ t) =. 	X(fli„, x')T(x', t) dx' 	(13-27b) 
.,•=o  

The functions X(13„„x),. N(P„,), and the eigenvalues Y m  are obtainable from 
Table 2-2 for the nine different combinations of boundary conditions at x = 0 
and x = L. 

To solve the heat conduction problem (13-26), we lake the integral transform 

of equation ( l 3-26a) by the application of the transform (13-274 That is, we 
multiply both sides of equation (13-26a) by X (11„„x) and integrate over the 
region 0 < x < L. The resulting expressions contains the term 

r1 n x)-
02T

dx ax2 

which is evaluated as discussed in Section 13-1 by making use of Green's theorem 
(or integrating it by parts twice), utilizing the eigenvalue problem (2-32), and the 
boundary conditions (13-26h) and (13-26c) of the above heat conduction problem. 
Then, the integral transform of equation (I3-26a) leads to the following ordinary 
differential equation for the transform T(fl„„ t) of temperature 

d fl„„ t) 

dt 
• - + alf,,7(/4„1)= 	1) 

	
for 	t > 0 	(13-28a) 

t) = F(fir) for t = 0 (13-28b) 

where F(13„,) is the integral transform of the initial condition function F(x) and 
/(ff m, t) is defined below. The solution of equations (13-28) gives the transform 
of temperature T(/3m,  1); when this result is inverted by the inversion formula 
(13-27a) the solution of the heat conduction problem (13-26) becomes 

7(x, I) 
m=1 N(P.) 

X(13m, x) 	.,111 [F( f J,,,) + 	pi( 18.4  tf) d 	(13-294 	. 

where 

.1.2(1'1 
	

(13-29h) 

(13-29c) 

(13-29d) 

k 
ax

+h T= f i (t) 	at 	x = 0, 

= il(11„,,r) + 
[ X(/1„„ x) 

f 	+ x(11„„-v) 
1:2 

	

L  
F(fl,,,)= 	X(fi„„ x')F(x') dx'

o  

	

0-(p,„t')-- 	X(I3„„ x')g(x', t') dx' 

special cases considered in Examples 2-2 and 3-2 of problems with insulated 
boundaries. 



Oi (X, T, t) = Toi(x, r) 	for 	t = 0, 	in 0 <,x < L 	(13-34d) 

where j = 0,1,2. In the following examples we consider some special cases of the 
one-dimensional problem (13-26). 

Example 13-1 

Obtain the solution of the following heat conduction problem for a slab by 
utilizing the general solutions given previously. 

d'T 1 	1 DT(x. t) 
+ 	1,1= 

ax-  k 	a cat 

oT 0  

ax — 

T = 0 

T = F(x) 

in 	0 < x < L, t > 0 	(13-35a) 

at 	x = 0, 	t > 0 	(13-35b) 

at 	x = L, 	t > 0 	(13-35c) 

for 	1 = 0, 	in 0 x <L (13-35d) 
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DT 
—k,—!+11,Th  = 0 	at 	x = 0, 	t > 0 	(13-32b) 

ax 1■1(1?„,)= 	[X(13,,,. x')] 2  dx' 
	

(13-29e) 

If the boundary conditions at x = 0 or x = L or both are of the first kind, the 
following changes should be made in the term A(13„,. e) defined by equation 
(13-29h): 

When k, = 0, 

When k, = 0, 

replace 

replace 

(17111• X)  

X(f3„., x) 
k, 

=0 

= 0 

by 

by 

1 tlX(11„„x) 

	

h F 	dx 

1 dX(fin„x) 

	

h, 	dx  
--- 

(13-29f) 

(13-29g) 
v=./. 

We also note that the solution given by equations (13-29) is also immediately 
obtainable from the general solution (13-18) by setting 1fr(fi„,,x1 ) = X(/3„,.xl, 
tp(iim,x'd= X(P„„ 4), and w(xi) -= 1, 

The eigenfunctions X(/3„„ x), the normalization integral N(fl,„), and the eigen-
values fl„, appearing in the solution (12-39) are obtainable from Table 2-2, 
Chapter 2 for the nine different combinations of the boundary conditions. 

Alternative Solution. In some cases it is desirable to split-up the solution, T(x, t) 
as 

2 	 2 

T(x, t)= E Top,i) + 	t)— E Tj(x,t) 
i=0 

k, —
19Th 

h 27; 0 	 at 	x=L, 	t>0 	(13-32c) 
ax 

7ht.r,t)=1(s)—Top, 0) 	for 	= 0, 	in 0 < x < L (13-32d) 
J=t1 

The functions T(x, t) are related to the functiOn 0;(x, T, r) by the following relation 

' 	(30.1(x, r', t — 
Ti(x,t)= 

where 0_,(x,'-r, t) is the solution of the following homogeneous problem 

020.1=  1 dOi(x,r, t) 
in 	0 < x < L, t > 0 	 (13-34a) 

axe  a 	at 

00. 
— k, -- + h,01= 0 	at 	x = 0, 	t > 0 	 (13-34b) 

(lx 

DO 
k2 ---- + h 20, = 0 	at 	x = L, 	t > 0 	 (13-34c) 

ax 
(13-30) 

L. 	Dr' 
(13-33) 

where the functions Toi(x, I) are the solutions of the following quasi-steady-state 
problem 

	

d2  Toi(x, _t) + 60 9(•x,
Ox2 	

= 0  
in 	0 -<x<L 	(13-31a) 

aTo, 

	

k, 	+ li,To - = 13J1(t) 	at 	x = 0 	(13-31b) 	. 

no  • 
k, 	+ 11,Tiq 	2(1) 	at 	x = L 	(13-31c) 

c 	1 	for 	i =j 

	

_ 	 and 	i, j= 0, 1,2 

	

{0 	for 	i 

The function Th(x, r) is the solution of the following homogeneous problem: 

0.2 71(x, t) 	ilT),(x,t) 
in 	0 < x < L, t > 0 	(13-32a) 

0.0 	a at 
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Solution. The solution of this problem is immediately obtainable from the 
solution (13-29) as 

X(13m,  r  T(x, t) = 	 [Tip.) + f 	ii(11.,e)de] (13-36) • 	L 
. 	N(fl..) 	 k a  

where the integral transforms F(fim) and ,t/(/1„,./') are defined by equations 
(13-29c) and (I3-29d), respectively. The eig,enfunctions X(/1„„x), the normali-
zation integral N(11„,) and the expression defining the cigenvalucs /1,,, are 
obtained from Table 2-2, case 6, as . 

1. The solution of this problem is immediately obtainable from the solution 
(13-29) as 

	

X (11„„x) 	f 	2 d X (13„„ x) 
T(x, t) 	— a E - 	 - • 	1.2 (r)(11.' (13-40) 

	

m=1 N(f'.) 	r -0 	 dx 	x= L. 

where use is made of equation ( I 3-29g) since the boundary condition at x = L 
is of the first kind. The eigenfunetions X(/1„„x), the normalization integral 
N(/1,,,) and the eigenvalues /1„, are the same as those given by equation (13-37). 
Then the solution (13-40) becomes 

 
X(fi„„x)= cos 	- = 	and 	cos liai L = 0 	(13-37) 

Wm) 

2 

Introducing equations (13.37) into (13-36) we find 

2 7,  

	

T(x,t)= . E 	'1140  cos 11,".y 	F(. r) cos 13„,x' dx' 

	

Lm=i 	fx.=, 

where the /3„, values are the positive roots of cos f3m L = 0 or they are given by 
= (2m — 1)74, m 1,2,3.... 

r 	 L +

k  
e 	q(x' Ocos 11„,x' dx' (13-38) 

Example 13-2 

Obtain the solution of the following heat conduction problem for a slab 

a2TI aT(x, t) 
axe  

in 	0 < x < L, t>0 	 (13-39a) 

aT 
43X 

at 	x = 0, 	t > 0 	 (13-39b) 

T(x,t)=
2a  E 	- 	'•114,t13„, cos 11m x 	e'°"c1-2(t')dt' 	(13-41a) 
L 	 r' -0 

since /1„, = (2m — I )7r/L and (IX/dxI x .,= 
f2(1) = yt, this result reduces to 

.1 

T(x, t) =
2n  E 	- 
L 

The integral term is evaluated as 

t' eir4,1.  de = eafiL' 

11„, sin fi„,L 

4r2.71,,, cos 11„,x 

- —I.  .- — 	I  _,..icflni 	ix  aff 4,7,  

form 

y 2 	x. 
— - - 

CcL m= t  

= — /1„,( — 1)"' -1. For 

de 	(13-4 1 b) 
rr = 0 

1  (13-42) p -1,m  cE,  

Then, the solution (13-41b) takes the 

x 	cos/1.x 
T(x,t) = 	- E (— 1)"1-  

L m.i 	r'm 

x 

(— 1)m 
cos 13,„x 
---- --- 

flm3  

(13-43) 

T = .1'2(0 

T = 0 

at 	x L, 	t > 0 	 (13-39c) 

for 	I= 0, 	in 0 x L 	(13-39d) 

Closed-form_expcessians_for  the two_scrics_aaLgin 	sec IlOte 2 al end of 
this chapter for the derivation of these.closed-form expressions) 

Consider the case when the surface temperature is given by fl(t).-- yt, where 
y is a constant. 

Solution. We solve this problem using both the solution (13-29) and its alter-
native form (13-30). 

, cos )3 „,x = 1  
L„, 1 	/J. 

E — p- 
cos/3

m
x 
	

1 
(x — L2) 

2 

L,,. 	 2 

(13-44a) 

(13-44b) 
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Introducing these results into equation (13-43) the solution becomes 

Y 2 	2 	27 m 	-1 - 	C°5 18mx  T(x, t) = + — (x - ) + — 	( - 1)"' e 41-1  
2a 	 L „, 	 /3m3  

(13-45) 

2. We now solve the problem (13-39) by utilizing the alternative form of 
the solution given by equations (13-30). Then we have  

T(x, t) = T02(x, 

where the function To  ,(x, t) sa tisfies 

027-02  

t) + Tax, t) - T2(x, t) 	 (13-46) 

the following quasi-steady-state problem 

at 	x = 0 	 (13-47b) 
3T02 

T02 = f2 (t) = yt 	at 	x = L 

the solution of which is 

(13-47c) 

7e2(-va) (13-48) 

The function T,,(x,t) satisfies the following homogeneous problem 

a2 T, 	1  aTi, 
= 	• 	 in 	0 <x<L, 	t>0 (13-49a) 

Ox- 	x E't 

8Th 
 
= 0 	- 	 at 	x = 0, 	t > 0 (13-49b) 

i-.1 X 

Th = 0 	 at 	x = L, 	1 > 0 (13-49c) 

To  = - 7i12 (x,0) = 0 	for 	I = 0. 	in 	0 .... x ....., L (13-49d) 

which has a trivial solution; hence 

Th(x,1) = 0  

Finally T, (x, I) is related to the function 02(x, t) by 

(13-50) 

• 
' 	0:0 2(X, f, t — r) 

T2(x, t) = dT (13-51) 
.= 0 	Pr' 

where 02(x, T, t) is the solution of the following homogeneous problem: 

0202 	1 002 = 
in 

at 

at 

for 

0 <x<L, 

x = 0, 

x = L, 

t = 0, 

t>0 

1 > 0 

t > 0 

in 	0 ‘.. x ‘. L 

(13-52a) 

(13-52h) 

(13-52c) 

(13-52d) 

0x2 	adt 

a02 
= 0 

i'x 

02 = 0 

02 = To, (x, r) = yr 

When equations (13-52) are solved and 02(x, T, t) is introduced into equation 
(13-51) we obtain 

27 a' 	 cos ig x 

	

T 2(x , 1) 	E (— 
/8  m3  

Introducing equations (13-48), (13-50), and (13-53) into equation (13-46), we 

find 

Y2 '1" (_tr-icosfindc 2y 

	

a L„,_ 	
i 

m 	 )`fm

1
'3

-54) 

when the closed-form expression (13-44b) is introduced, the solution (13-54) 
becomes 

T(x t) 	— (x2  - 12) 2y — E ( _1)„,— e _„„1, cos  p„,x 

	

2a 	aL„,= 

which is identical to equation (13-45). 

One-Dimensional Problems of Semiinfinite and Infinite Regions 

The integral-transform technique developed for the solution of heat conduction 
problems of finite regions is now extended for the solution of problems of 
semiinfinite regions. Only one of the space variables, the x variable, needs to be 
considered, because the same results are applicable for the solution of problems 
involving y- or z- variables. 

Region 0 x co. To illustrate the basic concepts, we consider the solution of 
the following one-dimensional, time-dependent heat conduction problem for a 

, 

(13-53) 

(13-55) 
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semiinfinite region: 

0 2T I 	1 Mx., t) 

	

- g(x, t)=  	in 	0 < x < co, t > 0 	(13-56a) 
ex' k 	a at 

k, 

	

r1 T 
 -I- h T = 	at 	= 0, 	t > 0 	(13-56h) 

rTix 

T(x, t) = F(x) 
	

for 	t = 0, 	in 0 4 x < x, (13-56c) 

Basic steps in the solution of this problem can be summarized as follows: 

L Develop the appropriate integral transform pair. The integral-transform 
pair is developed by considering the eigenvalue problem appropriate for 
the problem (13-56) and then representing the function T(x, t), defined in 
the interval 0 -4. x < co, in terms of the eigenfunctions of this eigenvalue 
problem and then by splitting up the representation into two parts as the 
inversion formula and the integral transform. 

2. Remove the partial derivative a2 T/Ox' from the differential equation 
(13-56a) by the application of the integral transform and utilizing..the.. 
eigenvalue problem and the boundary conditions for the heat conduction 
problem. 

3. Solve the resulting ordinary differential equation for the transform of tem- 
perature subject to the transformed initial condition. Invert the transform 
of temperature by the inversion formula to obtain the desired solution. 

Step I is immediately obtainable from the results available in Chapter 2. That 
is, the eigenvalue problem is given by equations (2-48) and the representation of 
a function in the region 0 x < co is given by equation (2-52). Then, the integral-
transform pair with respect to the x variable of the function T(x, t) is immediately 
obtained according to equation (2-52) as 

Step 2 involves taking the integral transform of equation (13-56a) by the 
application of the transform (13-57b); that is, we multiply both sides of equation 
(I 3-56a) by X(JI, x) and integrate with respect to x from x = 0 to co, to obtain 

0 

X (fl, x)— dx -  
C'T JO, t) = 1 dt(11, t) 

ex 2 	k 	a dr 

The integral on the left is performed by integrating it by parts twice and utilizing 
the eigenvalue problem (2-48) and the boundary condition (13-56b). (See note 3 
at end of this chapter finr the details of this portion of the analysis.) Then the 
resulting equation and the transform of the initial condition (13-56c), respectively, 
become 

	+ afi2  T03, t) -
a 	

t) a 
X (fl, x) dT(f), t) 	- 

di 	 k1 	x=c1 
f,(t) 	for 	t > 0 (13-58a) 

T(il, = F(fi) 	 for 	f 0 (13-58b) 

In step (3), equation (13-58) is solved for T(P, t) and the result is inverted by 
the inversion formula (13-57b) to obtain the solution as 

(13-59a) T(x, t) = 	0  XNUluj';)  e-'01[F-  (16) f e'1121.  A(fi, Odd 

where 

a 	 Ca, x') 
A(1(l,e)= - '4(fl, l') -I- a

X 
	I 	• f i (e) 

k1 
(I3-59b) 

FA= .f °c.  X (fl, x')F(x')dx' 
	

(13-59c) 

Inversion formula: T(x, 	= 
(13-572) r)4113 0XNW0-)x) 

Integral transform: T(/1,1) = X (It, x')T(x', t)d x' ( I 3-57b) 

g(g, 	f X ( i  6, xr)g(x', i')dx' 	 (13-59d) 

If the boundary condition at x = 0 is of the first kind (i.e., k = 0) the following 
change should be made in the term 4(11,0: 

rrI 

X (A x') 

k1 	o 
where the functions X (ii,x) and N(B) are listed in Table 2-3 for three•different 
boundary conditions at x = 0. We note that, the eigenvalues /3 for a semiinfinite 
medium is continuous, as a result the inversion formula is an integral over /3 from 
zero to infinity instead of a summation over the discrete eigenvalues as for the 
finite region. 

1 d X (#, x') 

h, 	dx' 	x'=0 

The functions X(ii,x) and N(/3) are obtainable from Table 2-3 for three different 
boundary conditions at x = 0. 

Replace by (13-59e) 



(13-61) 1 f' 
F*(x) = - 	 F*(x') cos f3(x' - x)dx.  

p= 0 .1 	- 

1 
F*(x) = — 

 

2n a ,. [ 	
eifixF*(x,}dx,]dfl 
	

(13-62) 

Integral transform: 
• 

t) = 	eilLe  T(x', t)dx' 	(I 3-63h) 
• • 

522 	INTEGRAL-TRANSFORM TECHNIQUE 

Region - co < x < c o. We now consider the following heat conduction problem 
for an infinite medium 

in 	- co <x < oo, t> 0 	(13-60a) 

for 	= 0. 	in the region 	(13-60b) 

The eigenvalue problem appropriate for the solution of this problem is given by 
equation (2-64d) and the representation of a function F*(x), defined in the interval 
- x < x < ao. in terms of the eigenfunctions of this eigenvalue problem is given 
by equation (2-66d) as 

This representation is expressed in the alternative form as (see note 4 at the end of 
this chapter for the derivation) 

where i = 	1. 
This expression is now utilized to define the integral-transform pair for the 

temperature T(x, t) with respect to the x variable as 

Inversion formula: 	T(x, t) = 	e-  'fix T (fl, t)d 13 	(13-63a) 
2n ft= 

Taking the integral transform of the heat conduction problem (13-60) according 
to the transform (13-63b), we obtain 

for 	t > 0 	(I3-64a) 

for 	t= 0 	(13-64b) 

When this equation is solved for T(J1, t) and the result is inverted by the inversion 
formula (13-63a), we obtain the solution of the heat conduction problem (13-60) 

as 

T(x, t)= 

where 

The order of 

T(x, t)= — 
2n =  

F  
2n 

We make use 

then the solution 

T(x, t) = - I-- 
(47tat) 1 / 2  

k 

Example 13-3 

— 
2n 

_ 

k 

of the 

--- 

=o 

APPLICATIONS 

integration 

(13-66) 

r  

=0  

l 

2n j 

..x  
x. _ 

f 

Fix)dx.  

following 

IN 

F(/1) 

6(fl, 

' 

m  r 

a  

exp 
, 

dt' 

= - 
 e-°fl' -̀ ax[F(ft) 

is changed 

becomes 

THE 

= 

ti=  - CO 

9(.r', 
- 

71 7 r 

( 

integral 

RECTANGULAR 

+ + 

and the 

t')dx' 

- tpx d 

x  - 42  

' 41( x 

COORDINATE 

0: 
f 	g(13, 

k J
r 

	0  , 

F(x.)dx' 

g(x', t')dx' 

result is rearranged 

tip 

ap,41-0— := 

- =. 	1 	e 	.014at 

(4nat) I I 2  

F(x)dx' 

(x 	x')2 

SYSTEM 	523 

0(11'10 	(13-65a) 

( 1 3-65h) 

(13-65c) 

as 

-..c.tdp 	(13-66) 

(13-67) 

g(x
„ 

t
,
)dx

, 	
(13-68) 

4at 

[4na(t - 	/2 exp
[ 

4041 - t') 

Obtain the solution of the following heat conduction problem for a semi-
infinite region 

iaT 	I 	I i T(x, t) 
- + 	q(s.1)= 

Ps' 	k . 	a 	Pt 

ar = o 
(2x 

T = F(x) 

in 

at 

for 

0<x<oo, 

x = 0, 

t 	0, 

t>0 

t > 0 

0 	x < oo 

(13-69n) 

(13-69b) 

(13-69c) 

ct2 T 	1 OT(s, t) 
- q(x. 1) = 

Os' 	k .  a 	t 

71x, = Fix) 

itT(/1, t) 	- 	a 
+ 0'7'0,6= tj(f3, 

dr 

t) = F(13) 
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exp(

(x — .X')2  exp  (x + x)2  pdx, 
4a(t — t') 4a(r — t') 

Solution. The solution of this problem is immediately obtainable from 
equations (13-59) as 

T(x, t)= f 0 N(p)  e 	.F111) -F c1,. 
o

e°0̀  f3, tlde]dil 	(13-70a) 
"' X (Pi  x)  „fit- , 

where 

(13-74) 

Several special cases are obtainable from this solution depending on the 
functional forms of the heat-generation term and the initial condition function. 

Multidimensional Problems 

= 	X(16, x')F(x')dx' 
=o 

(13-70b) 

jo, 	f
X(3, x')g(x', t')dx' 

=o 
(13-70c) 

The functions X(fl, x) and N(13) are determined from case 2, Table 2-3, as 

The solution of multidimensional, time-dependent heat conduction problems by 
the integral-transform technique is readily handled by the successive application 
of one-dimensional integral transforms to remove from the equation one of the 
partial derivatives with respect to the space variable in each step. In the rect-
angular coordinate system the order of the integral transformation with respect 
to the space variables is immaterial. This matter is now illustrated with examples. 

X(fi, x). cos /Ix 	and 	
N(fI) — 

1 	2 
(13-71) 

Introducing equations (13-71) into (13-70) the solution becomes 

2 
7 (x, = f 	e "Iì ` cos fix I  F(x') cos [Ix' dx' dli 

p. o 	 Jr.  =o 

	

.1 CIO cos 11 	g(x',Icos 	dx' 41 
irk p =0 	 =0 	=0 

(13-72) 

In this expression the orders of integration can be changed and the integrations 
with respect to II can be performed by making use of the following relation 
[i.e., obtained by adding equations (2-57b) and (2-57c)]: 

-

2 	

e.-°p ' cos 'ix cos 13x' dp 
7C p = 0 

(4Rat)1 J 2 	4ar 	 4ar 
[exp( 	 + ex p 

(

(x + x)2 	
(13-73) 

Then, the solution (13-72) takes the form 

1 

(47tat)112  f.=, ( 

(x— x')21+ exp( 
 (x + x')2)] 

dx' T(x, 	
F(xl  

t)= 
4cct 	) 4at 

cc 
g(x' 1'). 

k 	[47rct(t — 11]"'  

Example 13-4 

Obtain the solution T(x, y, Of the following heat conduction problem for a 
semiinfinite rectangular strip, 0 x< co, 0 5  y h: 

dx  2 aye 	k 	x Di 
T 82T g(x, y, 0 1 aT 	

in 	0<x<cr..,, 0<y<b, t > 0  

(13-75a) 

T = 0 
	

at 	all boundaries 	(13-75b) 

T=0 
	

for 	t = 0, in the region 	(13-75c) 

The integral-transform pair for T(x, y, 0 with respect to the x variable is 
defined as [see equations (13-57)] 

rc.0  

f
N

13 	- 	- 	- 
Inversion formula: 	T(x, y, t) =1*

4) 

X( x) 
 T(a, y, d )6' 

P' 	{1(3) 
sp  ^(1 

Integral transform: 	TV, y, 	f 	X(,G, x')T(x`, y, dx' 	(13-76b) 

and the integral transform pair for TO, y, 0 with respect to the y variable is 
defined as [see equation (13-27)] 

Y 39  = Inversion forinula: 	'TM y, t) 	E 	t) 	(13-76c) 
NCY.) 

Integral transform: 	T(13, y„, t) = 	Y(7„, y')7(,6, y', r)dy' 	(13-76d) 



' 	X" 	X. 

m 	m=1 n=1 p=1 
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where the bar denotes the transform with respect to the x variable and the 
tilde with respect to the r variable. 

We take the integral transform of the problem (13-75) first with respect to 
the x variable using the transform (13-76b) and then with respect to the y 
variable using the transform (13-76d) to obtain 

117- 	„ 	a 
I 1q11- t  7,;17.(it. Tt. 1) "- --1/(11•T„. t) at 	 k. 

ffP. 'Art/ = 	 for 	t=0 (13-77b) 

Equation (13-17) is solved for T and successively inverted by the inversion 
formulas (13-76c) and ( I 3-76a) to find the solution of the problem (13-75) as 

	

x 	,,' X (P, x)llT„, .11 p-zo,+.,.)1 

	

T(x, y.t)= 	0 1: 1 -  N—rfli-j\-iry:r - f 

2-,
_ f, 

.0  

	

k 	,• 
. eifli  '41cilui.TE..1')df' 41  

where the double transform ri(fl, 	t) is defined as 

f n i ‘ 
in, y,I. 0= 	;VW. x') ny,,, ylgix'. y'. Odx' dy' 	(I 3-78h) 

The functions x(p,x) and N(fi) are obtained from case 3, Table 2-3, as 

1 _ 2 
n 

and the functions Y{y„,y) and N(y,,) from case 9, Table 2-2, as 

Ir(y„, y) = sinyny, 

and the -y,, values are the positive roots of sin y„b = 0. Introducing the results 
(13-79) into equation (13-78), the solution becomes 

4a f ' 	r 	_ 	,,.i.  , 	. 
T(x, y, t) •--- --- 	E e 20 1-" sin fix sin y„i.  

nbk p=0„1  
h 	x 

„,,,+..,, 	

1  

g(x', y',r)sin fix' sin yy' dx' dy de di.? 
J r = 0 	 y' =0 Jx- = 0 

(13-80) 

In this solution, the integration with respect to /3  can be performed by making 
use of the following result [see equation (2-57d)]: 

1 	
(x — x')2 	 (x + 42  

[ = - - - -  - • -; - exp — --- --- — exp 
[4nAt - /'}r' 	4a(1 — 1`) 	4a(t — IV 

• Then, the solution ( 3-80) takes the form 

2a 	 e/7?0' 
T(x, y,t) = 	E 	sin y,„ y 

bk „. 	 fr.° PIncf(f — e)]112  
b 

g(x', y', t') sin -Nyi 
i'=0 x' = 0 

2 

lexp( — 

	

4a(t t) 	
exp( 	X)

t'
2 )1dx' 	tIt' 

4a(t — ) 

Example . 13-5 

Obtain the solution T(x, y, z, t) of the following heat conduction problem for 
a rectangular parallelepiped 0 < x a,0 < y b,0 z < c. 

02T 02T 02T q(x, y,z,t) 1 07' 
+ 	+ 	+ 	= 	in 	0 <x < a, 0 < y < b, ox.2 	az2 	 a at  

0 < z < c, t > 0 (13-83a) 

T = 0 	 at 	all boundaries 	(13-83b) 

T = 0 	 for 	t = 0, in the region 
(13-83c) 

Solution. This problem can be solved by the successive application of the one-
dimensional integral transform to the x, y, and z variables, solving the resulting 
ordinary differential equation and then inverting the transform of temperature 
successively. It is also possible to write the solution immediately from the 
general solution (13-15) by setting 

tfr„,,(r) 	x)- Y(y„, y)-Z(tip,z) 

—'(fl! )1! + Of,) 

• a 	b 	fr 
and 	dv 	 dx' dy' dz' 

fR 

for 	t > 0 	(13-77a) 

(13-78a) 

X(fl, x) = sin flx. 

1 	2 

111().„) 	b 

(13-79a) 

(13-79b) 

2  i ' 	_ 3 - e . P c"•  ) sin fix sin fix' dfl 
n .0 .0  

(13-81) 

(13-82) 



1%,„, = sin YriY, NUJ =
2' 	

sin ..,;„/) = 0 	(13-85b) 
Inversion formula: 	T(r, t) = 	R_)( 13, 	r? 

m-1 N (fi„,) 
(13-87a) 

(13-84a) 

X Om, x)Y(v„, 	Y)Z(iIp,z) -.(0„- v ;',2,- + - 1.'0' T(x, y, z, t) .EEE 	 e 
m-. I n= 1 p= 1 	N(Pm)MYJN(r1 p) 

f _cc ' ea+ r,i+1110'•. k,„, 7„, tli„ tlde 
k ,. = r, 

N(tip)= -
c 

2' 
Z(ti p,z)= sin iv, sin 	= 0 	(13-85c) 

Integral transform: 
6 

= 	r'Ro(f3,„ r)T(r', t)dr' (.13-87b) 
r' =o 

- 	(-13-88) 
O'T' 	1 OT 	1 ._ 	1 d71113, t) 

rR 	rj[— 
0r2 r ar 

- — / ± 
k 

g(i3.,1) 
 a dt 

fo  
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We obtain 

where the triple transform is defined as 

b  4() Y Up, e)= 	f 	j.c 	gm, ,x1Y(Y AZ(fri z')g(x', y', z', t')dx' dy' dz' 
Je=1:1 e=o 

(I3-84b) 

The eigenfunctions, the normalization integrals and the eigenvalues are 
obtained from case 9, Table 2-2, as 
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a r < oc. The integral-transform pair for each of these cases is different. There-
fore, we develop the appropriate transform pairs and illustrate the methods of 
solution for each of these cases. 

Problems of Region 0 r b. We consider the following heat conduction problem 
for a solid cylinder of radius r = b: 

0 2T I OT a(r, f) I OT 
= 

01.2 	r Or 	k 	a at 

k2 
 dr
L-Fh, T = f,(t) 

T = F(r) 

in 0 -4 r < ii, t > 0 (13-86a) 

at r = b, t > 0 (13-86b) 

for t = 0, in 	0 < r < b (13-86c) 

The appropriate eigenvaiue problem is given by equations (3-18) for the case 
v = 0 since the problem considered here possesses azimuthal symmetry. The 
integral-transform pair with respect to the r variable for the function T(r, t) is 
determined according to the representation (3,23) by_setting_v--.0._We obtain  

X (fl „„ x) = sin /3.x, N((3„,)=
2' 	

sin /3„,a = 0 (13-85a) 

13-3 APPLICATIONS IN THE 
CYLINDRICAL COORDINATE SYSTEM 

To solve the heat conduction problems in the cylindrical coordinate system with 
the integral-transform technique, appropriate integral-transform pairs are needed 
in the r, 41, and z variables. The integral transform pairs for the z variable depends 
on whether the range of z is finite, semiinfinite, or infinite as well as the boundary 
conditions associated with it. Since the transform pairs for the z, variable are 
exactly the same as those discussed previously for the rectangular th

is system. this matter is not considered here any further. Therefore, in this section 
we deVelop the integral transform pairs for the r and 	variables and illustrate 
their- application to the solution of heat conduction problems involving (r, t), 
(r, 	t), (r , z, t), and (r, 4), z, t) variables. 

Problems in (r, t) Variables 

The one dimensional, time-dependent heat conduction problems in the r variable 
may be confined to any one of the regions 0 r < b, a < r < b, 0 r < co, and 

where the functions Ro(j3„„ r), (Pm) and the eigenvalues lf„, are obtainable from 
Table 3-1 for three different boundary conditions by setting v = 0. 

To solve problem (13-86), we take integral transform of equation (13-86a) 
according to the transform (13-87b). That is we operate on both sides of equation 
(13-86a) by the operator rorRO (/3., r)dr and obtain 

The integral on the left is evaluated encl. by integrating it by parrs twice or by 
using Green's theorem and then utilizing the boundary conditions (3-I8b) for 
v = 0 and (I3-86b); we find 

Jo 
rRo()9„„ r)[—

d2T
+ -

1 
—
01

dr = — 13,1,T(13„„r) + b
Ro(13„„ 

dr' r Or 	 k, 	L
f

2
(t) (13-89) 

Introducing this expression into equation (13-88) and taking the integral transform 

Q 

C 

Ct  

f. 
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of the initial condition (13-86c) we obtain 

dT(fl„„ t) 	R0(13 „,, r) 
+ 013„,T(Pai, t) = 	t) + ceb 

2 	r=b 

 

f 2(t) 	(13-90a) 

 

1(13„,.t)= F(I3) 	for 	r = 0 	 (I 3-90b) 

Equation (13-90) is solved for '11/1„„t) and inverted by the inversion formula 
(13-87a) to yield the solution of the problem (13-86) as 

where 

=m 	1 	NU 1 . ) 

fl(fi„„ t') = !o(fir,„ 

F(13„,)= f 

Jr( fl„,, t') = 

N( ra) = 

..i
b  

0 

?Po( 
0 

+ 
• 	0 

t') 	Rat,' r) + ab 

A(/1„„ ()dr] 

f2(e) 
r=b 

(13-91a) 

(13-91b) 

(13-91c) 

(13-9Id) 

(I3-91e) 

r' Ro(13„„ 

r' Ro(11,,„r')g(r', 

k, 

r')F(r') dr' 

t') dr' 

j1„,,e)I2  dr' 

Here, Ro(13,„,r), Ma„,) and Pm  are obtained from Table 3-1 by setting v = 0. For 
a boundary condition of the first kind at r = h, the following change should be 
made in equation (13-91b): 

r)  I 	 1 d R0(13„„ r) 
Replace 	 by 	 (13-91f) 

k2 	Ir=b 	 112 	dr 	Ir=b 

Problems of Region a r b. We now consider the heat conduction problem 
for a hollow cylinder a < r h given as 

(I3-92a) 

(13-92b) 

(13-92c) 

T = F(r) 	 for 	t = 0, 	in a r b 	(13-92d) 

The cigenvalue problem is given by equations (3-47) for v = 0, and the integral-
transform pair is obtained according to equation (3-51) by setting v = 0. We find 

Ro(13„„ r) - 
Inversion formula: 	T(r, t) = E 	T(11„„ t) 	(13-93a) 

1 N(Il.) 

Integral transform: 
	

'7U.,  = 	r'Ro(11„„r`)T(r', t) dr' (I3-93b) 
e=a 

where the functions R,,(fl„„ r), N(Pm) and the eigenvalues fl„, are obtainable from 
Table 3-3 by setting v = 0 for any combination of boundary conditions of the 
first and second kinds. 

We now take the integral transform of the system (13-92) by the application 
of the transform (13-93b), utilize the eigenvalue problem (3-47) for v = 0 as 
described previously, solve for the transform of temperature, and invert the result 
by the inversion formula (I3-93a) to obtain the solution for the temperature as 

T(r,t)= 	R°(13"" r) 
 e

-'111‘' [F(13,0 +
a 	

O A., tide] (13-94a) 
W.) 

where 

9(11„„ I') = - o(I1„„ I') + a [a
Ita(

ki  

- 

a 	 1 „, r) 

r=a 	 k2 
f 1(0 + b 	- • 

R„(II„„ r) 

r' R o(13„„ r')F(r') dr' 
a 

o(ig'„„ 1') = 	r' R 	„„ r')g(r.  , t') dr' 
a 

N(fi„,) 	4170(fl„„ r')]2  dr' 

Here, Ra„„r), N(fl„,), and An  are obtainable from Table 3-2 by setting v = O. 
For a boundary condition of the first kind the following changes should be 
made in equation (13-94b). 

(13-94f) 

Ro(A„,r) 

k2 	r=b 
	by 

02 T 	I DT 	g(r, t) 	1 DT 
— + — — = — in 

at 

at 

a<r<b, 

r=a, 

r = h, 

t>0 

t>0 

t > 0 

are 	r 	k 	at 

a 
k,

T
—+h,T = f 1(1) 
dr 

k ,+ h 2 T = f2(t) 
Or 

1.2(r)] 

(13-94b) 

(13-94c) 

(13-94d) 

(13-94e) 

When k, = 0, replace 

When k2  = 0, replace 

R0(9„„ r)1  
k1 Ir=a 

by 
1 dR,20„„ 

11, 	dr 	Ir=a 

1 dR0(/„,,r) 
112 	dr 

(13-94g) 
=b 
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Problems of Region 0 r Coo. We consider the following heat conduction pro-
blem for an infinite region 0 r < co: 

02T 1 aT g(r, t)1 OT 
are  r ar 	k 	at 

= 	in 	0 < r < oo, t > 0 	 (13-95a)  

We now consider the following integral [36, p. 395] 

r2  + r' 21  (rr' 
C'im[1.1,.([11-)JOr')d,8 = —

1 
exp  	— 

11=0 	 2at 	[ 	2at 	2at 
(13-99) 

T = F(r) 	 for 	t = 0, 	in 	0 c r < co (13-95b) 

The appropriate eigenvalue problem is given by equations (3-35) for v = 0. and 
the integral-transform pair is constructed according to the representation (3-38) 
for v = 0; we obtain 

Inversion formula: 	T(r, t)
if 	

J 0(13r)T(13, t) 	(13-96a) 
=0 

Integral transform: 	P/3, t) = 	r'J 0(13r1T(r' , t) dr' (13-96b) 
r'=0 

We take the integral transform of the system (13-95) by the application of 
the transform (13-96b), utilize the eigenvalue problem (3-38) for v = 0 as discussed 
previously, solve for the transform of the temperature and invert the result by 
the inversion formula (13-96a). We obtain 

T(r, 	= f.10(13r)e-0"[F(fl)+ - 
P=0 	 k 

e'F'a(13, e)deldli 	(13-97a) 
r 	o • 

where 

F w  M = r'.10(13r)F(e)dr' 	 (13-97b) 
=o 

4(6,e)= 
efto 

r'.10(firly(r', t') 	 (13-97c) 

By setting v = 0 in equation (13-99) and introducing the resulting expression 
into equation (13-98) we obtain  

T(r, 0 = I 
tat 	

r' exp -• r'  + r. 2  1(1)4, 17.'  dr' 
,.. =,„ 

5 
4at 	2at 

1 ' r'  

	

J" 	

f 	 r 2  + r'2  1 , , ' , ( 
 fir 
	) „ exp 	4a(t  _  e)  gir , t,)10  2a(t  _  e)jdt dr 

1- 
 

2k r'=0 r'=0 1  — t' 
(13-100) - • 

Problems of Region a 4. r < co. We.now consider the following heat conduction 
problem for a semiinfinite region a...c r < co 

02  T 1 al-  g(r, t) haT 

are r ar 	k 	at 
	= 
	

in 	a<r<oo, (>0 	(13-101a) 

	

k,
r 	

f i (t) 

	

0T 	
at 	r = a, 	t > 0 	(13-101b) 

T = F(r) _ for t 0, in a r < oo (I3-101c) 

The eigenvalue problem is given by equations (3-39) and the desired integral 
transform pair is obtained according to the representation (3-40) as 

03 	 /3  

	

Inversion formula: 	T(•, t) 	 Ro(13,r)T(13, dfl (13-102a) 
p o NO) 

	

Integral transform: 	T(/3, 1). 	r' Ro([1, ti)TV, 0 dr' 	(13-102b) 
r'mer 

Introducing (13-976, c) into (13-97a) and changing the order of integrations we 
find 

T(r, t) = f 
	r'F(r') r'=0 	 fp=o 

a 
+ - 	eg(r', t')[5 	'132(') A 1,1(130401 dllide dr' 

k o-'=0 r'=0 	 -0 
(13-98) 

where the functions 	r) and N(/i) are available from Table 3-2 for the three 

	

different boundary conditions at'r = a. The problem is solved by taking integral 	--------- -- 
transform of the system (13-101) according to the transform (13-102b), utilizing 
the eigenvalue problem (3-39) as discussed previously, solving for the trans-
form of the temperature and inverting the transform by the inversion formula 
(13-102a). We obtain 

T(r, t)= f 	R0(11,r)e-afl:'[F(fl) + 	A(fl,e)de]clig (I3-103a) 
0 ,, 0  N(13) r'=0 

e 	 o(l3r)J0(flr')dfildr' 
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where 

	

A(13,0= 	- d(I3,t')+ cca
Ro(fl,r)

1 	f i (e) 
k, 	,.„ 

	

F'(1?)= 	r'Ro([1,r1F(rldr' 

	

#(1q,11= 	r'R0(fl,r1g(r',e)dr' 

Problems in (r, t) Variables 

When the partial derivatives with respect to the r and 4) variables are to be 
removed from the heat conduction equation, the order of integral transformation 
is important. It should be applied first with respect to the (/) variable and then to 
the r variable. Therefore, we need the integral-transform pair that will remove 

 fro-m-the-differential-equation.the partial-derivative with respect to the 0 variable, 
that is 02T/00 2. The ranges of the 0 variable in the cylindrical coordinate system 
include 0 < ¢ < 2ir as in the case of problems offitif cylinder and 0 4 4 < 00, 
for 0, < 2m, as in the case of problems of a portion of the cylinder. The integral 
transform pairs for each of these two situations are different. Therefore, we first 
develop the integral-transform pairs with respect to the 4) variable for these 
two cases and then present its application in the solution of heat .conduction 
problems. 

Transform Pair for 0 (b.< 2H. In this case since the region in the 0 variable 
is a full circle, no boundary conditions are specified in 0 except the requirement 
that the function should be cyclic with a period of 27r. The appropriate eigenvalue 
problem in 0 is given by equation (3-52a) and the representation of a function 
in the interval 0 < 0 4 27t in terms of the eigenfunctions of this eigenvalue 
problem is given by equation (3-55b). Therefore, the integral-transform pair with 
respect to the 0 variable for the function T(r, t) is obtained by splitting up 
the representation (3-55b) into two parts as 

	

T(r,rb, t) 	E T(r. r, t) 
,  

ary conditions of the first and second kind only. For example, for boundary 
conditions of the first kind at both boundaries, 0 = 0 and 0 = 00,' the eigenvalue 
problem for the 0 variable is given by 

(12(1)(4)) 
;i4,2 0(44 = 0 

cD(45) = 0  

0 (4))= 0  

in 

at 

at 

< 	< 00( < 27t) 

0 = 0 

¢=4o  

(13-105a) 

(I 3,I05b) 

(13-105c) 

which is exactly of the same form as that given by equations (2-32) for the 
one-dimensional finite region 0 x 4 L in the rectangular coordinate system. 
Therefore, the integral-transform pair in the 0 variable for the function T(r, 0, t), 
defined in the interval 0 s 4 	00, is taken 

Inversion formula: 	T (r, d), t) 

Integral transform: 	T(r, v, 1)= 

where 

N(v) = 	0:1)(1,  

as 

(I5) — T(r,v,t) E (13-106a) 

(13-106b) 

(13-106c) 

, 	N(v) 

f 	(I)(v, 01T(r, 4/,z)do' 
d,= 0  

, (I))] 2  c11) 

For any combination of boundary conditions of the first and second kind, the 
functions (Div, 0), N(v) and the eigenvalues v are obtainable from Table 2-2,.by 
appropriate change in the notation. 

Having established the integral-transform pairs needed for the removal of the 
differential operator 02 T/302  from the heat conduction equation, we now proceed 
to the solution of heat conduction problems involving (r,0.,t) variables. 

(13-103b) 

(13-103c) 

(I3-103d) 

Inversion formula: (13-104a) 

Integral transform: 
2. 

T(r, v, t) -= f 	cos v(4)— 41')T(r,df,t)d4/ 	(13-104b) 
V.' =0 

Problems of Region 0 r 	0 -4 0 -4. 2/r. We consider the following time- 
dependent heat conduction problem for a solid cylinder of radius r = b, in which 
temperature varies both r and 0 variables: 

where v = 0, 1,2,3... and replace a by 27r for v = 0. 

Transform Pair for 0 	00()<21r). The region being a portion of a circle, 
boundary conditions are needed at 0= 0 and 0 = 0,. Here, we consider bound- 

02T It OT 	1 02T g(r,4),t) 	aT(r,42,t) 
+ + 	+  

Or' r Or r2  e02 	k 	a 	ot 

	

in 	0‘._r<b, 0 -4 0 21r, t > 0 (I3-107a) 



TV, (ff, t) = F(•, 	 for 	r = 0, 	in the region 	(13-107c) 

This problem is now solved by successive application of the integral transforms 
with respect to the 0 and r variables. 

The integral-transform pair in the 0 variable for the function T(,•. 0,1) is given 
by equation (13-104). Hence we have 

Inversion formula: 
1 

T(r, 	r) 	- E T(r, v, 1) 
TC v 

(13-108a) 

f zx 
0 Integral transform: 	T(r, v, = 	cos v(0 — 0') T(r, 0%1)4' (13-108b) 

r,b• =a 

where v = 0, 1,2,3... and replace it by 27r for v = 0. The integral transform of the 
system (13-107) by the application of the transform (13-108b) yields (see note 5 
at the end of this chapter for the details) 

aT 
k, —

Or 
+ h,T = 12(v, 

v, 1) = F(r, v) 	 = 0, 	in 0s r ib  
(13-109c) 

where the bar denotes the integral transfbrm with respect to the 0 variable. 	• 
The integral-transform pair in the r variable for the function T(r, v, 1) is 

obtainable according to the representation (3-22). We find 

Inversion formula: T(r, v, 1) = 	1V".f(fl„„ t) 	. 	(13-110a) 
.,1 NUL) 

at 	r b, 	t > 0 	(13-109b) 

for 
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The integral transform of the system (13-109) by the application of the transform 
(13-110b) yields (see note 6 at the end of this chapter for the details) 

- 
'
.(13

m
.r) 

v r) + ab
R 

a 2t- - 1 at v 2 	pow) I 	v, I) 
Or' 	r ar 	• 2 	k 	= a 	Of 

in 	0...cr<b, r > 0 	(13-109a) 

+ a/I2  T(P„„ v, r) 
dt 

T(13„„v,t)= F(13„„ v) 

k, 

for 	t = 0 

r=6 
v, 1) (13-111a) 

(13-111b) 

Equation (13-111) is solved for 7(/1„„ v, r) and the resulting double I ransform is 
successively inverted by the inversion formulas (13-110a) and (13-108a). Then, 
the solution of the problem (13-107) becomes 

1 
T(r, 	I) = 

.= 

R,(fl 	- 0 2  I •  e v) 

	1. 	e.P!,f' 	„„ v, e) del v 
r =o 

(13-112a) 
N(r'.) 

where v = 0, 1,2,3 ... 

a 
i') 	

k
-  d(P., 

and replace it by 27r 

R‘.(11„„ r) 

for v = 0 

72(v, 
r =6 

(13-112b) 
k2  

2x 

AV1 t) = 12(4)% r) cos v(c 	49' )4'  (13-112e) 
0." 0  

b 2n 

P(thn, v) = r' RJP„„ r') cos v(4) — 	)F(r' , 	dc&' dr' (13-112d) 
O' 

p(13 „„ 	t') 
b 2rt 	

R‘,(13„„ r') cos v(4) 	q5')g(r', C) dq5' dr' (I3-112e) 
r'= 0 ire 0 

and the functions R,.(11„„ r), N(f) and the eigenvalues 13„, are obtainable from 
Table 3-1, 

For a boundary condition of the first kind at r = b, the following changes 
should be made in equation (3-112b). 

aT 
k,— 112T = f t) 

or 
at 	r = b, 	t > 0 (l3-107b) 

, Integral transform: :JUL r) = 	r' R 	r' )7(,', t)dr' 	(13:1 I Ob) When k2 	 R 0, replace 	 • by 
k 2 	1r =b  

I it 	r) 

11, 	dr 

Here, the tilde denotes the integral transform with respect to the r variable. 
R,(/3„„r) and Pm  are the eigenfunctions and eigenvalues associated with the 
eigenvalue problem given by equations (3-18). The functions RN] „„ r), N(fi „,) and 
the eigenvalues /1„, are obtainable from Table 3-1 for the three different boundary 
conditions at r = b. 

Problems of Region a r b, 0...S4 2n. The extension of the above analysis 
for solid cylinder to the solution of time-dependent heat conduction problem of 
a hollow cylinder a r b, in which temperature varies with both r and 0 
variables is a straightforward matter. Clearly, the heat conduction problem 
(13-107) will involve an additional boundary condition at r = a. The definition 

(13-1121) 
r b 



(13-115a) in 	0 	< 	> 0 

(13-116a) R (0 r).-= 
T(r, v,t)= E 

- i A 1 (1)„,) 
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of the integral-transform pair (13-108) remains the same, but that of (13-110) is 
modified by changing the lower limit of the integration to r =n; then the functions 
RJ/3„„r), N(fi,„) and the eigenvalues Pm  are to be obtained from Table 3-3. As a 
result, the solution (3-112) will include an additional term in the definition of 
A(fl,„, v, t') for the effects of the boundary condition at r = a and the lower limit 
of the integrations with respect to r' will he r' = a. 

Noblents optegion 0 r h, 0 rfi 00( < 2g). We now consider the solution 
by the integral-transform technique of the following time-dependent heat con- 
duction problem for a portion of a solid cylinder of radius r = h, in the region 
0 < 	< 00(< 27) 

D2 T 	1 OT 	I 82 T 

r 	eq5i  

g(r,q5,t) 

k 	= a 

in 

I OT(r,d), t) 

t> 0 

Of 

0 ....c.r<b, 	<0<00, 
(13-113a) 

T=0 at 4)= 0, 	t>0  (13-1136) 

T = 0 

aT 
k,— + h47' = .1M, I) 

at 

at 

= 00, 	t >0 

r =h, 	t > 0 

(13-113c) 

(13-1I3d) 

T (r, 0,0 = F(r, 0) for r = 0. in the region (13-1I3e) 

The integral transform pair in the 0 variable for the function T(r, th, t) is 
obtained from equations (13-106) as 

Inversion formula: T(r, 0,1) = c1)(1', 0) T(r,v,t) (13-114a) E 
N(v) 

Integral transform: v, t) = f 	(1)(v, 4)')T(r, 0', t) d4)' (13-I 14b) 
J O 

where the functions (I)(v, 	N(v) and the eigenvalues v are obtainable from 
Table 2-2 by appropriate change of the notation (i.e., L–  00, pm,  r, X CM. We 
note that the eigenvalues v for this case are not integers, but are determined 
according to the transcendental equations given in Table 2-2. 
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The integral transform of the system (13-113) by the application of the transform 
(13-114b) yields 

02 T 1 aT v2 	1 	1 D'T(r,v,t) 
-– — 	 T + 4(r, v, t) 
are  r Or r2 	k 	a 	at 

at 	r =1), 	t>.0 	(13-115b) 

for 	t = 0, 	in 0 < r b 	(13-115c) 

where the bar denotes the integral transform of the function with respect to the 
0 variable. 

The integral-transform pair in the r variable for the function t(r,v,t) is 
immediately obtained ffom the transform pair (13-110) as 

T(Pr„,V,t)= f r'R J/1„„ 	v, t) dr' 	(13-116h) 

where the tilde denotes the integral transform with respect to the r variable. The 
functions Ry()9„„r), N(11 „,) and the eigenvalues pm  are obtainable from Table 3-1. 

The integral transform of the system (13-115) by the application of the transform 
(13-116b) yields (i.e., the procedure is similar to that described in note 6 at the 
end of this chapter) 

where 

d
+ 	„,2 	(13„„ v,t) 	A([1„„v,t) 	for 

fita„„ 	r) = /(f3m, I') 	 for 

a  
A(Pm, 	 g(/ 3m, v, t) + ab

R,,(An,r) 

k 	 k, ri b 
.74(V5 

t > 0 

t = 0 

(13-117a) 

(13-117b) 

(13-118) 

aT 	,r- 
k4 — + /14 4  =J 401 3 11 

"f(r,v,t)=F(r,v) 

Inversion formula: 

Integral transform: 



(13-122a) Inversion formula: 
1, 

T(r, 	(1 = —g  2_, T(r, v, t) 

2,1 

1(r, v, t) = 	cos v(4) 	4i',1) d4)' (13-122h) 
ca. 

Integral transform: 

where v = 0,1,2,3 ...and replace i by 2n for v = 0. The integral transform of the 
system (13-121) by the application of the transform (13-122b) yields 

(13-123a) 

• 
ttP(v,  ORO  	r [ 	 A(f3„„ v, t') de] T(r, 49, =E L 	 e 	• 	m, • 

N(v)1110„,) 	 rr = 0 V 

(13-119) 

where A(/),„, v, t') is defined by equations (13-118) and F,d are the double trans-
forms: 

 C oO 

H(13„„ v) = 	r' R(fl„„ r')1(v, O')H(r' , 4) )d4' dr', 	and 	H F or g 
fr.  =- 0 rte.-0 

(13-120) 

a 2T 1 aT v 2 	g(r,v,t)1 aTv,v,t) 
Or2 

+ -
r 

— 	+ 
k 
	= 

a 	at 

in 	0'-cr < oo, t>0 

cc, 
T(r, v, t) = f 	13,1 ar)T(3,v, t) 

13 - 0  

(13-124a) 

T(13, v, t) = 	r'J 	v, 1) dr' 	(13-124b) 
0 

Inversion formula: 

integral transform: 

di 	 a - 
+412 Nv>0 .=.-  0,1 ) 

k g(1  

T(/f, v, t) = 	v) 

for 	t > 0 

for 	t = 0 

(13-125a) 

(13-125b) 

Equation (13-125) is solved for T(P, v, t) and the resulting double transform is 
successively inverted by the inversion formulas (13-124a) and (13-122a). Then the 
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Equation (13-117) is solved for T(ti„„ v, t), the resulting double transform of the 
temperature is successively inverted by the inversion formulas (13-116a) and 
(13-114a). Then, the solution of the problem (13-113) becomes 

The integral-transform pair in the 4) variable for the function T(r, 0,0 is given 
by equation (13-104); hence we have 

The bar denotes the integral transform with respect to the 4) variable and the 
tilde the integral transform with respect to the r variable as defined by equations 
(13-114b) and (13-I 16b), respectively. 

For a boundary condition of the first kind at any of these boundaries, the 
usual replacements should be made in the definition of A(/4„ v, r) given by 
equation (13-118a), 

Problems of Region a <r < b, 0 < rfi < 00(4 < 2n). The extension of the above 
solution to the problem of time-dependent heat conduction in a hollow cylinder 
a s r < b, confined to a region 0 s 4 < 4)0( < 2n) is a straight-forward matter. The 
heat conduction problem (13-113) will include an additional boundary condition 
at r -= a. The definition of the integral transform pair (13-114) remains the same, 
but that of given by equations (13-116) is modified by changing the lower limit 
of the integration to r = a; then, the function Ram, r), N(Jim) and the eigenvalues 
fins  are obtained from Table 3-3. 

Problems of Region 0 < r < ao , 0 < 4 < 2rr. We now consider the solution of the 
following time dependent heat conduction problem for an infinite medium in 
which temperature varies with both r and 49 variables. 

v, t) = .F(r, v) 	for 	t = 0, 	in 0 <r<co 	(13-123b) 

where the bar denotes the integral transform with respect to the 4) variable. 
The integral-transform pair in the r variable for the function T(r, v, t) is 

constructed according to the representation (3-38). We find 

where tilde denotes the integral transform with respect to the r variable and the 
eigenvulue problem associated with this transform pair is given by equations 
(3-35). 

The integral transform of the system (13-123) by the application of the transform 
(13-124b) gives 

T I aT 	1 a2T g(r, d), t) 1 DT(r, 4i , t) 

Or2  r or r2  04)2 
	

k 	a 	at 

in 	0 r < co, 0 <d) < 2n, t > 0 	(13-121a) 

T(r, 	t) = F(r, 4)) 	for . t = 0, 	in the region 	(13-121b) 
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solution of the problem (13-121) becomes 	 i 	Problems in (r, z, t) Variables 

The solution of time-dependent heat conduction problems in the (r, z) variables 
with the integral-transform technique is now a straightforward matter. The  
integral-transform pairs with respect to the r variable are the same as those 
developed in this section for the problems having azimuthal symmetry and those 
with respect to the z variable are the same as those fOr the rectangular coordinate 

where v = 0.1, 2,3 ... and replace it by 2n for t• = 0 	 system. Also, the order of integral transformation With respect to the and a 
variables is immaterial. We illustrate this matter with the following example. 

1 
T(r, (/), t) = - E a 

13,1„(13r)e-"P'[FC8, v) 	- 
k ,.=, 
f eflig v, 

..127E 

T(/), 1.).= 	 r'J Jfir') cos v(i/i - (PF(r', 0') dr/o'dr 	(13-126b) 

R f2 
g(13, t') = f 	r'J ar') cos v(4,  - 4}')g(r, cf,',e)dvh' dr' (13-126c) 

42'=0 

Introducing equations (13-126b,c) into equation (13-126a) and changing the 
order of integrations we obtain 

Example 13-6 

Consider the solution of the following heat conduction problem for a solid 
cylinder of radius r = b and height z = L: 

a2T 1 OT 02T g(r,z,t) 1 DT(r, z, t) 
--+--+  + 	 
are 	r Or 	oz2 	k 	a 	at 

	

in 	0-..r<b, 0 <z<L, t> 0 	(13-129a) 

1 	(G

T,=. 
T(r, 4), t) = -E 	), cos vio — 

0  
- 

f1.1,(110.1 „Old fl d41 dr' 

on all boundaries, 	 t > 0 	(13-129b) T(r, 2, t) = 0 

_ 0-0 

- - E  
1 a 	f2n 

n k . 	 =0 	= 0  

e-  ai92" '1,6 V ,•(ar). 1 ,,( fir') dfildt' lick' dr' 	(13-127) 	 Inversion formula: 	T(r, z, t) = E 	T(11„„ z, t) 
a' R0(fi„„r) 

(13-I30a) 
[ Li -0 	 ni=1 NW.) 

The terms inside the brackets can be evaluated by utilizing the expression (13-99). 
Then the solution (13-127) becomes 

xi 

Integral transform: z, t) = 	r'R0(11„„ r')T(r',z, t) 	(13-130b) 
p••=o 

T(r, z, t) = F(r, z) 	for 	t = 0, 	 in the region (13-129c) 

Soltion. The integral transform pair for the removal of partial derivatives 
with respect to the r variable in the region 0 r ..<Ji is the same as that given 
by equations (13-87). Hence the transform pair with respect to the r variable 
for the function T(r, z, t) is 

1 	2*,  
T(r', 0, 11 — 2 	r' cos v(l  - 0')F(r., Of) 

2trat 

.1 

gy =0 

	

[ -- 	/,. 	• 
	

deb dr' 
4a1 

r 2  -I- r' 2  
exp 	

1 (rr' 
tat .  

r 
, 

+ ___E 	
.12

n ft   cosr(,_ (f)')g(r', q5', t') 
• 

	

2nk ,. 	,_.0  	, 0  t  

r2  +r'2 	rr 
exp — 

4a(t - 
--- - -- f,• 

2  
- --- 

- - 
de 4' dr' 	(13-128) 

t') 	a(t 	t') 

1 (  
[ 

where v = 0, 1, 2,3 ... and replace it by 27r for v = 0. Several special cases are 
obtainable from this solution. ...„.  

where Ro(fl„„ r), N(P„,), and t6„, are obtainable from Table 3-I by setting v = 
and the bar denotes transform with, respect to the r variable. The integral 
transform of the system (13-129) by the application of the transform (13-130b) 
yields 

t(13., z,  + 	gw„„ z, = 1 a T(fin„ z, t) 

az2 	k 	a 	at 

in 	0 <z<L, t>0 	 ( • -131a) 

T(I3„„ z, t) = 0 	at 	z=0, 	z= L for t>0 	(13-131b) 

71/3m. z. = F(f3„„ a) 	for 	t = 0, 	in 0 <z<L 	(13-131c) 
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The integral-transform pair with respect to the z variable in the region 0 z L 
is obtained from equations (13-27) as 

Inversion formula: 	z, = E 	z) 	
„, 

p. N(rip)  

	

z(si 	
(13-132a) 

Integral transform: 	7111„„ 	t) = 	Z(ri z')-1"( (I r,„ z', t)dz' 	(13-I32b) 
- 

where Z(:i r„:-:), N(ti p), and ►  arc obtainable from Table 2-2, and the tilde 
denotes the integral transform with respect to the z variable. The integral 
transform of the system (13-131) by the application of the transform (13-132b) 
is 

c 

dt 
+ ct(fi n 	r,,, t1,,  t) = ► „, 

TIP m, llp, = 	p) 

Equations (13-133) are solved for T(ii„„q t) and the resulting double trans-
form is successively inverted by the inversion formulas (13-132a) and 
(13-130a). Then the solution of the problem (13-129) becomes 

T(r, z, t)•= 
m=lp=11. 
	 e 
Ro(f1„,, r)Zpi p, z) _ 	+12,1, 

NUJ „)N(ri  

Problems in (r, 4:, z, t) Variables 

The solution of heat conduction problems in (r, 0, z, t) variables is readily handled 
with the integral-transform technique. The basic steps in the analysis are sum-
marized below. 

1. The partial derivative with respect to the z variable is removed by the appli-
cation of transform in the z variable. The appropriate transform pairs are 
the same as those given for the rectangular coord ilia le sys I en). 

2. The partial derivative with respect to the 0 variable is removed by 
the application of transform in the 4) variable. If the range of 4, is 
0 4  27r, the transform pair is given by equations (13-104). If the range 
of 0 is 0 s 4 < 00, (00  2n), the transform pair is given by equations 
(13-106) for boundary conditions of the first and the second kinds. 

3. The partial derivatives with respect to the r variable are removed by the 
application of transform in the r variable. The transform pair to be used 
depends on the range of the r variable, that is, 0 r b, a tc r < b,0 r < co. 
For example, the transform pair is as given by equations (13-110) for 
0 ..cr--.5b or given by equations (13-124) for 0 < r < co. 

4. The resulting ordinary differential equation with respect to the time variable 
is solved subject to the triple transformed initial condition. The triple 
transform of temperature obtained-  in this manner is successively 
inverted with respect to the r, 0, and z variables to obtain the solution for 
T(r, 	. 

t > 0 (13-I33a) 

t= 0 (13-133 b) 

(13-134a) 

(13-134b) 

[ 
	' 	2  1 4, 2 r= 

• Ath,,, q ) + - 	e ( P- "P)  g(I 3 „„ II 1,, t') dr' 
P 	k 

where the double transforms are defined as 

H = 	r Ro((in„ r')Z(14, z')H dr' dz', H F or g 
e =0 f r' =0 

From Table 3-1, case 3, for v = 0 we have 

13-4 APPLICATIONS IN THE SPHERICAL 
COORDINATE SYSTEM 

To solve heat conduction problems in the spherical coordinate system with the 
integral-transform technique, appropriate integral-transform pairs are needed in 
the r, p, and 0 variables. In this section we develop such integral-transform pairs 
and illustrate their application to the solution of heat conduction problems 
involving (r, t), (r, jt, t) and (r, it, 0, t) variables. 

r'=0 

1 	2 	2 
1?„(11„„ r) = 0(11,,,r),  

NOim) 112  .1':(11„,14 
= 

hi  ;(11„.b) 

and the& values are the roots of Jo  „,b) = 0. From Table 2-2, case 9 we have 

1 	2 
z) = sin ri pz, 	- 

N(/1p) L 

and the ti p  values are the roots of sin:1FL= 0. 

Problems in (r, Variables 

The time-dependent heat conduction problems involving only the r variable can 
be transformed into a one-dimensional, time-dependent heat conduction problem 
in the rectangular coordinate system by defining a new variable U(r, t).= rT(r, t) 
as discussed in Section 4-4. The resulting heat conduction problem in the rectan-
gular coordinate system is readily solved with the integral-transform technique 
as described previously. Therefore, the solution of the problems in (r, t) variables 
is not considered here any further. 



where the values of n are n = I, 3, 5,... (i.e., odd integers) for boundary condition 
of the first kind at p = 0, and n = 0, 2,4,... (i.e., even integers) for boundary 
condition of the second kind at p = 0. 

Example 13-7 

We consider the solution of the following time-dependent heat conduction 
problem for a solid sphere of radius r h: 

8 2T 
— + 

2 OT 	1 a 
---+-- — [( 1  r car 	I- 2  ay p2)—  

Op 

g(r„ u, t) p, t) 

are  + 
k 

= 
a at 

in 
	

0 4r<b, 	 t > 0 
	

(13-140) 

T(r, p, t) = 0 	at 
	

r = b, 	 t > 0 (13-141a) 

T(r, F4 t) = F(r, p) 	for 	t = 0, in the region 
	

(13-141b) 

Solution. Here we considered a homogeneous boundary condition of the first 
kind for simplicity in the analysis; the analysis for boundary condition of the 
third kind is performed in a similar manner. 

A new dependent variable V(r, p, t) is defined as 

V(r, p,  t) = r112T(r,p,t) 

Then, the problem (13-140)-(13-141) is transformed into 

(13-142) 

0 2 V + 1 all 1 V 	1 	[ 	2  OV] r112g(r, p, 0 1 OV(r, p,t) 

Dr
2- 

r Or 4 
+ 

Op 
 (1 p) Op + 

a 	at 

	

in 	0 4,rcb, -14,p4 I t> 	(13-I43a) 

V(r, p, = 0 	 at 	r= b, 	 t > 0 (13-1436) 

V(r, p, t) = 1.112  .F(r, p) for t = 0, in the region (13-143c) 

The integral-transform pair with respect to the p variable for -1t.c.:p..4 I is 
obtained from equations (13-138) as 

V(r, p, t) 	EQ3 2n + 1 
P„(.1)V(r,n,t) 

n = 1:1 	2 
(13-144a) 

17(r, n, t)
- 
 P„(p')V(r, p', t)d p' 	(13-1446) 

Inversion formula: 

Integral transform: 

where a = 0, I, 2,3 ... . 
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Problems in (r, p, t) Variables 

The differential equation of heat conduction in the (r, p, t) variables is taken in 
the form 

0 27-  2 a T 	1 a [ OT1 g(r,  p, t) 1 DT(r, p,t) 

r 	r2 	 Op 	k 
= 

a 	Or 

•-• 	- • By defining a new variable 1'(r, p.1) as 

V(r, 	= r 1127(1'. p, t) 

ti a ion (13- I 35) is transformed into 

52 V 101" 1 V I or 	, avi r'"g 	OV 
+- 	- - -+--    [( I -it-1---- +•- 	(13-137) 

r Or 4 rz  r2  dp 	Op 	k 	x at 

where 9 g(r, p, t) and V V{r, p, t). 
The partial derivatives with respect to the space variables can be removed 

from this equation by the successive application of' integral transforms with 
respect to the p and r variables. The order of transformation is important in this 
case; it is applied first to the p variable and then to the r variable. Then we need 
to develop the integral-transform pairs only with respect to the p variable for 
the following cases: The range of p variable is - I p 4 1 as in the case of the 
Jiff/ sphere: 0 p I as in the ease of the hemisphere. 

Transform Pair for - I p 4 I. This case corresponds to the full sphere. There-
fore, no boundary conditions are specified in the p variable except the requirement 
that the function should remain finite at p = + 1. The integral-transform pair in 
the p variable for the function V(r, p, r) is constructed by considering the represen-
tation of this function in a form similar to that given by equation (4-35) and then 
splitting up the representation into two parts. We find 

2/1+ I 	- 
Inversion formula: 	V(r, p, t) = E 	Pn(p)V(r,n, t) 

„,-. 0  .2 
(I3-138a) 

ii 
Integral transform: 	i7(r, a, t) = 	P„(p')V(r, p', t)dp' 	(13- 138b) 

where P,,(p) is the Legendre polynomial and n = 0,1,2.3 .... 

Transform Pair for 0 -4p 1. This case corresponds to the hemisphere. The 
integral transform pair is determined by splitting up the expansion (4-51) as 

Inversion formula: 	V(r, p, t) = E (2n + I )P„(m)P(r, a, t) 
	

(13-139a) 

Integral transform: 
	

F/(r, a, t) = 	P„(p')V(r, p', 11 ti p' 	(13-I39b) 

Li 

I 

D 

I 

(13-135) 

(13-136) 
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112 ,, n 	F* , 	 ,  We take the integral transform of the system (13-143) by the application of 
the transform (13-144b) to obtain (see note 7 at the end of this chapter for 
details) 

a2 P
+

IaP (n +1)2  2 	fj*(r, a, t) 	I a P(r, n, t) 

or' 	r Or 	r2 	k 	a 	at 
in 	0 < r < b, 	> 0 	(13-I45a) 

P(r, t) = 0 
	

at 	r = b, 	> 0 	(13-145b) 

V(r, ?r, t) = 	n) 
	

for 	t = 0, 	in 0 <r<b 	(13-145c) 

where  

for 	t = 0 	(13-147b) 

Equation (13-147) is solved for P(2.„,„?1, t), the resulting double transform is 
inverted successively by the inversion formulas (13-146a) and (I3-144a) to 
obtain 1/(r, p, t). When V (r, p, t) is transformed by the expression (13-142d) into 
T(r, p, t), the solution of the problem (13-141) is obtained as 

(2u + 1)r -112]„., 1 ,2P.np O n  P (it) 	• 
71r, r) = 	E 

.[T.* + 	ea4,,•r5*dt,  

b`[./;..1. ii2Ripb):P 

(13-148a) 
k 0 

where 

g*(r,p, t)=. r 1  J ig(r, 	F*(r, p) 	F(r, ,u) 	'1. (13-145d) (13-148b) * = 	rr3/2J 1/2(A„„11P„ill'Or., P') dp  dr 
r'= 0 P• =• -1 

 

and the bar denotes the integral transform with respect to the p variable 
according to the transform (I3-144b). 

Equation (13-I45a) is similar in form to equation (13-109a) in the cylindrical 
coordinate system. Therefore, the integral-transform pair needed to remove 
the partial derivatives with respect to the r variable is immediately obtainable 
from equation (13-110) or (13-116) by selling r a ;. We rind 

-17(r, n, = E 	2
(A V(/.„,„ a, t) 	(13-146a) 

N(2,,r) 

1/(1„,„ n, t) 	R,, 	r)17(r', a, t) dr' 	(13-146b) 

where the tilde denotes the integral transform with respect to the r variable. 
The functions R p  r), N(2,,p) and the eigenvalues 1np  for the boundary 
condition of the first, kind considered in the problem (13-145) are obtainable 
from Table 3-I, case 3, as 

12 

	

Rn+ 112( A,,,,,  = 	1 12(1.Pr)' Nucp) —  b2[J'„ ,i2(A,„„bn 2  

and the A„,, values are the positive roots of 

112(2„,,b) = 0 

Taking the integral transform of the system (13-145) by the application of 
the transform (13-I46b) we obtain 

	

d
—
dt 

r, 	 a 
pV(2 pp, n, I) -g* 	for 	1> 0 	(13-147a) 

Inversion formula: 

Integral transform: 

(I3-146c) 

(13-146d) 

b 	r  . 

6* = 	r' 312 i,, + it,(2,4,1)P p(p)y(r', p', t') dp' tit' (13-148c) 
e=oLe=-1 

where a = 0, 1, 2... and the Anp  values are the roots of equation (13-146d). For 
the case of no heat generation, this solution reduces to that given by equation 
(4-118). 

Example 13-8 

We consider the following time-dependent heat conduction equation for a 
hemisphere of radius r = b: 

a2T 2 OT 1 a r 	 2) 81+  g(r, t)  1 OT(r, p, t) 

Or' r ar 	Op 	ati 	k 	a 	.at 

in 	0 <r<b, 0 <p<I, 	t>0 (13-149a) 

T(r, p, t)= 0 	at 	r b, 	p = 0, for t > 0 (13-149b) 

T(r, p,t)= F(r, p) for 	t = 0, 	in the region 	(13-149c) 

Solution. The basic steps for the solution of this problem are exactly the same 
as those described above for the solution of problem (13-140). The only 
difference is that, the range of p being 0 < p < 1, the integral-transform pair 
with respect to the p variable is determined according to equations (13-139)as 

Inversion formula: 	17(r, p, t) = E (2n + 1)P „(p) I7(r, tt, t) 	(13-150a) 

Integral transform: 
	

VIP •, a, t)= 1 	P„(p')V(r, p', t) dp' (13-150b) 
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where the values of n are n = 1, 3, 5,,... (i.e., odd integers) since the boundary 
condition at p= 0 is of the first kind. 

The integral-transform pair with respect to the r variable is taken the same 
as that given by equations (13-146). The system (13-149) is transformed from 
the T(r, p, t) variable into the V(r, p, t) variable. Then, by the application of the 
integral transform with respect to the p and r variables an ordinary differential 
equation is obtained for the double transform V(2„p, r1, I). The resulting ordinary 
differential equation is solved and the double transform is successively inverted 
by the inversion formulas (13-146a) and (13-150a) to obtain V(r,p,t). When 
V(r, p, t) is transformed by the transformation (13-142), the solution T(r, p,t) 
of the problem (13-149) is obtained as 

Now a new variable V(r, p, t) is defined as 

V(r, p, 49,0= r112  T(r, p, 4), t) 
	

(13-153) 

Then equation (13-152) is transformed into 

i.12 1/ 	1 DV 	I V 	I D 
+ 	-- 	[(1 _ 2)  avi d _ 	1 	.a2  V l'112q 1 DV 

are  r 	4-  r2  ri 07, 	P 	- 	 = 

	

r (1 	11  ) 	k 	a of 

(13-154) 

cc, 	co 
T(r, 1.4_0= 	E 

n= 1.3.5... p -= 

P* +,. 	C6__ 
k 

2(2n + 1)r - ' 12J.  +  1/2(Ar.pr)P.01) 	-.1,1„1 E e  

(13-151a) 

1 	b 2  Vi, 112(2,, b)]2  

' f e-q.pea* di'l 
0  

where 

1 
F* = 

e+ o 

h 

r,3i2 jii+112(Anpr')P„(p')F(r', pldp` dr' (13-151b) 
IV 	0 

2  

g =  
= 0 

jrn 	ii2,1n  (A pr)P„(p')g(r', p',1') dpi dr' 
p'=0 

(13-151c) 

and the values are the roots of 

n + 112( Anpil) 	°' (13-15Id) 

We note that for the case of no heat generation, the solution (13-151) 
reduces to that given by equations (4-98). 

Problems in (r, Jr, 0,1) Variables 

The differential equation of heat conduction in the (r, p, t) variables is taken in 
the form 

02T + 2 D T + _1 a n2)LT1+ 1 49 2T 	o(r, p, (, t) 	1 OT(r, p, 0, t) + 	=.. 
Dr' 	r Or 	r2  all ,--- , op 	r2( 1 _ p2) a4)2 k 	a 	at 

(13-152) 

We consider the problem of full sphere, hence choose the ranges of p and 4) 
variables as 0 -.5 gli s  27t and -1 s p <1. The range of the r variable may be finite 
or infinite. 

where 0 < 4 -< 2n, -1 J1.4 1 and the range of r is finite or infinite. 
The partial derivatives with respect to the space variables can be removed 

from this equation by the application of integral transform with respect to the 
19,p, and r variable. For this particular case the order of transformation is 
important. That is, the transformation should be applied first with respect to the 
4) variable, then to the p variable and finally to the r variable. The procedure is as 
follows. 

Remora! of the Derivative in the 4) Variable. The range of the variable being 
in 0 < dr ‘. 2n. the transform pair with respect to the 4)  variable is obtained from 
equations (13-104) as 

1 	cc' 
Inversion formula: V(r, p,d),t)= - E V(r, p,m,t) 

m =0 
(13-155a) 

1 
2x 

Integral transform: -12(r, p, m, t) = 	cos m(0 - 4)')V(r, p, (11,t) tid; . 
0,  = o 

(13-155b) 

where in = 0,1,2,3 ... and replace it by 27t for m = 0 and the eigenvalue problem 
associated with this transform pair is the same as that given by equations 
(3-1 16a). 

The integral transform of equation (13-154) by the application of the transform 
(13-155b) is 

3217 1 aV 1 17 It 	ail 	m2  I j*  
- — 	+ --[{1 —F2)— - ---- V + = 	(13-156) 

Pr- 	r Or 4 r-  r-  all 	Op • 1- 	 k 	a at 

where g* g(r, p, 4), r), p, in, t) and the bar denotes the integral trans-
form with respect to the 4) variable. Thus, by the application of the transform 
(I3-155b), we removed from the differential equation the partial derivative with 
respect to the 4) variable, that is, 02r /1301. 
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The Removal of the Derivative in the p Variable. In equation (13-156), the 
differential operator with respect to the p variable is in the form 

° 
 [(I

_ 12)  al71 ni 2   
i — v, 

and the range of p is - l p I. The integral transform pair to remove this 
dikrential operator can be constructed by considering the representation of a 
function, defined in the interval - I 	p 	I, in terms of the eigenfunctions of 
Legendre's associated differential equation [see equation (4-13c) or (4-22)] 

d „ 	 m2 
+[a(a ± 1)- r-

-  p
- 

- 
=0 	(13-157)  

APPLICATIONS 1N 11-1JrrICKILIIL LVVrsvolln a- 

application of an appropriate transform in the r variable developed previously 
for the solution of problems in the cylindrical coordinate system. The form of 
the transform pair depends on the range of r, whether it is finite or infinite. We 
now illustrate the application with an example given below. 

Example 13-9 

Solve the following time-dependent, three-dimensional heat conduction prob-
lem for a solid sphere of radius r = b; 

49 2 7-  2 aT 	I a 
Tr2 ; 	

A(1 op :) ral; 	r. :201 pp ):_ao 14,72  og:=Q5a
1 at 

in 

1-> 0 (13-160a) 

(13-160b) 

......_ 	(1.3-160c) 

and then splitting up the representation into two parts. The resulting integral 

	

transform pair with respect to the p variable for the function V(r, 	t) is given as 

n-  
Inversion formula: V(r, p, m, r) 	E 	m, 

m=o N(ta, a) 
(13-158a) 

T=0 at 	r=b, t> 0. 

T= F(r, p, 0) 	for 	t = 0, - 	the-region- 

Integral transform: P(r, a, m,1)= 	P nm(p')17(r, p',1a, dp' 	(13-158b) 

where 

211 + 1 (a - m)1 

N(m, n) 	2 (n + n1)! 
m 	 (13-158c) 

rr and in are integers, P7(p) is the associated Legendre function of degree a, order 
in, of the first kind; and the tilde denotes the integral transform with respect to 
the p variable. It is to be noted that, when the integral-transform pairs (13-155) 
and (13-158) are combined, the expansion given by equation (4-43) in Chapter 4 
is obtained. 

Taking the integral transform of equation (13-156) by the application of the 
transform (I3-158b) and utilizing equation (13-157) we obtain (see note 8 at the 
end of this chapter for details) 

_ - 
3 2  V 1 DV (n + )2 	g. 	1 01/(r, ri, in, r) 
ar 2  r Or 	r 2 	k 	a 	Of 

(13-159) 

where the tilde denotes the transform with respect to the p variable. 

The Removal of the Derivative in the r Variable. The differential operator with 
respect to the r variable can readily be removed from equation (13-159) by the 

where g = g(r,p,0,t) and T s T(r, p, 49, 1). 

Solution. By defining a new dependent variable as 

V (r, p, 0, t)= r112  T(r, p, 0, t) 	 (13-161) 

the system (13-160) is transformed into 

+ - — 	+ - — (1 — 11-)— 
02  V 1 av 	v 1 	avi 	 - 1 	a2-v rlag I av- 
ar 2 	r dr 4 r 2.  r2  Op 	ap 	r 2(I - p2) (30 2 	k 	a at 

	= — 

in 	04r <b, -1 4 p 	0 40 42n, 

t > 0 

V=0 
	

at 	r=b, t>0 

V= 12  F(r, p, 0) 	for 	t = 0, in the region 

The integral transform of this system with respect to the cf, variable by the 
application of the transform (13-155b) yields 

a2V IaV 1 1) 11a 

	

+-----+— r(i ,u 2r1 "12 	4* ! aP  

dr 	r Or 4 r 2  r2  aim 	arti 	— 122  j 	k a at 

in 	0<r<b, -14.p41, t>0 	(13-163a) 

(13-162a) 

(13-162 b) 

(13-162c) 



d V 	x a x 

d
-- + ct)2  	ii* 

'ripV () -np,  a , m ̀ t) = • 
i 	 k 

17  •=' F*(2„,„ n, in) 

for 	t > 0 	(13-165a) 

for 	,t=0 
	

(13-165b) 

where superscript x denotes the integral transform with respect to the r 
variable. Equation (13-165) is solved for 

x  

V 	n, in, t) 

The resulting triple transform is successively inverted by the inversion formulas 
(13-146a), (13-158a), and (I3-155a) to obtain V(r, p, t). When the function 
V (r, p, 0, t) is transformed by the expression (13-161), we obtain the solution 
T(r,y, 45, t) of the problem (13-160) as 

 

 • 
	1 	 j 	 ,, r- li' n+ ,12(2,r)P  7(p)  
T(r, p, t) = - EEE 

n n= 0 m= 0 p = l 	IV (m, ION(A.,, p) 

F + 	e- 	del 
k 0  

 

  

 

(13-166a) 
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v=0 
	

at 	r= b, t>0 

f-4!(r., p, in) 	for 	t 0, in 0 r < b, —1 --<„ p 	1 	(13-163c) 

where g* = r  9(1., p,  0,  0 F* r112 F(r, it,  01 	17(r, p, m, t), and the bar deno- 
tes the transform with respect to the (/) variable. Now, the integral transform 
of the system (13-163) with respect to the p variable, by the application of the 
transform (13-158b) gives 

J.12  — 02 17 	(n v+v+ g1* = 113P  

N- r 	 k 	t 

V= 0 
	

at r=b, 	t >0  

V = F*(r, a, in) 	 • for t = 0, 	0<r.<..b 

where 	V (r, a, in, t) and the tilde denotes transform with respect to the p 
variable. This system is now exactly of the same form as that given by 
equations (13-145). To remove the differential operator with respect to the r 
variable the appropriate integral transform pair is exactly the same as that 
given by equations (13-146). Therefore, taking the integral transform of the 
system (13-164) by the application of the transform (134 46b) we find 

and replace n by 2n for m = 0. Various quantities are defined as 

' 

4 , 

f 

• 

and the 2„,, values are 

f 
r•  =0 

cos in 

= 

cos t11(0 

N(m., 

F= 
 X 

ii' = — I 

0 — 0')F(r', 

' 	I 

p' 	— 1 

n) 

I 

2n 

r'3/2J„,.112(Inpr)Pn Cli 
#' =0  

p', 0') d 0' dp' dr 

f2n 
e Al 2./.. 1,2{A,,,,r)P:101') 

=0 

, p', 0', 0(10' d,u' dr' 

2n + I (a — in)! 

2 	(a + in)! 

2 

(13- I 66b) 

(13-166c) 

(13-166d) 

(12-166e) 

(13-166f) 

NP-.F) = 112 	1/2(iinifill 2  

the positive roots of 

n + 112(•anpb) = 0 

For the case of no heat generation, this solution reduces to that given by 
equations (4-118). 

in 0<r<b, > 0 (13-164a) 

(13-164b) 

(13-164c) 

13-5 APPLICATIONS IN THE SOLUTION 
OF STEADY-STATE PROBLEMS 

The integral-transform technique is also very effective in the solution of multi-
dimensional, steady-state heat conduction problems, because, by the successive 
application of the integral transform, the partial-differential equation is reduced 
to an ordinary differential equation in one of the space variables. The resulting 
ordinary differential equation is solved for the transform of the temperature, 
which is then inverted successively to obtain the desired solution. This procedure 
is now illustrated with examples, 

Example 13-10 

Solve the following steady-state heat conduction problem for a rectangular 
region 0 	< a, 0 	b 

2 7. 02,3- 

	

 =0 	in 	0 < x < a, 0 < y < b 	(13-167a) x2 ay2 

T=0 	 at 	= 0, x = a and y= b (13-167b) 

T=f (x) 
	

at 	Y = 0 	 (13-I67c). 
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Solution. In this example we prefer to take the integral transform with respect 
to the x variable, because in the resulting ordinary differential equation for 
the transform of T the boundary condition at r = 0 becomes a constant, hence 
its integration is readily performed. The integral-transform pair with respect 
to the x variable, for 0 a, of function 71x, y) is defined as 

Inversion formula: 	T(x, = E X(I„„ x) T(fl„„ y) 
NW.) 

T(II„„ y) = 	X (A,„ x')T(x', y) dx' 	(13-168b) Integral transform: 
.e=o 

where X(II,„x), N(11„,), and fi„, are obtained from Table 2-2, case 9 as 

I 	2 
XUJ„„ x)=sin /4x, 	= 

N{/3m) a 	
and 	sin /1„,a = 0 	(13-168e) 

The integral transform of the system (13-167) by the application of the transform 
(13-168b) yields 

021-  1, 5T 	I 52T r, 
+ 	---= v 	in 	0 <_r<b, 0 ...<0< 2n 	(I3-172a) 

ar z 	r dr r2  

aT 
k2—

ar 
+ ir,T=f2(0) 	at 	r = b 	 (13-172b) 

Solution. The integral-transform pair with respect to the 0 variable over the 
range 0 < < 2n is obtained from equations (13-104) as 

Inversion formula: T(r, 0) = - 1  > T(r, v) 
	

(13-173a) 
7C v 

2n 

Integral transform: T(r, v) = 	cos v(4 — i/')T(r, 	(13-173b) 
=0 

where v = 0, 1, 2, 3 ... and replace n by 2n for v = 0. The integral transform of 
the system (I3-172) by the application of the transform (13-173b) yields 

(13-168a) 

drt 
= y 2  

T=1(9.) 

T. 0 

The solution of equations (13-179) is 

in 

at 

at 

0 <y<b 

y = 0 

y = b 

(13-169a) 

(13-169b) 

(13-169c) 

in 1 dT v2  
- - '111  v) = 0  

dr; 	r dr r2  

dt 
+ ri2 I 	2kri 

dr 

in 	0 r < b 	(13-174a) 

at 	r = b 	(13-174b) 

The solution of equations (13-174) is 

,n3m,y)=.7(flosinh 11.(b — y) 
sinh  

(13-170) 
T(r, v) = b 

(r 	12(v)  v)) kg+ 11. 21) 
(13-175) 

The inversion of this result by the inversion formula (13-173a) gives the 
temperature distribution as 

The inversion of this result with the inversion formula (13-168a) gives 

2 c° sin 	 sinh (b 	— Air  
T(x, y) - E 	fi„,x 	 sin fl„,x'f(x')dx' 	(13-17Ia) 

a n 	sinh /3„,b 

where 

fi „, 	tnn/a, 	= 1,2, 3 ... 	 (13-171b) 

Example 13-11 

Solve the following steady-state heat conduction problem for a long solid 
cylinder: 

T(r, 0) = Eb( rY  12(v)  
\,b k 2v + h 211 

(13-176a) 

where 

zn  

f.2(v)= 	cos v(0 —01f 2(01d0' 
0• =0 

(13-176b) 

v = 0,1,2,3 ... and replace n by 271 for v = 0. 
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Example 13-12 

Solve the following steady-state heat conduction problem for a solid hemi-
sphere of radius r = h. 

Solution. This problem is the same as that considered in system (4-128). The 
integral-transform pair with respect to the p variable for 0 ∎  p 1 and the 
boundary condition of the second kind at It = 0 is obtained from equations 
(13-150) as 

Inversion formula: 	71r, = E(2n + I )P„(p)7;(r, n) 	(13-178a) 

f1 
integral transform: 	'I' (r,,t)= 	Pjp')T(r, pldp 	(13- I 78b) 

0.- a 

where n = 0, 2, 4, 6... (even integers). The integral transform of the system 
(13-177) by the application of the transform (13- 1 78b) yields 

d( .2 dt 
/ 	— n(n 	1)t(r, 	() 

;P(r,n)= Pn) 

0_r<1/ 	(13-179a) 

at r = b 	(13-179b) 

The solution of equations (13-179) is 

n) = 	7(n) 	 (13-180) 

The inversion of this result by the inversion formula (13-178a) gives the 
solution for the temperature as 

T(r, p) = 	(2n + i)P„(p)(- 
r )" 

p' 	
0 P„/)f (10 die 

n= 0,  =0  
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PROBLEMS 

	

13-1 	Solve the one-dimensional, time-dependent heat conduction problem for 
a slab 0 s x s L, which is initially at zero temperature and for times t > 0 
the boundaries at x = 0 and x = L are kept at temperatures zero and fl(t), 
respectively. Consider the case when the surface temperature is given by 
f2(t) = yt, where y is a constant. 

	

13-2 	Solve the one-dimensional, time-dependent heal conduction problem for 
a slab 0 x L, which is initially at zero temperature, and for times t > 0 
heat is generated in the medium at a rate of g(x, t), W/m3, while the 
boundary surface at x = 0 is kept insulated and the boundary surface at 
x = L is kept at zero temperature. Consider the case when the heat source 
is an instantaneous plane heat source of total strength g's  Ws/m 2, situated 
at x = b and release its heat spontaneously at time t = 0, that is, g(x, t) = 
(0(x b)o(t). 

	

13-3 	A semiinfinite medium, 0 x < co, is initially at zero temperature. For 
times t> 0 the boundary at x = 0 is kept at zero temperature, while heat 
is generated in the medium at a rate of g(x, t) Win1 3. Obtain an expression 
for the temperature distribution T(x, t) in the medium. Consider the cases 
(1) the heat source is a continuous plane-surface heat source of strength 
g:(t)W/m2, which is situated at x = b, that is g(x, t) = at)o(x — b), (2) the 
heat source is a constant heat source, that is, g(x, t) = go  = constant 
W/m 2. 

13-4 An infinite medium — co <x < oo is initially at zero temperature. A 
plane-surface heat source of strength g.,;(t)W/m2, situated at x = 0, releases 
heat continuously for times t > 0. Obtain an expression for the tem-
perature distribution T(x, t) in the medium for times t > 0 [i.e., g(x, t) =- 
gs(t)S(x)]. 

	

13-5 	A rectangular region 0 <x a, 0 y b is initially at zero temperature. 
For times t > 0 heat is generated in the medium at a rate of g(x, y, t) W/m 3, 
while the boundaries are kept at zero temperature. Obtain an expression 
for the temperature distribution T(x, y, t) in the region. Also consider the 
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special case, when the heat source is an instantaneous line heat source 
gLi  of strength Ws/m, situated at (xi  ,y,) within the region and releases 
its heat spontaneously at time t = 0, that is, g(x, y, t) = g',6(x — x ,)6(y 

ONO- 

13-6 A three-dimensional infinite medium 	co < x < cc, — oo < y < oo, 

— oo < z < oo is initially at zero temperature. For times t > 0, heat is 

generated in the medium at a rate of g(x, y, z, t) W/m3. Obtain an expres-

sion for the temperature distribution 11x, y, z, r) in the medium. Also 

consider the special case when the heat source is an instantaneous point 

heat source of strength gl Ws, situated at x = 0, y = 0, z = 0 and releasing 
its heat spontaneously at time t = 0, that is, g(x, y, z, t) = (5(x)6( y)6(z)(5(t). 

13-7 A solid cylinder 0 < r b, is initially at zero temperature. For times t > 0, 

heat is generated within the region at a rate of g(r, t) Wm', while the 

boundary at r = b is kept at zero temperature. Obtain an expression for 
the temperature distribution T(r, t) in the cylinder. Consider the special 

cases (1) the heat is generated at a constant rate g, W/m3, in the region, 
(2) the beat source is a line heat source of strength g,(t)W/m, situated 

along the axis of the cylinder, that is, g(r, 1) = 2nr. -
1 

ch(t)6(r). 

13-8 	A long solid cylinder, 0 r b, is initially at temperature F(r). For times 

t > 0 the boundary at r = b is kept insulated. Obtain an expression for 
the temperature distribution T(r, t) in the cylinder. 

13-9 	A long hollow cylinde4 a 4 r b, is initially at temperature F(r). For 

times t > 0 the boundaries at r = a and r = b are kept insulated. Obtain 
an expression for the temperature distribution T(r, t) in the region. 

13-10 A long hollow cylinder, a 	is initially at zero temperattfre. For--- 
times t > 0 heat is generated in the medium at a rate of g(r, OW , 

while the boundaries at r = a and r = b are kept at zero temperature. 
Obtain an expression for the temperature distribution T(r, t) in the 

cylinder. Consider the special cases (1) the heat-generation rate is cons-

tant, that is, go  = constant, and (2) the heat source is an instantaneous 
cylindrical heat source of radius r = r 1  (i.e., a < rt  < b) of strength 

gi,Ws/rn, per linear length of the cylinder, which is situated inside the 
cylinder coaxially and releases its heat spontaneously at time t = 0, that 

1 
is. g(r, t) = 

2
• fh(5(r — r 1 )6(t). 
7cr 

13-11 An infinite region, 0 s r < co, is initially at zero temperature. For times 
1> 0 heat is generated in the medium at a rate of g(r, t) W/m3. Obtain 
an expression for the temperature!! distribution T(r, t) in the medium for 
times t > 0. Consider the special cases (1) the heat source is of constant-
strength, that is, g(r, t) = go = constant, (2) the heat source is an instan- 
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taneous line-heat source of strength giL  Ws/m, situated along the z axis 
in the medium and releases its heat spontaneously at time t = 0, that is, 
g(r, t) = (1 /.2nr)g',. 6(06(4 

13-12 The region a r < co is initially at zero temperature. For times t > 0, 
heat is generated in the medium at a rate of g(r, t) W/m3, while the 
boundary surface it r a is kept at zero temperature. Obtain an expres-
sion for the temperature distribution T(r, r) in the medium for times t > 0. 
Consider the special case of constant heat generation in the medium. 

13-13 The cylindrical region 0 r b, 0 4 0 27r is initially at temperature 
Ftr, 0). For times I > 0 the boundary surface at r = b is kept insulated. 
Obtain an expression for the temperature distribution T(r, cb, t) in the 
region for times t > 0. 

13-14 The cylindrical region 0 r b, 0 fi  2n is initially at zero temperature. 
For times t > 0, heat is generated in the medium at a rate of g(r, 0, t) 
W/m3, while the boundary at r = b is kept at zero temperature. Obtain 
an expression for the temperature distribution T(r, 0, t) in the region for 
times t > 0. 

13-15 The cylindrical region a4r<b,040-4 2ir is initially at temperature 
F(r, 0). For times t > 0, the boundaries at r = a and r = b are kept at 
zero temperatures. Obtain an expression for the temperature distribution 
T(r, 0,1) in the region for limes t > 0. 

13-16 The cylindrical region consisting of a portion of a cylinder, 0 r b, 
0 4 0 4 00  (where 00  < 27) is initially at zero temperature. For times t > 0 
heat is generated in the medium at a rate of g(r, 0, t) W /in' , while all 
boundary surfaces are kept at zero temperature. Obtain an expression 
for the temperature distribution T(r, 0, t) in the region for times t > O. 
Also consider the special case of g(r, 0, t) = go  = constant. 

13-17 The cylindrical region consisting of a portion of a cylinder, a r b, 
0 0 4 00  (where 00  < 27r) is initially at temperature F(r, 0). For times 
t > 0 all boundary surfaces are kept at zero temperature. Obtain an 
expression for the temperature distribution T(r, 0, t) in the region for 
times t > 0. Also consider the special case of uniform initial temperature 
distribution. (lint is, Fir, 0) = constant. 

13-18 The cylindrical region a r z b, 0 	4 c, (where 	< 2n) is initially 
at zero temperature. For times t > 0 heat is generated in the medium 
at a rate of g(r, i, t) W/m3, while the boundaries are kept at zero tempera-
ture. Obtain an expression for the temperature distribution T(r, 0, t) in 
the medium for times t > 0. 

13-19 A cylindrical region 0 r b, 0 ...-4z-4Lis initially at zero temperature. 
For times t > 0 heat is generated in the medium at a rate of g(r, z, t) 
W/m', while the boundary surface at z = 0 is kept insulated and all the 

remaining boundaries are kept at zero temperature. Obtain an expression 
for the temperature distribution T(r, z, t) in the region. 

13-20 A cylindrical region 0 r b, 0 z < oo is initially at temperature F(r, z). 

For times t > 0 all the boundary surfaces are kept at zero temperature. 
Obtain an expression for the temperature distribution T(r, z, t) in the 
region for times r > 0. 

13-21 A hemispherical region 	r b, 0 p 4 I is initially at temperature 
F(r, p). For times t > 0 the boundary surface at p = 0 is kept insulated 
and the boundary surface at r = b is kept at zero temperature. Obtain 
an expression for the temperature distribution T(r, p, f) in the hemisphere 
for times t > 0. 

13-22 A hemispherical region 0 4r4b, 0 4y41 is initially at zero temperature. 
For times i > 0 heat is generated in the medium at a rate of g(r, p, t) W/m3, 
while the boundary surface at p = 0 is kept insulated and the boundary 
at r = b is kept at zero temperature. Obtain an expression for the tempera-
ture distribution T(r, zr , t) in the region for times t > 0. 

13-23 A hollow hemispherical region a -4 r 4b, 0 ‘. p s 1 is initially at zero 
temperature. For times t > 0 heat is generated in the medium at a rate 
of g(r, p, t) Wirt'', while the boundaries are kept at zero temperature. 
Obtain an expression for the temperature distribution T{r, p, 1) in the 
region. 

13-24 A solid sphere of radius r = h is initially at temperature 1"(r, p, (1).). For 
times t > 0 the boundary surface at r = b is kept insulated. Obtain an 
expression for the temperature distribution T(r,p, 0, t) in the sphere for 
times t > 0. 

13-25 Solve fbr the steady-state temperature distribution T(x, y) in a rectangular 
strip 0 y b, 0 x < co subject to the boundary conditions T = f (y)  
at x = 0 and T = 0 at y = 0 and y= b. 

13-26 Solve for the steady-state temperature distribution T(r, p, 0) in a solid 
sphere of radius r = b subject to the boundary condition T = f(p, 0) at 
the boundary surface r = b. 

NOTES 

1. To prove the orthogonality relation given by equations (13-3), equation (13-2a) is 
written for two different eigenfunctions tii„,(r) and C,(r), corresponding to two different 
eigenvalues ;.,,, and .?..„ as 

V2 0„,(r)+1.0„,(r)= 0 	in 	R 	 (Ia) 

V2iP„(r)+ .I,2,0„(r)= 0 	in 	R 
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The first equation is multiplied by Vt,,(r), the second by *,,,(r), the results are subtracted 
and integrated over the region R 

(A! - A„) 	.(r)cl „(r) du = 1'Yn -  0.1720.] di/ 
	

(2) 

The volume integral on the right is changed to surface integral by Green's theorem 
as discussed in note 2 at the end of Chapter 6. We find 

(A! - 	ifr„,(r);&„(r) du --- 	(0„, (--1q1" - 	 (j.-1-"1 	ds 
JR 	 s 	an 	an 

	

= 	(Cn til -Cc-kPT )dsi 
	

(3) 

	

1= 	.v, 	ant 	an, 

The boundary condition (13-2b) is written for two different eigenfunctions 0„,(r) and 
iin(r) 

k,— 	= 0m
an, 

ack„, 
(4a) 

k, •.! h,0 = 0 	 (4b) ant  

The first is multiplied by 0'„, the second by q.,„, the results are subtracted 

Ym
n, 

— n
n 
 = a 	a, 

A 	

(5) 

when this result is introduced into equation (3) we obtain 

(1,2„- 	S 0,„(r)C,(r) du 0 

	

. 
	

(6) 

Thus 
• 

(i,„,(r)1/.„(r)do = 0 	for 	in n 	 (7) 

2. Theslosed-form expressions given by equations (13-44) can be derived as now described. 
Consider the problem • 

— = 	in 	0 < x < L, t >0 
axe  a Of 

a 20 100 
(la) 

as 
- 0 	at 	x = 0, 	t > 0 

	
(lb) ax  

0 = 0 
	at 	x L, 	0 

	
(lc) 

(1= 1 	for 	t = 0, 	in 04x1. 	 (Id) 

The solution of this problem is given as 

0(x, tl = 	 cos 0,,,x 	I -cos 11„,x' 2 x 

2  	fi,„x 	Ir 	 • (2) 
L „,., 	11„, 

where fi„,= (2m -.1)R/2L. For t = 0 equation (2) should be equal to the initial condition 

(Id); hence 
2 	cos [I„,x 

	

1, (-I)" ' - 1 	 - I 	 (3) 
L ,- i 	11. 

	

which is the result given by equation (l3-44a). 	. 
We now consider the problem given by equations (1) for an initial condition (x1- 13). 

The solution becomes 

0(x, t)= - 	e'g' cos 13,,,x 	(x' 2  - L2) cos [1,,,x' IL 2 x. 

Lm=1 
	 (4) 

After performing the integration we obtain 

0(x, t).= - 
L 

4 x cos /1,,x 
- E e-44,̀ (- l ) "" '  

	
(5) 

For t = 0, we have 0(x, 1)= x1  - L2; then 

4cos Jimax2 1,2 = 	(_ um- 

	

Lm.. 	fl„,3 
	 (6) 

Inc 	 a 2  T 	11 di-0, r) 

x .. u 

	

X(I3, x)-- dx + - 00,0 = 	 
ax 	k 	a dr 
	 (1) 

The first term on the left is evaluated by integrating it by parts twice. 

a2T , [ al- f ' ca DT , 

.1..0 	axe 	ax 0 	0 dx ax X (10, x)— ax = X — - — -- ax 

, OTr f ' 2  , 
=[A - T

dX  
— + T

d X 
--- ax 
	 (2) 

ax 	dx o 	, dx 2  

which is the result given by equation (l3-44b) 
3. The integral transform of equation (13-56a) according to the definition of the integral 

transform (I 3-57b) is 



(4) J.2°  d240) 	2w 
- V 2 	11)(4')rd4' 

0 	0102  

(3) 
[ DT 	dX 	X(13 x) 
X — T 	' 	1,0 ) 

dx o 	lc, 
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The term inside the bracket vanishes at the upper limit; it is evaluated at the lower 
limit by utilizing the boundary conditions (13-56b) and (2-48b); we obtain 

The second term on the right in equation (2) is evaluated by multiplying equation 
(2-48a) by T(x,t) and utilizing the definition of the integral transform (13-57b). We 
obtain 

J 
T-- ax 

dx 	I TX dx = flu ng,t) 
o  dx2  

Introducing equations (2) to (4) into (1) we find 

dT(fl,  t) 	- 	a 	X(fi.x)  + 42718,11= 4(/3, / ) + 	• f, (t} 
at 	 k` 	k, 	x.0  

which is the result given by equation (13-58a). 

4. We consider the representation 
1. 

F*(x') cos 	- x')dx' dfl 	 (I) 

The integral of the cosine term with respect to /) is expressed as a complex integral in 
the form 

r. 
cos [3(x' - x)dfl = 

since 

Then, in the limit L 	oo, equation 

F*(x) = —
I 

2n 

-1  
2 j 

L 

f 

(I) 

IL  cos fi(x' 
-L 

sin /1(x 

can be 

e- 

- x)dfl = - 	-x)dfl 
2 J 

- x)iffl = 0 

written as 

e'f'F*(x1dx` dig 

(2a)  

(2b)  

(3) 

which is the result given by equation (13-62). 
5. The integral transform of equation (13-107a) with respect to the 0 variable, by the 

'), 	 application of the transform (13-108b) is 

a2T 1 DT I 1-2. 	 a2 T 	d 1 DT 

—Dr 2 + r car + ;2- =0 cc's v(,) °')—d° 	
(I) 0 	ad)2 	k 	Or  
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The integral term is evaluated as follows. Let (1)(49).-=-  cos v(rfr - 01. Then, the integral 

term becomes 

112• 	02 T 	

[ 

8T]2° — 1.2°  CIO aT 
CIO  

6422 	M 0 	o dtkao 
oT dCD12°  f 2" d24. 

= 	- T • - + 	T - 
04' 	dtb o 	D 	/102  

2°  d20 

JI  Td r/92  

since the terms in the bracket vanish because the functions are cyclic with a period of 
2n. To evaluate this integral, we consider the eigenvalue problem given as 

di(1)() 	2  
— - v (1)(0) = 0 	in 	0 -40 s 2n 	 (3) 
de 

The function (1)(0) is cyclic with a period of 2n. We multiply this equation by 7', integrate 
with respect to 0 from 0 to 2n and utilize the definition of the integral transform 
(13-108b) to obtain 

Introducing equations (2) and (4) into (1) we find 

32T I al' v2 	0 I87' 

are  ±; Or J  r2 + it = ; rat 	
(5) 

which is the result given by equation (13-109a). 
6. The integral transform of equation (13-109a) by the application of the transform 

(13-110b) is 

f-tir + = 1  
J. b 	 4327' 1 aT v2  _l 

 r)[--  +- 	 (1) 
tare 	r dr r2 	k a dt 

The integral term is evaluated by integrating it by parts twice, utilizing the eigenvalue 
problem for the R, function and the boundary conditions as 

r 
[a2T 1 f rR, 	 —Tdr ] 

0 	are  r or r2  

DT -dR,)1 	(d 2R, 1 dR, 
=[r(R,—Or  - T—dr 0+ o r — 

DT 	-dR 
b(R, Or- T 

Dr , =1, 
+ 

b  (52R 
r + 

• 1 dR„ 
r dr dr' 

(2) 

R Td 
dr2  + r dr r2 	r  

V 2  y 
dr - -2- R, 

r 
(2) 

(4)  

(5)  
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since the term inside the bracket vanishes at the lower limit. From the eigenvalue 
problem [i.e., equation (3-18a)] we have 

d'RdR 
+ 	 - 	R,= 0rJri r dr / 

Multiplying equation (3) by rT, integrating it with respect to r from r = 0 to r = b, and 
utilizing the definition of the integral transform (I 3-1 I0b) we obtain 

	

f 	 I EIR„ 

	

r 	 - - R ;hi = - 2  
d 2 	d 	2 	r 	f rR ■Tdr = - 	 (4) 

	

0 	r 	rr r 

From the boundary conditions (13-109b) and (I3-186) we have 

aT _ 
k 2 — + h2 T 	r) 	at 	r b 

Or 

k
dR 

2 dr+112R,= 0 	at 	r = b 

Multiplying (5a) by R, and (5b) by T and subtracting the results we obtain 

H  il.  7"..  _ i,d_li. . 	= b R,.. , 	Ilk  f)  [ 

' Or 	dr ,..,b 	k2 r .b 

1 

Introducing equations (6), (4), and (2) into equation (I) we find 

R (II rl 
710

- 3

., v, 1) b 	"-11 	7 	t', 1) 1 d rt 
nv, 	 - — 

k 2 	 dt 
Or 

dr(11
dt
"v' t)+  ap.  T(11., 	

k 
v,E)=-4(fl

m" 
v t)+ab

R(
kflm' r) 	

(7) 

	

2 	r=- 6 

which is the result given by equation (13-1 I la). 

7. When taking the integral transform of the differential equation (13-I43a) by the 
application of the transform (13-144b), we need to consider only the removal of the 
following differential operator 

[ 4+ 
DP 
 (1 - a-- 

l] 
WI'- 

op 	
- I 	1 

i) 

since the integral transform of the remaining terms is straightforward. The integral 
transform of this operator under the transform (13-I44b) is 

a 	(3 V Vi  V - 1 - V + f' 1  P.(P)
d
—
p 	ap [( 1  - P 2 ) HO 

4 	_  

The integration is performed by integrating it by parts twice: 

V2  V - -V+ [( I -p2)(P„1-111  - V cIP")11  + 	V !.:1- [( I - /i 2 )d--'2P  dp 	(3) 
4 	 _ 

The terms inside the bracket vanishes at both limits. The integral terms is evaluated 

by noting that P„(y) function satisfies the Lcgendre equation 

Multiplying 

Introducing 

d  [(I 
tip 

this equation by V and integrating 

V d  [(I -,u2 ) dld - - _ 1 	d14 	tip 	- 

equation (5) into (3) we obtain 

'V2 11 	— 	— )1(1? 

trol 	I 	Ur „lir) 

from 1t = - I to 1 we find 

10 + 1 11 	P 	VI- I 	p) 	11 - - 
-1 

01i= - (n + 1)11f  

1V 

1.11 

(5)  

(6)  

which is the term that appears in equation (13-145a). 	
. 	. 

8. When taking the integral transform of the equation (13-156) by the application of the 

transform (13-I58b) we need to consider only the removal of the following differential 

operator: 

- I - 	ii 	,lp 	,„:-. p 

	

vz v ,-- - -4  V + ku  [( I -1'2) —oil  - I - p2 	
in 	-1 -..s. It ..., 1 	(1) 

The integral transform of this operator under the transform (13-158b) is 

---e. 

 

	

I=. 	t 	f... 	i17 	1  M - 

	

VP-  -= - - Tr + f P"'{--[(1 - 112 )—]}dp - f ---- P"'P dp 	(2) , 	. 

	

4 	_ t  " Op 	i':ii 	- i i -11-  

The first integral is performed by integrating by parts twice 

	

V2; 
	[(1 	 C117 pdPnli 

rip )J -r 

fI rf( r„ 	 //f 2  7  , 
rip 

(dill 	dp 	I. 

The second term in the bracket vanishes at both limits. The integral term is evaluated 

by noting that 1),T(p) function satisfies Legendre's associated differential equation 

(13-157): 

ni 2  

	

[(1 p2)]+[11(ti +1) 	P"'.=C1 

	

dp 	dp 	 1 -1121 " 

in 	0 ,..c.r<b 
	

(3) 

(5a)  

(5b)  

(6) 

(11 

(2) 

(31 

(4) 
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Multiplying this equation by P and integratinn from ji = — I to I, we lind  

f — /1) 	j—  1112  p-} 	+ 1)1 P7Pdp _ 	dp 	dp 	I — 	" - 1 	
- 

= — ?Orr + 1)V t 	 (5) 

Introducing equation (51 into (3) we ohtain 

V 2 fr 	—11(rt ÷ 1)P = — (a 1)21 	 (6) 

which is the term that appears in equation ( 3. I 59).  

14 
INVERSE HEAT CONDUCTION 
PROBLEMS (IHCP) 

Inverse problems are encountered in various branches of science and engineering. 
Mechanical, aerospace and chemical engineers; mathematicians, astrophysicists, 
geophysicists, statisticians and specialists of many other disciplines arc all 
interested in inverse problems, each with different applications in mind. In the 
field of heat transfer, the use of inverse analysis for the estimation of surface 
conditions such as temperature and heat flux, or the determination of thermal 
properties such as thermal conductivity and heat capacity of solids by utilizing 
the transient temperature measurements taken within the medium has numerous 
practical applications. For example, the direct measurement of heat flux at the 
surface of a wall subjected to fire, at the outer surface of a reentry vehicle, or at 
the inside surface of a combustion chamber is extremely difficult. In such situa-
tions, the inverse method of analysis, using transient temperature measurements 
taken within the medium can be applied for the estimation of such quantities. 
However, difficulties associated with the implementation of inverse analysis 
should be also recognized. The main difficulty comes from the fact that inverse 
solutions are very sensitive to changes in input data resulting from measurement 
and modelling errors, hence may not be unique. Mathematically, the inverse 
problems belong to the class of problems called the ill-posed problems; that is, 
their solution does not satisfy the general requirement of existence, uniqueness, 
and stability under small changes to the input data. To overcome such difficulties, 
a variety of techniques for solving inverse heat conduction problems have been 
proposed. In this chapter an introductory treatment is presented to the theory 
and application of inverse heat conduction problems. 
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14-1 AN OVERVIEW OF IHCP 

The standard heat conduction problems are concerned with the determination 
of temperature-distribution in the interior of the solid when the boundary and 
initial conditions, the energy generation rate and thermophysical properties of 
the medium are specified. In contrast, inverse heat conduction problems (IHCPs) 
are concerned with the determination of boundary condition, energy-generation 
rate, or thermophysical properties by utilizing the measured temperature history 
at one or more locations in the solid. The most common usage of IHCP is 
concerned with the estimation of the surface heat flux or temperature history 
from temperature measurement taken at an interior location at different times. 
To illustrate this matter, we consider the following one-dimensional transient 
heat conduction problem in a slab 

a. ( kaT
ax

) 	
a(T 

in 	0 < x < L, t > 0 

k —
DT 

ox 
= f(t) 	 x=0, 	t>0 

T = 	 at 	x = L, 	t > 0 

T = F(x) for t = 0, in 0 L (14-Id) 

where f(t),TL, F(x), pC p, and k are all considered known. Then the problem is 
concerned with the determination of temperature distribution T(x, t) in the 
interior region of the solid as a function of time and position. We shall refer to 
such traditional problems as the direct heat conduction problems. 

We now consider a problem similar to that given by equations (14-1), but the 
boundary condition function f(t) at one of the boundary surfaces is unknown. 
To compensate for the lack of information on the boundary condition, measured 
temperatures T(x i , are given at an interior point x, at different times ti  
(j = 1, 2,...,N) over a specified time interval 0 < t -.51.1, where tf  is the final time. 
This is an IHCP because it is concerned with the estimation of the unknown 
surface condition f(t). The mathematical formulation of this problem is given by  

a (,_DT DT 
K 	

- 

(ix 	OX 	P DX 

• 	' 	DT 
— k 	= f(t)=?(unknown) 

ax 

T = TL  

T = F(x) 

in 

at 

at 

for 

0 <x<L, 

x = 0, 

x = L, 

t = 0, 

0<t<t f  

0 <1 

0<tirf, 

in 	0 	x < L 

(14-2a) 

(14-2b) 

(14-2c) 

(14-2d) 

and temperature measurements at an interior location x1 , at different times ti  

are given by 

T(x, , ti) 
	at 	x 	x i , 	for 	t = tf  (j = 1,2, ..., N) 	(14-3) 

This is an 1HCP of unknown surface condition. Analogously, one envisions 
IHCP of unknown thermophysical properties, energy generation rate, initial 
condition, and so forth. In addition, one can also envision inverse problems of 
convection, radiation, phase-change, and other factors. The principal difficulty 
in the solution of inverse problems is that they are ill-posed; as a result the 
solution becomes unstable under small changes to the input data. 

Applications 

The space program played a significant role in the advancement of solution 
techniques for inverse heat conduction problems in late 1950s. An excellent 
discussion of this subject and various historical developments arc given in 
references 1-3. For example, the aerodynamic heating of space vehicles during 
reentry is so high that the surface temperature cannot be measured directly with 
the sensors. Therefore, the sensors arc placed beneath the surface of the radiation 
shield and the temperature of the hot surface is estimated by inverse analysis. 
The problems of this type belong to the inverse problem of unknown surface 
condition and have been the subject of numerous investigations [4-18]. Other 
applications include, among many others, the determination of physical pro-
perties k and p C, [19-31], temperature in internal-combustion engines [32,33], 
interface conductance between periodically contacting surfaces [16, 17], the bulk 
radiation properties such as absorption and scattering coefficients [34,35] and 
wall heat flux in forced convection inside ducts [36,37]. 

Difficulties in Inverse Solution 

The principal difficulty in the solution of inverse problems arises from the fact 
that they are ill-posed [38-41]. The standard heat conduction problems are 
well-posed, because (1) The solution exists, (2) is unique, and (3) is stable under 
small changes to the input data. The problems that fail to satisfy any one of these 
conditions are, called ill-posed. 

To illustrate the sensitivity of inverse solution to small changes in the measured 
input data, we consider one-dimensional quasi-stationary temperature fields in 
a semiinfinite solid subjected to periodically varying heat flux at the boundary 
surface x = 0. The physical problem is stated as follows. A semiinfinite solid 
confined to the domain 0 < x < m is initially at zero temperature. For times r > 0, 
the boundary surface at x = 0 is subjected to a periodically varying heat flux 
given in the form qo  cos cot, where q, is a constant heat flux and w is the frequency 
of oscillations. After the transients have passed, the quasi-stationary temperature 
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distribution in the solid at anytime, at a position x is given by [42, p. 114] 

T(x, t)=
o 
 — 
ja 

exp( — --)eos(cot — x 
2a 

co 
(14-4a) 

The ntaxiimmt  tunplitud 
	

ca i 	ibtained b settin co 	= 

[T(x. t)]„,.= jc± exp(— x (±) 
k 	 2a) 

	
(14-4b) 

Equation (14-46) shows that the maximum temperature in the interior region 
attenuates exponentially with increasing distance x from the surface and the 
square root of the frequency. However, if the surface temperature is to be 
determined by utilizing the measured temperatures at an interior points, any 
measurement error will be magnified exponentially with the distance x and the 
square root of the frequency w. Therefore, depending on the location of the sensor 
and the frequency of oscillations, the solution of the inverse problem may become 
very sensitive to measurement errors in the input data. 

Methods of Solution of IHCP 

A variety of analytic and numerical approaches have been proposed for the 
solution of fl-ICP. Stoltz [43] was one of the earliest investigators who developed 
an analytic solution for a linear inverse heat conduction problem by using 
Duhamel's method, but the solution was found to be unstable for small time 
steps. This shortcoming was amended [6,44, 45] through the use of future data 
concept; as a result, the improved solution permitted the use of much smaller ' 
time steps than that used in iefeienee 43. 

The analytic solutions developed by using integral or Laplace transform 
techniques [46-48] required continuously differentiable data; as a result, they 
were not so useful for practical applications; however, they provided a good 
insight into the nature of IHCP. 

In order to cast IHCP as .a well-posed problem, the traditional heat conduction 
equation was replaced by a hyperbolic heat conduction equation and the well 
established techniques were used to solve the resulting IHCP [49]. 

The analytic solutions arc strictly applicable to linear problems. To extend 
the technique to nonlinear problems, the numerical methods such as FDM 
[48, 50-57] and FEM [58-60] have been used in the solution of IHCP. 

The terminology, function estimation, and parameter estimation, frequently 
used in the study of inverse analysis, needs some clarification. If the problem 
involves the determination of an unknown function such as the timewise variation 
of the surface heat flux with no prior knowledge of the functional form of the 
unknown quantity, the problem is referred to as a problem of function estimation. 
Thus, the function estimation requires the determination of a large number of 
surface heat flux components gi  (i = 1, 2, ... , N); hence, it is referred to as an  

infinite dimensional minimization problem. On the other hand, if some prior 
knowledge is available on the functional form of q(t), it can be parameterized 
and the inverse problem is called a problem of parameter estimation because only 
a limited number of parameters are to be estimated. Such problems are referred 
to as finite dimensional minimization problem. However, if the number of para-
meters to be estimated is increased, it may not be possible to make a clear 
ditainGtion between the parameter and.the function estimation. problems. ..... ..... 

Let us consider an inverse problem of parameter estimation, involving 'M 
unknown parameters, by utilizing the measured data. In the ideal case, if we have 
a perfect sensor with no measurement error, it would be sufficient to have the 
number of temperature data equal to the number of unknown parameters M to 
solve the inverse problem. However, as the temperature data always contain 
measurement errors, more measurements are needed than the number of un-
knowns; then, the system of equations to be solved becomes overdetermined. One 
way of solving a system of overdetermined equations is the use of the traditional 
least-squares approach coupled to an appropriate minimization procedure. 

In the case of function estimation, the sequential estimation technique 
[6,52,57, 63], and the least squares method modified by the addition of regulari-
zation term [2,63, 64] have been used. The conjugate gradient method with adjoint 
equation [65-70] has the advantage that the regularization is implicitly build in 
the computational procedure; some mathematical aspects of this method have 
been discussed [71]. 

Inverse radiation problems involving the determination of bulk radiation 
properties of semitransparent materials from the knowledge of the exit distribution 
of radiation' intensity have also been the subject to numerous investigations 
[72-76]. 

The study of inverse problems requires some background in statistical analysis. 
Therefore, we first present some background material in statistical analysis and 
then introduce the methods of solving IHCP with some representative examples 
such as the determination of unknown surface heat flux and the thermophysical 
properties of materials. 

14-2 BACKGROUND STATISTICAL MATERIAL 

The purpose of this section is to present some basic statistical material needed 
in the analysis and solution of IHCP that is not generally covered in the 
customary courses in engineering. Therefore, a survey of pertinent statistical 
terminologies, statistical description of errors and some standard assumptions 
regarding the temperature measurement will be reviewed. Readers should consult 
references 77-81 for a more in-depth discussion of such matters. 

Random. Variable 

A function whose value is a real number determined by each element in the 
sample space is called a random variable. Here, the sample space refers to the set 
of all possible outcomes from a given experiment. 



Example 14-1 

The elements x„ of a discrete random variable X and the probability distri-

bution f (x„) associated with each value of x, are listed below: 

0  
f(x„) 1 0.1 

Calculate ( I) the expected value /5(X) of the random variable X and (2) the 
expected value Erg(X)1 of the Function g(X) = (2x 1)2. 

Solution 

I. The expected value E(X) of the random variable X is calculated accor-
ding to equation (14-6a). We obtain 

N 

E(X)= E x,f(x„) 

=0 x f(0) + I x f(I) + 2 x f(2) + 3 x f(3) + 4 x f(4) + 5 x f(5) 

= x 0.1 + I x 0.2 + 2 x 0.3 + 3 x 0.2 + 4 x 0.1 + 5 x 0.1 

= 0+ 0.2+0.6+0.6 + 0.4 +0.5 

= 2.3 

2. The expected value E[g(X)] of the function g(X) is calculated according 
to equation (14-7a) as 

N 	 N 

E[g(X)] = i g(x„)f(x„)= i (2xn  — 1)2.Rx.) 

(-1)2f(0)+ (1)2f (1) + (3)2f(2) + (5)2  f(3) MV(4) (9)2.i(5) 

=1 x0.1+1 x 0.2+9 x 0.3+25 x 0.2+49 x0.1+81 x0.1 

0.1 +0.2+ 2.7+ 5+ 4.9+ 8.1 

= 21.0 

Variance of a Random Variable X 

The variance of a random variable X, denoted by a! or simply 62, is defined by 

x2 	1:1(X — p)2] 	where p = E(x) 	(14-8a) 

or an alternative form is obtained by expanding this expression 

o-2  = E(X 2)— p2 	 (14-8b) 

since E(p2) = p2. 	 . ...... _ _ 
The positive square root a of the variance, o.2, is called the standard deviation. 

1 2 3 4 5 
0.2 0.3 0.2 a 1 0.1 

when X is discrete 	(14-6a) 

f xf (x)dx 	when X is continuous 	(I4-6b) 
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Probability Distribution Function 

Let the capital letter X denote a random variable. It is called a discrete random 
variable if it is a vector of a set of discrete numbers x„, n =- 1, 2, ... N, and a 
continuous random variable if it contains an infinite number of points x. Depending 
on whether X is discrete or continuous, the probability distribution function f(x)' 
is defined as 

E .1(x = I 
	

when X is discrete 	 ( I 4-5a) 
n = I 

J f(x)dx = 1 	when X is continuous 	(14-5b) 

Expected Value of X 

Let X be a random variable, discrete or continuous, with the corresponding 
probability distribution functions f(x„) or f(x), respectively. The expected value 
of X, denoted by E(X), is defined as 

The expected value of any random variable X is obtained by multiplying each 
value of a random variable by its corresponding probability distribution function 
and then summing up the results if X is discrete and integrating the results if X 
is continuous. Clearly, the expected value of X is a weighted mean of all possible 
values with the weight factor f(x). If the weights are equal, that is, f(x) = 1, then 
the expected value becomes an arithmetic mean of X. 

Expected Value of a Function g(X) 

Consider a random variable X and the probability distribution function f(x) 
associated with IL The expected value of the function g(X). denoted by E[g(X)], 
is given by 

E[g(X)]= 

E g(x„)f(x„) 
n=i 

g(x)f(x)dx 

when X is discrete and x„ 

being one of its N values 

when x is continuous 

(14-7a) 

(14-7b) 



x„ 0 1 2 3 
.1.(x„) 1 

=ia 
.10 
411 

25 
411 

4 
40 • 

. 
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Example 14-2 

A discrete random variable X and the corresponding probability distribution 
function f (x) are listed 

to or subtracted from a random variable. The following expression 

2 2 	2 2 oz  ax  = a cr x  = a a (14-11) 

shows that, if a random variable is multiplied or divided by a constant, the 
variance is multiplied or divided by the square of the same constant. 

2. If X and Y are independent variables and a and b are constants, then 

calculate the variance cr2  of the random variable X. 

Solution. We use equation (14-8b) to calculate the variance of X, that is, 

= E(X2) p2  

where  

2„22 	1,2,2 
ca+br-- , "Y 

and replacing b by -b the right hand side remains invariant: 

2 ,20_2 b2„2 
Cr aX bY ” X 	Y 

(14-12a) 

(14-12b) 

=.1 	 It = E(X) 

E(X) 	x —   + I x LO 
 + 2 x 

- 
+ 3 x±

40 40 
1.8 -µ 

E(X2) = 02  x 1 — + 1 2  X-
10

+ 	
25 

x 	+ 32.x 
4 - 

 
146 

= 3.65 
40 	40 	40 40 40 

3. The covariance of the independent variables X and Y is zero: 

cFxr = 	Y)-  itxtty = 0 	 (14-13) 

since E(XY)= E(X)E(Y) and /ix = E(X),py = E(Y). 

4. If a and b are constants, then 

Hence, 12  = 3.65 - (1.8)2  = 0.41. 

Convariance of Two Random Variables X, 1' 

The covariance of two random variables X, Y, denoted by tra y, is given as 

E(h) = h 
	

(14-14a) 

E(ax) = aE(x) 
	

(14-141- ) 

E(ax + b) = aE(x) + b 
	

(14-14c) 

cov(X, 	axy = E 	- fix)( - Yr)] 
	

(14-9a) 

cov(X, Y) = cr.", = E(XY) ,axpLy 	 (14-9b) 

where p, = E(X). pi. = 	Y) and Ectiot,.) = pt p,.. 

Some Properties of Variance 

We list below some useful properties of the variance and covariance. 

I. If X is a random variable and a is a constant, then 

2 
= 	= 
	 (14-10) 

This result states that the variance remain unchanged if a constant is added 

Normal Distribution 

The most frequently used continuous probability distribution function is the 
normal (or Gaussian) distribution which has a bell shaped curve about the mean 
value. The normal (Gaussian) probability distribution function with a mean u 
and variance 0' is given by 

f(x) = • I, exp[ - (x  
(1.,/ 	') 
	 (14-15) 

The area under the integration of this function from x = - oo to x represents the 
probability P(-- cc <X < x) that a random variable X with a mean p and 
variance cr2  assumes a value between x = - co and x. That is, P(- co < X z‹...x) 
is defined by 

P(- ao <X 	
rr."Tn. f- . exPL 2 

1 	X 	r . 1 x' 
 —u  21 

cr 
	jdx' 	(14-16) 

arid-an alternative form of this expression is obtained by expanding this result as 
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To alleviate the difficulty in the calculation of this integral for each given set of 	 TABLE 14-1 Normal Probability Distribution Function 
values of a, tt and x, a new independent variable Z is defined as 	 P(- co < Z < z) Defined by Equation1(14-18) 

X - p 	 x - p 
Z= 	 or z = 

Then the integral (14-16) becomes 

• 	(14-17) 

(14-18) 
4  

P(- oc.) < Z z)-  I f  e'112  dz' 
-w 

which has only one independent variable z, hence the results of integration can 
be tabulated as given in Table 14-1. Readers should consult reference 77 for more 
comprehensive tabulation of the probability function P( - co <Z < z). 

Table 14-1 can be used to determine the normal probability, P(x < X < x2 ), 
of a random variable X having a mean p, variance r2, assuming a value between 
xl  < X <x2: 

P(xi <X <x2)=P( -xl lt-i <Z< x-27P  
a 	a 

P(z i  < Z zz) 

=P(-co<Z<z2)-P(-co<Z<zi ) 

where P(-- co < Z < z2) and P(- oo < Z < z,) are determined from Table 14-1. 

Example 14-3 

The average life of a certain type of watch Is p = 10 yr with a standard 
deviation of a =1 yr. Assuming that the Iife expectancy of such watches has 
a normal(Gaussian) distribution, determine the probability that a given watch 
will last less than x = 8.5 yr. 

So!uiion. The shaded area under the probability curve in the accompanying 
figure represents the desired probability for this example. 

x.8.5 j 	10 
	

x, years 

Example 14-3 

P(-cc<Z<z) P(-oo<Z<z) 

1 

-2.9 
-2.8 
-2.7 
-2.6 
-2.5 

-1.4 
-2.3 
-2.2 
-2.1 
-2.0 

-1.9 
-1.8 
-1.7 
-1.6 
-1.5 

-1.4 
-1.3 
-1.2 
-1.1 
-1.0 

-0.9 
-0.8 
-0.7 
-0.6 
-11.5 
-0.4 
-0.3 
-0.2 
-0.1 
-0.0 

0.0019 
0.0026 
0.0035 
0.0047 
0.0062 

0.0082 
0.0107 
0.0139 
0.0179 
0.0228 

0.0287 
0.0359 
0.0446 
0.0548 
0.0668 

0.0808 
0.0968 
0.1151 
0.1357 
0.1587 • 

0.1841 
0.2119 
0.2420 
0.2743 
0.3085 - - 
0.3446 
0.3821 
0.4207 
0.4602 
0.5000 

0.0 
0.1 
0.2 
0.3 
0.4 

0.5 
0.6 
0.7 
0.8 
0.9 

-1.0 
1.1 
1.2 
1.3 
1.4 

1.5 
1.6 
1.7 
1.8 
1.9 

2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 

0.5000 
0.5398 
0.5793 
0.6179 
0.6554 

0.6915 
0.7257 
0.7580 
0.7881 
0.8159 

-08413 
0.8643 
0.8849 
0.9032 
0.9192 

0.9332 
0.9452 
0.9554 
0.9641 
0.9713 

0.9772 
0.9821 
0.9861 
0.9893 
0.9918 
0.9938 
0.9953 
0.9965 
0.9974 
0.9981 

(14-18a) 

(14-18b) 

(14-18c) 



z 

Hence 

P(— oo <Z < + 2.576) = 0.995 

P(— <Z — 2.576) = 0.005 

P(— co <Z < 2.576) — P(— co < Z < + 2.576) = 0.99 

Assumptions in Errors 

The random measurement errors are generally the major source of errors in 
estimates made by the inverse analysis. A statistical description of errors is useful 
in the analysis of random errors. Eight standard assumptions regarding the 
temperature measurements described in references 1, 78 are listed below. 
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x — p 8.5 — 10  
z   = 	1.5 

a 	1 

Then, using Table 14-1, we obtain 

P(— < X < 8.5) = P( — < < — 1.5) = 0.0668 

Thus the probability that a watch will last less than 8.5 yrs is 0.0668. 

Example 14-4 

In the Example 14-3, what is the probability that a given watch will last more • 
than x = 11.5 years? 

Solution. The shaded area under the probability curve in the accompanying 
figure represents the probability for this example. 

x. years 
= 1.5 

Example 14-4 

we have 

	

x 	p 	11.5 . - 10 

	

z= 	= 	•
1 
	=1,5 

P(X > 11.5) = P(.Z > 1.5) 
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rea-9-9-%—Z 	 
	a1 

Solution. We need to determine the z value such that 

P(— op <Z + z)— P(— oo <Z —z)= 0.99 

By using the more extensive table of normal probability distribution it can be 
verified that, for z = 2.576 we have 

1. The errors are additive, that is . 
and using Table 14-I we obtain 

P(2' > 1.5) = 1 — P(—s <Z < 1.5) = I — 0.9332 = 0.0668 

As expected, the result is the same as that in Example 14-3. 

Example 14-5 

Determine the values of ±z such that the shaded area under the normal 
probability curve shown in the accompanying figure will be equal to 99!,0. 

= 	Ei 	 (14-1911) 

where Y, is the measured temperature, 1• is the "true" temperature and 61  
is the random error at time ti. 

2. The temperature errors, c,, have a zero mean, that is, 

E(ei)=0 	 (14-196) 

where E(•) is the expected value operator. 
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3. The errors have constant variance, that is, 

	

Et [y(  — Eff'd]2} =oz = constant 	(14-19c) 

which means that the variance of yi  is independent of time. 
4. Two measurement errors el  and ei, where i 0j, are uncorrelated if the 

covariance of ei  and Ej  is zero: 

coy (es, Jr) Ei [Es  — E(E)] 	E(ein =0 
	

for 	i oj 	(14-19d) 

The different errors ei  and ci  are called uncorrelated if each has no effect 
on or relationship to the other. 

5. Measurement errors have a normal (Gaussian) distribution, that is, the 
probability distribution function of Ei  is given by 

(ed= 	exp (— 
217 2' 

(14-I9e) 

6. The statistical parameters such as o2 describing ei  are known. 
7. The measurement times 1 1 ,12 	 t,,, the measurement positions ',C1 , X 2, 	, 

x;, the dimensions of the specimens, and thermal properties are all accurately 
known. . 

8. There is no prior information regarding the distribution of the function to 
be estimated. If such information exists, it can be utilized to obtain estimates. 

14-3 MCP OF ESTIMATING UNKNOWN SURFACE HEAT FLUX 

We consider a flat plate of thickness L initially at zero temperature. For times 
> 0, a timewise varying unknown heat flux q(I) is applied at the boundary 

surface x = 0, while the boundary surface at x = L is kept insulated. It is assumed 
that q(t) is a single-valued continuous function of time that may rise or fall 
arbitrarily, but no other prior information is available on the functional form. 
In order to estimate q(t), temperature measurements are taken with a sensor 
positiimcd at the insulated surface .1: = I., over a time period 0 < t < ti  , at succes-
sive time intervals tj  (j = 1,2 ,,,, Here, If  denotes the final time for tempera-
ture measurements. Figure 14-1 illustrates the geometry and the coordinates. 
Our objective is, by utilizing the measured temperature data, to estimate the 
unknown surface heat flux function q(t), over the whole time domain 0 < t < tf . 
Since no prior information is available regarding the functional form of q(t), we 
need to compute ci f  = q(tdat a sufficiently large number of times ti  (i = 1, 2, 3, ... , N) 
in order to make a reasonably accurate estimation of the function q(1). 

Unknown 
heat 
supply 

Fig. 14-1 Inverse problem of unknown surface heat flux. 

Therefore, the problem may be regarded as a problem of function estimation. 
The analysis and solution of this inverse problem are presented in the following 
basic steps: 

1. The formulation of direct and inverse problems 
2. The transformation of the inverse problem into a system of least-squares 

equations 
3. Physical significance of sensitivity coefficients 

4. The solution of the least-squares equations 
5. The determination of the sensitivity coefficients 
6.. Numerical results 

I. The Direct and Inverse Problem Basic to the solution of this inverse problem 
is the solution of the related direct problem in which the surface heat flux q(t) is 
considered known. The mathematical formulation of the direct problem is given 
by 

k
(32 T 	aT 
aX 2 	P  dt 

• = 
	

in 	0 <.v < L, t > 0 	 (14-20a) 

aT 	
at 	x = 0, 	t > 0 	 (14-20b) — k—= q(i) 

DT = 	 at 	x = L, 	t > 0 	 (14-20c) 

T=0 
	

for 	t = 0, 	in0.4x4L 	(14-20d) 

This direct problem can readily be solved by classical solution techniques; we 
prefer to use Duhamells-theorem-:- - 	------ 
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The mathematical formulation of the inverse problem is given by 

2  , 	7' 	,., OT 

	

K - = pt, — 	in 	0 < x < L, 	for 0 < t < tf 	(14-21a) aX 2 	P  at 

	

—k = 00= ? 	at 	'x = 0 
aT 
Ox 
	 (14-21b) 

(14-21c) 

(14-21d) 

where the applied surface heat flux q(t) is unknown; instead, temperature mea-
surements 

	

T(L,t;) 	j= I, 2,... , M 

taken with a single sensor placed at x = L at times t j  are given over the whole 
time domain 0 < t < t f , where tris the final measurement time. 

Then the inverse problem can be stated as follows: By utilizing the M measured 
data Yj( j --- 1, 2, , M), estimate the M heat flux components q(ti)_= qi(j= 1, 
2, ..., M). 

2, Transformation to a Least Squares Problem The inverse problem as stated 
above is mathematically ill-posed in a sense that its existence, uniqueness, and/or 
stability is not yet ensured. A successful solution of an inverse problem generally 
involves the transformation of the inverse problem into a well posed-approximate 
solution. 

The existence of an inverse solution is guaranteed by requiring that the inverse 
solution minimize the least squares norm rather than make it necessarily zero. 
Since the computation of the direct solution is implicit in the least squares 
method, the establishment of the direct solution given by equations (14-20) is 
obviously basic to the procedure. 

temperature t1(4,),j = I, 2, ... , M, computed from the solution of the direct prob-
To solve the inverse problem on such a basis, we require that the estimated 

lem by using the estimated values of the heat flux components 4,,1-1,2,--,M, 
should match the measured temperatures Y1, j =1, M as closely as possible 
over a specified time domain 0 < t < t f. Here, the superscript over T or q denotes 
the estimated values. One way to realize such a matching is to require that the 
traditional least squares norm is minimized with respect to each of the unknown 
heat flux components q1, i = 1, 2, ..., M. Here we consider the least squares norm 
modified by the addition of a zeroth-order regularization term 

/.4 

	

S(4) = E 	2  C4* 

Al 	
(14-22).  

	

1= 1 	 1=1  

where 4 ph for i = 1,2,...,M] and the superscript " denotes the estimated 
values and other quantities defined by 

S(ii) 	= sum of squares 
41  4(0 = estimated surface heat flux at the boundary 

Y(t1)= measured temperature at surface x = L, at times r j  
= estimated temperature at the surface x = L at times / = r1  computed 

	

by using-estimated heat flux, [4i; i = 	 = 4 - 
at* 	= the regularization parameter > 0 

In equation (14-22), the first summation term on the right-hand side is the 
traditional least squares. The second summation is the zero-order regularization 
term which is added in order to reduce instability or oscillations that are inherent 
in the solution of ill-posed problems when a large number of parameters are to 
be estimated. Readers should consult references I and 63 for a discussion of the 
first- and second-order regularization terms. The concept of regularization was 
originally introduced in reference 41. The procedure is essentially related to the 
damped least squares or the ridge method discussed in references 80-85. 

The coefficient a* is called the regularization parameter. As a* 0, the solution 
exhibits oscillatory behavior and becomes unstable if a large number of para-
meters are to be estimated (i.e., function estimation). For large values of a*, the 
solution is damped and deviates from the exact results. By proper selection of 
a*, instability can be alleviated. A discussion of the ways to select value for a* 
can be found in references 2, 63, and 64. Fortunately, a relatively wide range of 
values of a* can be used. For example, the values for a* ranged from I to 
10' [63]. A cross-validation approach .discussed in references 87-90 has been 
used [&7] to calculate the optimum value of a*. Depending on the value of the 
standard deviation a of the measurement errors, the optimum value of a* ranged 
from 10 2  to 10'. 

The next step in the analysis is the minimization of the least-squares equation 
(14-22) by differentiating it with respect to each of the unknown heat flux 
components 4„;= 1, 2, ..., M, and then setting the resulting expression equal to 
zero. We find 

aS(4) 	M Di' (4) 
• — 2  E 	 -1- 2a* 	A 	— 

ath 	1= 	
u 

where i = 1, 2, ... , M, and 

a4 j _lo 
41 -0 
	for 	i Of 

for 	i=j 

The total number of temperature measurements should be at least equal to or 
more than the number of the parameters to be estimated. Equation (14-23a) is 

aT _ 0  
ix —  

T=0 

at 	x = L 

for 	t = 0, in 0 -<x<L 

(14-230 

(14-23b) 



JVV 	 Alla .1—.1.1.14.1— •AL—re a 	 a ava, a 

rearranged in the form 

AI  at•(4) 	„ 	_ a4 f  
L 	TAU — L J 	04, 	 a4i 

where i -= I, 2, „ . , M and 

14., (4) 	a f,(41, c? 2. • • - 4M) 	sensitivity coefficients 
04i 	a4( 	jr with respect to 4;  

As discussed previously, it is desirable to have large uncorrelated sensitivity 
coefficients If the sensitivity coefficients are linearly dependent, the minimi-
zation procedure defined by equation (14-23) will not have unique solution with 
a* = 0. Equation (14-23c) is written in the matrix form as 

where various vectors are 

T 

XT(Y — T) = 

given by 

y= [ Y2 1, 

YM 

et; 

q =  

(14-24a) 

— 411 
42 

(14-24b,c,d) 

c1Ar 

and the sensitivity matrix X with respec to q is written in the explicit form as 

or 

Ti  aT, 3T, 

(14-24e) 

aqi 

aT, 
aq2 

T2 

aqm  

T2 

aq, 

aTm  

aq2 

aTm  

aqm  

a Tm  

ate' 

aqi  aq2  aqm  

We note that, in this sensitivity matrix, the terms above the main diagonal must 
he zero, because the temperatures Ti  calculated at any instant of time ti  must be 
independent of the future heat fluxes, qi,j > f. 

3. Physical Significance of Sensitivity Coefficients The sensitivity coefficient 
Xji  defined by equation (14-23d) or (14-24e) is the first derivative of the dependent 
variable (i.e., temperature) with respect to the unknown parameter (i.e., heat flux 
components). It represents the changes in with respect to the changes in the 

unknown parameters q1. It is preferable to have large, uncorrelated values of the 
sensitivity coefficients Xu. Therefore, sensors should be placed at such locations 
where the readings are most sensitive to changes in the unknown parameters. A 
small value of X j, indicates insensitivity of the dependent variable to changes in 
the value of the unknown parameter; for such cases the inverse analysis become 
very sensitive to measurement errors and the estimation process become difficult. 
To establish the best sensor locations, measurement times, and so on, it is 
desirable to examine the effects of measurements locations, measurement times, 
and similar parameters on the relative values of the sensitivity coefficients. 

If the sensitivity coefficients are functions of the parameters to be estimated, 
then the resulting estimation problem is nonlinear; conversely, if they are run 
functions of the parameters, the estimation problem is linear. 

Consider, for example, transient temperature distribution in a semiinfinite 
medium, initially at zero temperature, for times t > 0, where a constant heat flux 
go  W/m2  is applied at the boundary surface x = 0. The temperature at the surface 
x = 0 is a function of time given by 

T(0, sl  2q, (at )1 / 2  

	

k 	) 

where a is the theimal diffusivity and k is the thermal conductivity. The sensitivity 
coefficient with respect to the surface heat flux q„ given by 

aT(0, t)  2 (at /2  
Xq0(0, t) -= 	— 

	

ago 	k it 
• 

is independent of go, whereas the sensitivity coefficient with respect to the thermal 
diffusivity 

X.(0, t) 
07(0,  t) 

 —
q,(t )1/2 

	

as 	k not) 

depends on a; hence the inverse problem of estimation of a is nonlinear. 
The final step in the analysis is the solution of the above system of least squares 

equations (14-24) in order to calculate the heat flux components iti,j = 1, 2, ... , M 
as discussed next. 

4. Solution of the Least-Squares Equations Now the IHCP is reduced to that 
of solving the system of least-squares equations (14-23) or (14-24) by a suitable 
solution algorithm: It is desirable to express equation (14-23) in a more convenient 
form for the calculation of ch; this can be achieved by expanding Ti(4) in a Taylor 
series with respect to an arbitrary value of the heat flux as 

Pi 
Tj 

 

	

= TOJ E 	--AA  (4k - 	 (14-26a) 

	

k 1 	k 

(14-23c) 

(14-23d) 

(14-25a) 

(14-25b) 

(14-25c) 

C 
C 
C 

C. 

I 
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This result is expressed in the matrix form as 

DT 
T = To  + 	— q0) aqT 

D 
	

If we choose To  = 0 and go  = 0, equations (!4-26a) and (14-26b), respectively, 
reduce to 

M 	 . 
E 

at 	
(14-27a) 

e= 1 Laik  

and 

T = —q = Xg 	 (14-27b) aqT 

.7) 
--, 	 M at/ 	m 	acli  
_., 	E IiA yi — E —;,A  4k) = a* E 4J —„, 	1= 1, 2,... ,M 	(14-28a) 
-) 	 1=1 “.fi 	k=1 '-'•ift 	i"i 	"1i 
-., 
---, 	The matrix form of this equation is obtained by introducing equation (14-27b) ...} 

into equation (14-24a) 

X T(Y — Xg) = a*q 	 (14-28b) 

The equivalence of equations (14-28a) and (14-28b) can be verified by expanding 
equation (14-28b). The solution of equations (I4-28a) or (14-28b) gives the 
estimated values of the heat flux components rj, at each time ti(i = 1, 2,... , M). It 
is convenient to express the solution for the heat flux q in the matrix form as 

	

q = (XTX + a*Ir 	 (14-29) 

Equation (14-29) is the formal solution of the inverse heat conduction problem 
considered here for the unknown surface heat flux q over the period 0 < t < 
Once the sensitivity coefficients X, the regularization parameter a*, and the 
measured temperature data Y are available, the surface heat flux q is computed 
from equation (14-29). The sensitivity coefficients X are determined as described 
next. 

5. Determination of Sensitivity Coefficients Because the direct problem asso-
ciated with this inverse problem is linear, analytic expression can readily be 
developed for the sensitivity coefficients by the application of Duhamel's theorem 
as follows. 
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By definition, the sensitivity coefficients are given by Xo  = id;/(34i. We consider 

the solution T(x, t) of the direct problem (14-20) determined by Duhamel's 
theorem [see equation 5-8] 

' 4)(x' 
T(x,t) 

= I 
	q(2)

3 t — A) 	 (14-30) 

where 0(x, t) is the solution of the following auxiliary problem 

k—
a24, 

in 	0 < x < L 	. (14-31a) ax 2=PC"-Fi  

r/9 
kD  = 1 	at 	x = 0 	 (14-31b) 

ex 

= 0  
at 	x=L 	 (14-31c) 

ax 

0=0 	 for 	t = 0 	 (14-31d) 

Duhamel's theorem given by equation (14-30) is written in the alternative form as 

x 	A) 
7'(x,1)= 	q(A)

471)( 	
• • ID. 

x-0 

since 

a4)(x, t — 1) = ack(x, t A) 

at 	 AA 

The integral in equation (14-32a) is discretized as 

T(x, t,,,) = 	qn .;15(X' 1M  — - 1) — 0(x, txr — An)  A2  

	

n = 1 	 AA 

	

= E 	0-0(x. i„._„)] 	4-33h) 

which is written more compactly as 

	

TM = E 	n= 1, 2, ... M 	' (14-34) 
n = 

where ch, is evaluated at time (n — DAt. Equations (14-34) can be expressed in the 

(14-26b) 

Since DT/De' X. 
We now substitute equation (14-27a) into equation (14-23c) 

(14-32a) 

(14-32b) 

(14-33a) 
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Fig. 14-2 Effect of regularization parameter a* on the stability of inverse solution. 
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matrix form as 

— T1 —  

Thf 

T2  

110111- I 

A4)0  

Aq5, 	AO° 

Aq50  

•-• AO, 	Arii„._ 

0 
q2 

(14-35) 

where Acb, 	y5i  and 1);  ;Mx, ti). Therefore, 0, represents the temperature 
rise in the solid for a unit step increase in the surface heat flux as computed from 
the solution of the problem (14-31). Recalling the definition of X given by 
equation (14-24e), 

i9T 
=X 

aqT  (14-36) 

we conclude that the coefficient matrix in equation (14-35) must be the sensitivity 
matrix X. Hence we write 

IHCP OF ESTIMATING UNKNOWN SURFACE HEAT FLUX 

DO 

— 
_ 0 	

at 	X = I, 	i > 0 
ax 

0 = 0 	 for 	T = 0, 	0 ‘, .x ..<.. 1 

and the temperature measurements 

	

0(1, ri) = Y7. 	j = 1, 2, ... , 
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(14-40) 

(14-41) 

(14-42) 

taken at the surface X = 1 are available over the whole time domain 0 4,T■Tf. 

Various dimensionless quantities are defined as 

T 	x 	at 
0(X,t)=qRLIk , 	X = 	T = 

q(t) 
Q(t)-= 	 = unknown dimensionless applied surface heat flux 

chi = the reference heat flux that may be chosen as the maximum 
value of the heat flux over the considered range 

(14-43) 

x xu = 
AC) 
Ark, Arpo  (14-37) 

In order to make a strict test for the accuracy of the inverse analysis in estimating 
the unknown surface heat flux Q(r), we consider a flux having a triangular shape 
as illustrated with the solid line in Fig. 14-2 over the whole time domain 0 T 1.8. 
The measured data Y7 are simulated in the following manner. 

Temperature readings are considered taken at the insulated surface, X = 1, 

with small dimensionless time steps AT = 0.03 over the whole time domain 

Thus the sensitivity coefficients Xy  are evaluated exactly, since AO, are obtainable 
' exactly from the solution of the auxiliary problem (14-31). 

Knowing X, V, and a*, we can determine the unknown surface heat flux vector 
q from equation (14-29). 

6. Numerical Results To examine the accuracy of predictions by the inverse 
analysis, we consider the inverse problem of estimating the unknown boundary 
surface heat flux q(t) in the problem defined by equation (14-21). The problem is 
expreised in the dimensionless form us 

in 	0 <X<1, T> 0 	 (14-38) 

at 	X=0, 	r>0 	 (14-39) 

520 _00(x, r) 

3X2 Or 

as 
— 	 Q(r) ax 



0 < r 1.8. Thus we have 60 measurements. Then the simulated dimensionless 
measured data, Y*„.,e„s., is generated by introducing random error cocr to the exact 
dimensionless temperature.Ocact  as 

(14-44) 

where 0„„,,1  is computed from the solution of the problem given by equations 
- - (l4- IR to- .14-42); by -using the exact value of the surface heat flux, Q(r). 

For normally distributed errors, there is a 99°,10  probability of a value of to 
lying in the range 

— 2.576 < to < 2.576 	 (14-45) 

A random number generator, such as the subroutine DRNNOR [101] of the 
IMSL library, can be used to generate values of w. 

Once the values of Y, X and a* are available, the heat flux vector q is estimated 
from equation (14-29). Figure 14-2 shows the results of such calculations for two 
different values of the regularization parameter (i.e., ot* = 10' and 10-5) for a 
standard deviation of measurement errors o-  = 0.0015. We note that with a very 
small value of a* = 10 -5, the solution exhibits oscillatory behaviour, whereas for 
a* = 10-' the solution is damped and deviates from the exact result. A CPU time 
of about 50s is required on the VAX-785 computer to perform the calculations 
needed for the construction of Fig. 14-2. 

Insulated 

noWirn2  

Sensor locations 
(i - 1,2 	N) Known 

heal 
supply 
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continuously in the direction normal to the surface of the sample plate. Even 
though the spatial variation of k(x) and C(x) is not encountered in common 
applications, this example is included in order to illustrate the capabilities of the 
inverse analysis. Of course as a special case one obtains k and C as constants. 
Figure 14-3 shows the geometry and coordinates for the plate of thickness L 
which is initially at zero temperature. For times t > 0, a known constant heat 
flux yo  Witnz  is applied at the surface x = 0 while the boundary surface at x = L 
is kept insulated. Temperature sensors are installed at Multiple -space locations 
x j(i = 0, 1, N) and temperature readings are taken at times ti(j = 0, 1 Al.). 
Thus a total of (M + 1)(N + 1) = 0 temperature measurements are available. The 
first step in the analysis is the identification of the related direct problem, which 

is given 

— 

oT(L,t) 

k(y)aT1 

ax 

k(0)
am,0  

ax 

_ 0  

_ ccoaT(x,t) 
at 

=q0 

in 

at 

at 

for 

O<X <L, 

x = 0, 

x = L, 

t = 0, 

t >0 

t > 0 

t > 0 

in 	0 -4 x 

(14-46a) 

(14-46b) 

(14-46c) 

L 	(14-46d) 

fix 

7(x,0) 	0 

14-4 MCP OF ESTIMATING SPATIALLY VARYING THERMAL 
CONDUCTIVITY AND HEAT CAPACITY 

In this section we present the formulation and solution of an inverse heat 
conduction problem of simultaneously estimating the unknown thermal conduc- 
tivity k(x) and heat capacity C(x).:-. pCp(x) which are assumed to vary linearly and 

Fig. 14-3 The geometry and coordinates. 

where, k(x), C(x) and q, are regarded as known. 
The mathematical formulation of the inverse problem is the same as that 

given by equations (14-46), except the thermophysical properties k(x) and 
C(x) are unknown; instead (M + 1)(N + 1) =S2 temperature measurements Yk, 
(k = 1, 2,...,52) are considered available. 

Method of Analysis 

This problem can be regarded as a problem of parameter estimation because the 
functional forms of k(x) and C(x) are being specified to vary linearly with x and 
they can be parameterized such that the inverse problem becomes one estimating 
of only four unknown parameters. For such a case there is no need for regulariza-
tion, since only four parameters are to be estimated. 

We consider four sensors placed in the plate such that two are placed at the 
locations x1  and x, inside the plate and the remaining two are placed at the 
boundary surfaces xo  = 0 and x3  = L as illustrated in Fig. 14-4. Since k(x) and 

x0.01 	 x = 0.02 

x2 

Fig. 14.4 Sensor locations. 

xl   

L = 0.03 m 
	• 

x3 



Y, 	 P1 

T = 	Y 
	Y2 	

0 = 
P2 	( 14-50b,c,d) 

afil 
a T2  

api 

3 T1  

oPz - 
3T2  
aPz 

  

  

at„ 

 

OT 
aPr 

written in the matrix form as 

where 

as = 2X r(T - Y)= 0 
ap 	. 

(14-50a) 

sensitivity coefficient (14-50e) 
matrix with respect to p 

aPi afiz 

C 

C 

C. 
C 
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C(x) vary linearly with x, we choose the boundary values K0, K3 of k(x) and 
Co, C3 of C(x) as the four unknown parameters. Then k(x) and C(x) are expressed 
in the form 

K 3 — Ko  
k(x)= 	(x x0)+ K o  

X3 — X0 

(IX) 	
Co 

(X 	+ 
X3 — X0  

(14-47a) 

(14-47h) 

Thus, by parameterizing the unknown thermal property functions k(x) and C(x), 
we reduce the problem from an infinite-dimension (i.e., large number of para-
meters) function estimation problem to a finite-dimension (i.e., few parameters). 
parameter estimation problem. 

The existence of the inverse solution is guaranteed by requiring that the 
inverse solution minimizes the least squares norm. Since the number of unknown 
parameters are few (i.e., four only) the regularization term is not needed, we write 

= 	[Yi-  ti(1))r, 
	j = 1, 2, 3, 4 	 (14-48) 

where 
and the elements of this matrix 

Yi = measured temperature 
tod= estimated temperature obtained from the solution of the direct problem 

(14-46) by using the estimated values of the unknown parameters. 
pj= elements of the unknown parameter vector fi {K 0 , K 3, Co, CAT  are the sensitivity coefficients. 

i =1,2,...,52 and j = 1, 2,3, 4 	(14-50f) 

Equation (14-48) is minimized by differentiating it with respect to each of the 
unknown parameters fij  (j = 1, 2, 3,4) and then setting the resulting expression 
equal to zero. 

DS 	(t) 
2,24 	j  (TAO—  Yd= 0, 	j = 1,2, 3,4 	(14-49) 

Here, the total number of measurements SZ should be larger than the number of 
unknowns. In addition, the number of spatial measurement locations should also 
ensure uniqueness of the estimated thermal property parameters. In this example, 
for linear variation of the thermal properties, the use of four sensor locations 
within the medium ensures uniqueness. No general spatial uniqueness conditions 
applicable to the problem of estimating k(x) and C(x) for more general functional 
forms could be located in the literature. However, the numerical experimentation 
conducted in reference 29 suggest that the number of spatial measurement 
positions must equal or exceed the number of parameters. Equations (14-49) are 

Method of Solution 

Because the system of equations (14-49) are nonlinear, an iterative technique is 
necessary for its solution. The modified Levenberg-Marquardt algorithm, avail-
able as the subroutine DBCLSJ in the IMSL library edition 10.0, is used to solve • 
the nonlinear least-squares equations (14-49) by iteration. This algorithm is a 
combination of the Newton method which converges fast but requires a good 
initial guess, and the steepest descent method which converges slowly but does 
not require a good initial guess. The Levenberg-Marquardt algorithm is given by 

II"' 	+ tt,1)-1J r(Y 	k= 1,2, 3, ... 	(14-51) 

where 

p = {K o, K3, Co, CAT  = estimated parameters vector 

Y = measured temperature vector 

Irk  = damping parameters 
C. 
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and 	 matrix 	 fivity-codriCierilt matrix X defined by 
equation (14-50e): 

J 017 OAT = X 	 (14-52) 

Clearly, for pk  0, equation (14-51) reduces to Newton's method and for ilk  a) 
it becomes the steepest descent method. Calculations arc started with large values 
of p,' and its value is gradually reduced as the solution approaches the converged 
result. 

The solution algorithm with the Levenberg—Marquardt method is as follows. 
Suppose fik  at the kth iteration are available. 

I. Solve the direct problem (14-46) with finite-differences by using the estimated 
values of the parameters I) = [Kg, K3, Co, C3I T  at the kth iteration and 
compute T. 

2. Since the problem involves four known parameters, solve the direct problem 
(14-46) four more times, each time perturbing only one of the parameters 
by a small amount and compute 

T(Ko  +AK0, K3, Co, C3; 0 

T(Ko, K 3  + AK3, Co, C3; t) 

T(K0,1(3, Co + 11CO 3  C3;1) 

T(K0, K3, Co, C3 + dE3; 0 

For each case 7; E.- 7(t,), for i = 1, 2, ... ,.0 are readily available. 
3. Compute the sensitivity coefficients defined by equation (14-50f) for each 

parameter K0, K3, Co, C1. For example, with respect to K, we have 

aTi  T(K0  + dKo, K3, Co, C3; t;)— T(K o, K3, Co, C3;ti) 
(14-53) 

dKo 	 AK0  

for i = 1, 2, 3, 	n and determine the Jacobian matrix J defined by equation 
(14-5• 

4. Compute (.11",1 + pk1)-1.1T(Y T). 
5. Compute Pk+ 1  according to equation (14-51). 
6. Repeat the calculations until any one of the following convergence criteria 

is satisfied. 
(1) sk 1-1 <cl  

isk+1_skl 
— 

Sk+  1 
	<E2 

(iii) 	— pk J < e, 

Calculations are performed with  El 	E3 = 10-5.  

SPATIALLY VARYING THERMAL CONUut.,1 t v., . 	_ 

Numerical Results 

To illustrate the application we consider linear variation of k(x) and C(x) with 
x, according to equations (14-47) as 

k(x) = (K 3  — K(;)?-;,+ Ko 	 (14-54) 

C(x) = (C3  — 	+ Co 	 (14-55) 

where Ko, K3, Co and C3 are the four unknown parameters to be estimated 
by the inverse analysis. 

Two different samples considered included a metal-like iron and an insulating 
material such as fiberglass, covering a broad range of property variation. Table 
14-2 shows the values selected for each of these four coefficients and the applied 
surface heat flux go  at the boundary surface x = 0. This problem has been studied 
in reference 30. 

We consider a test specimen of thickness L = 0.03 m, initially at zero tempera-
ture and for times t > 0 the boundary at x = 0 is subjected to a constant heat flux 
go  W/m2  while the boundary surface at x . Lis kept insulated. Temporal tempe-
rature readings are taken with sensors at four locations (i.e., xo  = 0.0, x = 0.01, 
x2  = 0.02 and x3  = L =-- 0.03 m) over a period of 0 < t 300 seconds with At ----- 20 s 
time interval. This corresponds to 15 temperature readings per thermocouple or 
a total of 60 readings for the four sensors. The problem is overdctermined because 
we have 60 readings, only four unknown coefficients. 

To simulate the measured temperatures that contain measurement errors, 
random errors too.  are introduced to the exact temperatures as 

Y 	Coo- 	 (14-56) 

where the exact temperature 	is determined from the solution of the direct 
problem (14-46) by using the exact values of the coefficients listed in Table 14-2. 
For normally distributed errors, there is a 99% probability of a value of co lying 

TABLE, 14-2 Exact Values or the Coefficients and Heat Fluxes 

IIO Ko  K 3  c, 
Material (W/M2) (w/m°C) (w/m°C) (kJima °C) (kJ/m3°C) 

Metal 25,000 50.0 59.0 3,600 4,500 

Insulating 

material 
100 0.04 0.07 13 14 



—0— Exact = 0.1 

-• 	 Estimated 

............... . 

......... 

............ 

... 

—0— Exact 

	., 	 Estimated 

a =0.1 

....... 
........ 

..... 
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in the range — 2.576 < w < 2.576. A random-number generator, such as, the 
subroutine DR NNOR of the IMSL library, can be used to generate values for ty. 

Knowing the simulated measured temperatures Y, computing the sensitivity 
coefficients OT,/dpi  (i.e., X) with finite differences according to equation (14-53), 
the Levenberg—Marquardt algorithm given by equation (14-51) is used to estimate 
the four unknown parameters {K g , K3 , Co, C3}T. 

Figure 14-5 shows the exact and estimated values of k(x) and C(x) for a metal 
like iron having thermal conductivity of the order of 50 W(m"C), plotted as a 
function of position for a standard deviation a = 0.1 for the measurement errors. 
Figure 14-6 show similar graphs for an insulating material like fiberglass having 
a thermal conductivity of the order of 0.04 W/m°C. These results cover a broad 

X , .111 

X , M 

15 

12 	 T" 
0.00 	 0 .01 	 0.00 

	
0.00 

x m 

Fig. 14-6 Estimated thermal conductivity k(x), heat capacitance c(x) for insulating mate-

rials such as fiberglass. 

range of property variation. The agreement between the exact and estimated 
properties is very good. 

Solutions would converge within about 6 min of CPU time on the VAX-785 
computer with initial guesses deviating from the exact values by a factor of 2 or 

14-5 CONJUGATE GRADIENT METHOD WITH ADJOINT 
EQUATION FOR SOLVING IHCP AS A FUNCTION 
ESTIMATION PROBLEM 
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Fig. 145 Estimated thermal conductivity k(.11, heat capacitance e(x) fora metal like iron. 

X m In this section we present a powerful conjugate gradient method of minimization, 
utilizing an adjoint problem [65-68] for solving IHCP as a function estimation 
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Fig. 14-7 Locations of the plane surfa.6e heat source and sensor. 

problem with no prior information on the functional form of the unknown. The 
advantage of the method is that the regularization is implicitly built into the 
computational procedure. Recently, the method has been successfully used by 
several investigators [37,69, 70]. To illustrate the basic steps in the application 
of this technique, we consider the problem involving the determination of the 
functional form of the timewise variation of the unknown strength of a plane 
surface heat source at a specified location inside a flat plate, as described below. 

Consider a plate heated by a plane surface heat source of unknown strength 
Or) located at a specified position x= x 1, inside the plate releasing its heat 
continuously for times t > 0. Both boundaries of the plate are insulated. The 
IHCP is concerned with the determination of the unknown timewise varying 
strength gp(t) of the heat source from the temperature measurements taken with 
a sensor located at the surface x = 1 of the plate at times ti,j=. 1, M, thus 
providing a total of M temperature measurements. Figure 14-7 shows the geo-
metry and coordinate. The steps in the solution of this 1HCP problem are: 

1. The direct problem 
2. The sensitivity problem 
3. The adjoint problem 
4. The gradient equation 
5. The conjugate gradient method for minimization 
6. The stopping criteria 
7. The computational algorithm 

We now present the procedure in each of these distinct steps. 

1. The Direct Problem The mathematical formulation of the direct problem is 
given in the dimensionless form as 

—
02  T(x

—
, t
-
) 
+ g p(t)S(x x 1) = 

aT(x, t) 
ax 	 at 
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DM, t) = 0  

ax 
at x = 0 (14-57h) 

DM, t) = 0  at 

at 

x = 1 

t 	0 

(14-57c) 

(14-57(1) 

ax 

, 0) 

Here 4.) is the Dirac delta function and the plane surface heat source of strength 
g p(t), located at x l  = 0.5, releases its energy continuously over the time domain. 

In the inverse problem considered here, the source term gp(t) is an unknown 
function of time, but the measured transient temperature data Y(1, t), taken at 
the location x = 1, are available over the whole time domain 0 < t < t f , where 

t f  is the final measurement time. It will soon be apparent that, to solve this 
inverse problem with the conjugate gradient method, two auxiliary functions, 
called the sensitivity function AT(x, t) and the Lagrange multiplier 2(x, t), will 
appear in the variation A,/ of the functional J [(see equation (14-61)] and will 
be needed in the minimization procedure. Therefore, we need to develop the 
auxiliary problems, called the sensitivity problem and the adjoint problem, in 
order to determine tT(x, t) and A(x, t), respectively. 

2. The Sensitivity Problem It is assumed that when g p(t) undergoes an increment 
Ag JO, the temperature T(x, t) changes by an amount AT(x, t). Then, to construct 
the sensitivity problem satisfying the function AT(x, t), we replace T(x,t) by 
T(x, t) + A T(x, t), and g p(t) by g + Agp(t)in the direct problem (14-57) and sub-
tract from it the original problem (14-57). The following sensitivity problem is 
obtained 

d'A T(x, I) DAT(x,t) 

	

< x < 1 	(14-58a) 

x = 0 	- 	(I4-58b) 

x = 1 	( I 4-58c) 

t = 0 	(14-58d) 

ax2  

D A T (0, t) 

(Ix 

DA T(I, I) 
= 0 

(ix 

A T(x, 0) = 0 

Ag 	0.5) p(t)5(x 	= at 

at 

at 

for 

Clearly, AT(x, t) represents changes in T(x, t) with respect to the changes in the• 
unknown function g p(t): hence it is a sensitivity function. In the sensitivity 
problem (14-58), A g p(t) is the only forcing function needed for the solution of 
this problem. The choice of Agp(t) will be described later in the analysis. 

in 	0 <x < 1 	(14-57a) 



+ 1'
11  f 

A
rAT(x, t) 	 OAT(x, t) 

+ Ag p(t)S(x — 0.5) — —--idx dt 
ax2  

(14-61) 
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3. The Adjoin( Problem The IHCP is recast as an optimum control problem 
of finding the unknown control function gp(t)such that it minimizes the following 
functional, J(g 

t 

J(gp = f 	[T(1, t; g p)— Y(I, 	dt 
:=0 

(14-59) 

where T(1, t; gp) is the temperature at x = 1 computed from the solution of the 
direct problem (14-57) by using the estimated values for g p(t) and Y(1, t) is the 
measured temperature at x = 1. 

To develop the adjoint problem we introduce a new function 2(x, t), called 
the Lagrange multiplier. We multiply equation (14-57a) with 2(x, t), integrate the 
resulting expression over the spatial domain from x = 0 to x = I, and then over 
the time domain from t = 0 to t = t f  where t t- is the dimensionless final time. 
The result obtained in this manner is added to the functional ..l[g p(t)] given by 
equation (14-59). We obtain 

f f  
J(g p)= 	[T(I , I; g) — Y(1, t).] 2  dt 

= 0 

f 	 7IX, 
A(x; I) 	

OX2  
[ 	 g

P 
 (/ )6(x -- 0.5) — 

(ni 

at  

x, 1)
idx dt 

I=u x=o 
(14-60) 

Clearly, when T(x, t) is the exact solution to the problem, the terms inside the 
bracket vanish and equation (14-60) reduces to equation (14-59). An expression 
for the variation AJ(g p) of the functional J(g p) is developed by perturbing T(x, t) 
by A T(x, t) and g p(t) by Ag p(t) in equation (14-60) and then by subtracting from 
the resulting expression the original equation (14-60). We find 

[ 

2 [T(1, t; gp) — Y(1, t)] 
02(1, 01

A TO ,t)dt 
ax j 

— 
 f

1 	 I f  
1.(x, t f )AT(x, t f )dx + f 	1(0.5, t)Ag p(t)dt 	 (14-62) 

x=0 	 i---(i 

The boundary value problem satisfying the function 2(x, t) is obtained by letting 
the first four integral terms containing AT on the right-hand side of equation 
(14-62) to vanish. This requirement leads to the following adjoint problem 

).(x; t) 	01(x, I) 	0  
in 

at 

at 

at 

0 <x<1 

x = 0 

x = 1 

t =1I 

(14-63a) 

(14-63b) 

(14-63c) 

(I4-63d) 

axe 	at 

a2(0,t)=0  

ax 

a,10,0 
= 2[T(I, t)— Y(1, t)] 

ax 

2(x, t f ) = 0 

We note that, in this adjoint problem, the condition ( I 4-63d) is the value of 
the function 1(x, t) at the final time t = t 1. In the conventional initial value 
problem, the value of the function is specified at time t = 0. However, the final 
value problem (14-63) can be transformed to an initial value problem by defining 
a new time variable given by r = If t. 

4. The Gradient Equation Finally, the only integral term left on the right-hand 
side of equation (14-62) is 

'if  
AJ = 	2(0.5, t)Ag p(t)dt 

	
(14-64) 

We note that AJ; by definition, is given by [91] 

C 

of 

AJ = 	J'(t)Ag p(t)di 
u 

(14-65) 

The second term of the right-hand side of this equation is simplified by 
integration by parts; after rearrangement equation (14-61) takes the form 

x.o 
 (°22(x; 	"(x' 1))6,T(x, t)dx dt + 	al-14_

0, t ) 
 A T(0, t)dt 

\ ax 	at J 	 ax  

where J'(t) is the gradient of the functional J(g). 
From the comparison of equations (14-64) and (14-65) we conclude that 

J'(t) = 2(0.5, t) 	 (14-66) 

which is the gradient equation for the functional, J(g). 

C. 

C 



f t/  AT(P„  )[T(g p) — 
fik 	r= 0  (14-71) 

1 
 r, 

[AT(Pk)]2  dt 
.,,  
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5. The Conjugate Gradient Method for Minimization The mathematical deve-
lopment given above provides three distinct problems defined by equations 
(14-57), (14-58) and (14-63) called the direct, sensitivity and adjoint problems for 
the unknown functions T(x, t), AT(x, t) and A(x, t), respectively. The measured 
data Y(1, t) are considered available and the gradient J'(t) is related to 2 by 
equation (14-66). 

The unknown generation function g p(t) can be determined by a procedure 
-based-on the.minimi.zatian _of Ificlunetionai .1 [n p(t)] with an iterative approach 
by proper selection of the direction of descent and the step size in going from 
step k to k + 1. In the. conjugate gradient method of minimization [91,92], we 
consider the following iterative scheme for the determination of g p(t). 

	

g kp 	k 	fikpk, 	k = 0,1,2,... 	 (14-67) 

where /3k  is the step size in going from step k to step k + 1 and Pk  is the direction 
of descent, defined as 

P°  = 	 (I4-68a) 

	

pk = yk ykpk 	with 	= 0 and k = 1, 2,... 	(14-68b) 

Different definitions of the rimjullate coefficient yk  can he found in the standard 
texts on mathematics; here we choose the form [93,95 ] 

[J'k(t)] 2  dt 

	

• yk = 	I = 	
k = 1, 2,. „ 	 (14-69)  

is obtained for determining the step size ffk  

An initial estimate can be chosen-  for-g-p(t) - to -start- -the iterations: However, a 
special stopping criterion is needed to terminate the iterations because the 
measurement data contains error. The stopping criteria based on the discrepancy 
principle is described next. 

6. The Stopping Criterion If the problem contains no measurement errors, the 
traditional check condition specified as [96] 

J(ep* 1 ) <E* 	 (14-72) 

where e* is a small specified number, could be used. However, the observed 
temperature data contains measurement errors; as a result, the inverse solution 
will tend to approach the perturbed input data and the solution will exhibit 
oscillatory behavior as the number of iteration is increased [91]. The computa-
Iimuil experience shows that it is advisable to use the discrepancy principle 
[97-99] for terminating the iteration process. Assuming 711, t; Y(1, a 
constant, the discrepancy principle that establishes the value of the stopping 
criteria is obtained from equation (14-59) as 

= 0 

urk - 1(t)] 2 dt  J o2  dt = apt I — E2 o   (14-73a) 

The step size /3' is determined by minimizing the functional J[gp(t)] given by 
equation (14-59) with respect to /3, that is 

where rr is the standard deviation of the measurement error. Then the stopping 
criterion is taken as 

If 

min J(ok* 1 )= min f [T(er — P')— Y(1, Or dt 
t-o 

(14-70a) J(gr 1 )<E2, 	 • (14-73b) 

here 62  is determined from equation (I4-73a). 
and by a Taylor series expansion we obtain 

min J(4+ 1)= min 	[T(gkp)— fik AT(Pk)— Y(I. 	r/t 
	

(14-70b) 
fi 	r 	0 

To minimize equation (14-70b), we differentiate it with respect to Ilk  and set the . 
resulting expression equal to zero. After rearrangement, the following expression 

7. Computational Algorithm The iterative computational procedure for the 
conjugate gradient method can be summarized as follow. To start the iterations 
an initial estimate is made for the function gp(t), which may be chosen as constant, 
say, zero. To solve the sensitivity problem (14-58), a value is needed for the source 
term Agp. However, from equation (14-67), we have Afb, = /3"P(1), which is 
equivalent to dividing the sensitivity coefficients by the constant M and then 
setting Agp  = Pk(t) in the sensitivity problem (14-58). 
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Suppose g pk (t) is available at the kth iteration. The computational procedure 
is as follows: 

Step I. Solve the direct problem (14-57) and compute T(x, t), based on yki,(t). 
Step 2. Knowing T(x, t) and measured temperature Y(x l , t), solve the adjoint 

problem (14-63) and compute A(x i ,t);x, = 0.5. 
Step 3. Knowing A(0.5, t), compute J'(t) from equation (14-66). 
Step 4. K flowing the gradient .!'(r), compute )5  from equation (i4-69), then the 

direction of descent Pk from equation (14-68). 
Step 5. Setting Ag5p(t)= Pk, solve the sensitivity problem (14-58) and obtain 

A T(P5). 

Step 6. Knowing 117-(P), compute step size 115  from equation (14-71). 
Step 7. Knowing step size 134, compute new g5+5(t) from equation (14-67), new 

T(x, t) from the solution of the direct problem (14-57) and new J[gkp+ 1 ] from 
equation (14-59). 

Step 8. Check if the stopping criterion (14-73b) is satisfied; if not repeat the above 
calculational procedure until the discrepancy principle defined by equations 
(14-73) is satisfied. 

In the above algorithm, the direct problem (14-57) appearing in Step 1, the 
adjoint problem (14-63) appearing in Step 2, and the sensitivity problem (14-58) 
appearing in Step 5 can readily be solved with finite differences. Analytic 
approaches can also be used for their solution, if possible, 

RESULTS. To illustrate the accuracy of the method we refer to the following 
example [100]. 	 • 

Consider a slab of dimensionless thickness L= 1. The final dimensionless time 
is taken as tr  = 1.8 and the timewise variation of the strength of the internal plane 
heat source Mt) located at x = 0.5 is defined as 

gp(t) .--  t 1.5 	.st 

r0. + 41.  

9 

	0 -..ct< 0.9 

0.9 <t<1.8 
(14-74) 

which represents a triangular variation over time. 
Finite differencing, with space increment dx = 0.02, time increment dt = 0.03 

is used and all properties are taken as unity. R andom noise levels of a r. 0.001 
and 0.005 were added to the simulated exact temperature to generate the measured 
temperature data, i.e., 

'measured = Yexact C°6 
	

(14-75) 

where a is the standard deviation of measurement errors and the values of to are 
calculated randomly by the IMSL [101] subroutine DRNNOR. In the present 

calculation the value of co is chosen over the range -2.576 co 2.576 which 
represents the 9974 confidence for the measured temperature data. 

The results of inverse solution are presented in figure 14-8 for a = 0.001 and 
o-  = 0.005. For a temperature of unity and a 99%; confidence, these standard 
deviations correspond to measurement errors of 0.267; and 1.3 respectively. 
The prediction is in excellent agreement with the exact results for both cases 
except for small deviation near the final time t = tf  = 1.8. 

The reason for the inaccuracy of the estimation at the final time r = r f  is due 
to the fact that, with the conjugate gradient method of minimization described 

Fig 14-8 Prediction of the timewise variation of the strength of a plane surface heat 
source, with noise levels a = 0.001 and 0.005 (From Ref. [100]). 
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here, the estimated value of gkp+ E  (t .1-) will always be equal to the initial guess gtAt f) 
[102]. 

This difficulty at the final time tf  can be alleviated by repeating the calculations 
with initial guesses for g p  taken at a time few time steps before the final time rf  
and omitting the results for the last few time steps. 

An examination of the exact and the estimated values of gp(r) shown in 
Fig,. 14-8 reveals 111:11 the eslimations are accurate up to times very close to the 
final time f f . 

All the calculations in this work are performed on VAX-785, and the compu-
tation times for each of the figures required about 20 s of CPU time. The number 
of iterations depended on the measurement error, but always remained in the 
range 5 < k < 10. 
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PROBLEMS 

14-1 Elements of a discrete random variable X and the probability distribution 
function f(x) associated with it are listed below. Calculate the expected 
value E(X) of the random variable. 

x„ 0 	2 	4 	6 	8 	10 	9 
f(x„) 1 	4 	3 	1 	2 	3 	1  

15 	15 	15 	15 	25 	15 	15 

14-2 Element of a discrete random variable X and the probability distribution 
function f(x) associated with it are listed below. Calculate the variance crl  
of the random variable. 

x„ 4 	3 	2 	1 	0 

1 0.2 	0.3 	0.1 	0.3 	0.1 f(x„) 

14-3 Consider the function g(X) = X — 1 of the continuous random variable 
X. Given the probability distribution function 

f(x) = 
5 
- 	for 	— 2 < x < 2 

calculate the expected value of g(X). 

14-4 Find the expected value of the continuous random variable X having a 
probability distribution function f(x) given by 

f(x) = 13 	for 	0 < x < 2 

t 0 	elsewhere 

14-5 Probabilities of number of defectives in a sample of six are given by 

x 0 1 2 3 4 5 
f(x) 0.80 0.10 0.05 0.03 0.02 0.00 

Calculate the variance o.2 = E(x2) — p. 
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14-6 	The probability distribution function f(x) for continuous random vari- 
able X is given by 

	

f(x)=  z- 1 	for 1 < x < 3 

	

1 0- 	elsewhere 

Calculate the mean and variance of X. 

	

14-7 	The average life of a,certain type of engine is 20 years with a standard 
deviation of a = 2 years. AssuMing the life expectancy of such engines to 
have a normal distribution, determine the probability that a given engine 
will last 18 years. 

	

14-8 	Determine the value of +z such that the shaded area under the normal 
probability curve shown below should be equal to 95%. 

Ares .-- 0.95% 

14-9 	Consider a semiinfinite solid (x 0) initially at zero temperature. For 
times t > 0, a constant heat flux go  W/m2  is applied to the surface at x = 0. 
The temperature of the boundary surface x = 0 is given by [see: equation 
14-254 

2,q0  (at)1 /2  
T(0, t) =  

k 	re 

(a) Determine the sensitivity coefficient X,p,(0, t) with respect to the 
surface heat flux go. 

(b) Determine the sensitivity coefficient X3(0, t) with respect tb the 
thermal diffusivity a. 

(c) Let the dimensionless sensitivity coefficient X* and the dimensionless 
surface temperature T* be defined as 

X* =  90 , 
t)k 

 

	

X  (0 	
T* = 

 T(0, t)k 

	

L 
	

go L 

Then show that X* = T*.  

14-10 To determine the unknown constant thermal conductivity k, W/(m•*C) 
and heat capacity pC p  C, kJ/(m3.°C) of a solid, the following transient 
heat conduction problem is considered. 

A plate of thickness L, initially at a uniform temperature, is suddenly 
subjected to a constant heat flux go, W/m2, at the surface x = 0 while the 
surface at x = L is kept insulated. Temperature recordings are taken with 
a sensor located at the insulated surface as a function of time. The 
following measured data arc given: 

L= 0.03 m, 	go  = 100 W/m2  

The standard deviation of measurement 	a = 0.1 

Time 
(s) 

Measured T, 
(°C) 

Time 
(s) 

Measured T, 
(°C) 

0 0.000 160 28.45 
20 0.282 180 33.71 
40 1.892 200 38.71 
60 5.110 220 43.96 
80 9.124 240 49.20 

100 13.80 260 54.12 
120 18.47 280 59.32 
140 23.57 300 64.41 

Utilizing the above measured data and using the least-squares approach 
with the Levenberg-Marquardt algorithm, estimate the thermal con-
ductivity k and heat capacity C of the solid. 

14-11 Repeat problem 14-10 by utilizing the following measured data: 

L = 0.03 m, 	q 0  = 25,000 W/m2  

Standard deviation of temperature measurements = a = 0.1 

Time 
(s) 

Measured T, 
("C) 

Time 
(s) 

Measured T, 
("C) 

. 	. 	. 
0 0.000 160 34.37 

20 2.305 180 39.18 
40 6.740 200 43.70 
60 11.41 220 48.46 
80 15.97 240 53.21 

100 20.70 260 57.64 
120 25.16 280 62.34 
140 29.91 300 66.93 
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14-12 	Consider the inverse heat conduction problem given by 

a2T _1 OT 
in 	0 <x</..-, 	0.<1.‹..tf  

ax2 -74 at 

— kL
T 

= (AO= Unknown 	at 	x = 0, 	0 ‘. t < t f  
Ox 

43/' 
— k - -

ax 
 = 0 	 at 	N = L, 	0 --<„ t :c t f  

T = F(x) 	 in 	0 	x ‘,L, 	for 	1 = 0 

Here, the unknown boundary surface heat flux q(t) is to be determined 
by solving this inverse problem with the conjugate gradient method with 
adjoint equation. Develop the sensitivity and adjoint problems and the 
gradient equation needed for the solution and write the solution algorithm. 

15 
HEAT CONDUCTION 
IN ANISOTROPIC SOLIDS 

In the previous chapter we considered heat conduction in solids that are said to 
be isotropic; that is, the thermal conductivity does not depend on direction. There 
are many natural and synthetic materials in which the thermal conductivity 
varies with direction; they are called anisotropic materials. For example, crystals, 
wood, sedimentary rocks, metals that have undergone heavy cold pressing, 
laminated sheets, cables, heat shielding materials for space vehicles, fiber-rein-
forced composite structures, and many others are anisotropic materials. In wood, 
the thermal conductivity is different along the grain, across the grain, and 
circumferentially. In laminated sheets the thermal conductivity is not the same 
along and across the laminations. Therefore, heat conduction in anisotropic 
materials has numerous important applications in various branches of science 
and engineering. 

Most of the earlier work have been limited to the problems of one-dimensional 
heat flow in crystal physics [1, 2]. The differential equation of heat conduction 
for anisotropic solids involves cross-derivatives of the space variables; therefore, 
the general analysis of heat conduction in anisotropic solids is complicated. 
When the cross-derivatives are absent from the heat conduction equation, as in 
the case of orthotropic solids, the analysis of heat transfer is significantly simplified 
and has been considered in several references [3-121 In recent years several 
works have appeard in the literature on the • solution of heat conduction in 
anisotropic media [13-30]. Experimental work on heat diffusion in anisotropic 
solids is very limited; the available work [2,5,17] deals with either the one-
dimensional situation or the orthotropic materials. 

In this chapter we present the differential equation of heat conduction and the 
boundary conditions for anisotropic solids, discuss the thermal conductivity 
coefficients for crystal structures, and illustrate the solution of the steady-state 
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(15-4b) = k j, 	j = 1,2, 3 

(15-2a) 

(15-2b) 

(15-2e) 

	

, DT 	DT , DT 
— = 	+ 1,  427--  + 1(13—  

	

ex, 	X, C X3 

	

, 	 , 07' 

	

— 472 = 	 K22.---  it23—  
eXi 	eX2 	OX3 

DT 	eT, DT 
—q3 s31 -- x 3, 7-- + K33 -- 

OX 
 4-

I 	CX2 	DX3 

3 DT 
q, 	L 

, 
Dxj  

= 1, 2, 3 	 (15-3) 

1=1,2,3 	 (15-5) 
I DT 

qi  = — E 
)=, 	Dui  

= 

(15-6a) 

(15-6b) 

(15-6c) 

	

, DT , 18T 	DT 
+tc12 . 	+K r, 

Or 	r 04) 	' Dr 

DT , T, DT 
zr l  422 r  Fhb  it23 

	

, DT , DT 	DT 
lt31 —  - x32-- ti33—  

Dr 	r D4) 	Dz 

618 	HEAT CONDUCTION IN ANISOTROPIC SOLIDS 

and time-dependent heat conduction problems in anisotropic solids with repre-
sentative examples. 

15-1 HEAT FLUX FOR ANISOTROPIC SOLIDS 

The heat flux in isotropic solids, as discussed in Chapter 1, obeys the Fourier law 

q = — kVT 	 (15-1) 

where-the thermal conductivity is independent of direction and the heat flux 
vector q is normal to the isothermal surface passing through the spacial position 
considered. 

In the case of anisotropic solids, the component of the heat flux, say, q i , along 
Ox i, depends in general on a linear combination of the temperature gradients 
along the Ox,, Ox2, and Ox3  directions. With this consideration, the general 
expressions for the three components of the heat flux q1, q2, and q3  along the 
Ox„ Ox2, and Ox3  directions in the rectangular coordinate system are given, 
respectively, as [31] 
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From Onsagar's [31] principles of thermodynamics of irreversible processes it 
is shown that when the fluxes (i.e., q1) and the forces (i.e., DTIOxi) are related to 
each other linearly as given by equations (15-2), the phenomenologic coefficients 
obey the reciprocity relation. A discussion of the application of Onsagar's reci-
procity relation for the thermal conductivity coefficients associated with heat 
conduction in anisotropic solids is given by Casimir [32]. Therefore, the con-
ductivity coefficients ku  can be considered to obey the reciprocity relation 

Furthermore, as discussed in reference [33], according to irreversible thermo-
dynamics, the coefficients k, „ k22, and k33  are positive, that is, 

kii  > 0 	 (15-4c) 

and the magnitude of the coefficients k13, for i 	is limited by the requirement 
[31] 

for 	10j 	 ( I 5-4d) 

The expression for the heat flux components, given by equation (15-3) for the 
rectangular coordinate system, can readily he generalized for the orthogonal 
curvilinear coordinate system (u 1 , a 2, u3) as 

where ai, are the scale factors discussed in Chapter 1. 
For the (x,, x2, x3) rectangular coordinate system equation (15-5) reduces to 

equations (15-2). 
For the (r, 4), z) cylindrical coordinate system we set u1  = r, u2  = 4), u3 = z and 

a, = 1, a, = r, 03  = then equation (15-5) gives 

which can be written more compactly in the form 

- Therefore, for an anisotropic solid the heat flux vector q is not necessarily normal 
to the isothermal surface passing through the point considered. The thermal 
conductivity of an anisotropic solid involves nine' components, ku, called the 
conductivity coefficients, that are considered to be the components of a second-
order tensor k 

k13  k12 

k23  
kt 

k21 k22 

k31 k3, k33 

(15-4a).  



For the (r, 0,-0) spherical coordinate system we set u, = r, u, = 0, u3  = 0 and 
a, = 1, a2  = rsin 0, a3  = r and obtain 

- fir =rvii 	+hi 2 	 + A13 

	

, 	, 	1 	(1T , 	1 (17' 

	

dr 	rstn 011.0 	r 
	 (15-7a) 

	

— (N. = 	+K 32 23  

	

„ dT 	I 2T 	1 ill' 

	

r sin 01)0 	r (10 
	 (15-7b) 

— qe = k
31 
 +k 

	

OT 	I OT 	1 (IT 

	

or 	r sin 60 0, 	r 

	

+ k 33 - -- 	 (I5-7c) 

15-2 HEAT CONDUCTION EQUATION 
FOR ANISOTROPIC SOLIDS 

The differential equation of heat conduction for an anisotropic solid in the 
orthogonal curvilinear coordinate system (it h it 2, it,) is given as 

a l a203  mil  

1 

1 a 
	a 	a 	. 	eT 

.(aza.igi)+ 
di

-
12

01113(0+ 	((I'll 2(13) + 0 = Pc 
t
1
i du, 

(15-8) 

where ch, q2, and q3  are the three components of the heat flux vector defined by 
equation (15-5), g is the heat-generation term, and the other quantities are as 
defined previously. 

We now present explicit form of the heat conduction equation (15-8) for the 
rectangular, cylindrical, and spherical coordinates for the case of constant con-
ductivity coefficients. 

.Rectangular Coordinate System 

For the (x,y,z) rectangular coordinate system we set u, = x, u, = y, u3  = and 
a, = a2  = a3  = 1; then equation (15-8), with eh, given by equation (15-5), yields 

 
k 	1 k „ 	.1- k 	-ilk 13  .i- k 31 ) 

)1  Ox2 	-- 42 	" r17.2 	 ext.v 	 °Nil: 

(1=1- 	fl'T 	027- 	 02 T 	 022 
, 1 (k13 1 I in) 

, 	'T 	 ,.., nix, y.-_-,t) 	 + g(x, y, z, t) = 
pt.-,—  

+ (1(23 + 432)
4 dz 	 at 
	 (15-9)  

Cylindrical Coordinate System 

For the (r,0,:.) cylindrical coordinate system we set tt, = r, u2  = 0, u3  = z, and 
a, = 1, a, = r, cr 3  = 1. Then, from equations (15-8) and (15-5) we obtain 

 
1 

 2  

 
    

a27. 

	

a2T   

	
1 
 

02 T 
k„ra-(rOr +k22r2 502 + k33 az2 + (k 12 +k 21) r   

‘127•  k, „r 	I 221.  
+(k,3+ k3,) 	+ 	+[k,3+ k32) 	 g(r, 0, f) 

ar dz 	r c7z 	 r 00 tlz 

= pt_ aT(r, 0, z, t) 	
(15-10) 

	

where = 	i 

Spherical Coordinate System 

For the (r, 0, 0) spherical coordinate system we set u, = r, ti, = 0, u3  = 0, and 

a, = 1, a2  = r sin El, a3  = r; then from equations (15-8)- and (15-5) obtain 

, 	1 i' ( .2 11T) 	,. 

	

h 11 , 	1  
r-  Or 	

Or + h22. r2  sin2  0 042 2  

I 	(12T 
+ k33 

r2  sin 8 00 	

11 	1") 
sin  O

r T) 
(30 

 
• 

(k 1  , 1 k21) 02.1
• 	

I 	LIT 	(k LI .1- k 3 ,) d'T 	1 PT 
+ 	 + k ,, , 	+ 	 .1 k , 3  2  

- -r sin (1- Or il0 	. - rIsin 0 (10' 	r 	Or 20 	r 20 

1 	02T 	cos 0 dT 

r 2  sin 0 ao ao 	r stn 0 dr 

T(r, 	0,1) 

et 

	

where ky  = 	i Of 

15-3 BOUNDARY CONDITIONS 

The boundary conditions for the heat conduction equation for an anisotropic 
medium may be of the first, second, or third kind. We consider a boundary surface 
Si  normal to the coordinate axis if,. The boundary condition of the third kind 
can be written as 

T 6ficrcr- • - + ii.T = an* 
	on boundary Si 	(15-12) 

where 

where k,2  = k,,, k, 3  = k3 ,, and k23  = k32  by the reciprocity relation. 
aT 	3  1 k- OT 

(15-13) __. 
an* ;I, ai kir  dui  



or 
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at r = b 	(15-15d) 

eu -- kij fk„ (15-14f) 
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where 

a = scale factor 
= a reference conductivity that may be chosen as k l  „,k22, or k33. 

oi  = zero or unity; that is. by setting t5i = 0. the boundary condition of the first 
kind is obtained 

I lere 	is I he derivai ive as defined by equation (15-13). The choice U1 plus or 
minus sign in equation (15-12) depends on whether the. outward drawn normal 
to the boundary surface Si  is pointing in the positive or negative u;  direction 
respectively. 

We illustrate the boundary conditions for the anisotropic medium with specific 
examples given below. 

Example 15-1 

Write the boundary conditions of the third kind for an anisotropic slab at the 
boundary surfaces x = 0 and x = L. 

Solution. For the (x, r, 2) rectangular coordinate system we write 

Solution. For the (r, s) cylindricaLcoordinate system we take the scale 
factors as a l  = 1, 02  = r, and a3  = 1 and write 

L 	 (3T , 	r  

	

—(K11 DT 
	1aT 

r 
+ 

	

ar 	Orb 	az 

r(
k„ IIT  11)7'1 k13 n)-1.b,1"-- 

Pr r d(i) Pz 

Equations (15-15) can be written more compactly in the form given by equation 
(15-12) by setting kid  = k, 1: 

—k11—
aT 

 +h,T = f 
on 

aT 
k 11 an, + h2 T= f 2 

where 

—(k„---+k,,--1-k i3 —)+11, T= J., 	at 	x = 0 (I5-14a) 

	

i'x 	01. 	Pz 

	

OT 	Oa- 	OT 

( 	
T 	11T 	n

:: 

' +k, 	hk,. •-+k, 3 --)+11,7' =f 2 	at 	x = L (15-14b)
ix 	ey 	P. 

 

Equations (15-14) can be written more compactly in the form given by equa-
tion (15-12) by setting k„,- 2 k„: 

(15-14c) 

(I5-14d) 

where 

E 	€13 
(In* 	fly 	f': 

0a 	1 a 	0 
— •= — +c12--  +613 

Fz dn* 	r 

k1 f  
eii =— 

k„ 

15-4 THERMAL-RESISTIVITY COEFFICIENTS 

In the previous sections we expressed each component of the heat flux vector as 
a linear sum of temperature gradients along the Ox1, Ox2, and Ox3  axes as given 
by equation (15-2). Sometimes it is desirable to express the temperature gradient 
in a given direction as linear combination of the heat flux components in the Ox1, 

Ox2, and Ox, directions. To obtain such a relationship in the (x1, x2, x3) rectangular 
coordinate system we write equations (15-2) in matrix notation as 

— [ku][—
DT 

ax, ]

,
..[qi] 	• (15-14e) 

Example 15-2 • 

Write the boundary conditions of the third kind for an anisotropic hollow 
cylinder at the boundary surfaces r= a and r =h. 

- ax, 

Let rij  be the elements of the inverse matrix [kti]-  1; then equation (15-16b) is 

(15-16a) 

5-I6b) 

at 	r= a 	(15-15a) 

it 	 (IS- t61)) 

at 	r = a 	(15-15c) 

at 	x= 0  

aT 
On* 	"" 

itT. 	at 	x=L 

PT 
= 

On* 

(15-15e) 

(15-15f) 



aT 
rizq2 rug]. 

aT 
— 	= r zit 1 + rz2q2 +1.2343 

OX2 

aT 
a 

— - = r„,q, r32q2  r„q„ 
x3  

(15-17a) 

(15-17b) 

(15-17c) 

written explicitly as 

(15-19b) r11 = 
A 	 A 

1k22 k23 

2  k32 k33 	k22k33 — k23k32 
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a2T 	a2T 	02T 	 a2T 
k„ --- + kn-- - + k„--- + (k „ + k„) ---- + (k 

ax, 	a4 	ax32 	 ax, ax, 

02 	aT 
ax 

T  
,ax3 	P  at 

where ku  = 	When When the conductivity matrix given by equation (15-4a) is sym- 
metric, it is possible to find a new system of rectangular coordinates 51 , 52, and 

that can transform it to a diagonal form as 
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a2T 
+k,o-,--- 

ox i ox, 

(15-20) 

where the coefficients ru  are called the thermal resistivity coefficients. The coeffi-
cients ru  can be determined in terms of ku  by the matrix inversion procedure. 
Since kg= it can be shown that ru's are given by 

= (— 1)(*.if!q 
A 

where A is the symmetrical thermal conductivity tensor given by 

au  is the cofactor obtained from A by omitting the ith row and the jth column. 
As in the case of thermal conductivity coefficients, ku, the thermal resistivity 
coefficients, ru, obey the reciprocity relation, ru  = ri p 

To illustrate the application of equation (15-18), we write below the thermal-
resistivity coefficient r12  and rii  in terms of the thermal conductivity coefficients 
as 

k, 0 	0 
0 k2  
0 0 k3  

where k„ k 2, and k3  are called the principal conductivities along the principal 
coordinate axes and S3,  respectively. Then the heat conduction equation 
(15-20), in terms of the principal coordinates, becomes 

The principal conductivities k 1, k 2, and k, are determined in the following 
manner. Let the therrmal conductivity matrix be denoted by 

(15-21) 

k, , 

	

k  2 
	k I 3 

A 
	

k11 k22 k23 

k32 k33 

(I5-18a) 

(15-18b) 

T 7 2T a2 T 02T _ g = 	
O 

pc, 0,  (15-22) 

k 1 , 	k12 
	

k13 

1( 21 
	

1( 22 k23 	 (15-23) 
k„ k„ k33 

Then the principal conductivities k,, k2, and k3  are the eigenvalues of the 
following equation: 

k21 

1'12 = 	
03 k 	k 3 	k23k31 — k2  k33 1 31 	3  

A 	 A 
(15-19a) 

•- k11 	k i , 	k, 3  

k21 	kn  — A 
	

k.23 

k31 	1( 3, 	— /1.  
= 0 	 (15-24) 

15-5 DETERMINATION OF PRINCIPAL CONDUCTIVITIES 
AND PRINCIPAL AXES 

We consider the heat conduction equation for an anisotropic solid in the x 1 ,x2, x3  
rectangular coordinate system written as 

This is a cubic equation in and has three roots. Each of these roots is a real 
number because the conductivity coefficients are real numbers (see reference 
34 for proof) and each corresponds to a principal conductivity, that is, A, = k„ 
22 = k2, and 1.3 = k3  along the principal axes and S3, respectively. 

The principal axes 	and are determined in the following manner: 
Let 1,, 12, I, be the direction cosines of the principal axis (X, with respect to 

the axes Ox,, Ox2, ax,, and 21  .= k, be the principal conductivity along the 



(15-26) 
k„ k,, k 13  

k21 	k22 
	

k 2.3 

k 3 1 k32 IrC 3 3 
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3 
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U
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3 
3 

k 0 0 
0 k„ 0 

0 0 k33 

(15-28) 
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direction (X,. Then 11, 12,1, satisfy the relation 

	

k 11  — 	k12 
	

k13 
	1, 

	

k21 	k22 
	 k„ 	l2 = 0 	(15-25a) 

	

k,, 	k32 	k33 -- 21 
	13  

which provides  three homogeneous equations for t ie three unknowns 1,, 1,, 13; 
only two of these equations are linearly independent. An a di-riontrl-ruhrticrn-iN  
obtained from the requirement that the direction cosines satisfy 

r2-) 	= 1 	 (15-25b) 

Thus the three direction cosines of the principal axis Oif,  , are determined from 
equations (15-25). 

The procedure is repeated with 23  = k2  for the determination of ?n,,in2, ma  of 
the principal axis 0X3  and with 13 = k3  for //,.n.„ 11 3  of the principal axes 043. 

15-6 CONDUCTIVITY MATRIX FOR CRYSTAL SYSTEMS 

With symmetry considerations, crystals cart be.grouped into seven distinct systems 
identified as triclinic, monoclinic, orthorhombic hexagonal, tetragonal, trigonal, 
and cubic sysiems. Readers should consult references 1 and 2 for an in-depth 
discussion of this manor. Here we are concerned with the thermal conductivity 
tensors associated with such systems and summarize the results as follows: 

1. Triclinic. In this system there are no limitations imposed on the conducti-
vity coefficients by symmetry considerations; hence all nine components of 
k,1  can be nonzero, and we have 

2. Monoclinic. Some of the components become zero with symmetry consi-
derations, hence we have 

k „ k , , 0 

k2i k2.2 0 
0 0 k,3  

3. Orthorhombic. The conductivity coefficients are given by  
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TABLE 15-1 Values of Principal Conductivities for Some 
Crystals at 30°C, in W/(mK) 

Crystal System k„k2  k3  

Quartz trigonal 6.50 11.30 
Calcite trigonal 4.18 4.98 
Bismuth trigonal 9.24 6.65 
Graphite hexagonal 355.00 89.00 

Note: For crystals listed here k, = k1. From International Critical 
Tables (1929), Vol. 5, p. 231 

4. Cubic. In this system we have k i ,

Tc -=- 

k = -22 = k33; hence we write 

k it 	0 	0 
0 	k x , 	0 	 (15-29) 
0 	0 	k1, 

5. Hexagonal, Tetragonal and Trigonal. 

I" k12  0 
k-=-- 	- — ki 2  k„ 0- -(15-30)- 

0 0 k33  

1t was previously stated that, whenever the heal flux law of the form given by 
equations (15-2) holds, the classical thermodynamic considerations lead to the 
reciprocity relationship given by equation (I 5-4b). In the case of crystals, the 
results on the conductivity coefficients given above have been derived from the 
considerations of macroscopic symmetry. Since no general proof is available to 
show that the coefficients are symmetric, it has been necessary to rely on experi-
ments. If the relation given by equation (15-4b) should apply, then it implies that 
1(.12  = 0 in equation (15-30) and k2, = k12  in equation (15-27). Experimentally, 
principal conductivities are always found to be positive. Table 15-1 lists the 
values of principal conductivities for some crystals. 

15-7 TRANSFORMATION OF HEAT CONDUCTION 
EQUATION FOR ORTHOTROPIC MEDIUM 

The heat conduction equation for an orthotropic medium can be transformed 
to a standard heat conduction equation for an isotropic solid as described below. 

We consider the heat conduction equation for an orthotropic medium in the 
rectangular coordinate system given by 

(15-27) 

a27- 	a2T 	a2T 	 DT 
ay2 	az2 	or 

(15-31) 



New independent variables X, Y, and Z are defined as 

Y= (k k 
Z

kJ) 
z 

Temperature Depending on x, and x2  Only 

For such a case we have (0T/ax 3)= 0; then equations (15-2) for the heat flux 
components reduce to 

aT , DT 
— =

„ 
	N12 — 

	

ax 	ax, 

	

OT 	aT 

	

- (12= k2E • - 	k z2  

	

ax, 	Ox 2  

	

aT 	aT 
— q3 = 

k31 
	K32 

	

ax 	ax 2  

(15-37a) 

(15-37b) 

(15-37c) 
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(15-32) 

where k is a reference conductivity. Equation (15-31) becomes 

02T (12 T  ..12T 	riT 
k (Thy 2 0 y2 + (1:62)  ff = 

it( 

which looks like the standard heat conduction equation for an isotropic solid. 
However, the choice of the reference thermal conductivity is not arbitrary. The 
reason for this is that a volume element in the original space "dx dy dz" transforms, 
under the transformation (15-32), into 

(15-33) 

This result implies that there is still a heat flux component q3  in the x3  direction 
even though there is no temperature gradient in that direction. 

The heat conduction equation (15-9) simplifies to 

(k,k,k,)" 
dX dY dZ 

k312  
(15-34) 

If the quantities pC F  and the generation term g defined on the basis of unit volume 
should have the same physical significance, we should have 

82 T 	02 T 	 02T OT 
ki.+k22—+ (k12 	 = 

xi  a.74 	 Oax2 	Or 
(15-38) 

(k ,k 2k 3)" 

k 312  
where we assumed no energy generation in the medium. or 	k =(k,k,k 3)" 	. (15-35a, b) 

(15-36) 

Then the heat conduction equation (15-33) takes the form 

62T a2T a2T 
(k i k,k 3)113( • + 	)+

aT 
ax2 aY2 "OZ 2 	rat  

Temperature Depending on x1  Only 

For such a case we have (aTaz2)— 0, (aTIDx3) -= 0; then equation (15-21) for the 
heat flux components reduces to 

where X, Y, and Z are as defined by equation (15-32). This implies an isotropic 
medium of thermal conductivity (k 1 k 2k3)113. 

Several other ways of arriving at the result given by equation (15-35) are 
discussed in reference 8. Similar transformations are applicable to transform the 
equation into the standard form for the cylindrical and spherical coordinate 
systems. 

Under the transformation discussed above, the solution of the resulting heat 
conduction equation is a straightforward matter, but the transformation of the 
solution to the original physical space requires additional commutations accor-
ding 'to the transformation used. Thal is, the corresponding isotropic heat con-
duction problem of thermal conductivity (k i k 2k 3)113  is readily solved. The region 
is then distorted according to the transformation (15-32). 

15-8 SOME SPECIAL CASES 

We now examine some special situations that may give some insight to the 
physical significance of heat flow in an anisotropic medium. 

(Yr 
q, 	 — q = k OT 	 OT 

1wi, 	q2 	21T-x. 	—47 3  = 1( 3, aTi 	(15-39a,b,c) 

This result implies that there is heat flow in the x2  and x3  directions even though 
temperature gradients are assumed to be zero in those directions. 

The heat conduction equation (15-9) reduces to 

a2T 	aT , 
= Pc-Ft  (15-40) 

where we assumed no energy generation. This equation is similar to the one-
dimensional heat conduction equation for an isotropic medium. 

A physical situation simulating one-dimensional heat flow through an isotropic 
solid can be realized as follows. 

Consider a large, thin plate of crystal placed between two highly conducting 
materials maintained at constant uniform temperatures T1  and T2 as illustrated 
in Fig. 15-1. Since the crystal is thin and large, the isothermal surfaces are parallel 
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Surfaces kept at 
ConStall temperatures 

Insulated 	
q 

x, 

—97N,1/4  

Fig. 15-2 Heat now along a thin, long rod. 

x 
L which implies that the heat flux vector q is along the Ox, axis. When the results 

given by equations (l 5-41e) are introduced into equations (15-17), the three 
components of the temperature gradient vector become 

Fig. 15-1 Heat flow across a large thin crystal plate. 
(15-42a,b,c) 

	

DT 	 OT 	 DT 
,q,•  —fix = r,,q,, 	r3,q, 

	

1 	
ax 

 

to the large faces of the crystal except in the region near the edges. If the plate 
thickness is small compared to the lateral dimensions, the edge effects become 
negligible. We note that the temperature gradient vector VT is along the Ox, axis, 
but the heat flux vector q is not parallel to VT. The total heat flux flowing normal 
to the plate is q,, since the heat flux components q2  and q3  do not carry heat in 
that direction. Then the quantities that can readily be measured with experiments 
arc DT/Dx , and q,; hence under steady-state condition, equation (15-39a), that is 

 
— = k, - 

, CT 

	

,,x I 
	 (15-41a) 

can be used to determine the conductivity coefficient k11. The variation of k,, 
with the orientation of the Ox, axis with reference to the principal axis is given 
by the relation [1-4] 

	

= 121c, + 1zk, + 	 (15-41b) 

where k,, k 2, and k3  are the principal conductivities and /1 , /2, and 13  are the 
direction cosines of the Ox, axis relative to the principal axes Oe,,Og2, and 01;,, 
respectively. 

Heat Flory in the x, Direction 

The physical situation simulating such a condition can be realized by considering 
a long, thin crystal rod with two ends kept at different constant temperatures 
and the lateral surfaces insulated as illustrated in Fig. 15-2. 

The heat flow is along the Ox, direction only, since the lateral surface of the 
rod is insulated. Then we have 

t12 = f/3 = 	 (15-41c)  

Here, the temperature gradient OT/Dx, and the heat flux q, in the x, direction 
along the rod are the measurable quantities. Then equation (15-42a) can be used 
to determine the resistivity coefficient r„. The variation of r, with the orientation 
of the Ox, axis with reference to the principal axes is given by the relation [1:-4] 

r 11 
	

121  r  + 122r  2  + 132 r 3 	 (15-42d) 

where r, r,, and r3  are the principal resistivities and 1,,12, and 13  arc the direction 
cosines of the Ox, axis relative to the principal axes 	and N3, respectively. 
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In the case of noncrystalline anisotropic solids, such as wood, the thermal 
conductivities k,, k 2, and k3  are in the mutually perpendicular directions. Then 
the three components of the heat flux (q „q2,q3) are given in the (1,, u2, u3) 
orthogonal curvilinear coordinate system as 

k, OT 	k 2  DT 
q = — 	• q2  = — —9  

(11  du2  

k 3  DT 
q3 = — -- 

a 3  

• 

(15-43a) 

where a,,a -,,a 3  are the scale factors. 
Introducing equation (15-43a) into the energy equation (15-8), the heat-conduc-

tion equation. for an orthotropic solid becomes 

[ 	(a2a3 , ar) 	(aia3, 
2 
 DT) 	(a,a,, DT)] 

, —Kt— + —K-- 
a, a2a3  Cli , 	a, 	Du, 	au, 	a, 	.0113 	au, 	03  3au, 

(I5-43b) OT 
+g•=pc 



Assuming k 1 , k 2, k 3  constant, equation (15-43) for the rectangular, cylindrical, 
and spherical coordinates takes the following forms. 

Rectangular coordinate system (x, y, z): 

The boundary condition at the origin is obtained by drawing a small sphere 
of radius R around the point source and equating the rate of energy released 
by the source to the heat conducted into the medium: 

(15-52) 
We illustrate below with examples the solution of heat conduction in orthotropic 
medium for both the steady-state and time-dependent situations. (47tR 2)(k—)= Q 

R2  

OT 
(4nR2)( —k Q 

OR 
as 	R—•0 	(15-49) a2T 	a2T ,

3 
 52T 	aT 

+ K2 	It 
5x 2 	aye 	az2  

Cylindrical coordinate system (r, 0, z): 

, I a (aT) , 02T „ 02T 	OT 
K 1 	r— K2 — — — y = pL. p  

r -ar 	r2  002 	. 322 	Or 

Spherical coordinate system (r, 0,0): 

(15-44) 

(15-45) 

where R = (X 2  112  Z2)"2. The boundary condition at infinity is 

T= T x, 	as 	R 	 (15-50) 

Equation (15-47) is Laplace's equation and its solution satisfying the boundary 
condition (15-50) is written as 

k  1 a ( r2aT) k2 	.52T 4. k,  I  a (sin  0  _07) g  = pcpwaT 
r2  at 

	-- 
or 	r2 sin2 0 	r2 	o ao 	ao 

(15-46) 

•  
T(R) = C — (15-51) 

where the unknown constant C is determined by the application of the 

boundary condition (15-49) as 

Example 15-3 

Consider a point source of strength Q watts, located at the origin of the rectan-
gular coordinate system, releasing its heat continuously over time at a constant 
rate in an orthotropic medium. In the regions away from the source the region 
is at a temperature To,,. Develop an expression for the steady-state temperature 
distribution in the solid. 

Solution. We consider the transformed equation (15-33). For the steady state 
problem in the region outside the origin where there is no energy generation 
we write 

in 	O<X<oo, 0 <1'<oo, 0<Z<x 

(15-47) 

where 

X =(..L 	x, 
Y—  
-(1±

k2 

)112 	k 
y, Z = (_

) 

z (15-48a,b,c) 
k3  

k .(142k 3)' ,3 	 (15-48d)  

or 

1 
C  

k 

After equation (15-53) is introduced into (15-51), the solution becomes 

T(R)— 	—Q I 
47t kR 

Fig. 15-3 Ellipsoidal isothermal surfaces around a point source, Q. 

02T 02T 32T 

ar2+  8Z2 = ° 
C 

(15-53) 

(15-54a) 
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• 
J  

Or 

	

..x2 	2 	z2 7 I/2 
T(x, y, z) - 	= —(k,k 2k 3) - 1:2  	+k  + 

	

k, k 	k 

	

2 	, 

Clearly. T(R) - L., decreases with increasing distance R from the origin. 
Figure 15-3 shows that the heat flux vector q is along the R coordinate lines 
and the maximum temperature gradient VT is normal to the ellipsoidal 
isothermal surfaces. We note that the vectors q and VT are not necessarily 
parallel to each other. 

Example 15-4 

Consider the steady-state heat conduction problem for an orthotropic rectan-
gular region 0 x 4 a, 0 y b in which heat is generated at a constant rate 
of go  W/m3. Boundaries at x = 0 and y = 0 are kept insulated and those at 
x = a and y = h are dissipating heat by convection into an environment at 
zero temperature. The orthotropic thermal conductivities in the Ox and Oy 
directions are, respectively, k1  and k2. Obtain an expression for the steady-
state temperature distribution in the region. 

Solution. The mathematical formulation of this problem is given as 

in 	0 <x 	0 <y<b 	(15-55) 

Inversion: 	T(x, y) = 	1   X(r3„„x)t(fi,,„ y) 	(15-60b) 
N(Pm) 

where X(fl„„ x), N(/3.), and /3„, are obtained from Table 2-2, case 4 as 

1  
X((1„„ x) = cos /3„,x, 	- 2 	  

N(Pm) 	+1/;)+HI 
(15-60c) 

and the jg„, values are the roots of 

tan ,0„,a =1-1, 	 (15-60d) 

Taking the integral transform of system (15-55)-(15-59) by the application of 
the transform (15-60a) we obtain 

d2T 	
E2 

fl,az 	= —TO° 

dT-0  
dy 

d'T 
-1. 11 2T. 0 

dy 

(15-54b) 

il2 T 	1 02 T 	gn 
2a d  

in 	0 <y<b 	(15-61a) 

at 	y = 0 	(15-61b) 

at 	y = b 	(15-61c) 

oT - - H = 0 	at 	x = a 

aT • = o 

= 0 
0j. 

+ H ,T = 0 	at 	y = b 

at . v=0 

at x = 0 (15-56) 

(15-51) 

(15-58) 

(15-59) 

The solution of the system (15-61) is 

1 	cosh limey 
3')= 	 go , in go 

k 	Pm  1•Ticsinh P„,ch + cosh &xi, 
1-12 

(I 5-62a) 

where 

a  f a go cos finix dx = sin )(,1„, 
go 	 (15-62b) 

0 

where 

i)  

We define the integral transform pair with respect to the x variable as 

E
2 	k, 

k 2  

	

ht 	/12 
B1 	H, = 

	

1 	k, 

The inversion of (15-62) by the inversion formula (15-60b) yields 

go 	1 cos )„,x sin Ana 
T(x,y)= 

k i .., N(fl„,) 	13,„3  
Co 	1 	cos I 3,,,x sin (3,,,a cosh &Ey ga 

k a.= fia,3  NOV /L
H

E —sinh ,6„,eb + cosh Eb 
_ 	2  

a 
	 Transform: TU3 	= X(/3„„x1T(x%).)ds' 	(15-60a) 

`' 

(15-63) 



I cos 	sin lima 	a  

a 	

2 
= --• + 	— X ) 	(15-64) 

m=1 Km) 	 H, 2 

Then the solution ([5-73) takes the form 

	

a 	110 

	

71x, = go 	—(a2  _ x2) _ 2f.± t I 	Pm + H1  

k1H1 2k1 	k1 .-.13.3  4.2  + 	+ 
cos /imx sin lima cosh fl„,Ey 

/f E 
- sinh &Elf + cosh fi„,th 
112 

where the trf'„, values are the positive roots of 

( I 5-65a) 

11„, tan 13„,a = H 	 (15-65b) 

Example 15-5 

Consider the lime-dependent heal conduction problem for an ()allotropic 
rectangular region 0 x a, 0 y b. Initially the region is at a uniform 
temperature 7.0. For times t >0, the boundaries at x = 0 and y 0 are kept 
insulated and those at x = a and y= b are dissipating heat by convection into 
an environment at zero temperature, while heat is generated in the region at a 
constant rate of go  W/m3. The orthotropic thermal conductivities in the 
Ox and Oy directions are, respectively, k, and k2. Obtain an expression for 
the time-dependent temperature distribution T(x, y, in the region for 
times t > 0. 

Solution. The mathematical formulation of this problem is given as 

a 2T 	I 0.2T go  . 1 OT 	. • 	 = 
ax2  €2  ay2  k, o t, at 

0<x<a, 0<y<b, t > 0 (15-66a) 

at 	x=0, 	 ( > 0 (15-66h) 

at 	x = a, 	 r > 0 (15-66c) 

at 	. y = 0, 	 r> 0 (15-66d) 

Ox

▪ 

 F H,T=0 

aT = 0  

ay 
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A closed-form expression for the first summation on the right is determined 
as (see note I at end of this chapter) 

OT 
H 2T = 0 

ay 
at y = b, 	 r > 0 (15-66e) 

T 
	

for 	t = 0, in the region 	(15-66f) 	. 

where 

k , 
El 	

11, 
(X i  

k2' 	
, 	=

112 	

PC p 

It is convenient to split up this problem into two simpler problems as 

T(x, y, () T,(x, y)+ T,,(x, y, () (15-67) 

Where the steady-state temperature Ts(x,y) is the solution of the following 

problem 

a2T 1 a2  T 
--=0 	in 0 <x<a, 0 <y<b (15-68a) 

E2  8y2 	k1  

(37. ;  ,= 0 	 at  x = 0 	 (15-68b) 	I L 

OT 	 ( 
5 +111 7'5.= 0 	at x =a 	 (15-68c) 

Ox 	
( 

DT; _ 0  at y = 0 	 (15-68d) 	(I  

ay — 	 (-- 

aT 	
( 

+ H2 T,=0 	at y = 1f" 	 (15-68e) 	I - 

ay 	 .( 

	

and the transient temperature Th(x, y, t) is the solution of the following homo- 	( 
I 

geneous problem: 	 C 

in 	0 <x <a, 0 <y<h, t>0 (15-69a) 
ax2 	E 2  ay2 	a, at 

a Th 0  at 	x = 0, 	 t > 0 (15-69b) 
Ox 

a1, 	 (r 
1 - 11 1 Th -=.0 	 at 	x---- a, 	 t > 0 (15-69c) 	(, 

Ox 

(: 
(  . 

- ' 

a,T, 	1 a 2Th 	l aTi, 
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OT,  
v 

or 
tly 

at y 
The integral transform of the system (15-69) with respect to the x variable by 
the application of the transform (15-70a) is 

1 avt„ 	aY.  
y, t) 	— — E2 ay 2 al  at  

> 0 (15-69d) 

, 	 t > 0 (-14 69e) in 0 < y< b, t>0 	(15-72a) 

= 0 
ay 

--19t  H h o ay 	2 

th FOrh, Yl 

at y=0, 	1 > 0 	(15-72b) 

at y= b, 	( > 0 	(I 5-72c) 

for t = 0, 	in 0 ..<., Y -<... b (15-72d) 

= 	TA.v. 	1'(x. r) 	for 	t = 0, in the region 	( I 5-69f) 

The steady-state problem (15-68) is exactly the same as that considered in 
Example 15-4: therefore its solution is immediately obtainable from equation 
(15-65). The homogeneous problem defined by equations (15-69) can readily 
be solved by the integral-transform technique as now described. We define the 
integral-transform pair with respect to the x variable as 

I Transform: '7(/3„„ y t) — 	X`(/1 	I  )7 ( x: 	t)dx' (15-70a) 
0 

The integral transform of the system (15-72) with respect to the y variable by 
the application of the transform (15-71a) gives 

where 

x.• 
Inversion: 	T(x, y, t)= Ei N(fl.) X(11,,„ x)T-{ p„,,y.f) (15-70b) -  11  7%(13., y,1, t) - — y5" = 1 (17.  

62  " " cc,dt 

or 

" 4- (xi 2. 1' = 0 	for 	t>0 	 (l 5-73a) • 	2
n h rn  

(15-73h) 
and the fl,,, values are the positive roots Of 

/3„, tan fl„,a = H 	 (15-70d) 

The integral transform pair with respect to the y variable is defined as 

Transform: 	(13 „„).,,. I) = 	Y().„. 	y” i) dy' 
	

(15-71a) 
0  

Tam, Y., 11= F(13 „., 

where 

= /3! + 

The solution of equation (15-73) is 

Tani y„, t) = e-'14LI P(fini ,  )fi.) 

(15-730 

(15-74) 

p2 +112 
x(p„,,x)=cosp„,x, 	=2 	• 

N(fi„,) 	tt(fi!, + 	H 
(l 5-70e) di 

Inversion: 	y.t) = 	7111..1'„. ) 
N (T„) 	" 

(15-71b) The inversion of equation (15-74) successively by the inversion formulas 
(15-71 h) and ( 15-70b) gives the solution for Th(x, y, t) as 

where 

= cos 1,0., 	= 	„2  - 112, 

N(7,,) 	b(). + 	H, 
05-710 

and the 1.„ values are the positive roots of 

,, tan ).„b = H2 	 (15-71d)  

co 	co 	e-.La;„„I 

	

Tax, y, t) = E E 	cos /3„,x cos T„y 
m=1 ri= N(13m)N()'.) 

j'a
:11 b 

cos Pnde cos y„y'F(x', yldx' dy' 	(15-75) 
x'=0 y' = 0 

where N(f)„,) and N(),,,) are defined by equations (15-70c) and (15-71c), respec- 



aztiv 	 2  _ I an 
x 2 — Y(E22, — 612 )W  = 

ti 

in 	0 < x < co, 1 > 0 	(15-80a) 

 

= 0 
	

at 	x.= 0, 	1 > 0 	(1 5-80b) 

= e-i7"2x.f(x,y) 
	

for 	t = 0, 	in 0 < x < co (15-80c) 

To remove the partial derivative with respect to the x variable from this 
system, the integral-transform pair with respect to the x variable for the region 
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tively; ,,„ and y„ are the roots of the transcendental equations (15-70d) and 
(15-71d), respectively; and A.,,,2„ is defined by equation (15-73c). The function 
F(x', y') being specified according to equations (15-69f) and (15-65), the integral 
with respect to the space variables in equation (15-65) can be evaluated 
analytically or numerically. 

15-10 MULTIDIMENTIONAL HEAT CONDUCTION 
IN AN ANISOTROPIC MEDIUM 

The multidimensional heat conduction equation for the case of general anisotropy 
involves cross-derivatives, whereas the boundary conditions may contain various 
partial derivatives with respect to the space variables. As a result, the analytic 
solution of the multidimensional heat conduction problem for the general aniso-
tropic case is difficult to obtain, especially for finite regions. However, the 
solutions can be obtained for special situations involving semiinfinite or infinite 
regions as illustrated in the following examples. 

Example 15-6 

We consider a two-dimensional, time-dependent heat conduction problem for 
an anisotropic region 0 < x < co, — oo < y < co in the rectangular coordinate 
system. The medium is initially at temperature y) and for times t > 0 the 
boundary surface at x = 0 is kept at zero temperature. Obtain an expression 
for the temperature distribution T(x, y, t) in the region for times t > 0. 

Solution. Since no temperature variation is considered in the z direction, we 
have OT /az = 0. Then, the heat-conduction equation (15-9) reduces to 

	

azT 	a2 T 	a2T  

+€22-- 2c12--  

	

ax2 	ay2 	axay 

I OT 

	

= 	— 	in 	0 < x < co, — co < y < co, 1 > 0 	(15-76a) 
a„ at  

We note that the differential equation involves one cross-derivative and the 
region in the y direction is infinite in extend. Therefore, the integral transform 
with respect to the y variable can be applied to remove from this equations 
the first and second partial derivatives with respect to the y variable. The 
integral transform pair with respect to the y variable is defined as [see equation 
(13-63)] 

Inversion: 	T(x, y, t) = y, 	 (15-77a) 
2ir _ ,z, 

Transform: 	T(x, y, it) = J 	eiVY'  T(x, y', t) dy' 
'' = - X+ 

where the bar denotes the integral transform with respect to the y variable. 
The integral transform of the system (15-76) by the application of the trans-

form (15-77b) yields (see note 2 at the end of this chapter for the transform of 
the second and the first derivatives with respect to the y variable) 

in 	0 < x < co, t>0 	(15-78a) 

T= 0 	 at 	x= 0, 	t> 0 	(l5-78b) 

T= 	y) 	 for 	t = 0, 	in 0 < x < co 
(15-78c) 

where t 	y, t). The partial derivative OT/Ox can be removed front this 
equation by defining a new variable iT,(x, y , t) as 

r) = vi)(x, l,, oetycia. 	 (15-79) 

Then, the system (15-78) is transformed to 

DP 

(15-77b) 

aT 	aT- 
ax2 	E22 	LivE12— 

0, 

• 
► , a, 

with the boundary and initial conditions 

T = 0 	at 	x= 0, for 1>0 	 (15-76b) 

T= 	y) 	for 	= 0, in 	< X < co, — as<y<co 	(15-76e) 

. where we defined 

and 
ku  , 

Et; = 	 = ft ft, 
k 

(15-76d) atl
k„

= k   pCp  
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t 0 <x < oo is defined as [see equations (13-57) and Table 2-3, case 3] 

O 

Inversion: 	0 	
2 

(x, ?, t) = 	sin fix 0 

	

?, 41 	(15-81a) 
p=o 

Transform: 	 sin flx' 	dx' 	(15-8lb) 

where the tilde denotes the transform with respect to the x variable. The 
integral transform of the system (15-80) by the application of the transform 
(15-8Ib) gives 

„22117(/i,Y,t) -  
dr 

0 for t > 0 (15-82a) 

where 

tii = gr(13.).) for r = 0 (15-82b) 

).2 	/32 + E1,)  (15-83a) 

E 2 , - eiz > 0 according to equation (15-4d) (15-83b) 

H(fi,?)= dx' (15-83c) 
.•=o 

= f 17 (x', y') cly' (15-83d) 

The solution of equation (15-82) is 

((• y)e "" (15-84) 

The inversion of equation (15-84) by the inversion formula (15-81a) and then 
the application of equation (15-79) yields 

-ai AE22 --E12)3Pi -17L(y -r) - el lix - x'Adyi  

• [-2  f 	e-""P2' sin fix sin fix' dfi]dy' dx' 	(15-86) 

In this result the integrals with respect to the variables? and /lean be evaluated 
by making use of the integrals given by equations (13-67) and (13-80,, res-
pectively, that is 

1 e- y2A r — 	= 
(47tA0112e

- z314A: 

27r Ty- 
(15-87a) 

f _2 	e  — Pal sin fix sin fix' dil 
1E 13=0 

(X + 42  
(15-87b) 1 	rexp(  	exp = 

4cct (47tca)ii2  L 	4crt 

Then, the solution (15-86) takes the form 

1
z, ,11  

1/2 
[411111.(E22 	C212)1] 	 [4"111] I"  x'.»0 yr - 

ny - y ?  E12(x - x)212  
\„. 	411a (E2 2 — 612 )t  

•
[expi (x -  x')2) 

 exp 	
(x + 42)1

dy
, 
dx

, 	
(15-88) 

4c cu t  4a11t  

Example 15-7 

An anisotropic medium 0 x < co, - co < y < co is initially at zero tempera-
ture. For times t > 0, heat is generated in the medium at a rate of g(x; y, t)W/m2  
while the boundary surface at x = 0 is kept at zero temperature. Obtain an 
expression for the temperature distribution T(x, y, t) in the region for limes 

[ 	.1"} 	e 
.1_ 2n 

- co 

p=c, 

•
(x, y,  t) = Mx1,31 

•exp 

711 

This result is inverted 
H(fi, ,,.) is introduced 

T(x. y, t) = 

= 

by the 
and the 

, 	• 
f 	sin 	4111 	(15-85) 
R= 0 

inversion formula (15-77a), the explicit form of 
order of integrations is rearranged: 

F(x', y') 
f 

I 	0. 

Solution. The mathematical formulation of the heat-conduction problem is 
given as 

a2T 	32 T 	a27- I 1 OT , 
— — 2E12 + € 22 — -1- 	 g, 

axe 	ay2 	ax Oy 	k„
v 
	ail 01  

in 	0<x<c0, 	—c0<y<130, 	t>0 	 (15-89a) 

[Th 
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where 
/22 r 	2 

A  = P 	(c22 Eh) 

e22 — E 12 > 0  

6(13, y, 0= .1 	e-17'"x. 	t) sin fix' dx' 
x• .0 

(15-93a) 

(15-93b) 

(15-93c) 
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Tw o 	at 	x = 0, 	t> 0  

T = 0 	for 	t = 0, 	in 	0 	x < co, 	— oo < y < co 

where we defined 

ki • 
and 	a „ = •k 1 1 

	

kii , 	 • 

(15-89b) 

(15-89c) 

(15-89d) 
rs 

This problem is similar to that considered in Example 15-6, except for the heat 
generation and the zero initial condition. Therefore, the integral transform 
pairs defined in the previous example are applicable for the solution of this 
problem. The integral transform of the system (15-89) by the application of 
the transform ( I 5-77b) gives 

a2t 	 aT 
—2iy€12 —

a7.
-1--

1
doc,-,r, 0 = 

ax 	 k„ 	a, , c.t 

in 	0 <x<co, t> 0 	 (15-90a) 

T= 0 	at 	= 0, 	t>0 	 (15-90b) 

0 for 1 = 0, in 0,<,x<....o (15-90c) 

where t= T(x, y, t). The partial derivative aPax can be removed from equation 
(15-90a) by the application of the transform (15-79). Then the system (15-90) 
is transformed to 

j(x',y,t)= 	 y', 0 dy' 	 (15-93d) 
Y. = - .0 

The solution of equations (15-92) is 

1;(fi, 7,1) = 	' 	— 	Oen A''' .  de lf a ti 

k11 	
(15-94) 

The inversion of this result by the inversion formula (15-81 a) and then the 
application of equation (15-79) yields 

1  T(x, y, t) = 2 x' 	' 	a sin /ix 

	

11 	6(,6, y,t)e-,,122(r-r1 +ilar2xdt,  di3 (15-95) 
• 	n p=o r=o k11 

This result is inverted by the in version formula (15-77a), the explicit form or 
G(9, y, t) defined by equation (15-93) is introduced an lie order of the integra-
tions is rearranged: 

T(x, y, r) = .f —. 1. g(x', y', 1') 
.0 

2- 	
i 

	 . 
0 IV 	2, 	 I 	 1 30 	 1 	w 

g-211422 - Ejj i 72 (r -1') - iY1(1.' -Y 4 ) - El2iX -Ali dy 
— ... 7 ke2 2 — 2)0 + — e- l y€ 12xd(x, 7, t) = — — 
49x 2 	 k II 	 all at 	 . 2n .,,,._ Go  

in 	0 <x<oo, t> 0 	 . (15-91a) 
e-c'"P2(1-i'l sin /3x sin (.3x' d ,C de dy' dx' 	(15-96) 

IT

2 

fo=o 
tii-,  = 0 	at 	x = 0, 	t > 0 	 (15-91b) 

The integrals with respect to the variables y and /5 can be evaluated by making 
vil = 0 	for 	t = 0, 	in 0 < x < co 	(15-91c) 	 use of the integrals (15-87a) and (15-87b); then the solution (15-96) takes the 

form 
1 

= 
The partial derivative with respect to the x variable is removed from equation 
(15-91a) by the application of the transform (15-814 Then, the system (15-91) 
is reduced to the following ordinary differential equation 

= 
—

at

+ al A21.;(fla, t)= 
k
—  GO, 7, i) 

. 	11 

11;(p,y,t)= 0 

1 
[4rEa1 ,(e22  — E 2 2 )(t — 1`)]"2[47ta„ (t — t')11 1°-  

f"  

. . f . 
g(x`,y', iTexp

( [(.1' — Y') — E, 2(x — 432) 

	

x'=o Y•= - co 1.---13 	 41ra11(a22  — €;2 )(t — t')) 

.[exp(
l 

(x — 42   ) 
exp 	

(x+ x')2  
)]de dy'dx' 	(15-97) 

	

aii(t —11 	4a„ (t — 1`) 

for 	t > 0 	(15-92a) 

for 	t = 0 	(15-92b) 



1 
Inversion: 	T(r, z, t) — •- 	c 7; T(r,y, t)dy 

f 
(15 99a) 

2.7E 	- 
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Example 15-8 

An anisotropic cylindrical region 0 r b, — co < z < cc is initially at tem-
perature F(r, z). For times t > 0 the boundary surface at r = h is kept at zero 
temperature. Obtain an expression for the temperature distribution T(r, z, t) 
in the cylinder for times t > 0. 

Soil/firm. Since there is no azimuthal variation of temperature, we have PT/ 
PO = 0. Then the heat conduct ion equa (ion ( I 5-10) becoMes 

r Pr 	Pr 

1 P / OT 
—. r .--..  + C33 -' -I- 2fi3-4" 613 - - = - - -- 

52T 

ilz- 	t'relz 

'e 2  T 	I ar.  . I aT 

r L,  a, , Pt 

in 	0 -..5 r < b, — oo < z < co, t > 0 	(15-98a) 

with the boundary and initial conditions 

7' = 0 	at 	t = b, t > 0 	 (15-98b) 

	 T— F(:) 	for 	t — 0, in 0 	< b, — oo < z < co 	(15-980 

where we defined 

kii 	 kit 
= 	 (15-98d) k = kb, 

kit ,   

This problem is now solved by the application of integral-transform technique 
as now described. The integral-transform pair with respect to the z variable for 

< z < x is defined as  

= o 	at 	r = b, t > 0 	 (15-100b) 

= F(r,y) 	for 	t = 0, in 0 r < b 	 (15-100e) 

where T T(r,y,t). A new variable 0(r, y, t) is defined as 

T(r,y, t) = 0(r, y, t).e'TE1" 	 (15-101) 

Then the system (15-100) is transformed to 

(Po 1 ao 1 DO 
— (E 33 — E213)Y 20  = 

r 	 alt  at 

0 = 0 

= e-'7""nr,y) 

in 	0‘.r<b, 	t>0 

(15-102a) 

at 	r = b, 	t > 0 (I5-102b) 

for 	t = 0, 	in 	0 
(15-102c) 

To remove the partial derivative with respect to the r variable, the integral-
transform pair is defined as [see equations (13-87) and Table 3-1, case 3] 

Inversion: 	0(r, y, 1) = E - ---J0(13„,r),;(11„„ y, t) 	(15-103a) 
N(13.) 

Transform: 	t'4„„y, t) = f 	10(flA0(r', y, t) dr' (15-103b) 

where 

D • 

fTransform: 	TI', y, t) = 
r

. 	e"'T(r, z', 1) d:' .-:' 	( I 5-99b) 

The integral transform of the system (15-98) by the application of the transform 
( I 5-99b) yields 

MT 	, 	 (-IT 	El 	 tr'7'
y -E33T- 	 — 	3 

 =-. 

r 	 Or 	r 	x, Pt 

Or 

(15-100a) 

1 	2 	1 	2 
(15-103c) 

NO„,) b2  42(1)„,b) 1)24( fi'„,b) 

and the•/3m  values are the roots of 

J(,(/1„,b) = 0 	 (15-103d) 

The integral transform of the system (15-102) by the application of transform 
(15-103b) is 

diZ 
a ti)24(/3„„y,t)= 0 	for 	t > 	 (15-104a) 

dt 

a'(13.. f)= 11(/.0') 	for 	t = 0 	 (15-104b) 

a2T-  (1 	. 	oT (iy€ 13 	2  ) 	1 11 T-  — 	- — 20'613
r 

+ e33 	= 	— Pr- 	 Pr 	 „ at 

in 	0 	< b, t > 0 

9 
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where 

22 
=rim

+ 7 2(€33  el 3) 	 (15-105a) 

E33  — 	> 0 	 (15-105b) 

:-_- 
1-1(I1„„y)= 	r'J0(13„„rle-ty€ 1 "'Fir',Adr' 	 (15-105c) 

r 

F(K,y)= f 	el'''. 	z')dz' 	 (15-105d)  

REFERENCES 
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• The integral with respect to y can be evaluated according to equation (1 5-87a). 
Then, the solution becomes 

/47m1 ,(€33  — Ef,)t MI Wit) 

 
J  

e   

	

u-cuip,2„4. 	jo Lo 

• 
.3  

f 	
i f, 	

r'.1-0(1,,,r')• F(r`,z) .„_ 4., 	r' = II 
U.: — :;') + E 1  )(V •-• r):12  

- • }dr' dz' 
40(1 1(C33 — C21 3)t  

T(r, z, t) = 

(15-I 11) 

The solution of equation (15-104) is 

1;(13., y, t) = e 

The inversion of (15-106) by the inversion formula (15-103a) gives 

(15-106) 

cr. 	I 

I'Wrt V, 	E 	•- 	offlmrie 	Ivr•ii(lipi,7) 
N(/1

R 
 

(15-107) 

This result is introduced into equation (15-101) to obtain 

where N(fJj is given by equation (15-103c) and theI'm values arc the roots of 
equation (15-103d). 
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PROBLEMS 

15-1 	Write the expressions for the three components of the heat flux, qb i = 1,2, 3, 
for an anisotropic medium in the following orthogonal coordinate systems: 
(I) prolate spheroid; (2) oblate spheroid. 

15-2 	Write the time dependent heat conduction equation for an anisotropic 
medium with constant conductivity coefficients for the following cases: 

1. In the cylindrical coordinate system when temperature is a function 
of r, 	variables. 

2. In the spherical coordinate system when temperature is a function 
of r, 0 variables. 

15-3 	Write the boundary conditions of the third kind for an anisotropic solid 
at the following boundary surfaces. 

1. At the boundary surfaces z = 0, == L, and r = b of a solid cylinder 
of radius b, height L. 	• 

2. At the surface r = b of a solid sphere.  
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15-4 	Write the thermal resistivity coefficients r,,, r, 3, and r23  in terms of the 
thermal conductivity coefficients kip 

	

15-5 	Consider two-dimensional steady state heat conduction in an orthotropic 
rectangular solid in the region 0 x < a, 0..-cy b with thermal conduc-
tivities k, and k2  in the x- and y-directions, respectively. The boundaries 
at x = 0, x = a and y = b are kept at zero temperature, while the boundary 
at y = 0 is maintained at a temperature T = f(x). Develop an expression 
for the steady state temperature distribution T(x,y) in the solid. 

	

15-6 	Consider steady state heat conduction in an orthotropic solid cylinder 
0 r b, 0 z L in which heat is generated at a uniform rate of 00  
W/m3  while the boundaries are kept at zero temperature. The thermal 
conductivity coefficients in the r and z directions are k, and k2, respectively. 
Obtain an expression for the steady state temperature distribution T(r, z) 
in the cylinder. 

	

15-7 	Consider an orthotropic region 0 x < CO, 0 s y < co, which is initially 
at temperature F(x, y) and for times t > 0 the boundaries at x = 0 and 
y = 0 are kept at zero temperature. The thermal conductivity coefficients 
for the x and y directions are k, and k2, respectively. Obtain an expression 
for the temperature distribution T(x,y, in the medium for times t> 0. 

	

15-8 	An orthotropic solid cylinder 0 r b, 0 < z L is initially at tempera- 
ture J'(r, z). For limes t > 0 the boundaries arc kept al zero temperature. 
The thermal conductivity coefficients for the r and z directions and k s  

and k2, respectively. Obtain an expression for the temperature distribution 
T(r, z, t) in the solid for times r > 0. 

15-9 Consider two-dimensional steady state heat conduction in an orthotropic 
solid cylinder of radius r = b and height z = L with thermal conductivities 
k, and k 2  in the r- and z-directions, respectively. The boundary surfaces 
at r = b and z = L are kept at zero temperatures, while the boundary 
surface at z = 0 is kept at temperature T = f(r). Develop an expression 
for the steady-state temperature T(r,z):  

15-10 Consider time-dependent, two-dimensional heat conduction problem for 
an anisotropic medium 0 x < co, — co <y < oo which is initially at 
temperature F(x, y) and for times t >0 the boundary surface at x = 0 is 
kept insulated. Obtain an expression for the temperature distribution 
T(x, y, t) in the medium for times t > 0. 

15-11 Consider time dependent, two-dimensional heat conduction problem for 
an anisotropic region 0 x < co, — co <y < co that is initially at zero 
temperature. For times t > 0, heat is generated in the medium at a rate 
of g(x, y,t) W/m3, while the boundary at x = 0 is kept insulated. Obtain 
an expression for the temperature distribution T(x, y, t) in the medium 
for times t > 0. 

r-, 
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15-12 Consider time dependent, two dimensional heat conduction in an aniso-
tropic hollow cylinder a r < b, - co < z < co, which is initially at tem-
perature F(r, z). For times t > 0, the boundaries at r = a and r = b are 
kept at zero temperature. Obtain an expression for the temperature 
distribution T(r, z, t) in the medium for times t > 0. 

15-13 Transform the heat conduction equation 

	

82 T 	7. 	07' 
• 

	

D2 	ay2 +g=r1C 
Pat 

into a one similar to that for the isotropic medium. 

NOTES 

1. The closed-form expression given by equation (15-74) is determined as now described. 
We consider the following heat conduction problem: 

d'T go  

	

Fix + 17,= 	
in 	0 < x <a 	 (la) 

(IT 0  
x=0 	 (lb) 

dx 

dT 
—+H I T=0 at 	x=a 	 (lc) 
dx 

This problem is solved both by direct integration and using the integral transform 
technique as given below. 

a. When it is solved by direct integration we obtain 

goa 	go 2 T 	- (a --xz  ) 
k, H, 2k, 

(2) 

b. To solve the system, equation (1), by the integral transform technique, we take 
its transform by the application of transform (15-70a) and obtain 

- 	I 
T 

kifi z ' 
	 {3a) 

where 

go= 	go cos fl„,xdx - 
sin/ima 
	go  

Pm 

	 (3b) 

Introducing the transform (3) into the inversion formula (!5-60b), we obtain the 

solution as 

T — E 	• 
go 	1 	cos /1„,x sin 13„,a 

kt n=o N(fi.) 	13” 
	 (4) 

Since equations (2) and (4) are the solution of the same problem, by equating them we 
obtain 

m=1 	 H, 2 
I 	cos If „,A. sin fi„,a 	a 	I 	

(5) 

which is the result given by equation (15-64). 
2. The integral transform of 82T/0y2  by the application of the transform (I5-77b) is 

determined as 

-.c. 
eilY 

0

T 
 dy = —€

y  

a2 	[dT 

Y1 	a 
.47  - iy TV." 	- ) 2 	eT dy 

a, 
	 J., 

= 
„2 	efirrdy = - ).17- 

	
(1) 

- 

To obtain this result we integrated by parts twice, assumed that T and aT/ay both 
vanish as y rk, and utilized the definition of the transform (15-774 The integral 
transform of i/ 2710x4 is determined as 

I
- 	aiTaT 	a I. 	dy dy = 	 — 1)1 

j 	axay 	(3x 	- 	Ox 

= - 	e'YY Thy = - 

	

r3x _ 	 ax 

	

. f 	. 	
(2) 

where we assumed that 19T/ox vanish at y-* ± Do. 

NOTES 	653 



APPENDIXES 



APPENDIX I 

PHYSICAL PROPERTIES 

TABLE 1-I 	Physical Properties of Metals 

Metal 
Melting 
Point °C 

Properties at 20°C 

P. 

kg 
-i m3  

Cr  

kJ_ 

kg- °C 

k, 

W 
."- m- C 

cc, 

m
-
2 

X 105  
s 

Aluminum 
Pure 660 2,707 0.896 204 8.418 
Al-Cu (Duralumin), 

94-96% Al, 3-5% 
Cu, trace Mg 2,787 0.883 164 6.676 

Beryllium 1277 1,850 1.825 200 5.92 
Bismuth 272 9,780 0.122 7.86 0.66 
Cadmium 321 8,650 0.231 96.8 4.84 
Copper 

Pure 1035 8,954 0.3831 386 11.234 
Aluminum bronze 

95% Cu, 5% Al 8,666 0.410 83 .2.330 
Constantan 8.922 0.410 22.7 0.612 

(107,-,', Cu, 40% Ni 
Iron 
Pure 1537 7,897 0.452 73 2.034 
Wrought iron, 0.5% C 7,849 0.46 59 1.626 
Carbon steel 

0.5% 7,833 0.465 54 1.474 
1.0% 7,801 0.473 43 1.172 

657 



U
(I
)U

U
  

U
U

U
U

U
 

658 	APPENDIX I 

TABLE 1-I 	(Continued) 

Metal 

Properties at 20°C 

Melting 	kg 	kJ 	W 	m2 
p, 	Cp, 	k. 	a, 

- x IOi 
Point "C . 	m3 	kg•°C 	m • °C 

Chrome steel 
Cr = 0% 	 7,897 	0.452 	73 	2.026 

1% 	 7,865 	0.46 	61 	1.665 
5% 	 7,833 	0.46 	40 	1.110 

Nickel steel 
Ni --, 0% 	 7,897 	0.452 	73 	2.026 

20% 	 7,933 	0.46 	19 	0.526 
Lead 	 328 	11,373 	0.130 	35 	2.343 
Magnesium 

Pure 	 650 	1,746 	1.013 	171 	9.708 
Mg-Al (electrolytic) 

6 -8% Al, 1-2'!,,;- Zn 	- - - - 	--.- 	1,810 	--.4.00 	66 	- 	3.605... 
Molybdenum 	 2,621 	10,22t1 	0.251 	123 	4.790 
Nickel 	 . 

Pure (99.9%) 	 1,455 	8,906 	0.4459 	90 	2.266 
Ni-Cr 

90% Ni, 10% Cr 	 8,666 	0.444 	17 	0.444 
80";, Ni, 20% Cr 	 8,314 	0.444 	12.6 	0.343 

Silver 
Purest 	 962 	10,524 	0.2340 	419 	17.004 
Pure (99-.9%) 	 10,525 	0.2340 	407 	16.563 

Tin, pure 	 232 	7,304 	0.2265 	64 	3.884 
Tungsten 	 3,387 	19.350 	0.1344 	163 	6.271 
Uranium 	 1,133 	19,070 	0.116 	27.6 	1.25 
Zinc, pure 	 420 	7,144 	0.3843 	112.2 	4.106 
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TABLE 1-2 	Physical Properties of Nonmetals 

Material T,°C 

k, 

W 

 P. 

kg 
2223  

Cr, 

kJ 

a, 

M2 
- X 107  
s m-°C kg-°C 

Asphalt 
Brick 

20-55 0.74-0.76 

Building brick, 
common face 

20 0.69 
1.32 

1600 
2000 

0.84 5.2 

Carborundum 600 18.5 
brick 1400 11.1 

Chrome brick 200 2.32 3000 0.84 9.2 
900 1.99 7.9 

Diatomaceous 
earth, molded 200 0.24 
and fired 870 0.31 

Fireclay brick. 500 1.04 2000 0.96 5.4 
burned 1330'C 800 1.07 

-Clay 	• 	' ---30 1:3 - 1460 0.88 
Cement, portland 23 0.29 1500 
Coal. anthracite 30 0.26 1200-1500 1.26 
Concrete, cinder 23 0.76 

Stone 1-2-4 mix 20 1.37 1900-2300 0.88 8.2-6.8 
Cotton 20 0.06 80 1.30 
Glass, window 20 0.78 (avg) 2700 0.84 3.4 
Pyrex 30 1.4 2225 0.835 
Paper 30 0.011 930 1.340 
Paraffin 30 0.020 900 2.890 
Plaster, gypsum 20 0.48 1440 0.84 4.0 
Rubber, vulcanized 

Soft 30 0.012 1100 2.010 
Hard 30 0.013 1190 - 

Sand 30 0.027 1515 0.800 
Stone 

Granite 1.73-3.98 2640 0.82 8-18 
Limestone 100-300 1.26-1.33 2500 0.90 5.6-5.9 
Marble 2.07-2.94 2500-2700 0.80 10-13.6 
Sandstone 40 1.83 2160-2300 0.71 11.2-11.9 

Teflon 30 0.35 2200 - 
Tissue, human skin 30 0.37 
Wood (across grain) 

Balsa 30 0.055 140 
Cypress 30 0.097 460 
Fir 23 0.11 420 2.72 0.96 	. 
Maple or oak 30 0.166 540 2.4 1.28 
Yellow pine 23 0.147 640 2.8 0.82 
White pine 30 0.112 430 
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TABLE 1-3 	Physical Properties of Insulating Materials 

Material T, °C 

k, 

C 

P, 

kg 

m3  

Cr„ 

kJ kg  -k  

a, 

m 2 	7  
x o 

Asbestos 
Loosely packed 0 0.154 470 .570 0.816 3.3-4 

100 0.161 
Asbestos-cement boards 20 0.74 
Sheets 51 0.166 
Felt, 40 laminations in 38 0.057 

Balsam wool 32 0.04 35 
Board and slab 

Cellular glass 30 0.058 145 1.000 
Glass fiber, organic bonded 30 0.036 105 0.795 
Polystyrene, expanded extruded 30 0.027 55 1.210 

(R-12) 
Mineral fiberboard; roofing 

material 30 0.049 265 
Cardboard, corrugated 0.064 

Celotex 32 0.048 
Corkboard 30 0.043 160 
Diatomaceous earth (Sil-o-ccl) 0 0.061 320 
Felt, hair 30 0.036 130-200 

Wool 30 0.052 330 
Fiber, insulating board' 20 0.048 240 
Glass wool 23 0.038 24 0.7 22.6 
Loose fill 

Cork, granulated 30 0.045 160 
Glass fiber, poured or blown 30 0.043 16 0.835 

Vermiculite, flakes 30 0.068 80 0.835 
Magnesia, 85% 38 0.067 270 

150 0.074 
204 0.080 

Rock wool, 10 lb/ft3  32 0.040 160 
Loosely packed 150 0.067 64 

260 0.087 
Sawdust 23 0.059 
Silica aerogcl 32 0.024 140 
Woqd• shavings 23 0.059 

First Six Roots 11„ of 	tan /1= c 

C 112 113 	114 115 135 

0 0 	3.1416 6.2832 	9.4248 12.5664 15.7080 
0.001 0.0316 	3.1419 6.2833 	9.4249 12.5665 15.7080. 
0.002 0.0447 	3.1422 6.2835 	9.4250 12.5665 15.7081 
0.004 0.0632 	3.1429 6,2838 	9.4252 12.5667 15.7082 er 

0.006 0.0774 	3.1435 6.2841 	9.4254 12.5668 15.7083 
0.008 0.0893 	3.1441 6.2845 	9.4256 12.5670 15.7085 
0.01 0.0998 	3.1448 6.2848 	9.4258 12.5672 15.7086 
0.02 0.1410 	3.1479 6.2864 	9.4269 12.5680 15.7092 
0.04 0.1987-3.1541 6.2R95____9.4290 12.5696 15.7105 
0.06 0,2425 	3.1606 6.2927 	9.4311 12.5711 15.7118 
0.08 0.2791 	3.1668 6.2959 	9.4333 12.5727 15.7131 
0.1 0.3111 	3.1731 6.2991 	9.4354 12.5743 15.7143 
0.2 0.4328 	3.2039 6.3148 	9.4459 12.5823 15.7207 
0.3 0.5218 	3.2341 6.3305 	9.4565 12.5902 15.7270 
0.4 0.5932 	3.2636 6.3441 	9.4670 12.5981 15.7334 
0.5 0.6533 	3.2923 6.3616 	9.4775 12.6060 15.7397 
0,6 0.7051 	3.3204 6.3770 	9.4879 12.6139 15.7460 
0.7 0.7506 	3.3477 6.3923 	9.4983 12.6218 15.7524 
0.8 0.7910 	3.3744 6.4074 	9.5087 12.6296 15.7587 
0.9 0.8274 	3.4003 6.4224 	9.5190 12.6375 15.7650 
1.0 0.8603 	3.4256 6.4373 	9.5293 12.6453 15.7713 
1.5 0.9882 	3.5422 6.5097 	9.5801 12.6841 15.8026 
2.0 1.0769 	3.6436 6.5783 	9.6296 12.7223 15.8336 
3.0 1.1925 	3.8088 6.7040 	9.7240 12.7966 15.8945 
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First Six Roots /„ of fitanil= c 	(Continued) 

C fir 113 P4 )1  5 /36 

4.0 1.2646 3.9352 6.8140 9.8119 12.8678 15.9536 
5.0 1.3138 4.0336 6.9096 9.8928 12.9352 16.0107 
6.0 1.3496 4.1116 6.9924 9.9667 12.9988 16.0654 
7.0 1.3766 4.1746 7.0640 10.0339 13.0584 16.1177 
8 0 1.397.8... - 4.226-1- 7.1263- 10.0949 13.I 141 16.1675 
9.0 1.4149 4.2694 7.1806 10.1502 13.1660 16.2147 

10.0 1.4289 4.3058 7.2281 10.2003 13.2142 16.2594 
15.0 1.4729 4.4255 7.3959 10.3898 13.4078 16.4474 
20.0 1.4961 4.4915 7.4954 10.5117 13.5420 16.5864 
30.0 1.5202 4.5615 7.6057 10.6543 13.7085 16.7691 
40.0 1.5325 4.5979 7.6647 10.7334 13.8048 16.8794 
50.0 1.5400 4.6202 7.7012 10.7832 13.8666 16.9519 
60.0 1.5451 4.6353 7.7259 10.8172 13.9094 17.0026 
80.0 1.5514 4.6543 7.7573 10.8606 13.9644 1.7.0686 

100.0 1.5552 4.6658 7.7764 10.8871 13.9981 17.1093 
1.5708 4.7124 7.8540 10.9956 14.1372 17.2788 

Roots are all real if c > 0. 

First Six Roots 	of fleot/1,-. - c  

e /I, 114 
- 1.0 0 4.4934 7.7253 10.9041 14.0662 17.2208 

• 
- 0.995 0.1224 4.4945 7.7259 10.9046 14.0666 17.2210 
-0.99 0.1730 4.4956 7.7265 10.9050 14.0669 17.2213 
- 0,98 0.2445 4.4979 7.7278 10.9060 14.0676 17.2219 
- 0.97 0.2991 4.5001 7.7291 10.9069 14.0683 17.2225 
- 0.96 0.3450 4.5023 7,7304 10.9078 14.0690 17.2231 
- 0.95 0.3854 4.5045 7.7317 10.9087 14.0697 17.2237 
- 0.94 0.4217 4.5068 7.7330 10.9096 14.0705 17.2242 
- 0.93 0.4551 4.5090 7.7343 10.9105 14.0712 . 17.2248 
- 0.92 0.4860 4.5112 7.7356 10.9115 14.0719 17.2254 
- 0.91 0.5150 4.5134 7.7369 10.9124 14.0726 17.2260 
- 0.90 0.5423 4.5157 7.7382 10.9133 14.0733 17.2266 
-0.85 0.6609 4.5268 7.7447 10.9179 14.0769 17.2295 

(1.8 0.7503 4.5379 7.7511 10.9225 14.0804 17.2324 
- 0.7 0.9208 4.5601 7.7641 10.9316 14.0875 17.2382 
- 0.6 1.0528 4.5822 7.7770 10.9408 14.0946 17.2440 
-0.5 1.1656 4.6042 7.7899 10.9499 14.1017 17.2498 
- 0.4 1.2644 4.6261 7.8028 10.9591 14.1088 17.2556 
- 0.3 1.3525 4.6479 7.8156 10.9682 14.1159 17.2614 
- 0.2 1.4320 4.6696 7.8284 10.9774 14.1230 17.2672 
- 0,1 1.5044 4.6911 7.8412 10.9865 14.1301 17.2730 

0 1.5708 4.7124 7.8540 10.9956 14.1372 17.2788 
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First Six Roots ift of ficot fi = - c (Continued) 

C /3  Pi 116 

0.1 1.6320 4.7335 7.8667 11.0047 14.1443 17.2845 

0,2 1.6887 4.7544 7.8794 11.0137 14.1513 17.2903 

0.3 1.7414 4.7751 7.8920 11.0228 14.1584 17.2961 

0.4 1.7906 4.7956 7.9046 11.0318 14.1654 17.3019 

0.5 1.8366 - 	4,8158 7.9171 11.0409 14.1724 17.3070 

0.6 1.8798 4.8358 7.9295 11.0498 14.1795 17.3134 

0.7 1.9203 4.8556 7.9419 11.0588 14.1865 17.3192 

0.8 1.9586 4.8751 7.9542 11.0677 14.1935 17.3249 

0.9 1.9947 4.8943 7.9665 11.0767 14.2005 17.3306 

1.0 2.0288 4.9132 7.9787 11.0856 14.2075 17.3364 

1.5 2.1746 5.0037 8.0385 11.1296 14.2421 17.3649 

2.0 2.2889 5.0870 8.0962 11.1727 14.2764 17.3932 

3.0 2.4557 5.2329 8.2045 11.2560 14.3434 17.4490 

4.0 2.5704 5.3540 8.3029 11.3349 14.4080 17.5034 

5.0 2.6537 5.4544 8.3914 11.4086 14.4699 17.5562 

6.0 2.7165 5.5378 8.4703 11.4773 14.5288 17.6072 

7.0 2.7654 5.6078 8.5406 11.5408 14.5847 17.6562 

8.0 2.8044 5.6669 8.6031 11.5994 14.6374 17.7032 

9.0 2.8363 5,7172 8.6587 11.6532 14.6870 .17.7481 

10.0 2.8628 5.7606 8.7083 11.7027 14.7335 17.7908 

15.0 2.9476 5.9080 8.889k 11.8959 14.9251 17.9742 

20.0 • 2.9931) 5.9921 9.0019 12.0250 15.0625 18.1136 

30.0 3.0406 6.0831 9.1294 12.1807 15.2380 18.3018 

40.0 3.0651 6.1311 9.1987 12.2688 15.3417 18.4180 

50.0 3.0801 6.1606 9.2420 12.3247 15.4090 18.4953 

60.0 3.0901 6.1805 9.2715 12.3632 15.4559 18.5497 

80.0 3.1028 6.2058 9.3089 12.4124 15.5164 18.6209 

100.0 3.1105 6.2211 9.3317 12.4426 15.5537 10.6650 

co 3.1416 6.2832 9.4248 12.5664 15.7080 18.8496 

Roots are all real if c > - 1. 
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Numerical Values of Error Function erf(z)---- 2 	' e 4'g 
7i 

.1 
 u 

z crfz erf z errz crfz z erfz 

0.00 0.00000 0.50 0.52049 1.00 0.84270 1.50 0.96610 2.00 0.99532 
0.01 0.01128 0.51 0.52924 1.01 0.84681 1.51 0.96727 2.20 0.99814 
0.02 0.02256 0.52 0.53789 1.02 0.85083 1.52 0.96841 2.40 0.99931 
0.03 0.03384 0.53 0.54646 1.03 0.85478 1.53 0,96951 2.60 0.99976 
0.04 0.04511 0.54 0.55493-  1.04 0.85864 154 - - 0.97058 2.80 0.99992- 

0.05 0.05637 0.55 0.56332 1.05 0.86243 1.55 0.97162 3.00 0.99998 
0.06 0.06762 0.56 0.57161 1.06 0.86614 1.56 0.97262 
0.07 0.07885 0.57 0.57981 1.07 0.86977 1.57 0.97360 
0.08 0.09007 0.58 0.58792 1.08 0.87332 1.58 0.97454 
0.09 0.10128 0.59 0.59593 1.09 0.87680 1.59 0.97546 

0.16 0.11246 0.60 0.60385 1.10 0.88020 1.60 0.97634 
0.11 0.12362 0.61 0.61168 1.11 0.88353 1.61 0.97720 
0.12 0.13475 0.62 0.61941 1.12 0.88678 1.62 0.97803 
0.13 0.14586 0.63 0.62704 1.13 0.88997 1.63 0.97884 
0.14 0,15694 0.64 0,63458 1.14 0.89308 1.64 0.97962 

0.15 0.16799 0.65 0.64202 1.15 0.89612 1.65 0.98037 
0.16 0.17901 0.66 0.64937 1.16 0.89909 1.66 0.98110 
0.17 0.18999 0.67 0.65662 1.17 0.90200 1.67 0.98181 
0.18 0.20093 0.68 0.66378 1.18 0.90483 1.68 0.98249 
0.19 0.21183 0.69 0.67084 1.19 0.90760 1.69 0.98315 
0.20 0.22270 0.70 0.67730 1.20 0.91031 1.70 0.98379 
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' 	2: 

Numerical Values of Error Function erf(z) .---
- N.. 	

• d a r' 
2

rt- 
i 

erf z e rf z erf z :-. erg': 

0.21 0.23352 0.71 0.68466 1.21 0.91295 1.71 0.98440 
0.22 0.24429 0.72 0.69143 1.22 0.91553 1.72 0.98500 
0.23 0.25502 0.73 0.69810 1.23 0.91805 1.73 0.98557 
0.24 0.26570 0.74 0.70467 1.24 0.92050 1.74 0.98613 

0.25 0.27632 0.75 0.71115 1.25 0.92290 1.75 0.98667 
0.26 0.28689 0.76 0.71753 1.26 0.92523 1.76 0.98719 
0.27 0.29741 0.77 0.72382 1.27 0.92751 1.77 0.98769 
0.28 0.30788 0.78 0.73001 1.28 0.92973 1.78 0.98817 
0.29 0.31828 0.79 0.73610 1.29 0.93189 1.79 0.98864 

0.30 0.32862 0.80 0.74210 1.30 0.93400 1.80 0.98909 
0.31 0,33890 0.81 0.74800 1.31 0.93606 1.81 0.98952 
0.32 0.34912 0.82 0.75381 1.32 0.93806 1.82 0.9899.4 
0.33 0.35927 0.83 0.75952 1.33 0.94001 1.83 0.99034 
0.34 0.36936 0.84 0.76514 1.34 0.94191 1.84 0.99073 

0.35 0.37938 0.85 0.77066 1.35 0.94376 1.85 0.99111 
0.36 0.38932 0.86 0.77610 1.36 0.94556 1.86 0.99147 
0.37 0.39920 0.87 0.78143 1.37 0.94731 1.87 0.99182 
0.38 0.40901) 0.88 0.78668 1.38 0.94901 1.88 0.99215 
0.39 0.41873 0.89 0.79184 1.39 0.95067 1.89 0.99247 

0.40 0.42839 0.90 0.79690 1.40 0.95228 1.90 0.99279 
0.41 0.43796 0.91 0.80188 1.41 0.95385 1.91 0.99308 
0.42 0.44746 0.92 0.80676 1.42 0.95537 1.92 0.99337 
0.43 0.45688  0.93 0.81156 1.43 0.95685 1.93 0.99365 
0.44 0.46622 0.94 0.81627 1.44 0.95829 1.94 0:99392 

0.45 0.47548 0.95 0.82089 1.45 0.95969 1.95 0.99417 
0.46 0.48465 0.96 0.82542 1.46 0.96105 1.96 0.99442 
0.47' 0.49374 0.97 0.82987 1.47 0.96237 1.97 0.99466 
0.48 0.50274 0.94 0.83423 1.48 0.96365 1.98 0.99489 
0.49 0.51166 0.99 0.83850 1.49 0.96489 1.99 0.99511 

The error function of argument x is defined as 

, 

erf(x)= 	_ 
Tt 0 

and we have 

e rf (co) =1 	and 	erf( - x) = erf (x) 	 (2) 

(1} 
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The complimentary error function, 

erfc(x) 

erfc(x), is defined as 

2  r = 1 - 	— erf(x) (3)  
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The derivatives of error function are given as 2. E. Jahnke and F. Emde, Tables of Functions, 2nd ed., Dover Publications, New York, 
1945. 

d 	2 
'2 	

d 2 	4 — erf(x) = - erf(x) = — e-  
dx 	/Tr 

(4)  
el x 2 	viTr 

The repeated integrals of error function are defined as 

in  erfc(x) 

with 

r' erfc(x) 

erfc n  dil, 	n = 0, 1, 2... 

	

x 2 	i° 

	

= —
2 

e-  , 	erfc x = erfcx 

(5a)  

(5b)  

Then we have 

i erfc(x) 	e-  Y 2 — x erfc  (6)  
V iz 

erfc(x) 
1 	 2 

2x2) - 	(1 + 	erfc x -- xe-'2  (7)  
4 	 Trr 

Series expansion for error function is given as 	. 
t 

2 	°3 	 x2n+ I 

Ir = -- E (- erf(x) (8)  
„Fr .= o 	n12t) + 1) 

For large values of x, its asymptotic expansion is  

erfc(x).-- 	- erf(x)L2— 
e-x, 

ap 	1.3 .--(2n - 1)1 
 (9)  [1 + E fix 	(2x2)11  

The error function, its derivatives, and its integrals have been tabulated 
[1,21 



APPENDIX IV 

BESSEL FUNCTIONS 	669 

kind of order v. Thus, the general solution of equation (4) is written as - 

R(2)= c,I,(z)-1- c 2 K,.(z) 
	

(51 

/,(z) and K,,(z) are real and positive when v > 	I and z > 0. The Bessel function 
/,(z) in series form is given by 

BESSEL 'FUNCTIONS 
z. )2Te 

A.,01C11—(1' 	kh I) 
(6) 

When v is not zero or not a positive integer, the general solutions (2) and (5) 
can be taken, respectively, in the form 

The differential equation 

d 2R I dR 	v2  
• + 	+ — IRS() 
dz2  z dz 	2  

(1) 

R(z)— 	c 2 J 
	

(7a) 

R(z) = c 1  I ,.(z)-1- ( . 2  I _.„(z) 
	

(7b) 

When v = n is a positive integer, the solutions J„(2) and J _„(z)are not indepen-
dent; they are related by 

J„(z)= ( — 	_„(z) 	and 	J _,;(z) = J„(—z)(n = integer) 	(8) 

is called Bessels's differential equation of order v. Two linearly independent 
solutions of this equation for all values of v are J„(z), the Bessel function of the 
first kind of order v and 11„(z), the Bessel function of the second kind of order v. 
Thus, the general solution of equation (1) is written as [1,2, 3] 

	

R(z) = 	c2 Y,(z) 	 (2) 

The Bessel function .1„(z) in series form is defined as 

(2z)` 2 	 

	

k =0 	k11-(v k + 1) 

	

2)2k 	

(3) 

	

where-F(T) is- the-gamma function. 	 
The differential equation 

	

=
t12RIdR 	

I 
 v2 

 R 0 
dz 	z dz 	z 2 
	 (4) 

is called Bessel's modified differential equation of order v. Two linearly independent 
solutions of this equation for all values of v are /Az), the modified Bessel function 
of the first kind of order v and K„(z), the modified Bessel function of the second 

similarly, when v = n is a positive integer, the solutions  I„(z) and /...„(z) are not 
independent. 

We summarize various forms of solutions of equation (1) as [2] 

R(z) = eJf,(7) 	Y,(7) 
	

always 	 (9a) 

R(z) = 	c2 f -,(rn 
	v is not zero or a positive integer 	(9b) 

and the solutions of equation (4) as [2] 

R(z) = c 1 1,.(z)-1- c2 K,(z) 	always 
	 (10a) 

v  is not zer_osapositive  integer 
	

(10b) 

GENERALIZED BESSEL EQUATION  

Sometimes a given differential equation, after suitable transformation of the 
independent variable, yields a solution that is a linear combination of Besse] 
functions. A convenient way of finding out whether a given differential equation 
possesses a solution in terms of Besse! functions is to compare it with the 

668 
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(12) 

generalized Besse! equation developed by Douglas [in Ref. 4, p. 210] 

(PR [1 - 2m 	 a(2m - 1) m 2.  -p2 v2  • + 	2d.dR 
[ p2a2x2p- 2 + a2 	 

dx 2 	 dx 	 x 	x2 

and the corresponding solution of which is 

R x"'• 	AaxP) F e 2 Ic(aX P)ll 

where e l  and c2  are arbitrary constants. 
For example, by comparing the differential equation 

(12  R 1 dR 
+----R =0 

dx2  x dx x 

with the above generalized Bessel equation we find 

a = 0, m = 0, p=z, p2  v 2  = - 	a = 2i 	= 

Hence, the solution of differential equation (12) is in the form 

R = cl  J °MIR c2 Y0(21,113x) 

or 

R = (. 1 10(1111x) c 2  K 0(2.,./k 

which involves Bessel functions.  

LIMITING FORM FOR LARGE Z 

For large values of z(z -) co) the values of Bessel functions can be approximated 
as [5, pp. 364, 377] 

n 
1 ,,(z) 	nz cost z 

4 
- 
 2 

it vn) 
n(z) 	—.sin I z 	- — 

7TZ 	 4 4 

e` 
I „(z) = 
	

and 	K„(z) 
2z 

DERIVATIVES OF BESSEL FUNCTIONS [3, pp.161-163] 

d 
[zvW„(fiz)] = 

fliz'W,_ ,.(13z) 	for 	W -=.- J, Y, I 	(17a) 

dz 	 - fiz'W,,_ 1(13z) 	for 	W - . _ _ - K 	(17b) 

	

ei [z ...,wy(flz)1  = 11---1,711.;7+:(+fitz()Ilz) ' for 	W-=.- .1, Y, K 	(I8a) 

dz 	 for 	W - 1 (11th) 

For example, by setting v = 0, we obtain 

 

LIMITING FORM FOR SMALL Z 
{-

fiwi 

lqW,(flz) 
—
dz

Llivo(P)] = (Pz) 
for 	14 	 (19a) 

for 	W= I 	 (19b) 

For small values of .z(z- 0), the retention of the leading terms in the series results 
in the following approximations for the values of Besse] functions [5, p.360] 

J 	(4z)v 	
1 

F(v + I) 

	

( 	
2 

	

YAL- P=.-  - -1.. 	v1(v) 	v 0 0 and Yo(z),-L- - In z 	• 	(14b) 
7T z 	 n  

INTEGRATION OF BESSEL FUNCTIONS 

zvW,_ ,(1Iz)dz = z'W,,(13z) 	for 	W J, Y, I 	(20) 

i W„+ 1(pz)dz = -fie W„(flz) 	for 	W -..-=J,Y,K 	(21) 

v0-1,-2,-3... 	 (14a) 

lz(z) 	
r(v + 1) 
	v -1.-2,-3... 	 (15a) 	 For example, by setting v = 1 in equation (20), are obtain 

K „(z):=.-. 1  (-2)v  F(v) 	v 0 and Ko (z)f-L-.- -In z 	(15b) 2 z fzWo(flz)dz = zW,(&) 	for 	Wm J, Y, I (22) 
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Infinite integrals involving Bessel functions are [I, pp. 394-395] 

2 • z,/,tazpvkoziaz = e-(.2+vvapi ab 
2p 2p 

The indefinite integral of the square'of Bessel functions is given by [ I, p. 135; 2, 
p.110] 

frG,2,(flr)dr = ir 2EG,;(111— Gp_ 1 (fir)G,,., ,( fir)] 	(25a) 

--- 2—)G 2( fir)] 	(25b) 
41.2[Gv2030 ( 	or 

  

where Gy(fir) is any Bessel function of the first or second kind of order v. 
The indefinite integral of the product of two Bessel functions can be expressed 

in the form [9, equation 9] 

(24) 

1 

er 

rG,(1106,(fir)dr = -11 { G'
" 
(fir)0' (fir) +[1 — (1' )1G,(11r)d Or)} (26a) 2 	 fir 

or in the form [1, p.134; 2, p. 110] 

frG,(13r)Glfir)dr = ir2[2G,(fir)a,(fir)— 

G ,,+ 1(fir)G,_ , (Pr)] 	 (26b) 

where GOO and 60(11r) can be any Bessel function of the first or second kind. 
We note that equations (25a,b) are special cases of the integrals (26a,b). 

WRONSKIAN RELATIONSHIP 

The wronskian relationship for the Bessel functions 

is useful in the simplification of expressions involving Bessel functions. 
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RECURRENCE RELATIONS 

The recurrence formulae for the Bessel functions are given as [1, pp. 45 and 66; 
5, p.361] 

2 
IV, _ , (z) + 1/11,4. 1(z) 	

v 
14/,.(z) 	 {28a) 

W-1(z) -  W„+ (2) = 2W1,(z) 	 (28b) 

W.- ,(z) - W,(z) = 	 (28c) 
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- 	1(z) + -v- W.(z) = W:,(z) 	 (28d) 

where W = J or Y or any linear combination of these functions, the coefficients 
in which are independent of z and v. 

A systematic tabulation of various integrals involving Bessel functions is given 
in references 6 and 7. 

In Table IV-I we present the numerical values of 1„(z), Yn(z),/„(z), and K„(z) 
functions for n = 0 and I [2, pp. 215 - 221], and in Table IV-2 we present the first 
10 roots of ./n (z) function for n = 0,1, 2, 3, 5. 

Finally, in Tables IV-3 and IV-4 we present the roots of flJ i (fl)- c.10 (13)= 0 
and Jo(P)Yo(c13)- Yo(fi)Jacii) = 0, respectively [8, p.493; 5, pp. 414-415]. 

TABLE 1V-2 First 10 Roots of 4,(z)= 0 n = 0, 1, 2, 3, 4, 5 

Jo 	r, 	J2 	 J3 	 J 5 
1 	2.4048 	3.8317 	5.1356 	6.3802 	7.5883 	8.7715 
2 	5.5201 	7.0156 	8.4172 	9.7610 	11.0647 	12.3386 
3 	8.6537 	10.1735 	11.6198 	13.0152 	14.3725 	15.7002 
4 	11.7915 	13.3237 	14.7960 	16.2235 	17.6160 	18.9801 
5 	14.9309 	16.4706 	17.9598 	19.4094 	20.8269 	22.2178 
6 	18.0711 	19.6159 	21.1170 	22.5827 	24.0190. 	25.4303 
7 	21.2116 	22.7601 	24.2701 	25.7482 	27.1991 	28.6266 
8 	24.3525 	25.9037 	27.4206 	28.9084 	30.3710 	31.8117 
9 	27.4935 	29.0468 	30.5692 	32.0649 	33.5371 	34.9888 

10 	30.6346 	32.1897 	33.7165 	35.2187 	36.6990 	38.1599 

  

  

• 
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TABLE IV-3 	First Six Roots of /1/,(11) - c.10(11) 

c Pi fix 113 114 /33 fir, 

0 3.8317 7.0156 10.1735 13.3237 16.4706 
0.01 0.1412 3.8343 7.0170 10.1745 13.3244 16.4712 
0.02 0.1995 3.8369 7.0184 10.1754 13.3252 16.4718 
0.04 0.2814 3.8421 7.0213 10.1774 13.3267 16.4731 
0.06 0.3438 3.8473 7.0241 10.1794 13.3282 16.4743 
0.08 0.3960 3.8525 7.0270 10.18[3 13.3297 16.4755 
a 1 0.4417 3.8577 7.0298 10.1833 [3.3312 16.4767 
0.15 0.5376 3.8706 7.0369 10.1882 13.3349 16.4797 
0.2 0.6170 3.8835 7.0440 10.1931 13.3387 16.4828 
0.3 0.7465 3.9091 7.0582 10.2029 13.3462 16.4888 
0.4' 0.8516 3.9344 7.0723 10.2127 13.3537 16.4949 
0.5 0.9408 3.9594 7.0864 10.2225 13.3611 16.5010 
0.6 1.0184 3.9841 7.1004 10.2322 13.3686 16.5070 
0.7 1.0873 4.0085 7.1143 10.2419 13.3761 16.5131 
0.8 1.1490 4.0325 7.1282 10.2516 13.3835 16.5191 
0.9 1.2048 4.0562 7.1421 10.2613 13.3910 16.5251 
1.0 1.2558 4.0795 7.1558 10.2710 13.3984 16.5312 
1.5 1.4569 4.1902 7.2233 10.3188 13.4353 16.5612 
2.0 1.5994 4.2910 7.2884 10.3658 13.4719 16.5910 
3.0 1.7887 4.4634 7.4103 10.4566 13.5434 16.6499 
4.0 1.9081 4.6018 7.5201 10.5423 13.6125 16.7073 
5.0 1.9898 4.7131 7.6177 10.6223 13.6786 16.7630 
6.0 2.0490 4.8033 7.7039 10.6964 13.7414 16.8168 
7.0 2.0937 4.8772 7.7797 10.7646 13.8008 16.8684 
8.0 2.1286 4.9384 7.8464 10.8271 13.8566 16.9179 
9.0 2.1566 4.9897 7.9051 10.8842 13.9090 16.9650 

10.0 2.1795 5.0332 7.9569 10.9363 13.9580 17.0099 
15.0 2.2509 5.1773 8.1422 \ 11.1367 14.1576 17.2008 
20.0 2.2880 5.2568 8.2534 \1.I.2677 [4.2983 17.3442 
30.0 2.3261 5.3410 8.3771 11.4221 14.4748 17.5348 
40.0 2.3455 5.3846 8.4432 11.5081 14.5774 17.6508 
50.0 2.3572 5.4112 8.4840 11.5621 14.6433 17.7272 
60.0 2.3651 5.4291 8.5116 11.5990 14.6889 17.7807 
800 2.3750 5.4516 8.5466 11.6461 14.7475 17.8502 

100.0 2.3809 5.4652 8.5678 11.6747 14.7834 17.8931 
oo 2.4048 5.5201 8.6537 11.7915 14.9309 18.0711 

From C,arslaw and Jaeger 181 

TABLE IV-4 
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First Five Roots of A(,0) Yo(efi) - Y0(P)./0(cP) = 0 

112 )32 114 11 5 

1.2 15.7014 31.4126 .47.1217 62.8302 78.5385 
1.5 6.2702 12.5598 18.8451 25.1294 31.4133 
2.0 3.1230 6.2734 9.4182 12.5614 15.7040 
2.5 '2.0732 4.1773 6.2754 8.3717 10.4672 

3.0 1.5485 3.1291 4.7038 6.2767 7.8487 
3.5 1.2339 2.5002 3.7608 5.0196 6.2776 
4.0 1.0244 2.0809 3.1322 4.1816 5.2301 
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APPENDIX V 

NUMERICAL VALUES OF 
LEGENDliE POLYNOMIALS 
OF THE FIRST KIND 

x P 1 (x) P2(x) P3(x) P4(x) 	P5(x) P6(x) P7(x) 

0.00 0.0000 - .5000 0.0000 0.3750 	0.0000 -.3125 0,0000 
.01 .0100 - .4998 --.0150  .3746 	.0187 -.3118 -.0219 
.02 .0200 -.4994 - .0300 .3735 	.0374 -.3099 - .0436 
.03 .0300 -.4986 -.0449 .3716 	.0560 -.3066 -.0651 
.04 .0400 -.4976 -.0598 .3690 --4 	.0744 -.3021 -0.862 

\ 
.05 .0500 - .4962 -.0747 .3657 	\0927 -.2962 --.1069  
.06 .0600 -.4946 -.0895 .3616 	,(106 -.2891 -.1270 
.07 .0700 -.4926 -.1041 .3567 	.1283 - .2808 -.1464 
.08 .0800 -.4904 -.1187 .3512 	A455 -.2713 -.1651 
.09 .0900 -.4878 -.1332 .3449 	.1624 -.2606 

A0 .1000 -.4850 - .1475 .3379' 	.1788 -.2488 -.1995 
.11 .1100 -.4818 -.1617 .3303 	.1947 -.2360 -.2151 
.12 .1200 -.4784 -.1757 .3219 	.2101 -.2220 -.2295 
.13 .1300 -.4746 -.1895 .3129 	.2248 ' -.2071 -.2427 
.14 .1400 -.4706 -.2031 .3032 	.2389 - .1913' -.2545 

. 15 . 1500 - . 4662 - .2166 .2928 	.2523 - .1746 - .2649  

.16 .1600 -.4616 -.2298 .2819 	.2650 -.1572 -?738 

. 17 . 1700 -. 9566 -.2427 .2703 	.2769 -.1389 -.2812  

.18 .1800 -.4514 -.2554 .2581 	.2880 -.1201 -.2870 

.19 .1900 -.4458 -.2679 .2453 	.2982 -T1006 .2911 

.20 .2000 -- .4400 -.2800 .2320 	.3075 -.0806 -?935 

.71 .2100 -.4338 -.2913 .2181 	.3159 -.0601 -.2943 

.2") .2200 -.4274 -.3034 .2037 	.3234 -.0394 -.2933 

6112 
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X P1(x) P2(x) P3 (X) P4(x) Ps(x) P6(x) P7(x) 

.23 .2300 -.4206 -.3146 .1889 .3299 -.0183 -.2906 

.24 .2400 -.4136 .3254 .1735 .3353 .0029 -.2861 

.25 .2500 -.4062 -.3359 .1577 .3397 .0243 -.2799 

.26 .2600 -.3086 -.3461 .1415 .3431 .0456 -.2720 

.27 .2700 - 	.3906 -.3558 .1249 .3453 .0669 -.2625 

.28 .2800 -.3824 -.3651 .1079 .3465 .0879 -.2512 

.29 .2900 -.3738 -.3740 .0906 .3465 .1087 -.2384 

.30 .3000 -.3650 -.3825 .0729 3454 A292 -.2241 

.31 .3100 -3558 -.3905 .0550 .3431 .1492 -.2082 

.32 .3200 -.3464 -.3981 .0369 .3397 .1686 -.1910 

.33 .3300 -.3366 -.4052 .0185 .3351 .1873 -.1724 

.34 .3400 -.3266 - .4117 ---.0000  .3294 .2053 -.1527 

.35 .3500 -.3162 -.4178 -.0187 .3225 .2225 -.1318 

.36 .3600 -.3056 -.4234 -.0375 .3144 .2388 -.1098 

.37 .3700 -.2946 -.4284 -.0564 .3051 .2540 -.0870 

.38 .3800 -.2834 .4328 -.0753 .2948 .2681 -.0635 

.39 .3900 -.2718 -.4367 -.0942 .2833 .2810 -.0393 

.40 .4000 -.2600 -.4400 -.1130 .2706 .2926 -.0146 

.41 .4100 -.2478 -.4427 -.1317 .2569 .3029. .0104 

.42 .4200 -.2354 -.4448 -.1504 .2421 .3118 .0356 

.43 .43(X) - .2226 - .4462 -.1688 .2263 .3191 .0608 

.44 .4400 - .2096 .4470 -.1870 .2095 .3249 .0859 

.45 .4500 -.1962 -A472 -.2050 .1917 .3290 .1106 

.46 .4600 -.1826 -.4467 -.2226 .1730 .3314 .1348 

.47 .4700 -.1686 -.4454 -.2399 .1534 .3321 .1584 

.48 .4800 -.1544 -.4435 -.2568 .1330 .3310 .1811 

.49 .4900 -.1398 -.4409 -.2732 .1118 .3280 .2027 

.50 .5000 -.1250 -.4375 -.2891 .0898 .3232 .2231 

.51 .5100 - .1098 .4334 -.3044 .0673 .3166 .2422 

.52 .5200 -.0944 -.4258 -.3191 .0441 .31)80 .2596 

.53 .5300 -.0786 -.4228 -.3332 .0204 .2975 .2753 

.54 .5400 -.0626 -.4163 - .3465 -.0037 .2851 .2891 

.55 .5500 -.0462 -.4091 -.3590 -.0282 .2708 .3007 

.56 .5600 -.0296 -A010 -.3707 -.0529 .2546 .3102 

.57 .5700 -.0126 -.3920 -.3815 -.0779 .2366 .3172 

.58 .5800 .0046 -.3822 -.3914 -.1028 .2168 .3217 

.59 .5900 .0222 -.3716 -.4002 -.1278 .1953 .3235 

.60 .6000 .0400 -.3600 -.4080 -.1526 .1721 .3226 

.61 	 .6100-0582_-.3475 ..._,4146 ...,.1772 . _ _1473 .._ „ _3188 

.62 .6200 .0766 -.3342 -.4200 -.2014 .1211 3121 

.63 .6300 .0954 - .3199 -.4242 - .2251 .0935 .3023 

.64 .6400 .1144 - .3046 -.4270 - .2482 .0646 .2895 
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x PM P2(x) P.300 P4(x) P500 P600 P7(,0 
.65 .6500 .1338 --.2884  - .4284 --.2705  .0347 .2737 
.66 .6600 .1534 -.2713 -.4284 -.2919 .0038 .2548 
.67 .6700 .1734 - .2531 -.4268 -3122 -.0278 .2329 
.68 .6800 .1936 -.2339 - .4236 -.3313 -.0601 .2081 
.69 .6900 .2142 -.2137 -.4187 - .3490 - .0926 .1805 

.70 .7000 .2350 -.1925 -.4121 - .3652 -.1253 .1502 
.71 .7100 .2562 -.1702 - .4036 -3796 -.1578 .1173 
.72 .7200 .2776 --.1469  - .3933 - .3922 -.1899 .0822 
.73 .7300 .2994 -.1225 -.3810 - .4026 -.2214 .0450 
.74 .7400 .3214 -.0969 -.3666 -.4107 .2518 .0061 

.75 .7500 .3438 -.0703 -.3501 -.4164 -.2808 - .0342 

.76 .7600 .3664 - .0426 -.3314 -.4193 -3081 - .0754 

.77 .7700 .3894 -.0137 -3104 -.4193 -.3333 --.1171  

.78 .7800 .4126 .0164 - .2871 -.4162 - .3559 -.1588 

.79 .7900 .4362 .0476 -.2613 -..4097 -.3756 -.1999 

.80 .8000 .4600 .0800 - .2330 - .3995 -.3918 - .2397 

.81 .8100 .4842 .1136 -.2021 - .3855 .4041 - .2774 

.82 - 	- 	.8200 .5086-  - 	.1484 -:1685 -.3674 -.4119 -.3124 

.83 .8300 .5334 .1845 -.1321 - .3449 -.4147 -.3437 

.84 .8400 .5584 .2218 - .0928 -.3177 -.4120 - .3703 

.85 .8500 .5838 .2603 - .0506 - .2857 - .4030 -.3913 

.86 .8600 .6094 .3001 -.0053 - .2484 -.3872 - .4055 

.87 .8700 .6354 .3413 .0431 - .2056 - .3638 -.4116 

.88 .8800 .6616 .3831 .0947 -.1570 -.3322 -.4083 

.89 .8900 .6882 .4274 .1496 -.1023 -.2916 -.3942 

.90 .9000 .7150 .4725 .2079 -.0411 -.2412 -3678 

.91 .9100 .7422 .5189 .2698 .0268 -.1802 - .3274 

.92 .9200 .7696 .5667 .3352 .1017 -.1077 -.2713 

.93 .9300 .7974 .6159 .4044 .1842 - .0229 --.1975  

.94 .9400 .8254 .6665 .4773 .2744 .0751 -.1040 

.95 .9500 .8538 .7184 .5541 .3727 .1875 .0112 
.96 .9600 .8824 .7718 .6349 .4796 .3151 .1506 
.97 .9700 .9114 .8267 .7198 .5954 .4590 .3165 
.98 . .9800 .9406 .8830 .8089 .7204 .6204 .5115 
.99 .9900 .9702 .9407 .9022 .8552 .8003 .7384 

1.00. 1.0000 1.0000 1.11000 1.0000 1.0000 1.000(1 1.0000 

From W. E. Bycrly, Fourier Series and Spherical, Cylindrical, and Ellipsoidal Harmonics, Dover 
Publications, New York, 1959, pp.280-281. 

APPENDIX VI 

SUBROUTINE TRIS rS  L 
to Solve Tridiagonal Systems 
by Thomas Algorithm 

C 
C 
C 
C. 

C 
C 
C 
C 
C 
C 

*" MAIN PROGRAM THAT READS INPUT DATA AND CALLS 
TRISOL TO SOLVE THE SYSTEM OF EQUATIONS BY 
THOMAS ALGORITHM 

M 
A 

C -
D 

Dimension of the matrix 
Off-diagonal term (lower) NOTE:A(11-0 
Diagonal term 
Off-Diagonal term (upper) NOTE:C(M)=O 
on input - right hand-side 
on output- solution 

IMPLICIT REAL*SIA-H2 O-Z) 
DIMENSION A(10),B(10),C(10),D(101 
READ(1,*) M 
READ(.,'} (A(I),I-1,M) 
READ(1,*) (B(X),I=1,M) 
READ(1,*) (C(I),I1,M) 
READ(1,*) (D(I),I-1,M) 
CALL TRISOL(M,A,B,C,D) 
DO 10 I-1,M 

10 WRITE(3,100)D(I) 
100 FORMAT(F10.6) 

STOP 
END 

C 
C ** SUBROUTINE TRISOL uses the Thomas algorithm 
C 	to solve a tri-diagonal matrix equation 
C 
C 	M - Dimension of tho matrix 
C 	A - Off-diagonal term (lower) 
C 	B - Diagonal term 
C 	C - Off-Diagonal term (upper) 
C D on input - right-hand-side 
C 	on output- solution 
C 

SUBROUTINE TRISOLOI,A,B,c,D) 
IMPLICIT REAL*B(A-H2 O-E) 
DIMENSION A(1),B(1),c(1),D(1) 
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C 
C ESTABLISH UPPER TRIANGULAR MATRIX 
C 

DO 10 I=2,M 
R=AfI)/B(I-1) 
B(I)=B(1)-R.C(I-1) 

10 D(I)=D(I)-R.D(I-1) 

APPENDIX VII C 
C BACK SUBSTITUTION 
C 

D(M)=D(M)/B(M) 
DO 20 I=2,M 
J=M-I+1 

20 D(J)=10(a)-C(J)*D(J1-1))/13(J). PROPERTIES OF 
DELTA FUNCTIONS 

C 
C SOLUTION STORED IN D 
C 

RETURN 
END 

U
 U
 U

  
U

 
 

The symbol 45(x), known as Dirac's delta function, is zero for every value of x 
except the origin x = 0 where it is infinite in such a way that 

8(x)dx = I 
	

( I)  
-U, 

Such a definitio is not meaningful in the true mathematical sense, but the theory 
of distribution justifies its use as well as its derivatives. Then 5(x) has the 
following properties 

5(x — b)= 0 	everywhere x # b 	 (2) 

For every continuous function F(x) we write 

F(x)8(x — b)dx = F(b) 
	

(3) 

w F(x)o (x — 0) dx = F(0) 

F(x)(5(x — b) = F(b)45(x — b) 

687 



INDEX 

Amplification factor. 479 

Alternating direction implicit method, 488 

Aniscaropic medium. 617. 627 

boundary conditions, 621 

conductivity coefficients. 618 

heat conduction equation. 620 

heat flux, 26, 618 

multidimensional heat flow, 640 

one-dimensional heat flow in a rod. 629 

orthotropic medium, 26. 621 

principal conductivities. 624 

thermal resistivity coefficients, 624 

Approximate analytical methods: 

collocation method. 344 

Galerkin method, 346 

least-squares method. 345 

moment method. 339 

partial integration. 358 

Rayleigh-Ritz method. 345 

Backward differences. 440 

Bessel functions. 101, 668 

asymptotic expressions for. 670, 671 

derivatives of. 671 
graphical representations. 101, 103 

indefinite integral of, 672 

integrals of. 671 

numerical values of. 673 

orthogonality relations. 105 

recurrence relations for, 679 

roots of transcendental equations. 679. 680 

tabulations of, 673-679 

Wronskian relationship. 672 

Bessel's differential equation. 101 

generalized. 670 

Biot number. 29 

Bisection method. 50 

Boundary conditions. 13 

general. 13 

linear first kind. 16 

linear interface, 18 

linear second kind, 17 

linear third kind, 17 

transformation into homogeneous one, 21 

Classification of partial differential 

equations:-457 - -
Collocation method, 34-4 

Combined method. 482, 487. 491 

Composite medium. 284 

cigenfunclions for, 298 

cigcnvalues for. 298 

Green's function for, 297. 309 

iiiitiogonal expansion. 292, 30l 

transcendental equations fur, 300. 304..108 

Conductivity coefficients, 618 

Contact conductance, 18 

Control volume approach. 448 
Cramer's rule, 454 

Crank-Nicolson method. 482. 491 

Curvilinear coordinates, 9 

differential area. II 

;;; 

688 	APPENDIX VII 

Derivatives of Delta Function 

. F(x)(5.(x)dx = — F'(x)o(x)dx = — Fr) (6)  

f(x)r(x)dx = — F(x)(5`(x)dx = — F"(0) (7)  

The delta function itself is the derivative of the step function 14x), that is 

111x) = 5(x) 

where 

H(x)= 1 	for 	x > 0 

(8)  

=0 for 	x<0 (9)  

Note that the derivative of.11(x) is zero for x < 0, zero for x > 0, and undefined 
for x = 0. 
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Curvilinear coordinates (Continued) 
differential length. I I 

differential volume, 11 

prolate spheroidal. 33 

Cylindrical coordinates. 7 

Differential equation of heat conduction. 6 
Miimit-rilpic solids, 620 
this frmulation, 59 

moving solids. 24 

Dirac delta function, 687 

properties of, 687. 688 

Du hamel's theorem, 198 

applications to: 

semiinfinite region. 209 

slab. 202, 206 

solid cylinder. 208. 210 

special cases. 199 

periodically varying temperature. 206 

treatment of discontinuities. 198 

Eigenfunction, tabulation for: 

hollow cylinder. 112 

region outside a cylinder. 1 I 1 

semiinfinite medium. 57 
slab. 48 

solid cylinder, 108 

Figcnvalues. 47 

graphical representation. 47 

numerical solutions. 50 

bisection method, 50 

Newton-Rap h son method. 51 

secant method. 52 

tabulated value.:. 52 

Enthalpy method. 423 

Error function. 664 

asymptotic expansion of. 666 
tabulation of. 664 

Energy integral equation. 414 

Exponential integral function. 409 

Fictitious node concept. 452 

Finite difference methods, 436 

Finite difference representation of: 
boundary conditions. 452 
first derivative. 440 

mixed partial derivatives. 444 

second derivative. 441 

steady-state heat conduction equation. 459. 
466 

time-dependent heat conduction equation. 
472 

combined method. 482 

Crank-Nicolson method. 482  

explicit method, 472 

implicit method, 480 

Finite difference. stability analysis. 476, 477. 
481 

Finite difference solution of nonlinear 

problems. 490 
lagging of properties, 491 

Flux formulation of heat conduction 
equation. 59 

Four ier law, 2 

Galerkin method. 346 

application to: 

steady-state heat conduction. 347. 356. 
359, 361 

transient heat conduction, 363, 365 

Galerkin method with partial integration. 
358 

Gauss elimination. 454 

Gauss-Seidel iteration, 456 

Generalized Bessel's differential equation. 
670 

Green's function, 214 

definition, 215 

determination. 221 

products. 246 

tabulations. 247-249 

tircen's function application's. 226 

in cylindrical geometry. 234 

in rectangular geometry. 226 

in spherical geometry. 239 

Green's function for, 214 

hollow cylinder, 237 

hollow sphere, 2.39 

infinite medium. 226 

slab. 229 

solid cylinder. 234 

solid sphere. 242, 244 

Green's functions, tabulations. 247-251 

Heat conduction equation for: 

anisotropic solids. 25, 26 

cylindrical coordinates, 8 
moving solids. 24 
nrt hneomii curvilinear coordinates, 11 

rectangular coordinates. 7 

spherical coordinates. 9 

Heat flux, 1.2 

for an isotropic medium. 26 

for isotropic medium. 7 

Heat sources, 219 

point source, 219. 220 

line source. 219, 220 

surface source. 219, 220 

Helmholtz equation. 42. 100 

separation of, 42 

Heat transfer coefficient. 14 

Homogeneous boundary conditions: 

first kind, 16 
second kind, 17 

third kind, 18 

-----° Homogeneous:and nonhomogeneous 
platen's, 23 

Integral method, 325 

Integral method applications to: 

cylindrical symmetry. 331 

nonlinear heat conduction, 334 

phase change problem. 412 

semiinfinite medium, 327 

slab, 339 

spherical symmetry, 331 

Integral transform technique, 502 

general theory, 502 

Integral transform technique application in: 

cylindrical geometry. 528 

multidimensional problems. 525 

rectangular geometry. 512 

spherical geometry, 545 
steady-state problem, 555 

Laplace transfion, 257 

inversion table, 268 

Laplace transform of: 

change of scale, 261 

convolution, 265 

delta function, 257, 264 

det ivativc, 259 

generalized convolution, 265 

integral. 260 

translated function. 262 
Laplace transform applications to: 

semiinfinite medium. 273, 275 

slab, 277, 279 

small times, 276, 277, 278 

sphere, 280 

Least-squares method, 345 

Legenclre's associated differential equation,• 

156 

Legendre's associated functions. 159 

Legendre's differential equation, 157 

Legendre functions. 156, 159 

graphical representation, 160. 16I 

numerical values. 682 

orthogonality, 162. 163 

Legendre polynomials. 159 

tabulation of. 682 
Lumped system formulation. 27  

Lumping. partial, 30 

Melting or solidification, 392 

Moving-boundary or phase-change, 392 

analytical solutions. 395, 404.413 

approximate solutions, 412 

boundary conditions: 
- ---- one-dimensional. 395 

ultillidltllentil41111111, 3911 

exact analytic solutions, 400-412 

moving heat sources, 372 

numerical solutions, 416. 423. 429 

Newton-Raphson method. 51 

Nonlinear heat conduction. 490 

Normalization integral. 40 

Oblate spheroidal coordinates, 34 

Orthogonal curvilinear coordinates, 9, 10 

area, length, volume, II 

heat conduction equation, 11 

heat flux. 10 

Orthotropic solids, 627 

equation of heat conduction. 627 

Outward drawn normal, 4 

Periodically varying temperature, 206 

P-function, 124 

These-change over temperature range. 

429 

Phase-change problems. 392 

Product solutions, 172 

Prolate-spheroidal coordinates. 33 

Radiation. 15 

Radiation boundary condition, 15 

Radiation heat transfer coefficient, 16 

Rayleigh-Ritz method. 345 

Relaxation parameter. 458 
Representation of an arbitrary function in: 

cylindrical coordinates, 104 

exterior of a cylinder, a <r < bo, 109 

hollow cylinder, a < r < b. 110 

solid cylinder, 0 < r < b, 104 

rectangular coordinates. 44 
infinite medium. 00 < x c. 01, 62 

semiinfinite medium, 0 <x < 00, 56 

slab, 0 < x < L, 45 

spherical coordinates, over, 163 

full sphere, —I <it <p. 164 

hemisphere, 0 < p < I. 166 

Rod rique's formula, 159 

Steady-state problems in: 
cylindrical coordinates, 131. 140. 142. 143 
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Steady-state problems in (Continued) 

rectangular coordinates. 64.75, 76, 79.81, 
112 

spherical coordinates, 182. 1145. 187 
Scale factors, 10. 34 

cylindrical coordinates, 12 
oblate spheroidal coordinates. 34 
spherical coordinates. 13, 35 

Secant method. 52 
Separation of vai hrhles. 

cylindrical coordinates, 154 
rectangular coordinates, 42 
spherical coordinates, 99 

Solidification (or melting), 392 
analytic solutions, 401. 405. 408 
integral method of solution. 413 
numerical solutions. 416. 423, 426 

Splitting up heal conduction problem, 

23 
in cylindrical coordinates. 144 
in rectangular coordinates, 84 

Stefan—Boltzmann constant 15 

Stefan number. 400 
Step function, 688 
Sturm—Liuoville problem. 40 
Subcooled liquid. 401 

Successive over-relaxation. 458 

Temperature gradient, 2 
Thermal conductivity, 2, 3 

metals at low temperature, 5 
various materials. 3, 4 

Thermal diffusivity. 6 
Thermal layer, 326 
Thermal property tables for: 

insulating materials. 660 
metals, 657 
nonmetals. 659 	• 

Thomas algorithm. 455, 685 
Transcendental equations, roots of: 

/3 tan p = C. 661 
S col f3 = —C, 662 
1„(z) = 0, 679 

Afin Clo110 = 0, 6130 

.fatilWii{C 	Ya(MJACII1 
Transient heat conduction in: 

cylindrical coordinates for: 
hollow cylinder, 119, 121 
infinite cylinder. 122 
outside of a cylinder, 124. 125 
portion of a cylinder, 124. 125 
milk! cylinder. 116, 118, 119. 128, 129, 

131. 133. 137 
rectangular coordinates for: 

infinite medium, 61 
infinite strip, 81 
rectangular parallel piped, 67 
rectangular region, 64, 74, 77 

semiinfinite corner. 74 
semiinfinite region, 55. 57 
semiin finite strip, 69 

slab, 44, 53, 54, 85.87 

spherical coordinates fur: 
hemisphere. 177. 179, 182 
hollow sphere. 171. 172. 173 
solid sphere, 168, 169, 174 

Transient temperature charts: 
cylindrical coordinates. 147 
rectangular coordinates. 90 
spherical coordinates. 188 

0,6141 
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