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PREFACE

In preparing the second edition of this book, the changes have been motivated
by the desire to make this edition a more application-oriented book than the
first one in order to better address the needs of the readers seeking solutions
to heat conduction problems without going through the delails of various
mathematical proofs. Thercfore, emphasis is placed on the underslanding and
use of various mathematical techniques needed to develop exact, approximate,
and numerical solutions for a broad class ol heat conduction problems. Every
effort has been made to present the material in a clear, systematic, and readily
understandable fashion. The book is intended as a graduate-levet textbook for
use in engineering schools and a reference book for practicing engineers,
scientists and researchers. To achieve such objectives, lengthy mathematical
proofs and developments have been omitted, instead examples are used to
illustrate the applications of various solution methodologies.

During the twelve years since the publication of the first edition of this book,
changes have occurred in the relative importance of some of the application
areas and the solution methodologies of heat conduction problems. For example,
in recent years, the area of inverse heat conduction problems (IHCP) associated
with the estimation of unknown thermophysical properties of solids, surface’
heat transfer rates, or encrgy sources within the medium has gained significant
importance in many engineering applications. To answer the needs in such
emerging application areas, two new chapiers are added, one on the theory and
application of IHCP and the other on the formulation and solution ol moving
heat source problems. In addition, the use of enthalpy method in the solution
of phase-change problems has been expanded by broadening its scope of applica-
tions. Also, the chapters on the use of Duhamel's method, Green's function, and

XY
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finite-difference methods have been revised in order to make them application-
oriented. Green’s function formalism provides an efficient, straightforward
approach [or developing exact analytic sclutions to a broad class of heat
conduction problems in the rectangular, cylindrical, and spherical coordinate
systems, provided that appropriate Green's functions are available. Green’s
functions needed for use in such formal solutions are constructed by utilizing the
tabulated eigenfunctions, eigenvalues and the normalization integrals presented
in the tables in Chapters 2 and 3:

Chapter | reviews the pertinent background material reliated Lo the heat

- conduction equation, boundary conditions, and important system parameters.

Chaplers 2,3, and 4 are devoted to the solution of time-dependent homogeneous
heat conduction problems in the rectangular, cylindrical, and spherical coordi-
nates, respectively, by the application of the classical method of separation of
variables and orthogonal expansion technique. The resulting eigenfunctions,
eigenconditions, and the normalization integrals are systematically tabulated
for various combinations of the boundary conditions in Tables 2-2,2-3, 3-1,3-2,
and 3-3. The results from such tables are used to construct the Green functions
needed in solutions utilizing Green's function formalism.

Chapters 5 and 6 are devoted to the use of Duhamel’s method and Green’s
function, respectively. Chapter 7 presents the use of Laplace transform technique
in the solution of one-dimensional transient heat conduction problems.

Chapter 8 is devoted to the solution of one-dimensional, time-dependent heat
conduction probiems in parailel layers of slabs and concentric cylinders and
spheres. A generalized orthogonal expansion technique is used to solve the
homeogeneous problems, and Green's function approach is used to generalize the
analysis to the solution of problems involving energy generation.

Chapter 9 presents approximate analytical methods of solving heat con-
duction problems by the integral and Galerkin methods. The accuracy of
approximate results are iliustrated by comparing with "the exact solutions.
Chapter 10 is devoted to the formulation and the solution of moving heat
source problems, while Chapter 11 is concerned with the exact, approximate, and
numerical methods of solution of phase-change problems.

Chapter 12 presents the vse of finite difference methods for solving the steady-
slaic and time-dependent heal conduction problems. Chapter 13 introduces the
use of integral transform technique in the solution of general time-dependent
heat conductien equations. The application of this technique for the solution
of heat. conduction problems in rectangular, cylindrical, and spherical
coordinales requires no additional background, since all basic relationships
needed for constructing the integral transform pairs have already been developed
and systematically tabulated in Chapters 2 to 4. Chapter 14 présents the
formulation and methods of solution of inverse heat conduction problems and
some background information on statistical material needed in the inverse
analysis. Finally, Chapter 15 presents the analysis of heat conduction in
anisotropic solids. A host of uselul information, such as the roots of
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transcendental equations, some properties of Bess.cl funct}01~.ls,gné:i.t:inu::le;il;:;
values of Béssel functions and Legendre polynomials are nciuded pp
IV and V for ready reference.
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of University ol Nantes, France, J‘. V.
Woo Seung Kim of Hanyang Univer
suggestions in the preparation of the

hanks to Professors J. P. Bardon a'nd Y Jarny
Beck of Michigan State University, and
sity, Korea, for valuable discussions and

second edition.

M. Nicari O7ISIK
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HEAT CONDUCTION
FUNDAMENTALS

The energy given up by the constituent particles such as atoms, molecules, or
free electrons of the hotter regions of a body to those in cooler régions is called
heat, Conduction is the mode of heat transfer in which energy exchange takes
place in solids or in fluids in rest (i.c., no convective motion resulting [rom the
displacement of the macroscopic’ portion of the medium} from the region of
high temperature to the region of low temperature due to the presence of
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temperature gradient in the Hoﬂy."l’hc-hcat-ﬂow—cannotAb&measuredvdi:ectlv
but the concept has physical meaning because it is related to the measurable
scalar quantity called temperature. Therelore, once the temperalure distribution
T(r, ) within a body is determined as a function of position and time, then the
heat flow in the body is readily computed from the laws relating heat flow to
the temperature gradient. The science of heat conduction is principally concerned
with the determination of temperature distribution within solids, In this chapter
we present the basic laws relating the heat {low to the temperature gradient in
the medium, the differential equation of heat conduction governing the tempe-
rature distribution in solids, the boundary conditions appropriate for the analysis
of heat conduction problems, the rules of coordinate transformation needed to
write the heat conduction equation in different orthogonal coordinate systems,
and a general discussion of various methods of solution of the heat cenduction

egualion.

1-1 THE HEAT FLUX

The basic law that gives the relationship between the heat flow and the tempera-
ture gradient, based on experimental observations, is generally named alter the
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2 HEAT CONDUCTION FUNDAMENTAL 8 ' THE DIFFERENTIAL EQUATION OF HEAT CONDUCTION 3
F1cm.iu'mral'hf:matical'physicist -Josepl Fourier [1], who used it in his analytic - -—
theory of heat. For a homogeneous, isotropic solid (i.e., material in which 10001 itver :
P . . - - - - . — Vel
thermal conductivity is independent of direction) the Fourfer law is given in the Copper
form L
qir,/)="—kVT{r.1) W/m? {1-1) . 1o0}- %—é Sodinm
v
. . . ;5 =} d
.- ----where -the- temperature gradient is a vector normal to the isothermal surface, P stect | 22 | oxides
the heat flux vector gir,t) represents heat flow per unit time, per unit area of = JE
the isothermal surface in the direction of the decreasing temperature, and k is P o
called the thermal canduerivity of the material which is a positive, scalar quanlity. £ | ereas .
Since the heat [lux vector g(r, ¢} points in the direction ol decreasing temperature, 2 3
" the minus sign is included in equation {f-!) lo make the heat flow a positive g Eyg ,
, quantity. When the heat flux is in W/m? and the temperature gradient in °C/m, E ' 2 g |Water b
: the thermal conductivity k has units W/{m-"C). In the rectangular coordinate £ I 2 kil
1. system, for example, equation (1-1) is writlen as Eﬂ E‘E He, H,
3 ] o
= Plastics gg —gg ﬁgﬂ E.E-E
o OT 4, 8T . 0T ' : Wpod - - g B BE
FES T PRI, LA A (1-2) | I o | |28 g5
&x dy ‘'z . Foams ~p T|w £ E
where 1], and k are the unil direction vectors afong the x, v, and z directions, ‘ no
respectively. Thus, the three components of the heat flux vector in the x, y, and Fig. 1-1  Typical range of thermal canductivity of various maderials,
z directions are given, respectively, by
ar aT T ) - . o
ge=—k=- g=—-k--  and q=—k= (1-3a,b.c) : We present in Appendix I the thermal conductivity of typical engincering
] dx ey oz materials together with the specific heat C,, density p, and the thermal diflusi-

vity a.
Clearly, the heat flow rate for a given temperature gradient is directly pro- y
portional to the thermal conductivity k of the material. Therefore, in the analysis
of heat conduction, the thermal conductivity of the material is an important
property, which controls the rate of heat flow in the medium. There is a wide
difference in the thermal conductivities of various engineering materials. The
i highest value is given by pure metals and the lowest value by gases and vapors;
: the amorphous insulating materials and inorganic liquids haye thermal conduc-
tivities thut lic in hetween. To give some idea of the order of magnitude of thermal

i conductivity lor various malerials, Fig. 1-lillustrates the typical ranges. Thermal
conductivity also varies with temperaiure. For most pure metals it decreases with

i - temperature, whereas for gases it increases with increasing temperature. For most
insulating materials it increases with increasing temperatures. Figure -2 illus-
trates the effect of temperature on thermal conductivity of materials. At very low
i temperature approaching absolute zero, lhermal conductivity first increases
rapidly and then exhibits a sharp descent as shown in Fig. 1-3, A comprehensive [Rate of heat entering lhrough] + [ rate of energy ]_[rate ol'sloragc] (1-4)

1-2 THE DIFFERENTIAL EQUATION OF HEAT CONDUCT]ON

ToweEt

We now derive the differential equation of heat conduction for a stationary,
homogeneous, isotropic solid with heat generation within the body. Heat genera-
{ion may be due to nuclear, electrical, chemical, y-ray, or other sources that mity
be a function of time and/or position. The heat generation rate in the medium,
generally specilied as heat generation per unit time, per unit vo_lume, isgdenotcd
by the symbol g(r, ), and if SI units are used, is given in the units W/m->.

We consider the energy-balance equation for a small control volume V,
illustrated in Fig. 1-4, stated as :

~

compilation of thermal conductivities of malerials may be found in references 2-4. the bounding surfaces of ¥ generationin ¥ | | ofenergyinV




4 °“ HEAT CONDUCTION FUNDAMENTALS

THE DIFFERENTIAL EQUATION OF HEAT CONDUCTIUN

2

«
; Temperature, °C —
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-~ .
001 500 f /Y NN \\\ ’ { L
- 800 s
Solds 400 / \ \ N \\ _ C
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. . . ) ac' U,?i \ .
Fig. 1-2 Eliect of temperature on thermal conductivity of materials. 3 \ P~ .
100 M “‘
. \ N ~
\ \ - 200 “
PN
_460 —B40 -—420 —400 —380 -—360 —340 —320 -300 —280 ‘.
Various terms in this equation are evaluated as Temperature, °F ~
. Fig. 1-3 Thermal conductivity of metals at low temperatures. (From Powell et al. [2]) o~
. n 3 N . : -
. | Rateofheate tering through | _ qidd=—| Vqdv * (1-52) ' T
the bounding surfacesof V' B v | (.
. o i i 1 —~
where A is the sutface area of the volume elemeént V,ii is the outward-drawn : {Rate-ofenergy generationin V) = r glr, t}dv {1-5b) ol
normal unit vector to the surface element d A, q is the heat flux vector at dA; here, ' Jy @
the minus sign is included to ensure that the heat flow is into the volume element } 370, 1) -~
v, and the divergence theorem is used to coaver! the surface integral to volume (Rate ofcnergy storage in V) = J pc, 200 iy (1-5¢) -
integral. The remaining two terms are evaluated as ’ y o o0t i { D
; -
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6 HEAT CONDUCTION FUNDAMENTALS

Fig. 1-4  Nomenclature for the derivation of heat conduction equation.

The substitution of equations (1-5) into equation (1-4} yields

j‘[mv-q(r,r)-k g(r.r)—pff%—ﬂdu—o (1-6)

Equation {1-6) is derived for an arbitrary small-volume element ¥ within the

solid; hence the volume V¥ may be chosen so small as to remove the integral. We

obtain

oT(r,1)
ot

= Veglr. ) +glr,0) = pC, (1-7)

Sybstituting q(r, 1) from equation (1-1) into equation {1-7), we obtain the differen-
nz_:l equation of heat conduction for a stationary, homogeneous, isotropic solid
with heat generation within the body as

=

—— B

-

e s s N R

aTir. 1)

CARTESIAN, CYLINDRICAL, AND SPHERICAL COORDINATE SYSTEMS 7
t

TABLE 1-1 Effect of Thermal Diffusivity on the Rate of Heat Propagation

Material Silver Copper Steel Glass Cork
ax 108m¥fs - 170 103 12.9 0.59 0.155
Time 9.5 min 16.5 min 22h 2.00days 7.7days .

For a medium with constant thermal conductivity and no heat generation,
equations (1-9) become the diffusion or the Fourier equation

ViT(r, t)= 147,
o ot

Here, the thermal diffusivity e is the property of the medium and has a dimension

(1-10)

. of Iength?/time, which may be given in the units m?*/h or m*/s. The physical

significance of thermal diffusivity is associated with the speed of propagation of
heat into the solid during changes of temperature with time. The higher the
thermal diflusivity, the faster 1s the propagation of heat In the medivm. This
statement is better understood by referring to the following specific heat conduc-
tion problem: Consider a semiinfinite medium, x>0, initially at a uniform
temperature. T,. For times ¢ > 0, the boundary surface at x = 0 is kept at zero
temperature. Clearly, the temperature in the body will vary with position and
time. Suppose we are interested in the time required for the temperature to
decrease from its initial value Ty to half of this value, 3T, at a position, say,
30¢m from the boundary surface, Table 1-1 gives the time required for several
different materials. It is apparent from these results that the larger the thermal
diffusivity, the shorter is the time required for the applied heat to penetrate into
the depth of the solid,

1-3 HEAT CONDUCTION EQUATION IN CARTESIAN,
CYLINDRICAL, AND SPHERICAL COORDINATE SYSTEMS

V-Vt gl t)=pC
_ ot

This equation is intended for temperature or space dependent k as well as

temperature depenglent C,. When the thermal conductivity is assumed to be

constant (i.c.. independent of position and temperature), equation (1-8) simplifies

o

-1 12T(r, 1)
VT )+ - glr, f) =~ ——= .
) kg( ) ST (1-9a)
where
T -——k fhermal liffusi t 1-9b
= = dillusivy _
PC, ¥ (1-9b)

The first step in the analytic solution of a heat conduction problem for a given
region is to choose an orthogonal coordinate system such that its coordinate
surfaces coincide with the boundary surfaces of the region. For example, the
rectangular coordinate system is used for rectangular bodies, the cylindrical and
the spherical coordinate systems are used for bodies having shapes such as eylinder
and sphere, respectively, and so on. Here we present the heat conduction
equation for an homogeneous, isotropic solid in the rectangular, cylindrical, and
spherical coordinate systems.

Equations {1-8) and (1-9) in thé rectangular coordinate system (x, y, 2), respec-

tively, become
a{ 8T a{ ar a/ 8T . oT
| k— )+ = k— |+ ==l k— )+ g=pC,— 1-11

Bx( ax) ay( ay) BE( ﬁz) 9=y (1-112)
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aT
e (1-11b)

T 9T T 1| 1
o« o

Y T R Rt
PR e R

Figure. 1-5a,b showlthe coordinate axes for the cylindrical {r,¢,z) and the
sphencal (r, ¢, 0) coordinate systems. In the cylindrical coordinate system eqita-
tions (1-8) and (1-9), respectively, become

taf, ary, t af, 8T\, af, T
B I PPaduil IR [ il v ar
rf’r( rar)+rza¢(ka¢)+5z("},;)+9=pcpa (1-12a)

. lﬁ(ré‘_T’)+la_z_1f_‘+aZT 1 19T
N AT (-120)
AN N "“ '\‘5{.,__,_..{_._1,..
/] (_i\:‘ 2o gL
" N g
AN 9 i
AVANE G T .
Pir,¢,1l
>y
¢
r
X
{a)
Z
Pir, ¢, 8)
]
i ]
A
i
]
~ 3 ¥
) |
<
¢ S
X \\‘
(b}

Fig. I-5 (a) Cylindrical coordinate system {r, ¢, z); (B) Spherical coordinate system (r, ¢, 0).

HEAT CONDUCTION EQUATION - 9

and in the spherical coordinate system they take the form

ia/ .aT 19 aT 1 a8/ arT oT
LT LI TR (Y L) B e R R ot
rzar(r ar) rzsineﬁﬂ( st ae) rl'sinlf?aqb( a¢)+g e
(1-13a)
{af 0T 1 a(, BT) | ®#T 1 18T
Paf Ty b 9 Y gt g = (113D
r ﬂr(r Elr) r*5in 0 00 M) rzsin286¢2+kg o ar ( )

1-4 HEAT CONDUCTION EQUATION IN OTHER
ORTHOGONAL COORDINATE SYSTEMS

In this book we shall be concerned particularly with the solution of heat conduc-
tion problems in the rectangular, cylindrical, and spherical coordinate systems;
therefore, equations needed for such purposes are immediately obtained from
equations {1-11)=(1-13) given above. The heat conduction equations in other
orthogonal curvilinear coordinate systems (i.e., a coordinate system in which the
coordinate lines intersect each other at right angles) are readily obtained by the
coordinate transformation. Here we present a briel discussion of the transforma-
lion of the heat conduction equation into a general orthogonal curvilinear coordi-
nate system. The reader is referred to references 5-7 for further details.

Let uy, tiz,and uy be the three space coordinales, and i, b5, and @, be the unil
direction vectors in the 1, 1z, and uy directions in a general orthogonal curvilinear
coordinate system shown in Fig. 1-6. A differential length dS in the rectangular

coordinate system (x, y, z) is given by

(dS)? = (dx)* + {dy)* + (dz)? {1-14)

¥ i}
sl
aqditp

n

Fig. 1-6 A differential length ds in a curvilinear coordinate sy

stem {1, g, ¥3).
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10 HEAT CONDUCTION FUNDAMENTALS

Let the functional relationship between orthogonal curvilinear coordinates
{1, 13,65} and the rectangular coordinates (x, y, z) be given as

X = Xy v y=Y{u,, ugz,u;) and 2= Z(uy up,1,)  (1-15)

Then, the dilferential lengths dx, dy, and dz are obtained from equalions (1-15) by
differentiation ‘

39X

dx= 3% —duy - -

* .'Zl 2u; “ (1-16a)
3, dY

dy=5Y —du, -

-3 Lo i
3, 0Z

dz =% —du; (1-16¢c)
=1 fu;

Substituting equations (1-16) into equation (1-14), and noting that the dot products
must be zero when u;, u,, and u; are mutually orthogonal yields the following
expression for the differential Iength 48 in the orthogonal curvilinear coordinate
SYStem Uy, g, Uy

(dS)* = a¥(du,)? + aX{duy)? + al{du,)? (1-17)

ax\? ay\? 3z \?
ﬁz =] — 4+ — R [ = -
f (au,-) (6:1,-) +((?u,-) > I=123 (1-18)

Here, the coefficients a,,a,, and a, are called the scale Jactors, which may be
constants or [unctions of the coordinates. Thus, when the functional relationship
between the rectangular and the orthogonal curvilinear system is available [i.e.,
asin equation (1-15}], then the scale factors a; are evaluated by equation (1-18).
Once the scale factors are known, the gradient of tempeérature i the ortho-
gonal curvilinear coordinate system (,, 113, u3) is given by :

.whcre

1 4T ior 19T
VT=1i— = 40y bl — —— (1-19)
ay fu, ay iy as duy ‘

The expression delining the heat flux vector g becomes

3
g=—kVT=—k% Z ﬁila_1~ . (1-20)
i=1 a, aui ¥

and the three components of the heat ux vector along the Uy, ty, and u,

HEAT CONDUCTION EQUATION 11

coordinates are given by

a=—k220 123 (1-21)

The divergence of the heat flux vector q in the orthogonal curvilinear coordinate
system (1, 1y, 1) is given by

1] 3 {a J{a dfa ,
Vg =-| —[ = +—{ = +—1 — (1-22a)
1 al:a“:(a:ql) auz(ath) a"a(“aqa)] .

0= ay0,a, (1-22b)

where

The differential equation of heat conduction in a general orthogonal curvilinear

coordinate system is now obtained by substituting the results given by equations
(1-21) and (1-22) into eguation (I-7)

i[9 f,adT\ & f adT\ 8, adT aT
H (et 2 2 (k2 2 (k2 2 ) lag=pc, s (123
a[@ul( at 5u,) &u,_( al Bu;) Bua( a3 6u3)] I=0ry (1-23)

The heat conduction equations in the cylindrical and spherical coordinates given
previously by equations (1-12) and (1-13) are readily obtainable as special cases
from the general equation (1-23) if the appropriate values of the scate factors are
introduced.

Length, Area, and Volume Relations

In the analysis of heat conduction problems integrations are generally required
over a length, an area, or a volume. If such an operation is to be performed in
an orthegonal curvilinear coordinate system, expressions are needed for a dif-
ferential length 4!, a differential area dA4, and a differential volume dV. These
relations are determined as now described. -

In the case of rectangular coordinate system, a differential volume element dV
is given by ’

dV=dxdyd: (!-24a)

and the differential areas dA,,dA,, and dA_ cut [rom the planes x = constant,
y = constant, and z = constant are given, respectively, by

dA,.=dydz, dA, =dxdz, and dA,=dxdy . (1-24b)

In the case of an orthogonal curvilinear coordinate system, the elementary
lengths dl,, dl,, and di; along the three coordinate axes u,,u,, and u, are given,
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respectively, by ‘
dl, =a, du,, ' dly =a, du,, and dly = aydu, (1-25a)
Then, an elementary volume element 4V is expressed as
dV =a,a,a; du; du; du; = adu, c‘iuz diig, where a=a,a,ay, (1-25b)

The differential areas dA,,dA,, and dA; cut from the planes u; = conslant,
t, = constant, and u, = constant arc given, respectively, by
dAl =.d[2dl3=azas duzdus, dA1=d[1 d[3=ala3 d"l dU3 aﬂd
dA3=d11 d11=ala2 duiduZ (]'250)

Example 1-1

Defermine the scale factors for the cylindrical coordinate system (r, ¢, z) and
write the expressions for the heat flux components.

Solution. The[unctional relationships between the coordinales {r,¢,z)and the
rectangular coordinates (x, y, z) are given by

x=rcose, y=rsing, 1=z
Let {1-26)
W= U, =¢, and Uy =z

The scale factors a, = a,,a; = ay, and a, = a, [or the (r, ¢, z) coordinate sysiem
are determined by equation (1-18}) as

ax\? oy 7oz7\2
at=agt={ = - -— | = 2 in? =
1 =4, (Br) +(6r) +(6r) cos’gd +sin“¢g+0=1
ax\t [y [az\® .. .
al=ad=(-= 2 221 =(_rsin¢)? 24 0=r?
2=y (61;()) +(6¢) +(6¢) (—rsing)? +({rcosg)*+0=r
ax\2 foyN: [az\?
=at== 9y 1 - o
3=4a (az) +(62) +(az) 0+0+1=1

Hence the scale factors for the cylindrical coordinate system become
a.=1, ag=r, a,=1, and a=r (1-27a)

and the three components of the heat flux are given as

aT k8T arT’
P and  g=—k— (1-27b)

r=_k_x == )
o a 1T e oz
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Example 1-2
Determine the scale factors for the spherical coordinate system (r.¢.0).

Solution. The functional relationships between the coordinates (r, ¢, #) and
the rectangular coordinates (x, y, 2) are given by

x=rsinfcosg, y =rsin0sin ¢, z=rcost
Let {1-28}

U, =r, iy =, and uy=10

Then, by utilizing equation (i-18), the scale [actors a, = d,.d; = . and a; =dy

are determined as

= a? = (sin O cos ¢)? + (sin O'sin ¢)* + (cos 0y =1

2 2
1 r
a} = a} =r?sin’ fsin® ¢ +r* sin? §cos? ¢ + 0=r’sin’ @
2 2
3

=al=r’cos? fcos’ ¢ + 1’ cos? Osin? ¢ + risin? ¢ =r?

Hence the scale [actors become

a,=1, ag=rsinf, - ag=r _cand.  a=r’sind __(1-29)

1-5 GENERAL BOUNDARY CONDITIONS

The dilferential equation of heat conduction will have numerous solutions unless
a set of boundary conditions and an initial condition (for the time-dependent
problem) are prescribed. The initial condition specifics the temperature distribu-
tion in the medium at the origin of the time coordinate {that is, ¢t =0), and the
boundary conditions specify the temperature or the heat flow at the boundaries
of the region. For example, at a given boundary surlace, the temperature distribu-
tion may be prescribed, or the heat flux distribution may be prescribed, or there
may be heat exchange by convection and/or radiation with an environment at
a prescribed temperature. The boundary condition can be derived by wriling an
energy balance equation at the surfuce of the soliid.

We consider a surface element having an outward-drawn unit normal vectoi
fi, subjected to convection, radiation, and external heat supply as illustrated in
Fig. 1-7. The physical significance of various heat fluxes shown in this figure is
as follows.

The quanlity g,,, represents energy supplicd to the surface, in Wim?, from an
external source, )

The quantity g.o,, represents heal loss from the surface at temperature T by
convection with a heat transfer coefficient ht into an external ambient at a

temperature T, and is given by

=MT-T,), W/m? (1=30a)
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Here the heat transler coellicient k varies with the type of flow (laminar, turbulent,
etc.), the geometry of the body and flow passage area, the physical properties of
the fluid, the average temperature, and many others. There is a wide difference
in the range of values of the heat transfer coeflicient for various applications.
Table 1-2 lists the typical values of b, in W/m?°C, enconniered in some applica-
tions.
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Tig. 1-7 Energy balance at the surface of a solid.

TABLE 1-2  Typical Values of the Convective Heat Transfer Coefftcient A

Type of Ilow h, W/(m? °C)

Free Convection, AT=25°C

0.25-m vertical plate in

Atmaospheric air 5

Engine oil ) 37

Waler ’ 440
0.02-m-OD horizontal cylinder in

Atmospheric air 8

Engine ail 62

Water 744

Forced Convection

Atmospheric air at 25°C with U, = 10m/s over

L=0.1-m fat plate 40
Flow at $m/s across 1-cm-OD cylinder of

Atmospheric air ‘ 85

Engine oil 1,800

Water flow at | kg/s inside 2.5-cm-1D tube 10,500

Bailing of Water at 1 atm

Pool boiling in a container 3,000

Pool boiling at peak heat Mux 35,000
Film boiling 300

Comdensation of Steam at 1 atm

Film condensation on horizontal tubes 9,000~25,()00
Film condensation on vertical surfaces 4,000-11,000
. Dropwise condensation 60,000-120,000

The quantity g,,q Teprésents i foss from-thesurface-by-radintion-into-ag. o oo

ambient at an effective temperature T, and is given by
gaa=€o(T*—T% W/m? (1-30b)

where ¢ is the emissivity of the surface and o is the Stefan’-Boltzmann constant,
thal is, o = 5.6697 x 1078 W/(m*-K*).

The quantity g, represents the component of the conduction heat flux vector
normal to the surface element and is

g, =qh=—kVT i (1-31a)
For the Cartesian coordinates we have

BT 0
vr=i22 4320 kT (1-31b)
dx T dy iz

A=il i+ kL, ' (i-31¢c)

Introducing equations (1-31b,c) into (1-31a), the normal component of the heat
flux vector at the surface becomes

9T 9T 0T aT |
=kl =+l =+ ==k 1-32
o ( x  Tay az) n (132

where I, 1, and I, are the direction cosines (i.c., cosine of the angles) of the umit
normal vector fi with the x, y, and z coordinate axes, respectively. Similar expres-
sions can be developed for the cylindrical and spherical coordinate systems.

To develop the boundary condition, we consider the energy balance at the
surface as ‘

Healt supply = heal loss
or (1-33)
Qn + qup = Heonv + Grad

Introducing the expressions (1-30a,b) and {1-32) into (1-33), the bbundnry condi-
tion becomes

—k %I + gy = HT— Ty} -+ €a(T* = T7) (1-34a)
n
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which can be rearranged as

k or hT 4 y
a+ +eoT* =hT, + oy +€aT; (1-34b)
where all the quantities on the right-hand side of equation (1-34b) are known
and the surface temperature T is unknown.
The general boundary condition given by equations ([-34) is nonlinear because

_ it contains the lourth power of the unknown surface temperature T*. In addition,

the absolute-temperatures need to be considered when radiation is involved. If
{|IT ~ T,|)/T, « 1, the radiation term can be linearized and equation (1-34a}
takes the form

kaT
- E-l_qsup:h('r_ Tno}+hr(T_ T;-) (1'353)

where the heal transfer coefficient for radiation is defined as

h,=4eoT? (1-35b)

1-6 LINEAR BOUNDARY CONDITIONS

In this bo.ok, for the analytic solution of linear heat conduction problems, we
shall consider the following three different types of linear boundary conditions.

1. BmmdarJ_J C.omliu'on of the First Kind. This is the situation when the
temperature distribution is prescribed at the boundary surface, that is

T=fir,t} on S A (1-36a)

whf.trf: the prescribed surface temperature f(r,t} is, in general, a function of
position and time. The special case

T=0 on S (1-36b)

is called the homogeneaus boundary condition of the first kind.
2 Buu.udrrry Condition of the Second Kind. This is the situation in which the
heat flux is prescribed at the surface, that is

- 8T
k- =f(r,) on S (1-37a)
on

wheré 8T/dn is the derivative along the outward drawn normal to the surface.

LINEAR BOUNDARY CONDITIONS 17

Here f(r, 1) is the prescribed heat flux, W/m?. The special case

—~=0 on S (1-37b)

is called the homogeneous boundary condition of the second kind.

3. Boundary Condition of the Third Kind. This is the convection boundary
condition which is readily obtained [rom equation (1-33a) by setting the radiation
term and the heat supply equal to zero, that is

3 .
k;+hT= hT (1) on S ' {1-38a)
n

where, for generality, the ambicnt temperature T (r, t)is assumed to be a function
of position and time. The special case '

k?ﬁ—hTzO on S (1-38b}
"

is called the homogeneous boundary condition of the third kind. Tt represents
convection into a medium at zero temperature, Clearly, the boundary conditions
of the first and second kind are obtainable [rom the boundary condition of the
third as special cases if k and h are treated as coellicients. For exampie, by setting
k = 0and T,(r,t) = f(r, 1), equation (1-38a) reduces to equation (1-36a). Similarly,
by setting hT(r, 1) = f(r, ) and then letting h = 0 on the lelt-hand side, equalion
(1-38a) reduces to equation {1-37a).

4. Interface Boundary Condition. When two materials having dilferent thermal

conductivities k, and k, are in imperfect contact and have a commion boundary

as illustrated in Fig. 1-8, the temperature profile through the solids experiencesa

sudden drop across the interface between the two materials. The physical signifi-
cance of this temperature drop is envisioned betler il we consider an enlarged
v view of the interface as shown in this figure and note that actual metal-to-metal
contact takes place at a limited number of spots and the void between them is
filled with air, which is the surrounding fluid. As thermal conductivity of air is
rmuch smaller than that of metal, a steep temperature drop OCCUIS aCross the gap.
To develop the boundary condition for such an interface, we write the energy

balange as

i

Heat conduction } _ heat transfer \ _ { heatconduction (1-39a)
thru. solid 1 acrossthegap/  \ thru.solid2

: aT.
= h{Ty = Toh =~k
i

T,
ox

—k 1-39b
1 { )
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Interface
i

N

Fig. 1-8 Boundary condition at the inlerface of two conlacting surfacés,

where subscript i denotes the inferface and he, in W/im?-°C), is calied the contact
conductance for the interface. Equation (1-39b) provides two expressions for the
boundary condition at the interface of two contacting solids, and it is generally
called the imterface boundary conditions.

For the special case of perfoct thermal contact between the surfaces, we have
h— e, and equation {1-39b) reduces o

Ty=T, at S; (1-40a)
aT, aT,

—ky ==, T at 5 (1-40b)
ex ax

where equation (1-40a) is the continuity of temperature, and equation {1-40b) is
the continuity of heat Nlux at the interface. '

The experimentally determined values of contact conductance for typical
materials in contact can be found in references 8~10. The surface roughness, the
interface pressure and temperature, thermal conductivities of the contacting
metal and the type of Muid in the gap are the principal factors that affect contact
conductance,

To illustrate the effects of various parameters such as the surface ronghness,
the interface temperature, the interface pressure, and the type of material, we
present in Fig. 1-9ab the interface thermal contact conductance h for stainless
steel-to-stainless steel and aluminum-to-aluminum Ioints. The results on these
figures show that interface conductance increases with increasing interface pres-
sure, increasing interface temperature, and decreasing surface roughness. The

interface conductance is higher with a softer materiai {aluminum) than with a
harder malerial (stainless steel). )

LINEAR BOUNDARY CONDITIONS 19
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Fig. 1-9 Effects of interface pressure, contact temperature, and roughness on interface
conductance h. (Based on data from reference 8).
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Example 1-3

t(li:nlil(‘)jj;; plate sfubjected to heating at the rates of f| and f3, in W/m?, at
ary surfaces x = = : . T ’
conditions. O and x =1, respectively. Write the boundary

Solution. The prescribed h c
(1-37) as eat flux boundary condition is given by equation

K22~
on S (1-41)

] hc UillWﬂrd-dl‘awn normal vectors at lhe b u d surlaces X= “ X =
g p
arein the ne atlue X alld OSltl Ve X dllecllOIlS, lCSpecll VCIy. l Iﬁncc the bOUIldal y

9T
ox =/t at x=0 (1-42a)
T
2 at x=L (1-42b)

Example 1-4

Consi i j
o is;l g:: ;1 hollowd c:ylmder subjected to convection boundary conditions at
= ¢ and outer r = § surfaces into ambients at temperatures T,
n

tion and nonhomogeneous convection boundary con

TRANSFORMATION OF NONHOMOGENEQUS BOUNUAKTY Ly —-

gnd T, ,, with heal trunsfer coelficicnts h,  and fr, , respectively, us illustrated

in Fig. 1-10. Write the boundary conditions.

Solurion. The convection boundary condition is given by equation ( {-18a)in

the form

o
(T pT=nT, at S
on

at the boundary surfaces r = and r= b are in

The outward-drawn normal
Hence the boundary condition (1-43)

the negative r and positive directions.
gives

_kgz+hm'1‘=hm']‘wl at re=a (1-44a)
ar '

k%I+hMT=hﬂTx_2 at r=b (1-44b)
r

117 TRANSFORMATION OF NONHOMOGENEOUS BOUNDARY
CONDITIONS INTO HOMOGENEOUS ONES

at conduction problems with the orthogonal
expansion technique, the contribution of nonhomogeneous terms of the boundary
conditions in the solution generally gives rise to cCOnvergence difficulties when
the solution is evaluated near the boundary. Therefore, whenever possible, it is
desirable o transform the nonhomogencous bouridary conditions into homo-
geneous ones. Here we presenl a methodology for performing such transform-

ations for some special cases.
We consider onc-dimensional transient

In the solution of transient he

heat conduction with encrgy genera-
ditions for a slab, hollow

cylinder and sphere given by

(1-43) - -~

o
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— T...;-_ [
- '].l-
_kf . +Jl,"=|'l,fl(f) al X =3 Xy (>0 (1-45b)
’ ax :
aT :
ke_+]'1T=hzfz(f] al  x=xp t>0 (1-45c)
' X
Fig. 1-10 Bound iti
ndary conditions for Example 1-4, T=F{x) for t=0 xg<x<L (i-45d)
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where
[0 slab
p=- 1 cylinder (1-45¢)
l 2 sphere

Here, f\{t) and f,(r) are the ambient temperatures,

We assume that the femperature T(x. 1) can be split up into three components
as

Tl )= 00x,.0) + ¢ (x)f1{1) + ¢ 20x) /»00) (1-46)

whcrc'lhc dimensionless Tunctions ¢,(x) and $,(x) are the solutions of the
following two steady-state problems

Cdf _dg ' i
R(\" "ﬂl) =0 in xp<x<x, (1-47a)
de, .
—kE-Hrlr,b, =h, at X=X (1-47b)
i, | |
k i +hyp =0 ; . at X=x, _ (1-47c)
and
i)
o Sl in Xp <X <X (1-483)
dd,
—k i +h,dy=0 al x=x, . (1-48b)
dds :
kE"’[”hz¢z=h2 at x=xL “-48(})

T_h‘en, i! can be shqwn that the function 8(x, ) is the solution of the following one-
dimensional (ransient heat conduction with homogeneous convection boundary

conditions, a modified encrgy generation term ‘g*(x,1) and a modified initial

condition function F*(x), given in the form

14 a8 188 .

el VY Sk _ .

o ax(x E"x) +g*(x, 1) = in Xp<x<Xx7, 120 (I-49a)
20

_kg;'i'th:O at X =Xg, t=>0 (I__49b}
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%8 1.49
ké-*+1128=0 at X=Xy, >0 (1-49c)
x

8 =F*(x) for t=0, XoSx<x, (149%d)

where g*(x, t} and F *{.f) are defined by
1 1 dfi(1) df,) 1-250
gHx.0= Ea(x, 1) n!(rﬁl(x) = T ¢z(x)~—dt ) (1-50a)

FHx) = F(x) = {6,00,0) + ¢,(x) f2(0)} (1-50b)

The validity of the above splitting-up procedure can be verified by tntroducing
equation {1-46) into equations (1-45) and utilizing equations (1-47), (1-48) and -
(1-49).

The above splitling-up procedure can be extended to the multidimensional
problems provided that the nonhomogeneous terms in the boundary conditions
do not vary with the position, but may depend on time. :

1-8 HOMOGENEOUS AND NONHOMOGENEOUS PROBLEMS

I'or convenicnce in the anaysis, the time-dependent heat conduction problems
will be considered in two groups: homogengous problems and nonhomogeneous

problems.
The problem will be referred 1o as homogeneous when both the differential

equation and the boundary conditions are homogeneous. Thus the problem

V2T=la— inregion R, t>0 (1-51a)
o ot
ar
k,-a—-f— hT=0 onboundary§;, (>0 (1-51b)
1 .
T = Fir) inregionR, . £=0 {1-51c)

will be referred to homogencous because both the differential equation and the
beundary condition are homogeneous. )

The problem will be referred to as nonhomogeneous if the differential equation,
or the boundary conditions, or both are nonhomogeneous. For example, the
problem '

St . .
ViT+ % = ! Z—T inregion R, t>0 (1-52a)
o .
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k or !
'6_n,- + T = fr,t) ~on boundary§;, t>0 {1-52b}

T = F(r) ‘ inregion R, =0 {1-52¢)

is nonhomogeneous because the differential equation and the boundary condition
are nonhomogeneous.
The problem

V2 gir, ) _ rer ,
T+ Pt inregion R, (>0 (1-53a)
aT
k,é-—-+h,T=0 onboundarys;, t>0 {1-53b)
i '
T=F(r) in region R, t=0 (1-53¢)

is also nonhomogeneous because the differential equation is nonhomogeneous.

1-9 HEAT CONDUCTION EQUATION FOR MOVYING SOLIDS

Sofar we considered stationary solids, Suppose the solid is moving with a velocity
u and we have chosen the rectangular coordinate system. Let u,,u,, and u, be
the_ three components of the velocity in the x, y and z direction, respe}c,:tively. For
solids, assuming that pC, is constant, the motion of the solid is regarded to give

~ rise 1o convective or enthalpy fluxes

pC,Tu,, pC,Tu, pC,Tu,

_in the x, y, and z directions, respectively, in addition to the conduction [luxes in

those directions. With: these considerations the components of the heat flux
veclor q are taken as |
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flux and the second term is the convection flux due 1o the motion of the solid.
For the case of no motion, equations {1-54) reduces to equations (1-3).
The heat conduction equation for the moving solid is obtained by introducing

) equations {1-54) into the energy equation (1-7)

. T iT aT 0T
EVATHgir, )= pC,,(‘-é? +'ux(ra: + iy (5; +u, %:) (1-55)

This equation is written more compaclly as

D -
AT+ plE o0 = 51{ (1-56)
P K .

which are strictly applicable for constant pC,. Here, o = (k/pC,) is Lhe thermal
diffusivity and D/Dt is the substantial (or total) derivative defined by

p a @ & @
D_8, 2yl 1.57
D g e ey T (-7

For the case of no motion, equation (1-56) reduces to equations ([-9).
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1-10 HEAT CONDUCTION EQUATI.ON"FUR
ANISOTROPIC MEDIUM

So far we considered the heat flux law for isotropic media, that is, thermal conduc-
tivity k is independent of direction, and developed the heat conduction eq wation
accordingly. However, there are natural as well as synthetic materials in which
thermal conductivity varies with direction. For example, in a tree trunk the
thermal conductivity may vary with direction; that is, the thermal conductivi-
ties along the grain and across the grain are different. In laminated sheels the
thermal conductivily along and across the laminations are not the same. Other
examples include sedimentary rocks, {ibrous reinforced structures. cubles, heat

shielding for space vehicles, and many others.

Orthotropic Medium

First we consider a situation in the rectangular coordinates in which the thermal
conductivities k,, k,, and k, in the x, p, and z directions, respectively, are different.

aT :

q,= —ka—x'l‘ PCpTux . (1“543)
aT

g,=—k I + pC,Tu, (1-54b)
T

q: = Hkgz_'l-pCpTuz (1-54C)

Clearly, on the right-hand sides of these equations, the [irst term is the conduclion
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Themrtie-lreat-Thex-vectorgix, y=-1)-given-by equation (1-2) is modilied as

L 8T . 8T o 8T
qlx, y, 2. t)= — (lk,%; +]k,.—a; + kk=(—a—z-) (1-58)
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and the three components of the heat Mux vector in the x, y, and z directions,
respectively, become

aT aT ar
Qe=—k,—, g, = _kr;{; and g:= — k.- (1-59)

v
[ind

Similar relations can be written for the heat Mlux components in the eylindrical
and spherical coordinates. The materials in which thermal conductivity vary in
the {x,»,2) or {r8,2) or (r, 6, ¢) directions are called orthotropic materials. The

. heat conduction equation for'an orthotropic medium in the rectangular coordi-

nate system is obtained by introducing the heat flux vector given by equation
(1-58) into equation (1-7). We find :

af ar\ &/ T\ &f. aT aT
. kr__ o k'__ - - = [ {1
E‘x( ’ 5x)+5y( ! ay)-*?.{i;(k' az)+g PGy a1 A1-60)

Thus thermal conductivity has three distinct components,

Anisotropic Mediom

In a more general situation encountered in heat flow through crystals, at any
point in the medium, each component q,.4,, and g, of the heat flux vector is
considered a linear combination of the temperature gradients 3T/dx, dT/dy, and
aT/dz, that is

aT aT aT '

=k =—+kiy—+k,— -

q ( ew 12 By+ 13 0z) (1-61a)
aT aT aT

e hy = kyg — -

4y ( 2 + K3z 2y + ks 62) {I-61b)
3T 8T  aT

q.= _(kng'i‘kna"'ku“g;) (1-61c)

Such a medium is called an anisotropic medium and the thermal conductivity for
such a medium has nine components, k;, called the conductivity coefficients that
are considered to be the components of a sccond-order tensor k:

kll kl:‘. kl3
E=|ks, kys ki (1-62)
k31 k.!: k33

Crystals are typical example of anisotropic material involving nine conductivity
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coellicients [11,12]. The heat conduction equation for anisotropic solids in the
rectangular coordinate system is obtained by introducing the expressions for the
three components of heat flux given by equations (1-61) into the energy equation
{1-7). We find

T arT T aT T
kll RN + ku r—'_l‘z + k.\.l p=? +(kll + ku)ﬂ.\'t‘_l,' +—U‘l.\ + A'“)l".\’f':
2T AT(x, y, 2,1 _ .
s k) Sk 4 gy 1) = pC, TR T (1-63)
dydz ot

where k5 = ky1, k3 = K3, and ky3 = ky, by the reciprocity relation. This matter
will be discussed further in Chapter 15.

1-I11 LUMPED SYSTEM FORMULATION

The transient heat conduction formulations considered previously assume tem-
perature varying both with time and position. There are many engineering
applications in which the variation of temperature within the medium can be
neglected and temperature is considered to be a function of time only. Such
formulations, called lumped system formulation, provide great simplification in
the unalysis of transient heat conduction; but their range of applicabilily is very
restricted. Here we illustrate the concept of lumped formulation approach and
examine its range of validity.

Consider a small, high-conductivity material, such as a metal, initially at a
uniform temperature Ty, suddenly immersed into a well-stirred hot bath main-
tained at a uniform temperature T,.. Let V be the volume, A the surface area, p
density, C,, specific heat of the solid, and h the heat transfer coefficient between
the solid surface and the fluid. We assume that the temperature distribution
within the solid remains sufficiently uniform for all times duc to its small size and
high thermal conductivity. Then the temperature T(t) of the solid ean be consi-
dered to be a function of tite only, The energy-balance equation on the solid is
stated os -

Rateolheat lowinto the rate of increase of the
. . . )=1. . (1-64)
solid through its boundaries internal energy of the solid

When the appropriate mathematical expressions are written, the energy equation
(1-64) takes the form .

hA[ T, — T()] = pC,,V‘? (1-65)
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which is rearranged as

Em + ha T '
" pCPV[ )—T,J=0 for >0 (1-66a)
T =T, _ for =0 (1-66b})

A temperature excess (1) is defined as
=TT, (1-67)

Then, the lumped formulation becomes

o o
—d—t—+m (=0 for t>0 {1-68a)
iey="1,—1,=0, for =0 {1-68b)
where
- hA .
pro | (1-68¢)
and the solution is given by
. 88
) ~é-;- =e {1-69)

This is a very simple expression for temperature varying with time and the

-parameter # has the unit of (time) ™!,

‘ The physicz_il significance of the parameter 1 is betler envisioned if its definition
is rearranged in the form

1 1
s~ =wC.| —
m (bC, )(hA)

= (thermal capucita external thermal

pucitance) resistance ([-70y

Then, the sr.naller is the thermal capacitance or the external thermal resistance,
the larger is the value of m, and hence the faster is the rate of change of
temperature 8(t) of the solid according to equation (1-69).

In qrder to estabhs_h some criteria for the range of validity of such a simple
method for the analysis of transient heat conduction, we consider the definition
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»f the Biot number Bi, and rearrange it in the form

internal thermal
EL  (Lfk,A) resistance

Tk, (1/hA) B external thermal
resistance

(1-71)

where k, = thermal conductivity of the solid and L = ¥/A = characteristic length
of the solid.

We recall that the lumped system analysis is applicable il the temperature
distribution within the solid remains sufficiently uniform during the {ransients,
whereas the temperature distribution in a solid becomes uniform if the internal
resistance of the solid to heat flow is negligible. Now we refer to the above
definition of the Biot number and note that the internal thermal resistance of
solid is small in comparison to the external thermal resistance if the Biot number
is small. Therefore, we conclude that the lJumped system analysis is valid only for
smail values of the Biol number. For cxample, exact analytic solutions of transient
heat conduction for solids in the form of a slab, cylinder or sphere, subjected to
convective cooling show that for Bi < 0.1, the variation of temperature within the
solid during transients is less than 5%. Hence it may be concluded that the
lumped system analysis may be applicable for most engincering applications if

the Biot number is less than about 0.1,

Exumple 1-5

The temperature of a gas stream is to be measured with a thermocouple. The
junction may be approximated as a sphere of diameter D = 3mm, k= 30W/
(m-°C), p = 8400 kg/m*and C, =04 kJ/(kg-°C). If the heat transler coefficient
between the junction and the gas stream is h = 600 W/(m?-°C), how long does
it take for the thermocouple to record 99%, of the temperature difference
between the gas temperaturc and the initial temperature of the thermocouple?

Solution. The characteristic length Lis

v o@/¥ar r D 34 1 10~4
- =l = === - = - -m
A 4m* 3 6 6 8 . 8
The Biot number becomes :
-3
R R Y INETIEE
E 30

hence the lumped system analysis is applicable since Bi < 0.1. From equation
(1-69) we have
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or

e™ =100, mt =4.6

The value ol i is determined {rom its definition

ha B 600 8

m= = C=- S = 1428571 -
pC ¥ pCLL 8400 %< 400 107 A .
Then
1= 4_.6 = -4_§ ~3.22
m 1428

That is, about 3.225s is needed for the thermocouple to record 99% of the
applied temperature difference.

Partial Lumping

In the lumped system analysis described above, we considered a total lumping
in all the space variables; as a result, the temperature for the lumped system
became a function of the time variable.

Tt is also possible to perform a partial lumping, such that the temperature
variation is retained in one of the spitee variables but lumped in the others. For
example, il temperature gradient in a solid is very steep, say, in the x direction
and very small in the y and z directions, then it is possible to lump the system in
the y and z variables. To illustrate this matter we consider a solid as shown in
Fig, 1-11, in which temperature gradients are assumed to be large along the x
direction, but small over the y—z plane perpendicular to the x axis. Let the solid
dissipate heat by convection from its lateral surfaces into an ambient at a
constant temperature T, with a heat transler coelficient h.

Fig. 1-t1 Nomenclature for the derivation of the partially lumped heat conduction
equation.

LUMPED SYSTEM FORMULATION 3

To develop the heat conduction equation with lumping over the plaflc per-
pendicular to the x axis, we consider an energy balance for a disk of thickness

Ax about the axial location x given by

Nel rate of heat rate ol heat gain rate of increase
gain by conduction | + | by convection from | == ofinternal energy {1 -72)
in the x direction the lateral surfaces of the disk .

When the appropriate mathematical expressions are introduced for each of these .
three terms, we obtain

8T(x, 1)
- g(Aq)Ax + hp{x)AX [Ty, — T(x, )] = pCpAxA(x)- ar (1 -73§)
ax :
where the heat [lux g is given by
q= —quM {(1-73b)
Ox
and other quantities are defined as
Alx) = eross-sectional area of the disk
plx) = perimeter of the disk
I =heat transfer coefficient
k = thermal conductivity of the solid
T, =ambient temperature
We introduce a new temperature 0(x,t) as
Ox,0)=T(x,0)— T, (1-74)

‘and substitute the expression for g into the energy equation (1-7.’?3). Then
equation (1-73a) takes the form

1 a a9 hpix) 1 80(x,1)
. GO 2P ey == 0 O (1-79)
s ax[Ax)n_\—] TR ’)’ « M

For the steady state, equation (1-75) simplilies to

d di(x)}  hpl(x)
ol e I 0y =0 (1-76)
dx[A(x) dx ] k (Iﬂ

il we further assume that the cross-seclional area A(x)} = A, = constant, equation



2 HEAT CONDUCTION FUNDAMENTALS

{1-76) reduces to

d*8(x) . h
6.7((2 ) ﬁp; f(x)=0 (1-77)

which is the fin equation {or fins of uniform cross-section.
The solution to the [in equation (1-77) can be constructed in the form

O(x) == e cosh x| ¢ sinh oy (1-78a)
or
Blx)=cle ™™ + cje™ (1-78b)

The (wo unknown coeflicients are determined by the application of boundary
conditions at X =0 and x = L, and the solutions can be found in any one of the
standard books on heal transfer [13]. .

The solution of equation (1-76) for fins of variable cross section is mare
involved. Analytic solutions of fins of various cross sections can be lound in the
relerences 14 and 15.
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PROBLEMS

I-1  Verify that VT and V-q in the cylindrical coordinate system (r, ¢, z) are
given as

aT . 18T . 4T

VT=80 by~ o 0.5
"o T i e oz
14 L gy O
. iy i
Ve r Orl“” } rdd 02

-2 Verify that VT and V-qin the spherical coordinate system (r, ¢, B} are given
as

ar . 1 9T , 13T

=i — — g —
vr=" or U eing o T

- = oa—s — o —— i st — | 9

v r? ar(r a+ rsind d¢ * rsinf 69({185 nf)

1-3 By using the appropriate scale factors in equation (1 -23)show that the heat
conduction equation in the cylindrical and spherical coordinate systems

are given by equations (I-12} and (1-13).

1-4  Obtain expressions lor clemental arcas dA cut from the surfaces r = cons-
tant, @ = constant, and z = constant, also for an elemental volume dV in
the cylindrical coordinate system (r, &, z).
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1-5 Repéal Problem 1-4 for the spherical coordinate system {r, ¢, 6).

Axis of .
rotational symmetry
% @ constang:
8=0 @ constant: 11
= hyperboloids hyperboloids
11 constant:
prolate 1} constant: )
spheroids prolate ¢ constant:
n=0 spheroids planes
¥ ¥
’
p
g
7,
7,
7,
4
X » x
o=~

Fig. 1-12  Prolate spheroidal coordinates (1, 4, ¢)-
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1-8

The ;_Jro!are spheroidal coordinate system (n, 8, ¢) as illustrated in Fig: {-12
consists of prolate spheroids y = constant, hyperboloids § = constant, and
planes ¢ = constant. Note that as # — 0 spheroids become straight lines of
length 24 on the z axis and as 5§ — oo spheroids become nearly spherical. For
0 =0, hyperboloids degenerate into = axis [rom A4 to +co, and for ==
hyperboloids degenerate into = axis rom — 4 o — o2, and for ) = n/2
hyperboloids become the x v plane, If the coordinates (i, 0, ) of the
prolate spheroidal system are related to the rectangular coordinates by

x = Asinhysinfcos¢
y=Asinhysindsing
z=Acoshycost
show that the scale factors are given by
a, = a, = A(sin® 8 + sinh? y)'/?
a; =a,= Alsin® # + sinh? )12
ay=a,= Asinhysin 8

Using, the scale [actors determined in Problem 1-6, show that the expression
{for V*T in the prolate spheroidal coordinates {4, 8, @) is given as

L ’T 8T  o'T aT
VIT= T aT T o
AZ(sinh? +sin20)[6n’ teothn gy + agr teotd aﬁ]

! T

g
A%sinh? ysin? 0 3¢

Obtain expressions lor elemental areas dA cut from the surfaces i = cons-
tant, § = cog:starlat, and ¢ = constant, and also for an elemental volume
element dV in the prolate spheroidai coordinate system (, 6, ¢) discussed
above. : '

The coordinates (n, 8, ¢) of an oblate spheroidal coordinate system are
related to the rectangular coordinates by

x=Acoshysinfcos ¢
y = Acoshysindsin ¢

z=Asinhnycos®

Show that the scale factors are given by

aj = a} = A*(cosh® n — sin® )
al = a} = A*(cosh® y —sin? §)
al=a} = A% cosh?sin? 6
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1-10 Usingthc scale factors in Problem 1-9, show that the expression forv2T
in the oblate spheroidal coordinate system (3, @, ¢) is given by

27

| S 4 tanh g =— 4 = + cOLf —
A¥{cosh? p—sin? O] dy? g oy ot a0
U Bt

A?cosh? ysin? 0 8p?

1 [BZT aT 9T BT]

1-i1  Show that the folloWing three different forms of the differential operator
in the spherical coordinate system are equivalent.

2 2
1 d(sz)_lg_(r ,_&T 24T

= ) R L

1-12  Set up the mathematical formulation of the following heat conduction
problems:

1. A slab in 0 < x < L is initially at a temperature F(x). For times ¢ >0,
the boundary at x=0 is kept insulated and’ the boundary at x =L
dissipates heat by convection into a medinm at zero temperature.

2. A semiinifinite region 0 € x < o0 is initially at a temperature F(x). For
times > 0, heat is generated in the medium at a constant rale of
go W/m?, while the boundary at x = 0 is kept at zero temperature.

3. A solid eylinder 0 < r < b is initially at a temperature F{r). For limes
t > 0, heat is generated in the medium at a rate of g(r), W/m?, while the
boundary at r = b dissipates heat by convection into a medium al zero
temperature.

4. A solid sphere 0 < r < b is initially al temperature F (7). For times £ > 0,
heat is generated in the medium at a rate of glr), W/m?, while the
boundary at r = b is kept at a uniform temperature To.

1-13 For an anisotropic solid, the three components of the heat conduction
vector g, g, and g, are given by equations (1-61). Write -the similar
expressions in the cylindrical coordinates for 4., 44, g. and in the spherical
coordinates for g,, 44, gs .

1-14 Prove the validity of the transformation of the heat conduction problem
[equation {1-45)] into the three simpler problems given by equations
(1-47),(1-48) and {1-49) by using the splitting-up procedure defined by
equation (1-46).

1-15 A long cylindrical iron bar of diameter D = 5cm, initially at temperature
T, = 650°C, is exposed to an air stream at. T, = 50°C. The heat transfer
coefficient between the air stream and the surface of the bar is h=
80 W/(m?-°C). Thermophysical properties may be taken as p=
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7800_kg/m 3, C,=460J/(kg-"C), and k = 60 W/(m-°C). Determine the time
required for the temperature of the bar to reach 250°C by using the lumped
system analysis,

A (hf:rmo‘couple is to be used to measure the lemperature in a gas stream.
The junction may be approximated as a sphere having thermal conductivity
k=25 W/(m-°C), p = 8400 kg/m>, and C, = 0.4 kif{kg-°C). The heat trans-
fer coefllicient between the junction and the gas stream is b = 560 Wim?-“()
Calealate the dinmeter of the junction if the thermocouple should n'u:us'un.:
95%, of the applied temperature difference in 3s. .

2

THE SEPARATION OF VARIABLES
IN THE RECTANGULAR
COORDINATE SYSTEM

The method of separation of variables has been widely used in the solution of

heat conduction problems. The homogeneous problems are readily handied :

with this method. The multidimensional steady-state heat conduction problems
with no generation can also be solved with this method il only one of the
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boundary condilions is nonhoifiogencous; prublems-involving-more-than-one
nonhomogeneous boundary conditions can be split up into simpler problems
each containing enly one nonhomogeneous boundary condition. In this chapter
we discuss the general problem of the separability of the heat-conduction equa-

tion; examine the separation in the rectangular coordinate system; determine the

elementary solutions, the norms, and the eigenvalues of the resulting separated.
equations for dillerent combinations of boundary condilions and present these
results systematically in a tabulated form {or ready reference; examine the solution
of one and multidimensional homogeneous problems by the method of separalion
of variables; examine the solution of multidimensional steady-state heat conduc-
tion problems with and without heat generatiom; and describe the splitling up of
a nonhomogeneous problem into a set of simpler problems that cun be solved

by the separation of variable technique. The readershould-consultreferences.1~4 . .. ...

for a discussion of the mathematical aspects of the method of separation of
variables and references 5-8 for additional applications on the solution of heat

conduction problems.

‘

2-1 BASIC CONCEPTS IN THE SEPARATION OF VARIABLES

To illustrate the basic concepts associated with the method of separation of
variables we consider a homogeneous boundary-value problem of heat conduc-
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tion for a slab in 0 € x < L. Initially the slab is at a temperature T = F(x),
and for times { > 0 the boundary surface at x =0 is kept insulated while the
boundary at x = L dissipates heat by convection with a heat-transfer coefficient
hinto a medium at zero temperature. There is no heat generation in the medium,
The mathematical formulation of this problem is given as (see Fig. 2-1)

0? T(x,1) _ 1 aT(x. 1)

- i 0 <. \ 0 -1
dx? x n <x<lL, (> (2-1a)
aT ‘ - '
5 =0 at x=0, {>0 (2-1h)
X
aT
k—+4+hT =0 at x=1L, >0 (2-1c)
dx : .
T = F(x) for 1=0, 0€£xgL (2-1d)

To solve this problem we assume the separation of function T(x,1) into a
space- and time-dependent functions in the form

T{x, 1) = X(x\T(1) ©(2-9)
The substituting of equation (2-2) into equation (2-1a) yields

LX) 1 dT() 03
X(x) dx*  ol'(n dt
In this equation, the left-hand side is a lunction of the space variable x, alone,
and the right-hand side of the time variable ¢, alone; the only way this equality
holds if both sides are equal to the same constant, say — f% thus, we have

1 dX()_ 1 drg)
X(x) dx?  oT(t) dr

~ 8 (2-4)

Fig. 2-1 Heat conduclion in a slab.
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Then, the Tunction I'(r) satisfies the differential equation

arw , prem=o0 (2-5)

dt

which has # solution in the form
r(t) — e—nﬂzi . (2—6):

Here, we note that the negative sign chosen above for % now ensures that the
solution T'(1) approaches zero as time increases indefinitely because both a and
¢ are positive quantities. This is consistent with the physical reality for the
problem (2-1) in that the temperature tends to zero as t — co.

The space-variable function X(x) satisfies the differential equation

d2X(x)

2

y +X(x)=0 in O<x<L _ (2-7a)
< .

The boundary conditions for this equation are obtained by introducing the
separated solution (2-2) into the boundary conditions (2-1b) and (2-1c); we

find

4x =0 at x=0 (2-7b)

dx

kg{ +hX =0 at x=L . (2-7¢)
dx 7

The auxiliary problem defined by equations (2-7) is catled an eigenvalue problem,
because it has solutions only for certain values of the separalion parameter
p=p.. m=1,273,..., which are called the eigenvalues; the corrésponding
solutions X(B,,, x) are called the eigenfunctions of the problem. When £l is not
an eigenvalue, that is, when f8 32 8, the problem has trivial solutions (i.e. X =0
if f # £..). We now assume that these eigenfunctions X(fl,,. x) and the cigenvalues
f., are available and proceed to the solution of the above heat conduction
problem. The complete solution for the temperature T(x,t} is constructed
by a linear superposition of the above separated elementary solulions in
the form :

T 0= 5 cnX(Bonx)e o (2-8)

m=1
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This solution satisfies both the differential equation (2-1a) and the boundary
conditions (2-1b) and {2-1c) of the heat conduction problem, but it does not
necessarily satisly the initial condition (2-1d). Therefore, the application of the
initial condition to equation (2-8) vields

o€

Flx}= ¥ ¢, X(f,x) in

m=

O<x<L (2-9)

This result is a representation of an arbitrary lunction F(x) defined in Lthe interval
0 < x < Lin terms of the eigenfunctions X(f,,, x) of the eigenvaiue problem (2-7).
The unknown coefficients c¢,,'s can be determined by making use of the orthogo-
nality of the eigenfunctions given as

f " X)Xy ) = {° forni s 1 (2-10)
0 N(f.) form=n
where, the normalization integral (or the norm), N(f,.), is delined as
L . )
N, = J. [X (P X)) dx (2-11)
1]

The eigenvalue problem given by equations {2-7) is a special case of 2 more
gencral eigenvalue problem called the Sturmi-Liouville problem. A discussion
of the orthogonality property of the Sturm-Liocuville problem can be found in
the ieferences 4, 5,7, and 8. .

To determine the coefficients c¢,, we operate on both sides of equation (2-9)
by the operator |5 X(f,.x)dx and utilize the orthogonality property given by
equations (2-10); we find

L

m = NF(%G..J .[ X(B X)F(x) dx (2-12)

0

The substitution of equat'ion {2-12) into equation (2-8) yields the solution for
the temperature as

i) l

T(x, t) = ~aflt
at)= 2 ¢

L
X(Bow x) J X (P XV (X ) dX {2-13)
0
Thus the temperature distribution in the medium can be determined as a function
of position and time from equation (2-13) once the explicit expressions are
availabie for the eigenfunctions X(f,, x), the eigenvalues f§,, and the norm N{f,).
This matter will be discussed later in this chapter.

GENERALIZATION TO THREE-DIMENSIONAL PROBLEMS 41
2-2 GENERALIZATION TO THREE-DIMENSIONAL PROBLEMS
The method of separation of variables illustrated above for the solution of the

one-dimensional homogeneous heat conduction problem is now formally gene-
ralized to the solution of the following three-dimensional homogeneous problem

vt =270 i region R, (0 (2-14)
o 0
oT
k{5~ +hT=0 on boundary 5, (>0 (2-15a)
T(r,t) = F(r) for t =0, in region R - (2-15b) -~ -

where @/an; denotes diflerentiation along the outward-drawn normal to the
boundary surface §; and r denotes the general space coordinate. It is assumed that
the region R has a number of continuous boundary surfaces S;,i=1,2,..,N in
pumber, such that each boundary surface S, fits the coordinate surface of the
chosen orthogonal coordinate system. Clearly the slab problem considered above
is obtainable as a special case from this more general problem; that is, the slab
has two continuous boundary surfaces one at x =0 and the other at x = L. The
houndary conditions for the stab problem are readily obtainabie from the general
boundary condition (2-15a) by choosing the coellicients i, and ky, aceordingly.
To solve the above general problem we assume a scparation in the form

T(r, &) = YO T() ‘ (2-16)

where function i(r), in general, depends on three space variables. We substitute
equation (2-16) into equation (2-14) and carry out the analysis with a similar
argument as discussed above to obtain

Ly =L A0 e

Wir) o () dt

where A is the separation variable. Clearly, the function I'(¢) satisfies an ordinary
differential equation of the same form as equation (2-5) and its solution is taken
as exp (— ai*r). The space-variable function y(r) satisfies the following auxiliary
problem ’

' VA + A2(r)=0  inregion R (2-18a)
dy
k,-a— +hgyp =0 on boundary S; {(2-18b)
ny .

where i=1,2,..,N. The differential equation (2-18a) is called the Helmholiz
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Equation (2-19) becomes

TABLE 21 UrmogonaI"Cb‘ordinnte—Sysiems—kllowing——Simple;Sepamﬁnn of the

Functions That Appear in Solution

(J
)
- Helmholtz and Laplace Equations®
\ﬁ Coordinate System
J

1 Rectangular Exponential, circular, hyperbolic
2 Cireular cylinder ) ‘ Pessel, exponential, circular
3 Elliptic- evlinder Mathicu, circular

4 Parabolic-cylinder Weber, circular

5 Spherical ) Legendre, power, circular
6 Prolate spheroidal Legendre, circular

7 Oblate spheroidal Legendre, circular

8 Parabolic Bessel, circular
9 Conical Lameé, power
0 Ellipscidal Lamé
|

|
11 Paraboloidal Baer

“From references 1,3, and 10.

* equation, and it is a partial-differential equation, in general, in the three

space variables. The solution of this partial-differential equation is essential
for the solution of the above heat conduction problem. The Helmholtz equation
(2-18a) can be solved by the method of separation of variables provided that its
separation into a set or ordinary differential equation is possible. The separability
of the Helmholiz equation has been studied and it has been shown that a simple
separation of the Helmholtz equation (also of the Laplace equation) into ordinary
diflerential equations is pessible in eleven orthogonal coordinate system. We list
in Table 2-1 these 11 orthogonal coordinate systems and also indicate the type
of functions that may appear as solutions of the separated functions [1,3,10]. A
discussion of the separation of the Helmholtz equation will be presented in this
chapter for the rectangular coordinate system and in the following two chapters
for the cylindrical and spherical coordinate systems. The reader should consult
references 10 and 11 for the definition of various functions listed in Table 2-1,

2-3 SEPARATION OF THE HEAT CONDUCTION EQUATION
IN THE RECTANGULAR COORDINATE SYSTEM

Consider the three-dimensional, homogencous heat conduction equaltion in the
rectangular coordinate system

aT & a#T 18T .
——T = where T=T(xy21) (2-19)

axr &y 8zt adt

Assume a separation of variables in the form

Tlx, y, 2 ) =l y, 2)T(0) o 20)

(24,29 29 1T, @2

AN S o ol (1) dt
Then, the separated funections T°(r} and o satisly the equations
T (t .
AT | aazr =0 (2-22)
dt

P I - :

L2 = -

dxt 8yt a8t Ay =0 (2-23)

Equation (2—i3) is the Helmholtz equation; we assume a separation in the form
P(x, y, 2) = X(x)Y(})Z(2) (2-24)
The? substitution of equation (2-24) into equation (2-23) yields

142X 1d4*Y 14°Z

= 2 o : . -
X dx? Y(iy2+Zdzz+A 0 (2-25)

H.?re, sinct: each term is a function of a single independent variable, the only way
this equality is satisfied is if each term is equated to an arbitrary separation
constant, say, in the form '

Then the separated equations become

d*X g
E;HVX =0 . (2-27a)

a2y
E}g +7'Y =0 {(2-27b)

Zz 5
1ot +n°Z=0 {2-27¢)

where

P +y+gi=A (2-27d)
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Clearly, the solutions of the separated equations for the [unctions X, Y, and £
are sines and cosines, and the solution of equation (2-22} for the function I'(t) is
given as ’

[(f) = e~y oy (2-28)
The compleie solution for the temperature T{x, y, z, {) is constructed by a linear
superposition of the separated solutions X, Y, Z, and I'. When the region is finite,
say, in the x direction, the separation constant § associated with it takes discrete
values and the superposilion of the separated solutions for the x variuble is
performed by summation over all permissible values ol §,,. On the other hand,
when the region is infinite or semiinfinite, the separation constant assumes all
values from zero to infinity continuously and superposition is done by integra-
tion over all values of f. In the Jollowing sections we examine the explicit
functional forms of the separated solutions for finite, semiinfinite, and infinite
regions. The elementary solutions obtained in this manner are tabulated systema-
tically for ready reference in the solution of heat conduction problems hy the
method of separalion of variables.

2-4 ONE-DIMENSIONAL HOMOGENEOQUS PROBLEMS
IN A FINITE MEDIUM (0 < x < L)

Here we consider the application of the method of separation of variables to the
solution of the homogeneous boundary-value problem of heat conduction for a
slab. That is, a slab, 0 < x < L, initially at a temperature F(x), dissipates heat by
convection for times { >0 [rom its boundary surfaces into an environment at
zero temperature. For generality we assumed that the heat transfer coefficients
at the two boundaries are not the same. The mathematical formulation of this
problem is given as '

@ T(x0) _10T(x,1)

e o in O<x<L, >0 (2-29a)
_ —k,zl+l:,T=0 at x=0, >0 (2-29b)
X
2 T =0 at  x=L  t>0 (2-29¢)
ox
T = F(x) for t=0, in 0sx<L (2-29d)

Clearly, the heat conduction problems for a slab [or other combinations of
boundary conditions are readily obtainable as special cases from the problem
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considered here by setting any one of the coefficients &y, k;, i, and h, equal to
zero. Nine different combinations of Lhese boundary conditions are possible.
We assume a separation in the form

Tk )= X(x)T(e) (2-30)

and separate the equation in a manner described above. The solution for the
function I'{r) is given as

[y =e™2M 12-30
~ and the space-variable function X(f, x) satisfies the following eigenvalue
problem:
2
X +#2X{x)=0 in O<x<L {2-32a)
dx?
—kld—X+lth=0 at x=0 (2-32b)
dx
kde +hy X =0 al x=1L {2-32¢)
- Tdx . .

This problem is a special case of the Sturm-Liouville problem discussed in Note
1, with p(x) =1, w{x) = 1,q(x) =0, and A = > Then, the eigenfunctions X(f,, x)

...are orthogonal, that is

forms#n

L 0
X)X (B, X)dx = 2-33
L X (B X)X (B, X}l { NG formen 233
The solution of the problem (2-29) is now constructed as
T D= 3 coX (B Xt (2-34)
1

m=

The application of the initial condition {2-29d) gives B UTOS S

a

FO= 5 coXBx) in
1

O<x<L (2-35a)

This is a representation of an arbitrary function F(x) defined in the interval
0 < x < Lin terms of the eigenfunction X{B,,x} of the eigenvalue problem (2-32}.
Suppose such a representation is permissible, the coefficients ¢,, can be determined
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by operating on both sides of equation {2-35a) by the operator {gX(f,, x)dx and
utilizing the orthogonality property of the eigenfunctions. We find

1t o
c,,,=m L X8, x")F(x}dx (2.35b)

where the norm N s defined as
L
N(B.} =J EX(f X)) dx {2.35¢)
0

The substitution of equation (2-35b) into equation {2-34) yields the solution for
the temperature T(x, 1} as

w :
LT =¥ e

y L
et N(ﬁm)X(ﬂ"",x’j X (B XIFxVA

o

‘L s solution 1s vahd for times ¢ > 0; as t ~0, It approaches to the initial value of
the temperature in the medium. Therefore, by substituting t =0 in equation
{2-36), we obtain '

(2-36b)

o L
Flx) = -—-I——X(ﬂ,,,,x)J' X8, WF{x1dx in  O<x<L

m=1 N(ﬂm) 4]

This equation is a representation of an arbitrary function F(x) deflined in the

interval 0 < x < L in terms of the eigenfunctions X(f,.x) of the cigenvalue

problem given by equations (2-32). )
The eigenfunctions X(f,, x) of the eigenvalue problem (2-32) are given as

X(B,. x}=f,cosB,x+ H,sinf,x (2-37a)

where the eigenvalues fi,, are Lhe roots of the following transcendental equation

BnlH, +H,)
tan §,, L= bre-rt T 2! 2-37b
nf B, ( )
and the normalization integral N(f,) is given by
N )—l (A2 + HZJ(L + _Ha +H (2-37¢)
m 3 Al 1 ﬂ,z,,-I*Hi 1
where '
bl mal
k. ks

The reader should consult reference & [p. 80] for the derivation of these results.

@-362)

(2-37d)- - - -
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The eigenfunctions, eigencondition and the normalization integral given by
equations (2-37) are for the general case of boundary condition of the third kind
at both boundaries, x =0 and x= L. The results for other combinations of
boundary conditions are obtainable by setting in equations {2-37) H, or H; equal
to zero or infinity.

We list in Table 2-2 the cigenfunctions X(f,, x), the cigenvalues B.. and the
normalization integral N(f,) of the eigenvalue problem (2-32) for nine dilferent
combinations of boundary conditions at x =0 and x = L. We note thay, for the

., boundary condition of the second kind at both boundaries (i.e., case 5, B =0 is

also an eigenvalue corresponding to the eigenfunction X(f,)=1 as shown in
note 2 at the end of this chapter. :

2.5 COMPUTATION OF EIGENVALUES

<eemes - - Onge-the-eigenvalues f,, are computed from the solution of the transcendental

equation, the eigenfunctions X{(f,,) and the normalization integral N{fi,} become
known, and the temperatue distiibution T(x,1) in the medium in determined
from the solution given by equation (2-36a). Some of the transcendental equations,
such as sin f,L=0 or cosf,L=0, are simple expressions; hence the B, are
readily evaluated. Consider, for example, the transcendental equation for the case
1 in Table 2-2 with H, = H, = H. The resulting expression is written as

tan L = Z—QJHLEH—L)——— (2-38a)
(BL)>— (HL)*
and for convenience this result is rearranged as
1{¢ B
== >—=|=Z 2-38b
cot § 5 ( 5 ) { )

where £ = fil.and B = HL. Clearly, the solution of this transcendental equation
is not so easy. First we present a graphical interpretation of the roots of this
transcendenta! equation before discussing its computer solution.

Graphical Representation

The result given by equation {2-38b) represents the following two curves:

Z=£(£—E) and Z=cotéf

-3
ACEY: (?-BC.d)

- The first of these curves represents a hyperbola whose center is at the origin and

its asymptotes are £ =0 and Z = &/2B, while the second represents a set of
cotangent curves as illustrated in Fig. 2-2. The ¢ values corresponding to the
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Z=cot kA"

I
|
|
f
I I 1 :

Fig. 2-2  Geomctrical representation of the roots of eot ¢ = (%)[[f{Bl —(B/&1].

. ...intersections of the hyperbola with the.cotangent curves.are.the roots of the above

transcendental equation. Clearly there are an infinite number of such points, each
successively located in intervals (0 — =), ( — 27), (2r — 3n), etc. Because of symmetry,
the negative roots are equal in absolute value to the positive ones; therefore, only
the positive roots need to be considered in the solution since the solution remains
unalfected by the sign of the root. The graphical representation of the roots
shown in Fig. 2-2is useful to establish the regions where the roots lie; but accurate
values of the roots are determined by numerical solution of the transcendental
equations as described next.

Numerical Solutions

Various methods are available for solving transcendental equatii)}l"s- H;J';n-ér-ic-:ally
[14, 15]. Here we consider the bisection, Newton—Raphson and Secant methods
for the determination of the roots of transcendental equations.

Bisection Method Consider a transcendental equation written compactly in the
form

Fl&H=0 (2-39)
a_r_ld suppose it has only one root in the region & < £<¢§,,, as illustrated in
Fig. 2-3. We wish to determine this root by the bisetion method. The interval
G E€ g, isdivided into two subintervals by a point &, 4, defined by
Ciarmy = 3(&i+ &ivr) (2-40a}
and the sign of the product F(&). F(&;, (1,2,) is examined. Il the product

FIEMCivany <0 - (2-40b)

then the root lies in the first subinterval ¢, < & £ 140120 Since the sign change
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FiEd A

FiE. )
| /L -

Fe, S

0

t S FE 1)

- Fig. 2-3 The bisection method.

occurs in this interval. If the product is positive, the root must li¢ in the second
subinterval. If the product is exactly zero, £;.12)is the exact root. The procedure
For determining the root is now apparent. The subinterval containing the root
is bisected and the bisection procedure is continued until the change in the value
of root from one bisection to the next becomes less than a specified tolerance e.

The bisection procedure always yields a root il a region is found over wh_ich
F(&) changes sign and has only one root. Thercfore, the graphical interpretation
of roots as illustrated in Fig. 2-2 is useful to locate the regions where the roots
lie. In the absence of graphical representation, one starts with £ = 0 and cvaluauj.s
F(¢&) for each small increment of & until F(&) changes sign. Then, a root must lie
in that interval and the bisection procedure is applied for its determination.

In each bisection, the interval is reduced by half; therefore, after n bisections
the original intervalis reduced by a factor 2". For example, 10 bisections reduce
the original interval by a factor more than 1000, and 20 bisections reduce more
than one million. ‘

Newton—Raphson Method Consider a function F(&)=0 plotted against ¢ as
illustrated in Fig. 2-4. Let the tangent drawn to this curve at ‘f = ¢, intersect the
£ axis at £ = £, ,. The slope of this tangent is given by

Fle)=5 2 L A

where prime denotes derivative with respect to £ Solving this equation for &y
we oblain )

_e F& -41b
dei=t—pe (2-410)
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Tangent )
FE) slope = F'(5)

L)

P

+;

o
o

—

Fig. 244 Newton-Raphson method.

Equation (2-41b) provides an expression for calculating &, , ; from the knowledge
pf F(g_‘,,) and F'(£;} by iteration, until the change in the value of £, 1- from one
iteration to the next is less than a specified convergence criteria ¢. The method
is wul_cly used in practice becausc of its rapid convergence; however, there are
suuulm.ns that may give rise to convergence difficultics. For example, if the initial
approximation to the root is not sufliciently close to the exact value of the root

or.the second derivative F"(£) changes sign near the root convergence difficulties
arise.

Secant Method The Newton-Raphson method requires the derivative of the

" function for each iteration. However, if the function is difficult to differentiate,

the derivative is approximated by a difference approximation, hence equalion
{2-41b) takes the form

oy = e o e HS)

[FE) = F& )INE— £io) (242)

The secant N}elhod may not be as rapidly convergenl as the Newton-Raphson
method; b.ut if the evaluation of F(£} is time-consuming, then the secant method
may require less computer time than Newten's method.

Tabulated Eigenvalues In Appendix I we tabulated first six roots of the trans-
cendental equations

F(f)=ftanf—C=0 .(2—43;1)

FPl=feotp+C=0 (2-43b)
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for several different values of C. These transcendental equations are associated
with the cases 2 and 3 in Table 2-2, respectively.

When using the secant or Newton-Raphson method [lor solving such trans-
cendental equations, it is preferable to establish the region where-a root lies by
a bisection method or a graphical approach, and then apply the secant or
Newlon-Raphson method. An examination of the roots listed in the Appendix
I1 reveals that the roots fie in the intervals which are multiples of n. Consider, for

-example, the transcendental equation (2-43a). For large values of C, the roots lie

in the regions where the slope of the tangent curve is very steep; hence difliculty
is experienced in the determination of roots from Eq. (2-43b) when the roots lie
in the regions where the slope of the colangent curve is very steep. In such

situations, the convergence difficulty is alleviated il equations (2-43a) and (2-43b) '

are rearranged, respectively, in the forms
F{f) = fsin ﬁ —Ccosff=0 (2-d44a)
F(B)=fcosf+ Csinf=0 (2-44b)

Example 2-1

A slab in 0 x <L is initially at a temperature F{x); for times ¢ >0, the
boundary at x = 0, is kept insulated and the boundary at x = L dissipates heat
by convection into a medium al zero lemperature, that is

&T T
E._,=(} at x=0 and %——I-HZT:O at x=L
x

Obtain an expression for ihe temperature distribution T(x, ¢} in the slab. Also
consider the case when F(x) = T, = constant,

Solution. The boundary conditions for this problem correspond to case 4 in
Table 2-2. Thercfore, when the eigenfunctions X(f,,x) and the norm N(f,)
are obtained from this table and introduced into equation (2-36a), the solution
becomes

x . 2 H.‘.
T(x,0)=2 ) e % -——-—.iﬁ'" +-5-~2 S
m=1 L(Bm+H2)+HZ
L
cos iy J Fxyeos fi, 0 dx {2-45a)
x'=0
where 3, values are the positive roots of
B.tanf, L=H, {2-45b)

For the special case of F(x) = T, = constant, the inlegralion in equation
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(2-452) can be performed and the solution reduces to

o 2 2 M
Ty =2T, Y, e" _ FutH:  sinbalop o (2450
) m=1 L(ﬁﬁ+H§)+H1 ﬁm

and by making use of the transcendental equation (2-45b} this result is wrilten
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as

T, H 05§,
T(-‘:| f} = 2TO z g"“ﬂ-zul > 21 C ﬂmt
m=t L + H)}+ Hy cos 8,,L

Example 2-2

A slab, 0 € x < L, is initially at a temperature F(x), for times ¢ > 0 the bounda-
riesat x = Qand x = Lare keptinsulated, thatis, 8T/dx =0at x=0and x = L.
Obtain an expression for the temperature distribution T(x,t} in the slab.

Solution. The boundary conditions for this problem correspond to case 5 in
Tabie 2-2. Obtaining X(f,, x) and N(f,,} [rom this table and introducing them
into equation (2-36) and noting that for this special case f, =0 is also an
eigenvalue, the solution of the problem becomes

| L 2w )
T(x,t}=~- Flxhdx + - o Ol
(’C ) LJ‘D (t){‘( nglc
L
€08 X J F(x'}cos X' dX’ (2-46)
x =

where 8, values are the roots of sin f,L.=0 or given as 8, =mafL.m=
1,2,3,.... Here, the first term on the right-hand side of the equation results
from the fact that fJ, =0 is also an eigenvalue. The physical significance of
this term is as follows: It represents the iemperature in the solid as t — oo (i,
after the transients have passed); it is an arithmetic mean of the initial tempera-
ture over the region 0 € x < L. This is to be expected by physical considerations,
since heat cannot escape from the insulated boundaries, eventually the tem-
perature cqualizes over the region,

2-6 ONE-DIMENSIONAL HOMOGENEOUS PROBLEMS
IN A SEMIINFINITE MEDIUM

.. We now consider the solution of a homogeneous heat conduction problem for

a semiinfinite region. That is, a semiinfinite region, 0 < x < oz, is initially at a
temperature F(x) and for times >0 the boundary surface at x = 0 dissipates
heat by convection into a medium at zero temperature as illustrated in Fig. 2-5.

(2-45d) -

.
%

Fig. 2-5 Heat conduction in a semiinfinite region.

The mathematical formulation of this problem is given as

P 127000 O<x<cwo, t>0 (2-47a)
ox3 a .
T imT=0 ai  x=0, >0 (2-47b)
x
T+ Fix) . for (=0, in 0<x<em (2-47c)

We assume a separation in the form T(x, ) = XU, lhen,_thc solution for the
function (1} is as given previously by equation (2-31); that is:

Ci) = e =M™ (2-31)

where f§ is the separation constant, and the space-variable function X(§, x)
satisfies the following problem:

2
d“ax W, pxe=0 in  O0<x<ow (2-48a)
X
—k, d-’i(-“) +hX(x)=0 at © x=0 (2-48b)
ax

The solution of equations (2-48) may be taken in the form

X(f,x) = Bcos fx + H sin fix (2-49a)
' where
H=T (2-49b)
ky

e e e ek
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and the separation‘ variable § assumes all values [rom zero to infinity continuously.
S The general solu'non for_ T(x,t) is constructed by the superposition of all these
elementary solutions by integrating over the value of # from zero to infinity

T(x, 0= j c(Be™*""(Bcos fx + H, sin fix)df (2-50)

g=0

The upplication of the initial condition 10 equation {2-50) yiclds

F(x) = f (HXB,x)df  in  O<x<wm (2-51)

=0
where

X(f, x)=ficos fix + H,sin fix
Thls_ .resul.t is a representation of an arbitrary function F(x) defined in the
semi-infinite interval 0 < x < co in terms of the solution of the auxiliary problem
defined by equations (2-48). A similar representation has been developed
(11, p. 228] when solving the heat-conduction problem (2-47) by the Laplace
transform technique, and that result can be expressed in the form

1'(-\']=~j X z[ I P "
K| | YRS (2-52)

where

X(B,x)=Boos fx + H,sinfx  and o=t
: NB) np*+H?

Thc. representat.ion given by equation (2-52) is valid when F(x) and dF/dx are
secl!onally coantinuous on each finite interval in the range 0 < x < oo, provided
@hc !ntegral Ig‘IF(x)Idx exists, il F(x) is delined as its mean value at each point
of discontinuity, . :

(ﬁ?y comparing cquations (2-51) and (2-52) we obtain the unknown coefTicient
() as

a2

('(ﬁ) = [V-(-”i . X(ﬁ. .\")F(.\") dx’ (2-53)

where 'N(,(J) and g(([}, x) are as delined previously. The substitution of equation
8—23; into equation (2-50} yields the sojution for the heat conduction problem
-47) as

: ) 1 x ’
T W)= —afpf__ ~ ¢ ] .
(x, ) L=o e Nm)xw, x) J;:D X(B.x)F(X)dxdf  (2-54)

ONE-DIMENSIUNAL HUVIUULINE W DI @ i o

TABLE 2-3 The Solution X(£ x) aod the Norm N{(f} of the Dilferential Equation

.

“

.
i

d2X(x) 2 .
_.d..\._.l-.+p X{(x)=0 in De<x<x

'l\Q\
\

Subject 1o the Boundary Conditions Shown in the Table Below

Boundary Condition

No. at x=0 X(8.%) LN
dX . 2 I
1 _ —:E+H1X=0 feos fix + H sin fx r_r}Tl:PTf
2 i)£=0 cos Bx 2
dx ) : "
3 X=0 . sin fix z
n
where
X(f5, x) = ffeos fix + 1 sin fix (2-354)
f
L2l ad H= (2-55b)
N(f) =f°+Hy ky

The functions X(f,x) and N(B) given by equations (2-55) are for 4 boundary
condition of the third kind at x = 0. The boundary condition at x = 0 may also
be of the second or the first kind. We list in Table 2-3 the functions X(f, x) and
N(f) for these three different boundary conditions at x = 0. Thus, the solution of
the homogencous heat conduction problem for 2 semiinfinite medium 0 x < =
given by equations (2-47)is obtainable [rom equation {2-54) for the (hree different
boundary conditions at x =0 if X(f,x) and N(f} are taken from Table 2-3,
accordingly.

Exnmple 2-3

A semiinfinite region 0 € x < o iy initially al temperature Flx). Fortime ¢ > 0
the boundary at x =0 is kept at zero temperature. Obtain an expression for
the temperature distribution T{x,) in the medium. Also, examine the case

when F(x} = T, = constant.

Solution. The boundary condition for this problem corresponds to case 3 in
Table 2-3. Obtaining the functions X(f,x) and N(B) from this table -and
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substituting in equation (2-54) the solution becomes
2 (=] =0
Tix, t) =~ j F(x") e~ sin fBxsin fx’ dB dx’ {2-56)
Tle=o f=0

The integration with respect to f§ is evaluated by making use of the following
relations

2sin fxsin fix’ = cos f{x — x') — cos f{x + x') (2-57a)

and from Dwight [17; #861.20] we have

- _apz, . _ l_ _ (x — x-)z i
L=0 e cos f{x —x"ydf o exp[ T ] (2-57b)

" , _ E _ (x+ x')z] ]
L=e e cos filx + x")df \/40:1 cxp[ o (2-57¢)

[=4]
J e~ 2" gin fix sin fx’ df

a=0

! x—xP X+ x)?
=(4m;,-u[°xp(‘“z§)‘)‘-“P("{Yf&f))] 2370

and the solution (2—56) becomes

L™ penl el =57 F(x+x')2)] ,
T(x,t}= (4 ,)uzJ F(x)[exp( o ) exp(. ym dx

(2-582)

Then

NS

For a constant initial tcmpcraturc in the solid, F(x)= T, = constant,
equation (2-58a) becomes .

o W2 o n2

ST [J cxp(_g-g_-_r__ )dx,_J cxl3(_(x+x) )dx,]
Tn (4"-'01””' - fort R 4ot

(2-58b)

Introducing the following new variables,

—n= XX , dx' = /ot dy for the first integral

yo= X+ x , dx’ = /dat dy for the second integral
4ot
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equation (2-58b) becomes
oo aG
T,z I}=L|: j e~ dy —HJ. e~ dn] (2-58¢)
TO \/1_1— n.uJE ::IJ;;

Since ¢~ 1s symmetrical about y = 0, equation (2-58¢) is writien in the form

x{Vaar
Ex'_[)=i.l' e”"‘dq 2-58d)

T, Ja

The right-hand side of this equation is called the error Sfunction of argumenl
r/\/t—la! and the solution is expressed in the form

T(x, 1) ( x )
KL Y (2-58¢)
To “ o dat

The values of the error functions are tabulated in Appendix III, Also included
in this appendix is a briel discussion of the properties of the error function,

0

2-7 FLUX FORMULATION

The one-dimensional transient heat conduction equation, customarily given in
terms of temperature T(x, 1), can be expressed in terms of heat flux, ¢(x, ). Such
a formulation is useful for solving heat conduction in a semiinlinite medium with
prescribed heat flux boundary condition. Consider the heat conduction equation

62'1“ 19T (x, 1)

2-59a
ﬁx T & ( )
and the definition .of the heat flux
gle )= — kTR0 (2-591)
ax

Equation (2-59a) is differentiated with respect to space variable and the result
is manipulated by utilizing equations (2-59a) and (2-59b). We obtain

&g 19q(x, 1)
A w A (2:53¢)

which is a differential equation in flux and is of the same form as equation (2-59a)..
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T.O illustrate its application, we consider heat conduction in a semiinfinite
medium @ < x < oo, initially at zero temperature and for times t > 0, a constant
h.eat fAux f, is applied at the boundary surface x = 0. The mathematical formula-
tion of this problem, in the flux formulation, is given by

d’q _13g(x,1)

6_;5 P in O<x<on, >0 (2-59d}
¢lx. 1) = fy = constant at x=0, >0 (2-59¢)
gix,0)=0. for ~ t=0 . {2-59f)

A new _dependént variable Q(x, ¢) is defined as
Q(x! I) = q(xv [) - fD (2'59&)

Then the problem takes the form

79 _190x1)

Freiairy in O<x<on, (>0 (2-60;_1)
Qfx,1=0 at x=0, >0 (2-60b)
Qlc,t)=— fo for . (= 0 (2-60c)

The solution o_f this prbblcm is immediately obtained [rom equation (2-58¢} as

Qx,1) = — foerl(x//4a0) (2-61a)
or — o
qlx, 0= fo + Q06,0 = fo[1 —erl(x//4a0)] (2:61b)
glx,t) = foerlc (x/\/ﬁ) {2-61c) -

ané q(x,1) is known, the temperature distribution T{x,1) is determined by the
integration of equation (2-59b). We obtain

1 (\ 1 =‘l’: J erle (.\"/\/ dour) X (2-62a)

The integration is performed by utilizing the relationship given by equation (6)
in Appendix IIL

TATCA e -
T(X’IJ=TD[(¥) e = Hicrfc(.\'/\/tiact):l (2-62b)
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e

and the temperalure at the surface x =0 becomes
2 1\
T(0,0= {“ (5) (2-620)
3 i

Examgle 2-4

A semiinfinite region 0 < x < oo is initiaily at lemperature F(x). Fortimest >0
the boundary at x = 0is kept insulated. Obtain an expression for the lempera-

ture distribution in the medium.

Solution. ‘The boundary condition for this problem corresponds to case 2 in
Table 2-3. Therefore the formal solution given by equation (2-54) becomes

Tix, ()= 2 .[ F(x') .[ . ¢” " cos fxcos fxdfdx {2-63a)
1]

T Jy= p=0
From the trigonometric refations we have
2 cos fix cos fix’ = cos fi(x — x') + cos fix +x7) (2-63b)

Therefore, the integration with respect to f in the above solution is performed
by utilizing equations (2-57b) and (2-57c); then the solution becomes

OOOCOOOQOHO 0L

@

()

—

- i (= [ x=x)
i T 0= (f{\mt.r)‘:rE Jx'=0 e Jl_u\p \_-_ 4ot }
N n2
¥ exp(—(x + x) ):ldx' (2-63c)
4ot

A comparison of the solutions (2-58a) and (2-63c) reveals that the two exponential

terms are subtracted in the former and added in the latter.

SOOOQUOCOoOO

|

: 2.8 ONE-DIMENSIONAL HOMOGENEOUS PROBLEMS :i
IN AN INFINITE MEDIUM "
We now consider the homogeneous heat conduction problem for a one-dimen- ~
i sional infinite medium; — wo-<x- < coswhich isinitially.nt a temperature F(x). We '/:
are interested in the determination of the temperature T{x, ) of the medium for ~
time t >0, No boundary conditions are specified for the problem since the et
medium extends to infinity in both directions; but the problem consists of a C
- boundedness condition on T(x, ). The mathematical formulation is given as -
- T 18T(x,¢ _ e

{: ) 19Ty TR e s (2-64a) ‘

dax o Ot ,
(' —\
i —
N
4‘/\
o
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T = F(x) for =0, in —x<x<o {2-64b)

By separating the variables in the form T(x,#) = X{x)T'(1), the solution for the
function I'{s) is given as '

T{t)=e¢ ™™ (2-64c)

and the [unction X{x) satisfies the equation
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are sectionally continuous on every finite interval on the X axis, F (32 is defined
as its mean value at each point of discontinuity, and the integral j_mlF(x]ldx
exists [4,p. 115]. o

A comparison of the results in equations (2-66a) and (2-66d) implies that the—
coeflicients are given by

[a(f) cos Bx + b{P)sin fix] = i j F(x')cos.f(x — x'ydx' (2‘-6_7)

x'=—w

~
LV

GIVAVIVICICICICICIULORGRY

1.

2
TXD | pyg=0 i
dx-

—mLx < (2-64d)}

Two linearly independent solutions of this equation are cos fix and sin fix,
corresponding to each value of 8. As negative values of # generates no additional
solutions, we consider only f = 0. The general solution of the heat conduction
problem is constructed by the superposition of X(8, x)T(¢} in the form

T{x, )= Jm e "M a(B)cos fx + b(f) sin fx7dp (2-65)

p=0

The unknown coelficients a{f8) and b(ff) are to be determined so that for t = 0 this
solution represents the initial temperature distribution F(x} in the medium
— 50 < x < . The application of the initial condition (o equalion (2-65} yields

F(x)= Jm Ca(ff) cos fix + B{f) sin fx] 4B, —m<x<e (2-66a)

p=0

This equation is the Fourier formula for the integral representation of an arbit-
rary function F(x) defined in the interval - oo < x < o0; the coefficients a{f) and
R b(fi) are given as [4,p. 114; 14, p. 1]

Then the solution given by equation (2-65) becomes

T(x, )= L Jm g uf Jm F(x")cos f(x — x")dx' df (2-68)

F A=0

In view of the integral, Dwight [17, #861.20]

* —afi?t 4 i (x - x')z] 2'69
L=u£ Pt cos f(x — x')df = acxp[— ™ (2-69)

The solution (2-68) takes the form

” (=P

1 i s _
T(x"):tti;[a[]i’i J;'=_mF(X)CKP|:—" .4a; ]dx (2-70)

Example 2-5

In a one-dimensional infinite medium — 0 < x < oo, the regio_n - L <x< L
is initially at a constant temperature Ty, and everywhere outside t.hls‘ region
is at zero temperature. Obtain an expression for the temperature distribution
T(x,t) in the medium for times ¢ > 0. :

Solution. For this particular case the initial condition function is of the form

Py — T, imn —L<x<L
“=lo everywhere outside this region’

\_/" Q_/‘ \_/ \/ A

i

\_/\_/\/)

v

. Equations (2-66b,c)_are _substituted inta equation (2-66a), the trigonometric
terms are combined and the order of integration is changed. We obtain

el
p=o LT

The represeniation given by equation (2-66d) is valid if function F(x) and dF fdx

j ® F(x"Ycos fi(x — x') dx‘:I dp (2-664d)

x'=—m

RN,

alff) = rl: J F{xYeos fx’ dx' {2-66b)
(et
h(f) = - F{x)sin fx' dx’ ' 2-66¢)
f n .L-: - (x)sinfi' ( and the solution {2-70) becomes

T, - (E (x—x')z] .
Ti - expf — dx 2-1)
1) (dnat)'? _[ L P dat
A new varnable is defined as
n= "% dx'=—Jdatdy (2-72)

4

B
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Then equation {2-71) becomes

T 3 (L + x)i~Fat 2 tL-x)~dx ,
T(.l )= [ J’ e~ "dy 4 = J- e :l (2-73)
2L/ ts Jado ’

which is written in the lorm

Txn ][erf(L+'Y)+crf(Lux)] in <X < (2-74)
——u am . ———— e e —_— X w -
T, 2 N JAat

29 MULTIDIMENSIONAL HOMOGENEQUS PROBLEMS

Having established the eigenfunctions, eigenconditions, and the normalization
integrals for one-dimensional problems of finite, semiinfinite, and infinite regions,
we are now in a position to apply the method of separation of variables (o the
solution of multidimensional homogeneous heal conduction problems as illus-
trated below with representative examples.

Example 2-6

A reclangubar region 0 € x € 4,0 € y £ bisinitially al temperature F{x, y). For
tines ¢ > 0 the boundary at x =0 is kept insulated, the boundary at y=0is
kept at zero temperature, and boundaries at x = a and y = b dissipate heat by
“convection into an environment at zero temperature as illustrated in Fig, 2-6.
Obitain an expression for the temperature distribution T(x, y, f) for times t > 0.

Solution. The mathematical formulation of the problem is given as

2 2 1
g 6__1‘_"=_§I in 0<x<a, O<y<h (>0 (2-73a)
a? o dt
A B
faT=0 ut x=0; At—;-*-HIT O-at x=a for >0 (2-75b)
X

Fig. 2-6 Boundary and initial conditions for a rectangular region considered in
Example 2-6.

MULT!DIMENSIONAL HOMOGENEOUS PROBLEMS &5

T=0 at y=0 ﬂ*-1~H_,T 0 at y=b for 1>0 (2-75¢)
ay
T = F{x,)) for t=0,intheregion (3-75d)
Assuming a scparation in the form
T(x, .0 = TNX YY) {2-76)
the problems defining the X(x) and Y{(y) [unctions become
i X(\) + A2 X1x)=0 in O<x<u ' (2-77a)
Tdxt .
d—‘{_o at x=0; fd—1+HX 0 atx=a (2-77b)
dx
and
t—l-- }Q)-l- 1Y) = in O<y<bh (2-78a)
dy?
Y=0 at y=0; ar +H,Y=0 al y="h {2-78b)
dy
and the solution for ['(1) is given by
[(1) = g~ 2P +7 {2-79)
The complete solution for the problem is constructed as
x  * R
Teey )= 3 Y o™ P X (B )Y (i ) (2-80)

m=1n=1

For t = 0 equation (2-80} becomes
Fx,y)= ): Y XX Yy i O < Deyah (2280
nt=1n=1

The unknown coefficient ¢, is determined by operating on both sides of
equation (2-81) successively by the operators

o b
J X(fnx)dx  and J Y (3w )Y
g Q

OOV O OY YYDV OV YYDy (Y Yy TV (")'{’\i

-
[y

ROy Yy (Y Oy (O
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and utilizing the orthogonality of these eigenfunctions. We obtain

{ @ b '
= T X e - 1Y ' ¥ Fi: '!_|‘ d_ 'd K 2‘82
¢ N(ﬂm)N()'n]L,qJ;.:o (B XV ¥ (3 pIF(, )X dy (2-82)

where

b

N(ﬂm)EJaX ¥p,,x}dx  and  N{p)= J Y2y, y)dy

0 0

The substitution of equation (2-82) into equation (2-80} gives the solution of
this problem as .

Tl 30 = z Z e—a(ﬂ,z,.‘r?,’,)!

a f*b
—— Y o (O X(B,,x
m=1n=1 N(ﬂm)NU'") (ﬁm x) (T y) I j (ﬁ § )

0JO
Y Y F YA dyY (2-83)

The eigenfunctions, the eigenvalues, and the norms appearing in equation
(2-83) are immediately oblainable from Table 2-2; that is, X (B x) satislying
the eigenvalue problem (2-77) corresponds to case 4 and is given by

X(B,.x)=cosf,x (2-84a)

2 2
L, PuthH: (2-84b)
N, alfi+H3)+H,

and the fl,, values are the positive roots of
p.tanfa=H, (2-84c)

The flunction Y{(y,, y) satisfying the cigenvalue problem (2-78) corresponds to
case 7 in Table 2-2; after replacing L by b, f by y, and H, by H,,weind

Yy, ) =siny,py {2-854)
1 Doy 4 H2
RSN ki W (2-85b)

Nip) byl + H)+H,

and the 7, values are the positive roots of

ypcoly,b=—H, (2-85¢) -

Introducing equations (2-84) and (2-85) into equation (2-83), the solution
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becomes

fnt Hi vat HL
a(BE + HY) + Hybly2 + H) + H,

Ly o N
Taynn=4 Y Y, o alBh+ vah.

m=1n=1

- a b
cos flxsiny,y J. cos fI_x" siny, Y F(x', ) dx' dy (2-86)
=DJy=0 .
where ., and 7, are the positive roots of the equations (2-84¢) and (2-85¢),
respectively: )

Example 2-7

A rectangular parallelepiped 0 S x <0<y <b 0z < ¢ is initially at tem-
perature F(x,y,z). For times ¢ > 0 all boundary surfaces are kept at zero
temperature. Obtain an expression for T(x, .2, t} for times t > 0.

Solution. The mathematica! formulation of this problem is gi\fcn as

2T T &T 13T

b= OD<x<a 0O<y<h 0<z<g
ax*  By* 82 adt L

for t>0 {2-87a)
T=0 on all boundaries, for ¢ >0 (2-87h)
T=F(x,y.2) for t =0, in the region (2-87c)

Assuming a separation in the form T{x, y,z,f)=T" (X (x)Y(y)Z(z), the complete
solution for T(x, y,z,1) in terms of these separated functions is written as

Tpnh= 3 3 5 oo Bt BB Y O N2l D)  (288)

m=1n=1p=1

The application of the initial condition gives

+

R

CFand= 5 S Y g X (B )Y (i V2 2) (2-89)

m=1ln=1p=1

The unknown coeflicient ¢, is determined by operating on both sides of
equation (2-89) successively by the operators

a b '3
j X(ﬁm,.\')d.\', j Y(}’m}’)d}'- and -[ z(f]ﬁ,Z)dZ

o 0 o
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and utilizing the orthogonality of these eigenfunctions. We obtain

i _ 1 .a b c ' .
('mr:p N(HM)N(}'H)N(UP) -[ '=0 J;"=0 J':' =0 X(ﬂ"“’ * ) Y(?"‘ y )Z("P’ zr)
-F{x', ¥, 2")dx' dy' d2' (2-90)

where

0 o

N(ﬂm)aj‘ XBx)dx,  N(p)= f " Y v dy,
and .

N(n,)= .[ ZHn,2)dz
4]

The substitution of equation (2-90) into equation (2-88) gives the solution as

- T T T gl ! )
J(X:J’.Za”— Z Z Z e Bt 1t X(ﬁm,ij(}’n,)’)Zr(pr,Z}

m=1n=1p=1 N(ﬂm)N(Tu)N('fp)

a b ¢
j u,[ .,j X (B XV Y (1 )20, 2 )F (X', Y, ) X' dy d2
¥V =M
(2-91)

L

Here, the functions X, .Y, Z satisly the eigenvalue problems whose solutions
cor{esponds to those given by case 9 in Table 2-2. Therefore, from Table 2-2
we immediately obtain

. 1 2
X(B,,, x) =sin p'mx, NG = - and B..'s are roots of sin §,,a=0
-Y(}r,,, y)=siny,y, l =g and e s are roots of siny,b =0
N(]’") b ne e nv =
Z(n,,z)=sinny,z ! =g and § [ si
My - N < 11,;’s are raots of sinx,c =0

a b c
' J J. sin fi,x"siny,y siny, = F(x', ', 2') dx dy dz’
x=0Jy=0Jr=0 (2-92)
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where
M=E1_[, m=1,2,3,...
a
?"=TE, n=1,2.3...
b
,’p=_)f‘ ep=1,2,3,.00
c :
Example 2-8

A semiinfinite rectangular strip0 < y < 5,0 <x < 0 is initially at temperature
F(x,y). For times t >0 the boundaries at x =0 and y=>b are kept at zero
temperature and the boundary at y = 0 dissipates heal by convection into an
environment at zero temperature as illustrated in Fig. 2-7. Obtain an expression

for the temperature T(x, y,t) for times ¢ > 0.

Solution, The mathematical formulation of this problem is given as

2 71 1
PT ET_10T 4 goxco, 0<y<h (>0 (293)
dx* o Mt oo

T=40 ’ at x=0, >0 (2-93b}
T
—%—+H,T=0 at y=0, t>0 (2-93¢)
}‘
T=0 at y==b, t>0 (2-93d)
T = Fix,y) for 1=0,in the region (2-93e)
y
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The general solution for T{x, y, 1) is written in the form
o B . 2
Tix,p,t)= 2. e B IR, )Yy, Y)dB (2-94)
t=1 Jp=0
where X{f}, x) satisfics the auxiliary problem

X
me + X () = in  O<x<oo (2-9%a)
ax

X=0 at x=0 {2-95b)

and Y{y,, y) satisfies the eigenvalue problem

d Y
T YO) + 2 Y(J') = in O<y<bh (2-96a)
i
dy
-+ H,Y=0 at. y=0 - (2-96b)
dy
Y=0 al y=nh (2-96¢)

The application of the initial condition to equation (2-94) yields

F(X, .V) = i J. Cn(ﬁ)‘Y(ﬂ! x) Y(Tm J'} dﬁ (2'97)

=0

To determine the unknown coefficients ¢,(ff) we first operate on both sides of
equation (2-97) by the operator P’ Y(y,, W dy and utilize the othogonahty of
the eigenlunctions ¥(y,, y). We obtain

0= r cMX(Px)df i O<x<e (2-98a)

s=0

where

h h
)= -~-—J‘ Yy, NF(x, y) dy, Niy)= J Yy, »dy  (2-98b)
Ny, o

Equation (2-98a) is a representation of an arbitrary function f*(x), defined in
the interval 0 < x < 20 in terms of the functions X{#, x), which are the solution
of the auxiliary problem (2-95). This representation is of exactly the same form
as that given by equation (2-51); the coellicient of equation (2-51) is given by
equation (2-53). Therefore, the unknown coeflicient ¢{f) in equation (2-98a) is

MULTIDIMENSIONAL HOMOGENEOUS PROBLEMS n

determined according to equation (2-53); we obtain

a0

) .
Y VF(x, ) dy |dx  (2-99)
cdf) = N(mj; , X(, )[N( ")L , (Fm MIF(x, ) J] x

The substitution of equation (2-99) inte equation (2-94) gives the solution for
Tl y 1Y as .

[

) 1) = ” —atptyl "r__X Y(y,.
T‘“'” L Lﬂ,e NGNGBV 2

U ) I h xm,x')rm.J-')F(x',y')df"’"']"” | -100
x=0 ‘

=0

The eigenfunctions Y(y,, ¥).- the norm N{y,) and the eigenvalues y, for the y
separation are immediately obtainable from case 3 of Table 2-2 by appropriate
changes in the symbols. We find

Y., ¥) =siny,{b— ) . (2-101a)

2 2
L, Yt Hy (2-101b)
Niy) byl +HD+H, : »

and the y, values arc the positive roots of
yocotyb=—H, (2-10fc)

The function X(f, x) and the norm N(f) are obtained from case 3 ol Table 2.3,
as

X{B,x)=sinfix (2-102a)
12 . (2-102b)
N} =

Substituting equations (2-101) and (2-102) into equation (2-100) and after
changing the orders of integration, we obtain

T{x’y,[)zf z e-n‘)’l’ ?n

— I 1 b—
- L b7+ )+ siny,{b — y)

w0 b « :
J J F(x', y)siny, (b — y)dx' dy' j e~ gin fx’sin fxdf -
=0 Jy=0 f=0

: (2-103)
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The last integral with respect to § was evaluated previously and the result
given by equation (2-57d); then equation (2-103) becomes

I & 72+ Hi
Tix, p t) = — et tn oL Tulb — ¥
G =ity 3, €T et 1 sinb =)

- 2
f f F{x', y")sinp,(h — ) [cxp( (\ x) )
oy -n 4ot

4ot

1 2 7 '
- exp( (et 2-) }d.\:' dy (2-104)

2-10~- PRODUCT SOLUTION

In the rectangular coordinate system, the solution of muitidimensional homo-
genteous heat conduction problems can be written down very simply as the
product of the solutions of one-dimensienal problems if the initial temperature
distribution in the medium is expressible as a product of single space variable
[unctions. For example, for a two-dimensional problem it may be in the form
F(x, y} = F((x) F,(), or lor a three-dimenstonal problem in the form F{x,y,2) =
F \(x)}F,(y}F4(2). Clearly, the case of uniform lemperature initial condition also
is expressible in the product form.

To illustrate this method we consider the following two- d:munsmlml homo-
geneous heat conduction problem for a rectangular region 0 < x<a, 0y <h

2 2

FT FT_L9T o o<x<a O<y<b (>0 {2-105)
By ot&t

T nT=0 @ x=0, >0 (2-105b)

ox
gT-!-h T=0 at x=d, >0 {2-105¢)
—k %T+113T 0 at  y=0 (>0 (2-1054)

) ¥
T n =0 at  y=b >0 (2-105¢)

dy

T = F (x)F4(y) for  t=0,in the region (2-1050)

where
T=T(x,pt)
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To solve this problem we consider the following two one-dimensional homo-
geneous heat conduction problems for slabs 0 < x aand 0< y < b, given as

ST, _LeT,

—_— = i OQ<x<u, t>0 (2-106a)
Xt ox Ot
—k, "f' +I T, =0 at x=0, (>0 (2-106b)
X
L T, ’
by~ e + 4, T, =0 at X =ud, >0 (2-106¢)
= F {x) _ for -1=0, in 0€x<gua (2-106d)
and
2
o, 19T in O0<y<h >0 (2-107a)
vt o d
c"'T;L
J o .
arT,
ky—=+ h.;T,_ =0 at y==b, t>0 (2-107¢)
dy
Ty = Fa(m for t=0, in 0<y<b (2-107d)

Here we note that the boundary conditions for the problem (2-106) are the same
as those given by equations {2-105b.¢) and those for the problem (2-107) are the
same as those given by equations (2-105d,e). Then the solution of the two-
dimensional problem (2-105) is given as the product solution of the above
one-dimensional problems as

T(x, y, 1) = Ty{x, 0)- Tolp, 1) (2-108)

To prove the validity of this result we substitute equation (2-108) into equations
(2-105) and utilize the equations {2-106) and (2-107). For example, the substitu-
tion of equation (2-108) into the dilferential equation (2-1054) gives

2T, AT aT, 6‘T
T, o4 T, LI T z
2 ax? + It w ﬂt Y
or “
T, la'ﬂ) (62'1‘2 I@Tz)
o AL PR P - 0 2-109
Z(axl x O oy w 2109
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4 SEPARATION OF VARIABLES IN RECTANGULAR COORDINATE SYSTEM

Thus, the differential equation is satisfied in view of equations (2-106a) and
(2-107a). '

Similarly, the substitution of equation {2-107) into the boundary conditions
(2-105) shows that they are also satisfied. Hence, equation (2-108) is the solution
of the problem (2-105).

Examplc 2-9

A semiinfinite corner, 0 < x < oo and 0 <y < o, is initially at & constant
temperature Ty; for times 1 > 0 the boundaries at x =0 and y =0 are kept at
zero temperatures. Oblain an expression for the temperature T(x, y, t} in the
region for times ¢ > 0.

Solution. The solution of this problem can be expressed as the product of the
solutions of ‘the following two one-dimensional problems: {1} Ty(x,), the
solution for 2 semifinite region 0 < x < o¢ initially at a temperature F(x) =1
and for times ¢ > 0 the boundary surface at x =0 is kept at zero temperature,
and (2) Ty{y, ), the solution for a semiinfinite region 0 < y < oo initially at a
temperature Fy(3) = T, and for times ¢ > 0 the boundary at y =0 is kept at zero
temperature, Clearly, the initial condition for the two-dimensional problem
is expressible as a product, Ty = 1+ T,. The solution of such one-dimensional
problem was considered previously in Example 2-3; thus obtaining these
solutions from equation (2-58¢}, we write

Tl(x.r)=erf( "‘_) and Tz(y,r)=Toerf( Y )

At \/ﬁ

Then, the solution lor the above two-dimensional problem becomes

Tl )= Ty(x, O Talp ) =T, r(—x—) f( y ) (2-110)
| (e )= Ty, T3 1) = Ty er \/MCT S

Example 2-10

A rectangular region 0 < x € 4,0 < y < b is initially at a uniform temperature
F{x.3) = Ty For times ¢ > 0, the boundaries at x =0 and y = 0 are insulated
and the boundaries at x = a and y =1 dissipate heat by convection into an
environment at zero temperature with a heat transfer coeflicient h (or H = h/k).
Figure 2-8 illustrates the boundary conditions for this problem. Obtain an
expression for the temperature distribution T(x, y,) for times ¢ > 0.

Solution. The solution of this problem can be expressed as the product of the
solutions of the following two slab problems: {1) T\{x, ), for a slab,0 < x € q,
initially at a temperature F(x}= 1 and {or times t > 0 the boundary at x =0
is insulated and the boundary at x = a dissipates heat by convection into an
environment at zero temperature with a heat transfer coefficient Ji (or H = h/k);

MULTIDIMENSIONAL STEADY-STATE PROBLEMS 15

ar -
3y +HT=0

Fig. 2-8 Boundary and initial conditions for a rectangular rcgioit considered in
Example 2-10.

and (2) Ty(p, 1), for a slab, 0 < y < b, initially at-a temperature F(y)= T, and
for times t > 0 the boundary at y =0 is insulated and the boundary at y=b
dissipates heat by convection into an environment at zero temperature with
a heat transfer coefficient h (or H = h/k). These slab problems were solved
previously in Example 2-1 and the solutions for T(x, t) and Ty(y, 1) are readily
obtainable from equation (2-45d) by appropriate changes in the parameters,
We set Ty =1, L=a, and H, = H to obtain

=, 2 H coS fpx
Tix,0)=2 — et m 2-111a
60=2 Y e e i + Heos (3111a)

where the i, values are the positive roots of f,, tan f,.a = H.

Weset L=b, H,=H,x=y and fi, =y, to {ind

= H COS Y,y
Ty t)=2T, 3 e~ " 2-111b
) ? .,Z“; b(y2 + H¥)+ Hcosy,b ( )

where the v, values are the positive roots of y,tany b= H.
Then the solution of the above problem for the rectangular region becomes

T(x, p,1) = Ty (x, )T, 1) (2-111c)
T(x,y, 1) = 4T, i )ﬂf: : Hie™0n 7 €08 B,,.x.cos_}’.,z
b 0 L L [a(B2 + H) + H1[b(y? + H*) + H]cos facosy,b
‘ _ (2-111d)
Y'yeeed 2, g, )it

¢

2-11 MULTIDIMENSIONAL STEADY-STATE PROBLEMS
WITH NO HEAT GENERATION

The rmultidimensional steady-state heat conduction problem with no heat gene-
ration can be solved by the Separation of variables technique when only one of
the boundary conditions is nonhomogeneous. If the problem involves more than
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one nonhomogeneous boundary condition, it can be split up into a set of simpler
problems each containing only one nonhomogencous boundary condition; the
method of separation of variables can then be used to solve the resulting simpler
problems. Consider, for example the following steady-state problem subject to
more than one nonhomogeneous boundary condition

V*T(r)=0 in region R - {2-112a)
oT

k,-a— +hT=f; on boundary S; (2-112b)
n

where 3/dn; is the derivative along the outward-drawn normal to the boundary
surface S, i=1,2,..., N and N is the number of continuous boundary surfaces of
the region, and f, is the nonhomogeneous part of the boundary condition at the
surface S, This problem can be split up into a set of simpler problems for the
temperatures T,{r) in the form

VIT()=0 in region R (2-113a)

k;?f'l' h;T]= (suff on boundary Si 7 (2-113b) .
Hy
where

i=12,...,N

Jj=12,...,N

i .
d;; = Kronecker delta = 0 or I ?Ej.
1 for i=j

Clearly, each of the steady-state problems given by equations (2-1 13) has only
one nonhomogeneous boundary condition. Then, the sofution of the heat con-

" duction problem (2-112)is obtained by the superposition of these simpler problems

in the form .

T(r) = i Ty(r) (2-114)

i=1

The validity of this result is readily verified by substituting equation (2-1t4) into
equations (2-112) and utilizing equations (2-113).

Example 2-11

Obtain an expression for the steady-state temperature distribution T(x, y} in
a rectangular region 0 < x < 4,0 < y < b for the boundary conditions shown
in Fig. 2-9.

. Fig.2-9 Boundary conditions for a rect

IVIUL 1 ISR IVIL LV st e ae o m a5 = =

IS

angular region considered in Example 2-1l.

Solution. The mathematical formulation of the problem is given as

PTxy) PTHYD g 3y 0<x<a 0<y<b (2-115a)
ax? 8yt . E

oT_y ax=0, J4HT=0 atx=a (2-115b)

o0x dx .

T=f(x) aty=0 %LO aty=>b (2-115¢)

. - }1

In this problem the boundary condition at y = 0 is nonhomogencous; lookmlg
" ahead in ihe analysis, we conclude that the nonhomogeneous part f(x)of t_hls
boundary condition should be represented in terms of the separat;d solution
X(x) for the problem. Therefore, when separating the temperature in the form
T(x, ) = X(x)Y{y), the sign of the separation constant shou}d be 50 cho§en as
to produce an eigenvalue problem for the function X (x). With this considera-

tion the separated problems become

d—zﬂﬂ-l-ﬁz}{(x)so in D<x<a (2-116a)
dx? . .

X _ o at x=0 2-116b) °

dx . :

dX px—0 - at  x=a (2-1160)
dx

and

sz(}’)_ﬁzy(y)___Q in  O<y<b (2-117a}
dy*

r_ at  y=b (2-117b)
dy

OOCO00CO00000000000O000COO0O00O00OO

e ™~
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The solution of the eigenvalue problem (2-116) is immediately obtainable from
Table 2-2 as case 4; by replacing L by @ and H, by H we find

. 2 2
X(B o0 x) = 008 X, N(lﬂm) =2 ﬁf:r ;’2’; Py (2-118a)
and the fi,, vatues are the positive roots of
pntanf,a=H {2-118b)
The solution of cquaﬁmm (2-117) is taken as
Y{f. ¥) = cosh f.(b— ) (2-118¢)
The complate solution for T(x, ) is constructed as
Tl )= fl ¢, cosh B.(b— y)cos fx (2-119)

which satisfies the heat-conduction equation (2-115a) and its three homoge-
neous boundary conditions; the coefficients.c,, should be so determined that
this solution also satisfies the nonhomogeneous boundary condition. The
application of the boundary condition al y =0 yields '

@
flx)="3 cncoshfbeosfx in  O<x<a (2-120)
m=1

The coeflicients c,, are determined by ufilizing the orthogonality of the func-
tions cos f,,x; we find

] | ! 4 r ’
Cm= N} cosh B.b L cos f,.x' f(x)dx {2-121)

The substitution of this expression into equation (2-119) together with the
value of N(f,) as given above, results in the solution

o 2 2 _ a :
C Tlay)=2 Y Pt H cosh flb = 3) cos f,.x J- cos f,,x' flx)dx

metalf2+H)+H  coshfi,b o

{2-122)
where the f, values are the roots of equation (2-118b).

Example 2-12

Obtain an expression flor the steady-state temperature T(x, y) in a semiinfinite
strip 0 < r < b,0 £ x < oo for the boundary conditions shown in Fig. 2-10.

MULTIDIMENSIONAL STEADY-STATE PROBLEMS 79

Fig. 2-10 Boundary eonditions for a semiinifinite strip considered in Example 2-12. .

Solution. The mathematical formulation of this problem is given as

2 2 .
6T(x,y)+6 TN o in 0<y<b, O0<x<oo (2-123a)

ax? ay?
T=0 at x =0, ‘ (2-123h)
T=[(x) aty=0, T=0 at y=b (2-1230)

The separated equations for the functions X (x) and Y(y) are now constructed
by considering the fact that the nonhomogeneous boundary condition func-
tion f{x) defined in the interval 0 <x <0 should be represented by the
function X(x). Then the separated problems become

d2X(x)

+PX(x)=0 in O0<x<w {2-124a)

dx?

X=0 at  x=0 (2-124b)

and

2

Yy _ BY(»=0 O<y<hb (2-125a)
dy? ‘ .

Y=0 : ' at  y=bh (2-125b)

The solution of the problem (2-124) is obtainable from Table 2-3, case 3, as

1 2
X(B,x)=sinfix and —_——= 2-126a
g s NG @126
and the solution of (2-125) is given as
Y(6.) = sinh (b — y) C n6b)
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Then the complete solution for T(x, y} is constructed as

T(x, )= Im A(f) sinh S(b — y}sin fix dfi (2-127)
fil

=0

If this solution should also satisfy the nonhomogeneous boundary condition

al y =0 for the ahove heat conduction problem, we obtain

f(x)=J.w A(f) sinh Bbsin Bx df in O<x<op (2-1282)

f=0

This is a representation of function f(x) defined in the interval 0 < x < co0; but
it is a special case of the representation given by equation (2-51). The coefli-
cicnt for equation (2-51) is given by equation (2-53). Therefore, the coefllicient
of equation {2-128a) is determined [rom the result in equation (2-53) as

A(f) sinh §b = N%ﬂ) : sin fix' f(x")dx’ (2-128b)

where

as given previously. The substitution of A(f) into equation (2-127) gives

T{x,y):ZJ N ﬂgm:}—)sinﬁxdﬁj N

in fx'f (x') dx’ 2-129:
nJg-p sinhfb osmﬁxf(x) x ( a)

or changing the order of integration we obtain

T(x,y}=-2- ” _,f"()c')dx'J‘un Si—nl-f—msinﬂxsinﬁx'dﬁ (2-129b})
. p=op sinhfb :

xt=

The integral with respect to § has been evaluated [ 16, Section 1{.11]; then the
solution for the temperature becomes

T I P T\‘:y © ' . 1
. I(.\‘”—.’.bbm b .L-guf(x)[t:os [=(b — y)/b] -+ cosh [a(x — x')/b]

_ : ]dx' (2-130)
cos [w(b — y)/b] + cosh [n(x + x")/b]

Example 2-13

Obtain an expression for the steady-state temperature T{x, y} in an infinite
strip0 < y € b, — 00 < x < oo for the boundary conditions shown in Fig. 2-11.
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ST

Fig. 2-11  Boundary conditions for an infinite strip considered in Example 2-11.

Solution. The mathematical formulation of this problem is given as

ﬁZT(.T,Jr)+62T(X,)=)=0 in G XA, 0<_}'<b (2_1313)
ax? ay?
T=f(x) aty=0,. T=0 at y=b (2-131b)

The separated problems are taken as

ﬂff_(fl+plx(x)=0 in —o <X < (2'1323).
dx?
and
YY) BPY(»=0 in O<y<b {2-132b)
d 2
y
Y(y) =0 at y=b (2-132c)

Then the general solution for T(x, ) is constructed as

T(x,y) = J.x sinh (b — y)[A(B) cos fx + B(B)sin fx]df (2-133)
a=0

’

il this solution should satisly the boundary condition at y = 0, we obtain

fix)= J‘i sinh BbLA(B)cos fx + B(f)sin fx]df  in - X <N<®
p=0] (2-134a)

This is a representation of [unction f{(x) defined in the imcrv:.ll —ou <X <
in a form similar to that given by equation ‘(2-66a); the coefflicients of equa_uon
(2-66a) is given by equation (2-67). Then the coefficients of (2-1 34a) are obtained
according to the relation given by equation (2-67). We find

sinh [ A(B) cos Bx + B()sin fix] = l.rf f(x)cos flx — x)dx" {2-134b)

T oo
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The substitution of these coefficients into equation (2-133) yields

T(x, y)=ljm M’—ﬂ) ’ fixYeos (x —x)dx'dff  (2-1352)
nty=o sinhpb o

xt= -
or changing the order of integration we obtain

“ sinh f(b — y)
a=o0 sinhfb

Tlx, 1) = lf ‘ Jx)
0

x'= =

cos filx — xYdfdx’ (2-135b)

The integral with respect to f is available in the integral tables of Dwight
[17.#862.41]. Then the solution becomes

1. oym [ Jix)
T(x, 3} = —sin— C (2
(x.5) 2bsm b L-:-mcos [w{b — y)/b] + cosh [a(x — x')/b] dx' (2139

Example 2-14

Obtain an expression for the steady-state temperature T{x, y) in a semiin{inite
strip 0 € y € b,0 € x < o for the boundary conditions shown in Fig. 2-12.

Solution. The mathematical formulation is given as

PT(x,y) T,
TN FTEN o i o<y<h, O<x<oo  (2-137)
x? ay?
T=f()) atx=0 (2-137b)
T=0 at y=0, T=0 at y=b @-137¢)

The sign of the separation constant must be so chosen that the separation

function T(y) results im an eigenvalue problem. Then the separated problems
are taken as . _ ’

% +9Y(1) =0 in 70 <yp<bh {2-138a)
Y=0 at y=0, Y=0 at y=bh (2-138b)
¥
[ T=0
T=flyl
0 T =07 x

Fig. 2-12 Boundary conditions lor a semiin{inite strip considered in Example 2-14.
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and
2 X(x) _
dx?

P2X(x})=0 in 0O<x<e (2-139)
The solution of equations (2-138) is obtainable from Table 2-2, case 9, as

b X

Yy =sinyy,  NOW =3 (2-140a)

where the y, values are the positive roots of sin y,,b'_=0 ory,= nafbn=1273,....
The solution of (2-139) that does not diverge at infinity. is

X(yx)=e " . (2-140b)
Then the complete solution for T{x, y) is constructed as
T{x,y}= i c,e” T siny,y ' {2-141)
a=1
The application of the boundary condition at x =0 gives

f(J’) — i“ L',,Siﬂ Y in O<y< h (2-142a)
n=1

The coefficients ¢, are determined by utilizing the orthogonality of the eigen-
functions sin y,y; we find

1 b
CCp= siny, Y f(y)dy (2-142b)
TN )j

TalJo

The substitution of ¢, into equation (2-141) together with the value of N(y,) as
given above results in

2= b
Ty =y Z. e ™" sin }'..yf

0

sy SNy 0 (2-143)

where

= n=123...
b

For the special case ol f() = T, = constant, the integral is performed and the
solution becomes

TR 4 5 1p-veging,y (2-144)

To T n=oda M
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where only the odd values of # are considered in the summation because the
terms for the even values of n vanish.

2-12 SPLITTING UP OF NONHOMOGENEQUS PROBLE
INTO SIMPLER PROBLEMS M

th.n the heut conduction problem is nonhomogencous due to the nonhonio-
geneily 91‘ the differential equation and/or the boundary conditions, it can be
split up into a set of simpler problems that may be solved by the method of the
- separation of variables. Here we consider a nonhomogeneous problem in which

the generation term and the nonhomogeneous parts of the boundary-condition

functions do not depend on time:

a1 1ATORY
A AR ’—cg(r) = in region R, >0 . {2-145a)
aT
k, 5"—+ hT=fir) on boundary §;, (>0 (2-145b)
i
T= Fr) for t =10, in region R (2-145¢)

where (9/dn;) = derivalive along the outward-drawn normal to the boundary
sur!‘ace S{i=1,2,...,N}and N =number of continuous boundary surfaces of
region R. Here we note that g(r) and f{r) do rot depend on time. Clearly, many
spe_c:al cases are obtainable from the general problem given above. We shall now
split up this prpblem into a number of simpler problems in the following manner:

I. A set of steady-state problems defined by the temperatures Ty(r), j=

6, 1,2,...,N.
2. A(homogeneous time-dependent problem defined by the temperature
Ty(r, 1).

The temperatures Ty,(r) are taken as the solutions of the following set of steady-
state problems

' 1
V2 To;0) + 807 91} = 0" in region R (2-1462)
ar,
k=2l 4 hToy=8,f{)  on boundary 5, (2-146b)
where
i=1,2,....N
J = 0’ l'l‘ 2’ L 1 N

SPLITTING UP OF NONHOMOUGENEOUS PRUBLEM> 0D

N = number of continuous boundary surfaces of region R
0 for i#j.

. b= Kronéckcr della = L
[ for i=j

The temperature Tyr, 1) is taken as the solution of the following homogeneous
problem:

5
Vi = Le _F,,(r,r) inregion R, >0 (2-1470)
x M
aT,
k,sw+ hT,=0 on boundary §; {2-147b)
N
T,=F(r)— ¥ Toir) - fort=0, inregionR {2-147¢c)
j=0

Then, the solution T(r, t) of the problem (2-145) is given in terms of the solutions
of the ahove problems as

N
T, )= Tur, )+ Y. Tgi(r) {2-148)
i=0

J

The validity of equation (2-148) can be verilicd by substituting this equation into
equation (2-145) and by utilizing equations (2-146) and (2-147). :

We note that equations (2-146) corresponds to a sct of steady-state heat
conduction problems. The function T} for j = 0 corresponds to a steady-state
heat conduction problem with heat generation in the medium, but subject to all
homogeneous boundary conditions. The functions Ty, (1), Toa(r), Tos(r).... for

j=1,2,3,... respectively, corresponds to heat conduction problems with no heat
generation, but only one of the boundary conditions, i = j, is nonhomogeneous.

The homogeneous problem given by equations (2-147) is the homogeneous
version of the original problem (2-145), except the initial condition is modilied
by subtracting from it the sum of the solutions of the steady-state problems
{2-146).

Clearly, the problems defined by equations (2-146} and (2-147), when given in
the rectangular coordinate system, are soluble with the techniques discussed in
this chapter. The more general case will be discussed in Chapter 13 in connection
with the general.method of solution of heat-conduction problems by the integral
transform technique.

Example 2-15

Aslab, 0 < x € L, is initially at temperature F(x). For times t > 0 the boundaries
at x=0and x = L are kept at constant temperatures T, and T, respectively.
Obtain an expression [or the temperature distribution T(x, ¢} in the slab.
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Solution. The mathematical formulation of this problem is given as

%g%f;_? in  O<x<L, t>0 (2-149a)
T=T, at © x=0, t>0 ) (2-149b}
T=T, at  x=1L, (>0 (2-149¢)
T= F(x) for £=0, in the region (2-149d)

Since the problem is one-dimensional, we split it into a steady-state problem
for T,(x) given as

d?T,

=0 - in’ O<x<L (2-150a)
dx
T.=T, at x=10 (2-150b})
T,=T, at x=L (2-150¢)

and to a homogencous problem for Ty(x. 1) given by

2T, 18T, .

F‘:Eﬁ m O<x<L, t>0 (2—15]3)
T,=0 at x=0 and x=L, >0 (2-151b)
Th= Fix) - Tx)=*(x) for t=90, intheregion (2-151¢)

Then, the solution for the original problem (2-149) is determined from
Tix, t) = T{x) + Tyx.1) (2-152)

The solution of the steady-state problem (2-150) is given as
. x
T()=T +(Ts - T')Z. (2-153)

The solution of the problem (2-151} is immediately written {rom equation
(2-36a) as

= 2 {
T‘h G = bt
= 2 e N

xmmx)j’“w,,.w*uw (-154)

SPLITTING UP OF NONHOMOGENEQUS PROBLEMS 87

where the eigenfunctions X(f,.x), the norm N(8,) and the eigenvalues i, are
obtained from Table 2-2, case 9, as

2
X (P, x) =sin f,.x, m =7 (2-155a)
and the fi,, values are the roots of
sinB,L=0 (2-155b)
and the initial condition function f*(x) is defined as
=R T =F0 - T —(G-T); @155

The solution T'(x, {) of the problem (2-149) is obtained by introducing equalions

(2-153) and (2-154) into equation (2-152). We find

Tlx, )= T, + (T2 — T,)% Y e~*Mtsin ,x
m=1

~r‘|:F(x‘) T, —(Ty~ T.)’E ]sin pxdd  (2-1568)

i}
Performing the integrations we obtain

L

—agly
e ""M’smﬂme.

[

T =T, +(Ty— mi% § F(x)sin B dx°

1

+ % ai: e"”'l-'ﬂlsin B.x[T,cosmr— T,] {2-156b)
m=1 m

where cosmn ={— 1" and §,, =mn/L.

Example 2-16

A slab, 0 € x < L, is initially at temperature F(x). For times ¢ >0, heat is
generated in the solid at a constant rate of g, per unit volume, the boundary
at x == 0 is kept insulated and the boundary at x = Lis kept at zero temperature.
Obtain an expression for the temperature distribution T(x, t) in the slab.

Solution. The mathematical formulation'of this problem is given as -

er 1 _107T
o o Ot

a—; T n O<x<L, t>0 (2-157a)
%
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oT_,
P at x=0, t>0 (2-157b)
T=0 at x=1L, >0 (2-157¢)
T= F(x) for t=0, in0gx<L (2-157d)

This preblem is split up into a steady-state problem for T{x) as

d*T 1

‘&;—i+’;yo =0 in - OD<x<L (2-1583)
dT,
i al x=0  and T,=0 at x=L (2-158b)
and a homogeneous problem for Ty(x, f) as
T, _1aT,
_axz —;E 0<X<L, t>0 (2-1593}
amn,
e =0 at x=0, T,=0 al x=L, Tor t>0 (2-159b)
Ty = F(x) ~ T(x) = f*{x) for t=0in0gxgL {2-159¢)

Then, the solution of the original problem (2-157) is determined from
- Tx, 1) = Ty(x) + Tilx, ) {2-160)

The solution of the steady-state problem (2-158) is

T(x)=—«l—g 12 l—E 2
AR TAS I2 (2-161)

and the solution of the homogeneous problem (2-159} is obtained as

28 L
Tilx, )= L Y e Pt cos ﬂ,,,xj JHx)cos §x' dx' (2-162a}
. Jo

m=0

where

) = I 2 x?
f (x)=F(x)—ﬁgoL (i _E) (2-162b)

e B
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and the ff,, values are the positive roots of

cosf,L=0 or Jm=@1;f”—”, m=0,1,2... (2-162c)

Introducing equations (2-161) and (2-162) into (2-160} and performing the

integrations we obtain
gol’ Y2 L j'". . _—
Tixty==0- [ 1 == ]+ : sttt cos B 0 F(x)cos 3 dy
(x, 1) Zk( Ll) L.EOL Pux | I P«
_ Mo $ (- e =505 1 cos o 2-163)
kLm=0 ﬁ?" "

213 USEFUL TRANSFORMATIONS

In this section we present some transformations that are useful in reducing the

differential equation into a more convenient form.

1. We consider an equation containing convective and generation terms in
the form

ar  o*r T

— =g —f— +yT+ 2-164
PR MU (@-164)
fOT/dx) representis a conveclive term and

where «, f§, and y are consiants,
| to the local temperature, We define a new

yT represents generation proportiona
dependent variable W(x, t) as

Tix, )= W(x,t)gxp[%x—e-(g—;e-y)r} " (2-165)

Then, under this transformations, equation {2-164) reduces to

W PW g (P |
aa—[=aaT+g'exp{—[-2~&x—(ﬁ—)')t]} (2—166)

o solve thun cquation {2-164). The boundary and the initial

which is easier t
ansformed with the same transformation.

conditions for the problem should be tr

2. We now generalize the above procedure to three-dimensional cquation

given as

oT [(&@T T &@T ar 4T OT
( )— ﬁzé}"—ﬁagi‘}’T‘l‘g (2-167)
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whete o, 8, 8,, 85, and y are constants, We define a new dependent variable

Wix,y,zt)as

20

B B2 By, P2
LXP[QU" 4@! -cxp[’d:'-4;t] (2-168)

Tix, 3, 2) = W(x, y,z, 1) exp [&-r — (f—f — ]-)rjl
&

Under this transformation equation (2-167) réduces to

QP_V__O: a*w 2w 2w
o o2 —6_112 +—62—2)+G (2-169a)
where
2 2
GEg-exp[—&x-%(E’———}’)rJ'ex [_[_}E & . B :
2ot 4o P 20:"}-’_4&r oxp —£Z+¢I_a[
{2-169b)

which is easier to solve than equation (2-167).

2-14 TRANSIENT-TEMPERATURE CHARTS

'.I'emp‘erature—lime charts are useful for rapid estimation of temperature histor

in so.hds. and for some specific situations such charts can be prepared. Here wz
c'onmdcr a ;‘)le‘ltc of thickness 2L, initially at a uniform temperature 'I‘ and for
times ¢ > 0 it is subjected to convection from both its surfaces into anlambicnt
at a constant temperature T, with a heat transfer coeflicient k. Because of
symmetry, we choose the origin of the x coordinate at the center of the plaie and
consider only half of the plate. The matherhatical formulation of this transient
heat conduction problem is given in the dimensionless form as

20 _af .
ax: o in 0<X <1, Tor t=0 {2-170a)
ay
ax = at X=0 for >0 {2-170b)
oo Bi g
c'-‘X+ 18=0 at X=1 for >0 (2-170¢)
8=1 in 0g<X<t, for =1 (2-170d)

TRANSIENT-TEMPERATURE CHARTS 91
where the following dimensionless parameters are introduced

_ Tix, 8y~ T,

g = dimensionless temperature (2-171a)
Ti - Tno
X= ;c = dimcnsionlpss coordinate {2-171h)
. . .
Bi= I?L = Biot number (2-171c)
T= % = dimensionless time or Fourier number’ (2-171d)

It is instructive to examine the physical significance of the dimensionless para-
meters T and Bi. .
The dimensionless time 7 is rearranged in the form

rate of heat conduction
ar  k(1/L)1? \acrossLin volume 12, W/°C

T ;‘;‘pisﬁ - ( rate of heat sloragc)

in volume I}, W/°C

Thus, the Fourier number is a measure of the rate of heat conduction compared
with the rate of heat storage in a given volume element. Therefore, the larger the
Fourier number, the deeper the penetration of heatinto a solid over a given time.
The physical significance of the Biot number has already been discussed in
the previous chapter in connection with the lumped analysis. It represents the
ratio of the “internal thermal resistance” to the “external therma! resistance.”
The solution of the transient heat conduction problem (2-170) is presented in
the graphical form in Fig, 2-13 a,b. Here, Fig. 2-t3 a gives the midplane tempera-
ture T, or 6(0,7) at X =0 as a function of the dimensionless time t for several
dilferent values of the parameter 1/Bi. The curve for 1/Bi = 0-corresponds to the
case in which i — oo, or the surfaces of the plate are maintained at the ambient
temperature T,,.. For large values of 1/Bi, the Biot number is small, or the inlernal
conductance of the solid is large in comparison with the heat transfer coefficient
at the surface. This, in turn, implies that the temperature distribution within the
solid is sufficiently uniform, and hence lumped system analysis becomes applicable.
Figure 2-13 b relates the temperature at six different locations within the slab
to the midplane temperature T, [i.e., 8(0,7}]. Thus, given To, temperatu re at these
locations can be determined. An examination of Fig. 2-13b reveals that for values
of 1/Bi larger than 10, or Bi < 0.1, the temperature distribution within the slab
may be considered uniform with an error of less than about 5%; hence for such
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oA = SEE i Example 2-17
[ - .ij 3 = - . . v - . . — o
:::’—:‘E e E‘& 8 A 10cm thick brick wall is initially at a umljorm temperature T,= 24.0 C: At
;;::";_—-—-— “’ 2¢g5 time t = 0, both surfaces of the wall are subjected to convective cool_mg into
HTE - & 8 E an ambient at temperature T, = 40°C with a heat transfer coefficient k=
bl /// B3R | 60 W/(m?-°C). Using the transient temperature chart, calculate the midplane
] 5"‘“-'%'\/ /{: - S £= ' temperature at 2 h after exposure to the cool environment. Take the physical
otesde BS lies as
i o - g 0 proper
i o T a R s
wE B x=05x 1075m?¥s; k=069 W/(m~“C); p=2300kg/m
£y i ,
[CT=Ir=H
Solution. We determine L, t, and I/Bi‘.
. ‘
= o - 5 X 10—6 .
s 8358 8 1= moosm, r=%=2X 1 03600 = 1.44
- ! 2 2 (0.05)
1k 0.69
: ~=(.23

Bi hL 60x005
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4 SEPARATION OF VARIABLES IN RECTANGULAR COORDINATE §YSTEM

From Fig. 2-13a, for 1= {.44 and 1/Bi = 0.23 we have

—T. T,—40
30 ] 4] —
0.5)= T T. T 240— 40 0.12

Thus
To =40+ M = 64°C

Thus the midplane temperature is approximately 64°C.
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PROBLEMS

2-1

2-3

2-4

25

2-8

A slab, 0 < x < L, is initially at a temperature F(x). For times ¢ >0 the
boundaries at x =0 and x =L are kept at zero temperature. Derive an
expression for the temperature T(x, f) in the slab for times ¢ > 0. Determine
the temperature T{x,1) for the special case F(x}= T, = cpnstant,

A shab, 0 < x € L, is initindly at a temperature F{x), For times 12> 0 the
boundary surfdcc al x =0 is kept insulated and that at x = L dissipates
heat by convection into a medium at zero temperature with a heat transfer
coefficient h. Obtain an expression for the temperature distribution T(x, )
in the slab for times ¢ >0 and lor the heat flux at the boundary surface
x=L.

A slab, 0 < x < L, is initially at a temperature Fix). For times ¢ > 0 the
boundary surface at x = 0 is kept at zero temperature, whereas the boun-
dary at x = L dissipates heat by convection into a medium at zero tem-
perature with a heat transfer coeflicient 4. Obtain an expression for the
temperature T(x,1) in the slab and the heat flux at the boundary surface
x = L for times t > 0. Also consider the case when F(x) = T, = constant.

A semiinfinite medium, 0 < x < oo, is initially at zero temperature. For
times ¢ > 0 the boundary surface at x = 0 is kept at a constant temperature
T,,- Obtain an expression for the temperature distribution T(x, 1) in the
slab for times £ > 0.

A semiinfinite medium, 0 < x < oo, is initially at a uniform temperature
T, and Jor times 1 > Q it dissipales heat by convection from the boundary
surface x = 0 into an environment at zero temperature. Obtain an expres-
sion for the temperature distribution T{x, t} in the medium for times ¢ > 0.
Determine an expression for the heat flux at the surface x = 0.

In a one-dimensional infinite medium, — o5 < X < <0, initially, the region
a< x<bhis al a conslant temperature Ty, and everywhere outside this
region is al zero temperature Obtain an expression for the temperaturc
distribution T(x,} in the medium for times ¢t > 0.

A rectangular region 0<x<a,0<y<b is initially. at a temperature
Fix, v). For times ¢ > 0 it dissipates heat by convection from all its boundary
surfaces inlo an environment al zero temperature. The heat transfer
cocMicient is the same for all the boundaries. Obtain an expression for the
temperature distribution T{x, y, ) in the region for times t > 0.

A region x >0,y > 0,z > 0 is initially at a uniform temperature T,. For
times ¢ >0 all the boundaries are kept at zero temperature. Using the
product solution, obtain an expression for the temperature distribution
T(x,y,z,f) in the medium. ‘

A region x > 0, y > 0 is initially at a uniform temperature T,. For times
1 > 0. both boundaries dissipate heat by convection into an environmeni
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2-10

2-11

2-12

2-13

2-14

2-15
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al zero temperature, The heat transfer coeflicients are the same for both
boundaries. Using the product solution, obtain an expression for the
temperature distribution T(x, y, £} in the medium.

A rectangular region 0 € x <€ 4,0 < y € bis initially at a uniform tempera-
ture T, For times ¢ > 0 the boundaries at x =0 and y = 0 are kept at zero
temperature and the boundaries at x=a and y==5 dissipate heat by
convection into an environment at zero temperature. The heat transfer
cocliicients arc the same for both ol these boundaries. Using the product
solution, obtain an expression for the temperature distribution T(x, 3, t) n
the medium f{or times ¢ > 0. ‘

A rectangular parallelepiped 0 € x € 0,0 < y €5,0 € z g cisinitially at a

_ uniform temperature T,. For times ¢ >0 the boundaries at x =0, y =0,
“and z =0 are insulated and the boundaries at x =a,y =5, and z=rc are
kept at zero temperature. Using the product solution, obtain an expression -

for the temperature distribution T(x, y, z,t) in the region.

Repeat problem (2-11) for the case when the boundaries at x=a, y=b,
and z = ¢ dissipate heat by convection into an environment at zero tem-
perature. Assume the heat transfer coeflicients to be the same at all these
boundaries.

Obtain an expression for the steady-state lemperature distribution T(x, y)
ina semiinfinite strip 0 < x < a,0 € y < v, for the case when the boundary
at x =0 is kept at a temperature f(y) and the boundaries al y =0 and
x = a are kept-at zero temperature.

Obtain an expression for the steady-state temperature distribution T(x, y)
in an infinite strip 0 < x < g, — 00 <y < oo, for the case when the boundary
surface at x = 0 is kept at a temperature f{y) and the boundary surface at
x = ¢ is kept at zero temperature.

" Obtain an expression for the steady-state lemperature distribution T{x,y) -

in a rectangular region 0 < x<a,0<y<b for the following boundary
conditions: the boundary at x = 0 is kept insulated, the boundary at y =0
is kept at a temperature f(x) and the boundaries at x=a and p=¥h
dissipate heat by convection into an environment at zero temperature.
Assume the heat transfer coelficient to be the same for both boundaries.

Obtain an expression for the steady-state temperature distribution T(x, y, =
in a rectangular paralielepiped 0 < x €, 0 <y < b, 0 <z < ¢ for the fol-
[owing boundary conditions: the boundary surlaces at x =0 is kept at
temperature T, the boundaries at y =0 and z = 0 are kept insulated, the
boundary at x = ais kept at zero temperature,and the boundaries at y = b
and z = ¢ dissipate heat by convection into an environment at zero tem-
perature. The heat transfer coefficient are the same for all these surfaces.

Obtain an expression for the steady-state temperature distribution T{(x, )
in a rectangular region 0 < x € 4,0 < y < b in which heat is generated at

e i it b

2-18

2-19

NidIEy 7y

a constant rate g{x,y) =g, = constant and subjected to the following
boundary conditions: boundaries at x =0 and y =0 are kept insulated,
whereas the boundaries at x = a and y = b arc kept at zero temperature.

A slab, 0 < x < [, is initially at zero temperature. For times > 0 the
boundary at x = 0 is kept insulated, the boundary at x =L is kept at zero
temperature, and there is heat generation within the solid at a-constant

rate of go. Obtain an expression for the temperature distribution T'(x,)

in the slab for times ¢ > 0.

Obtain an expression for the sieady-state temperature distribution Ty, 3)
in an infinite strip 0 < y < b, 0 < x < o, for the case where the boundary
at x =0 is kept at zero temperature, the boundary at y= b is insulated
and the boundary at y = 0 is subjected to a heat supply at a rate of f(x),
W/m?,

NOTES

1. The proberlies of the following homaogeneous boundary value problem, calied a
Sturm-Liouville problem, were first studied by J. C. F. Sturm and . Liouville in Journal
de Mathématique, 1836~1838. Here we present the orthogonality of the eigenfunctions

d [p{x}dlp(’a'x)] -+ [glx) b Am{x)]pid, x} =0 in a<x<h (1)
dx .

dx

A.dw‘(:’X)'!'Az'ﬁ(i,x)=0 at x=a (1)
X

B;dlpj'x)+ﬂzw,x)=0 a x=b o (ld
X

where the functions p(x), g{x), w(x) and dp(x)/dx are assumed to be real valued, and
continuous, and p{x) > 0and w{x) > 0 over the interval {a, b). The constants Ay, A, By, B,
are real and independent of the parameter A, Let

dyih, x)
X

LI¥{4,x)] = ;‘L[PL\') y ] + glx)p(d, x) 2

We then write equation (La) for any two cigenfunctions (A ¥) and P{d,. x) as

LIYwlx)] + An(x)nf{x) =0 {3a)

L] + A o) = 0 (3b)

where

Pl x) = W(Anx)

L

)

Yy

Y e i YY Y OYOY YNNIy O O
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We multiply equation (3a) by y,(x) and equation (3b) by Wr,(x). then subtract the resulis
d ‘ l
R[P(%‘J”m - kf‘m'.f',,)] = Un - lm)wdlmdln (4)

Roih sides of cquation {4) is integrated from x =ato x = b and the result rearranged

h h
j Wi = — J A rpt b, — V)] e B
yea PR T F A ¢

For m # n, the argument of the integral on the right-hand side of equation (5) vanishes
because of the homogeneous boundary conditions (1b) and (1) for the problem. For
m=n(ie, i, — %), the left-hand side of equation (3) is the norm N, but the right-hand
side is indelinite because both the numerator and the denominator vanish. However,
for A,,— 4, the right-hand side is evaluated by L'Hospital's rule, Thus equation (5) is
written more compactly as

b 0 for m#£n )
o I = 6
J;‘:ﬂ“lﬁ,,,tll,,{v {N(J.,,) for m=n (6}

where

b . b 2, 2
Nid,) = j witZ dx = J p(@!—,i“a—"bm" - \f‘..-?:-%'") dx (n

ih, £X 4,0x

1 u

* which proves that eigenfunctions of the Sturm-Liouville system are orthogonal with
respect to the weighting function w(x) in the interval (a, b).

2. For a boundary condition of the second kind al both boundaries, the eigenvalue

problem is given as

arx(;

d(:)-l-[}:lX(.r):O in  O<x<L (1a)
X

dX

o at  x=0 and x=1L (1b)
dx

From equation (1a) we have

1, - L I. 1
;;!J Xxidy = ~[.\"”j +_[ ("X) dx )
o dx o Jo\dx

The first term on the right vanishes in view of the boundary conditions. Then fiy=0is
also an eigenvalue corresponding to the eigenfunction X o(x) = constant 0. ForX,=1,
the norm N becomes

L L
N=J xgm:J de=L )

0 il

3

THE SEPARATION OF VARIABLES
IN THE CYLINDRICAL

.COORDINATE SYSTEM

In this chapter we examine the separation of the homogeneous heat conduction
equation in the cylindrical coordinate system; determine the elementary solutions,
the norms, and the eigenvalues of the separated problems for different combina-
tions of boundary conditions and systematically tabulate the resulting expressions
for ready reference; discuss the solution of the one- and multidimensional homo-
geneous problems by the method of separation of variables; examine the solutions
of steady-state multidimensional problems with and without the heat generation
in the medium: and illustrate the splitting up of nonhomogeneous problems into
a set of simpler problems. The reader should consult references 1-4 for additional
applications on the solution of heat conduction problems in the cylindrical
coordinate system.

3.1 SEPARATION OF HEAT CONDUCTION EQUATION
IN THE CYLINDRICAL COORDINATE SYSTEM

Consider the three-dimensional, homogeneous differential equation ol heat con-
duclion in the cylindrical coordinate system,

9T 10T 18T 9T _10T

— - - t=—== 3-1
t(’Jr2 ror rrogr 8t a (3-D
)
where T= T{r, ¢,z,1). Assume a separation of variables in the form
. T(r. .z, 1) = ¢lr, ¢, )T (1) (3-2)
VAN ST 99
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Equation (3-1) becomes

1% 1oy 1Yy oYy [ dr() '
= L J = i )2 -
w(aﬂ roe o rtog? 321) al(e) & * G-3)
Then, the separated equations for I'(t) and  are taken as
dI(n 2
4 =0 : C (34

Py 1oy 1o ot
L A R AR N & .
ar? r6r+r26¢2+azz+iw 0 (3-3)

Equation (3-5) is the Helmholtz equation; we assume a separation in the form
Wlr, ¢,2) = R(ID()Z(2) (3-6)
Then equation (3-5) becomes

L{@R 1dR\ 1 1d% 1dZ _
~— 5 TS =0 (3-7)

+ — o
R\dr* "rdr] rraodp? * Z dz?

The only way this equality is satislied is if each group of functions is equated
to an arbitrary separation constant in the form

R\ dr? " r dr r

Then, the separated equations and their elementary solutions become

&z . ) ., .

3 +7*Z=0 , Z(n,2): sinyz and cosyz (3-9a)
i T )

;.M;_z. 92 =0 ‘ dv, P): sin veh and cos v {3-9b)
t-F-E‘-‘+MR"+ Bz Y Ro=0  RBA:S dy

drl . dl" i ;E " v(ﬂv l‘). v(ﬁr) an v(ﬁr) (3'95)

and the function I['(¢) satisfies equation (3-4), that is,

. dr
-+ T =0  T{t):e ™™ (3-9d)

1 d?2Z | &0 2 ) 2 .
2oy o=y, and —l—(d R"+1%)—‘7= -f* (3-8

SEPARATION OF HEAT CONDUCTION EQUATION 101

where
it= gt {3-9¢)

Here we note that the separation constant A% docs not include v* becausc of the
nature of the separation. Equation {3-9¢) is called Bessel's differential equation ol
order v, and its solutions, J (fr) and Y,(fr), are the Bessel functions ol order v of
the first and second kind, respectively. Clearly. the order v of the Bessel [unctions
is due to the presence of the separution cquation (3-9b) resulting from the
azimuthal dependence of temperature.

A discussion of the properties of Bessel functions is given in Appendix IV; the
reader should consult references 58 for further information on Bessel functions.

Figure 3-1 shows Jo(x), J,(x), Yo(x), and Y (x) functions. Both J JSxyand Y (x)
functions have oscillatory behavior like trigonometric functions, but Y,(x) func-
tions become infinite at x=0.

Having established the separation equations associated with the r, ¢, z, and ¢
variables of the transient heat conduction equation (3-1), we now examine the
separation equations associated with some special cases equation (3-1).

1. Temperature has no ¢ dependence. Equation (3-1) becomes

#T 10T 0T 14T

: = .- 3-10
Wt rdr D22 a i (-10)
The separated equations and their elementary solutions become
1’z .
%1—3 +4?*Z=0 Z(i, z): sin nz and cosyz (3-11a)
2 .
1.0 e
Jolx}
08—\ <’
0.6 Parity]
oal AT N =
A\
0.2 / ! [ \‘ \~ pal "'_">/ ~.
/r.,m\/ \ N / / \\
00f— 1t N . A P
~-0.2 r ] \\ \ / \> // ! \ __>
1 - ~-
0.4 f—F
PRt | -
—o6lt LY 1 L &

Fig. 3-1 Jo{x), Yo(x) and J,(x), ¥ (x) lunctions.
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@Ro LdRo | pap _o  Ryfr):Jofriand Yo  G-11D)
drt r dr _
‘fi—r + @l =0 T(t): e (3-11¢9)
t

=g+ (3-11d)

For this particular case temperature has no ¢ dependence, hence there i§ no
separation equation for the ¢ variable for v = 0. It is for this reason, the solutions
for the separation are zero-order Bessel [unctions.

2. Temperature has no z dependence. Equation (3-1) becomes

2 2
B_I+153_T+lg_’r___lg {3_12}
at rar Popt adt

The separated equations and their elementary solutions are

id; +vid=0 (v, §): sin vg and cosvd  (3-13a)
dh
2 2
&R, 1 di’?@(pzﬁ?-)n,ﬁn C RUBr:d (Br)and YB  (3-13b)
drt r o dr r?
d—'I:+ot}.21" =0 ' () e (3-13¢)
dt
where |
12=pe (3-13d)

3. Temperature has no time dependence. Equation {3-1) reduces to

2T 18T 18T 2T ]
It iy s=0. (3-14)
ort * rar rragr 8zt

The separated equations and their elementary solution become

ﬁ%—+ v =0 ®(v, ¢): sin v and cos v (3-15a)
¢ .

2
d—% +n*Z=0 Z{n. 2):sin nz and nz (3-15b)
dz

2 2
4R, + LaR, _ (112 + L)Rv =0 R, (q.7): Linr) and K (n7) (3-15¢)
arr rodr r?
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0 = x
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Fig. 32 I4{x), Ko{x) and 1,{x), K, (x) functions,

For this particular case the separation equation (3-15¢) for the r variable is
obtainable from that given by equation {3-13b) by setting f = iy where i = \/ -1
Then the solutions for equation (3-15¢) can be written as J(ig) and Y.(in)
however, to alleviate the complex argument notation, these functions are denoted
by /() and K (), which are called the modified Bessel functions of order v of the
first kind and of the second kind, respectively. Figure 3-2 shows a plotof 1,{x),
1,(x), Ko(x), and K (x) functions. We note that I (x) functions become infinite as
x — o0 and K (%) lunctions become infinite as x — 0. A discussion of the properties
of modified Bessel functions and their numerical values are given in Appendix
IV. There is another possibility for the separation of equation (3-14), abtainable
by replacing #2 by —»? in equations {3-15b) and (3-15c). In this case, the ele-
mentary solutions for the Z separation are taken as 2~%, ¢" or sinh 5z, cosh 5z;
the equation for the R separation becomes Bessel's differential equation of order
v and its solutions are taken as: J (nr), Y, (nr).

4. The temperature has no ¢ and z dependence. Then equation (3-1) simplifies
to - ;

2T 18T 1 8°T

wrn b= e ——e =0 - 316
M rar rragt (3-16)

The separated equations and their elementary solutions become

d*d

dez +yI@ =0 (v, p):sin vg and cos veh (3-17a)
AR 1dR v? randr for v#0

TR _YR=0 RM: : 3-

arr rdr P _ ) {cl +cylnr for v=0 (3-170)
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We note that for this particular case the equation for the [unction R{r} is Euler's
homogeneous differential equation.

3-2 REPRESENTATION OF AN ARBITRARY FUNCTION
IN THE CYLINDRICAL COORDINATE SYSTEM

Basic to the solutions with the orthogonal expansion technique is the representa-

‘tion of an arbitrary function in terms of the eigenfunctions of the resulting |

eigenvalue problems. In the cylindrical coordinate system we have three distinct
eigenvaiue problems associated with the separated differential equations (3-9a},
(3-9b), and (3-9c).

The eigenvalue problem associated with the differential equation (3-9a) is
exactly the same as that considered in Chapter 2. Therelore, all the results
presented in Chapter 2 for the rectangular coordinate system are applicable for
this eigenvalue problem.

The differential equation (3-9b) appears to be similar to equations (3-%a); but;
the eigenvalue problem associated with it, for the case of full circular cylinder, is
cyclic with a period of 2. Therefore, we need to examine the representation of
an arbitrary function F(¢) in terms of the cigenfunctions of such an eigenvalue
problem. :

Finally, the differential equation (3-9c} is Bessel's dilferential equation which
is different from those considered previously. Therefore, we need to examine the
representation of an arbitrary function F{r) in terms of the eigenlunctions of the
eigenvalue problem associated with Bessel’s equation (3-9¢). ‘

Such representations are now developed for arbitrary functions F(r} and F{(¢)
for use as ready reference in the solution of heat conduction equation with the
separation of variables in the cylindrical coordinates. As we have done in the rectan-
gular coordinates, we develop such representations for each specific spatial domain

-separately. The representation of F(r} is considered over the regions 0 <r <b,

0<r<o,d<r< o, anda<r<b, while the representation of F{¢) is considered
over the region 0 £ ¢ <2 with the condition of periodicity of solution with a
period of 2m. .

Representation of F(r) over 0 <r < b

We consider the representation of an arbitrary function F{r) defined in a finite
interval 0 < r < bin terms of the eigenfunctions R (f,,, r} of the eigenvatue problem

2 2 R
d R"(r)+1%+(ﬂz—%)R,(r)=0 in O0<r<b (3-18a)
r

drr .r dr
‘%.;.HR":O at  r=b  (3180)
»
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Such an eigenvalue problem is encountered in the solution of heat conduction
problem for a full solid cylinder with temperature varying with the azimuthal
angle ¢. For generality, the boundary condition at r =6 is chiosen of the third
kind. The results for the boundary conditions of the second and first kinds are
obtainable from those for the third kind as special cases by setting /{ =0 and
H — o, respectively. '

The system (3-18) is a special case of the general Sturm-Liouville problem
considered in Chapter 2. Therefore, the eigenfunctions R {8, ) bave the following
orthogonality property:

for m#n

b 0 .
= -1
I PR (B IR A 1)1 { NGy for men (3-19)

0

We now consider the representation of an arbitrary function F(r) defined in the
finite interval 0 < r < b in terms of the eigenfunctions R {f,,, ) in the form

Fin=3Y c R Bprt in 0&r<b (3-20)
m=1

The unknown coeflicients ¢, are determined by operating on both sides of

equation (3-20) by the operator [5rR,(f,,r)dr and utilizing the orthogonality

relation (3-19). We lind

Cp= —I\a—'{_lﬂ:}J: rR B, IF () dr (3-21)
where the norm, N{f,) is
N(ﬁm) = J‘b R .2.(ﬁms r) dr (3'22)
0

The substitution of equation (3-21) into (3-20) gives

X

Fin= % _"'J_Rv(ﬁmar).[. PR B FFirYdrin 0<r<b (3-23)

b
m=1N(f) 0
where the function R (8., r) is given by
RBas 1) = I (But) | (3-24)

Here, the {function Y{8,,r) is excluded from. the solution, because the region
includes the origin r = 0 where Y,(8,r) becomes infinite.

The cigencondition for determining f,, is obtained by introducing equa-
tion (3-24) into the boundary condition (3-18b). We obtain

B (B ) 4+ HI (B0} =0 (3-25)

YO OYOYCN Y Y O
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106 . SEPARATION OF VARIABLES IN CYLINDRICAL COORDINATE SYSTEM

where we defined
d
Jph =] L (3-26)
lb‘ r=fmb '

with H and v are real constants and {5, p. 597]
v+ % =0

The eigenvalues §,, are the positive roots of the transcendental equation (3-25).
In this equation, the prime over the Bessel function denotes the derivative in the
sense defined by equation (3-26). From equations (3-22) and (3-24) the norm
becomes :

h
N(ﬁm)=j PSP ) dr G

1]

When the integration is performed by utilizing the integration formula given by
equation (25h) of the Appendix IV, the norm is determined as

— b_z 2 _ v? 2 :| .
N(B.)= 2 [J‘- (B..0) +(1 ﬁi,bz)J”w”‘b) (3-282a)

In view of the transcendental equation {3-25), this relation may be wrilten in the

alternative form as
b2 H? 2 )]
N =—| =+ 1 == | |J2{B,.D) 3-28b
(8.) 2[/3&' ( i) (3-28b)
The above expressions for the eigencondition and the norm are developed for
boundary condition of the third kind as given by equation (3-18b). Expressions

for the case of boundary conditions of the second and first kinds are obtained
from these general expressions as special cases as described below.

Boundary Conditon at r = b is of the Second Kind. For this special case we have
R(B..r)=JABur} {3-29)
the cigenvalues f,, are the positive roots of

JBub) =0 (3-30)

The norm is obtained from equation (3-28b) by noting that for the boundary
condition of the second kind we have i =0:

_ B2 2 s )
N(B,) = —2-(1— ﬁibz)J"{ﬁ"’b) for  f,#0 (3-31a)

REPRESENTATION OF AN ARBITRARY FUNCTION 107

Note that, for the boundary condition of the second kind, f, =0 is also an
eigenvalue for v=0; then the corresponding cigenfunction and the norm for
this special case are

b 2

) Rolfar)=1 and  N(fo)= J- rd}=% for =0 (3-31h)

1]

See nole | at end of this chapter for a discussion of fl, = 0.
Boundary Condition at v = b is of the First Kind. For this case we have
RlBe7) = I (But) ' (3-32)
and the eigenvalues f,, are the positive roots of
| J{B.b)=0 - (3-33)

The norm N(f,) is obtained from equation {3-28a) by utilizing equation (3-33).
bz

In Table 3-1 we summarize the eigenfunctions R(f,,r), the norms N(f,,),
and the eigenconditions. They will be needed in the solution of heat conduction
problems for a solid cylinder 0 < r < b when'temperature varies with azimuth
angle ¢.

For problems with aximuthal symmetry, the eigenvalue problem (3-18) is
applicable with v = 0. Therefore, the results in Table 3-1 are also applicable for
heat. conduction problems in a solid cylinder with azimuthally symmetric tem-
perature if we set v =0 in these results,

Representation of F{r) over 0 <r< 0

We now consider the representation of an arbitrary function F{r) defined in the
infinite interval 0 < r < o0 in terms of the solutions of the lollowing differential
cquation

RN VAR
+_
dr? roodr +

2
(ﬁl—-‘;i)R,(r)=0 in  0<r<o (3-35)

subject to the condition that R {r) remains finite at r = 0. Expansions of this type
will be nesded in the solution of heat-conduction problemsin a region 0 € r < o,
0 € ¢ < 2nin the cylindrical coordinate system with temperature varying radially
and azimuthally.
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The solution of equation {3-35) that remains finite at r =0 is
I T R(BY=J () (3-36)
= ey
g2 = & An arbitrary lunction F{r) defined in the interval ¢ <r < oo can be represented
?,,E § EE’ h in terms of J (8r) functions for v — § in the form [9, p. 83; 10, p. 52,5, p. 453]
82 + 1| & o | =
g ‘E :EE It Il 3_ N “ 12 * 2 ety A )
- E 8 o 5 5 17 Fin = r2Rg 4B dg PR A EE) Ogr<oo  (3-37)
g HIE SR
g - = = m o . . . . . .
= ‘ =g if the integral [;‘F(r') dr' is absolutely convergent, and if the function F(r) is of
= E bounded variation in the neighborhood of the pointr.
E - 1f we now replace F{rj by r'2F(r} in the equation (3-37), we obtain
= n
:‘a: " ol B E
@ ] = )= BJ (pr)dp rJBr)FeYdr 0sr<o {3-38)
= - kg e fg=0 =0
fom -2 ~ B[S T o
e v - A g
< v - | S E which is the reptesentation of a function F(r) in the interval 0 < r < oo that will
g = - T N S be needed for the solution of heat conduction problems in an infinite region
= z e 1= B
3 18|l ]s O<r <o S . ,
g 5 ] e 2 § For problems with azimuthal symmetry, the cigenvalue problem (3-35) is
i LS Y | g applicable with v = 0. For such a casc the representation (3-38) is applicable by
£ < g setting v =1,
B c:'; z 2
= < e Representation of F(r) over a <r <o .
3 N /= £ , . .
323 I 2 = — e, e We now examine the representation of an arbitrary function F (r) defined in the
£ = G o & | & | & (1 interval a < r < co in terms of the solutions of the following problem
5 ¥ u | S| 5| 5 |5
2z, * w "E i dzR
r) 1 dRglr .
2 § = - 3 —f—y+——"r(~—)-+ﬁ_21{0[r)=9 in a<r<o (3-39a)
© 4 g £ dr rodr
r - ° [T}
E SRS b7 .o
AN o dR
‘ 3 - g5 5 24 HRy=0 al r=a (3-39b)
g o
é 2| o 8 - dr
- sl 5 2
2 EHEEI - . . i i
§ oY 1 § ‘i’ o o such a representation is needed in the solution of heat conduction problems in
g ElE s + | ol ) u'f{ the region a < r < oo in the cylindrical coordinate system [or an azimuthally
&" 2 E n;‘l_a. R 2 symmelric (emperature i.c., temperature does not depend on ¢, The representit-
'Y 218 e 8 tion of an arbitrary function F(r) in the region a < r < co in terms of the solutions
= 'f;‘ = Ro(f, r) of the problem (3-39) is considered in reference [12] and the result can
- = £ be written in the form
o 2 g
= g 2 P » .
4 = g 5 F(r)= — BRy(B. 1) dp FRo(B, rEQ) dr in a<r<o (3-40)
= VDJ Z — ot ™m [5"‘ f =UN(IB) r=n
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110 SEPARATION OF VARIABLES IN CYLINDRICAL COORDINATE SYSTEM

Here, the norm N(f), the function Ry(f,r) depend on the type of the boundary
condition at r = a; that is, whether it is of the [irst, second, or the third kind. We

present the expressions for Rgy(f, 7} and N(fl) for these three dillerent types of
boundary conditions at r = a. ’

The Boundary Condition at r=a of the Third Kind. The solution of equation
{3-39a) satislying the boundary condition (3-39b) is taken as

Rolf ri=J o B[ Y (B} + H Yo(a)]— YolBr)[BJ (Ba) + HIo(fla)]  (3-41)

and thie norm N{f) is given by

N(fY=[8J,(Ba) + HIo(fa)]* + [BY,(Ba) + HYo(pa)]? (3-42)
The Boundary Condition at r=a is of the Second Kind. For this special case

we have H = 0. The solution of equation {3-394) satisfying this boundary condition
is taken as ¢ ’

Ro(f.r) = Jo(r)Y(Ba) — Yo(Br)s(fa) (3-43)

and the norm becomes
Nifh= Jf(ﬂa) + }",ztﬁu) {3-44)

The Boundary Condition at r=a is of the First Kind. For this special case
we have H —+ o0. The solution of equation (3-39a) satisfying this boundary condi-
tion is taken as

Rolff, r) = Jo{fr)YolBa) — Yo(Br)d o fa)- (3-45)

and the corresponding norm becomes

N{B) = J3(Ba) + Y (Ba) (3-46)

We summarize in Table 3-2 the above results for Ry(f,r) and N{(f) for the
boundary conditions of the first, second, and third kinds at r=a.

Representation of Fr) over a<r<h

We now consider the representation of an arbitrary function F{r) deﬁncd in a
finite interval @ < r € b in terms of the eigenfunctions of the following eigenvalue
problem:

d*R (R |
d'RAR) | LdRr)
dr? roodr

2
(52_:_2)Rv(r)=0 in  a<r<b (3-47a)

TABLE 3-2 The Solution Ry, ), and the Norm N{g} of the Differential Equation

H
\
.
v
L]

in

=0

+ B*Relr)

dr

4 dRo(.r)

r

dR(r)
dr?

Subject to the Boundary Conditions Shown in the Table Below

Boundary Condition

1/N(B)

~and
Ro(B.1) = Jo(Br[BY:(Ba) + HYo(Ba)] — Yo(Bri[B] \(Ba) + HJ o(Ba)]

RO(ﬁ! l')

atr=a

No.

1

N(B)

{(BJ (Ba) + HJo(Ba)]* + [BY\(Ba) + HYo{Ba)]*} "

+ HR=0

dr .

Jo(B)Y (Ba) = Yo(Br)J (Ba)

[J3(Ba) + Yi(Ba)] ™"

Ro(B.1)

L
N(B)

0

dR,
dr

JolBriYo(Ba) — Yo(Br) of Ba)
= [J3(Ba) + Y5(Ba)]™"

RolB,r)

L
N(B)

m
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114 SEPARATION OF VARIABLES IN CYLINDRICAL COORDINATE SYSTEM

dR, '
—-E—l+H1R\.=0 at  r=aq (3-47b)
r )
iR,
{~&+H2R‘.=0 at  r=b (3-47¢)
1 dr

The eigenvalue problem of this type is encountered in the solution of heat
conduction lor a hollow cylinder with azimuthally varying temperature distri-
bution. For generality, boundary condition of the third kind is chosen for both
boundaries, Other combinations of boundary conditions are obtainable by setting
the coeflicients H,, H, cqual to zero or infinity; thus, nine dillerent combinations
are possible.

The system (3-47} is a special case of the Sturm-Liouville problem, hence
the eigenfunctions R{f,.r) have the following orthogonality property

b 0 for m#n
j,, rR(fm. IR By v} dr = { N@)  for  men (3-48)
where
b
N(ﬁm)= j er{ﬁmir) d?‘ (3'49)

Now we consider the representation of an arbitrary function F{r) defined in (he
interval @ < r < b in terms of the eigenfunctions R (8,,, r) of the above eigenvalue
problem (3-47) in the form

F(r= i ol B, 1) in a<r<bh (3-50)

m=1

The unknown coeflicients c,, are determined by following a procedure described
previously; then the representation (3-50) becomes

o b '
F{r)y= ‘é] ﬁ&fi R, r)J. R AP Y dr in a<r<b (3-51)

We present in Table 3-3 the eigenlunctions R {8,,,r), the norm N(f,) and the
cigenconditions of the cigenvalue problem (3-47) for four different combinations
of the boundary conditions of the first and second kind at the boundaries. The
boundary conditions of the third kind are not included in this table, because the
resulting expressions are too complex to be practical for computational
purposes.

Representation of F(¢) over 0 < O<2n

We now consider the representation of an arbitrary function F{¢) defined in the
interval 0< ¢ <2 in terms of the eigenfunctions of the eigenvalue problem

REPRESENTATION OF AN ARBITRARY FUNCTION . 115

associated with the separation equation {3-9b). We have the following eigenvalue
problem

d* . : 3.52
— =0 in 0<p<2n {3-52a)
dé?
The solution may be taken as .
(v, §) = A, sin vd + B,cosvg (3—5‘2b}‘

We now examine the representation of a function F(¢) that is periodic in ¢
with period 2x in terms of ®(v, ¢) functions in the form

F(¢) =Y (A,sinvg + B,cosvd) in O<p<2n (3-53)

“The condition that F(¢) is periodic in ¢ with period 2z requires that the separation

_ constants v should be taken as integers, that is

vr=0,1,2,3...

To determine the coellicients A4,, we operate on both sides of cqqation‘- (3-53) by
the operator [3"sinv'¢ d¢ and utilize the orthogonality of functions sin vgp. We
oblain

: in

A, = lj F(d)sinvgdp for v=0,1,23... (3-54a)
o :

since {2%sin’ v¢p dg = = and the integrals of the product of sin v, cos v¢ vanish.

To determine the coeflicients B, we operate on both sides of equau?n (3-53) by

the operator [2*cosv'¢dd and utilize the orthogonality of functions cos v,

We find

l_[’"ﬁ(q))cos vbdd  for  ¥=1,23... (3-54b)
B,=1""° . : -
_ I L .[ F(pyde for v=0 " (3-54¢)
2n 4, )

since 2% cos” v dep is equal to n for v=1,2,3,... and equal to 2z for v= 0,
The substitution of the above expressions for 4, and B, into equation (3-53)-
yields the representation in the form

F(¢)=—- j 7 Figyde + 1 3 r“ F(¢)(sin v sin v’ + cos vob cos v') dg’
2n o Tv=1Jo
n w0 2n
= i‘r F(¢)dd' + ! Y F(¢')cos v —~ ¢} dg’ (3-35a)
2r o e=1Jp
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This representation may be written more compactly in the form

HOMOGENEQUS PROBLEMS IN (1) VARIABLES 117

P

] i ) .
Filg) = ;[ZJ Fi¢')cosvid —¢)dd’  in 0<¢p<2n  (3-55b) -
vJo initialiy ~
where .
v=0,1,2,3... : \
and replace = by 2n for v=0. If we compare the representations given by | ,
~equaltions {3-53) and (3-55b) we conclude that : ) _{M . . P
7 X Fig.3-3 Boundary and initial conditions for a solid cylinder considered in («) i
. 1 Example 3-1 and (b) Example 3-2.
" [A,sinvg + Bocosvg] = —J Fig") cosvigg — ) dp' (3-56)
n : ) . vt
’ i Solution. The mathematical formulation of this problem is taken as L=
where I e
; 2 -
v=0,1,23... z T 10T _19T(n0 . g<rch 150 (3-57a) <
? et rdr o« Ot v
and replace n by 2n for v =0. : :
The represpnla_tion of F(d)}_ as givc_’,n above will be n'eeded'in the solulion‘ of ?I+ HT=0 at Fe=b- (>0 (3-57b) ; \;
heat conduction in a full cylinder (ie., 0< ¢ < 2n) with azimuthally varying or o
lemperiture, ! . ~ -~
| T~ F(r) lor [0, in O<r-h (35N L
i i | | e
llcprcsentatlon of F(¢) over § < ¢ < (< 21) ' Separating the variables, it can be shown that the solution for the time ;‘_
In the case of a portion of a cylinder the range of ¢ variable is 0 < ¢ < ¢g{ <2n). . separation is given by ~
For such a case, equation {3-32a) should be solved over the range 0 < ¢ < ¢hg( < 2n) i () = ¢ (3-58) ')
with prescribed boundary conditions at the boundary surfaces ¢p =0and ¢ = ¢b,. , )=c o~
For such acase, the eigenvalue problem for the function (P, v) is similar to that i and the spacc-variable finction R(8,,r) satisfics the following eigenvalue wr
. of a slab in the region 0 < ¢ < ¢, and the results presented in Table 2-1 may be ' ) : e
- : . . . - problem: s
utilized to determine the eigenfunctions, the norm, and the eigenconditions. " -
i dzRo(r) 1dRq(r) . -
i + fiRg(1) = in 0gr<b (3-59a) —
’ , ‘ | dr? r Tdr /7
"33 "HOMOGENEOUS PROBLEMS IN (r, 1) YARIABLES : -
dR, e
. . 7o = =p 3-5%b
Having established the representation of an arbitrary function F{r} in terms of - + HRy=0 at r ( } ~
the solutions of Bessel’s differential equation as discussed previously, the solution Co . ) —_
of the one-dimensional homogeiieous heat conduction problems in-the (rey— - —i The-complete-solution for T(x.) is constructed as 9
variables becomes a straightforward matter as now illustrated with examples. | - \ o~
' : T )= Y cne ™ R(fp) (3-60) 9
Example 3-1 ' m=1 ‘ a
A solid cylinder, 0 < r < b, is initially at a temperature F(r); for times ¢ > 0 the , The application of the initial condition gives <
boundary surface at » = b dissipates heat by convection into a medium at zero . o _ P
temperature as illustrated in Fig. 3-3a. Obtain an expressmn for the tempera- : Frt= Y. cuRo(f.r) in 0<r<b (3-61) o
turc distribution T(r,¢) for times ¢ > Q. m=1 :

(O
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118 SEPARATION OF VARIABLES IN CYLINDRICAL COORDINATE SYSTEM

This is an expansion of an arbitrary function F(r) defined in the interval
0 r<b in the same form as given by equation (3-20). The unknown co-
efficients c,, are determined by utilizing the orthogonality of the eigenfunction
as given by equation (3-19). Then, the solution for the problem becomes

]

T TR e P)J T T L Tl (3-62)

3}

T =S
0= 2

where Ry, 1), N(B,,) and the eigenvalues §,, are immediately obtainable from
Table 3-1, case 1, by setting v = 0, because the eigenvalue problem (3-59) is a
special case of the general problem (3-18) with v=0. Then the solution {3-62)
lakes the form

2e o BB [P
T, 1) = pL e (h—~+————ﬂgl RV L FIo(f.FIFr Y dr (3-63)

where the B, values are the positive roots of
ﬂnlJ;)U}mb) + ‘H‘Iﬂ(ﬂmb) = 0 or .Bm‘]l(ﬁmb) = H‘I{)(ﬁmb) (3'64)

For the special case of F(r) = T, = constant, the solution (3-63) reduces Lo

HOMOGENEOUS PROBLEMS IN (r.7) VARIABLES 119

where the f,, values are the positive roots of

Jolfb) =0 or J,(B.p)=0 (3-66b)
The first term on the right-hand side of equation (3-66a) is due to the fact that

» =0 is also an eigenvalue for this special case. The region being insulated,
heat cannot cscape from the boundaries, hence the temperature, alier the
transients have passed, becomes the average ol the initial temperature distri-
bution over the cross section of the cylinder as given by the first term on the
right-hand side of equation (3-66a).

Example 3-3

A solid eylinder, 0 < r < b, is initially at a temperature F(r); for times ¢ >0 the

boundary surface at r = b'is kept at zero temperature. Obtain an expression
for the temperature distribution T(r, ) for times { > 0.

Solution. The solution is written formally exactly in the same form as that
given by equation (3-62); but, Ro(f,,, 1), N(f,,) and eigenvalues .. are taken
from Table 3-1, case 3, by setting ¥ = 0. We obtain

. . ,
Tir, 1)=3— ¥ gt MJ. ¥J (B W) dr' {3-67a)

Jo(R.0) =0 (3-67b)

. . Ilmﬁ' J2 '”b rte
-’-(r ” - 27“ "Z' o uﬂf"t ﬁnl.]n(”mr)‘]l(ﬂr!,h] (1_651) | | l(ﬂ ) 0
) h m= (P2 + HAIB.b) where the f8,, values are the positive roots of
T o (B0
2T 2l 9

b ws (B2 + HOI o(Bb)

where we utilized equation (3-64) to obtain the alternative form given by
equation (3-65b} '

Examgle 3-2

A solid cylinder, 0 € r < b, is initially at a temperature F{r); for times t > 0 the
boundary surface at r = b is kept insulated as illustrated in Fig. 3-3b, Ohtain
an expression'for the temperature disteibution T(r, f) for times ¢ > 0.

Soluion. The solution for this problem is written formally exactly in the same

form as that given by equation (3-62); but, Ry(8,., 1), N(B,,) and eigenvalues 8,
are taken from Table 3-1, case 2, by setting » = 0. We obtain

3 R —apiy
T(?‘,[)=—5 I‘F(I‘)dl’ +—2 Z e i
: b =0 b m=1

Jolfa) [° . e
ST PR el (3-662)

For the case of constant initial temperature F{r) = Ty, equation (3-67a} becomes

My 2, JolBa) 168
= 2 e g b C-68
Example 3-4

A hollow cylinder, a < r < b, is initially at a temperature F() (Fig. 3-4). For
times > 0. the boundary surfaces at r=ga and r="5 are kept insulated.
Develop an expression for the temperature distribution T{r, 1) for times (> Q.

Solution. The mathematical formulation of the problem is given by

2T 10T_10T

= in a<r<b, t>0 _(3-69a)
art rdr a Ot
ﬂ* =0 at r=a, t>0 (3-65b)
ar
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//’/7/’/”'////‘///////
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Fig. 3-4 Boundary and initial conditions for a hollow cylinder considered in
Exampie 3-4..

T _

> © (3-69¢)

0 at r=>b, (>0

T=F(r) for =0, intheregion ~ (3-69d)
Separating the variables, it can be shown that the solution for the time variable
function is given by exp{~afZ1), and the spice-variable function Ry(f,,.r} is
lhe_solulion of the following eigenvalue problem:

d*R, 1dR,. P
P +;'?;”+JB,,.RO“O in a<r<b (3-70a)
" dR,
——=0 . = -
- al r=a (3-70b)
dR,
—_— =0} = -
- at - r=>b (3-70c)

Then, the complete solution for T(r, ) is written as

T = 3 cue P RoBrr) (3-71)

m=1
The application of the initial condition (3-69d) yiclds

&0

F(r)= Z CmRU(ﬂmir)

m=1

i'n a<r<b (3-72)

This is an expansion of an arbitrary function F{r) defined in the interval
a <'r<bin terms of the eigenfunctions Ry(f,,,r) of the eigenvalue problem
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(3-70). The unknown coellicients c,, arc readily determined by utilizing the
orthogonality of the eigenfunctions as given by equations 3-48 and 3-49. Then,
the solution for the temperature T(r,1) is written as

X

b
Tl = 3, oo = P Rl J PR "IFEV Y (373)

m=1N{(B.)

¥

where the cigenfunctions Ro(f,,.r), cigenvalues fi,,, and the norm N(f,) are
obtained from Table 3-3, case 1 by setting v=_0. :

RolBrs 1) = I o B Y 5(Bnb) — T Bt} Yol Bim) (3-744)

| | _n R 0.74b)

NB) " 3 TRBad) — THBub)

and the eigenvalues §,, are the positive roots of the following transcendental
equation:

-

T B Y o(Bnd) — o(Bn0) Y o(frma) = 0 (3-74¢)

In addition, for this particular-'case fBo=0 iLQ also an eigenvalue; then the
corresponding eigenfunction and the norm are laken as

1 2

TR — (3-75)

RU(IGU’ r) = 11

Therefore, we start the summation in equation (3-73) [rom m =0 and the
solution becomes

2 b
T{r, 1} = e J‘ F ) dY

£ b .
+ X et Ro(ﬁm,r‘)J ¥ Ro(B, () dr (3-76)
m=1 N(ﬁm) a
where Ry(B,,.r) and N(B,,) are as defined by equations {3-74a,b). Note that,
the first term on the right-hand side of the solution (3-76) represents the
steady-stale temperature in the cylinder after the lemperature transients hiave
passed. Itis the average of the initinl temperature distribution over the region,

Example 3-5
A hollow cylinder, a <r < b, is initiaily at a temperature F(r); for times ¢ >0

the boundary surfaces at = a and r = b are kept at zero temperature. Obtain -

an expression for the temperature distribution T(r, ) for times ¢ > 0.

U

i}

RN

I

Ve

-~

LS

IO IO IO TR AT TR NAR

|

—~

——

SOOI O

-



ST

T ey

-

L

.

~ e

S

i) 7l W e M A S _\__r“.\;f_\»-/ st

122 SEPARATION OF VARIABLES IN CYLIMDRICAL COORDINATE SYSTEM

Solution. This problem is similar lo the one considered above, except the
---boundary conditions-at » = a-and-r= b-are both of the first kind, Therelore,
the solution for T{r.1) is of the same form as given by equation {3-73); that is

b

e_”"!'"Ru('ﬂ,,,. :')J FRy(B FYF(rY dr (3-77)

fa

Ton= 3
(J r) mzl N(ﬂm)

except Ry(fh,. r). Niji,) und the eigencondition should be oblained from case ¢
of Table 3-3 by setting v = 0. Then the solution becomcs

P ET IR, f
Tir, l)—zmzlJ [}ma)m (ﬂ,,.b) RolBas}| FRolf rIF(rydr

{3-7%a)
where ‘
RO(ﬁm' J') = ‘]O(ﬂmr) Yﬁ(ﬁmb) - Jﬂ(ﬂmb) Yﬁ(ﬂmr) (3'78b)
and the fi,, values are the posilive roots of
JolBn@) YolBnb) — Jo(B.h) Yo(Baa) =0 (3-79)

FFor the special case of F@r'y -~ T, — constant, the integral in cqualion (3-7Ra)

is evaluated, the resulting expression is simplified by utilizing the Wronskian

relationship of Bessel functions given in the Appendix 1V, equation (27). Then
the temperature distribution for this special case becomes

Tir, f} = Tan i e—:,’:‘_f.r Jn(,ﬁmﬂ)

_— R s 3-80
A T + T ) (-50)

where Ry(f,,. ) as given by equation {3-78b).

Example 3-6

An infinite region 0 <r < oo is initially at a temperature F(r). Obtain an
expression for the temperature distribution T(r,!) for times (>0

Solution. The heal conduction problem is given by

P*T 18T 12T .
LT:'F el in Ogsr<en, 120 (3-81a)
or- rér ox it

T=Fu) ' for =0, intheregion (3-81h)

and subject to the condition that temperature remains finite at r = 0. Separating
the variables, it can be shown that the solution for the time-variable function

———
-
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is given by exp (%), where f is the separation variable. The spacc-varlablc
function Rq(B, 1) is the solution of the following equation

&Ry 1dRy

248 R;=0 in O<r<ow (3-82)
dr2 r dr .

subject to the condition that Ry(fl, r) remains fnite at r=0. The qnlulmu of
equation (3-K2), which s fimh. Mmr=01is

Ro{B.r)=JolBr} | (3-83)
Then, the complete solution for T(r, £} is constructed ‘as -
T 1) = J'°° C(B)E"“"’Jo(ﬂr) ap | (3-84) -
g=0 :
The application of the initial condition (3-81b) yiclds
F(r) = r (BB  in 0<r<oo (3-85)
§=0 ,

This is an expansion of an arbitrary function F(r) defined in the interval
0<r< oo in terms of J4{f},) functions. Such a represenlation was given in the
previous section by equation (3-38) in terms of J (8r) functions. Therefore, by
setting v = 0 in equation (3-38) we obtain

Fo)= | pagpndp J' FIBrFF)dY in 0<r<o  (3-86)
a=0 =0

By comparing equations (3-85) and (3-86) we find the coefficient ¢(f) as

e(f) = ﬂf RSOV (3-87)
re=o .
~ The substitution of equation (3-87) into equation (3-84) y‘ields
T 1) = J T ey ) dﬂf T (3-88)
g=0 r=0

By changing the order of integration and making use of the following integral
(Appendix IV, equation (24}]

- 2 42 ’
J e~ BT o(Br)T of prydp = '2% exP( s )Io(%) (3-89)

§=0 4at
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the solution (3-88) becomes

I rt4r? rr’ 7
I = —mj rex (— )F Aol = |dr -
2 Bty T dat Mo 2 ) (3-90)

For the special case of

{3-91)

F(;-):{T"‘consmm for O<r<h

for r>b
the solution (3-90) takes the form

LT _ ( rz) - N [
= ex - - _ - _
To 201 P dot r.=°r exp -4C(f) ”(zcu)dr =P (3 92)

This result is called a P function, which has been numerically evaluated and
the resulls are tabulated [14].
Example 3-7

A region a < r < oo in the cylindrical coordinate system is initially at a tem-
perature F(r); lor times ¢ > 0 the boundary surface at r=a is kepl at zero
temperature, Obtain an expression for the temperature distribution T(r, 1) in
the region for times ¢ > ).

Solution. The heat-conduction problem is given by

szt =g, in a<r<ow, t>0 (3-93a)

T=0 at * r=a, (>0 (3-93b)
T=F(r) _ for t=0, inthe region (3-93c)

By separating the variables it can be shown that the time-variable function is

* given by exp(—«f21) and the space-variable function Rq(f.r) is the solution

of the following problem

d*R, 1dR

.miﬂ +-—24p*Ry=0 in a<r<w (3-94a)
dr rodr

Ry=0 al r=a (3-94b)

Then, the complete solution for T(r, t) is constructed as

T{r, )= J.nc c(Ble” " Rolf,r)dp (3-35)

F=0
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The application of the initial condition (3-93¢) yields
Fir)= I C(MR(B S in a<r< o (3-96}
=0

This is an expansion of an arbitrary function F{r) defined in the interval
a < r < oo in terms of the solutions of the eigenvalue problem (3-94). Such an

YN o

TO0

e

1]

o
{

expansion was given previously as given by equation {3-40) lor o more general ~
case. By comparing equation (3-96) with equation (3-40), we obtain the =
expunsion coelficient ¢(ff) as ‘ —
= g

cffi= -— FRA(B, FYF(r Y dr {3-97} .

) N(mﬁLa ol B FIF) -

The substitution of equation (3-97) into equation (3-95) gives C
x ,8 " EJ . 8 i:v

T, 0= J e #RA(B, ) ciﬁJ‘ F R, ¥ ) F(r") dr’ (3-98) ~

o NGB e p

The functions Ry(f.#) and N{f) arc obtained from Table 3-2 case 3; the [’;
sofution (3-98) becomes {j:
T{r, )= r P e () Yy(Ba) — YolBriolfe)] 4P ,‘

=0 Jo(ﬁa) + Yo(ﬂa) >

J I o(Br) Yo(Ba) — Yol o(Ba) 1F(r) dr’ (3-99) ~

Example 3-8 ﬂ:
A region a < r < oo in the cylindrical coordinate system is initially at a tem- o
perature F(r); for times ¢ > 0 the boundary atr = a dissipates heat by convection e
into a medium at zero temperature. Obtain an expression for the temperature L
distribution T(r, ) for times ¢ > 0. o
Solution. The heat conduction problem is given by e
s

P*T 18T _14T
b= in a<r<o, (>0 3-100a o~

ot rér adt (‘, ) g

aT s
_B_+HT=0 at r=a, t>0 (3-100b) o

r : .

T=F(r) for t=0 magr<oo  (3-100c) -

[’



126 SEPARATION OF VARIABLES IN CYLINDRICAL COORDINATE SYSTEM

By carrying out the analysis as described in Lhe previous example, the solution
is written in the form as given by equation (3-98), that is

i
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0< 7z < o are obtainable from Table 2-3. We illustrate below the application
with several representative examples.

Example 3-9

)
e
.
)
"'—\
N
:: “T )

20

11 oo
T(r.t) = J,, . iﬁ e~ R(B.r) df J N FR(B.EC)Ar (3-101)

wl‘n:rc the functions R,tf.r) and N(P) are obtained from Table 3-2, case 1, as
Rolfr) = Jo(ANTAY, (Ba) + HYy(Ba)] — Yo(Bri[AJ (fa) + HJolBa)] (3-102a)

NIy = [ ) + 1Tl fed ] 4+ [BY () + HY o Ba))? (3-102b)

3-d HOMOGENEQUS PROBLEMS IN (r,z,1) VARIABLES

The general solution of the homogeneous problems of heat conduction in (r,z, 1)

- —rij#—vu-r-ia-blcs_iswcons,twcLcd_lly_lhc_sup_c[mn ol the separated solutions I'(),

~

e

A

-
)

. P
SN St

‘.‘ \ ; K

B [
o N

Rolf.r) and Z(y.z) for the t,r, and z variables, respectively. The analysis is
straightforward because explicit expressions for the separated solutions are
available in tabulated form for various combinations of boundary conditions.
That is. the functions Ry(f,,.r), the norm N(f,). and the cigenvalues f3,, for finite
regions (e, 0<r€aand agr<h)are obtainable from Tables 3-1 and 3-3 by
setting v = 0; and Lhe corresponding expressions for a semiinfinite regiona < r <o
are obtainable from Table 3-2. Similarly, the expressions defining the functions
Z(n,.z), the norm N{y,) and the cigenvalues 1, for a finite region 0 <z < ¢ are
available in Table 2-2 and the corresponding expressions for a semiinfinite region

o0 s 25

/‘// Initiall

1“1 Foro2)

Fig.3-5 Boundary and initial conditions for a hollow cylinder considered in
Example 3-9, o

A hollow cylinder of finite length, in the regiona<r < b, 0 < z <, is initially
at a temperatufe F(r, z). For times { > 0, the boundaries at r =g andr= b are
kept al zero temperatures, the boundary at z = 0 is insulated, and the boundary
at z = ¢ is dissipaling heat by convection into a medium at zero temperature
as illustrated in Fig. 3-5. Obtain an expression for the temperature distribution
T(r,z 1) for times ¢ > 0.

Solution. The mathemalical formulation of the problem is given as

2 2
f‘j—I 16—T+6T—1EI in a<r<b, O<z<e >0 (3-103)

arr rar 8z adt

T=0 at r=a, =h t>0 (3-104a)
1—""=0 at z=0, >0 (3-104b)
7 . .

o1 +10T=0 at Z=(, >0 {3-104c)
0z H

T="F(rz) for =0, in the region {3-1044d)

The separation of variables lead to a set of equations as given by equations
{(3-11); the separated solulions are taken as

e A Ry r) and - Z(n,.2) (3-103)

Here, the eigenvalues f8,, and 1, are discrete because the regions in the r and
2 directions are both finite. The complete selution for T'(r, 2, ) is cons_tructed as

T(J', o I) = f‘: i rum‘Rﬁ(ﬂm- r)z("p‘! :)(,—a(ﬂ,ln +q:" (3‘ l 06)

m-=1p=1

The application of the initial condition (3-104d) yields

Fr)= 5 3 copRolBmnZl1,z) i a<r<h, O<z<c' (3-107)

m=]p=1

The coeflicients ¢,,, are determined by operating on both sides of equation
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(3-107) successively by the operators

b : - P
f rRo(By,r)dr  and f Z(1,, 2)dz (3-108)

o

and utilizing the orthogonality of these eigenfunctions. We obtain

[ b
o = N([}ij(,,p) -[’=u J;=orRu(ﬂm, Nz, OFrdedz (3-109)

Then the solution (3-106) becomes

—aifiy, + ki

T(r,z,i): i qu _e

35 iy roowrzona [ || rntpun
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Zz

1

-

s\

|
Initially =0

¥l ri z} /

e

T=0 io

AR

L O P

"Z{n,, 2)F(r, )z dr’ {3-110)

where [h.e eigenlunctions Ro{f,,r), the norm N(f,,) and the eigenvalues f,,
are obtained from Table 3-3, case 4 by setting v = 0. We obtain

R"(ﬂ"" rj = J"(ﬂmr) Y(l(ﬁmh} - '!ll(ﬂn:h) Y{J(ﬂm") (3" I ]il)

L _7_ BJina)
N(B) 2 JE(Baa)—T5B.b) (3-111b)

and the §,, values are the positive roots of -
JO(ﬂma)YO(ﬁmb)_'-lo('gmb)-YQ(ﬂma)=O (3_1 l EC)

. Thc_ .eigcnfunclions Z(n,2), the norm N{y,}) and the eigenvalues 4, are
obtained from Table 2-2, case 4, by making appropriate changes in the
symbols. We find

" Z(Ypz) =cosn,z (3-112a)
1 - oqt+ H?
——=2  Jdell. 3-112
Nin,) ('(uf; +HY 4+ H ( ) b
and the 1, values are the positive roots of
Hatany,c=H (3-112¢)

Example 3-10

ﬁ.u solid cylinder, 0 <r £b,0< z < o0, is inijtially at temperature F(r,z). For
times f > 0, the boundaries are kept at zero lemperature as illustrated in

"~ Fig, 3-6 Boundary and initial conditions for a solid cylinder considered inExample-3-10-

Fig. 3-6. Obtain an expression for the temperature distribution Tir,z,¢) in
the cylinder for times t > 0.

Sofution. The mathematical formulation of the problem is given as

#rT 19T T 10T

e 622=o_£:3? in 0gr<h, O<z<ax, >0 (3-113)
T=0 at r=p, z=0fort>0 (3-114a)
T=F{r,z for =0, in the region (3~.l 14b)

| The separated solutions are tuken as
e~ e poB ., and  Z(:2) (3-115)

Here we note that the eigenvalues f§,, are discrete because the region in the
r direction is finite, but the separation constant y takes all values [rom zero
to infinity because the region in the z direction is semiinfinite.

The complete solution for T(r, z,1} is constructed as

T(r,50= 3 f CnlRol B NZ (0, 2l 0 w0y (3-116)

m=1Jy=0

The application of the initial condition (3-114b) yields

F(r,z)= i f Cnl)Ro{ B M2 (11, 2} el in 0<r<b, O<c<w
=) -0
' 3-17)

m=1
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Both sides of equation (3-117) are operated on by the operator

b
j rRo(Bp r)dr (3-118)

=0

angi the orthogonality of Ry(f,.r) functions is utilized. We obtain

J*z2) =J Cn(NZ(n, 2)dn in O<z< {(3-119a)

=0
where we defined
“p
N(ﬁm) r=0

T_he representation given by equation (3-119a) is exactly the same as that
given by ecquation (2 51) for o aemiinfinite rogion. Thoerefors, the unknown
coeflicient ¢,,(y) is determined according to the result in equation (2-53); we
find

L f M) =

rRy(f,, NIF(r, 2)dr (3-119b)

ol

cm(r;a) = ~—]—— Z{n,z)f*(z)dz (3-120)

N J:-n

The substitution of equation (3-120) together with equation (3-119b) into
equation (3-116) gives the solution for T(r,z1} in the form

- o o —elfl+ndh b o
W)= e R ! !
. a0 ,,Z‘, J‘rr=ll N{B.IN(x) P r)Z00:2) dn[-'no L‘=or Rolf r})

Zn, (¥, 2Nde dr’ (3-120)

The .eigenfunctions Ry(B.., 1), the norm N(f,), and the eigenvalues f, are
obtained from Table 3-1, case 3, by setting v =0; we find

l 2 2
R (Bmlr)=" (ﬂmr)- = = 3-122
‘ ’ R I T
and the B, values are the positive roots of
Jo(Bab}=0 (3-122b)

The functions Z{y, z) and N(x) are obtained irom Table 2-3, case 3, as

. 1 2
Z(n,z)=sinnyz and e T e 3-123
- N = G123
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When the results in equations (3-122) and (3-123) are introduced into equation
(3-121) and the order of integration is changed, we obtain

4 X Jo(ﬂ r) - 21 J.b Jm Il 4 f U ’ i
T z,t)=— 3 —2oim p= ol Jo(Bat)F(r, 2)dz' dr
(r,z,1) nb2m=1J’f(,B,,,b)e o z'-__or ol Bt VF (', 2)

J ¢~ sinpzsinnz'dy ' (3-124)
n=0

The last integral with respect to # is similar to the one given by equation
(2-57dy; then this integral is evaluated as

2.[30 e'“""sinnzsinqz'dn=Pl
T Jyeo (dmar)'?

. (z—z)’ _let2) :
[cxp(— o )—exp( At )] (3-125)

and this result is introduced into equation (3-124).

1.5 HOMOGENEOUS PROBLEMS IN (r, $,1) VARIABLES

In the analysis of heat conduction problems involving (r, ¢, t) variables, the
following two situations require different considerations: (1) the range of ¢
variable is 0 < ¢ < 2 as in the casc of a full cylinder—in this case no boundary
conditions are prescribed in ¢ except the requirement that the temperature
should be periodic in ¢ with period 2%; and (2) the range of ¢ variable is
0< ¢ < ¢po < 2m as in the case of a portion of a cylinder—in this case boundary
conditions should be prescribed at ¢ =0 and ¢ = ¢,.

Example 3-11

A solid_cylinder, 0 < r < b,0 € ¢ £ 2x is initially at temperature F(r, ¢). For
times ¢ > 0, heat is dissipated by convection from the boundary surface at
r=b into an environment at zero temperature. Obtain an expression for the .
temperature distribution T{r. ¢ 1) in the cylinder.

Solution. The mathematical formulation of this problem is given as

T 1ar 18T 19T

s Rt in 0<r<b 0<¢<2m, (>0 (3-126)
; : .

aT
E—+HT=O at r=b,. >0 ~ (3-127
r
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T=F(r ¢) for =0, in the region {3-128)

The separated solutions are taken as

e~ @y, ¢)=Asinvg + Beosvp,  R(f.1)  (3-129)

The complete solution of T(r, ,t) is constructed by the superposition ol
thesc elementary solutions as

Tir, ¢, t)= Z Z e'“""-'(A,,,,sm v + By, cOs V)R (B, ) (3- 130)

=1

Tht_a_ application of the initial condition (3-128) gives

Flr,d)= 3 Y(Ansinvg + B, cos v@)R,(B,,r) in0<r<b0<d<2n
m=t v
(3-131)
We now operate on both sides of this expression by the operator

b
J. rR (., r)dr (3-132)

0

and utilize thé~orthogonalily property of the functions R (.., r). We obtain

i) = Z(Am,,sin' v + B, ,cosv)N(B,)}  in 0g<d<2n (3-133)

where -we defined
b
i (¢)EI R (B NF(r, fﬁ)df (3-134)

o

Equation (3-133) is representation of a [unction f{¢) periodic in ¢ with period
2rsimilar to the representation considered by equation (3-53). We recall that
the coefficients of equation (3-53} are given by equation (3-56). Therelore,
the coeflicients of equation (3-133) are immediately obtainable from the result
given by equation (3-56) as

[A,,,sin v¢+Bmcosrv¢]N(ﬂm)E% " f@rcosvig— @)y (3-139)
#=0
where

v=0,1,2,3... (3-136)
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and replace n by 2n for v = 0. The substitution ol equation (3-135) together
with equation (3-134) into equation {3-130) gives the temperature distribution
as

S—aftde

T(r ‘p [)—_mzl ‘io ;V(ﬁ ) v(ﬁm:r)

J .[ FRAS, rycosvid — ¢, & )drde’  (3-137)
‘=0dr=0 :
where

v=0,1,2,3...

and replace = by 2 for v=0. The eigenfunctions R, (8., 7} the norm N{8,),
and the eigenvalues f§,, are obtained from Table 3-1, case 1, as

I 2 B2
R = = il 3-13
M) = 1B i = e By (130
and the f§,, values are the positive roots of
B (B} + HU (B} = O (3-139)

Example 3-12

Iy

-
Al NS

YOOy O

o
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N

Repeat Example 3-11 for the case when the boundary surface at r = b is kept
at zero temperature.

Solution. The mathematical formulation of this problem is similar to the one
given above except the boundary condition (3-127) should be replaced.by
the boundary condition T =0 at r = b. Therelore, the general solution given
above by equation (3-137) is also applicable for this case provided that the
functions defining R (f,,, 1}, N(f,,),and §, are obtained from Table 3-1,case 3,
as

I 2
R(ﬂm'r}"_“'}v(ﬁmr)v N(:U )= sz'z—tﬂ b) (3‘]40}

and the §,, values are the roots of

JABnb)=0 (3-141)

-~

The substitution ol equations (3-140) into equation (3-137) gives the solution

{54

{5

R RN,

-
1
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as
PP b
r .t J
,,.z‘.ZJ'l(ﬂ,,,b) ()
'J' j r'.l‘.(ﬂ,,,r') cos v(¢h — PV Yl d oy {3-142)
TP
where

19312
At e
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where the function ®(v, ¢) is the solution of the eigenvalue problem

2
% +20=0 in 0<¢ <Pyl <2m) {3-143a)

Dir,p)=0 at $¢=0 and $=4d, {3-145b.c)

and the function R, (f,.7) is the solution of the eigenvalue problem

&R0 lde(r)+(ﬂ2 )R,(r)=0 in  O<r<b (3-146a)
7 T - - .

: f-\___/-‘\AL /—\‘.“',-'-x__ ;
PN P NIy N N S NP S
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N e e
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S et
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LT T T

e~ — -

a

=012
and replace n by 2n for v=0, §,'s are the positive roots of J(f,,b) = 0.

Example 3-13

The portion of a solid cylinder, 0<r<b,0< ¢ <¢o<2r is initially at
temperature F(r, ¢). For times t >0 the boundaries atr =b,¢ =0and ¢ = o
are kept at zero temperature as illustrated in Fig. 3-7. Obtain an expression
for the temperature distribution T(r, ¢, 1) for times > 0.

Solution. The mathematical formulation of this problem is given as

H+10T+102T IJT
ar? rar r*ag? «ar

in 0gr<b, 0<p<gy >0 (3-143a)
T=0 at r=b, =0, ¢=¢g, t>0 (3-143b)
T=F(r. ¢} for =0, in the region (3-143c)

The separated solutions are taken as

et @), and R (Bnr) (3-144) .

Fig. 3-7 Boundary and initial conditions for a portion of a cylinder considered in
Example 3-13.

l“ odr
R,= ﬁnite : at r=0 (3-146b)
R,=0 at r=b (3-146¢)

The complete solution for T(r,¢,1) is constructed by the superposition of
these separaled solutions as

T(r, ¢, 1) = z ZcmR (B, NO(¥, ¢,)e-=ﬂm ' (3-147)

m=1 v

The application of the initial condition {3-143c) gives
Fr,d)= Y. Y emRABmn®,¢) in  O<r<b, O<p<dp (3-148)
m=1 v

To determine the coefficients ¢,,,, both sides of equation {3-148) are operated
on successively by the operators

b

¢a .
J‘ O, P)d¢  and I rR (B r)dr
o=0 r=0
and the orthogonality property of these eigenfunctions are utilized. We find"

1 b '
Coe = N(ﬂmiﬁ(\'_J- J¢=ner(ﬂ”,,r)d)(\'.d))F(r,q‘)}dd:'dr (3-149)

This result is now introduced into equation (3-147) to obtain the solution for
T(r, ¢, 1) in the form ' '

> Tiné = ): y— R, (B 1)D(v, )

m=1 v N(Bm}”( )

b o
J\ j FRJAB.. YO, §YF(, ¢’ dr’ (3-150)
=0
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where R,(8,.,r), N(§,), and §,’s are obtained from Table 3-1, case 3, as

1 2
Rv( mlr =Jv mra = - 3'15]
O TR B
and thé B.. values are the positive roots of
J APl =0 . (3-151b)

The expressions defining ®(v, ¢), N{v), and v are obtained from Tabie 2
case 9, by approprlale change of the notation. We find

[ 2
D(v, P) = sin v, —=— {3-152a)
N{v) ¢,
and the v values are the positive roots of
sin vy =0 (3-152b)

When the results given by equations (3-151) and (3-152) are introduced into
equation (3-150) the selution becomes
- —apis Sl Bl)
e aﬁm( virm
0 mz=:i Zv: JHmb)

sin v

Tl 0 =3

[ do
J j FI(B F)sinvg F(r,)dg'dr (3-153)

=0Jg=0

where the B.. values are positive roots of J (f§,,b) = 0, and wvalues are given by

HIT

o

0

n=1,23...

1
For the special case of F(r, ¢) = Ty, = constant, the solution (3-153) becomes

.l.(f‘,(f) f).— o‘-:r!) i Z ,—afke Jv(ﬁmr) ‘iln !(‘b

1 sin S (Bor Ve (3-154
P honEs s LTSRS

where the f§,, values are the positive roots of J,{b) =0, and the v values are
given by

_@n—1Dr

n=1,2,3...
$o
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3-6 HOMOGENEOQUS PROBLEMS IN (r, ¢, z,f) VARIABLES f
The general solution of the homogeneous heat-conduction problem in {r, ¢, 2, ()
variables is constructed by the superposition of all permissible elementary -
solutions; the resulting expansion coefficients are then determined by a procedure
described previously. The analysis is straightforward because all the elementary -
solutions are now available and systematically tabulated for all combinations .
of houndary conditions. The application is illustrated with the following s
examples, -
Example 3-14 :
A solid cylinder, 0 S r < b,0< ¢ € 21,0 <z < ¢, Is initially at a temperature et
Fir,¢,z). For times ¢ > 0 the boundary at z=0 is insulated, the boundary -
at z=c is kept at zero temperature, and the boundary at r=25 dlsmpates L~
heal by conveclion into a medium at zero temperature as illustrated in g
Fig. 3-8. Obtain an expression [or the temperature distribution T{r, ¢, 2,1) C
for times ¢ > 0. {—
Solution. The mathemalical formulation of this problem is given as , if:
02T+16T+i627‘+03’r 13T Ogr<h 0<p-2 .
. . . = sr<h, LAl L
ot T ror 0 92 ad - »
Q<z<e, >0 {3-155} IC
e
aT o
3~+HT 0 at r=b, t>0 (3-156a) -
8
o
z ,/\
3
P
I .
i B i hr=o ¢
[ initially _t/ :(\

#ir, e, 2} '

1 H

//—-_ T~
P! O B ii
aT
iz =0

Fig. 3-8 Boundary and initial conditions for a solid cylinder considered in Example 3-14.

SO UOGLGG O
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oT

2o ' at  z=0, 1>0  (3-156b)
iz

T=0 ' at  z=g, t>0 (3-156¢)
T=F({r¢.2) _ " for t =0, intheregion (3-156d}

The elementary soluiions are taken as

PRt AR HT RAB...1 Zin,zh {Asinvg + Bcos veh)

The complete solution for T(r, ¢,z t) is constructed by the linear super-
position of these elementary solutions as

Trdzty= 3 5 TR Bun)Z0,02)

m=1p=1 v

[Appsin v + B,,,, cOs vqb]e"“m-’-" nph (3-157)

The application of the initial condition yields

Fir.gp,z) = i i S RABu 2N, D) Ay sinve + By, 08 vip] (3-158)

m=1p=1 v

To determine the coeflficients, we operale on both sides of this equation
successively by the operators

jer‘.(B,,,‘. rydr and J‘ Zn,, 2)dz

0 0

and utilize the orthogonality of the eigenfunctions R (8, r) and Z(,,r). We
find ’
F(@) =2 NN App sinve + B, cosv] in 0<p<2n
(3-159a)

where we defined

i1 b

() =f f PR B V201, 2IF(r, §,2)drdz  (3-150D)
z=0Jr=0

Equation (3-159a) is-a representation ol function f(¢) periodic in ¢ with

period 27 similar to the representation considered in equation (3-53); the

coeflicients of equation (3-53) are given by equation (3-56). Therefore, the
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coeflicients of equation (3-159a) are obtained from the result in equation
(3-56) as

2n
N(BINU Ay Sinve + By, coSvP) = lI S(P)cosv(p— ¢)dd’

T $'=0
(3-160)
where
vr=0,1,23...

and replace n by 2x for v=0. The substitution of equation (3-160) into

equation (3-157) together with equation (3-159b) gives the temperaiure
distribution in the form i
—alph+mpht

Toa0= 3 2, B Ngowey

.ru J- r ,[ R V201 )05 — )

¢'=0Jz'=0Jdr=0
Fir', ', 20 dr' de' dg' (3-161)
where

vex(,1,2,3...

and replace n by 2z for v =0. The expressions defining R (B N(fi,), and
.. are obtained [rom Table 3-1, case I, as

! 2 i

' =1, = 3-162
L RMun) = B = s . (3-162a)
and the §,, values are the posilive roots ol
B.J(Bub) + HI (B =0 (3-162b)

and the expressions deflining Z(n,, 2);N{n,) and »,, are obtained from Table
2-2, case 6, by making appropriate changes in the symbols. We find

{ 2
Z(n.c)=cosy,z, —_—=- (3-1630)
i g Nin) ¢ .
and the #, values are the positive roots of

cosn,c=0 (or n‘,=[—2£—~27i1f,p=1,2.3...) (3-163b)
£
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3-7 MULTIDIMENSIONAL STEADY-STATE PROBLEM
WITH NO HEAT GENERATION

The multidimensional steady-state heat conduction problem with no heat
" generation can be solved by the separation of variables if only one of the
boundary conditions is nonhomogeneous. If the problem involves more than
one nonhomogeneous boundary condition, it can be split up into a set of simpler
problems each containing only one nonhomogeneous boundary condition as
discussed in Section 2-10. To illustrate the application we consider the following
"examples.

Example 3-15

Obtain an expression for the steady-state temperature distribution T{r, z) in
a solid eylinder 0 <r < b,0 <z <, when the boundary surface at z=0 is
kept at a temperature f(r}), boundary at z=c is kept at zero temperature,
and that at r=~5 dissipates heat by convection into a medium at zero
temperature, -

Solution. The mathematical formulation of the problem is given as

O 10T BT _

Py r;,};+~;7-zi—0 in O<r<bl<z<e - {3-164a)

o wr=o at reb (3-164b)
- ar

T=f(r at z=0 {(3-164c)

T=0 at r=¢ (3-1644d)

In this problem the boundary condition at z = 0 is nonhomogeneous; looking
ahead in the analysis we conclude that the nonhomogeneous part f{r) of the
boundary condition should be represented in terms of the separated solutions
Ro(B.. r). Therelore, in separating the variables the sign of the separation
constant should be so chosen as to produce an eigenvalue problem for the
functions Ry{f,,, r). With this consideration the separated equations are taken
a8 |

g :
DRy 1R\ prRy=0 in  O<r<b (31653
drr  r dr )
dR
d_O+HR°=0 at  r=b (3-165b)
r
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and
1
d—g—ﬁ22=0 in O<z<c (3-166a)
dz=*
Z=0 . at z=¢ (3-166b)

Then, the solution lor T{(r,z) is-_conslructed as

Tr)= Y Ansinh Bl — DRolf 1) (3-167)

m=1

The application of the boundary condition at z =0 gives

f)= 5 AusinhfucRo(fmr) i O<r<b  (3-168)
=1

m

where, the coeflicients A,, are determined as

1 b '
= wiTeeie | RelPw S0 dr (3-169)
o N{B,)sinh ﬁmcL' ol B T ()T

Introducing equalion {3-169) into cquation {3-167) the solution becomes

T, = 5 o Sl 2D g B rr'Rowm,r')f(r-')m-' (3-170)
T LN sahfae "

AR

T

v

4]

where the expressions defining the functions RolB.. 1), N(f,), and f, are /'
obtained from Table 3-1, case 1, by seiting v=0. We find -
1 2 ik e

= = - (3-171a) ;
Rolfonr) = Jolbo 5= T B 4 2) -
and the fi,, values are the posili_\fe roots of 5
—

ﬂm'];}(ﬂmb) + H"U(ﬁmb) = 0 or ,ﬂm‘fl(ﬂmb] = H‘ID(ﬁmb) (3' E 7 I b}

For the special case of fin =1, = constant, the integral in equution (3-170)
is performed and the solution becomes

Teo)_2 & _ BuuBab) _SinhBie=2) ) 0
T, —E,,.; TP H +4L sinhf.c !

=

PRI

3

R G O RO



P

TN
el e i

R

[N A

—

~

-

(VR UEW W AW AENG AW, ‘/ AN A U

i

142 SEPARATION OF VARIABLES IN CYLINDRICAL COORDINATE SYSTEM

or, by utilizing equation {3-171b}, we find

Tz 2 & H sinhf,lc—2) JolBar) i
Ty  bu=1H*+ 2 sinhf,c  Jo(B.b) (-1720)

Example 3-16

Obtain an cxpression for the steady-stlate temperature distribution T(r, ¢} in
a solid cylinder 0 < r<b, 0 € ¢ < 2x, which is subjected to convective heat
transfer at the boundary surface r = b with an environment whose tempera-
ture varies around the circumlerence. .

Solution. The mathematical formulation of this problem is given as

- 0 in 0<r<b 0<¢<2r (3-173a)

"E"“'!’HT=f(¢) at r=b (3-173b}
r

The separated equations and their elementary solutions are as given by

.. equations (3-17). The general solution for T{r, ¢) is constructed in terms of

these solutions as

Tl ) =3 r(C,sinv + D,cosvg) (3-174)

where we excluded the elementary solutions r~* and Inr because they diverge
at r={0. This solution is introduced into the boundary condition (3-173b);
we find

Y. b v 4 HB)C, sin s;qb-l-D‘.cos v} = () in 0¢<2n (3-175)

This equation is a representation of function f{(¢} periodic in ¢ with period 2x
similar to the representation considered in equation (3-53); the coeflicient of
equation (3-53) ‘are given by eqiatioh (3-56). Therefore, by comparing
equation {3-175} with cquations (3-53} and (3-56) we conclude that the
caeflicients are given by

. 2x
be~ Yy + Hb)(C, sin vip + D, cos veh) El S cosv(gp — ¢)dg’  (3-176)
My =0
where
v=0,1,2,3,...
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and replace n by 2m for v=0. When these coefficients are introduced into
equation (3-174), the solution for the temperature becomes

r 1 2

=2 (5) i | swreesne-rag

where

v=0,1,2,3,...
and rebiace 7 by 2n for v=0.

Example 3-17

Obtain an expression for the steady-state temperature T(r,z) in a solid
cylinder 0 <r < b,0<z <S¢, when the boundary at r= b is at temperature
J(z) and the boundaries at z=0 and z = ¢ are at zero temperature.

Solution. The mathematical formulation of this problem is piven as
#T 10T T

e —=0 in O0<<r<b, 0<z<c (3-178a)
ot r dr oz? }
T = f(2) al r=b {3-1780)

T=0 ' at z=0 and z=c (3-178¢)

.The separated equations are taken as

Pz, ; 3-179
?..H,zﬁ() in O<z<e (3-179a)

Z=0 at z=0 and Ze= (3-179b)

and

R U o ogr<h T (a0
drt rodr

We nole that the sign of the separation constant is so chosen as to produce’
an eigenvalue problem for Z(y, z), because the boundary condition function
£1(2) should be represented in terms of Z(y, z). The general solution for T{r,z}

is constructed as

<0

T2 = Y, Andolin?1Z01m?) (3-181)
1

m=
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The application of the boundary condition (3-178b) yields
f@) =Y A ln.bBZn,.2) in D<z<c (3-182)
m=]
The coeflicients A,, are determined as

[ ¢
Am: 3 Z s dz _
1o(1ab)N () L (s 2/ (2) (3-183)

Intrpducing equation (3-183) into equélion {3-181) the solution becomes

— o l ID(nmr) £ ’ . . .
769~ 5, Nty 2o | 002 100

where Z(x,,, z), N{y,,), and #,, are obtained from Table 2-2, case 9, as

Z(m, 2} =sinNpz, ——= (3-185a)

and the y,, values are the roots of

sing,c=0 {3-185b)

Substitutiﬁg equations (3-185) into equation (3-184) we find

2 & Iyn.n . J.‘ ;
T(r,z}==Y L™ singy, W2 f(2) dz' 3-
) cmgl [o(qmb)smq z osmq Z' f(z)dz (3-186)

where

3-8 SPLITTING UP OF NONHOMOGENEOUS PROBLEMS
INTO SIMPLER PROBLEMS

When the heat conduction problem is nonhomogencous because of the non-
homogeneity of the differential equation and/or the boundary conditions, it can
be split into a set of simpler problems, as discussed in the Section 2-12, if the
generation term and the nonhomogeneous part of the boundary conditions do
not depend on time,
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Example 3-18

A solid cylinder, 0 <r < b, is initially at temperature F(r). For times t > 0,
heat is generated within the solid at a constant rate ol g, and the boundary
surface at r =5 is kept at zero temperature, Obtain an expression for the
temperature distribution T(r,1) in the cylinder for times ¢ > 0.

Solution. The mathematical formulation of this problem is given as

AT 16T | 10T .
-é}?q--r-a;--f;—(go:&ﬁl— in O0sr<b, >0 {(3-187a}

T=0 at  r=b, >0 (3-187b)
. T=F(r) for =0, in the region (3-187¢)

This problem is split into a steady-state problem for T,(r} as

d*T. 1dT, 1

il Wit Wl R m -0<r<éb 3-188a
dr? +r dr +ké’o . J { )
T=0. at r=b (3-188b)

and into a homogencous problem for To(r, 1) as

s hoot=-=t in 0r<h, >0 (3-189a)

T'=0 at r=b, t>0 (3-188b)
T=F{—T,r for t=0, in the region  (3-189c¢)
Then, the solution T(r, ) of the original problem (3-187) is obtained as
T =T+ Tun ) (3-1-90)
The sieady—state problem is readily solved

o

-;47{-({1: - r?) (3-191}

T i) =
The homogeneous problem {3-189) is exactly the same as considered in
Example 3-3; hence its solution is immediately obtained from equation {3-67)
as -

2z - I,Jn(ﬁmr) b_, ol . 4 ’ -
T,,(r.t)=b—2-m=!e ﬂ"'}i(meF)L'J“w’"' W) — T4 ]dr’ (3-192a)

S T
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where the 1, values are the roots of
Jo{Bnb) =0 A (3-192b)

When the results in equations (3-191) and (3-192) are introduced into
equation (3-190) and some of the jntegrals are performed, we obtain

golb*> —r?) 290 Z o3t Jﬁ(ﬂmrL
dk m= ﬁ.?.h(ﬁmb)
2

= = —aﬂz J(l(ﬁm’) v . . , )
AP i TP (193

T{r )=

Example 3-19

A solid cylinder is initially at temperature F*{r). For times ¢ > 0 heat is
generated in the region at a constant rate of go per unit volume and the
boundary surface at r = b is subjected to convection with an environment at
temperature T.,. Obtain an expression for the temperature distribution T(r, 1)
in the solid for times 1 > 0.

Solution. The mathematical formulation of this problem is given as

2T 19T 19T '
LA L in  0<r<b, r<0- (3-194a)

,‘_.y+ —_—_——
at rdr k oadt
aT
= L HT=HT, at  r=b (>0 (3-194b)
(J‘ .
= F*() for =0, in 0<r<b (3-1940)

and the temperature should remain finite at r =0. This problem is split into
a steady-state problem for T,(r) as

12T, 1T,
L .r_*_!l_‘n

\ =0 in Ogr<h {3-195a) -
e rdr Ok
d—;{‘+ HT.=HT, at  r=b (3-195b)
qr

and into a homogeneous problem for T,(r,7) as

2 19T;
%, 19T, 19T, in  0<r<b, t>0 (3-196a)
at rdr adt
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@+HT,, at  r=bh, t>0 (3-196b)
{.r .

=F*ry— T{N=F(r) for =0, in0<r<b (3-196¢)
Then, the solution of the problem (3-194) is given by
T(r, )= T.{r) + Ty(r. 1) (3-197)

The solution T,(r) of the steady-state problem (3-195) is a straightforward
matter. The homogeneous prablem (3-196) is exactly the same as the problem
{3-57) considered in Example (3-1); therefore, the solution of T,(r, ¢) is obtain-
able [rom equation (3-63) by setting in that equation F(r)= F*{r) - T.(r).

39 TRANSIENT-TEMPERATURE CHARTS

In the previous chapter we presented transient temperature charts for a slab
of thickness 2L subjected to convection at both surfaces. We now consider one-
dimensional, transient heat conduction in a long cylinder of radius b, which is
initially at a uniform temperature T,. Suddenly, at time (=0, the boundary
surface at r = b is subjected to convection with a heat transfer coefficient h into
an ambient at temperature T, and maintained so for ¢ > 0. The mathcmatical
formulation of this heat conduction problem is given in the dimensionless form as

1 9 (R@)=@ in O0<R<l, fort>0 (3-198a)

RIR\ 2R/ &

20 - |

—=0 at R=0, fort>0 (3-198b)
aR

a0 :
— +Bif =0 at R=1, fort>0 (3-198c)
aR :

=1 in  O0<R<Llorr=0. (3-198)

where various dimensionless quantities are defined as follows:

Bi= th = Biot number (3-199%1}
t . . . .
= % = dimensionless time, or Fourier number {3-199h)
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PROBLEMS

3-1

A hollow cylinder, @ <r <b, is initially at a temperature F(r). For times
¢ >0 the boundaries at r=a and r=»b are kept insulated. Obtain an
expression for temperature distribution T, £)in the solid lor times t > 0.

A region a <r < co in the cylindrical coordinate system is initially at a
temperature F(7). For times ¢ > Q the boundary at r =  is kept insulated.
Obtain an expression for the lemperature distribution T, ) in the region
for times + >0,

A solid cylinder, 0 < r €< b, 0 < z € ¢, is initially at temperature F(r, z). For
times ¢ >0, the boundary at z =0 is insulated, the boundary at z=¢ is
dissipating heat by convection into a medium at zero temperature, and
the boundary at r = b is kept at zero temperature. Obtain an expression
for the temperature distribution T{r, z.t) in the solid for times t > 0.

A semiinfinite solid cylinder, 0 € r < b,0 € z < ec, Is initially at tempera-
ture F(r, z). For times t > 0, the boundary at z = 0 is kept insulated and
the boundary at r =0 is dissipating heat by convection into 2 medium

30

310

311

3-12

3-13

3-14
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at zero temperature. Obtain an expression for the temperature distribution
T(r.z 1) in the solid for times ¢ > 0.

A semiinfinite hollow cylinder, a <r < b,0 <z < co, is initially at tem-
perature F{r,z). For times ¢ > 0, the boundaries at z=0,r=a,and r=b
are all kept at zero temperature. Obtain an expression for the tempera-
ture distribution T{r,z,1} in the solid for times r > (0.

A solid eylinder, 0 < r £ 5,0< ¢ < 2, is initially at temperature Fir, ).
For times ¢ > 0, the boundary at r = b is kept insulated. Obtain an expres-
sion [or the temperature distribution T{r, ¢, t} in the solid for times > 0.

A hollow cylinder, 2 < r < b,0 < ¢ < 2, is inilially at temperature F{r, ¢).
For times (> 0, the boundaries at r=aq and r=2» are kept insulated,
Obtain an expression for the temperature distribution Tl(r, ¢,¢) in the
region for times ¢ > 0.

A portion of a solid cylinder 0<r <b,0 < ¢ < (< 2a) is initially at
temperature F(r, $). For times t > 0, the boundary at r = b dissipates heat
by convection into a medium at zero temperature, the boundaries at
¢ =0 and ¢ = ¢, are kept at zero temperature. Obtain an expression
for the temperature distribution T{r, ¢, £} in the solid for times 7 > 0.

A portion of a hollow cylinder a <r <b,0< ¢ < ¢y < 2= is initially at
temperature F(r, ). For times ¢ > 0, the boundaries at r =a,r =h, ¢ =0,
and ¢ = ¢, are all kept ai zero temperature. Obtain an expression for
the temperature distribution T{r, ¢,1) in the solid for times ¢ > 0.

Repeat problem 3-6 for the case when the boundary at r=his kepl at
constant temperature Tg.

A solid cylinder 0 < r £ b,0€ 2 € ¢,0 € ¢ € 2, is initially at temperature
Fir,¢,2). For times >0, the boundary at z=0 is kept insulated, the
boundaries at z=c and r = b are kept at zero temperature. Obtain an
expression for the temperature distribution T{r,z, ¢.1) in the solid for
times ¢ > 0.

A portion of a solid cylinder, 0<r<b, 0P <Pp<2n,0<z2<¢, as
illustrated in Fig. 3-8, is initially at temperature F{r, ¢, 2). For times t > 0,
the boundary surface at z=0-is kept insulated, the boundary al z=¢
dissipales heat by conveclion inlo an environment at zero temperaiure,
and the remaining boundaries are kept at zero temperature. Obtain an
expression for temperature distribution T{r, ¢, z,1) in the solid for times
>0

Solve problem 3-3 by using product solution [or the case solid is initially
at a uniform temperature Ty.

Obtain an expression for the steady-state temperature distribution T{r, z)
in a solid cylinder, 0 < r<b,0<z < ¢, when the boundary at z=0 is
kept at temperature F(r), and there is convection into a medium at zero
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3-15

3-16

3-17

3-18

3-19
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temperature from the surfaces r = b and z = ¢. Assume heat transfer coelli-
cients to be the same for both of these surfaces.

Obtain an expression for the steady-state temperature distribution T{(r, )
in a hollow cylinder a<r < b 0<z < ¢, when the boundary at r=a is
kept at temperature F(z) and other boundaries at r=5,z=0,and z=¢
are kept at zero temperature,

Obtain an expression for the steady-state lemperature T(r, z) in a hollow
cylinder a € r € 5,0 € z € ¢, when the heat flux into the sutlace at r =a
is f{z) [i.e.,, —k{8T/dr) = f(2) at r = a] and the other boundaries at r = b,
z= 0 and z = ¢ are kept at zero temperature.

Oblain an exbression for the steady-state temperature distribution T(r, ¢)
in a solid cylinder 0 <r < b,0< ¢ < 2n, when the boundary at r=15 is
subjected to a prescribed temperature distribution f(¢).

Obtain an expression for the steady-state temperature distribution T'r, z)
in a solid, semiinfinite cylinder 0 € r £ 5,0 £ z < 00, when the boundary
at r=b is kept at prescribed temperature f(z) and the boundary at z =0
is kept at zero temperature, :

Obtain an expression for the steady-state temperature, distribution T(r, z)
in a solid, semiinfinite cylinder 0 <r < b,0 < z < oo, when the boundary
at z="0s kept at temperature f{r) and the boundary at r = b dissipates

heat by convection into a medium at zero temperature.

NOTE

1. Consider the eigenvalue problem

2
li rd‘R(rJ + ﬁ"—v—)R(r)=0 in O0gr<t (1a)
rdr dr r? )
R o a r=b (1b)
dr
For equation (1a) for v = 0, we find

i ’ R(r)d de( ‘m)dr @

rRYr)dr = — =

’ o o dr\ dr

Integrating the right-hand side by parts, we obtain

b b b 2
5 I PR¥r)dr = [m “'_R] ¥ J r("—R) dr o)
o dr o P dr

NOTE 153

The first term on the right vanishes in view of the boundary condition (1b); then

] 1 b
ﬂla-J-J r(dE) dr where NE'J rR3dr (4)
NJo \dr 0

Clearly, iy =0 is also an eigenvalue corresponding to Ro(fy, r) = constant # 0, Then,
for Ry{Be,r) =1 the corresponding norm becomes

3

B/
N(fiy) = - (5)
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THE SEPARATION OF
VARIABLES IN THE SPHERICAL
COORDINATE SYSTEM

In this chapter we present the separation of the homogeneous heat conduction
cquation in the spherical coordinate’system and examine the solution of homo-
peneous problems of spheres involving {r, 1), (r, 1, 1), and (r, 1, , 1) variables by the
method of separation of variables. The solution of multidimensional steady-state
problems on sphere is also presented. The reader should consult relerences [-7
for {urther application of the method of separation of variables to the solution
of homogeneous heat-conduction problems in the spherical coordinate system.

4-1 SEPARATION OF THE HEAT CONDUCTION EQUATION
IN THE SPHERICAL COORDINATE SYSTEM

Consider the three-dimensional, homogeneous heat conduction equation in the
spherical coordinate system (r, 0, ¢) given as

2T 24T 1 a or 1 #T et
e e e—— — infd— j— — = — -
ot oorer ot sinﬂr"ﬂ(sm 4"0) +r2 sin? 00 a e -(4 R

where T = T(, 0, ¢.1). This equation is put into a more convenient form by
defining a new independent variable ;: as

p=cosf . (4-2)
Equation {4.1) becomes ’
&T 28T 1 @ 8T 1 ? 1
-;2—+H_;—.-+—2—[(1 wy'}—] PN S i Ny UL
& rer g Pl—pHddt a ot

i54
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v\'fhcre T = T(r, i, $,1). If we define a new dependent variable V as
V=r'2T {4-4)
equation (4-3) takes the form

2 - 2
v _1av_1v 13 [“ _H,)qy]+ Uy _tav g
et rdr 4rt rtip ] r1—pHdd® e dt
Equations (4-3) and (4-5) are the two different forms of the heat conduction
equation for sphere that will be considered in this chapter. Equation (4-5) will
be used only when temperature depends on the (r, 1, ¢, t) or (r, p, t) variables. The
reason for this is that, when equation (4-5) is used in such situations, the elementary
solutions of the differential equation for R(r) become Bessel functions which have
already been discussed in the previous chapter. However, if equation (4-3) is used,
the elementary solutions are spherical Bessel functions. For all other cases, including
the problems involving (# s, &), (r, ), (. 1), (r) variables, the govering equation will

be obtained from equation (4-3). _ .
We now examine the separation of equations (4-3) and (4-5) for typical cases. -

I. Temperature depends on (r, t, ¢, 1). The heat conduction equation (4-3) for
Tlr, gt 1) is transformed into equation (4-5) for V{r, . ¢, 1) by the transfor-
mation (4-4). Thus we consider the separation of the following cqualion:

v 1av v 18 av 1 v 13V
oy 1ov iV . oy e (462
o ror ar rzap[( ‘”)ay] A=)t o dt (4-62)

If we assume a scparation of variables in the form
Vir, i, ¢,1) = FRMM (1)) {4-6b}

the separated equations become

AT | a2r(y =0 . (4-7a)
a .
‘.’%54_’! () =0 (4-h)
TR 41K +[P—(n+%)z-rl—z]R=0 @9
d"—“[u - uZ)%“ﬂ +[n{n +1)=+ i’]M =0 (4-7d)
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Equation (4-7c) is the Bessel differential equation of order (n + 1), which has
solutions J, ., ,(Ar) and Y, , , ,(Ar). When the order of the Bessel function is not
zero or positive integer, the solution Y, , | 12(4r) can be replaced by J _, | ,(4r)
as discussed in Appendix IV, The dilferential equation (4-7d} is called Legendre's
associated differential equation, its solutions P™{u)and Q™() are called associated
Legendre functions of degree n and order m, of the first and second kind, respectively.

The elementary solutions of the separated equations (4-7) can be summarized
i1

i) e | " (4-8a)
O(P):  sinmep and  cosmd {4-8b)
R(r) Jypipllry  and Y, ,(40) (4-8¢)
M(w: PR and Q7w (4-8d)

A brief discussion of Legendre functions is given in the next paragraph,

2. Temperature depends on (r, 11, t). We consider the transtormed heat conduc-
tion equation {4-5). For the case of no dependence on the azimuth angle ¢, this
equation simplifics to

v o 1o¥v 1v 19 oV 1av
DR T A —_— 0= — == . -
8r2+r6r 4r2+r26,u[( ula,u:l a gt “9)

where V = V(r, is, ).
The separation of equation {4-9) results in the following equations

dr{i)

i +ad’T(1) =0 (4-10a)
d*R 1dR V1

R I 2= (n+2) = {R=0 4-10b
dr? * rdr +|: (n * 2) rz] (_ )
d .

—[(l-—,uz)d—M— +nn+HM=0 (4-10c)
du du

The elementary solutions of these equations are taken as
T(ey e (4-11a)
Ry Jppypp(4r) and Y, 12(47) {(4-11b)

M(M): P"(H) and er(lu) (4'1 IC)

WAk IRRMF B R BRra b A mmm— —mmm =« o

We note that when the temperature is independent of the azimuth angle ¢, the
separated equation (4-10c) for the function M{u) becomes the Legendre’s dil-
ferential cquation. The solutions P, (y) and @,(x) are called the Legendre functions
of degree n, of the first and second kinds, respectively.

3. Temperature depends on (r, st §). The governing heat conduction equation
for this case is obtained [rom equation (4-3) by omitting the time derivative term

2T 24 7 T 1 T
@r 2T VA, ]+ I e (+12)
ot rdr rtou du P —ph)ad

where T = T(r, 4, ¢).
Assuming a separation in the form

T(r, p, §) = R(NM(1)0(¢)

The resulting separated equations becomes

2D
e kw0 =0 (4-13a}
dep?
d*R ZdR  nfn4 1) .
— R=10 {4-13b)
ar? * rdr r? :
d dM m? ]
—_l === [+ nn+1)- M=0 {4-13c)
du[{ u)du] [( ) t—u?

and their elementary solutions are taken as

O(P):  sinmg and cosmg - (4-13d)
R{r): r and "7t (4-13e)
M(p)y: PT() and  Q7(W) (4-130)

For this special case the separated equation (4-13b} for the function R(r) is an
Euler-Cauchy type differential equation which has solutions r" and r-""%

A. Temperature depends on (r, p). The governing equation is obtained from
equation {4-3) by proper simplification to yield

*T 20T 1 ¢ ' arT
Syt ——}=0 (4-14)
ar* ror 5;,11:( k )6

where T = T(r, p).
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The separation of this equation by setting T{r, 1) = R{r)M(p) leads to the
following separated equations

LR 2R ),

e 0 ' (4-15a) |
A‘L[u —;12)‘f$]+n(u+ HM =0 (4-15b)
and their elementary so]ut'ions are taken as
R and put {4-15¢c)
M@u):P,() and  Q(n) (4-15d)

5. Temperature depends on {r,1). Equation {4-3) simplifies to

62'1" 26'1" 18T

—+- 4-16
» ror adt ( )
which is written in the form
19* 18T
et — T = e e 4‘16b
rér? rT) o &t ( )
A new dependent variable is defined as
U ) =rT{r1) : (4-16¢c)
Then equation {4-16b) is transformed into
U 1au
= 4-1
& oa (4-17)

which is now the one-dimensional, time-dependent heat conduction equation in
the rectangular coordinate system and the separation of which has already been
considered in Chapter 2,

Once the elementary solufions of the heat-conduction equation are avail-
able, the general solution is constructed by the superposition of the elementary
solutions.

PR

LEGENDRE FUNCTIONS AND LEGENDRE'S ASSOCIATED FUNCTIONS 159

4-2 LEGENDRE FUNCTIONS AND LEGENDRE’S
ASSOCIATED FUNCTIONS

In this section we present a brief discussion of the properties of the Legendre
functions and Legendre's associated functions. The reader should consult ref-
erences 5-14 for detailed treatment of this subject.

Legendre Functions t

It has been shown that the separation of the heat conduction equation for
azimuthally symmetric temperature (i.c, temperature independent of ¢) results
in the Legendre’s differential equation for M{y) as

i[(1 —ﬂzld—M:I+n(n+ I)M=0‘ (4-18)
du du . ‘

This differential equation is a special case of the Sturm-Liouville equation
discussed in Chapter 2, with p()=1—p%, 9 =0,w(p) =1, and A=n(n + ).
Clearly, the separation constants i{n+ 1) are the eigenvalues, in which », in
general, is any number; depending on the nature of the problcm ncan be a
positive integer or fractional.

According to the theory of linear differential equations, equation (4-18) has
two lincarly independent solutions. These. solutions, denoted by the symbols
P,(1) and Q,(u), are called Legendre functions of degree n, of the first and second
kinds, respectively.

For integer values of n the series delining the function P, () terminates at a
finite number of terms, hence the Legendre function P,(y) becomes the Legendre
polynomial P,(u), which is convergent in the interval — [ < u < L. The first few
of the Legendre polynomials are given as [5, p.86; 7, p. 151]

Po(p) =1 Pim=p
Py(u) = %(3112 ~1) Py(uy=3(5¢ — 3p}
Pyl =3(35p* — 304" 4 3) Py{p) = §(63p° — T00° + 154)
Polp) = 15(23145 — 315u* + 1057 — 5) Po(p) = 1£(429u" — 63943
Py = |23(643S;1 — 1201245 + 31513 —351)

+ 69304 — 126052 4- 35)

4-19)

Any other P,(u), when n is a positive integer, is obtainable from the following
recurrence relation

(1 OP, 4 (1) — 20+ VP () + 1P, _ (1) =0 (4-20)

The Legendre polynomials P, (u) are also obtainable from the Rodrigues’
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formula [15]

a
-1y 4-21
Tl d (1" ~1) 4-21)

P (u)=

This formula is useful to evaluate definite integrals involving Legendre poly-
nomials. We present in Appendix V numerical values of the first seven of the
Legendre polynomials P p).

The Legendre function @,(;1) being infinite at g = £ 1 for all values of n, it is
excluded from the solution on the physical grounds.

Figures 4-f and 4-2 show a plot of the first four of P, {g) and Q,(u) functions.
Clearly, ,(p) functions become infinite at g =+ 1.

Legendre’s Associated Functions

We have seen that the scparation of heat conduction equation for sphere resulted
in a differential equation for the M{u) variablein the form [see equation (4-7d)]

) 2
Al —uz)@]+ nn+1) =2 (M =0 (4-22)
dp| de | L 1—pu? A
Lok =T py ()
. {
08 Y:(ul / ,
o) 4 - Pyl !’l
\ \ Py i), ‘I
oAy \ o~ 2 / "'
\ y /]
7

=
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Fig. 4-1 Legendre polynomials P (u) for n==0, 1, 2, 3, 4.
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Fig. 4-2 Legendre functions of the second kind, @ (i for n=0, [, 2, 3.

which is called Legendre's associated differential equation. The two solutions
P™(z) and Q™(y) of this differential equation are known as the associated Legendre
functions of degree n and order m, of the first and second kinds, respectively. Here
the order m of these functions has resulted [rom the separation constant associated
with the separation of the ¢ variable; therefore its values depend on the range of
the ¢ variable. When the range of ¢ is 0 < ¢ < 27, the values of m are taken as
positive integers (m=0,1,2,3,...) to satisfy the physical requirement that the
temperature remain periodic in ¢ with period 2z

The first few of P7(y) functions for integer values of n and m over the range of

— 1€ p <1 are given by e e el

Py = =301~ p)"p
Pilw = — 31 — V5> ~1)  (4-23)
P = — 15(1 — p?P?

Pi(0) = — (1 — )
P30 =3(1 ~4?)
P30 = 15001 — 2

Here P%(p) are not included because they are the same as Legendre polynomials
P ).

The recurrence formula among P™(p) functions for integer values of m and n
is given by [5, p. 304; 11, p. 360; 12, p. 62] ‘

LB

(n—m+ DP" (1) —(2n+ YPr() + (0 + m)Pr_ () =0 (4-24)
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For m=0, this expression reduces to the recurrence relation (4-20) for the

Legendre polynomials.
The P™(y) functions can also_be expressed in terms of the P,(y) functions by

the following differential relation [5, p. 116; 12, p. 53]:

! — !nl ’
Py = e et P (4-25)
dpt

The Q"(u} functions become infinite at p =+ 1 for all vaiues of n, whether
integer on not: hence they are inadmissible as solutions on the physical grounds
when the region contains = % 1.

4-3 ORTHOGONALITY OF LEGENDRE FUNCTIONS

In heat conduction problems on spheres involving the variation of temperature
with ;¢ or 1, ¢ variables, the Legendre functions will appear in the solution; hence
the orthogonality property of the Légendre functions will be needed. We present
below some ol these orthogonality conditions for ready reference later in this
chapter. :

. The Legendre polynomials P,(u) have the following orthogonality property
over the range — 1 < < 1[5, p. 8812, p.51]

! 0 forn#n
P (WP .(iydu = 4-26
J_l WP () {N(n) forn = (4-26)
where
. 1 ) 2
Ny [Pn)dp=-—- 4-21
(n) .[-1[ Sy dp Tt (4-27)

and a,n' are posilive integers. This orthogonality condition is needed for the
problem of full sphere (i€, — [ Su< 1} when temperature varies with u but not

with the azimuth angle ¢.
The orthogonality of the associated Legendre function PJ'(j1} in the interval

— 1< pu<tis given by [5.p. 11706, p. 324, 12, p. 54; 14, p. 184]

forn#n

1
0
PP {(i)dy = 4-28
j_l "(m wlidy {N(m‘n) forn=n' (4-28)
where '
1 )
N{m.nmy= J. [P ] dy = -u-z——- (n )t (4-29)

-y A+ {n—m)

and m, i, m are posilive integers, zero being included, m< n. This orthogonalily
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condition is needed for the problem of full sphere (i.e., — 1 € u< 1) when tem-
perature varies with both g and $. We note that form =0, equation (4-29) reduces

to equation (4-27).

<ceeeem-- - The orthogonality of Legendre polynomials P,(z) in the half range 0 S < !

is more involved and given by [5. p. 109; 6, p. 306; 7, p. 172]

] irn, o hoth even or both add,n 7 0 {+4-30)

R iftn=n' {4-31)
! 2n+1
Pn(ﬂ)Pn‘(nu)dﬂ =

0 (— D+ D2ty

n \2fn—113\?
pARRMRI 'Y 4+ 1] 2! !
“Ya—nn+n+ )(2) ( 5 )

if n even, v’ odd

(4-32)

where n and n' are positive integers.

4-4 REPRESENTATION OF AN ARBITRARY FUNCT ION
IN TERMS OF LEGENDRE FUNCTIONS -

In the solution of a heat conduction problem with temperaturc depending on
the y andfor ¢ variables, the representation of an arbitrary function F(g) or
F(u, @) in terms of Legendre polynomials or the spherical harmonics is needed.
Here we discuss such representations.

Representation in Region —1<pu<1

This region is encountered in the problems of the full sphere; we consider the
following two cases:

The Representation of F(p). When temperature depends on p but it is azimutﬁaliy
symmelric. the representation of an arbitrary function F(u) defined in the interval

— 1 € 1< | is needed in terms of the Legendre polynomials P, (s, n=0,1.2....,

in the ferm

Flp)= i e, Pa(1) in —lgpugl (4-33)

n=0

To determine the coellicients ¢, we utilize the orthogonality of the Legendre poly-
nomials given by equation (4-26). If it is assumed that the series on the right
of equation (4-33) can be integrated term by term over the range —l<p <1,
we operate on both sides of equation (4-33) by the operator |1 P,(#)dy and
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utilize the above orthogonality relation 1o obtain
1 1
Vo= P () F()d 4-
Cy Neo ), () () dp (4-34)

The substitution of equation (4-34) into (4-33) yields

F{;t)=§0 N;n) P,.(n)_[_l1 PailF(@)dye - in - —1<pugl (4-35)
where
N(n) = 2 ., n=0,1,2,3... (4-36)
2n+1

The Representation of F(u, ¢). The representation of this type is generally needed
in the problems of full sphere when the temperature is a function of both g and
¢ variables. Consider a function F(g, ¢) defined in the interval — 1 < u<1,0<g
¢ < 2r to be represented in terms of the elementary solutions

PR() und  (Acosmp + Bsinmdgp)

where m, n are positive integers, zero being included, with m <, in the form
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and utilize the orthogonality properties of trigonometric functions to obtain

ln 1
B, = J j sinmp PRUOFGE ) ddd (4-39)
aN{m, ) Jy o =g ’

where

2 (4 m)

041 _.;”)!, ms<n (4-40

0
Nim,n) = J [PrimItde =
-1

To determine the cocflicients A,,, we operate on both sides of equation (4-38)
successively by the operators :

in . 1
j cosm'pdo and J Pr(uydp
I

0

and utilize the orthogoenality properties of trigonometric functions to abtain

21’\' 1
Ay = v-—--l--—-J' J cosm' PT (Y F (g, @)yt dep’' (4-41)

aN{mm} oo los

where n should be replaced by 2n for m = 0 and N{m, n} is given by equation (4-40).

When the coeflicients A,,, and B,,, as determined above are introduced into
equation (4-38) and the trigonometric terms are combined as

cos migh cosing’ 4 sin me sin me” = cosm{p — ¢') (4-42)

the representation (4-38) becomes

PUY Y S

-

i

YO CY O

e e
byov s

g

(YO Oy

!
4

(Y (7 ¢

1

Y
[y

Flu, ) = fjo[A,,P,,(p) n i. (A, oS me + B, sin ;;:¢)P:(p)] (4-37)
K- =
or |
B )= 5 iﬂ (Aun COS b + By, Sin ) P(12)
in —lgu<gi, 0<¢<g2a (4-38)
where .
nm=012 .. and msn

To delermine the coclicients A and B, we ulilize the orthogonality of

- the associated Legendre lunctions PJ(g) in the interval —1 < <1 given by

equation’ (4-28), ‘
To determine the coefficients B,,,, we operate on both sides of equation (4-38)
successively by the operators

T 1
r sinm'gde and J. Pr(p)du
-1

0

E n pm In 1
Flugi=" 3, iy _[

e, P cos migh — )y dgy
Tuzom=oN(m,n) ), _q

(4-43)

=1

where n should be replaced by 2n for m = 0. By comparing equations (4-38) and
{4-43) we write
(Apmcosmgp + B, sinmig]
1

2n 1 .
= ————-J J. Fu', @ YP (") cos m{gr — @)l dgp’ (4-44)
CoRNN) Jya0d= oy _

. where n should be replaced by 2n for m =0,

5
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Equation (4-43) is now written more explicitly in the form

- 2n £
Flu¢)= 41; 20(2" + I)P.,(xt)f f F(u', ¢ )P, () dd’
a= s =0du=—1

o n — 3
L$ S @ )

: P™(p)
.50 (it " /

I 1
J F(u', ¢ YP™ ('Y cos [m{d — @) 1dy' dg’ (4-45)
#=0du=—1
in ~1lgpg,0£pL2n
This representation is valid for all values of y and ¢ in the range ~i<u< I

0 < ¢ < 27 provided that the function F(u, ¢) satisfies the conditions that would
have to be satisfied if it were to be developed into a Fourier’s series.

Representation in Region 0 < p< 1

This rcgioﬁ is encountered in the problems of the hemisphere as illustrated in
Fig. 4-3. When temperature is azimuthally symmetric but depends on the

variable among other variables, it may be necessary to represent an arbitrary’

function F(y) defined in the interval 0 < < 1 in terms of the P(p) functions in
the form

Fn=Yc Pl in O<pxl {4-46)
Here, the values of a should be so chosen that the boundary condition at pt = 0
is satisfied. We consider this expansion for the following two different boundary
conditions at gt =0, the base of the hemisphere.

1. For a boundary condition of the first kind at u=0 we have

Pu)=20 at pn=0 (4-47)

Fig. 4-3 Coordinates for a hemisphere.
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This requirement is satisfied if P,(y) is chosen as the Legendre polynomials with
n being odd positive integer (i.e,n = 1,3,5...). This is apparent from the definition
of Legendre polynomials given by equation {4-19),

2. For a boundary condition of the second kind at g =0 we have

Pt o at u=0 (4-48)
dy : i

This requirement is satisfied i P,(y) is chosen as the Legendre polynomial with
n being even positive integers, zero being included (ie, n=0,2,4,6...). This is
apparent from the definition of the Legendre polynomials given by equation
(4-19).

To determine the coefficients ¢, in equation (4-46), we utilize the orthogonality
of Legendre polynomials in the interval 0< i < 1 given by equation (4-31).

The coefficients ¢, are now determined by operating on both sides of equation
(4-46) by the operator [3P(u)dpu and utilizing the orthogonality rclations. We
find -

1 ’ 1
w=—— | F()P, (1 )dy 4-49
¢ N(H)L (PG | (4-49}
where
! 1
— 2 . -
N(")‘L [P (T =— (4-50)

and the values of n are chosen as

n=1,3,5.. for boundary condition of the first kind at p=0

n=0,2,4...for boundary condition of the second kind at u=0

Introducing the coefficients ¢, into equation (4-46), the representation of F(z)
becomes

1

F(u)=Y(2n+ 1)P,(p) F()P,(1)dg - in .0<,usl (4-51)

n aelr

where the values of n depend on the type of the boundary condition at the surface
p=0 as follows:

1. When the boundary condition at u=0 is of the first kind, take n=
1,3,5,7,...,that is, odd positive integers.

2. When the boundary condition at x=0 is of the second kind, take n=
0,2,4,6,...,that is, even positive integers, zero being included.
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4-5 PROBLEMS IN (r,#) YARIABLES

The heat conduction problem for a sphere involving (r, t) variables can be trans-
formed into a problem of a slab or a semiinfinite medium by the transformation
of the dependent variable as in equation (4-16c). Then, the resulting problem can
be solved readily by the techniques described in Chapter 2.

Solid Sphere 0 <r< b

Consider the heat conduction problem in a solid sphere 0 <r < b, with heat
generation and subject to nonhomogeneous boundary condition of the third
kind at the boundary surface r = b as'illustrated in Fig. 4-4. The mathematical
formulation of the problem is given as

2 - .
%;Tz(r']") + %g{r) = i;—? in O0r<b, t>0 (4-52)-
(?3_7"+ HT = f at r=>, t>0 (4-53)
r
1
T=F(r) for t=0, ind<r<b (4-54)

A new dependent variable U(r,¢) is defined as
Ulr,t)=rT(r,1) (4-55)
Then the problem is transformed to

, :
M+£§Q=lﬂ in O<r<b, t>0 (4-56)
ok ade

U=0 at  r=0, £>0 (4-57)

Fig. 4-4 Boundary condition for a solid sphere.

——— e A s gt s 4
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_(j_q._’.(H_l)U:bf at | r=b, >0 {4-38}
ér b
U =rf{r) for =0, in 0sr<b  (4-59)

This’is a problem of heat conduction in a slab 0 <r < b, which can readily be
solved by the application of the techniques described in Chapter 2. We now
illustrate the application with the examples given below,

Example 4-1

A solid sphere of radius r = b is initially at temperature F(r) and for timest >0 ~

the boundary surface at r = b dissipates heat by convection into 4 medium at
zero lemperature. Obtain an expression for the temperature distribution
T(r,{} in the sphere for times t > 0.

Solution. The mathematical formulation of this problem is given as

2
l'a—(:'?l" =19I in O0gr<bh, 1>0 (4-60)
rar? o ot
6T+ HT =0 at r=h, >0 (4-61a)
ar .
T=F(r) for t=0, n 0Lrgb (4-61b) . .

When this problem is transformed by the transformation U(r, £) = rT{r, t), the
transformed system becomes

ﬂ=l@- in O<r«<bh >0 (4-62)
ot a ot

CU=90 at r=0, t>0 (4-63a)
au |

e~ | H--JU=D at r=1b, (>0 (4-63b)
ar b
U=rFin for =0, in 0<g<r<gb (4-63c)

This is a homogeneous heat conduction problem for a slab O0<srgh;its
solution for U(r, £) is readily obtainable by the approach described in Chapter
2. After the transformation of the solution for U(r,¢) to T(r,t) we obtain

2 € N 2 2
T(r0)== 3, e bnt K

b
AT YOI S "‘rLor'F (")sin frdr' - (4-64)
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where

K=H- é {(4-65)

and the §,, values are the positive roots of
fhecot i h+hK =0 {4-66)

The roots of this transcendental equation are real il BK> —1 (see
Appendix 11, the table for the roots of {eot € + ¢ =0). When the value of K
as defined above is introdueced into this inequality we find (hH — 1} > — I, which
implies that H > 0. This result is consistent with the requirement on the
physical grounds that in the original sphere problem we should have H > 0.
Therefore, in the pseudoproblem the coefficient (Hb — 1) may be negative,
but the quantity Hb is always positive.

Insulated Boundary

When the boundary at r = b is insulated, we have H = 0. For this spectal case
fo=0is also an eigenvalue. Then the term

b
;3‘[ FF(Rdr

L)

resulting from the eigenvalue fi =0 should be added on the right-hand side of
equation (4-64). This term implies that, after the transients have passed, the
steady-state temperature in the medium is the mean of the initial temperature
distribution F(r) over the volume of the insulated sphere (see note | at end of
chapter for further discussion of this matter). o

A ——+H,T]r_bf,
9
//////// [_ar T] -

o

Fig.4-5 Boundary conditions for a hollow sphere.
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Hollow Sphere a <r< b

We now consider the problem of heat conduction in a hollow sphere a <r<b,
with heat generation and subject to nonhomogeneous boundary conditions of
the third kind at »r =a and r=b as illustrated in Fig. 4-5. The mathematical
formulation of the problem is given as

1 a2 147

50T }(g(r) =25 i a<r<b >0 (4'-6‘7:;)_;
T HT=1, at  r=a, >0 (4-67b)

= . |
z_;r +H,T=f, at r=b, >0 (4-67¢)
T - F(r) for t=0, ina<r<b (4-67d)

A new dependent variable is now defined as
Ulr,ty=rT(r,1) (4-68)
Then equations (4-67) are transformed into '

FU | ety _19U

?+ Py in. a<r<bh, >0 (4-69a)
au 1
——+{ H +-|U=4df, at r=a, t>0 {4-69b)
ér a
au 1
Z 4+ lH. -2 lU= = -
6r+( 2 b)U bf; at r=5, t>0 {4-69¢c)
U =rF(r) for t=0, ina<r<b  (4-69d)
11 a shift in ;hc space coordinate is introduced as
X=r-—a (4-70
the system (4-69) becomes
a2U (a4 x)gx+a) 1OU
P A s g~ 0 “Tlg
30 . ey in <x<L, t>0 (4-Tla}
ou
—E-PKIU:af1 at x=0, t>0 (4-71b)
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ou .

E+K2U=bfz at x=1L, t>0 (4-71c)

U=(x+af(x+a) for =0, in 0<x<L (4-71d)
where

1 1 ’

KE=H|+',, K2=H2—h, and L=b—-a (4'72)
¢

which is a problem of heat conduction [or a slab, 0 < x < L, and can be solved

by the techniques described in Chapter 2. We illustrate the application with
examples given below.

Example 4-2

A hollow sphere a < r < bisinitially at a temperature F(r), for times ¢ > 0 heat
is dissipated by convection [rom the boundaries at r =u and r=1} into an
environment at zero temperature. Obtain an expression for the temperature
-distribution T(r,f) in the sphere for times ¢ > 0.

Solution. This problem is a special case of the problem (4-67) with g(r) = 0 and
Ji =f2=0. Thercfore the governing problem is obtained {rom equations
(4-67) by sclting . -

g(N=0, [f,=0 and f,=0 (4-73)

Then the transformation of the resulting problem by the transformations

Ur,t) = rT(r,1) and xX=r—ga (4-74)

leads to a system similar to {4-71), with g =0, f; =0, and f, =0, which is
a homogenegus heat conduction problem for a slab and can readily be solved
by the method described in Chapter 2. When the solution for U(x,1) is
obtained and transformed back to T(r,t) by the transformations (4-70) and
{4-68), the solution for the considered sphere problem becomes

b

Ti(r, r)=1 i e"’”'l""—l-R(ﬂ,,,.r) r'F(r')R(ﬁm,r’)cfr' (4-75)

Fm<1 N{ﬂm) r=ua
where the Rifl,,, r), N(f,,), and f,_-values are oblained from Table 2-2, case 1, as
R(B,,, Y= B,,cosf.(r —a}+ K, sin B, (r—a) {4-76a)

l 2
N (B2+ KNG —a)+ K AB2+ KDI+K,

(4-76b)
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NN

Uin)=rT(rt) and X=r—a (4-78)
We obtain
2 )
53~—U=lig in O<x<(b—a) t>0 (4-79a)
ox?  w dt

r/ﬂ\.

\
PN

where
1 e 1
Ki=H, +-, K,=Hy—— {4-76¢) P
a b -
and the f§, values arc the positive roots of .
~
BrlKy + K;) B
tan fi (b —a) ="2— = 4-76d) -
! ﬁ ( “ ﬁf._lez ( ~-
L
Insulated Boundaries e
When both boundaries at r =a and r = b are insulated, we have H, = H, =0. ;
For this special case 8 = 0 is also an eigenvalue. Then the term >~
R -
PERRpE I rAF()dr (
) R ==
resulting from the zero eigenvalue should be added on the righi-hand side of -
equation (4-75). This term implies that, after the transients have passed, the \;
steady-state temperature in the medium is the mean of the initial temperature g
distribution F(r) over the volume of the insulaled sphere. —
Example 4-3 <
A hollow sphere, a < r'< b, is initially at temperature F(r). For times t > 0, the .
boundaries at r=a and r ="} are kept at zero temperature. Obtain an cx- =
pression for the temperature distribution T{r, ) in the sphere for times > 0. -
. ra
Solution. The mathematical formulation of the problem is given as .
=
142 1ar g
- T)=-— in a<r<bh, >0 (4-T7a) —
r arz( ) o ot L
—
T=0 al r=aandr=5, t>0 (4-77b) o
—
T=F{r) for =0, in agr<b (4-77c) =
This system is now transformed successively by the application of the trans- ’:
[ormations -
—

.
[
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U=0 at x=0andx=b—a,t>0 {4-79b})
U={x+aF(x+a for t=0 in0gLxgb—a {4-79¢c)

This equation for U(x.1) is readily solved as described in Chapter 2 and after
the transformation to T(r, 1} according to equation (4-78) we lind

2 2 2, . b .
Tlrof)=-—-——— 3% e *'sin B (r — n}’[ F'F(r)sin B¢ — a)dr
r(b - a)m= r=a

(4-80a)

where the f,, values are the roots of
sinfl,,(b—a)=0 (4-80b)

or
- Bo=—L m=1,23... (4-800)
b-a .

4-6 HOMOGENEQUS PROBLEMS IN (r, y1,r) VARIABLES

In this section we illustrate with examples the application of the method of the
separation of variables to the solution of homogeneous heat conduction problems
involving (r, u, 1) variables, for example, T = T{r, g, 1).

Problem of a Full Sphere

Example 4-4

‘Obtain an expression for the temperature distribution T(r, 4,1t} in a solid
sphere, —1 < < 1,0<r < b, which is initially at a temperature F{r, ) and
for times 1 > 0 boundary surface at r = b is kept at zero temperature

. Solution. The mathematical formulation of this problem is given as

ﬂ_’_ 20T 1 « (- 2)1."! _li‘T
&t rér rop fn | adr

in 0g<r<h, —1gugl, >0 (4-81a)
T=0 Cat r=b for 1>0 (4-81b)
T=F(r.) for (=0, inthesphere (d-81¢c)
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Defining a new dependent variable Vir, p,t) as

Y =p2T (4-82)

the problem (4-81) is transformed into [see equation (4-9)]

72y 1V LV 12 LoV _1av
= M-p- |=-—

—m =
ar? + ror 4rr FPfop aud adt .
in D<reb, —lgpsl, >0 (4-83a)
V=0 at  r=b t>0 (d-83b)
V=r"2F(r,y) for t=0, inthesphere (4-83c)

The elementary solutions of equation (4-83a) are given by equations (4-11).
The solutions @, () become infiniteat g = L and ¥, (A1) [ord _,_y2(Ar}]
become infinite at r = 0; therefore they are inadmissible as solutions on the
physical grounds. Then, the elementary solutions that are admissible for this

problem inctude

’

oo g, (2 and P.(1)

where P,(u) is the Legendre polynomial as defined by equation (4-19) with
n=0,1,2,3,.... The complete solution for V(r.p, 1) is constructed as

Vir,p1)= i i ‘-'np'e"d:"l‘lw uz{)‘npr)‘Pn(P) (4-84)

n=0p=1

where the coellicients c,, and the eigenvalues 4,, are to be so determined that
the boundary condition (4-83b) and the initial condition (4-83c) are satisfied.
If the 1, values are taken as the positive roots of E

Joe12AepP) =0 ' (4-85)

the boundary condition at r = b is satisfied. The application of the initial
condition {4-83c) gives

T”zF(l‘, “) = Z z Cnp"n-!' l,ll(lnpr)Pn(p) iﬂ Oé r< h‘ - I‘-<- !l‘g— 1
n=0p=1
(4-86)

To determine the coefficients c,,, we operate on both sides of equation (4-86)
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successively by the operators '

1 b
J P (u)dp and j r.I”m(A,,p.r)dr
-1 .

0

and utilize the orthogonality refations (4-26) for the Legendre polynomials *
and (3-19) for the Bessel functions. We obtain

1 b
Cnp = N("h')&fl"-,,an:,;u J;= . P2y ,+ 172{Anp NP AR)F (7, ) dpedr ~ (4-87a)

where the norms are defined as
. 1 ‘ b
N(n)sf [P (1)1 du and N(Anp)z-f rJfH,z(A,,pr)dr (4-87b)
- o

The coeflicient ¢,y a8 given above is introduced into equation (4-84) and the

resulting cxpression is tansformed to I{(r, p, 1) by the transformation (4-82).
We find

. o o« l e 2 f—
T(r, 4, I)="§° p;me Bty 1At} Palp)

b (
j I rL, 12 AapPWPOF(F, () dy dr (4-88)
r'=0dJpu

where the 4, values are the positive roots of

Joe172{Aapb) = 0 ' (4-89a)

the norm N(n) is obtained from equation (4-27) as

N) = (4-89b)

2n+1

an_q (.hc norm N(4,,) is obtained from equations (25) of Appendix 1V by
utilizing the condition (4-89a) as

. - bt
N(fl,,‘!) ="

y S 112 AaphW 4y 312(A0p0) il equation (25a) of

Appendix TV is used (4-8Yc})

2

b
=—{0s12{Aapb)]? if equation (25b) of
2

Appendix IV is used {4-89d)

and the # values are positive integers, zero being included.

5
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We note that the eigenfunctions J ., ,,,(4,,r), the norm N{i,) given by
equation (4-89d), and the expression {4-89a) for the eigenvalues 4,, are the same
as those obtainable [rom Table 3-1, case 3, with v = n +'J. Therefore, Tables 3-1
and 3-3 arg useful for the determination of the eigenvalues, the eigenfunctions,
and the norms associated with the r variable in the solution of equation (4-83a)
for a solid and hollow sphere, respectively. '

Problem of a Hemisphere

Example 4-5

Obtain an expression for the temperature distribution T(r, 4,1} in a solid
hemisphere, 0< 4 < 1,0 < r < b, which is initially at a temperature F{r, u) and
for times ¢ > 0 the boundary suifaces at r=b and u=10 are kept at zero
temperature as illustrated in Fig. 4-6. ‘ '

Solution. The mathematical formulation of this problem is given as
8T 28T 1 @ 0T 10T
— e —— =7 (1 — _—==—
art ror ridu u | «dr
in 0<r<b, O<u<l, for t>0 (4-90a)
T=0 at r=h and u=0, for >0 (4-90b)
T =F{rp) for t =0, in the hemisphere {4-90c)
A new variable ¥(r, u, t) is deflined as
V=r2T 4-91)

Then, the problem (4-90) is transformed into

62V+!6V 1V+l d R ‘Z)G_V:I_lé‘_V
orr  rdr 4r* P ! au | o dr
in Ogr<b O<pu<l, lfor t>0 (4-92a)
p=1
i
Initiatly p =0
Flr, uh
- . ———u=0

0 Tlog=07

Fig.4-6 Boundary and initial conditions for a hemisphere in Exampie 4-5,
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V=0 at r=b and p=0, for t>0 (4-92b)

V=r"YF(r,;y for t=0, inthe hemisphere (4-92c)

The elementary solutions of equation (4-92a) that are admissible for this
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The coefficient c,, as given above is introduced into equation (4-9{1) and the
resulting expression is transformed into T(r, st, {) by the transformation (4-91).
We obtain

o ] 1
T(P‘. H, f)S 2 e-a)?“"r—IIZ-I,,-p‘,lz(Anpr)Pn(nu)

probiem are X
em M J LA and  Po(p) 4-93)

where P,(n) is the Legendre polynomial as defined by equation (4-19). To

- satisfy the boundary: condition of-the-first kind-at the-surface-y=0 (i.e, the
base of the hemisphere) the degree n should be taken as odd positive integer
(ie. n=1,3,5,...) for reasons discussed in Section 4-4, Then, the complete
solution for ¥{r, 1, ) is constructed as

[-4]

V(rv H f) = Z

n=1335..p

18

Cop T (AP IP (1) (4-94)

np
1

which satisfies the boundary condition at g = 0. It will also satisfy the boundary
condition at r = b if the 1,, values are taken as the positive roots of

J i1z daph) =0 {4-95)
Thc application of the initial condition (4-92¢} to the solution {4-94) gives

Capd s 12 (Anp?}Pali) in O0gr<b0<puxl

{4-96)

o0
PR = Y,
DAL

n=

e

To determine the coefficients ¢,, we operate on both sides of equation (4-96)
successively by the operators

1 b
J P (u}dn and I 1 12 (Aaper)dr
4] [H .

where #" = |,3.5,... and utilize the orthogonality relations (4-31) and (3-19).

We oblain

1 b 1 3 ’
T R — ”-J 2 ’]-n s -
Cup NoINGL) Jr=0J11ﬁor it 1526 TYPL (Y F (r, p)dudr (4-97a)

" where the norms are defined as

, , _ ,
N(n) EJ [P (1)) 2dp and N(Z1,,) Ef rJi, plApndr (4-97b)
Q o

e s i NG i)
‘r J "oy w172t PR {R)E (r;, wdy'dr (4-98)
P ' _
where the eigenvalues 1,, are the positive roots of
Ty 12 hagh) =0 (4-9%)
N{n) is determined from equation (4-31) as ‘

1
e (4-99h)
Ne) 2n+1 '

and N{J,,}is obtained by using eq.uation (25a) of Appendix IV and by utilizing
the result {4-99a) t

2
N(h,) = _”2 Do 1aChasPM 1 3 (4-99¢)

and the n values are odd positive integers, that is,n=1,3,5,....

_ Example'4~6

Obtain an expression for the temperature distribution T{(r,, t) in a hemi-
sphere, 0 < < 1,0 <r < b, which is initially at temperature F(r, ) and for
times ¢ > 0 the boundary surface at r = b is kept insulated and the boundary
surface at y =0 (i.e., the base of the sphere) is kept at zero temperature as
illustrated in Fig. 4-7.

o =0
Initially
Fir, n)
e = . ey =0
0 \Ti,.=u W

Fig. 4-7 Boundary and initial conditions for a hemisphere in Example 4-6.
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Solution. This problem is similar to the one considered in Example 4-5 except
the boundary surface at r = b is now insulated. The differential equation is the

same as that equation (4-90a); therefore we give only the boundary and initial
conditions

T=0 at 4 =0{the base), t>0 © (4-100a)

aT’ )

or = 0 al r = b(spherical surluce), >0 {4-100b)
- .

T=F(r,u) for t= 0, in the hemisphere (4-100c)
If this problem is transformed with the transformation (4-91), the differential
equation is transformed to that given by equation (4-92a) and the boundary
and initial conditions (4-99) are transformed into -

V=0 at p=0(the base), r>0 {4-101a)
av 1 o oo
LI =b, (>0 -101
% r > (4-161b)
V=rZF@r,n) for =0, in the hemisphere . {4-101¢)

The elementary solutions of this problem are the same as those given by
equation (4-93) and the complete solution for V(r, u, 1) is constructed as
=X a » 2
Vb )= 3 Y e, 172(Aap )P (1) {4-102)

p=1,3,5,.p=1

If the eigenvalues 4,, are taken as the positive roots of

d I
o neilosb) = T (R b =0 (4-103a)
or
I
/1,!,,.1:,, 1r2{Anplt) b Joy m(l,,‘,h} =10} (4-103b)

the boundary condition (4-101b} at r =b is satisfied. The application of the
initial condition (4-101¢) to equation (4-102) gives

8

PRECR= 3 Y ol sl IPali) (4-104)

n=13,5,..p=1
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To determine the coclficients «,, we operale on both sides ol this equation
successively by the operators

1 b
J P (p)du and J 1 i ya A r)dr

Q a

where n' = 1,3,5,... and utilize the orthogonality relations (4-30). (4-31) and
(3-19). We obtain :

] :b 1 32
I et T A VPO F (r 1) dpdr (4-1035a)
C"P N(")N(inp)J‘r=0J;=0 e

where

b
N(n) = -[I[P"(p)]zdp and N(inp)EJ riZ, alAapt)dr  (4-105b)

¢ 0

The coeflicient c,, as given above is introduced into equation (4-102) and the

resulting solution is transformed into T(7, 4, {) by the translormation (4=917
We obtain

& ¢ I —adl b= 172 P
Tl () = e WU G AP ()
hwo= L % NN ) ey

P
J f P32t )P (', f g i’ {4-106)

r=0Jy'=0

where the eigenvalues 4, are the positive roots of

. i )
g 1 2Uhng) = 25 S algB) = 0 (4-107a)

the norm N(n) is obtained from equation (4-31) as

Ni=-ae (4-107b)
2n+l

The norm N(4,,) is determined by using equation (25a) of Appendix TV as
N(dnp) = 367000 oAb — e e, 0)] (3-107¢)

and the n values are odd positive integers (ie, n=1,3,5,...).

We note that the general form of the solution (4-106) is exactly the same as

that of equation (4-98) of the previous example except the expressions defining
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the eigenvalves 4,, and the norm N{1,,} are dilferent. The eigenfunctions
Juv1j2(Anpr), the eigenvalues 4,,, and the norm N(2,,) if determined by using
equation (25b) of Appendix I'V are the same as those obtainable from Table 3-1,

A

1

24

PSR

z“\l“l\./“\/'\/l\

case 1, by setting

vend g = l and Anp = flu-

2h w

All Boundaries Insulated

When all the boundary surfaces of the region are insulated, the analysis is
performed in a manner similar to those illustrated above with other boundary
conditions; but for this special case 1, o = Ois also an eigenvalue. Then the term

J' F(r, p)ir*drdy
Region

J ridrdu
Region

that results from the zero eigenvalue should be added to the solution. This term
implies that, after the transients have passed, the steady-state temperature in the
medium is the mean of the initial distribution F(r, ) over the volume of the
insulated region. .

47 HOMOGENEOUS PROBLEMS IN (r, s, ¢, 1} VARIABLES

In this section we ilustrate with examples the solution of the homogeneous
problems of heat conduction involving (r, i, ¢, £) variables.
Example 4-7

A solid sphere of radius r = b is initially at temperature F{r, i1, ¢). For times
t > 0 the boundary surface at r=>5 is kept at zero temperature. Obtain an
expression for the temperature distribution T(r, g, ¢, #) in the sphere for times
t>0

Solution. The mathematical formulation of this problem is given as

oo 2aT+13[( 2)_} | #T 10T
ot rar 2 9u o rz( 1)6(,1"2 o Bt
in 0<gr<b —1<u<g,0<¢<2nfort>0 (4-108a)

T=0 at r=b,fort>0 - (4-108b)

T=F(r,u¢) for t=0,in the sphere (4-108c)
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A new variable V(r, p, ¢, 1) is defined as

V=rT {4-109)
The problem (4-108) is transformed into
hESZE N1 CE I S 5 0V [ '12V 1av
+ x (t -p9 ot Hast
ot rdr 4rr iy dul I —phrddt
in 0gr<h, —1€p<],

0<d<2n, for >0 (4-110a}
V=0 at r=b,fort>0 (4-110b)
V=r"F(r,u,¢) ~ for t =0,in the sphere - -~ (4-110c)

The elementary solution of equation (4-110a} that are admissible on the physical
grounds are [see equations (4-8)]

e~ J L a00,  PMy,  (Acosmé + Bsinmg) (4-111)

where P™(y) is the associated Legendre function of the first kind defined by
equation (4-25), with n and m being positive integers {ie, ,m=0,1,23,..)
and m < n. The choice of m as positive integer satisfics the requirement thal
the temperature T (or ¥) is periodic with period 2n in the interval 0 < ¢ < 2n.
Then the complete solution for V{r, &, ¢,1) is constructed as

Vinmg =35 5 3 e i, o (,NPr)

n=0p=1m=0

(A prp cOS M + B, sin M) (4-112)

This solution satisfies the differential equation (4-110a) and remains bounded
in the region ~1 < u<1,0<¢ € 2n,and 0<r<b. I the elgcnvalues A, are

chosen as the positive roots of
v 1yp{Aaph) =0 (4-£13)

it also satisfies the boundary condition at r = b. The expansion cocflicients
Apypand B, are to be determined so that the initial condition for the problem
is satisfied. The application of the initial condition (4-110c) to equation (4-112)
gives
[ ]
rY2F(r g, @) = }: Y Y s 12 PR (N A cOS M + By, Sinmdh)

n=0p=1m=0
:n—lsuﬁl.OétﬁsZmOsrsb (4-114)

-
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To determine the expansion coefficients we operate on both sides of equation
{4-114} by the operator

0

and utilize the orthogonality relation (3-19). We oblain

S, )= Z Z PR [Appnp cOS P + By sin m@N(2,,,)

a=0m=0
in—-I<pug,0€¢d<2n {(4-116a)
where
b
S8 EJ PIE( 1y B,y 1 o) (4-116b)
0 .

b*
N(lnp)EJ. sy dpr)dr = _E‘In y2{Anph) 1 32 (Agb)  (4-116¢)

Here we utilized equation (25a) of Appendix IV together with Lqudllon (4-113)
to evaluate the norm N(4,,).

Equation (4-116a) is a representation of a funcnon S{p, @} defined in the
interval —1 < p<1,0< ¢ <2 in terms of P7(p), sinmé and cosme, Such an
expansion was considered previously in equation (4-38) and the expansion coeffi-
cients were given by equation (4-44), Therefore, the expansion coelficients in
equaticn (4-116a} are obtained from equation (4-44) as

1 in 1 o
N (m, n) L.=0L,= _Jud
Py()cosTm(g — §))ddd’  (@-117a)

N{(Aop)[ Ay cOs @ + B, sinng] =

where n should be replaced by 2n for m =0, and the norm N(m, n) is as given by

equation (4-40);

(4-117b)

N, )= f [PR( T dps = ( 2 )M

2n+1/(n—m)

The coefficients given by equations (4-117) are introduced into equation (4-112)
and the resulting expression is transformed into T(r, 4, ¢, £) by the transformation

b )
j r'In+112(1np'r)d"' {4-115)
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{4-109). We obtain

: e—alﬁpr
r M g1 ap P (R)

T(r,p, ¢, I)-‘ Z Z Z

Mn=0p=1m=0 m
In
J j _[ r'3’”"+ ;,uz(l,,,,r')P,';‘(p') cos '”(’f’ . ¢,]
re0dpe -1 Je 0
A | (-118)

where r should be replaced by 2n for m = 0, and the eigenvalues 4, are the positive
roots of

Joirja(Anpb) =0 (4-119)

‘the norms N(m, n) and N{4,,) are given by

2 (# -+ m)!
T 4-12
N, n) (2 -4 1)(rl—m}! ( 0

bl
N(4,,) = .——Z—J" 120 Aap M 4 372 Anpt) (4-121)

and n, m are positive integers, zero being included.

4-8 MULTIDIMENSIONAL STEADY-STATE PROBLEMS

In this section we illustrate with examples the solution of multidimensional,
steady-state heat conduction equation with no heat generation subject to only
one nonhomogeneous boundary condition by the method ol separation of
variables.

Example 4-8

Determine the steady-state temperature distribution T(r, 1, ¢b) in a solid sphere
ofradius r = b with its boundary surface at r = bis kept at temperature f(y, ¢).

l.S'afm:’:m. The mathematical formulation of this problem is given as
1.

2T 24T 19 29T 1T
oot anl e e e

at rar o au du 1— i ag?
in0<r<b, —lspu<sl, 0sd<n (4-122a)
T=f(i.$) al r=b (4-122b)
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The elementary solutions of equation (4-122a) are given by equations (4-13d,
e,f). The solutions r~"~ " and Q™) are to be excluded, because the former
becomes infinite at r = 0 and the latter at 1 = + 1, Then the solutions that are
admissible include

P and {A cos md + Bsinmep) (4-123)

where P™(u) is the associated Legendre function of the first kind as defined by
equation (4-25), with 1 and m being positive integers (ie., n,m=0,1,2...)and
m < n. The choice of m as positive integer satisfies the requirement that the
temperature T is periodic with period 27 in the region 0< ¢ <2m The
complete solution for T{r, u, $) is constructed as

Tl )=}, 5‘:,0 r"Pr(10)(A,,, COS Mep + B,,,, Sin me) (4-124)

n=0m=

which satisfies the diiferential equation {4-122a) and remains finite in the
region —1 < p<1,0< ¢ <27 0<r <b. The coefficients Ay, and B, are to
be determined so that the boundary condition at r = b is satisfied. The applica-
tion of the boundary condition (4-122b) gives

S d)= 3 3 PUA,,cosm + By, sinmg)h”
0

a=0m=

in —i<p<!, 0€4<2n (4-125)

Equation (4-125)is a representation of a function f{(y, ¢) defined in the interval
—~1€p<1,0€¢<2nin terms of the functions PI(p), sinme and cosme.
Such a representation was considered previously in equation (4-38), and the
expansion coefficients were given by equation (4-44), Therefore, the co-
efficients in equation (4-125) are obtained [rom equation (4-44) as

. 1 moLL G ¢)
Amn + Brnn = ; ur
[A,,, cOs mep : sm.de]. NG, ”),[.;b':o -[u‘ b PR(¢)

-cos [m{ep — )] dpd dg’ {4-126n)

where n should be replaced by 2z for m =0, and the norm N(m, n) is as given
by equation (4-40):

1 2 fn + m)!
N = m, 2 =
(m, ) j_l [P  dp T+ 1 (1 —m)!

(4-126b)

When the coefficients given by equation (4-126a) are introduced into equation
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(4-124) the solutioﬁ becomes

L& g 21 =nl(rY pe
Tewd=2% %= (n+m)!(b) P

$ma

2n {
j [ Py cos m{cp — @) S, ) dlpi” A 4-127)
-1 ‘
where 7 should be replaced by 2 for m=0,m=0,1,2,3,....n =0,1,2,3,....
m< .

Example 4-9

Determine the steady-state temperature distribution T(r,p) in a solid

hemisphere of radius r = b, in the region 0 <7 < b,0 < pu < 1, with its spherical

surface at r=b kept at temperature f{y) and its base at p =0 is insulated
as illustrated in Fig. 4-8.

Solution. The mathematical formulation of the problem is given as

o*T 2"_"4.125@[(1_,12)”]:0 in 0<r<bO<p<l (41283)
u - |

ar? +; r r an

LIS at p=0 (4-128b)
ou

T=f(0) at r=b (4-128¢)

The elementary solutions of equation (4-128a) are given by equations
(4-15c,d). The solutions r ™~ and Q,(p) are inadmissible, because the former
becomes infinite at r =0 and the latter becomes infinite at gt = 1. Then, the
elementary solutions that are admissible are taken as

" and  Pfu) (4:129)
[ = 1
]
‘ Thay =fl0)
b
_— =0
o \ﬂ o K
) u=0

Fig. 4-8 Boundary conditions lor 2 hemisphere in Example 4-9.
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where P, (1) is the Legendre polynomial as defined by equations (4-19). The
. complete solution for T(r, ) is constructed as

T(r,p} = Y, car"P (1) (4-130)
The application of the boundary condition at r = b gives

S =Y eP)  in 0sp<l (4-131)

This is a representation of a function f(u) defined in the interval 0 su<iin
terms of the Legendre polynomials. Such a representation was considered
previously in equation {4-46) and the expansion coefficients were given by
equation (4-49). Therefore, the coeflicients ¢, in equation (4-131) are readily
obtained from equations (4-49) as

Ly, ”
by — N(ﬂ) 0 b" Pn(ﬂ )dﬂ (4 1323)
where
! |
= Tdp= 4-132
N(n) L [Pim)]" dp an 4 | ( b)
n=0,24... (4-132c)

for the boundary condition of the second kind at g = 0. Introducing c, into
equation (4-130) the solution becomes

o n ] L
Thy= ) (2n+ 1)(2) P (1) j SUOP(p}dy  (4-133)
u'=0

n=0,2.4,...

or if n is replaced by 2, this result is written as
wr r Fi 1
Tirw= ) (4n+ 1)(5) Pau0) j FWIP, ) dy (4-134)
w=0

=0

in eqitation (4-134) we have n=0,1,2,3,...

49 TRANSIENT-TEMPERATURE CHARTS

Transient-temperature charts similar to those considered for a slab and a long
solid cylinder can also be constructed for the case of a solid sphere by solving

-
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IFig. 4-9 (Continted)

the following transient heat conduction problem

a
_].-_a_(Rl_aB)—‘B "in  O0<R<l, for >0 (4-135a)

RIaR\ R/ et

2

@ at  R=0, for t>0 (4-135b)
R

a0 . ’

S+ Big=0 at R=1, for t=0 (4-135¢c)
R

=1 in OgR<!, for =0 (4-135d)

Here, the dimensioniess parameters:Bi, 7. . and R are as defined by equations
3.199a,b,c and d, respectively. In this case b is the sphere radius.. The results
are shown in Fig 4-9ab. Figure 4-9a shows the dimensionless center
temperature §(0, 1) for the sphere as a function of dimensiontess time t for several
different values of the parameter 1/Bi. Figure 4-9b relates the temperatures at
different locations within the sphere to the center temperature 80, 7). The use
of these charts is similar to that described in Example 2-17 in Chapter 2.

PROBLEMS 191

REFERENCES

3]

[NV N

14.
15.

H.S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Clarendon Press,
Lendon, 1959,

. M. N. Ozisik, Boundary Value Problems of Heat Conduction, International Textbook

Co., Scranton, Pa., 1968.

. A. V. Luikov, Analytical Hear Diffusion Theory, Academic Press, New York, 196R.
. I Crank, The Mathematics of Diffusion, Clarcndon Press, London, 1957.
. T. M. MacRobert, Spherical Harmonics, 3rd ed., Pergamon Press, New York, 1967.

E.T. Whitaker and G.N. Watson, A Course of Modern Analysis, Cambridge
University Press London, 1965. . i

. W. E. Byerly, Fourier's Series and Spherical, Cylindrical and Ellipsoidal Harmonics,

Dover Publications, New York, 1959. .

M. Abramowitz and 1. A. Stegun, Handbook of Mathematical Functions, National

Bureau of Standards, Applied Mathematic Series 55, U.S. Government Printing
Office, Washington, D.C., 20402, 1964

. E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, Cambridge

University Press, 1932,

. G. Sansone, Orthogonal Funciions, Tnterscience Publishers, New York, 1959.
. H. Bateman, Partial Differential Equations of Mathematical Physics, Dover

Publications, New York, 1944,

. W. Magnus and F. Oberhettinger, Formulas ond Theorems for the Special Functions

of Mathematicel Physics, Chelsea Publishing Co., New York, 1949,

. 1. N. Sneddon, Special Functions of Mathematical Physics and Chemisiry, Oliver and

Boyd, London, 1961.
E. W. Barnes, Quart, J. Pure Apl. Math. 39, 97-204, 1908,
O. Rodrigues, Corr. Ec. Roy. Polytech. I11, 1816.

PROBLEMS

4-1

By making use of the Rodrigues’ formula given by equation (4-21) show
that the integral

]
! EI JGOP () dp
bl |

when performed by repeated integrations by parts can be expressed in
the form

PRV B LA
I=(—1 2n"Jﬂ(u _ 1y ar dp

4-2  Consider the heat conduction problem for a spherical cavity asr <o
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4-6

47

49

4-10

4-11
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given in the form

1 8% glr) 18T
- (T —=-— i
raz(r ) C —aa in a<r<ow, (>0
. a7
——+HT=f, at r=d, t>0
ar
T=F{) for =0, in agr<ow

By utilizing the transformations U =rT and x =r—a, transform the
above problem to the problem of heat conduction in a semiinfinite
medium in the rectangular coordinate system.

‘A hollow sphere a < r < b is initially at temperature F(r). For times : >0

the boundary surface at r = a is kept insufated and the boundary atr = b
dissipates heat by convection into a medium at zero temperature. Obtain
an expression for the temperature distribution T(r,{) in the sphere.

A solid sphere of radius r = b is initiaily at a temperature F(r). For times
t >0 the boundary surface at r = b is kept at zero temperature. Obtain
an expression for the temperature distribution T'(r,1) in the sphere for

times ¢ > ().

Obtuin an expression for the temperalure distribution T{r, g, 1) i 4 solid
sphere of radius r = b that is initially at temperature F(r, g) and for times
¢ > 0 the boundary surface at r = b is kept insulated.

Obtain an expression for the temperature distribution T(r, jt, ¢) in a soiid
hemisphere, 0 < < 1,0 <r < b, whichis initially at temperature F(r, 1)
and for times ¢ > ( the boundary at the spherical surface r =b is kept at
zero {emperature and at the base u =0 is kept insulated.

A solid sphere of radius r =b is initially at a temperature F(r, pt, ¢). For
times t > 0 the boundary surface r = b dissipales heat by convection into
a medium at zero temperature. Obtain an expression for the temperature
distribution T(r, it, ¢, t) in the sphere for times ¢ > 0.

Solve Problem 4-7 for the case when the boundary surface at r=b is
kept insulated.

A solid sphere of radius r = b is initially at temperature Fir). For tuncs
t > 0 the boundary at r = b is kept insulated. Develop an expression for
the temperature distribution T(r,1) in the sphere for times £>0.

By separating equation {4-6a), show that the resulting separated équations
are as given by equations (4-7).

By separating equation (4-3), develop the resulting separated equations.

4-12 Consider a region b € r < oo (i.e,, a region bounded internally by a sphere
of radius r = b). Initially, the region is at a temperature F(r). For times
1 > 0, the boundary surface at r = & is kept at zero temperature. Develop
an expression for the temperature distribution T{r,r) in the medium for
times t > 0.

4-13 Determine the steady-state temperature distribution Tir,p} in a solid
hemisphere of radius r=b, in the region 0<r<b, 0 p< 1, with its
spherical surface at r= b kept al temperature f() and its base at =0
is kepl at zero temperature,

4-14 Obiain an cxpression [or the steady-stale temperature Tir, p) in a solid
sphere of radius r =5 when the boundary surface at r=»5 is kept at
temperature f{u).

4-15 A solid sphere of radius r = b is initially at a uniform temperature F{r).
For times £> 0 the boundary surface at r=1»0 is kept at a constant
temperature T,. Obtain an expression for the temperature distribution
T(r, t) in the sphere.

4-16 A solid sphere of radius r = b is initially at temperature F{r). For times
t>0, the heat transfer at the boundary surface r=56 is given by
(8T/dry+ HT = f,, where f, is constanl. Obtain an expression for the
temperature distribution T(r,t} in the sphere.

4-17 A hollow sphere o < r € b is initially at temperature F{r). For limes t > 0),
heat is generated in the region at a constant rate of g, per unit volume
and the boundary surfaces at r=a and r==58 are kept at uniform
temperatures T, and T,, respectively. Obtain an expression for the
temperature distribution T(r,£) in the sphere.

- 418 Repeat problem 4-12 for the case when the boundary surface at r==b is

kept insulated.

4-19 Consider a region b <r < oo (i.e, 4 region internally bounded by a sphere
of radius r = b). Initially the region is at zero temperature. For times
t > 0, the boundary surface at r = b is kept at a constant temperature To.
Develop an expression for the temperature distribution T(r,¢) in the
region for times ( > 0.

NOTE
1. Equations (4-32) for H =0 become

9y 1eU | '
e m—— D O<r<b, >0 {1a)

U=0 at r=0, t>0 (Ib)
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2 1U—-0 t =bh 0
——U= a F=
ar b ' = (fe}

U =rF(r) for =0, in 0Lr<h (Ld)

Appropriate cipenvalue problem for the solution of this system is given us

d*R,,
2+ 2R, =0 in Q<r<b (2a)
dr* -
R, =0 al  r=0 (2b)
dr, ! R =0 t b 2
———— b= a =
& b " ’ 2}

The solution of system (1) is obtainable according 10 equation (2-13) of Chapter 2 as

m a2 1 b
Uir,= 3, PR = R(ﬁnl,r]J R(B_.rWF(rdr {(3a)

1]

m=0 L

where

0

i .
Nift) = .[ R, ] dr {3b)

andm=0,1,2,3..... For f8,, 0, the eigenvalues f,, and the eigenfunctions Rif,..r)are
oblainable from Table 2-2 of Chapter 2. However, for f,, = 0, equations (2} have a
solution R(f,,r)=r. Then the solution (3} includes a term corresponding to the zero
eigenvatue and takes the form

b
rj FIRG) dr -
Uln ) =-"" + Y
j . met NGB
¥ dr

[

b
R{ ﬂm,r)J R(B.FIYFrydr'  {4)
o

where U(r, 1) is related 1o the temperature by U(r. 1) = rT(r, £): then equation {4) becomes

5

T

3
Tir.t)= _[; J

a 7 m=1 N(B,) 0

Thus, the first tefm on the right s the mean of the initial temperature distribittion aver
the volume ol the sphere.

5

| o ~apit h
PR+~ Y me_r).[ R(B,. rir Fi)dr 5)

THE USE OF
DUHAMEL’S THEOREM

So far we considered the solution of heat conduction problems with time-
independent boundary conditions and energy-generation term. However, there
arc many engincering problems such as heat transfer in internal-combustion
engine walls and space reentry problems in which the boundary condition
functions are time-dependent. In nuclear reactor fuel elements during power transi-
ents, the energy-generation rate in the fuel elements varies with time. Duhamel’s
theorem provides a convenient approach for developing solution to heat conduc-
tion problems with time-dependent boundary conditions and/or lime-dependent
energy generation by utilizing the solution to the same problem with time-
independent boundary conditions and/or time-independent energy generation.
The method is applicable to linear problems because it is based on the super-
position principle. A proof of Duhamel’s theorem can be found in scveral re-
ferences [1; 2, p. 162; 3, p. 30]. The proof given in reference 1 considers a general
convection-type boundary condition from which the cases of prescribed heat flux
and prescribed temperature boundary conditions are obtainable as special cases.
Here we present a statement of Duhamel’s theorem and then illustrate its appli-

cation in the solution of heat conduction problems with time-dependent boundary -

condition function and/or heat generation.

5-1 THE STATEMENT OF DUHAMEL'S THEQOREM

Consider the three-dimensional, nonhomogeneous heat conduction problem in
a region R with time-dependent boundary condition function and heat genera-
tion given in the form

195
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1 a’r(r aT(r,1)

VAT(r, 1) +- g(r fy=- o in region R, >0 - (5-1a)
ar
k, Py + 5T = fi{r, ) on boundary$§,, t>0 (5-1t)
) .
T(r.t) = F(r} for =0, in region R (5-1c)

where §/dn; is the derivative along outward-drawn normal to the boundary
surface §;,i=1,2,...,N and N being the number of continuous boundary sur-
faces of the region R. Here k; and h; are coeflicients that are assumed to be
constant. By setting k; = 0 we obtain boundary condition of the first kind, and
by setting h; =0 we obtain boundary condition of the second kind.

The problem given by equations (5-1) cannot be solved by the technigues
described in the previous chapters because the nonhomogeneous terms g(r, £) and
fi{z,t) depend on time. Therefore, instead of solving this problem directly, we
express its solution in terms of the solution of the simpler auxiliary problem as
now defined. Let ®(r, r, 7) be the solution of problem (3-1) on the assumption that
the nonhomogencous terms g(r, t) and fi{r, v} do not depend on time; namely,
. the variable t is merely a parameter but not a time variable, Then, ®(r, ¢, 1) is the
solution of Lhe following simpler auxiliary problem

1 &r,t,1)

Vib(r, b, 1) - - g(r )= T in region R, t>0 (S-Za)-
o : :
k,-ai)g—’—tit—) + b ®(r, 8, 1) = fi{r, 1) on = Dboundary$;, t>0 (5-2b}
Lr
O(r, ¢, 1) = F{r} for =0, in region R (5-2¢)

where fn; and S as defined previously, and the function Pir,1,1) dcpends ont
because g{r, 7) and fi{r, 7} depend on 7.

The problem (5-2) can be solved with the techniques described in Lthe previous
chapters because g{r, t) and f(r, ) do not depend on time. Suppose the solution

®(r, t,7) of the auxiliary problem (5-2) is avaiiable. Then, Duhamel’s theorem -

relates the solutien Tr,t) of the problem {5-1} to the solution @, 1, 1) of the
auxiliary problem {5-2) by the loliowing integral cxpression

T(r,t)= % Jl Ofr, t — 1, 1)dt | (3-3)

=0

This result can be expressed in the alternative form by performing the differentia-
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tion under the integral sign; we obtain

Tir, 1) = Fir) + jr (%(D(r,: — 1, 7dt {5-4)

=0
since
D(r,t — 1), ., :d‘(r, Ggoy=Fn

We now examine some special cases of Duhamel’s theorem given by equation
(5-4).

I. Initial temperature zero. For this special case we have F(r)=0 and
equation (5-4) reduces to

T(r, )= J" E BO(r,t —1,1)dr (5-5)
=0 61‘

2. Initial temperature zero, problem has only one nonhomogeneity. The solid
is initially at zero temperature and the problem involves only one nenhomogeneous
term. Namely, il there is.heat generation, all the boundary conditions for the
problem are homogeneous; or, if there is no heat generation in the medium, only
one of the boundary conditions is nonhomogeneous. For example, we consider
a problem in which there is no heat generation, but one of the boundary
coflditions, say, the one at the boundary surface S, is nonhomogeneous.

l VZT( rt)= 1 E}’J‘:;: & in region R, >0 (5-6a})
ar :
k,-a— +I;T=0,:f{t) on boundary§;, (>0 (5-6b)
"y
Tir,f)=0 for =0, in region R {5-61)

wherei=1,2,...,N and é,; is the Kronecker delta defined as

i 0 i#l
&, =
" {1 i=1

The corresponding auxiliary problem is taken as

via(r, :)—1‘%’;: )

in region R, t>0 {5-7a)
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TN AT

NP

.

—
(NP AR

VYRV VAR OR VR URUAW)

' A
ki— @ =5 on boundaryS;, (=0 (5
n;

Or,1)=0 for t=0, in region R (5-7c)

Then, the solution T{r,) of the problem (5-6) is related to the solution ®(r, 1) of
the problem (5-7) by

Tr.)= ' 1(0) (.t — )
4]

=

dt (5-8)

T A
The validity of this result is apparent from the fact that if ®{r, ¢, 1) is the solution
of the problem {5-7) for a boundary condition 8,.f:(x), then Ofr, 1, 1) is related to
M{r. 1) by

Ofr, £, 1) = f(OO(r, 1) : {5-9)
When equation (5-9) is introduced into equation (5-5), the result (5-8}is obtained.

If the boundary condition function fi(r) has discontinuities, say, at times
t=7(j=0,1,2,...), then the time integral in equation (5-8) needs to be broken
in parts at the poinis of discontinuities with proper cognizance of the ellects of
step changes in surface condition to the lemperature in the medium. This matter
will be discussed further in the hext section.

The physical significance of the function ®(r,t) governed by the auxiliary
problem (5-7) is dependent on the type of boundary condition considered for
the physical problem (5-6). If the boundary condition is of the first kind [ie.,
T=8,,/{)]. then the boundary condition for the auxiliary problem is also of
the first kind, [i.e., ® = 8,;]. Then, the function ®{r, ) represents the response
function for a solid initially at zero temperature and for times ¢t >0, one of the
boundary surfaces is subjected to a unit step change in the surface temperature.
I the boundary condition for the physical problem is of the second kind {ie.,
prescribed heat flux, k(2T/an;) = §,,f,(1)], then the boundary condition for the
auxiliary problem is also of the second kind; hence ®(r, t} represents the response
function for a unit step change in the applied surface heat flux.

5.2 TREATMENT OF DISCONTINUITIES

If the boundary condition function f(1) has discontinuities resulting from step
changes in the applied surface temperature, heat flux, or ambient temperature,
then the integral appearing in Duhamel's theorem (5-8) needs to be broken into
parts at the points of such discontinuities. Here we illustrate how to break the
integral into parts at the points of discontinuities by integration by parts and
come up with an alternative form of Duhamel's theorem.

£

i

[y

| o
1) T
Fig. 5-1 Boundary-condition function f() with discontinuities.

Consider, for example, the boundary condition function f(t} that has three
discontinuities at times ¢ = 0, r,,and T, over (he time domain 07 <t < 13, where
0* denotes approaching the origin from the right and 07 approaching from the
left as illustrated in Fig. 5-1. In addition, f ~ denotes the limiting value of f at
the discontinuity as it is approached from the left and f * denates the limiting
value of f as it is approached from the right. It is assumed that the medium is
initially at zero temperature,

We consider Duhamels theorem given by cquation (5-8) as

e
By differentiating the function ®(r, # — ) with respect to ¢ and t and comparing
the resulting expressions, we note that the following relationship holds

T{r.0) = J., f(9) oo, !_—1:) dt (5-10)
=0

A4

aq’(r)t_t): _afb(r:t—'r) (5_11)
ot ot
Then equation (5-10} is written as
Trt)=— I (e aT(rii o= dr | (5-12)
=0 cT

Suppose the function f(7) has three discontinuities as illustrated in Fig. 5-1 and
we wish to have the solution T(r,1) to be determined over the time interval
7, <t <t1y. Then the integral is broken into parts at the discontinuities at
t=0,7,, and 1, and equation {5-12) is written as

T(r, f) = —{J‘ +r+j' }{f(t]wdt} (5-13a)
' =0 3] n il
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where 1, < < t;. Each of these integrals is performed by parts to yield

Ttr, t)=.f'+(0)¢(r,f—0)—.)'"(r;)(b(r,:—rl)+J Ort - 1) -“9,;
0
L HEOI = 1) — [ ()M —1,) + f”w I_r}df!(t)
+.I'+(Tz)(b(l',!‘ —'Tz)—f_(t)([)(nf_l)_'_J. (e 1 — )(—l!L' . (5-i3b)

Collecting the terms and noting that ®(r, ¢ - 1) = O(r,0) =0, equation {35-13b)
takes the form.

T(6, ) = D(s, 0 *(O) + ©fr, 1 — 1)/ * (1) — S (51

PO ) ) — (0] + f o - 0L (510
=0 T
which is written more compactly as
T(r,[):J (r,1 — )d-{;(f)d +jzudb(rt—r,)AfJ (5-15)
=0 .

where ¢ lies in the interval r, <t < t; and the following definitions are used:

Afy=f*()—1"(x) with  f7(0)=0
7, = the times at which a step change of magnitude Af;
occurs in the surface condition

In equation (5-13), the integral term is for the contribution of the continuous
portion of the boundary condition function f(t) and the summation term is for
the contribution of linite step changes A f; occurring in f{t) at the discontinuities.

Generalization to /¥ Discontinuities

In the preceding example, we considered only three discentinuitics in the bound-

ary condition function f(t) over the time domain 0 < £ < r5. Suppose the [unction

J() has N discontinuities over the time domain ¢ <t < 1y and the temperature

T(r,t) is required over the time interval 1y, <1 < 1y, The specilic result given
by equation {5-15} is generalized as

df(t

T(r, ) = I tD(rt-«t) )d+2¢(n—-r,)Af, (5-16)

TREATMENT OF DISCONTINUITIES piif|

‘where N is the number of discontinuities over the time domain 0 <t < 1y and

the temperature 7Yr, ¢) is for times ¢ in the interval
o <I< Ty

Equation (5-16) is the alternative form of Duhamel’s theorem (5-8). In consists
of the integral and summation terms and is called the Stieltjes integral.

All Step Changes

We now consider a situation in which the boundary condition function f(t)
consists of a series of step changes Af; occurring at times 1, = jAi, but has no
continuous parts as illustrated in Fig. 5-2. For this specific case the integral term
drops out and the solution (5-16) reduces to

o= 3 Ofrt—jADAf, (5-17a)

i=0

where { is in the time interval (N — 1)Ar < ¢ < NAt. This result can be writlen in
a more general form as

Tin)= 3 dfrt—jADASUG - jAy) (5-17b)
=0

where

Ut —jAt) = the unit step lunction
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Fig.5-2 Stepwise varying boundary condition function f{r),
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5-3 APPLICATIONS OF DUHAMEL'S THEOREM

We now illustrate with examples the application of Duhamel’s theorem for the
solution of heat-conduction problems with time-dependent boundary condition

function and/or heat generation in terms of the solution of the same problem for

time independent boundary condition function and/or heat generation.

Example 5-1

A slab of thickness L is initially at zero temperature. For times ¢ >0, the
boundary surface at x =0 is kept at zero temperature, while the surface at
x = [ is subjected to a time varying temperature f{t) defined by

bt for 0<t<r, (5-18a)

f(r)={0 for (> ' (5-18b)

asillustrated in Fig. 5-3. Using Duhamel’s theorem, develop an expression [or
the temperature distribution T(x, ) in the slab for times (i) ¢ < , and {@e>r,.

Solution. The mathematical formulation of this heat conduction problem is
given by

T 13T(x, 1)

e Ry 0<x<L, (>0 (5-19a}
T, 1)=0 at x=0, >0 (S-I;b)
Tx, 0= f(1) af x=1L, t>0 (5-19¢c)
Tix,t)=0 for =0 (5-19d)

where f(f}is defined by equation (5-18). The corresponding auxiliary problem

an ) = bt
b= 4f)

fir=0

ol |

o] T

S Fig.5-3 Variation ol surface temperature f{f) with time for Example 5-1.
| -

D
D
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becomes
0kl _1200e0 0<x<L, t>0 (5-20a)
ox? a Ot
on=0 at  x=0, 1>0 _ (5:20b)
i) = o at x=L  1>0 (5-200) |
®(x,1)=0 for (=0 ' (5-20d)°

The solution for the auxiliary problem (5-20) is determined as

O (x,t)= E+ %mgl "Wl — l)"‘isin Bux (5—21§)
where
mn
B.=— 5-21b
i i ( )

The function ®(x, t — 1)is obtained.by replacing ¢ by t — rin equation (5-21a).

Dix,t —1)= E+ %mi::l ot =2 (__ﬁ—:.)- sin fi,,x (5-22)

Duhamel's theorem can now be applied either by using the form given by
equation (3-10) or (5-16). Here, the latter is preferred since the contribution of
discontinuity to the solution appears explicitly. The solutions for times { <1,
and ¢ > 7, are considered below separately.

i. Times t <t,. The boundary condition function f(t) has no discontinuity;
thus the summation term in equation (5-16) drops out to give

Tlx,t)= Il Ox, t —1) ﬂt_) dt for .t<1y (5-23)
=0 dv .

where [df{t)/dr] =b and ®(x,1 — 1) is obtained from equation (5-22).
Then equation (5-23) becomes

T(x.0)= Ji . {% + %mi::l g~ bnit=n % sin ,Bmx}bdr (5-24)

The integration is performed to give

x 2 & (—H"
TCe.)=brt+b=
(x. ) Lt+ ngl )

(1 — e“ﬂfn')six{ B.x  (5-25)

fort <1y,
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i. Timest>t,. The boupdary surface function f1(r) has only one disconti-
nuity at time ¢ = t, and the resulting step change in f(¢) is a decrease in

temperature, that is, Af, = — br,. Then equation (5-16) reduces to
' Tl d 14
T(x,f)= f D, ¢ — t)—idr + I DOx,t — T)gdt + @x,t —1,)AS,
=0 dt 0 dt
{5-26a)

where (df/dt) = b for the first integral, (df/dt) = 0 for the second integral,
and Af, = — br,. Substituting these results into equation (5-26a), we find

T(x,) = j " et — O{b)dt +0 — O(x,t —1,)b1, (5-26b)
=0

where ©(x,t — 1) and @(x,¢—,) are obtained from equation (5-22).
Then equation (5-26b) takes the form

T(x,t)—j" { += Z T }smﬁ,,,x}bdr

L Lu= B

- (—
— aplit—cn) -
br,[L+ i E ﬁ,,. -sin I, x ] (5-27)

mel

Clearly, the integral is similar to the one given by equation (5-24) except the
upper limit is 7,; hence it can be performed readily.
Example 5-2

A semiinfinite solid, 0 € x < o0, is initially at zero temperature. For times ¢ > 0
the boundary surface at x = 0is kept at temperature f(t). Obtain an expression
for the temperature distribution T{x, ) in the SOlld for times t > Q assuming
that f{t) has no discontinuities.

Sofution. The mathematical formulation of this probiem is given as

PTx0) 1 AT (x, 1)

Fycan = v in O<x<oo, (>0 (5-28a)
Tlx,0=f() at x =0, t>0 (5-28b)
T(x,1)=0 for t=0, ip 0x<o0 (5-28c)

The auxiliary problem is taken as

D(x,1) 180(x, 1)

P P O<x<oo, >0 (5-29a)
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Plx,t)=1 at x=_0 t>0 (5-29b)

D(x,0)=0 for { =0, in0gx<w (5-29¢)

Then the solution of the problem (5-28} is given in terms of the sofution of the
auxiliary problem (5-29), by the Duhamel’s theorem (5-8) as

T(x, () = J‘ f) Q‘P‘(\,! - T.:) dr (5-30)
=0 ot .

The solution (D(x, 1) of the auxiliary problem (5-29) is obtainable from the
solution T(x, {) given by equation (2-58¢) by the rela.uon Blx,t)=1—T(x,1),
and setting in equation (2-58¢) T, = 1. Thus we obtain

x g '
@ = | —~erf] —— ﬂerfc(—————) = J —dE (5-31)
il =l ( /4ar) \/4ar ﬁ T

Then

apxt—7) _  x cxp[_ _*i,_] (5-32)
N \/4;%&“ _ ,[)le

Introducing equation (5-32) into equation {5-30) the solution of the problem
{5-28) becomes

ox [0 Jw X 5-33
T(x’[)_\/ﬁj;n(t—t]mexp[ tIh:::(r—t]:ldT ( )

To express this result in an aiternative form, a new independent variable 4 1s
delined as :

. - (5-34)
VAt —1)
Then
x?. 2 .
{—T= -~ - and dt= - ([ — ‘r)d” (5"35a,b)
don? Y

Y CY YYD CY YYD YO YN Y Y

YOy Ly Yy«

T{x,t) =£J _e"‘zf([ - a;;i)da; (3-36]

T Ty YT

k)
- 4
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Periodically Varying f(t). We consider the surface temperature f{t) be a
periodic in time in the form

S = Ty cos(wt — f) (5_37)
The solution {5-36) becomes

{\_ n_ ,.;f e " cos[m(r— -3--5)—13Jm, (5-38)
T Jr 4an

xiAat
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LR at  x=0, t>0 (5-42b)
&x

a—T =0 at x=1L, t>0 (5-42c)

dx

Tle,N=0 for =0 . S{5-424)

where f(¢) is defined by equation (5-41). The corresponding auxiliary problem

o~
S

__‘\_/_._u_k/‘_.

AN AR

AT T

or

Teot) 2 (= ( x* ) ]
_____ . - = g4
T, \/;_rJ.o e cos[cu t yoe B dn
N 2 '
—iJ' e"’lcos[w(t— X )—ﬂ]du (5-39)
ﬁ 0 Aan?

The first definite integral can be evaluated [3, p.65]; then

T(x, 1) o\ 12 o\
—-'“‘=CXP[HX(—) :’cos[(urmx(—) —p]
To 2o 2o

2 ' dal x2 .
- f u""’cos[m(r — 2) - ]f:ldu (5-40)
\/rz o 4oy ‘

Here the sccond term on the right represents the transients that die away as
t — co, and the first term represents the steady oscillations of temperature in
the medium after the transients have passed.

Example 5-3

A plate of thickness L is initially at zero temperature. For times £ >0, the
boundary surface at x =L is kept insulated while the surface at x=0 is
subjected to a heat flux f{¢) varying with time as

)
—k ‘f = [l =

X

{l for O<t<r, (5-41a)
0 for >, . (5-41b)

Using Duhamel’s theorem, develop an expression for the temperature distri-

bution T{x, () in the slab for times: (i) r < t, and (i) t > 7,.

Salution. The mathematical formulation of this heat conduction problem is

given by '
T,y 10T

O<x<L, >0 (5-42a)
ax? o dt ) .

is gtveni by

0(x, ) _ 130(x,1)

O<x<L, t>0  (5-432)
ax? a Ot
-—k@=1 at x=0 t>0 (5-43b)
dx
?E =0 . at. x=L >0 (5-43c)
dx
Olx,1}=0 for t=0 ' (5-43d)

The solution for the auxiliary problem is

o 2 & cosfl,x —af?

B(x. )= -1+ N Y (5-44)

() Lk Lk mgl it ( )

where f,,= (nn/L). Duhamel's theorem given by equation (5-16) is now
applied.

i. Times t <1,. The boundary-condition function f(¢) has no disconti-
nuity; then the summation term in equation (5-16). drops out and we
. obtain

T(x.l}=j a0t r<r, (549 -

= n dt

where [df(r)/dr] =1 and ©(x,t — 1) is obtainable from equition (5-44)
by replacing t by (1 — 1). Then, equation (5-45) becomes

‘ ™ 2 2 cosfx 2 E cosfuX gy
Tix,t}= — =T+ — = e L 7}
(.0 r:O[Lk( R Y ey P M ]’

{5-46)
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The integration is performed to give

T(x,t):—oi—:2+_2.; i €05 B x 2 = cosfi,x

2Lk Lkn=\ B2 alkn=y f%
for <1y (5-47)

(1 — e~ohan

ii. Timest>t,. The boundary surface function /(1) has only one disconti-
nuity al time { =1, and the resulting change in f(0) is a decrease in the
amount Af, = —r,. Then, Duhamel’s theorem (5-16) reduces Lo

" ot a® g T af
T(x,r)—J;=0(D{x,r—t];f;dt+-['d>(x,t—r):i~;dr+¢)(x,t—t,)Afl

(5-48)
where (df/dv) = 1 for the first integral, (df/dc) = O for the second integral,
and Af; = ~1,,

Substituting these results into equation (5-48), we obtain
T
T(x, )= J. P, t — 1)dt+ 00— D(x, 1 — 1)1, (5-49)
=0

where the functions ®(x, ¢t — 1) and ®(x,t —1,) are obtainable from’ equation
(5-44). Then equation (5- -49) becomes

T = 2 = cosfi,x 2
T(x, 1) = —(t— — cosﬂ"‘x__ ST EmT amofint-1)
(o) = f [Lk( THLk,,,Z, PI . Lk B ° e

o © cosfi,x 2 = cosf,x 2
—T —(t—1,)+— me mn ~afolt—rt)
I[Lk( l) Lkmzl ﬁ:‘ Lkm=l .83, ¢ ]
(5-50)

The integral is similar to that in equation (5-46); ‘hence can readlly be per-
formcd

li,xample 5-4

A solid cylinder, 0 < r < b, is initially at zero temperature. For times ¢ > 0 the
boundary surface at r = b is kept at temperature T = f(t}, which varies with
tim¢. Obtain an cxpression for the temperature distribution T(r,1) in the
cylinder for times 1 > 0. Assume that f{t) has no discontinuities.

Solution. The mathematicai formuiation of this problem is given by

FT,0 , 10T _ 19700
ar? ror a ot

O<r<b, >0 (5-51a)
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T=f{1) at r=b, (>0 (5-5th)
T=0 for t=0, in0<r<b (55l¢)
and the auxiliary problem is taken as

gzm(r ), 1800 _ 1800

b A STt 200 in 0<r<b, t>0 (5-52a)
It roar o o

@=1 at r=b, t>0 (5-52b)

¢ =0 for t=0, in0<r£b  (5-52¢)

Then, the solution of the problem {5-51) can be written in terms of the solution
of the auxiliary problem (5-52} by Duhamel's theorem given by equation {5-8) as

T(r,:}=f' 7=y, (553

=0

I fr(r, £} is the solution of the problem for a solid cylinder, 0 < r<b, initially
at temperature unity and for times ¢ > 0, the boundary surface at r =1 is kept
at zero temperature, then the solution for ¢ (r, t) is obtainable from the solution
(3-68) by setting T, = I in that equation; we {ind

_2& g JolBat) )
i, 1) = bm;'e R (5-54a)

where the §,, values are the positive roots of

JolBnb)=0 {5-54b)
The solution ®(r,?) of the auxiliary problem (5-52) is obtainable [rom the
solution ¢(r, 1) given by equation (5-54) as

22 o JolBar)
— | — = afpe, TOMTm S -
D, t)=1—p(ro)=I bm;e PRI (5-55)

Introducing equation {5-55) inlo cquallon (5-53), the solution of the problem
(5-51) becomes

T(r, )= 2; i ~ahig,, JolFut) f e f(x)dr (5-56}

I {Bub) Jo

where the §,, values are the roots of J4(f8,.,b) = 0. The solution (5-56) does not
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() explicitly show that T{r, 1) > f(:) for r— b. To obtain alternative form of this G=0 for  1=0, in0<r<b (5-61¢)
- solution, the time integration is performed by parts I

Then, the solution of the problem (5-60) is related to the solution of the

; E)‘ Tir)=f (r)‘]% }j Biff;r)b) auxiliary problem (5-61) by Duhamel’s theorem as
g S e ‘ BD(r, ¢ — 1)

f -5 Ej;ffs’;:)’.)j[f(o)e»m:..Jr L‘e-,ﬂ:,n-n,,ﬂ,,] (5-57) T"""=j,_,,g“"“a_;_"‘. 62
\ gfﬁpi?;iutrl::a:b(:-I.lg)fﬁtzgﬂs(iﬁ?v?r r =0 should be equal to the initial I (‘;‘ffgi‘;‘,f;ig’;t?,fgjjj l:x;gz.rf—.(f;ibé?'ic(ﬂf; ) is obtainable from equation
E ‘ =23 Jolfnr) (5.58) o(r, :)=éi;;c—ri—32£m:e-“ﬂfn'——a—ﬁ;;(ﬁ;: )b)' (5-63a)

b""= 1 ﬂmJl(.me)

which gives the desired closed-form expression [or first series on the right-hand ‘; where the 4, values are the positive roots of

o

=

UL T

side of equation (5-57). Then, the solution (5-57) is written as Jo(B.b)=0 (5-63b)
. . ) 03 m = -
2 :2' J (ﬁmr) g ! . -
T(r, 1} = () ~3 Y m T(0)e w4 J gm0 g 1, (r)] (5-59) | Introducing equation (5-63a) into (5-62) we obtain the solution as
m=1 Py 1 \Pm o .

L , ) L. ‘ o ! ) '
The salution given in this form clearly shows that T{r,t}= f(Yalr=h. . Tr,1) =f—;t E enda"lﬁ%j Q(T)euﬂ'z'"dr ' (5-64)
1 . Mome 1 mY 14 'm =0 :

R.é Example 5-5 )
‘) ‘ {f\solid cylinder,0 < r-< b, is initially at zero temperature. For times £ > Oheat . REFERENCES
;- is generated in the solid at a rate of g(1) per unit volume and the boundary 3
c surface at r=45 is kept at zero temperature. Oblain an expression for the - ! i
e , Lo . 1. R. C. Bartels and R. V. Churchill, Bull. Am. Math. Soc. 48, 276-282, 1942
() tc(u)u};leraturz‘dlstnbuuon T{r,t) in the cylinder for times > 0. Assume that 2. L N. Sneddon, Fourier Transforms, McGraw-Hill, New York, 1951
- g(r) has no discontinuities, : T ' ' ol ’ '
1) , . ; 3. H. 8. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Clarendon Press, London,
D) Solution. The mathematical formulation of this problem is given by 1959.
i . : ‘
) PTE 0 16T gl 18Tt
| i ——i——) 0<r<h, t>0 (5-60n) ! ' :
» A ;‘ PROBLEMS
' . ' T=0 at = " . . V .
: i) 4 : r=h >0 (5-60b) 5.1 A slab, 0 €x < L, is initially at zero temperature. For times ¢ >0, the
t_) T=0 for =0, in0grgh (5-60¢) ; boundary surface al x =0 is subjected to a lime-varying temperature
( b ! f(1) = b+ ct, while the boundary surface at x = L is kept at zero tempera-
S and the auxiliary problem is taken as ' ture. Using Duhamel’s theorem, develop an expression for the temperature
distribution T(x, 1) in the slab for times ¢ > .
2 N ’
. 8 (D(:, 1} +la¢(r. 1) + 1_1aogn in Ogreb 150 (5-61a) : 5.2 A semiinfinite solid, 0 < x < oo, is initially at zero temperature. For times
[ or rodr koo Ot ' ’ t >0, the boundary surface at x = 01s kept at temperature T = Tyt, where
. | B0 ] T, is a constant. Using Duhamel’s theorem obtain an expression for the
= at r=b, i>0 (5-61b) ! temperature distribution T(x, ) in the region for times ¢ > 0.
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A slab, 0 x < L, is initially at zero temperature, For times ¢ > 0 the
boundary at x = 0 is kept insulated and the convection boundary condition
at x = Lis given as {dT/dx)+ HT = f(1), where f() is a [unction of time.
Oblain an expression for the temperature distribution T(x,f) in the slab
for times ¢ > 0.

A solid cylinder, 0 < r < b, is initially at zero temperature. For times 1 > 0
the boundary condition at r = b is given as dT/dr + HT = (). where f()
is a function ol time. Obtain an expression [or the temperature distribution
T(r,t) in the cylinder for times ¢ > 0.

A solid sphere, 0 < r < b, is initially at zero temperature, for times { > 0
the boundary surface r = b is kept at temperature f(¢), which varies with
time. Obtain an expression for the temperature distribution T{r,t) in the
sphere. ?

A solid cylinder, 0 < r < b, is initially at zero temperature. For times t > 0,
heat is generated in thc solid at a rate of g(t} per unit volume whereas the
boundary surface at r = b dissipates heat by convection inlo a medium at
zero temperature. Obtain an expression for the temperature distribution
T(r,t) in the cylinder for times ¢ > 0.

A rectangular region 0<x<a,0<y<bhis mmally at zero temperature.
For times ¢ > 0 the boundaries at x =0 and y =0 are kept insulated, the
boundarics at x = a and y = b are kept at zero lemperature while heat is
generated in the region at a rate of g{t) per unit volume, Obtain an expres-
sion for the temperature distribution in the region using Duhamel’s theorem.

A slab of thickness L is initially at zero temperature. For times ¢ > 0, the
boundary surface at x = Lis kept at zero temperature, while the boundary
surface at x = 0is subjected to & time varying temperature /(1) delined by

¢t Jor O<t<r
f(r)={ =
for t>1,

Using Duhamel's theorem, develop an expression for the lemperature
distribution T(x,t) for times (i) ¢ < 7, and (ii) t > 1,.

A semiinfinite medium, § < x < o0, is initially at zero temperature. For

 Limes 13 0, the boundury surfice at x = 0 is subjecied to a time-varying

temperatuore:

c for O<t<rt
fm={ ‘ !
or t>1

Using Duhamel’s theorem, develop an expression flor the tcmpcraiure
distribution T(x,t) for times (i) ¢ < r, and (i) t > 7;.

5-10
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Fig. 5-4  Perindivally varying surlface temperature.

A slab of thickness L is initially at zero temperature. For times ¢ > 0, the
boundary surface at x = 0 is subjected to a time-varying temperature f(t)

delined by

at+bt for O<t<ry
j(r)—{ for t1>1

and the boundary at x = L is kept insulated. Using Duhamel’s theorem,
develop an expression [or the temperature distribution in the slab for times

{ij t <1, and (ii} £ > 1,.
A scmiinfinite medium, x > 0, is initially at zero temperaiure. For times
¢ >0, the boundary surface at x = 0 is subjected to a periodically varying
temperature as illustrated in Fig. 5-4. Develop an cxpression for the tem-
perature distribution in the medium at times (i) 0 < ¢ < At, (i) At <t < 244,
and (iii) 6Ae < r <74t

Repeat Problem 5-5 for the case of surface temperature f{1) varying with

time as

bt Jor O<i<rty

and determine the temperature dlstrlbut:on T{(r, t} in the sphere {or times
(i)t <1y and {ii) t > 1,.
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THE USE OF GREEN’S FUNCTION

Green's function in the solution of partial dilferential equations of mathematical
physics can be found in several references [1-11]. In this chapter we first discuss

T

T U T

the physical significance of Green's function and then present sufiiciently general
cxpressions for the solution of inhomogencous Lransient heal conduclion problems
with energy generation, inhomogeneous boundary conditions, and a given initia
condition, in terms of Green’s function. Application to one-, two-, and three-
dimensional problems of finite, semiinfinite, and infinite regions is illustrated with
representative examples in the reclangular, cylindrical, and spherical coordinate
systems. Once Green’s lunction is available for a given problem, the solution for
the temperature distribution is determined immediately from the analytic ex-
pressions given in this chapter.

6-1 GREEN'S FUNCTION APPROACH FOR SOLVING
NONHOMOGENEOQUS TRANSIENT HEAT CONDUCTION

We consider the {ollowing three-dimensional nonhomogeneous boundary-value
problem of heat conduction:

10T
VT 0+ lg(_!r, =~ ﬁ in regionR, t>0 (6-1a)
k a &
ar
koA BT=hTu=f6)  on S, >0 {6-1b)
n;
T(r.f) = F(r) for t=0, in R (6-1¢)

214
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where 8/n;, denotes differentiation along the outward-drawn normal to the
boundary surface §;,i=1,2,..., N,and N is the number of continuous boundary
surfaces of the region. For generality it is assumed that the generation term g(r, f)
and the boundary-condition function fy(r, ) vary with both position and time.
Here, k, and k; are to be treated as coefficients that are considered constants.

To solve the preceding heat conduction problem we consider the following
auxiliary problem for the same region R:

| 1 .
V2G(r, t|r, 1) + Eé(r -t —1)= —ig in regionR, t>t1 - (6-2a)
a .

ot

5 .
k,-a—G+Ir;G=0 on S, t>1  (62b)

obeying the causality requirement that Green’s function G be zero fort<t[2].
The source in equation (6-2a) is a unit impulsive source for the three-dimensional
problem considered here, the delta function d(r — r') represents a point heat source
located at r', while the delta function 6(t — t) indicates thal it is an instantaneous
heat source releasing its energy sporitaneously at time t = 1.

In the case of two-dimensional problems, 3{r — ') is a two-dimensional delta
function that characterizes a line heat source located at r',-while for the one-
dimensional problems &(x —x') is a one-dimensional delta function which '
represents 4 plane surface heat source located at x'

Three-Dimensional Problems

The physical significance of Green’s function G{r, t|r’, 7) for the three-dimensional
problems s as follows: It represents the temperature at the location r, at time t,
due to an instantaneous point source of umit strength, located at the point v',
releasing its energy spontaneously at time t = t. The auxiliary problet satisfied
by Green's function is valid over the same region R as the original physical
problem (6-1), but the boundary conditions (6-2b) is the homogeneous version
of the boundary conditions (6-1b) and the initial condition is zero. '

On the basis of this definition, the physical significance of Green'’s function
may be interpreted as

G(r, ]y, 1) = Geffect] impulse) {6-3)

The first part of the argument, *r, t," represents the “effect,” that is, the temperature
in the medium at the location r at time ¢, while the second part, “r’,t,” represents
the impulse, that is, the impulsive (instantaneous) point source located at r',
releasing its heat spontaneously at time t.

The usefulness of Green’s function lies in the fact that the solution of the
original problem (6-1) can be represented only in terms of Green's function.
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Therelore, once the Green’s function is known, the temperature distribution
T(r,t) in the medium is readily computed. The mathematical proof for the
developments of such expressions can be found in the texts [1,2,4]. Here we
present only the resulting expressions, illustrate their use with representative
examples dnd describe a very simple approach for the determination of Green's
lunctions.

In the casc of three-dimensional transient, nonhomogeneous heat conduction
problem given by equation (6-1), the solution lor T(r, ) is expressed in terms of
the three-dimensional Green's function Gir, t|r’, 1) as

T(r.0) =J Gr, tr, t)[r=oF(r')&u'
J dtj Gir, t]r", Tg(r', 1)dv’'

+ocj dt ZI Gir,t|v, 1oy, f(r 1)ds; {6-4)
r=0 S k

=1

where R refers to the entire volume of the region considered; §; refers to the
boundary surface S; of the region R,i=1,2,..., N and N is the number of conti-
nuous boundary surfaces; and dv’ and dy] refer to differential volume and surface
clements, respectively, in the ' variable. The physical significance of various
terms in the solution (6-4) is as lollows:

The Frst term on the right-hand side of equation (6-4) is Jor the contribution
of the initial condition function F(r) on the temperature distribution; that
is, Green's function evaluated for t = 0 is multiplied by F(r) and integrated
over the region R,

The second term is for the contnbunon of the energy generation g{r, !) on the
temperature Tr, £); that is, Green’s function G(r,¢|r’,t) multiplied by the
energy generation g(r, 1), integrated over the region R and over the time
fromt=0tot.

The last term represents the contribution of the nonhomogencous terms
fi{r’, 1) of the boundary conditions on the temperalure. It consists of Green's
function evaluated at the boundary, multiplied by fi(r', 7), integrated over
the boundary surface and over the time from t =0 to ¢.

For gencralily, the physical problem {6-1} is formulated by considering a
boundary condition of the third kind (i.e., convection) for which fi{r,7)=
By Ti{x, ), where T,,i(r, 1) is the ambient temperature. The solution (6-4) is also
applicable for the boundary condition of the second kind (i.e., prescribed heat flux
if f;(x,7) is interpreted as the prescribed boundary heat flux. For such a case, we
first set h T,; = fir,t) and then let h;=0 on the left-hand side. In the case of
boundary conditiont of the first kind, some modification is needed in the third
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1 term on the right-hand side of the solution (6-4). The reason for this is that the
boundary condition of the first kind is obtainable from equation (6-1b} by setting
k; =0; then h; cancels out and fi(r, 7} = T(r, 7) represents the ambient tempera-
ture. For such a case, difliculty arises in setting k; = 0 in the solution (6-4), because
k, appears in the denominator. This difficuity can be alleviated by making the
! {ollowing change in the last term in the solution (6-4):

{ 1 (7G
ace G b 6-5
Replace i O y o (6-5)

i r=F ile'=r,
The validity of this replacement is apparent if the boundary condition (6-2b} of
the auxiliary problem is rearranged in the form

?:;G = — %%g. on surface S, (6-6)

We now examine the application of the general solution (6-4) for the cases of
two- and one-dimensional problems.

Two-Dimensienal Problems

The problems defined by equations (6-1} and (6-2) are also applicable [or the two-

dimensional case, if V2 is treated as a two-dimensional Laplacian operator and

’ (r —r') as a two-dimensional delta function, that is, é(r — r') = d(x — x")d(y — )
in the (x, y) coordinate system, and so forth.

For such a case, the physical significance of the two-dimensional Green's

function is as follows: It represents the temperature T(r, t) at the location t, at time

: t, in the two-dimensional region R, dug te an instantaneous line source of wunit

strength, located at v', releasing its energy spontaneously at time ¢==1. This

interpretation is similar to that for the three-dimensional problem considered

previously, except the source is a line heat source of unit strength....... ... ..

For the two-dimensional case, the solution (6-4) reduces to
T, )= j Gty o), o F(r}d A’
A

T
i + E I :lrf G(r, tir, gt r)d A’
k r=40 A

r N ’
+ocj dr Y J‘BmdmC;(r,dr )|, i f,n’! {6-7

=0 i=1 path i

where A is the area of the region under consideration, dl; is the differential length
along the boundary path of the boundary i,i=1,2,..., N, and ¥ is the number
of continuous boundary paths of the region 4. For a boundary condition of the
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218 THE USE OF GREEN'S FUNCTION

first kind at the boundary, say, i =}, the term {1/k; )GI ... should be replaced by
—(t/m}aG/any| . _ . for the boundary | —_] in accordancje with equation (6-5}.

We note that the space mtegrauons over the initial condition function F(r)
and the energy-generation function g(r,1) ace surface integrals instead of the
volume integrals, while the integration over the boundary-condition function f,
is a contour integral instead of a surface integral.

One-Dimensional Problems

For the one-dimensional temperature field, the problems deflined by equations
(6-1) and (6-2) arc applicable if ¥2 is considered as'one-dimensional Laplacian
operator and &{r —r’) as one-dimensional delta function, that is, (r —r) =
d(x — x') for the (x) coordinate, and so on. Then, Green's function G(x,t}x’,7)
represents the temperature T{x, 1), at the location x, at time t, due to an instantaneous
surface heat source of strength unity, located at X', releasing its energy spontaneously
at time £ == 1.
For the one-dimensional case, the solution {6-4) reduces to

T(x, 1) = .[ XPG(x, 1], T, = o Flx')dx’
-- L

i
+5 -[ dr-[ xPG(x 1] x', glx, 1)dx’
k =0 L

=0 i=1

+ otj.l dt i [x*G(x, t|x, r)]x.q'klf, (6-8)
i

where x'7 is the Sturm—Liouville weight function such that

0 slab
P=4 1 cylihder
2 sphere

Here L refers to the thickness or radius of the one-dimensional region and
Glx, ot ) g = o, refers to the value of G evaluated at the boundary points x’ = x,
For a boundary condition of the first kind at the boundary, say, i =j, the term
(1/k)Gl,- -, should be replaced by —(I/h)(@G/dn ), ,, for the boundary i =}
in accordance with equation (6-5).

We note that, in equation (6-8) the space integrations over the initial condition
function F(x) and the energy-generation function g{x,!) are line integrations,
while the boundary-condition functions f; are evaluated at the two boundary
points.
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6-2 REPRESENTATION OF POINT, LINE, AND SURFACE
HEAT SOURCES WITH DELTA FUNCTIONS

The energy source will be called an instantaneous source if it releases its energy
spontaneously or a continuous source if it releases its energy continuously over
time. In the definition of Green's function, we also refer to a point source, a line
source, and a surface source of unit strength, in addition to the c1|<;tom.lr|ly used
volume heat source that has the dimension W/m*,
In order to identify such energy sources with a unified notation we introduce
the symbol

ah

where the superscript A refers to

A= i or c

I

(instantaneous) or (continuous)
and the subscript B denotes

B

P L, or s
={poinl), {linc}, or (surfice)

and no suBscripl will be used for the volumetric source. Thus, based on the above
notation, we write

g:, = instantaneous point source

g; = continuous point source

gi =instantaneous line source

g: = continuous surface source

g' = instantaneous volumetric source

g = volumetric source

and so forth.
In the analytic solution of temperature Tir, ) in terms of Green's functions

- given by equations (6-4), (6-7) and (6-8), the energy-generation term g(r, {) appears

under the integral sign. In order to perform the integration over a point source,
surface source, instantaneous source, and so on, proper mathematical representa-
tions should be used to define such sources.

Here we describe a procedure for the identification of such sources with the
delta-function notation and the determination of their dimensions.
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Three-Dimensional Case

Recrangu.lar Coordinates. Consider an instantaneous point heat source g' 'iocated
at the poml‘(.\",y,:) and releasing its enlire energy spontaneously at til?ne (=
Such a source is related to the volumetric heat source gix, y, z,1) by

g:,é(x — x')é(y — }")(5(2 — Z'}(S([ — =gl y, o, 1) (6-9';1)

wl'u:rc' d(.) is the L?iruc delta function. A briel description of the propertics of
Dirac’s delta function is given in Appendix VII.
When the dimensions are introduced into equation (6-%a), we obtain

9:,5(—’5 —xY(y — )0z - 2Y0{t — T} = glx, p, 2.10) (6-9b)

- -
57! Wm?

1
gp M

m- m-!

Hence the dimension of an instantaneous point source yi, is Ws,

Cylindrical Coo‘irdinares. In the case of (r, ¢, 2) cylindrical coordins ali
(6-9b)'lakes o cas ,cb,_ Yy tcal coordinates, equalion

1
!I:,r o(r — r)o(ih — )0z — 2)6(t — 1) = glr, b, 2,1) . {6-9¢)
gim™'m™! m-' st Wm-?

Hence g}, has the dimension Ws. The term r™ ' appearing in equation (6-9¢) is due
1o the scale factors associated with the transformation of the reciprocal of the
volumg element (d¥) ™! from the rectangular to a curvilinear coordinate system
accord}ng 'to equation (1-25b): (dV) ™! = (a,a,a; du, du, du;} "', In the case of
the cylindrical coordinate system, we have (a,aga.) "' = (1-r-1)7 " =r~ !

Spherical Coordinates. Tn the case of {r, ¢ ical coordint . i
: , ¢, j) spherical coordinalte sysiem, at
{6-9b) takes the [orm YT, squaton

i ] 4 + r
.yp;';\_/.l—_:? 6r — )¢ — ¢ — 1) ~ )= glr. g t)  (6-9d)

#,m?

m ! 51 Wi ?
Hence g}, has the dimension Ws. The term (-*\/1 — p?)~" appearing in equa-
tion (6-9d), as stated above, is associated with the transformation of (dV)™ ' from
the rectangular to the spherical coordinate system. That is, (a,auae ' =
(I'rsin@-ry" ' =(@* /1 — u?)™!, where u=cos . '

In the case of continuous point source g, the representation has no delta
function with respect to time; hence the dimension of g; is W.
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One-Dimensional Case .

We now examine the representation of an instantaneous energy source in the
one-dimensional rectangular, cylindrical, and spherical coordinates.

Rectangular Coordinates. An instantaneous plane-surface heat source gi is re-
presented by

gABlx — 28 = 7) = gl N {6-10a)

gim='  s7! Wm™?

Hence g has the dimension {Ws)/m?.

Cylindrical Coordinates. An inslanlancous cylindrical-surface heal source glis,
represented by '

g;L 8(r — )it — ) = glr, 1) (6-10b)
2nr ‘

gm~'m~! 57! Wm™?

s cylindrical-surface heat source has the dimension (Ws)/m.

Hence an instantaneou
minator is associated

In equation (6-10b), the variable + appearing in the deno
with the scale factor of the transformation. Thal is, g¢ represents the strength of
the cylindrical surface source per unit length and the quantity g,/2mr represents

the source strength per unit area.

Spherical Coordinates. Aninstantancous spherical-surface source ¢' is represented
by

1

g ,zétr—r')é(l——r)zg[r,r) (6-10¢)
Anr

gim™m~t s7! Wm™?

Thus an instantancous spherical-surliace heat source has the dimension Ws. The
variable r? appearing in the denominator is associated with the scale factor of

the transformation. That is, gi/4nr® represents the spherical surface source of

streopth per unit area.

6-3 DETERMINATION OF GREEN’S FUNCTIONS

Once Green's function is available, the temperature distribution T(r, f}in a medium
is determined [rom the expressions given by equations (6-4), (6-7), and (6-8),
respectively, for the three-, two-, and one-dimensional transient linear heat

RO IO U e O IR SO I G WA T G T R WAL TR T G U A U A W N S SR A o UV RN N

SN a0y

,
~



-0
Q)

(‘)

O

222 THE USE OF GREEN'S FUNCTION

cenduction problems, Therelore, the establishment of the proper Green’s lunction
for any given situation is an integral part of the solution methodology utilizing
the Green's function approach. Reference 1 uses the Laplace transform technique,
and reference 2 describes the method of images for the determination of Green's
functions, Here we present a very simple, straightforward yet very general ap-
proach that utilizes the classical separation of variables technique for the deter-
mination of Green's functions.

We consider the lollowing, three-dimensional, homogeneous transient heat
enduetion-preblem:

_1eTiy

VITir. 1) in regionR, >0 (6-11a)
a ot

ar

E—+H,T=0 on Sh t>0 (6-11b)

Tir.0)= F(r) for r=q, inregion R {6-11c)

The solution of this problem‘has‘becn extensively studied in the Chapters 2-4
by the method of separation of variables, and a large number of specific solutions
has been already generated for a variety of situations. Suppose the solution of
the homogeneous problem {6-11} is symbolieally expressed in the form

Tir, f) = j K(r,v', 1) F(r')dv' (6-12)
. R :

i

The physical significance of equation (6-12) implies that all the terms in the
solution. except the initial condition function, are lumped into a single term
K(r,r',1), that we shall call the kernel of the integration. The kernel K(r,r', 1),
multiplied by the initial condition function F(r') and integrated over the region
R, gives the solution to Problem (6-11). :

Now we consider the Green's function. approach for the solution of the
problem (6-11). It is obtained rom the general solution {6-4) as

T(r. o) =I Gr. 1. 7)), oy FX)dY' (6-13)
]

since the generation and the nonhomogeneous boundary condition functions are
all zero.
A comparison of the solutions (6-12) and (6-13) implies that
Gr, 1|, )] oo = K(r, 1", 1) (6-14)

Then, we conclude that the kernel K(r,v', 1), obtained by rearranging the homo-

I
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geneous part of the transient heat conduction equation in the form given by
equation (6-12), represents Green's function evaluated for t = 0; G{r, ¢|r’,0).

Therefore, the solutions developed in Chapters 2—4 for the homogeneous
transient heat conduction problems can readily be rearranged in the form given
by equation (6-12) in order to oblain G(r, t|r',0). That is, to obtain G{r, t|r’,0),
the appropriate homogeneous problem is solved and rearranged in the form
given by equation (4-12).

The general solution given by equation (6-4) requires that Green's funclion
Gir.t|r, 1) should also be known in order to determine the contributions of the
energy generation and nonhomogeneous boundary conditions on the selution.

It has been shown by Ozisik [6] that Green's function G(r,1|r', 7} Jor the
transient heat conduction is obtainable from G(r,t|r',0) by replacing t by (t —-1)in
the latter.

The validity of this result will also be shown in Chapter 13.

We now illustrate the determination of Green's function from the solution of
homogeneous problems with specific examples. In order to alleviate the details
of the solution procedure, examples are chosen from those problems that have
alrcady been solved in the previous chapters. -

Example 6-1

Determine the Green's function appropriate for the solution of the [ollowing
nonhomogencous. heat conduction problem for a solid eylinder:

1a/.aT\ | 10T '
et r—l4+-glr.y=—-— i 0Lr<h, >0 6-154

rfr(r 6r)+kg(r ) o dt n ' ( !
T=f{1) at . r=bh t>0 {6-15b)
T = F(r) for t=0, in 0<r<b  (6-150)

Solution. Ta determine the desired Green’s function we consider the homo-
gencous version of the problem defined by equations (6-15) for the same region
given as

i) A )
te r‘;‘f)=1% in 0<r<b, 1>0 (6-16a)
rer\ or o Ot ‘
=0 al r=b, >0 (6-16b)
U= Fir) for =90, in 0<r<h (6-16¢)

This homogeneous problem can readily be solved by the method of separation
of variables; or its solution is immediately obtainable from equation (3-67) of
Example 3-3. We write this solution in the same general form as given by
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cquation (6-12), namely, as
t(r, f)=fb [—2- i e‘“"'l'"——-—l——--r’.} (BarW ol B, |Fr)dr! 6-17)
. bzm'—-l Jf{ﬁme 0VFm oY im - .

where the f§,, values are the roots of J4(f5,b) =0.
The solwtion of the homopencous problem {6-16) in terms of Green's
function is given, according to equation (6-13), as

N .
pir, 1) = J rGlr e, 1) oo Fr)dr’ : (6-18)
r=0

By comparing the two boluuons {6-17) and (6-18) we find the Green's function
fort=0.

2 & —apli
Glr,t|r, 1), =2 Z‘e P Pty
] 1 nt

Then, replacing ¢ by (¢ — ) in equation (6-19) we obtain the desired Green's
{function as

1 .
G _¥_ —.t_ﬂmtl' L1 I "
(rt[, ) Z y (p',,,b)“""” ! Mol fmt’) {6-20)
Example 6-2

Determine the Green's function appropriate for the solution of the following
nonhomogeneous transient heat conduction problem:

fi_+1 x t)_l(’JT . 0 ~ 0

FJ kg 0=~ in <X<w, (> {6-21a)
T= [l at x=0 {6-21b)
T = F(x) for t=0, in O<x<x {6-21c)

Solution. We consider the homogencous part of this problem given by

ay _tay .

P _&-(i in O<x<oo, t>0 (6-22a). -
W=0 al  x=0,  1>0 (6-22b)
i = F(x} for t=0, in 0<x<owo {6-22c)

Jo(fmrM ol ffr’) (6-19} -
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The solution of this problem is obtamed from equation (2-58a) and rearranged
in the form

« | (x —x')? (x+ ) -
" _ _exp| — *)edx
px0= L_o@ r)‘”[“p( dat ) e”’( 4ot )}F(” '

(6-23)

By comparing this solution with equation (6-13) we conclude Gt Gix, ()8 1},
is given by

I ey (_(.w.:f)] o
G(x,t]x,0) = i {)ml: xp( yy ) cxp. o ‘(6 24)

Green's function G{x,t|x’, 1) is determined by replacing t by (t— 1) in this
equation:

Glatlxyg= [ex (_!—ff_ff)_ex (J—ffi’ﬁﬂ
XX, T “‘[41;,:&({._1_)]”2 p 41([—1_‘} p 4a(l~rl

(6-25)

" Example 6-3

Determine the Green’s function for the solution of the lollowing nonhomo-
geneous transient heat conduction in a slab of thickness L.

'2
‘——I+‘J(x 0=22T 0 b<x<L (>0 (6-261)
ax? a ot - :
QZ = i) al  x=0, >0 (6-26b) -
%Z +HT =500 at x=L >0 (6-26¢)
T=Fx)’ for  1=0, in 0<x<L  (6-26d)

Solurion. We consider only the homogeneous version of this problem given by

?y_ 1oy

in O<x<L, t>0 (6-274)
a? aar
%=0 at x=0, >0 (6-27b).
ox
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£3~"£+Hl,.’1=0 at x=1L, t>0 (6-27¢)
dx :
W = F(x) for t=0, in O<x<L (6-27d)

- == = Thesolulion ofthis problem is.obtained (rom equation (2-45a) and rearranged

in the form

L o . 2 2 .

Plx, =2 J‘ [ Z‘ & "Bt I{—%‘fﬁ?—)ﬁ cos f,,xcos ﬂ,,,x‘]F (x")dx'
x*=0Lm= m

| | (6-28)

By comparing this solution with equation (6-13) we conclude that G{x,t!x", 0}

is given by
2 2+ H?
Glx, t|x,0)=2 e'“ﬂ-zn'-—g"‘———cos xcosf,x (6-29
(0x.0=2 3 e ety Buxcosfox (6-29)

and Green's function Gix,t|x’,7) is obtained by replacing t by (f —1) in the

expression
2 2
o0 +H
Gix tx,1)=2 e“‘"r’n““"n—ﬁLf——-cos xcosB,x (6-30)
(x.t1x7) ,,,zl Lp:+ HY+H B 'B.

In the following sections we illustrate the application of Green's function
technique for the solution ol nonhomogeneous boundary-value problems of heat
) conduction in the rectangular, cylindrical, and spherical coordinate systems.

64 APPLICATIONS OF GREEN’S FUNCTION

—Z IN THE RECTANGULAR COORDINATE SYSTEM

In this section we illustrate with examples the application of the Green's [unction
technique in the solution of nonhomogencous boundary-value problems of heat
conduction in the rectangular coordinate system. For convenience in the deter-
mination of Green’s function we consider, as examples, those problems for which
solutions are available in Chapter 2 for their homogencous part.

Example 6-4

An infinite medium — co < x < ¢o is initially at temperature F(x); for times
{ > O there is heat generation within the solid at a rate of g{x. ) per unit time,
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per unité@ Obtain an expression for the temperature distribution T(x, 1)

for times ¢ > 0 by the Green's function technique.

Solution. The mathematical formulation of this problem is given as

T 1 17 .
R ---+Eg(x.t}=;—5r— in —m<x<o, (>0 (6-31a}
T=F(x) for  t=0, inthe region  (6-31b)

To determine Green's function we consider the homogeneous version of this
problem given as

2 .

2 "MJ;' y = 1oy Cx. y in —w<x<ow, t>0 (6-322)
ax o Ot

P = F(x) for (=0, in the region (6-32b)

The solution of this homogeneous problem is obtainable from equation (2-70)
as :

1) = I [(41:0::)‘ 12 exp( - (1; xl)l)]F(x')'dx'. (6-33)

x'= - ot

The solution of the problem (6-32) can be written in terms of Green's function,
according to equation {6-13), as

Pix, )= Im Gix, t|x', )] oo F(x))dx' {6-34)

X' =—wm

A comparison of equations (6-33) and (6-34} yields

n2 .
Glx 11, 1), =g = (dat) ™72 cxp( ~ b 4'“’:] ) (6-35)

The desired Green's function is obtained by replacing t by (t — 7} in equation
{6-35); we find

G(x,1]x", 1) = [4maft — )]~ *? exp( - gx—(—tﬂzj) . (6-36)
at— 7

Then the solution of the nonhomogeneous’ problem (6-31), according to
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f

TN

A

equation {6-8), is given as I ' equation (6-37) reduces to /
A il [ | - : e -
T(x, = (4nar)” mJ’ GXP[ _x—x) ]F(X Jelx ; o Tix,0)= X j [4noft —1)] " M2 exp| — X~ j|9§('flrlr (6-43) .
= dot . k) -o daft — 1) -
20 )T pmat— 01 x| ~ S *”’]gw Jdx | Example 6-5 ;
klico Jie-w dat-1 ] P _
\ (6-37) A slab. 0~ <L, is initially at temperature F{x). For times ¢t >0, the "
—— ] boundarics at x =0 and x = Lare maintained at emperatures (0 and fa() -
We now examine some special cases of the solution {6-37). , respectively, whereas heat is generated in the medium at a rate ol g(x, 1) W/m?®, -
' Obtain an expression for the temperature distribution T(x,¢) in the siab for C
1. There is no heat generation. By seiting g(x’, r) = 0, equation (6-37) reduces times t > 0. ~
to Solution. The mathematical formulation of this problem is given as !'\:
{
T(x, 1) = {4nar)~ 1 " exp| - (x —x)* F(x‘)dJ.c' (6-38) #*T(x,1) 1 19T(x,0) . - e
e T P deet ———togx )= n O<x<l, >0 (6-44a) o
* e dx k x ot J e
A
~ which is the same as that given by equation (2-70}. T=/f) at x=0, >0 - (6-44b) .
2. Medium is initially at zero temperature an instantaneous distributed ! -
heat source of strength g'(x) Ws/m? releases its heat spomaneous[y at T=f3{1) at x=L, t>0 (6-44c) . ;
time ¢ = 0. By setting 58
_ T =F(x) cfor =0, in 0sxgL (6-44d) -~
F{x)=10, gix, 1) = g'(x)é(t — 0) - {6-39} : :
‘T'o determine the appropriate Green's function, we consider the homogeneous L
equation (6-37) reduces to version of this problem as r
2 s 1agix 0 s
© (x—x) -
_ -2} i i O<x<L, t>0 6-45a o~
T(x, t) = {(4nat) L= _wcxp[ yo” ][ g'(x )] (6-40) o a a { ) -
A comparison of equations (6-38) and (6-40) reveals that =0 at x=0andx=L, t>0 {6-45b) r\:
' o | ¥ = F(x) for t=0, in 0<x<L  (6-45¢) ;:
Fi)=1gtx) = - gix) (6-41) ~
i [ B . . e
| Pl The problem (6-45} is exactly the same as that given by equations (2-151), and w
" Equation (6-41) implies that the heat-conduction problem for an instan- its SOI_““‘)“ is obtainable from equations (2-154) and (2-155a,b) as -
tancous distributed heat source g'(x) releasing its heat at time t=01is . . ) o
cquivalent to an initial value problem with the initial temperature distri- 1) = J' [ T o A i B xsin B’ |FOd _ -
s bution as given by equation (6-41). V0= ,[,,,,Z1 ¢ SN B sin fl, " | F()d (6-46) i
i 3. Medium is initially at zero temperature; for times ¢ > 0 a plane surface ~
' heat source of strength g%(t) W/m? sitvated at x=a releases its heat ; where -:
continuously. By setting ' -
B = mr m=1,2,3 o
F=0,  g(x,0=g05(x—a) (6-42) =T hde 9

i (7

/
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Also, the solution of problem (6-45) in terms of Green's [unction is given,
according to equation (6-13), as

L
Bix. )= J Glx, t]x', T, oo FOx)dx' (6-47)
x =0 .
A comparison of equations (6-46) and (6-47) gives

§ e~ sin f,x sin ¥ (6-48)

2
Gl 01X D wo =T
m=1

The desired Green's [unction is obtained by replacing ¢ by (f — 1) in equation
(6-48); we find

. .
Gix, tix', 1) =% Y e~ sin B, x sin %’ (6-49)

m=1

Then the solution ol the nonhombogencous problem (6-44) is given in terms of
the Green's function, according to equation {6-8), as

L
T(x, )= J Gx, 1, 1), = o F (X)X’
=0 .

x*

o M L
+ . dt ’[ G(x, t]x', t)g{x', X’

Jr=0 x'=0

+ o 6__G(x, I],x '—T—) filnyde
Je=0 a}( x'=0

o AT (6-50)
Jr=h ax x' =L

We note that in the problem (6-44) the boundary conditions are both of the
first kind. Therefore. in the solution (6-50), we made replacements according
to equation (6-5) in the terms involving the boundary-condition functions
[ (1} and f,(r). Namely, we replaced Gl -, by +(8G/8x")|,. -, far the terms
involving f,(z) and G|,._, by —(0G/2x)| .-, for the term involving f;{1).

Introducing the above expression for Green's function into equation {6-50)
we obtain the solution in the form ’

] L
Y e sin B, x J sin f,.x F(x)dx'

2
T(x ==
'(r [) Lm=l

x=

[+]

€2 2 2 ! 1 L

= Y, e Psin ﬂmx-[ e"”---‘dtj sin §,,x'glx’, T}dx’
k Lm =1 =0 x'=0
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oo 1
+ a% Y e~ sin f,x J et (v)dt
m=1

=0

—a % f {— 1)re "B sin §,,x jl et (r)de (6-51)
m=1

=0

where

mw
= m=1213,...
ﬂ" ‘ L

The solution (6-51) appears to vanish at the two boundaries x =0 and x =L,
instead of yielding the boundary conditions functions f,(¢) and f,(r) at these
locations. The reason for this is that these two terms involve series that are
not uniformly convergent at the location x = 0and x = L. Therefore, the above
solution is valid in the open interval 0 < x < L. Such phenomena occur when
the solution derives its basis from the orthogonal expansion techniqué with
the boundary condition being utilized to develop the eigencondition. Similar
resulls are reported in pages 102 and 103 of reference 1. This difficulty can be
alleviated by integrating by parts the last two integrals in equation (6-51), and
replacing the resulting series expressions by their equivalent closed-form
expressions. Another approach to avoid this difficulty is to remove the non-
homogeneities from the boundary condition by a splitting-up procedure as
described in Section 1 7 of Chapler 1. We now examine some speeial cases of
solution (6-51): :

{. The medium is initially at zero temperature. The boundaries at x = 0 and
x = L are kepl at zero temperature for times ¢ >0, and a distributed heat
source of strength g'(x) Ws/m? releases its heat spontaneously at time
¢ = 0. For this special case we set

Fix)=0, fiin=0, [fi(=0, and glx, 8 =g'(x)d(t — 0)
{6-52)

Then, the selution (6-51) reduces to

2 = 2 . L
T{x, )= i Y. e~ *ntsin ﬁ,,,xj
m= 1

x'=0

[% g‘(x'}] sin i, x'dx’. (6-53)

A comparison of this solution with the first term in equation (6-51)
reveals that the problem of heat conduction for an instantancous distri-
buted heat source g'{x) Ws/m? releasing its heat at time ¢ = 0 is equivalent
to the problem in which the medium.is initially at a temperature

Fie)=2 gi(x) = —— g'(x) (6-54)
k pc

F
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2. Medium is inilially at zero temperature; for times ¢ > 0 boundaries at
x=0and x =L are kept at zero temperature and a plane surface heat
source of strength g(f) W/m2 situated at x = a(< L} releases its heat
continuously. For this case we set

F=fi{)=/(0=0  and  g(x0)=git)dx—a)  (6-55)

Then equation (6-51) reduces to

2E
T{x, t) = E% Y e~ *m'sin B, xsin fqa j efmtyt()dr  (6-56)
. T

m=1

where

Example 6-6

A rectangular parallelepiped, 0 <x<a,0<y<b 0z, is initially at
temperature F(x, y,z). For times ¢ > 0 heat is generated in the medium at a
rate of g{x, y, z, /) W/m? while the boundary surfaces are kept at zero tempera-
ture. Obtain an cxpression for the lemperature distribution in the solid for
limes ¢ > 0. '

Solution. The mathematical formulation of this problem is given as.

62T+62T+62T+1 (x, p,2,6) = 18T
5 ) gix, ¥, z, R
in D<x<al<y<bl<z<e, fort>0 (6-57a)
T=0 at all boundaries, fore>0  (6-57b)
T=F(x,y,2) for t =0, in the region (6-57c)

To determine the appropriate Green’s function, we consider the homogeneous
version of this problem as

:nw’ (7‘ 0?!{1 1

ax? 32 wdr

in O<x<al<y<bO<z<e, fort>0 (6-58a})
=0 at all boundaries, fore>0 {6-58b)
= F(x,»2) for t =0, in the region. {6-58c)
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The problem (6-58) is the same as that given by equations (2-87); its solution
is obtainable from equation (2-92) as

a b < % L %
Yix,nni= J J j- I:i z z Z PRt R AR
=0Jyp=0Jdz'=0 abcm=ln=lp=l

-sin f,,x st y, ysin g,z sin §,x"siny, )’ sin r;,,:'}

SE YL 2 dy ds . {6-39)
where
ﬁm=ﬂt, }r"=ﬂ, rh,:BE, with (m,n,p)=1,2,3,4...
a b ) ¢

Also the solution of the problem (6-58) in terms of Green’s function is given,
according to equation (6-13), as

ta th o
¢(x,y.2.rJ=J .. j . J C Gy 8, 1,2, 1) g

x=0Jy'=04J2"=0

-Fix', ¥, 2Vdx dy dz' (6-60)
A comparison of equations (6-39) and (6-60) gives
Glx, 1,2, X, 9,2, 1) LA il
bcm lLp=1p=1
*sin B, xsiny,ysinn,z
-sin f,,x’ siny,) siny,2' (6-61)

The desired Gréen's function is obtained by replacing ¢ by (¢ — 1) in equation
(6-61); we find

Gl 2,11, ¥, 2 1) = Z Y 3 emsherinpis
Cm=1n= 1p=1
-smﬁmxsmy,,ysmupz
-sin ff, X' siny, ) sinyg,z" (6-62)

Then the solution of the nonhomogeneous problem (6-57) is given in terms of
the above Green’s function, according to equation (6-4), as

' a ] ¢ -
T(-\‘,y,z,t)=_[ j J Glx, ozt 2 0,2 1) oy

x'=0Jy=0Jz"=0

-F(x', ¥, 2)dx" dy' dz’

(3()(’"\'('3(')/' ¥
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r a 13 ¢
N |
k e=0 xX=0Jy=0Jz=0

Glx, y oz b, ¥, 2 (X, ¥, 2, Ddx dy d2 {6-63)
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is obtainable from equation (3-67a) as

b 2 2 _ aJolBan) , i
Yir, 1) = ['=nr'[§ mg ER Jg(ﬁ,,,b)h(ﬂ"' )]F(r)dr - (6-66)

" )
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where Green's function is defined above.

"6-5 APPLICATIONS OF GREEN’S FUNCTION
IN THE CYLINDRICAL COORDINATE SYSTEM

In this section we illustrate with examples the application of Green's function in
the solution of nonhomogeneous boundary-value problems of heat conduction
in the cylindrical coordinate system. For convenience in the determination of
Green's function, we have chosen those problems for which solutions are avail-
able in Chapter 3 for their homogeneous part

where the f8,, values are positive roots of Jo(f,0) =0. Also the solution of
problem (6-65) in terms of Green's function is given, according to equ.mon
(6-8), as

b
Plr 1) = '[ rGlr ', = oF () dr’ (6-67)

where r' is the Sturm—Liouville weight function. A comparison of equations
{6-66) and {6-67) yields

Example 6-7

A solid cylinder, 0 < r < b, isinitially at temperature F(r). For times ¢ > O there
is heat generation in the medium at a rate of g{r, t} W/m? while the boundary
surface at r=4 is kept at temperature f{¢). Obtain an expression for the
temperature distribution T(r, f) in the cylinder for times ¢ > 0.

Soiution. The mathematical formulation of this problem is given as

BT 14T | 1o17

a?+;5+;g(r,r}=wa— in 0<r<h, t>0 (6-64a)
T=f{1) al r=>, for t>0 (6-64b)
T=F(r) for =0, in 0grgh {6-64c)

To determine the appropriate Green's function, we consider the homogeneous
version of this problem as

A2y . T Lo

ot = in Ogr<h, >0 (6-652)

o rdr- oot

W=0 At r=h, >0 (6-65b)
T u=FW ' for =0, in 0<r<b  (6-65¢)

The problem (6-65) is the same as that considered in Example 3-3. Its solution

= 2 JD m .
Gl 17w =5 3 & 2(‘§ ;)) TolBar?) (6:68)

The desired Green's function is obtained by replacing ¢ by (f — t) in equation
(6-68); we find

‘ 2 3 P AT Jﬂ(ﬁmr) ¥ .
G(F.IIF‘T)=’;"§,I B t_ 'Jz(ﬂ,,:f;j ol Bar’): (6-69)

Then the solution of the nonhomogeneous problem (6-64) in terms of the
above Green's [unction is given, according to equation (6-8), as

b b
TG, ) = J FG(r (17, 1) <o Fr)dr + E J drI rGr, th, Dglr', D dr’
o r=0

r=0

—ajl [r‘qa] f(t)dr (6-70)
=0 o rr=0 "

Here, the boundary condition at r =) being of the first kind, we replaced
[G],-=, by —[8G/ér],.-, according to equation (6-5). _
Introducing the above Green's lunction into equation (6-70) and noting

=

that
.a_G — le —,pmu t} Jo(ﬂmr) (6-7”
[r ar'],.=,,_ b‘.,,zle P T b
we obtain
nel ¥ wun:.rfi(wr (B rVF) dY
T("t)_gimgle J?(ﬁmb} ‘=0r O(ﬁmr) (r) r
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2 & _ J (ﬁn l') ' 2 jb
4+ Y gt I g*Pm 1 #J (Bt Vgl O dr’
e Iy B RALLE
2000 & _ J (ﬂmr) J\l 2
+= e P bl AL A gt f(t)dt 6-72
b mgl. Jl(ﬁmb) =0 ( )

where the f,, values are the positive roots of J o(Bmb) = 0. In this solution the

first term on the right-hand side is for the effects of the initial condition
function F(r), and it is the same as that given by equation (3-67). The second
term is for the effects of the heat generation function g, 0). The last term is
for the effects of the boundary-condition function fi1). This solution (6-72)
appears o vanish at the boundary r="b instead of yiclding he’ boundary
condition function f(z). The reason for this is that the last term in equation
(6-72) involves a series that is not uniformly convergentat r = b. This difficulty
can be alleviated by integrating the last term by parts and replacing the
resulting series by its closed-form expression. An alternative approach would
be to split up the original problem as discussed in Section 1--8 of Chapter 1 in
order to remove the nonhomogeneity from the boundary condition. We exa-
mine some special cases of the solution (6-72).

1. Cylinder has zero inilial tempcrature, zero surface temperature, but heat
is generated within the solid at a constant rate ol g, W/m?.
By sctting in equation (6-72), F(r}=0, f{inn=0, and g(r,f} = gy, wE
obtain

gy @ Jofu) o & e Jolfar) o
T0= 2 LB 5 koS R

For t — 00, the second term on the right-hand side vanishes and the first
term must be equal to the steady-state temperature distribution in the
cylinder, namely '

x 1_ 2
- T, w):.z.g'i Y ‘{“_w,"",:)_=U°(b r) : 6-74)

Kb o2 B3 (B0 ok

Introducing (6-74) into {6-73), the solution becomes

. yu{bz — rz) 290 & —ap JolBwr)
Tirn=200 —1 2 00§ pmappe I 7
0 4k Kb Bod 1{B.D) (©-73)

2. Cylinder has zero initial temperature, zero surface temperature, but
there is a line heat source of strength gi(t) W/m situated along the
centerline of the cylinder and releasing its heat continuously for times
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¢ > 0. For this spccial case we set in equation (6-72)
. : . I R
Firy=0, f10=0, and glr' 1) =gl S " —=0)
Then, equation (6-72) reduces to

& oy JelBet) [T e e
Tir )= - ¢t T et gt (TydT (6-76}
kT[bz mgl Jf(ﬂmh) c=0 ;

3. Cylinder has zero initial temperature, Z€r0 surface temperature, but
there is an instantaneous volume heat source of strength g'(r) Ws/m?

which releases its heat spontancously at time t = 0. For this case we scl
in equation (6-72)

Fin=0, f=0, and glr', 1) = g'tr" oz — 0)
Then equation (6-72) reduces (o

2 < —xfiE ‘fﬁ(ﬁmr) i ' : agi(r') g
_ L e 2OWnT) ey WV g (677
T(r![) bz mg'le J?(ﬁmb)_[r'=or O(ﬁmr) k r ( }

A comparison of this solution with the first term in cquation (6-72) reveals that

002 Fyy

k

Namely, an instantaneous volume heat source of strength ¢'(r) Ws/m” releasing
its heat spontaneously at time ¢ = 0 is equivalent to an initial temperature

distribution zgi(r)fk.

. Example 6-8

A hollow cylinder, asr< b, is initially at temperature F(r}. For times ( >0
there is heat generation in the medium at a rate of glr, ) W/m?* while the
boundary surfaces at r = a and r = b are kept at zero temperatures. Obtain an
expression for the temperature distribution T(r,t) in the cylinder for times
t2 1 -

Sofution. The mathematical formulation of this problem is given as

&7 18T 1 18T .

- t—glr )= i a<r<b, >0 (6-78a)
art +r or kg(r ) o Ot 8

T=0 at  r=a, r=b (>0 (6-78b)
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T=F{r) for t=0, inthe region (6-78c)

To determine the appropriate Green's function, we consider the homogeneous
version of this problem as

ey 1oy _12y

=- in a<r<h, t>0 {6-79a)
art r o oa
=0 at r=a, r=b, t>0 (6-79b)
W= F{r) [or t =0, inthe region (6-79¢c)

The problem (6-79) is the same as that considered in Exampte 3-5; the solution
is obtainable from equation (3-78) as

b : 1’ & —afi? ﬁz‘lz(ﬁma) :I ¥ f
. = K afint m> 0 o .
Wir. 1) frl:nl li——z mg,l& J_—m—g(ﬁ,,,a)— e ﬂmb)Ro(ﬁmr)Ro(ﬁm' ) |F()dr

{(6-80a)
where
Ro(ﬁm‘ J) = Jﬁ(ﬁmr) Yo(ﬁmb) - Jﬂ(ﬁmb} Yo(ﬁm") (6'80b)
and the ft,, values are the positive rools of
Jo(ﬂmﬂ) Yﬂ(ﬁmb} - Jﬂ(ﬁmb).yo{ﬁma) = 0 (6'80‘:)

Also the solution of the problem (6-79) in terms of Green's [unction is given,
according to equation {6-8), as

b
Wi, )= J FGr . Ol =g Flr)dr (6-81)

r'=a

A comparison of equations (6-80a) and (6-81) yields

- l}IJO(JBn ﬂ) :
G —_ :ro g e O m "~ R ‘). 6-
(G AT o P 5 Zl TR — S ol Bu IR ol Bt (6-82)

The desired Green's function is obtained by replacing 1 by (£ — 1) in equation
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this Green's function is given, according to equation (6-8), as

b i b
T{r. )= J PGt 1) = o F(r) dr’ + % j dt f rG{r, t|¢, gl ) dr'
rEa [H] r'=a
(6-84)

Introducing the foregoing Green's function into equation (6-84), the soluuon
of the problem (6-78) becomes

J3(Bna) — J3(Bab)

wa & o Prlo(fnd) '
+ E mgl e "——Jg(ﬁm - Jz(ﬁmb) D(ﬁmr]

t b
. '[ e®Bme J. R8Nl vy dr (6-85)
=0 r=a .

T

112 &, 2 | b ‘
T(r.1)= 5 Y, emoht Ro(B.7) J‘ FR(B1IFG) dr
m=| r'=a

where Ry(f,,.r} as given by equation (6-80b) and the f,, values are the roots
of the transcendental equation (6-80c). Clcarly, several special cases are ob-
tainable [rom the solution (6-85).

6-6 APPLICATIONS OF GREEN'S FUNCTION
IN THE SPHERICAL COORDINATE SYSTEM

In this section we illustrate with examples the application of Green's function in
the solution of nonhomogeneous boundary—value problems of heat conduction
in the spherical coordinate system. For convenience in the determination of
Green’s function we have chosen those examples for which solutions are available
in Chapter 4 for their homogeneous parts.

Example 6-9

A hollow sphere a < r < b, is initially at temperature F(r). For time t > 0 lieat
is generated within the sphere at a rate of g(r,1} W/m?* while the boundaries
at r = a and r = b are kept at zero temperature. Obtain an expression for the
temperature distribution T{r, 1) in the sphere for fimes > 0.

Sohrtion. The mathematical formulation of this problem is given as

(6-82); we find | a* 1 ta :
. - ——[rT)+ g( r.fy=- tar in a<r<h, t>0 {6-86a)
~ HZ BLit=1h ﬂ Jﬂ(ﬁmﬂ) ' o ot '
(f‘*f |J Tzk g3 J'Z ) ﬂ b RO{J‘{)‘EP}R‘OH}E"—)'_—(é 83‘}
m=1 (;Bma 0{ m ) T=0" at r=a and r= b, t>0 (6"86b)
Then the solution of the above nonhomogeneous problem {6-78) in terms of T=F(# : for (=0, in a<r<bh (6-860)
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To determine the Green's function we consider the homogeneous version of
this problem as

']-
' ‘ (i) = ' ‘;’f in a<r<b, t>0  (6-87a)
=0 al r=a and r=h >0 (6-870}
W =F(r) for (=0, in agr<gb (6-87¢)

This homogeneous problem is the same as that considered in Exampie 4-3;
its solution is obtainable from equation {(4-80) as

. . 5
= 2] —zfile — —
dir, 1) j =oa" [rr(b—a) Y e sin B,(r' — a)sin §,(r a)]F(r)dr

r m=1
{6-88a)
where the f,, values are the positive roots of
sinf (b~a}=0 {6-88Db)
or
po=-22 m=1,23... (6-88¢)
b—a

The solution of the problem (6-87} in terms of Green’s [unction is given,
according to equation (6-13), us

b
Yir = J' - FEG(r, ¢, ), = o Flrdr (6-89)

where r'? is the Sturm—Liouville weight function. A comparison of equations
(6-88a) and (6-89) gives

Glr t|r, t))co = :-T'r(bz 2 Z: e~ -sin B.r"—a)sin B,(r — a). (6-90)

The desired Green's function is abtained by replacing ¢ by (r - o} in cyuation
(6-90); we find

Glr, 1|, 1) = ﬁ zle““ﬁm" 2esin §(r — a) sin B,{r — a). {6-91)

Then the sofution of the nonhomogeneous problem (6-86) in terms of Green's
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function is given, according 1o equation (6-8), as
b x [t b N
T(r.1)= J 26U, T, - W F U 4 . —[ er- FEGU ), Tiglr T
= e=4 r'=u
(6-92)

Introducing the above Green's function into equation (6-92), the solution
becones

b
Ti{r,1)=— Z e” Pt sin Bulr — a)J r'sin B+ — a)F (') de’
r(b - a) m=1 Faa

+2 2_3 Y e~ isin f—a)J‘r P
krib—a)m=1 | " =0

b
J. Fsin B — a)g(r', 1) dr' (6-93a)

where the f,, values are the positive roots of
sinf,(b—a)=0 (6-93b)
We now consider some special cases of the solution (6-93).
I. Themedium is initially at zero temperature, the heat source is a spherical
surface heat source of radius ry (e, a <r| < b) of total strength gt} W,
which releases its heat continuously lor times t > 0. In this case we set

in equation (6-93a}

| ‘
Firy=0, g, 1) = gi(7) —— or' —r;) {6-94)
4

and perform the integration with respect to the variable r'. We find

]

T 1) = Eé;;;;(?:amzlu el sin B, 4r — o) |
sin flr, - a) Jr oMt (el e (6-95a)
Cou
where
= meEa, m=1,23... {6-95b)

2. The medium is initialiy at zero temperalure, the heat source is an

v

VNIV N EN N T
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instantaneous spherical surface heat source of radius ry (i.e., a <r, <b)
of total strength g} Ws, which releases its heat spontaneously at time
t = 0. In this case we set in equation (6-93a)

Firy=0, g, 1) = r}‘ ; I, S(r' = r)d(z - 0) (6-96)
dor 2

and perform the integrations with respect to the variables r and 7. We

find
o 1 @ ) .
)= oo e *misin f (r—a)sin f,(r, — alg. (6-97a)
et 2m‘rl(b—a)mgl Bulr — a)sin B,(r, —alg, (
where

mmn

B — , m=123 . (6-97b)

Example 6-10

A solid sphere 0 < r < b is initially at zero temperature. For times f > 0 heat
is generated within the sphere at a rate of g(r,1) W/m?® while the boundary
surface at r=h is kept at zero temperature. Obtain an expression for the
temperature distribution in the sphere by the Green’s function approach.

Solution. The mathematical formulation of this problem is given as

122 1 10T ;

=il +—g(r,f) =- — in 0<r<bh, >0 (6-98a)
rér I a dt

T=0 at  r=h, t>0 (6-98b)
T=0 for =0, in 0<r<b  (6-98¢)

To determine the Green's function we consider the following homogeneous
problem:

1 a° 1d

- s () = - i in 0<r<b, t>0 (6-99a)
rart a &t

=0 at P, >0 (6-99b)
= F(r) for =0, in 0<r<b (6-99¢)

The solution of the problem (6-99) is obtainable by converting it to a slab
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problem or directly from the solution (4-64) by setting K — co. We find
. 2 2 B ] N e
Yir,1)= J- r'z[— Y. e */m'sin B,r'sin ﬂmr]F(r)dr (6-100a)
=0 r'rbm=1
where the fi,, values are the positive roots of
sinffh=0 ' (6-100b)
or

ﬁm=—f. m=1273...

Also the solution of the problem (6-99) in terms of Green’s function is given,
according to equation (6-13), as

b
Wir )= J r2G(r, t)r, 1) = F(r) dr' (6-101)
r=0

A comparison of equations (6-100a) and (6-101) gives

G(rt|r',1)|,=0 = ib Y e~Put-sin B, sin f,r (6-102)
Froom=1

The desired Green's function is obtained by replacing t by (¢ — 1) in cquation
(6-102):

e~ = 9gin B r'sin B,r (6-103)
1

i [~18

' 2
Glr, t|r, 1) = —
i) r'rb

m

Then the solution of the nonhomogeneous problem (6-98) in terms of Green's
function is given, according to equation (6-8), as

r b
T(r,1)= z J dt J r2G(r, ', gl ) dr’ (6-104)
=0

r r'=0

Introducing the Green's function given by equation (6-103), into equation
(6-104). the solution of the problem (6-98) becomes

2 & ; d 2.4 h
Tirt)= g Rk z e~ Palgin ﬁm,. Pt j r sin ,er,g(r', T)d?" (6_ 105)
k brm= =0 =0

where

We now consider some special cases of the solution (6-105).
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1. The heat source is an instantaneous volume heat source of strength
g'(r) (Ws)/m? that releases its heat spontaneously at time t = 0. By setting
in equation (6-105)

g(r',v)=g'(r)é(z — 0) (6-106)

" and performing the integration with respect to the variable 1 we obtain

a) b
Tir, 1) = %Ez; S e sin ﬁ,,,rf Fglirsin o dr (6-107)
m=1 .

r=g

2 The heat source is an instantancous point heat source of strength gp Ws,
" which is situated at the center of the sphere and releases its heat spontane-
ously at time ¢ = 0. By setting in equation (6-105).
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this problem as

2
aw 2aw+izag[ )w] 19y

glr'1) =22 5" — 0)5(x — 0)  (6-108)
4mr
and performing the integrations with respect to the variables r and t, we
obtain
T, = HEIJ’ mgl ¢~ msin B.rg, (6-109)

where f,, = mnfb.

Example 6-11

A solid sphere of radius r = b is initially at temperature F(r, u). For times t > 0
heat is generated in the sphere at a rate of g{r, x, t) W/m?3, while the boundary
surface at r =15 is kept at zero temperature. Obtain an expression for the
temperature distribution T{r, g, {) in the sphere for times t > 0.

Selution. The mathematical formulation of this problem is given as

T 28T 13 14T
—+- +-h~*~[( —#zl'ﬁ]+ ~glr, 1, ;),___

P dn a o

in 0<r<b, —I<€ugl, >0 {(6-110a)
T=0 at r=b, t>0 {6-110b)
T=Fir,pw for t=0, in the sphere (6-110c)

To determine the Green’s function, we consider the homogeneous version of

rér o dt e

in 0gr<b, —lgp<l, for >0 (6-11la) >

W =0 al o rebh, (>0 6-111) (:

= Flr, 1) for t=0 in the sphere (6-111c) g

This homogeneous problem is the same as that considered in Example 4-4; e
the solution is obtainable from equation (4-88) as (:
W) r f' | 'Z[i 5 et -

P, )= r — g~ s X

f r=0Jpu=~1 "'=0P=1N(”)N(lnp) :_

() I N 12 {Anp I} 1:1{’;‘:'11"')‘})"('"'}} ::

) o

) dy dr (6-112a)

where the 4, values are the positive roots of 1?
Joe 12 Apb) =0 ‘ {6-112b) P~

/ -

. and the notms N(n) and N{(%,,) are given as ;f
2 -

N =— (6-112c) =

W+ 1 s

b , ‘ "~

N('i'np) = - _2_ J"_ 1,'2(/~npb)'}n+ 3i2u'npb)- (6‘1 lzd) e

. I("

The solution of the problem (6-111) in terms of Green's function is given. ]’_’
according to equation (6-13), as -
-] 1 /:

gir, g, 1) = J J PG e g T, Lo F L ) gl dr (6-113} e
r=0dp=—1 f'_H

A comparison of equations (6-112a) and (6-113) yields .
Glr, i, (|, ', T - g~ *npt 4
il 9l = 3 5 i N(n)N(AM,) 9
)TV 2R IP Y oy (At WP(1) (6-114) {:
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L j The desired Green's function is obtained by replacing ¢ by (t — ) in equation
() (6-114); we lind
¢ .
N Gir . m @ { ailai-
e froet|r .= Y, e ee s p T2 Anpl1 =)

a=t pgl N(PI,N()."J_}
) VAL G P, U VPG (6-115)

Then the solution of the nonhomogeneous problem (6-110) in terms of this
Green's function is given, according to equation (6-7), as

b ' :
Tir, 1) = J J RGO o FO )l dr
rEQJ =~

o b 1
+-J dTJ‘ j
klizo Jr=0Jw=-1

U, T)dgd A {6-116)

FIG(r, L], 1, 1)

Introducing the above Green’s [unction into (6-116), the solution becomes

o o ]
T ML )= et —————— "rxl"r "lIZJ ) ). P
)= n=0p= lN(H}N()np)e ' "‘"‘112( ,,,,T) )

B 1
. j Jk PR A VPR eyt dy
r=0Jp'=-1

Z Z:l Wg“u .p!r“llljn+ ”2()'.,,,,,?‘)}:.'"(“)
- np

! b 1
J f’!)'ﬁf" dt J j r‘3,'2J'n+ Hl()-npr')’pn(ﬂr)
=0 r=0Jy=n~1

g(r, f', Ty p dr’ o (6-117)

-‘r
)

Clearly several specinl cases are obtainable from this solution.

6-7 PRODUCT OF GREEN'S FUNCTIONS

The muitidimensional Green's functions can be obtained from the multiplication
of one-dimensional Green's functions for all cases in the rectangular coordinate
system and for some cases in the cylindrical coordinate system, but the multipli-
cation procedure is not possible in the spherical coordinate system. We illustrate
this matter with examples in the rectangular and cylindrical eoordinates.

AW AN AN N T
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Rectangular Coordinates

The three-dimensional Green's function G(x, y,z,t]x", ¥, 2, 1) can be obtained
from the product of the three one-dimensional Green’s functions as

Gl v o bV, 2L 1) = G (x| X 1) G e |y, ) Gylz 1] 1) (6-118)

where each of (he one-dimensionad Cireen’s functions G, G, and Gy depends on
the extent of the region (i.c., finite, semiinfinite, or infinite) and the boundary
conditions associated with it (i.e., first, second, or third kind). We present below
a tabulation of the three-dimensional Green’s functions in the rectangular co-
ordinates as the product of three one-dimensional Green's functions.

Region: 0<x<a,0<€y<h0<z50c

m=1 m

Glx, y.2, 6] X,y 2, 7) =‘[ 3 ¢ eho-n ﬁ]ﬁ_) X(ﬁ,,,,.vc).l’(ﬁ,,,,_\‘)]

=] ' ]
. ~aydit—1)
[,.2 ¢ N

=1 },n)

Y(Pm ¥) Y(v,.,y')]

[ 3 gmemu=o zm,,,z)zm,,,z'}] (6-119)
p=1

Nin,)

where the cigenfunctions, eigenconditions, and normalization integrals are
obtainable from Table 2-2. In each direction there are nine different combinations
of boundary conditions; therefore the result given by equation (6-119) together
with Table 2-2 represents 9 x 9 x 9 = 729 different cases.

Region: —0 <x <00, 0gy<h 0Lz

. - LY
Glx, .z t)x,y, 2 1) = |:{4mx(r -7} "'1-exp{ — %(;f-);}}]

= 1 ]
| e Y Y ]
[nglc Nl].‘”) h ! Yurd )

= : |
: =gl =« - o .
_ L; e " Nor Zin,. M)Z(:z,,i )] | (6-120)

where the infinite medium Green’s function, shown inside the first bracket, is
obtained from equation (6-36). The result given by equation (6-120) when used
together with the Table 2-2 represents 9 x 9 = 81 different cases.
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Region: ~w<x<wm,—w<p<w,0<z<c
G(x,y, 5, tx, ), 2, 1) = [{4no¢(t —1}}° ”z-exp{ AL }]

A s — oy -2 _(."'—.1")__2

'
.[ E:ﬂ-aﬁu—n
Le=1

VAT I VA T -12
Ni,) (P FAUR ]] (6-121)

This result, together with Table 2-2, represents nine different cases.

Region: — 0 <x <0, —w0<y<m,—0<i<®

G, 2t X, v, 2 1) = [{4110:(( )} “z'exp{ — 5\(_ '\.')i}}:l
xf—1

- -y
14 — iz, ol
[{ nee(t — 1)} exp{ i T)}]

[ {dnralt - 1)}~ “’--cxpI == 2P’ (6-122)
o ! | dat-1)] -

Region: 0 x < o0

In the foregoing expressions for the three-dimensional Green's functions, ifany
one of the region is semiinfinite, the Green's function [or that region should be
replaced by the semiinfinite medium Green's [unction given below.

1. Boundary condition at x = 01is ol the first kind [constructed from equation

(2-58a)T:
ey - (x—x)? (x4 x)P
G(x,1|x', 1) = [4naft — 7)] "2 - - 2z L
X, t|x', 1) [mf( 7)] [exp( 4a([_r}) exp( 4x(t—r))i|
(6-123a)

-2, Boundary condition at x=0 is of the second kind [constructed from
equation (2-63¢)}:

Gix, t|x', 1) = [dnal(t — 1)]~ ”1|:exp( — S;(_r '\")2)) -+ gxp( — L_\i\_);)]
-1 A —1

{6-123b)

3. Boundary condition at x=0 is of the third kind [constructed from
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equation (2-54)]:

® 1
e ) e —afir-v) D X X 6-123
G(x,1|x,1) Jﬂzoe N(ﬁ)X(ﬁ.\)X(ﬁ x)df - (6-123¢)

where
X(f,x) = fcos fix + H sin fx
] 2 1 o - f:,

NGB xp+HE Tk

Example 6-12

TENONTY

1

\

-

L N S T O

-

Consider a rectangular paraliclepiped in thie Tegion O<<w; O-£y-<bs
0 <z <c initially at zero temperature, For times ¢ > 0, all boundaries are
maintained at zero temperature while energy is generated in the medium at
a rate of g(x, v,z t) W/m’. Develop the three-dimensional Green’s {unction
needed for the solution of this heat conduction equation with the Green'’s
l[unction approach.

Solution. The Green's Tunction [or this problerm is vbtaimabicas-a product
of three one-dimensional finite-region Green's functions subjected to the
boundary condition of the first kind. We use the formalism given by equation
(6-119) together with case 9 of Table 2-2 to obtain :

P . .
Glx, ypy 2, t]x, ), 2, 1) = l:— > e~ M =gin B x-sin H,,,x':l
AOm=1

28 g .
‘ EEE’“?"“- Isinp, sy’ |
n=1

202 H
4 Y emmt T dsingzesing, s | (6-124a)

Cp=1

where the eigenvalues f,, y,, and 57, are the positive roots of the transcendental
equations

sinf,a=10, siny,b=0,  siny,c=0 {(6-12:4b)

Cylindrical Coordinates

The multiplication of one-dimensional Green's functions in order to get multi-
dimensional Green’s function is possible if the problem involves only the (r, z, t)
variables, that is il the problem has azimuthal symmetry. When the problem

U

Crrneny O
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PO 100

ey, . s
UL 0T 00

vt

Tt
i
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involves (r,z, ¢, t) variables, it is not possible to separate the Green's function
associated with the r and ¢ variables.

We present below a tabulation of two-dimensional Green’s functions in the
(r, z, t) variables in the ¢ylindrical coordinates developcd by the multiplication of
two one-dimensional Green's lunctions.

Region: 0 <r < h 0

G(r,z‘r|r',z‘,1;) [ z e_lﬂlll 3] _1

Nift.)

where the eigenfunctions, eigenvalues, and normalization mtegrals for the r
variable are obtained from Table 3-1 by setting v = 0 in the results given in this
table and [or the z-variable are obtained from Table 2-2, Table 3-1 involves three
‘different cages and Tablo 2 2, nine different cnacs; hence the result given by
equation {6-125) represents 3 x 9 = 27 different cases.

r RO(ﬁm! r)RG(ﬂml )]

i

Cenplt) L Zin, D, 6-1
e NG {n,.2)Z(y, )} (6-125)

Regmn I<€r<e0, 0z
Pt rr'
Glr,z, 1|, 2, 2a(t —1)” - I
(r,z,t|r [( oft — 1)~ ' exp( 4a(r—r}) O(Za(t—r})]
l .
: manpt-h Zi{n,, 2)Z(n,, z' 6-126
[Fg:l ¢ N(np) (’h’ Z) (,rp : )} ( )

where the Green's function [or the r variable is constructed from the solution
given by equation (3-90) and the eigenfunctions, eigenvalues, and normalization
integrals associated with the z variable are obtainable from Table 2-2. Therefore,
the result given by equation (6-126) represents 9 different cases.

Region: a<{r< b 0 ¢

I
Glr,z,t|r,z',7) = [f T rRo(ﬁm.r)Ro(ﬂm,r)]

N(B.,)

I
. e 2 D)2 (e 2 )] 6-127)
L; N,y B (

where the eigenfunctions, eigenvalues, and normalization integrals for the r
variable are obtainable from Table 3-3 and for the z variable, from Table 2-2. In
Table 3-3, only the boundary conditions of the first and second kind are considered,

because the results for the boundary condition of the third kind are rather
involved.
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Region: a€r<w,0<z<¢

Gir,z,tIF, 2", 1) = I:J.ﬂioe.'“‘“"'"ﬁr'}ig(ﬁ, PRg(B, "'):l

o
,[ Z e—m",tl 1}
N

1 N('I,J

Z(nm2)Z (0 zﬂ (6-128)

where the Green's function lor the r variable given inside the first bracket is

- pbtained-from the rearrangement. of equation-(3-98). The eigenfunctions, eigen-

values, and the normalization integral associated with the r variable are given in
Table 3-2 for three dilferent boundary conditions at r = a, and those associated
with the z variable are given in Table 2-2 for nine different combinations of
boundary conditions. Therefore, the result given by equation (6-128) represents
3 x 9 =27 different cases. _

In the foregoing expression for the two dimensional Green’s function in the
cylindrical coordinates, we consldered only a MInlte reglon 0.z ¢ for the z
variable. If it is semiinfinite or infinite, {he corresponding Green’s [unction is
obtained from those discussed for the rectangular coordinate system.
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PROBLEMS
6-1 A semiinfinite region 0 < x < o0 is initially at temperature F(x). For times
t >0, boundary surface at x =0 is kept at zero temperature and heat is
generated within the solid at a rate of g(x, ) W/m?>. Determine the Green’s
function for this problem, and using this Green’s lunction obtain an
expression for the temperature distribution T(x, 1) within the medium for
times { >0,
6-2  Repueul Problem 6-1 for the case when the boundary surfuce al x =0 is
kepl insulated. '
6-3 A slab, 0< x < L, is initially at temperature F(x). For times ¢ > 0, heat is
generated within the slab at a rate of g(x, ) W/m?, boundary surface at
© x=0is kept insulated and the boundary surface at x = L dissipates heat
by convection into-a -medium at -zero -temperature. Using the. Green's. . ...
function approach, obtain an expression for the temperature distribution
T(x, 2} in the slab for times ¢ > 0.
6-4  Using the Green’s function approach solve the [ollowing heat conduction
probiem for a rectangular region 0 < x € a,0<y < &
nzTi ,'JZT“} . (x. 30 tar- 0 0 b, >0
+ -l )= in <x<a, O<yp<h, t>
axt o TREPUE y=t
aT
=0 : at x=0, t>0
ox
aT
—+H;T=0 at X=a, >0
x .
T=0 at y=0, t>90
T '
L hHT=0 at  y=b, (>0
ay )
T=F{x,y) for t=0, in the region
(;-5 _Solve the following heat conduction problem by using Green's [unction
approach:
2T *T 1 18T
e e = g(X, P ) = e in D<x<o, D<y<h t>0
aet taE PRI r0=0g y

T=0 at x =0, t>0

6-6

67

6-8

6-9

PROBLEMS = 4d3

—ET——+H,T=O at y=0. >0

dy
T=0 at y=b, >0
T=F(x,y) for (=0, in the region

Solve the following heal conduction problem by using Green’s [unction
approach:

"T 1 1aTr .

- —glx, )= — in D<x<l, 1>0

o TR =0

T=0 ~at x=0 t>0
£+HT=O at x=L =~ 1>0

dx

T = F(x) for =0, in 0g€x<L

" A rectangular region 0 < x <a,0< y<his initially at temperature F(x, ).

For times t > 0, heat is generated within the solid at a rate of _q(.fc, ¥t
W/m?, while all boundaries are kept al zero temperatore. Ohl:m.u an
expression for the lemperature distribution Ttx, y, t}in the region for imes
t>0.

A three-dimensional infinite medium, —oc<Xx<00, — X <Y<,
- o <z < o0, is initially al temperature F(x, y, z). For times t> 0 heat 1’5
generated in the medium at a rate of g(x,y,z.t) W/m>, Usu'_ng (_3rcc.ns
function approach obtain an expression for the lemperature dl‘SlrlbutI(.)l‘l
T(x, y,z,t) in the region for time £ > 0. Also consider the {ollowing special

Ccases:

. The heat source is a point heat source of strength gi{¢) W _situuled
at the location (xy, ¥, 3, that is, glx, y,2,0) = g5{Nd(x —x )3y =)
8(z — z,) releases its heat for times ¢ > 0. _

2. The heat source is an instanlaneous point heat source of strength g,
Ws. which releases its heat spontaneously at time f =0, at 1hf: location
(xy, ¥z thatis, glx 20 = gjﬁ(r ~ Mdlx - x ) v ) olz oy

Solve the following heat conduction-problem lor a solid cylinder O <r < b
by Green's [unction approach:

ng ]
(’T_i.la_']"_'_lg(r,[):li in O0sr<b >0

r rar k o 0t
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a—T+HT 0 at r=b, t>0
ar
T=F(® for t=0, in 0gr<b

6-16_ Solve _the following heat conduction problem by Green's [unction
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6-11

6-12

approach:

c‘zT 13T 1 18T )
T+ -+ rglntl=—-— in
rér k

0gr<on, >0
o 3t

T = F(r) for 1=0, inthe region

Also consider the following special case: Medium initially at zero tcmpera-

e the hear source is-an instantaneous line-heat source of strength gt L

Ws/m situated along the z axis and releases its heat spontaneously at time
t =0, that s,

glr, r)- 6(r 0)6(t — 0)

Solve the following heat conduction problem by Green'’s function
approach:

62T_+16T_I_1 (”)_ig in a<r<co, (>0
&t ror kg Uoadt ' ;
T=0 at r=a, >0
T = F(r) ! ' for t=0, inthe region

Repeat problem (6-11) for the boundary condition:

T
—E- +HT=0 atr=a
ar :

Solve the following heat conduction problem for a hollow cylinder by
Green's function approach:

6—2I+lg+alT+lg(r‘,z.t) I@T in a<r<b O<:zc<e,
& ordr 2 k o«
t>0
T=0 at r=a, r=b,
' >0

6-14

6-15

6-16

6-17

6-18
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oT

—=10 at z=0, t>0

&z

%I +HT=0 at z=c, >0
T=F(,: for =0, in the region

Solve the following heat conduction problem for a solid cylinder by
Green's function appreach: :

2T 1aT 1 3T 1aT ) '
----- +-—= +-~-—-+- f)=-— in O<r<h, 0£¢p<2n,
at ror rrag? glr. ¢, 1) o Ot ¢

' ’ t>0
?3—T+ HT=0 . at r=b, t>0
T=0 ‘ for =0, in the region

Repeat problem (6-14) for the case when the boundary surface at r =5 is
kept at zera temperature. '

Solve the following heat conduction problem by Green's Ium.lmn
approach:

2T 19T 18T 1 19T
syt 2 ryvi ( b )__—
ot o rér ¢

in 0gr<b, 0<p<ey, (Po<2mpt>0

T=0 at r=bh, d=0 =g, >0

T=0 for t =10, in the region

A solid sphere 0 < r < b is initially at temperature F(r). For limes { >0
heat is generated in the sphere at a rate of g(r, t) W/m? while the boundary
surface at r = b dissipates heat by:convection into a medium at zero
temperature. Obtain an expression for the temperature distribution in the
sphere.

Solve the following heat conduction problem for a solid hemisphere:
*T 28T (4@ aT| 1 18T
+-—4= 1—p)— (+-glr,p, ) =-—

ar ror rta [( # )6p:|'+kg(r i) o O

in 0<r<b, -0<H=<~1, for t>0
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T=0 at r=b and pu=0, for t>0
T = F(r, u} for t=0, in the hemisphere

6-19  Solve the following heat conduction pmblerﬁ for a hemisphere:

2T 29T 14 aT 1 i

R E el RS B § UYL, Dol ) —C .

art rér rza,u[( “)a;:}kg(”"” o At
in Or<bh UO<pusgl, for 120

aT

=1} at r=b, t>0

ar

T=0 at =0, i>0

T=F(rp for t=0, in the hemisphere

6-20 Solve the following heat conduction problem for a hollow sphere using
Green's function -

1 g 1 13T
- (T + gl =—-— i
r('Jri[r ) kg(r) e in a<tr<b >0
ar
——+H,T=0 at r=a, t>0
ar
or
—+H, T=0 at r==0, (>0
or )
T=F(r for =0, in agr<t

Also consider the lollowing special case: The heal source is an instan-
taneous, spherical surface heat source of radius r, (ie, a <r, < b} of total
strength g! Ws that releases its heat spontaneously at time t =0, i.e., g(r, ()
can be taken as

1 .
g 1) =g, ot 3 — )T =)

6-21 Construct the Green's function for a region 0 £ x<a, — o0 <y < w0,
- whose boundaries are kept at zero temperature, as a product of one-
dimensional Green's functions for the regions0 < x < aand — o <y < 0.

6-22 Construct the Green’s function for a hollow ¢ylinder e £ r< b0z <€,
whose boundaries are kept at zero temperature as a product of one-
dimensional Green's functions for the regions a<r<band 0z g c.

v

THE USE OF LAPLACE
TRANSFORM

S0 T

\oe

The method of Laplace transform has been widely used in the solution of time-
dependent heat conduction problems, because the partial derivative with respect
to the time variable can be removed [rom the dilferential equation of heat
conduction by the Laplace transformation. Although the application of Laplace
transform for the removal of the partial derivative is a relatively straightforward
matter, the inversion of the transformed solution generally is rather involved
unless the inversion is available in the standard Laplace transform tables.

In this chapter we present a brief description of the basic operational properties
of the Laplace transformation and illustrate with numerous examples its appli-
cation in the solution of one-dimensional transient heat conduction problems.
The orthogonal expansion technique and the Green's function approach discussed
previously provide a much easier and straightforward method flor solving such
problems, but the solutions converge very slowly lor small times. The Laplace
transformation has the advantage that, it allows for the making of small time
approximation in order to obtain solutions that are strictly applicable [or small
times, but are very rapidly convergent. This aspect of Laplace transformation
will be emphasized later in this chapter. )

The-reader should-censult references 1-7 for.a more detailed discussion of the
Laplace transform theory and references §-12 for further applications of the
Laplace transformation in the solution of heat conduetion problems.

7-1 DEFINITION OF LAPLACE TRANSFORMATION

The Laplace transform and the inversion formula of a function F(t) is defined by

Laplace transform: #£[F{f)]= F(s)= j e S F(dr (7-1a)
1'=0
257
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y+ixc ’
Inversion formula: F(r):il—j e Fs)ds (7-1b)
wi

=yp—iax
where s-is the Laplace transform variable, i = \;"— 1,y is a positive number, and
the bar denotes the transform,

Thus. the Laplace transform of a function F(r) consists of mulliplying the
function Fi1) by e~ and integrating it over 7 [rom 0 to 20. The inversion formula
consists of the complex integration as defined by equation (7-1b}.

Some remarks on the existence of the Laplace transform of a funétion F(r} as

. defined by equation (7-1a) might be in order to illustrate the significance of this
matter. For example, the integral (7-1a) may not exisl because, (1) F(t) may have
infinite discontinuities for some values of ¢, or (2) F(t) may have singularity as
t—0, or (3) F(f) may diverge exponentially for large r. The conditions for the
éxistence of the Laplace transform deflined by equation {7-1a) may be summarized
as lollows: :

* 1. Function F{#)is continuous or piecewise continuous in any interval f; <t <
ty,for, > 0. _ :
2. 1*|F(9)| is bounded as t - 0* for some number n whenn < .
3. Function F(t) is of exponential order, namely, e” *{F{t)| is bounded for
some posilive number y as r — a0, ‘

For example, Fif)= ¢ is nnt of exponential order, that is, e~ ".¢" is unbounded
at ¢ — oo forall values of 3, hence its Lapface transform does not exist. The Laplace

transform of a function F{t) = 1", when n < — {, does not exist because of condition-

(2), that is [y e~ *t"dt for n € — | diverges at the-origin.

* Example 7-1

Determine the Laplace transform of the following lunctions: F(6) = [,1,e*

and " with n > — | but not necessarily integer.

Solution. According to the delinition of the Laplace transform given by
equation (7-1a), the Laplace transforms of these funclions are given as

- _ o l 3 1
Firy=1: F(x) =J le™dt= — -7 =— {7-2)
o s o S
. = " !
Fiy=1: Fis) =J' e M= (7-3)
o Jn b
Fl=et": F(5)=J E“‘e""(ff:f eisFal g — ~l— {(7-4)
o o sTa
- x
Flfl=1", n>~1: F(s) ——*J ey (7-5a)
- Jo
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Now let € = st and d€ = sdt; then

Flsy=5s"""" r Ere~tdE = 5(;%'—) (7-5b)

1]

where the integral [§'¢"e™%d¢ is the gamma function, I(n+ 1). The gamma
function has the property N(n+ 1)=nl(n); if n is an integer, we have
Tin+1)=n! :

7-2 PROPERTIES OF LAPLACE TRANSFORM

Here we present some of the properties of Laplace transform that are useful in
the solution of heat-conduction problems with Laplace transformation.

Linear Property

If F(s) and G(s) are the Laplace transform of functions F{t) and G(1) with respect
to the ¢ variable respectively, we may write '

LLe Fit) + 26 ] = ¢, F(s) + c,Gls) (7-6)
where ¢, and ¢, are any constants.

Example 7-2

Bj utilizing the linear prolierty of the Laplace transform and the Laplace
transform of e £ given by equation (7-4), determine the Laplace transform of
the functions cosh at and sinh at.

Solution. For cosh at we write

F.(ty=coshat = §(e" 427"} (7-7
= tf 1 1 s ;
=- )= 7-8
Fute) 2(s—a+s+a) st —a? . -8
Similarly
Fy{ty=sinhat = He" —e™") (7-9)
- I/ 1 1 a
Fos)=of -1 — - 7-10
4 2(s—a s+a) st —a? . (7-10)

Laplace Transform of Derivatives

The Lablacc transform of the first derivative dF(¢)/d¢ of a function F() is readily
obtained by utilizing the definition of the Laplace transform and integrating it
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by parts:

ZIF(O)] = r Fl(e~*dt=[F{t)e ™™]® +s I “Foedt (-11a)

0
| LLF()] = sF(s)— F(0) ' - (7-11b)

where the prime denotes diflferentiation with respect (o f and F(0) indicates the
value of F(t) at £ = 0", namely, as we approach zero from the positive side. Thus,
. the Laplace transform of the first derivative of a function is equal to multiplying
the transform of the function by s and subtracting from it the value of this
function at t=0"%. _
This result is now utilized to determine the Laplace transform of the sccond
derivative of a function F(t) as

LLF()] = sLLF ()] — F(0) = s[sF(s) — F{0)] — F{(0)

= $*F(s) — sF(0) — F'(0) (7-12)

Simiiarly, the Laplace transform of the third derivative becomes
PIF"0] = Fsy $FO) sEO) 1) (7-13)
In general, the Laplace transform of the nth derivative is given as

LLF)) =s"F(s)—s" " F0)—s5"~2FUN0) — 5" 2 F 3 Q) ... — F" ™ o) (7-14)
where '
B i)

[ﬂ'

Fog) =
" Laplace Transform of Integrals

The Laplace transform of the integral [4F(z)dt of a [unction F(¢) is determined
as now described. Let

gli) = I'F(r) dt (7-152)
(1]
then -
gty = F{) {7-15b)

We take the Laplace transform of both sides of equation (7-15b) and utilize the
result in equation (7-11b) to obtain

sgls) = F(s) (7-16)
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since ¢(0) = 0. After rearranging, we find

gisy= 3” Fi1) dt} = 1F(s) (7-17)
A

o]

This procedure is repeated to obtain the Laplace transform of the double
integration of a function F(r)

JU J "If(r,):lrldrz]= !2 F(s) (7-18)
oJdo 5

In general, the Laplace transform of the nthintegral of a function F{#) is given as

:fU J "F{t,)d'cl-ndt,,]:-!'i F(s) (7-19)
0 0 . §

Change of Scale -

Let F{s}be the Laplace transform ol a [unction F{r). Then, the Laplace transforms
of functions Flar) and F[(1/a)t], where a is a real, positive constant, are determined
as -

I

. {1 . [
Flate "dt =< Fle M= f {7-200)

0 o \u

, 2 Fat)] = J

0 il

where we sel 1 = at. Similarly.

] x kA _
_‘!’[ F( - :)} = J F(i)e”" dt = a-[ Flu)e " du = aFilas) (7-20b)
n o a . I N .. [

where we set = t/a.

‘Example 7-3

The Laplace transform ol cosh ( is given as #’[coshs] = 5/(s* — 1). By ulilizing
the "change of scale” property, determine the Laplace transform of the functions
cosh ar and cosh (r/a). ' '

Solurion. By utilizing equation {7-204) we obtain

(5/u) 3

1
.f[, - .l 1= . R = e - 7'2]1
[cosh at] a1 T ( 1)
and by utilizing equation {7-200} we find
i as s?
| cosh- |=a = 7-21b
[ J @P~1 5 = (t/aF (7219
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Shift Property

When the Laplace transform F(s) of a function F(r) is known, the shilt property
enables us to write the Laplace transform of a function e **F(1), where a is a
-constant; that.is

2T YY) I .t' o b e - J lt' A E Y o
[} 0
=FlsFa) (7-22)

Example 7-4

The Laplace transform of cos bt is given as %[ cos bt] = s/{s® + b?). By utilizing
the “shilt property” determine the Laplace transform of the function e **-cos bt.

Solution. By equation (7-22) we immediately write

S+a
Fle ™ecosht]) = ————cmu 7-23
. ! (s+a)?+b2 (7-23)

Laplace Transform of Translated Function

The unit step lunction {or the Heaviside unit function} is useful in denoting the
translation of a function. Figure 7-1 shows the physical significance of the unit
step functions U(r) and U(t — a); namely

1 (>0

Uty = {0 o (7-24a)

Ut — a) = {‘ r>a (7-24b)
0 t<a

We now consider a function F{t) défined {or 7 > 0 as illustrated in Fig. 7-2a and
the translation of this function from r = 0 to t = a as illustrated in Fig. 7-2b. The
translated function U(t — a): F{t — a) represents the function F(f) defined for 1 > 0,

tie) Ul —a)
L)

0 ! g 2 '

Fig, 7-1  Definition of the unit step lunctions Ut} and Ut — a).
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Fie) F(t—a)

0 _ . ! 0
() (b) _ J
Fig. 7-2 The translation of a function F(¢): (a) the function F(f) and (b} the translation

of Finfromt=0tor=a.

£y

translated by an amount ¢ = g in the positive t direction; namely

Fit —a) for t>a
- —a)= (7-25)
Ut —a)f(t —a) {0 . for 1<a
The Laplace transform of this translated function is determined as
FLUN—a)F(t —a)]= " Ut —a)F(it —a)dt
JO
= e ¥F{t — a)dt
Jr=a
= e SN E(p)dn = e'“‘J e "F(n)dy
Ja=10 g=0
=e " "F(s) {7-26)

where a new variable 5 iz defined as # = t — a. This result shows that the Laplace

B1-
- .
- 1 T
F[I‘)a_ 4 i
_i __________ ;
1 2
I A RO S I
1] 1 2 3 4 5 1] 7

Fig. 7-3 The function defined by equation (7-28).
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transform of a translated function U{t — a)F(t — a) is equal to the Laplace trans-

form F(s) of the function F(t) multiplied by ™%,
Similarly, the Laplace transformt of a unit step function U{t — a) is given by

1
LLU—a)] = e""; YR
Example 7-5
Determine the Laplace transform of the following function

0 for t<0
1 for O<r<l

Fy={5 for l<t<4 (7-28)
_ 2 for . d4<t<é
0 for t>6

which is illustrated in Fig. 7-3.

Solution. The lunction given by equation (7-28) is represented in terms of the
unit step functions as

F{t) = Ut = 0) + 4U(t — 1) = 3U( — 4) — 20( — 6) (7-29)

and the Laplace transform of this function becomes

L 1 1 '
F(s)=—+4e"——.'ie""——ﬁle""E {7-30)
3 5 3 3

Laplace Transform of Delta Function

The delta function J(x) is defined Lo be zero everywhere except at x = Osuch that

d(x)=0, x#0 o (7231

and

j ' XYyl = | (7-32)

=

The Laplace transform of the delta function d{x} is given by
X

L[8(x)]=b8{s)= J e7 g (x)dx = | (7-33)

o

The properties of the delta function are given in Appendix VI.
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Laplace Transform of Convolution

Let () and g(t) be two functions of t defined for t > 0. The convolution integr al
or briefly the convolution of these two functions is denoted by the notation f*y

and defined by the equation

fry= J‘ S —ngto)de (7-34)
0

= J J(Dglr =) de (7-35)
0

Thus we have the relation f+g = g* f. The Lap]acc transform of the convolution
[=*g is given by

Llregl=feg=Fols) . - (7-36)

That is, the Laplace transform of the convolution is equal to the product of the
Laplace transforms f{s) and §(s) of these two functions.

Derivatives of Laplace Transform

We now derive an expression for the derivative of the Luplace transform of a

_ Tunction. Consider the Laplace transform F(s) of a function F{t) given by

Fis)= J e MF)de | (7-37
0

By differentiating both sides of equation (7-37) with respect fo 5 we oblain

‘“_:_(‘9 =Fis) = jl(— e~ F{t)dt
]

ds

b

LY T TN N N,

~~
i H

SO

L.

F(s)= 2[{—~nF(n] (7-38a)
or by dilferentiating equation {7-37) # times we oblain

dr:f ﬁs) Feosy = 20— 0"F(],  n=1,23... (7-38b)

Thus, the nth differentiation of the Laplace transform F(s) is equal to the Laplace
transform of (— 1)"F(t). This relation is useful in finding the inverse transforms
with the aid of partial fractions and in many other applications.
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Example 7-6

The Laplace transform of F{f) = sin ft is given as Fis}= p/(s* + ). Determine
the Laptace transform of the [unction “¢sin ft.”

Solution. By applying the lormula (7-38a} we write

.
2T nFEnT=" Fis)
ds

. d i} 2sf »
o — SOl TS PR 7-39
YL=rsinfi] dslisz + ﬂl] (s*+ B3 (7-39)
or
FLlisinfi] = ('qzi_iﬁzji for s>0 (7-40)

The Integration of Laplace Transform
Consider the Laplace transform of a function F{1) given by

Fis)= r e " F(r)dr (7-41)
]

)

We integratc both sides of this eduation with respect to sfrom s to band oblain

[ h o ,
j F(s')dy' =J J eV F(t dr ds
5 s JO

b ] x
- j F({)[J. e”"':fs'}ir = J F—U—)(P"'—P"”')df (7-42)
o s o !

If the function F(t} is such that F(z)/t exists at t -0, the integral uniformly
converges. Then, letting b— oo, equation (7-42) becomes

Jiﬂs’)ds'= Jﬁ[{%g}e"'dxsy[fg} (7-43)
K3 [\] .

Thus, the mtegration of the Laplace translform Fisy of a function Fi) with respect
to s from s to =, is equal to the Laplace transform of the function F(f)/t. This
result is useful in the determination of the Laplace transform of the [unction F(z)/t
when the Laplace transform F{s) of the function F(f) is known.

Example 7-7

The Laf»lacc transform ol sin fr is given as f/(s* + £?). Determine the Laplace
transform of {1/t sin fit.
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Solution. We utilize the formula {7-43)

.?Fﬂ: rf(s') ds'

Introducing the function as given above we obtain
s . i I § : %
o M0 A j ! Lds =1 tan ! ! J =" tan '(‘) (7-44)
t . S+ gl 2 f _ ,

7-3 THE INVERSION OF LAPLACE TRANSFORM
USING THE INVERSION-TABLES

In heat conduction problems, the Laplace transformation is generally applied to
the time variable. Therefore, an important step in the final analysis is the inversion
of the transformed function from the Laplace variable s domain to the actual
time variable 1 domain. To facilitate such analysis comprehensive tables have
been prepared for the inversion of the Laplace transform of a large class of
functions [7]. We present in Table 7-1 the Laplace transform of various functions
which are useful in the analysis of heat-conduction problems.
If the Laplace transform F(s) of a function F(1) is expressible in the form

F(s)=% | (7-45)

where G(s) and H(s) are polynomials with no common factor, with G{s) being
lower degree than H(s), and the factors of H(s) are all linear and distinct, then
equation (7-45) can be expressed in the form

F(s):@:ilw.*._cz_.i_....i. Cn
His) s—a, s—a, s—a,

(7-46)

Here the ¢, values are independent of s. Then, by the theory of partial [ractions
¢; values are determined as .

e=Jim (s — a)F(9)] (7-47)

Clearly, if a function F(s) is expressible in partial fractions as in equations (7-46),
its inversion is readily obtained by the use ol the Laplace transform table.
Also, there are many occasions that the transformed function F(s) will not
appear in the standard transform tables. In such cases it will be necessary to use
the inversion formula {7-1b) to determine the function. Such an inversion is
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TABLE 7-1 A Table of Laplace Transform of Functions

No. F(s) F(r)
¢! !
5
1
| ln- ]
3 S(m=1,2,3,...) .
I's (=1
o g
4 . .
Js Jo
5 s 2./
. 2
6 s"(n+lf!l("= 1’2'3"”) _tu—uz
[1-3:5..2n~ 1)} /=
I |
7 ~{n>0) - gt}
L4 I'(m)
1
8 . ¢ ut
s+a
l !-ll"le—ﬂl
9 (n=1,23,...
(s+ay (m—1)
ik
TR Bt
(s+at .
e—cl__e—bl
11 —(a#b
(s+a)(s+b]( b—a
: ag™" — be
12 ————(a#b —_—
54+ a){s+b) a—~
13 ! L t
_— ~sina
s +a? a
¥
14 cosat
st
1 .
15 - -sinhat
2 —a? a
5
16 g coshat
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TABLE 7-1 (C’omr‘rméd}

2 ssmasea aramms s — = - o

v
.
— ) -
Na. F(s) ( K
17 _ Lz(l — cos at) . -.
s(s* +a?) d {
i l L ( .
18 . --J-(m - sin af) o
sHs? 4+ ah) a { -
19 ! (sin e —atcosarl C:
¢ +a¥y 2 C
5 t o
L —sinaf
20 e > é
2 S
71 LA ' —l—(sin at + at cos ai) (
(52 + az)z 2a .
5t —a? ( g
212 . . 1cosat
(s? + a2 ( :
1 s .
23 1 - —— — e 'erfe a\/r <
\/;- +a it (
24 _L/i A + ae™ crl‘u\/’t { '
’ s—a nt C
2 Js _L__zie-ﬂ"J et di Ol
s+a \/n:_t ﬁ 0 —
1 -
s - a’) a ) p
1 2 N AL Ao
27 — ! et di -
\/;(s +a%) a\/;r o (
28 _ Ef__ gi___ e'[b—a crfa\/;] — be"erlc b\/'rr (: _
(s —a)(b + /5) O
29 — ___l,g —_ erfc a\/'lé C
/ st is+ 1) C
LN
30 U l_ S .__l...”- e erf(\,-/b —a V"t) (
: (s+a)\/s-l-b Jo—a (
gt n— . )
. 31 M_ ae " "'[I {at) + [ptar)] \
\/ $ .
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: TABLE 7-1 (Continued)
_J No. Fis) F(t)
J 1
- 32 [ PRI (“ — br)
A V«s-i-u\ 'c-i—h 2
Iy
B |
- al R . Jn(f”)
2 N
5 {\ /5 + u- — 8"
Z k7| {(v>—1) a*J (an
‘\3 \ +H
;3 (s ~ fs* — a')"
- 35 — (> = 1) a*f (at)
. JE—a
iy T,
3 36 —e™ ult — k)
—,.\ S
+3
- l "
™ 37 3¢ ¢ {t — kiult — k)
r s
~
IT': L. T,
R 38 - HY Jol2 k)
o
‘} 1 o 12
v ¥ e >0 (') Jumil2y fk1)
> s k
g ” tn- mz
0 40 e > 0) (i) N
=
o - k E
,} 41 [’_1“5“\'>0) —= gxp(_li,)
3 2/t A
7 I k
= 42 e k2 0) erfc -~ -
5 5 2.0t
. N
)
D 1 - 2
T 43 e K Sk 2 0) %__cxp(ﬁ":—)
.,_\;\ /_c \l" it 4
"~y 1 . 2
- - 44 <t ok 2 0) 2\/-{ Exp(——- crl'c—":—
»_\J 5§ n t 2./t
- k
Y =2 ,"l ierfc——
v A - r
S ) . _\!l
= —kvs g k
= 45 Pana® m=0.1,2..... k=0 (d)™i"erfc—
o glone 2.4
- =
.
/‘->

Ly

THE INVERSION OF LAPLACE TRANSFORM USING THE INVERSION TABLES

TABLE 7-1 (Continued)

27

No. F(s) F)
ka3 1 JE] k
46 £ --{k 20} ——exp(—-—)—ac"'"e“"erl'c(a\/!-i-——) .
o+ \/1; 4t 2./t
y [ . k
47 , ‘ (k=0 e erfe (u\/: e, )
NECES v 2/
L,—x-/sFTFfi e
48 sk 200 e~ 921 (La/1? — Klt — K)
W sls +a)
_nEE
49 o ——.tk20) Jofa /12— kude — k)
’ G§ral
— gl
0 0 (k>0 I {0 /P = KPult — K)
5t —at ) _
ae™** N k
51 —— (k2 0) — e erlc a\/!_-i-—— + erlc——-
’ sta+ . /s) Z\ﬂ / 2./
e (5 oel)+(3) "o
52 —eThE 1+ erlc expl ——
§2 2\/ P 4
1.
53 -ins —]'—ln!{y=0.5772| 56649...
s Euler’s constant)
$+a 1 -
54 In - - e M p dl)
s+h !
+ 2
55 Inv ---ﬂ —-(1 —cosat)
st r
2 —a 2
56 ln*‘ ‘;a ~{1 —coshar)
5 ¢
1
57 Katksitk > 0} -—-»—u[r —A)
. e
1 i?
58 Kotky s)(k >0 —expl ——
’ 2t p( 4:)
| 1 k2
59 2 K (ko) > 0) Eexp(—‘—i—)
t

Js
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generally performed by the method of contour integration and the calculus of
residues that require rather elaborate analysis. Therefore, the use of inversion
formula (7-1b) will not be considered here.

Example 7-8
Determine the Junction whose Laplace transform is

5
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Example 7-9

A semiinlinite medium, x 2z 0, is initially at zero temperature. For times t > 0,
the boundary surface at x = 0 is subjected to a temperature T = f(r) that varies
with time. Obtain an expression for the temperature distribution T(x, 1) in the
medium for times ¢ > 0.

Solution. The mathematical formudation of this problem is given as

L O e

N NN = .‘

N —~

NS ST
T

F(5) = oo —ee . _ ¥ X TN
Fo)= oy (7-48) ng’-ﬁ - i ifé%:ﬂ in  O<x<oo, >0 (7-53a)
S_o!.a:tior;. This function is not available in the Lapiace transform table in this T, 1) = 1) at =0 t>0 (7-53b) §
form; but it can be expressible in partial fractions as o - ' ’
b2 T(x,t)=0 as X0, (>0 (7-53¢) -
= [ SR S o oY
Fls) = moom = 21 £25 703 7-49 -
) s(s24-0Y) s s24b7 (7-49) T(x,0)=0 for r=0, in xz0 (7-53d) g
Then ] ) o i
, , , We recall that this problem was solved in Example 5-2 by the application of
b*= ‘_’Ib LR (PR {7-50) Duhamel's method. Here the Laplace transform technique is used 1o solve (he
) . . . same problem, and the standard Laplace transform table is utilized to invert
Equating the cocflicients of like powers of 5, we oblain ¢, = l,¢; = — |, and the resulting trunsform. Taking the Laplace transform of equations (7-53) we
Cy= (}. }"lc“cc nh“lin I
_ 1 5 d*T(x,5) s~
Fs) = - — —5-es 7-51 IS Sa - i Dt <o -
6= = _ (7-31) 5 —-Tx9=0 i 0<x<os (7-54a)
Each term on the right-hand side is readily inverted using Table 7-1, cases | T(x,5) = f(s) at x=0 {7-54b)
and 14; we lind
Tx,5=0 a5 X {7-54c)
Flt)=1—cosbt {7-52) : :
The solution of equalions (7-54) is given as
7-4 APPLICATION OF LAPLACE TRANSFORM IN THE SOLUTION T(x,s) = J(8) g, 8) (7-55a}
OF TIME-DEPENDENT HEAT CONDUCTION PROBLEMS : ’
where
In this section we illustrate with representative examples the use of Laplace ) ’
Jx,g)=e- v (7-55h)

transform technique in the solution of time-dependent heat conduction problems.
In this approach, the Laplace transform is applied to remove the partial derivative
with respect to the time variable, the resulting equation is solved for the transform
of temperature, and the transform is inverted to recover the solution for the
temperature distribution. The approach is straightforward in principle, but gene-
rally the inversion is difficult unless the translorm is available in the Laplace
transform tables. In the lollowing examples, typical heat-conduction problems
are solved by using the Laplace transform table to invert the transform.

Since the lunctional form of f(s) is not explicitly specified, it is better lo make
use of the convolution property of the Laplace transform given by equation
(7-36) to invert this transform. Namely, in view of equation (7-36), we write
the resull in equation (7-55a) as

Tlx,5) = fis)§x,5) = LTS (rgix, 1)] (7-56)
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The inversion of this result gives

T(x.1)=f(1)+g{x.1} (7-57a)

L_, .‘ ‘.
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and utilizing the definition of the convelution f+g given by equation (7-35}
equation (7-57a) is written as

Tix.r)= j Sglxr—tde (7-57b)
0

To complete the solution of this problem we need to know the function g(x, f).
However, the Laplace transform g(x, s) of this function is given by equation
{7-55b); then, the function g(x, f) can be determined by the inversion of this
transform. The transform g(x, s} is readily inverted by utilizing Table 7-1. case
41: we find ‘

glx, f) = ———— g7 (7-57c)
2 Jnar’

After replacing t by (t — ) in this result, we introduce it into equation (7-57b)

to obtain the desired solution as

x {" fi0 —x?
T(x.t)= 7-
o ijmorr—ﬂ-’"”“p [4a(r—ﬂ]dr 738

This result is the same as that given by equation (5-33) which was obtained
by utilizing the Duhamel's theorem, The tomperature T(x, f) con be determined
from equation (7-58) for any specified form of the function f(t) by performing
the integration. Sometimes it is easier to introduce the transform f(s) of the
function f{r) into equation (7-55a) and then invert the result rather than
performing the integration in equation (7-58). This matter is now illustrated
for some special cases of function f{r).

1. Sty = Ty =constant. Then, the transform of f()=T, is f{s)=T-o/s.
Introducing this result inlo equation (7-55) we obtain

— T, -
Tix.s)= e * {7-5%a)
Y

The transform (7-59a) is readily inverted by utilizing Table 7-1, case 42.
We obtain

Tix, 1} = T, exfe (x/./dar) (7-59b)
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2. f11)= Tyt'*2. The transform of this function is obtained from Table
7-1, case Sas f(5) = Tu(\/;zﬁ)s" 42 Introducing this result into equation
(7-55) we oblain

T(x.5) = Tn\ﬁ;r §T 2= (7-60a)

This resull is inverted by utilizing Table 7-1, case 44; we find

Example 7-10

A semiinifinite medium, 0 < x < =0, is initially af zero temperature. For times
t > 0. the boundary surface at x = 0 issubjécted to convection with an environ-
menl at temperature T, . Obtain an expression [or the temperature distribution
T(x, 1} in the solid for times ¢ > 0.

Solution. The mathematical formulation of the problem is given as

HE A

ETlen_1 0Tt 0<x<oo, 1>0 (7-61a)
ax? o M ‘
AT

—k-_;-- +hT=hT,, al x=0, 1>0 {7-61b)

X
T=0 as X -+, t>0 (';’-Glc)
T=0 for =0, in 0gx<0 {7-61d}

The Laplace transform of equations (7-61) becomes

dA*T(x.5) s-=

—~-Tix.5}=0 in De<x<aoo . (7-62ﬁ)
dx= %
- k‘” +hT= ! hT,. al x=10 (7-62b}
X 5
T=0 8 X W (7-62¢)

The solution of equations (7-62) is

-'1‘-(}‘_‘ s) _y e—(xf\‘;ih's

o = e e (7-63a)
T. S(H 2+ /5)
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where H = Iifk. The inversion of this result is availuble in Table 7-1, case 51;
then the solution becomes

Tix,¢ X s X
(x0_ crl'c( X )_ JUESHL "Cl‘fc(H\_.-'!xr 4+ ) (7-63b)
Tm \/403 \.:'{4.'”

75 APPROXIMATIONS FOR SMALL TIMES

The solutions of time-dependent heat conduction problems for finite regions,
such as slabs or cylinders of {finite radius, are in the form of series which converge
rapidly for large values of 1, but converge very slowly for the small values of 1,
Therelore, such solutions are nol suitable for numerical computations for very
small values of time. For example, the solution of the slab probleimn given by

T(x,1}. AN 2 4 _ o sinfix . an
=] 1 - — N UL vhere }, = 7-64
T, ( L) LET s e ey U6

converges very slowly for the values of a1/12 less than approximately 0.02.
Therclore, for such cases, it is desirable to develop alternative forms of the
solutions that will converge fust for small times.

When the Laplace transform is applied (o the time variable, it transforms the
equation in 1 into an equation in 5. Therefore, it is instructive to examine the
values of ¢ in the time domain with the corresponding values of s in the Laplace
transform domain. With this objective in mind we now examine the Laplace
transform of some functions.

Consider a function F(f) that is represented as a polynomiaf in ¢ in the form

. " f" t 'Z "
Flt)= a,- =dgtu, -+ +--td
0= ,Eo 0T Ty R "l

{7-65a)

Since the funclion has only a finite number of terms, we can lake its Laplace
translorm term by term Lo obtain

. n l | |
Fis) Z =ty Fay b, o 17-65h}
§ 5§ X §

k=0

according to the transform Table 7-1, cuse 3.
The coellicients @, and a, may be determined from equation (7-65a) and

(7-65b) as

ag = lim F(r) = lim sF{s}
-0 s

(7-66a)
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(7-66b)

. Fliny =
a, = n!lim il = lims"* ' Fis}
1w " 50

The relations given by equations (7-66) indicate that the large vatues of 5 in the

Laplace transform domain correspond to small values of ¢ in the time domain.
Although the results given above are derived for a Tunction Fu), which is a
polynomiad, they are also applicable for other types of functions. Cuonsider, for
example, the following function and its transform '

F(r)=coshkt  and  F(s)=-; I (7-67a)
ey
which satisfies the relation
lim cosh kt = lim 5 - (7-67b)
-0 sex §t k-

+

and this result is similar {o that given by equation {7-66a).

These facts can be utilized to obtain an approximate solution for the [unction
F{1) valid for small times [rom the knowledge of its transform evaluated for large
vilues of 5 as illustrated in several references [16; 4. pp. 82--85; 6 §]; that is the
transform of the desired function can be expanded us an usymplolic serics and
then inverted term by term. For example, in the probicms of slab of finite

thickness, the transform of temperature T(x.s) contains hyperbolic functions of

\/5/;. These hyperbolic functions may be expanded in a series of negative

exponentials of \/-s/a and the resulting expression is then inverted term by term.
.The solution obtained in this manner will converge fast for small time. In the
problems of a solid cylinder of finite radius, for example, the transform of
temperature involves Bessel functions of \/:sﬁ Then, the procedure consists of
using asymplotic expansion of Bessel functions in order to obtain a form invoiving
negative exponentials of \/rs/sx with coefficients that are series in (1/, 's,'ot]. The
resulling expression is then inverted term by term. The solutions obtained in
this manner will converge fasl. Many examples of this procedurc is given in
reference 16.

Example 7-11

Aslab, 0 € x < L, isinitially of 2ero temperature, Fortimes ¢ -+ O the boundary
at x =10 is kept insulated and the boundary al x =L is kept a1 constant
temperature Ty. Obtain an expression for the temperature distribution-T(x.¢)
which is usefui for small values of time.

&2 T(x, 1 aT(x, .
t_(:[}=_(\“” in O<x<l, 1>0

7-68¢
ax o at ( '

i

T~

~AA A

4
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aT .

3 =0 at x =10, t>0 (7-68b}
T="T, at x=1L, t>0 {7-68¢c)
T 0 for f =0, in 0yl {7-6Rd)

The Laplace transform of the equations (7-68) is

PT(xs) s
¢ (\ ?)—"ST[.\‘.S)=0 in 0£\=<_L

dx? 2 {7-692)
d7

=9 : at  x=0 (7-69b)
dx

= T

T= \'(l R at _\'._—_.L [ (7-69(:)

The solution of equations (7-69) is

T(x.s) _ cosh [.\'_\/.'{/&] (1701

Ty scosh [LV-/.;‘,! %}

The inversion of this translorm in this form yields a solution for T{x, ¢} which
is slowly convergent for small vajues of time. To obtain a solution applicable
for very small times we expand this transform as an asymplotic series in

negative exponentials of /5 as given below.

T{_\.‘ 5 pT 3 ST

To  sfetiiqe ti

1 R —
=;[(f_”'_'ﬂ‘s * L,Hl'!.*.r]ssq]{] + e—:L\.r::]—l (7_71)

The Bast ter is expanded in hinomial seeies

Tix.s) | — —[ =z —
L. = __[ia_[L-.\‘]\.t:+L,—[L+.tl\s.1]|: (_I)Ne'ZLrns:
T’n 8- ..Z'n
1 & . | X
- = Z (— ]}"Lx_['-“" Im-alsr Z (_”ut,—[f.lli-.'!ni*-x]s,;; (7-72)
Su=0 Su=0 7

The inversion of this transform is available in Table 7-1, case 42, Inverting
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term by term we obtain

T &, o L(l+2n)—x) s (L(l+2n)+x)
fall i —1yerfel =———L—— —Nerfe| ———
To ngo( ) crc( o dot +n§D( Yerle WS dat

(7-73)

"which converges rapidly for small values of 1.

Example 7-12

A slab, 0 < x < L, is initially at uniform temperature Tp. For times ¢ > 0, the
boundary surface at x =0 is kept insulated and the boundary at x = L dissi-
pates heat by convection into an environment of zero temperature. Obtain an
expression for the temperature distribution T(x, 1) which is useful for small

times.

Solution. The mathematical formulation of this problem is given as

2 ‘
FT) 10T o0 gexer, >0 (7-T4a)
ax? a I
M o at  x=0,  t>0 (1-74b)
dax ‘ .
'6—T+ HT =0 at x=1L, >0 (7-74¢)
dx
T=T, for t=0, in 0gx<L (7-74d)

The Laplace transform of these equations gives

T _ T,

dTxs) Sz g-—To @ o0<x<L (7-752)
dx? o o

dT .

—=0 at x=0 (7-75b)

dx '

T T =0 at x=L (7-75¢)

dx

The solution of equations (7-75) is

T(x,s) _ 1 _H cosh(x\/s/_a) ©(2-76)

T ) el
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Since tie solution is required for small times, we need to expand this transform
as an asymplotic series in negative exponentials and then invert il term by
term, The procedure is as follows:

T(.\', 5} _ [ R PN

TO " s S[ /S/'a(e!‘";ﬁ _L‘SI’)-FH(QL‘ J"J-I-E"L‘ 5;,)]
N A RO , =L B x)six )

:l_!ht ‘S’+£‘+’I|:|+Hh\",“'/“

o H -+ \/-5'/9‘ H+ /st

Expanding the last term in the bracket in binomial series we obtain

?:L\’jl=.l__ﬂi_i’:j:ii:t_e._'L+x'_‘3fz[ i ( “u( Y S/EX) wzirr\s.f.zjl

Ty 5 8 H+ﬁ =0 H+\/_

=1
v El.\.\ru:l (7_7-”

(7-78a)
or
Tix,s) |1 He‘”' "’~5f'“+e-ﬂ-+xh:.'x
H+ /st

+ H H+ S/Of [e™hmahsiz gy tJI.#.tl"s.:] e (7-78b)
S (H 4 fsjat :

To s s

The first lew terms can readily be inverted by the Laplace transform Table 7-1,
case 1 and 51; we obtain

I&f) = ] —I:erch_

X gl it erfc(H\/ At -+ ‘-L:\—):l

Ty + dot _ Pt
L+ x 3 L+x
— [erfcﬂt: —e"”‘*""’*’""“eﬂC( N 1[ 4 - + \)} 4o (7,79)
dot N 41’!

Fhis solution converges fast for small limes.

Example 7-13

A solid sphere of radius = b is initially at a uniform temperature Ty. For
times ¢ . 0, the boundary surface at r= b is kept at zero temperature. Obtain
an cxpression {or the temperature distribulion T(r, 1} which is uselul for smdll

times,

Solution. The mathematical formulation of this problem is given as

2
19 omy= 1Tl 4 o<r<b t>0 (7-802)

v or? o ot

[ —

APFRUAIMATIUND FUR 2IVIALL 11WIED RPN

Tir,)=0 al r=1U, >0 (7-80b)

Tir}=Ty for t=0, in 0<sr<b (7-600)

The Laplace transform of equation (7-80) gives

2
-Li(:-T)—fT(r,s)=—T9 in 0<r<b (7-8ta)
rdr? o o
Tir,s)=0 at r=b (7-81b)

The solution of equation (7-81} is

T(r.s) 1 ~ E sinh (r\/s/ﬂ (7-82)

To s srsinhb./s/2)

To obtain a solution that converges rapidly lor small times, we expand this
transform as an asymptotic series in negative exponentials, and then invert
term by term. The procedure is as {ollows:

Tir,s) 1 b e e
TO _S ,S[eh e _ —b\sfa]

1 b1

=___,__[e—(b-*rl~."s-.f§ g O[] — PRELT T (7-83)

5 rs

The last term in the bracket is expanded in binomial series; we obtain

T o o o
T(I‘v_f! =l._.?.l{e"tb—rhrsﬁ _ e—lb+r:\?E]|: z e-lbn,'xi:}
Ty 5 rs n=0

S

! b JZ {l ~[otl 4 2n) - r].s.': _ l e"[b(l 1 2up rl\':.'.'r} (7_84]
5 Fn=0 5

This transform is readily inverted by utilizing the Lapluce trunsform Table
7-1, case 42; we find

Tir, 1) b= {erfcb(l+2u)—r_erfcb(1+2n)+r} (7-85)

ghr? S i

TD rn:()
This solution converges [ast for small values of times.
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7-1 A semiinflinite medium, 0 < x < oo, is initially at uniform temperature T,

Fortimes 1 > 0 the boundary surlace at x = Ois maintained at zero tempera-
ture. Obtain an expression for the temperature distribution T{x, ¢} in the
medium for tlimes t > 0 by solving this problem with the Laplace transfor-
mation.

A semiinfinite medium, 0 < x < o0, is initially at a uniform temperature
T, For limes t > 0 it is subjected to a prescribed heat flux at the boundary
surface x = 0:

ar
—k— = f, =conslant atx=0
fx

Obtain an expression for the temperature distribution T{x, t}in the medivm
{or times 1 > 0 by using Laplace transformation.

7-3 A semiinfinite medium, 0 € x < o0, is initially at uniform temperature T,.

at x = Lis kept al zero temperature. Oblain an expression for the tempera-
ture distribution T{x, t} in the slab valid lor very small times. :

A slab, 0 < x < L, is initially at zero temperature. For times ¢ > 0, heat is
generated in the slab at a constant rate of gq W/m® while the boundary
surface at x =0 is kept insulated and the boundary surface at x =L is
kept at zero temperature. Obtain an expression for the temperature
distribution T{x,) in the slab for very small times..

9. Tan N. Sneddon, Use of Integral Transforms, McGraw-Hill, New York, 1972. A slab. 0< x < L, is initially at zero temperature. For times (> 0, the
10, I.Trving and N, Mullineaux, Mathematics in Physics and Engineering, Academic Press, boundary surface at x = 0 is kept insulated while the boundary surface at
New York, 1959. x = L is subjected to a heat fux: :
11. V.S, Arpaci, Conduction Hear Transfer, Addison-Wesley, Reading, Mass., 1966.
12. A. V. Luikov, dnalytical Heat Diffusion Theory, Academic Press, New York, 1968. oT
. . k-— = f, = constant atx=1L
13. E. C. Titchmarsh, Fourier integrals, 2 ed., Clarendon Press, London, 1962, ox ‘
14. R. C. Bariels and R. V. Churchill, Buil. Amer. Math. Soc. 48, 276-282, 1942, : .
15, 11 B. Dwight, Tuhles of integrals and Other Mathematical Data, 4th ed., MacMillan, Obtain an expression for the temperature distribution T{x, ) in the slab for
New York, 1961. very.small times.
16. 5. Golds.i ein, Proc. Loadan Math. Soc., 2nd series, 34, 51-88, 1932 A solid cylinder, 0 <r < b, is initially at a uniform temperature T,. For
times ¢ > 0, the boundary surface at r=»b is kept at zero temperature.
PROBLEMS Obtain an expression for the temperature distribution T(r,t} in the solid

valid for very small times,

A solid cylinder, 0 < r < b, is initially at a uniform temperature T,. For
times t> 0, the boundary surface at r=> is subjected to convection
boundary condition in the form

-EII;+HT=0 atr=~h
ar

Obtain an expression for the temperature distribution T(r,1} in the solid
valid for very small limes.

A solid sphere, 0 < r < b, is initially at a uniform temperature Ty. For times
1 > 0, the boundary surface at r = b is kept at zero temperature. Obtain an
expression for the temperature distribution T(r, ¢} in the solid valid lor very
small {imes.
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ONE-DIMENSIONAL
COMPOSITE MEDIUM

The transient-temperature distributiod in a composile medium consisting ol
several layers in contact has numerous applications in engineering. In this
chapter, the muthematical formulation of one-dimensional transient heat con-
duction in a composile medium consisting ol M parallel layers of slabs, eylinders,
or spheres is presented. The transformation of the problem with nonhomogeneous
boundary conditions into the one with homogeneous boundary conditions is
described. The orthogonal expansion technique is used to solve the homogeneous
problem of composite medium of finite thickness, while the Laplace transformation
is used to solve the homogeneous problem of composite medium of infinite and
serniinfinite thickness.

The Green’s function =1ppro.1ch is used for solving the nonhomogeneous
problem with energy generation in the medium.

The reader should consult references 1-13 for the theory and the application
of the generalized orthogonal expansion technique and the Green’s function
approach in the solution of heat conduction problems of composite media. The
use of Laplace transform technique in the solution of composite media problems
is given in references 14-17 and the application of the integral transform technique
and various other approaches can be found in the references 18-38.

8-1 MATHEMATICAL FORMULATION OF ONE-DIMENSIONAL
TRANSIENT HEAT CONDUCTION IN A COMPOSITE MEDIUM

We consider a composile medium consisting ol M parallel layers of slabs,
cylinders, or spheres as illustrated in Fig. 8-1. We assume the existence ol contact
conduciance h; at the interfaces x = x;,i =2.3,..., M. Initially each layeris at a
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. AT . . ATy .
-k iy hy Ty =hi A0 by ==+ hpy Tar = gy fara
i . i

X g -
e Naoa M Y

Fig. 8-1  M-layer compasite region.

specified temperature Ti(x,0) = Fi{x},in < x <y, i= 1,23, .. .M, fort=10.
For titnes ¢ > 0, energy is generated in each layer at a rate of gi{x,t), W/m?, in
N, <X <X.q,i= 1,23, M, while the energy is dissipaied with convection
[rom the iwo ouler boundary surfaces x =x, and x = xy,, into ambients at
temperatures (1) and f), . ,(t). with heat transfer coelficients h¥ and A%, |,

-

respectively.
The mathematical formulation of this heat conducuon probiem is given as
follows.
The dilferential equations for each of the M layers are

I ¢ Y % ATy, .
5 (.\'"( ')—!- ‘q,—(.\',n.—:( %0 ~in <X <Xy, (>0

I P 1 . .? . « —-)
x?x ax &, o =2 M 8-1)
where
0 slab
p=4 1 cylinder
1 2 sphere

Subject to the boundary conditions

T
- k’f(e'\.l +hTT = h1/i(0) at the outer boundary

X=Xy, >0 ‘ (8-2a)
T,
—k; . =l (T =Ty ) : (8-2h)
o at the interfuces
oT, o7 X=Xppye =12 M~
k= =k, —t (>0 2
ax +1 A (8-2c) .
T, .
k¥ :" + il T =0 o fa+, (1) at the outer boundary,

X=Xp4qp, (20 (8-2d)

k.
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and the initial conditions:
Ti(x, 1) = Fix} for 1=0, in x;<x<xyy, =12, .M {8-3)

where Ti{x, ) is the temperature of the layer i,i = 1,2,..., M. The problem contains
M partial differential equations, 2M boundary conditions and A initial condi-
tions, hence it is mathematically well posed,

In order Lo distinguishy the coeflicients associnted with the boundury conditions
for the outer surfaces from those k and / for the medium and interfaces, an
asterisk is used in the quantities h*, i}, ,, k¥, and k¥ appearing in the boundary
canditions for the outer surfaces. The reason for thls is that these quantities will
be treated as coeflicients, so that the boundary conditions of the first and second
kind will be abtainable for the outer boundary surlaces by setting the values of
these coeflicients properly.

8-2 TRANSFORMATION OF NONHOMOGENEOUS
BOUNDARY CONDITIONS INTC HOMOGENEQUS ONES

It is more convenient to solve the problems with homogeneous boundary
conditions than with nonhomogeneous boundary conditions. The problem of
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subject to the boundary conditions

_k’:‘dqt;l:x)+hf¢1(x)=hf at X=X, (8'5b}
- kiddji =M, b — i) . (R-5¢)
iy at the interfaces C
' X=X qs . :
kfii_@=k1+ld¢I+l J l=1,2,...,M—'1 (8-5d)
dx dx
k¥ dj”-l-hﬂ”lti)“—-o at X=Xar41 (B-5¢)

2, The [unctions ¥{x) are the solutions of the following steady-state problem
for the same region, with no heat generation, but with one non-homo-

geneous boundary condition at x =Xy 44

—d—(x"%)=0 in X <X <Xy, I=1,2,000,M (8-6a)
dx\ . dx . :

generation and nonhomogencous outer boundary conditions can be transformed
into a problem with heat generation but homogeneous boundary conditions by
a procedure similar to that described in Chapter 1, Section 1-7 for the single- Iayer
problem.

The problem delined by equations (8-1)~(8-3) has nonhomogeneous boundary
conditions at the outcr surfaces. In order to transform this time-dependent
problem into a one with homogeneous boundary conditions, we consider T;(x, 1}
constructed by the superposition of three simpler problems in the form

Tix, t) = 8,(x, 1} + i ’C)f1(f)+l.b () fag a4 1)

in <X <Xy, i=L2,..M, for t>0 (8-4)

Where the lunctions ¢,(x). w{x}, and &(x. 1) are the solutions of the following
subproblems:

1. The [unctions ¢;{x) are the solutions of the following steady-state problem
for the same region, with no heat generation, but with one non-homo-
geneous boundary condition at x = x. '

}(' M’) 0 in x;<x<Xyp P=02...,M  (85a)
dx '

dx

subject {0 (he houndary conditions - - Seemes

— kfdiﬁ—l- +h¥g, =0 at X=X (8-6b)
dx
d
\b! lr’:+1('£’| Yra1) . (8-6¢)
at the interfaces
d d x=x!+1:
iy, Wi i=12...M—1 64
dx dx .
d
Ar'-:}bbf-l‘h“ﬂ‘pﬂf hun at X=X+ (8-6¢)

3. The functions 0;(x, 1} are the solutions of the following time-dependent heat
conduction problem for the same region, with heat generation, but subject
to homogeneous boundary conditions

1 a( o8, 20,(x,1)
. ——— _'P..__I *_‘[ =__|__r..
“'_\-Pﬂ.\-(‘ ax)+g‘ bet)=—%

in X< X < Xip s i=1,é,...,M, for 1>0 (8-7a)

*
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where

o100 =200 - [qs @4yt "“’]

Subject to the boundary conditions

i) )
k}“a{ ! +hto, =0 al X=x, >0 (8-7b)
X
a0, )
—ki— =l (0,0, ) . (8-7¢)
dx at the interfaces
: X=Xiyy, i=H2, ..., M~-1
%—k agi+l J for t>0 (8-7d)
"ax AP
k* Wy h 0 : =x 0 8-7
M0x+ e O = at x=Xpe, 1> (8-Te)

and the initial conditions

Oilx, 1) = Filx) — [dlx) [1(0) + ilx) a2+ (0] = FF(x),

—dor =0, in x,<x<x._i=012,....M _ (87 ..

The validity of this superposition procedure can readily be verified by introducing
the equation (8-4) into the original problem given by equations (8-1)-(8-3) and
utilizing the above three subproblems defined by equations (8-5)-(8-7).

Example -1

A two-layer slab consists of the first layer in 0 € x < a and the second layer in
@ £ x £ b, which are in perflect thermal contact as illustrated in Fig. 8-2. Let k,

\-_/\_/‘\-__/\\_,‘,J\_
’ . T,
 Ty=file) T T k2 33:— +h3Tp= ha fa(”
o] x
a b
_/\/\_._,_,..\/\_J

Fig. 8-2 Two-layer slab with perfect thermal contact at the interfuce,
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and k;, be the thermal conductivities, and &, and a, the thermal diffusivities for
the first and second layer, respectively. Initially, the first region is at tempera-
ture | (x) and the second region at F,(x). For times t > 0 the boundary surface
at x = O is kept at temperature f, (1) and the boundary at x = b dissipaies heat
by convection, with a heat transfer coefficient i} into an ambient at tempera-
ture f5(t). By applying the splitting-up procedure described above, separate
this problem into (i) two steady-state problems each with ene nonhomo-
penvous  boundary  condition, aml (i1 one  timesdependent problem with
homogencous boundary conditions and the nitial condition. Figure 8-2 shows
the geonelry coordinates and the boundary conditions for the original problem.

Solution. The mathematical formulation of this problem is given as

62T, 38T, (x,0)

=t in O<x<a, >0 (8-8a)
ox o C
& - :
oy L _0Tx0 g a<x<b (>0 (3-8b) (;_
ax? a1 . (
subject to-the boundary conditions (
_ )
Tyix, 0 =f,0) al x=0, 1>0- {(8-8c) (:
Ti(x, 1) = Taix, ) al  x=a, (>0 {8-8d) C
aT, T, | ' O
S S ¢
aT, ¢
Moo tiT=hifs  at x=b (>0 (8-81) S
X .

and the initial conditions

Ty(x, t}= F,{x) for t=0, O<x<a (8-3g)
Talx, 1) = F,{x) for t={Q, a<x<b (8-8h)
To-translorm-this problem-weconstruct-thesolution-ol - Toe Oi=1 2 by the |

superposition of the following three simpler problems in the form

T;(x’f)=Ei(#vf)+¢i(x)f1(f)+‘l"i(x)f3([) in XX <Xpyy, i=1,2
(8-9)

where x, =0, x, =a and x; = b.

\(‘\/ﬂ_f‘\f"\_‘/’\(’\f‘tﬁﬁf'\r’\,ﬁm
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The functions ¢;(x), ¥;(x), and 8{x, 1), for i=1,2 are the solutions of the
following three simpler problems, respectively.

1. The functions ¢;(x),i=1,2 satisly the steady-state heat conduction
problem given as

, .

d r]),fx] =1} in N<cx<u {B-10t)
dx=

124,

‘--%}":0 in  a<x<b (8-10b)
dx

subject to the boundary conditions

h,(x)=1 at x=0 (8-10c)
¢ ifx) = dalx) . (8-10d)
at the interface
do, dg, x=a
k,—==k,— 3-10
e L { )
34 A9 + i, =0t x=h (8-100)
dx : :

2. The functions §;{x),i= 1,2 satisly the steady-state heat conduction
problem given as

2

0 o i o<x<a (8-11a)
dx?

2

X _o 5y a<x<b (8-11b)
dx?

subject to the boundary conditions

Yl =0 al x=0 (8-11c)
P (x)=1(x) ) (8-11d)
at the interface

) x=a

k, ol =k2d‘ll"2‘ (8-11e)
ix dx

"id—}b“”"’{lflz =hy at x=b (8-111)
dx
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3. The functions 8,(x, 1),i = 1,2 are the solutions of the following homo-
geneous problem

820, _ 90.(x.1)

a’Ex—z o + g¥x 0 in O<x<a, t>0 (B-12a)

70, 20,451}

o - gy N in a<x<h, >0 (8-12b)
Y, T a -

where, gf(x, ) = —[¢(x) dfy/dt -+ W) dfydili= 1,2
Subject to the boundary conditions

0,(x,0)=0 at x=0, t>0 (8-12¢)
0,(x, 1) = O5(x, ) _ (8-12d)
at theinterface
x=a, t>0
kla_sl‘= kzﬁz ’ (3‘126)
dx dx
k;'a‘;&+h§92=0 at  x=b (8-12f)
X

and the initial conditions

0,(x,1) = F ()~ J1{0)¢(x) — f3(O,(x) = Fi(x)
for t=0, in 0<x<a (8-12g)

8,(x, ) = F3(x) — f1{0)(x) — f[10W )= F )
for =0, in a<g<x<b (8-12h)

The validity of this superposition procedure can be verified by introducing
the transformation given by equation (8-9) into the original problem (8-8) and
utilizing the definition of the subproblems given by equations (8- 10)—(8-12).

Clearly, the time-dependent problem (8-12) has homogeneous boundary
conditions. :

Solving Steady-State Problem of M-Layer Slab, Cylinder, or Sphere

We consider a steady-state problem with no energy generation, one nonhomo-
geneous boundary condition of the type given by equation (8-5), but fora M-layer
slab, cylinder, or sphere. The mathematical formulation is given by -

i(x"£®)=0 in X; <X <Xy, i= 1,2,...,M (8'133)
dx dx
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T 0T,

subject to the boundary conditions Y ks ¥ vag i =0
r_/"'
k*(l¢'( )+ W x)=nm* at  x=x, {8-13b) T T
0 X
“?i'— (i — dis |‘l \ (8-13c) :
Tdx at theinterfaces o T2 N A P
Mo R TR |
X=X
L dify; k ,I,P“ \ J . P=1,2,....M—1 (8-13d) Fig. 8-3  M-layer composite region,
" dx Y dx )
spheres in contact as illustrated in Fig. 8-3. For generality we assume confact
f{'ﬁ“ b hE, =0 Trat x=Xyay (8il3ey —————fesistance-at-the-interfaces-and-convection-from-the-outer-boundarics-—bet-i;-be
Moax the arbitrary film coeflicient at the interfaces x = x,i=23,...,M, and I} and
where hY +, the heat transfer coelficients at the outer boundanes x=x;and x=xy,,,
‘ respectively. Each layer is homogeneous and isotropic and has thermal properties
0 slab (ie, p, C, k) that are constant within the layer and different from those of the
p=1{1 cylinder (8-13f) adjacent layers. Initially each layer is at a specified temperature T(x, ) = F,(x),
2 sphere inx;<x<x,,,i=12,..., M For times ¢ >0, heat is dissipated by convection

The selution of the ordinary differential cquation (8-13a), for any layer i is given
in the form

Stab: bdx) = A; + Bix (8-14a)

Cylinder: Pdx)=A;+ Bilnx (8-14b)

Sphere: i) = A+ B {8-14c)
x

The solution involves two unknown coefficients A; and B, for each layer i; then,
for a M-layer problem, 2M unknown coeflicients are to be determined. Substi-
tuting the solution given by equations (8-14) into the boundary conditions
(8-13b,c,d.e), one oblains 2M equations for the determination of the 2M unknown
coefficients A;, B;fori=1,2,..., M.

The solution of the homogeneous transient heat conduction problems of the
lype given by equations (8-12), but for the M-layer medium, is described in the
next seclion.

3-3 ORTHOGONAL EXPANSION TECHNIQUE FOR SOLVING
M-LAYER HOMOGENEOQUS PROBLEMS

We now consider the solution of the homogeneous problem of heat conduction-

in a composite medium consisting of M parallel layers of slabs, cylinder, or

{rom the two outer boundaries into environments at zero lemperature. There is
no heat generation in the medium. We are inlerested in the determination of the
temperature distribution Tix, ), in the layers i = [,2,..., M, for times ¢ > (0, The

mathematical formulation of this heat-conduction problem s given by... . - oo e 5

in X <X <Xigq,

1 ( LT _8T(x,0)
3(-'-- —_— .’( = ————— -
P ax\" ax o
for >0 i=12...M (8-15)
where
0 slab
p=< 1 cylinder
2 sphere

subject to the boundary conditions

PN N TN N N NN N

faa

érT -
—k} -h-\_—l +htT, = at the outer boundary x=x,, for >0 (8-16a)
aT;
_k‘a__ b 0T —Tiig) | at the interfaces x = x;, |,
i=1,2,...,.M—1 .(8-16b)
T cT;
. G—-L—— ki a'“--- - b= for- -t Q- {8-+6¢e}
ax X
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aT,
k5 :—Af +h¥ . Ta=0 al the outer boundary x=Xx,.,, for >0
&x :
(8-16d)
and the initial conditions
Taan- MY for 0o 00 in xeIx<xgg. i LM @R

The Finite value of interface conductance h;, . in equations (8-16b) implies

thatt the temperature is discontinuous at the interfaces. The boundary conditions
(8- 1 6¢c) represents the continuity of heat flux at the interfaces.

When the interface conductance h;,  — co. the boundary condition (8-16b)
reduces to '

T.=T., al x=xXp, i=12..,M=1 for (>0 (8-18)

which implies the continuity of temperature or perfect thermal contact at the

interfaces.
To solve the above heat conduction problem, the variables are separated in

the form

Tilx.1) = i{)T() (8-192)

When equation {8-19a) is introduced into (8-15) we obtain

] LA i(xr’%‘) L1 C Py (8-19b)
xPafx) dx dx

where 1 is the separation constant. We recall that, in separating the variables for
the case of a single-layer problem, the thermal diflusivity « was retained on the
side of the equation where the time-dependent function [(r) was collected. In the
case of composite medium, %; is retained on the left-hand side of equation (8-19b)
where the space dependent function if;(x) are collected. The reason for this is to
keep the solution of the time dependent function I'(f) independent of «; since it is
discontinuous at the interfaces. .

The separation given by equations (8-19b) results in the following ordinary
differential equations for the determination of the functions I'{f)y and r{ff. x):

de(r}l

’ + ﬂf,l"(r)=0 for (>0 (8-20)
a

3 2
"!(.\-ﬂ‘{gf"')+ﬂ"1p,.,,=o i o <X <Xiep. i=L2.M (821

RLPTAY dx o;

where if;, = W8, x). The subscript n is included to imply that there are an infinite
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number of discrete values of the eigenvalues §, < B, < < f,<--and the cor-
responding eigenfunctions ¥;,.

The boundary conditions for equations (8-21) are obtained by introducing
equation (8-19a) into the boundary conditions (8-16); we find

._kf'h':"" 0y, =0 af the outer boundary x=x, . ' (R-22n)
Codx
df; ‘ '
Wi — (8-22h)
& dx his s Win = e l‘")l at theinterfaces x = x4 .
where ) ,
k:d—:‘,it—l"s"kit—ld—*_l!-’:i”'" ‘ i=12....M-1 (8-22¢)-
dx X
k¥, d—"—t;i‘" + i =0 at the outher boundary X = Xy 41 (8-22d)
dx .

Equations (8-21) subject to the boundary tonditions (8-22) constitute an eigen-
value problem for the determination of the eigenvalues fi, and the corresponding

eigenfunction s, ) .
The eigenfunctions i, of the eigenvalue problem defined by equations (8-21)

and (8-22) satisfy the following orthogonality relation [13]

lor n#Er

E 5 g =1 (8-232)
- P ( Xydx = -
Pyl 258 J S N, for n=r
where the norm N, is defined as
M k Xi+ 1
N,=Y - J xPip (x)dx (8-23b)
J=1% Jx;

and y;,, ;. are the two dillerent eigenfunctions.
The solution for the time-variable function T'(¢) is immediately obtained from

equation (8-20) as )
()= e~ M : {8-24)

and the general solution for the temperature distribution Tj(x.1), in any region I,
is constructed as

Tix.0) = i ce ), i=12..M ' (8-25)
n=1

where the summation is over afl eigenvalues f,. This solution satisfies the
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dilferential equations (8-15} and the boundary conditions {8-16). We now constrain
this solution to satisfy the initial conditions (8-17), and obtain

o

Fix)= 3, cialx) in

n=]

X <X <Xpyy, i=12,...,M  (8-26)

The coeflicients ¢, can be determined by utilizing the above orthogonality relation
us now deseribed,
We operite on both sides of equation (8-20) by the operator

ul f " () dx

iJx

and sum up the resulting expressions [rem i=1{ to M (i.e, over all regions) to
obtain '

A ki Xi+q o M k ETEY]
2 oy XX} Fi(x)dx =} cn[fz ;’ f X"w.-.(x)aban(x)dXJ {8-27)

i=1 % Jy n=1 =1 Jx;

In view of the orthogonality relation (8-23), the term inside the bracket on the
right-hand side of equation (8-27) vanishes for n # r and becomes equalto N for
t=r. Then the cocllicients ¢, are determined as

EYRR]

1Mk )
- xP{x)E (x) dx

= -
N"jzl &

(8-28)

Xi

Before introducing this result into equation (8-25), we change the summation index
from i to j, and the dummy integration variable from x to ¥’ in equation (8-28)
to avoid confusion with the index i and the space variable x in equation (8-25).
Then, the solution for the temperature distribution Tj(x, ¢) in any regiont i of the
composite medium is determined as

£ | M L [Xisa
T}(X,”=-‘ z e_a""""lj’a’n(x) Z 4 X'Fl,l'l_,-,,(x')Fj(.\") dx'
ne=1l Nn i=1 ¢ x' =X
in x;<x<x,,, i=12_.... M (8-29a)
where the-norm N_ is defined as
- . M . Xy .
No= ) -2 J S HESPEY (8-29b}
FES RTINS
and
0 slab
p=+¢1 cylinder {8-29¢c)
2 sphere
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An examination of this solution reveals that, for M = 1, equations (8-29) reduce
to the solution for the single-region problem considered in the previous chapters
il we set 82 = ay2 where o is the thermal diffusivity. :

‘Green’s Function fof Composite Medium

The solution given by equation (8-29) can be recast to define the composite
medium CGreen's lunction. That is, the solution (8-29a} s rearranged s

M Xy ’\ - 2 1
qu'(-\-a ” = Z _J[ Z e_‘u"t ""lpin(x)ll’jn(er:Imej(x')dx'
i=1 .:'=.I:Jaj n=1l Nn
i oxy<x<x,,, I=L2,... M

(8-30)

This resuit is now written more compactly; by intreducing the Green's fURCON - - - - weree oov

notation as

LIES]

M .
Ti(x, )=} XPG (X, 11X, )], 2 oF j(x) dx” (8-31a)
. i=1

x'=x,

where x'? is the Sturm-Liouville weight function and Gijlx,t}x", 1)|,~¢ is defined
HE;

“‘ o bk, g
Gij(xillx’v t)]t=0 = Z ehﬂ"'_ J'j’in(-x}wjn(x’) (8'31b)
n= N" aj
0 slab
p=4{ 1 cylinder (8-31¢)
2 sphere

in the region x; <x<x;,,,i=1,2,...,M. Thus Giplx, t|x', 7)), o represents the
Green's function evaluated for = =0 associated with the solution of one-
dimensional homogeneous composite medium problem defined by cquations
{8-15)—(B-17}.

To solve the nonhomogeneous composite medium problem, such as the one
with energy generation, the Green's function Gii(x, t]x", ) is needed. It is obtained

from equation (8-31b} by replacing t by (¢ — 1). Thus the Green’s function for the

probicm becomes

Gylrtlx, )= 3 eh"*""Ni W) (8-32)
J

n=1 n &

in the region x, < ¥ < x;, ,i=1,2...., M.
The use of Green's function in the solution of nonhomogeneous one-dimen-
sional composite medium problems will be demonstrated later in this chapter.
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8-4 DETERMINATION OF EIGENFUNCTIONS
AND EIGENYALUES ’

The general solution ¥,,(x) of the eigenvalue problem given by equations (8-21)
and (8-22) can be written in the form

li"in('\-) = “II-II(!JI-H(‘\-) + Bin“irl(-\') ]I] ’ NS X< X i= 1.. 2.0 M (8"33)

where ¢, (x) and 0,,(x) are the two linearly independent solutions of equations
(8-21)and A,,, B;, are the coellicients. Table 8-1 lists the functions $;,(x) and 0;,(x)
for slabs. cylinders. and spheres. The heat conduction problem of an M-layer
compasite medium. in general, involves M solutions in the form piven by equation
{8-33); hence. there are 2M arbitrary coellicients, A;, and B,.i=1,2..... M to be
determined. The boundary conditions (8-22) provide a system of 2M, linear.
homogeneous equations for the determination of these 2Af coellicients: but,
because the resulting system of equations is homogeneous, the coefficients can
be determined only in terms of any one of them (ic., the nonvanishing one) or
within a multiple of an arbitrary constant. This arbitrariness does not cause any
difficulty, because the arbitrary constant will appear both in the numerator and
denominator of equation (8-29) or equation (8-31)% hence it will cancel out.
Therefore, in the process of determining the coellicients A, and B;, from the
system of 2A7 homogencous equalions, any one of the nonvanishing coelficients,
sy, A, can be sek equal to unity without Joss ol generality.

Finally. an additional relationship is needed for the determination of the
eipenvalues f,. This additional relationship is obtained from the requirement
that the above system of 2 M homogeneous equations has a nontrivial solution,
that is. the determinant of the coefficients A,, and B;, vanishes. This condition
leads to a rranscendental equation for the determination of the eigenvalues

Bi<fa<fy< << (8-34)

TABLE 8-1 Linearly Indeperident Solutions ¢;,(x) and 8;,(x)
of Equation (8-21} for Slabs, Cylinders, and Spheres

Ceometry nlX) th,1x)
: :
Slab sin( I," .\') cns( ﬂ" .\')
N N
Cylinder Jo(-ﬁ”;.\') YD(_-!-;E; x)
A N

1 i 1
Sphere ) - sin ( I:—_\) - €os ( ﬂ:"“ .\')
X N X N2
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Clearly, for each of these eigenvalues there are the corresponding set of values
of 4,, and B,,, hence of the eigenfunctions ¥ 1.{x). Once the eigenfunctions ;,{x)
and the eigenvalues 8, are determined by the procedure outlined above, the
temperature distribution Ty(x,?) in any region i of the composite medium is
determined by equations (8-29).

Example 8-2

Consider transient heat conduction in a three-layer composite medium with
perfect thermal contact at the interfaces and convection at the outer boundary
surfaces. Give the eigenvalue problem and develop the equations for the
determination of the coefficients A, B;, of equation (8-33) and the eigenvalues

Bi<Br<By< <P <o
Solution. The eigenvalue problem for this transient heat conduction is simifar
to that given by equations (8-21} and (8-22), except M = 3, and the interface

conductances are taken as infinite: h,— 0o, h;— co. Then, the eigenvalue
problem becomes

2 ' .
«Li(x”d—%)-l-ﬁ—" w;,,,:O in x'<x<x;+1, i= 1,2,3 (8'35)
xP dx dx o

Subject to the boundary conditions,

d
— k¥ :;’1" +hp,,=0  attheouterboundaryx=x,  (8-36a)
x
Win = Vit 1n at theinterfaces x = x4, (8-36b)
AWis 1
kidy'li"=ki+l I!’|+.l.n= i= 1’2 (8«-36(:)
dx dx
*dlf’an * _ .
k3 “dx +hiYa.=0 at the outer boundaryx =x,  (8-36d)

where the eigenfunctions yr;,{x) are given by

Wialx) = Aial) + Bfulx), =123 (8-37)

and ¢;,(x) and 8,,(x) are as specilied in Table 8-1.
The first step in the analysis is the determination of the six coefficients
A B withi= L, 2. 3. Without loss of generality, we set one of the nonvanishing

i in
coefficients, say. A, equal to unity:

[F1]

A,=1 (8-38)
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The eigenlunctions i,,(x) given by equation (8-37) with A,,, = | are introduced
into the boundary conditions (8-36). The resulting system of equations is
expressed in the matrix form as :

X, ¥ 0 0 0 0 1 0

¢ln gln _d)In —Bln 0 0 Bln 0

ki, ka0, —kidy, —kath, O 0 A | O

0 0 ¢2n olrr - ¢3n —-93" Bln 0

. 0 Y k2¢;n kZB,Zn _quST!n —'k:!g']n A3ﬂ 0

0 0 0 0 X, v, || B8] (0]
(8-39)
where

X, = — kg, + i, Y, = — k¥, + h*8,, (8-40)
Xy =K, + hig,, Yy = k30, + R0, (8-41)

and the primes denote diflerentiation with respect to x. Only live of these
equations can be used 1o determine the coefficients. We choose the first five
of them; the resulting system of equations for the determination of these five
coeflicients is given in the matrix form as ‘

Y, o . 0 0 0 B, -X,

bin  —d2a ~0z, 0 0 Azn —¢1n

8y, —kady —kah, 0 -0 Ba |=| —hid)a | (8-42)
0 $2n 024 ~3n -8, Aszp 0
0 ks, k,0,, “kadly, k305, | Ba, 0

Thus, the solution of equations (8-42) gives the five coeflicients B,,, 4,,, B,,,
As,, and B,,. The transcendental equation for the determination of the eigen-
values f, < f, < --- < f, < -+, is obtained from the requirement that the deter-
minant of the coefficients in the system of equations (8-39) should vanish. This
condition leads to the following transcendental equation for the detefmination
of the cigenvalues, i, <fl, < fly<--<f, <.

X, Yt 0 0 0 0
O B P —0, 0 0
ki, kib, —kodh, —kiby, O O 1.0 (343
0 0 P2n 02n —¢3  —0,
0 0 kydow  kath,  —kadh, —ka8,
0 0 0 0 X, Y,
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8-5 APPLICATIONS OF ORTHOGONAL
EXPANSION TECHNIQUE

In this section we iilustrate the application of the orthogonal expansion technique
described previously for the solution of transient homogeneous heat conduction
problems of a two-layer cylinder and a two-layer slab.

Example 8-3

A two-layer solid cylinder as illustrated in Fig. 8-4 contains an ininer region
0<r<aandan outer region ¢ < r < b that are in perfect thermal contact; &,
and k; are the thermal conductivities, and «, and «, are the thermal diffusivities
of the inner and outer regions, respectively. Initially, the inner region is at
temperature 0,(r,f) = F,(+) and the outer region at temperature &,(r,t) =
F(r). For times ¢ > 0, heat is dissipated by convection from the outer surface
at r = & into an environment at zero temperature. Develop an expression for
the temperature distribution in the cylinders for times ¢ > 0.

Solution. The mathematical formulation of the problem is given by

It

ol ?(,.?El B bgr<a 50 geddn)
rode\ Or bl

1l

ﬁi(ri‘i’z) Bt cr<h >0 (8-4db)
r ér\ or ot :

.3y
ky 5F +h30p =0

Fig. 8-d Two-layer cylinder with perlect thermal contact at the interface.
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Subject to the boundary conditions
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8,(r, 1} = finite at r=0, (>0 {8-d44c)

Bir. ) =0,(r.1) at r=a, >0 (8-d44d)
o) 0, :

kL k.":" at oo 10 {R-4dc)
r or
80,

’4‘ +h"‘01 =0 at r=h, >0 (8-44f}

and to the initial conditions
B,(r,0)=F,(n for t=0, O<r<a (8-44g)

Bo(r, 1) = F,(r) for t=0, a<r<b (8-44h)

The corresponding eigenvalue probfem is taken as

d
_ ( l.bln)+ I,I'I“,(I]— in 0-.<.J'<ﬂ (3-453)
rdr\ dr

dwln . H
----- 0N =0 in  a<r<b (8-45b)
rdr az

d:

Subject Lo the boundary conditions

¥ ,(r) = finite at  r=0 . (8-45¢)
(1) = (1) . at  r=a (8-45d)
- dwln dlj’z
| e LY kL - :

e 274, at r=a (8-45¢e)

Iy
kflgj—f" + hig,, =10 at r=b (8-450)

r

The general solution of the above eigenvalue problem 8-45, according to Table
8-1,is taken as :

Vi = Ao ( \l}_ )+B,,,YD( f/}_ ) i=1.2 {8-46)
&; &
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The boundary condition (8-45¢) requires that By, = 0. Then the solutions ,.(r)
for the two regions become

8 : |
il =J( = ) 0<rs 8-47
¥ ")‘ o \/E;r in rsa (8 a)

ll’ Bnn') = "'ln‘jtl( l;“ ) 4 BZJ: Yﬂ( ) iﬂ . T h (8‘471‘)
Je \/0'52 . .

where we have chosen A,, = | for the reason stated prcwously The require-
ment that the solutions {8-47) should satisfy the remaining three boundary
conditions (8-45d.e,§) leads, respectively, to the following equations for the
determination of these coellicients

-———ﬂ A, J ( Bna ) B, Y ( b.a ) 8-48
Jo( ,—1]) 2t 0 ,—-az + B, 1o \/o_c; ( a)
kl “2 ﬁna _' ( ﬁn ) ( ﬁna )
=, LY, 8-48b
ks J (,/rx,) A Jou 8 N ( )

["*"" (ﬂf)“”(f)]

h"/_[/i J(‘”) B Y( )] 0 8-48
+ Kep 20/ 0 \/, + By, Yo \/az ( c)

These equations are now written in the matrix form as

. T or
Jol¥) —Jo(gﬂ‘)' - Yn(gﬂ) 1 0

KJ,(0) —Jn(gn) —Y,(En) Ay i=| 0] (8-49)

H H :
0 —,;JQ(P]) - J](n} T" YO(’I) - Yl (’” Blll 0

where we defined

: bf, bh¥ :
)-s”,ﬁ_ =2t H=232 K—’-‘l\/- (8-50)
NN/ ky ks

Any two of these equations can be used to determine the coefficients A,, and
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B;,. We choose the first two and write the resulting equations as

. )
JO(E") Yo(%'?) Az, Joly)
(8-51)

a a B
J1(5'i’) Y:(B'I) B KJ,(7)
Then, 4,, and B,, are oblzined as

1
AZH=K[JD(?)Y.(§n) - Km)ro(gq)] (8-52a)

i
Bay= E[KJ.(;')Jo(gr:) — JolMy ( guﬂ (8-52b)

A“-”o(gﬁ)n(g’!)_]l(g'l) Yo(gu) (8-52¢c)

Finally, the cquation for the determination of the cigenvalues is oblained from
the requirement that in equation (8-49} the determinant of the cocllicients
should vanish, Then, the 3, values are the roots of the following transcendental

equation
a a
Jol¥) _Jo(aﬂ) B Yo(};’!)

KJ:(p) —J£(grl) —l’l(gu) =) (853

H H
0 ’—’Jo(’” —Jm ; Yol = Yi{y)

where

"Having established the relations for the determination of the coefficients
A, By, and the eigenvalues §,, the eigenlunctions ¥, (r) and v, {r) are ob-
taingd according to equations (§-47). Then, the solution Tor the femperiture
Or,0), i= 1,2 in uny of the regions is given by equations (8-29) as

- U | 2 d
Oir,y= 3, ﬁe_“""ﬁfn(r)[gij‘ rY ) ) dr

n=1 It}

k b
+ —ZI ') F o) d"'jl. i=1L2 (8-54a)
3 Ja
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where

kl i 2 P + kl " ) B

No===1 i () dr ==y g3 (') dr {8-54b)
X1 Je X2 Jy
_ B e
Yalr=Jy i (8-54c)
W X
i B,
[pln(r} = AZHJD( = l') + Blnyﬂ(_' l") (8"54(”
\-'/;(; \;/E;

This result is now written more compactly in terms of the Green's function as

Bir,1) = J‘ FGalr b Ol = oF () dr

0

b
+J G, O = o FalrYdr, i=1,2 {8-55a)

a

where Gyl tlr, o,y is defined us

Gife, 1, Do = 3 e Sy ) (5-55b)

n=1 n Sy

Example 8-4

A two-layer slab consists of the first layer in 0 € x < a and the second layer
in @ € x < b, which are in perfect thermal contact as illustrated in kg, 8-5. Let
k, and k, be the thermal conductivities, and «, and «, the thermal diffusivities
for the first and second layers. respectively. Initially, the first region is at
temperature F,(x) and the second region at Fo(x). For limes ¢ > 0 the boundary
surface at x = 0 is kept at zero temperature and the boundary surluce al x = b
dissipates heat by convection into a medium at zero temperature. Obtain an
expression for the temperature distribution in the slab for times ¢ > 0.

Solwtion, The mathematical formulation of this problen is piven as

T, aTy(x,1)

o, 3 o D<x<a, >0 {B-56a}
8T, 8T,(xt i

xy ——--23 S in  a<x<b >0 [8-56b)
ox at

R N N N e N W e e S T T e T T T N R N

B 1l

L .
W !

[
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aT2 *
Ty T, k2 — +h3Ty=0

dx
Fx) Falx) /

a b

o
-

Fig-8-5—Twae-layerslabawith-perfect thermal.contact.at the interface,

APPLICATIONS OF ORTHOGONAL EXPANSION TECHNIQUE kilp)

b (8-57f)

k;ffdi:f-}-llng,,:() at x

The general solution of the above eigenvalue problem, according to Table 8-1,
is taken as

Wlx)= A,,,sin( P ) + B,,,Lm( ) i=12 {#-58)
Ve v ;

The boundary condition (8-57c) requires that B,, = 0. Then, the solutlons |,b,,,

subject to the boundary conditions

T (x,0)=0 at x=0, >0

Tyx, 0= Talx, 1) at x=a, >0

- 61_‘;25'1‘2 at x=a, t>0
dx ax ) )

aT.
KP4 T, =0 at x=h, (>0
2 D‘C 3 }

and the initial conditions
T(x, 0y =F,(x) for t=0, O<x<a
Ty(x,N=F,(x). [for t=0, a<x<b

The correspending cigenvalue problem is taken as

2 2
s, ﬂ"‘l’1n(x)=0 in O<x<a
dx?

2 32
a l'h,z"' i '!l (¥} =0 in q<x<h
ax”

subject to the boundary conditions

llblll(x)=0 at x=0

ljllu(x) = !!IZH(X) at x=a

k!d!pla=k2dlnb2n at x=da
dx dx

(8T56c}

(8-56d)

(8-56¢)
(8-56f)
(8-56g)
(8-56h)

(8-57a)

(8-57b}

(8-57¢)

(8-57d)

{8-57¢)

forthe two regions are reduced to T T e

u,tr,,,(x)—sm(ji_) in  O<x<a (8-59a)

oy

wz,,(x)=A2,,sin(-£"——x)+Bz,,cos( B, x) in a<x<b (8-59b)

SN

where we have chosen A,, = | for the reason stated previously. The require-
ment that the solutions (8-59) should satisfy the remaining boundary condi-
tions (8-57d, e, [} yields the following equations for the determination of these

cocflicients.
. ﬁna)=A H (I" )+B (I" ) 8-60
sm( . 20 5I01 o 20 COS . { a)
kl sz ﬁna . ﬁ"ﬂ _ - pna
PR \/* "“( ral) = °°S(. /—az) B s"‘(\/a:) (8-606)

[ ) ol 7))

+“_§;§/ﬂ‘:_2 [Az,.Sin( ja_) + B, cos( 5:’_)] =0 (360

These equations are now writlen in the matrix [rom as

siny —sin(grf) —cos(gn) Fl i 0
b b

Kcosy —cos(gq) sin(gq) Ay, 1=10 | (8-6ia)

H H .
0 . —sinp+4cosy —cosp—sing ||B;, 0
L. n Ui JL 1 L ._J
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where we delined

an bﬁn bh k
\/_ f H= k: K= k,\/a; {8-61b)

We choose the first two of these equations to determine the coefficients A4,
and B,,; these two equations are written as

. o L .
sin I;q - cos Br; A Aza siny

COS(EU —sin - B Kcosy
b b Zn !

Then, A,, and B,, are determined as

A ! l sin Sil'l( K §-6
e oy —_ -4 -

2 T b 7 COSyCOs b n ( 33)
B, = ! K cosysin] —4 | —sinycos 8-63b

=]
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are known and the temperature distribution T,-(.\',fjJ = 1,2 in any one of the
two regions is determined according to equation (8-29) as

T(\ [)"‘ i T\TL’ ﬂ"‘pm( )[“"[ [I’lr;(\ ]Fl(\ }d\

r=14V, x'=0
+'-"2- J w_,,(\}Fz(\)d\] =1,2 {8-65a)
‘IZ a .
where
k
N,= J tp,,,(\)d\ + - j 2 (x)dx (8-65b)
ch| %Ay
X} = sin(—gﬂ-_-; .\') {8-65¢)
S
Ba B, _
¥r.{%) = A, sin - X + B, cos{ -—=xX (8-65d)
~ 12 \/&Z

This result can be written more compactly in terms of the Green’s function as

where

A= — sin"(g q) - cOSZ(gq) =1 (8-63¢)

Finally, the equation for the determination of the eigenvalues g, is ubtained
from the requirement that in equation (8-61a) the determinant of the coefficienis
should vanish. This condition yields the following transcendental equation for
the determination of the eigenvalues §,

sin . ——sin(a:) cos a?)
) b | b 1
. d . fa
Kcosy —cos( q) sm( r]) =0 (8-64)
b b

H . H .
0 —sing +cosy —cCosy—sinyg
n K

The formal solution of this problem is now complete. That is, the coefficients
A,, and B,, are given by equations (8-63), the eigenvalues f§, by equation
(8-64). Then, the eigenfunctions y,,(x) and ,,(x} defined by equations (8-55)

Ti{x, t)= J‘" Gl ] 1) o o Fy () el

]

b
+I G0, 1] X, 1), o o F o)X, i=1,2 (8-66a)

i

where G(x, t]x". 7)], -, the Green's function evaluated at £ =0, is given by

Gu(\ 'I\ T)lt 0™ Z e_”" }\}—__ ll’lﬂ(\)lpjn(\) ' (8'66b)

n=1 ,,g_,

where N,. (), = 1,2 are defined by equations (8-65b,¢. d).

8-6 GREEN'S FUNCTION APPROACH FOR SOLYING
NONHOMOGENEQUS PROBLEMS

The use of Green's function is a very convenient approach for solving non-
homogeneous problems of transient heat conduction in a composite medium, if
the general expression relating the solution for the temperature Ti(x, () to the
Green’s function is known and the appropriate Green's [unction is available. The
general procedure is similar to that described for the case of a single-region
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medium, except the functional forms of the general solution and the Green’s
function are diflferent.

Tn the following analysis, we assume that the nonhomogeneity associated with
the boundary conditions is removed by a splitling up procedure described
previously; hence the energy generation term is the only nonhomogeneity in the
problem. .

We consider the [ollowing transient heal conduction problem for a M-layer
composite medium with energy generation, homogencous boundary conditions
at the outer surfaces and contact conductance at the interfates

1 é oty ey dT{x, ¢t .
di;a(.\'pa')'}'agi(x,f)"—_ a(! ) mn X <X <Xipg, t>0,

i=1.2,....M {8-67a)

where
0 slab
p= ¢ 1 cylinder (8-67b)
2 sphere
Subject to the boundary conditions
it aT, ”
—kise 4 h¥T =0 at the outer boundary x = x,, (>0 (8-67c)
aT; ,
—k *;-"“—“h.-H{T.-—T.-H] (8-67d)
ox at the interfaces x — x,, |, ' )
i=L2,....M—~1ior t>0 (8-67e)
oT; Ty '
kiw =k == '
ex Ax -
k3, ~1—“-5 + k¥, Ty=0 atthe outer boundary x =xy,,, (>0 (8-67f)
oxX
and the initial conditions
Tix, 1y = Fi(x) for r=0, in y<x<x,, =12, M (8-67g)

Appropriate eigenvalue problem for the solution of the above heat conduction
problem is taken as

1od dltbirl ﬁf : . H
x_ﬂﬂ(ﬂ}?%’?l’&‘"mzo in X <x<x;y,, i=1,2...,M {8-68a)

t
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Subject to the boundary conditions

— k* d':J +h¥y,,=0 atthe outer boundary, x=x, {8-68D)

X
- kl ‘h!”" - hf | I(llbhl l”l 1 l,u) A . . lK-()RL‘,
ix at theinterfaces .
. - X =Xjs 4. ) .
k'%q=ki+ld|!’l'+l.n ' l=l,2,...,M“—l (8-68d)
T dx dx
Ky s +h¥ W =0 atthe outer boundary, X=Xy, (8-68¢)
ax ’

The solution of this multilayer transient heat conduction problem in terms of the
composite medium Green’s function Gy(x, t|x', ) can be obtained by proper
rearrangement ol the general sofution given by Yener and Ozisik [25] and Ozisik
[8]. We write the resulting expression in the form

M Xyl ,
T,-[X,[)= z {f x"’|GU(x,t|x'.1‘)],=on(x')dx

=1

xj .
1 ‘J'*] ‘aj . ® ‘-
+J‘ ([TJ < XPGlx X, D) T gylxT) dx
=0 Xy kj
in ox<x <Xy, i=1L2,..,M (8-69a)

where the composite medium Green's function Gy(x, (| ¥, 1) is defined as

= 2 1 k ,
Gyl tx, i)=Y e~y (g, () (8-69b)
n=1 " aj
and
0. slab
p=<1 cylinder (8-69¢)
2 sphere
The norm N, is given by
M k Cfxptd '
No=2 —‘j X (x)dx’ (8-69d)
j=1 aj x,

where ;,(x) and i, (x) are the eigenfunctions, the f, values are the eigenvalues
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of the eigenvalue problem (8-68), G (x|, 1)|,., is the composite medium
Green’s function evaluated at v=0, and G(x,t|x',7) is the composite medium
Green's function.

The function G{x, 1] x', 7). ¢ i5 obtainable by rearranging the solution given
by equations (8-29), of the homogeneous problem delined by equations (8-15)-
(8-17), in the form

. M xjtl z. . I ’\
e =Y .\'"'[ Y e ’lj/,-,,(.\']l,l/,-;,(.\")]l-'j{.\")d.\" 8-T70w)
j=1d,

n=1 n®j

Xy ,

where x'7 is the Sturm-Liouville weight function with p=0,1 and 2 for slab,
cylinder, and sphere, respectively. Then, .the function inside the bracket in
equation (8-70a) is Gy(x, t]x', 1), o, that is

Gy, 1%, 1) ag = 2 @™ M - Tl (x) (8-70b)
n=1 Nya;

and the Green’s {unction is obtained by replacing ¢ by (t - t} in this expression:

. - . !k
G;j(.\', { [x', T} = Z e—ﬂ"" AL ""J IP,-,,(.V)(]IJ-,,(.\") (8'700)
n=1 N &y

We now illustrate the use of Green's function approuch for developing solu-
tions for the nonhomogeneous transient heat conduction problems of composite
medium with specilic examples. In order to alleviate the details of developing
solutions for the corresponding homogeneous problems, we have chosen the
examples from those considered in the previous sections for which solutions are
already available for 1the homogeneous part. :

Example 8-5

A two-layer solid cylinder contains an inner region 0 < r<a and an outer
region a < r < b that are in perfect thermal contact. Initially, the inner and
outer regions are at temperatures F,(r) and F,(r), respectively. For times ¢ >0,
heat is generated in the inner and outer regions at rates g,{(r,t) and g,(r. 1)
W/m?, respectively, while the heat is dissipated by convection from the outer
boundary surface at r=b into a medium at zero temperature. Obtain an
expression for the tlemperature distribution in the cylinder for times ¢ > 0.

Sodutiog, The mathematical formulation of this problem is given as

paf AT\ e T ~
al;a(ra—rl)+ﬁgl(r,r)=——é[— 1q O<r<a, t>0 (8-71a)

la(‘35)+~°ﬁg,(r,f)=—”2(r’” in a<r<b, (>0 (871b)

%\ Tk, at

subject to the boundary conditions

T, 0)=Talr. 1} at r=a, >0 (8-71c)

g Ty, T at  r=a. (>0 (8-71d)
M T oar
N

k;“;rz +hyr, =0 al r=h 1>0 (8-7l¢)
or .

and the initial conditions
T r0)=F{r) for t=0 in O0gr<u (8710
Talr, 1) = F,(r) for. t=0 in a<r<b (8-71g}

The solution of this problem is written in terms of the Green's function,
according to the general solution given by equations (8-69), in the form

[ b
ﬂwﬂ=meﬂmwmlﬂmeW+I FLGoa 11, 0] o Falr)dr’
r'=0 r=e
+ tlT[J Gl g odr
=0 F=0
b
+j FGlrtr, r}gz(r',z]dr':], i=12 (8-72a)

where the Green's lunction G{r, t]r', ) is obtainable [rom the solution of the

N f“\ ~, /-\ ~

R

1

LA

%

homogeneous version of the problem. The homogeneous version_al_this
problem is already considered in Example 8-3; heuce the G{r,t|#, 1) ,aq 18
obtainable from equation (8-55b) and G{r.r|+’, 1) is obtained by replacing in
the expression, G{r, 1|+, 7)], - q. ¢ by (t — 7). Thus the Green's functions become

! Y
G!'j(rv flf". t) = Z ¢ ﬁ.".ll - ! V'/m['.')'ffjn("'] (8-721-)]
w=l Nn o
‘L 5 1k :
Gl (e, o - .,2'| ¢ M N, 1; 'l"n::("]|f’,..(f") (8-T2c)

where the norm N, is obtained from equation (8-534b) as

k] a ] ' ' kl i LI A ’
Nn == “!’L.(f')f[" +;" r tlbm(r)(h. (8-72d)

%1 Jo 2Ja

MaIeIaTatatatatala e taVal ool Nale)
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The eigenlunctions ¢, (r) and yr,,(r) are obtained from equations (8-54¢) and
{8-54d), respectively:

b ialr) = Jn(‘ﬁ,;-': ) (8-72¢)
Vv _“1
w:,.(r) = Az,lJn( “I""(y'_' J') + BZ;; YD( “”ﬂ r) (8'72[)
%y - /2,
NP2 N 4z

The coeflicients 4,, and B,, are given by equations (8-52a) and (8-52b),
respectively. The eigenvalues B, are the roots of the transcendental equation
{8-53).

Example 8-6

In a two-layer slab, the first (0 < x < a) and the second (a < x < b) layers are
in perfect thermal contact. Initially. the first layer is at lemperature F (x) and
the second layer is at temperature F,(x). For times ¢ > 0, the boundary at x = 0
is kept at zero temperature, the boundary at x = b dissipates heat by convection
into a medium at zero temperature, while heat is generated in the first layer
at a rale ol g, {x, 1} W/m?. Obtain an expression lor the temperature distribution
in the mediun for times 1 > (.

Solution. The mathematical formulation of this problem is given as

4 IT(x, 1}
%y 57y + - g = RALL

in b<x<a, t>0 8-73a
otk at x=a ( )

&T, _aTy(x.1)

; in a<x<bh >0 (8-73b}
ax* ot

%2

Subject to the boundary conditions

Tx.n=0 at x=0, >0 (8-73c)

Tilv, 1) = Thx, 1) al x=aqa, >0 (8-73d)
oT a

ky -t =k, T cat x=a, t>0 (8-73¢)
EAN ox
aT.

k¥ ?-?wq'rg:o at x=b, (>0 (8-730)

X
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and the initial conditions
T, (x,8) = F{x) for =0, 'in O<x<a (8-73g)
Ty{x.t) = F;(x) for t=0, in a<x<bh (8-73h)
This heat conduction problem is a special case of the general problem given

by equations (8-67). Therefore, ils solution is immediately obtainable in u:fms
of the Green's functions from the general solution (8-69} as )

a ] 7
Tix.N= J [Giylx 1], )], o oF o ()" + J [Gaalx, 1] )], = o Falx¥dX’
x'=0 . x'=a
1) a
+ J drj Gy (x,tx, t)ﬁgl(.\c‘, 7)dx’, i=12 (8-14)
=0 Jx=0 ky

where the Green's [unction is obtainable from the solution of the homogeneous
version of the heat conduction problem given by equations (8-73). Actually,
the homogeneous version of this problem is exactly the same as that considered
in Example 8-1 given by equations (8-8). Therefore, the desired Green's function
is obtainable from the result given by equation (8-66b) by.replacing t by (f — 1}
in this expression. We find

@ 1 k;
Gylxtlx )= Y e Mt — Iy (i (x) (8-75a)
n=1t N" (!j ]
where the norm N, is obtained from equation (8-65b) as

a b . ‘
N,= k I gl (xYdx + ks 3 (xVdx’ (8-75b}
%y Jo - o

2Jde

The eigenfunctions ¢, ,(x) and yr,,(x) are obtained from equations (8-65¢) and
(8-65d), respectively, as

- ﬁu P
Yax) = sm( .\-) . (8-75¢}
\/"‘l

. { B ) ( B )
W)= Aq, ——x |+ B,,cos X {8-75d)
pnld= Sm(\/a_zx "\ .

The coeflicients 4,, and B,, are given by equations (8-63) and the eigenvalues
B, are the positive roots of the transcendental equation (8-64).
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8-7 USE OF LAPLACE TRANSFORM FOR SOLVING
SEMIINFINITE AND INFINITE MEDIUM PROBLEMS

The Laplace transform technique is convenient for the solution of composite
medium problems involving regions of semiinlinite or infinite in extent. In this
approach, the partial derivatives with respect to time are removed by the application
of the Laplace transform, the resulting system of ordinary differential equations
is solved and the transforms of temperatures are inverted; but the principal
difficulty lics in the inversion of the resulting transform. in this section, we
examine the solution of two-layer composite medium problems of semiinfinite
and infinite extend by the Laplace transform technique and consider only those
probiems for-which the inversion of the transforms can be performed by using
the standard Laplace transform inversion tables.

Example 8-7

Two semiinfinite regions, x > 0 and x < 0, illustrated in Fig. 8-6 are in perfect
thermal contact. Initially, the region I (i.e., x > 0) is at a uniflorm temperature
To. and the region 2 {ie., x < 0) is at zero temperature. Obtain an expression
for the temperature distribution tn the medium for times ¢ > 0.

Solution. For convenience in the analysis, we define a dimensionless tempera-
ture f{x, 1} as

i=12 (8-76)

5 =20

o

Then, the mathematical formulation of the problem, in terms of G,{x, t), is given
as
%0, 1 80,(x,1)
ax* o Ot

x>0, >0 (8-77a)
N e
Taix, t) Tilx, 0

uyiom 2, Rugian 1,
inttially m ivitially ug
zero temp. temp. T,
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.2
dx oty

and the Laplace transform of the boundary conditions gives

2 ] .
08; _ 100a(x,1) x<0, >0 (8-77b) (-
ox? w, Ot ‘-
Subject to the boundary conditions (
0106, 00+ = 020X Dl < o- >0 (8-784) ( i
s a, N kl‘m’ . (§-78) (:7,
OX |g=or X |iao- (
i I (>0 (8-78¢) s ¢
X o OXlm_ sy . (
and the initial conditions €.
| 0 )=1 for =0, x>0  (8-78) E
0,(x,)=0 for =0, x<0 {8-78¢) C
The Laplace transform of equations (8-77} is i C
d*0,(x,58 1~ . ' . o
N R A e | in .. x>0 {8-79u) ! )
(’_\'2 0t| [ ! I C
! -
20 (o ) I (, .
d70,x5) _ 1 s8,(x,5) in  x<0 (8-79b) 1! ;
i
|

8,(0%.5)=08,(0",5) (8-80a)
—k, ‘_Igl = kz [_1& (3~80b)

dx | -o- dx | —g-

@ = ﬁg =0 ~ (8-80¢)

dy oL dxlea,

The solutions of equations {8-79) subject Lo the boundary conditions (8-8U) urc

1]

/"—‘——__/—\“———’-—‘——/_d—\__—/_’_h

Fig. 8-6 Two scmiinfinite regions in perfect thermal contact.

gl(x,s)=1—~——-1e""'"’”z‘ for x>0 (8-81a)

O,(x,5)=——-- - e7WEE for  x <0 (8-81b)

PN

i

}
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where i given as
| %8, 10,(c) |
by fo 1?2 18 i O0<x<L, (>0 (8-84a)
z—‘(—z) (8-81c) xr @, ot -
ka \a, .
3 2@ t
These transforms can be inverted using the Laplace transform Table 7-1, cases l g~-23 = l%_) in x>1L, t>0 (8-84b)
1 and 42. The resulling expressions for the temperature distribution in the axt ap
medium become - subject to the boundary conditions
T, {x,1 1 ( x ) . .
B,0xc,0= 22 = — —e-erle| - , for x>0 . ab
! T (48 \2Jat (8-82a) ‘ =2=0 at  x=0, (>0 (8-852)
byeny= 20 _ B crfc( A ) for  x<0  (8-82b) - fi(x.0=0x{x.,0) at x=L, >0 . (3-85D)
Ty 1+8 2, oyt l " "
' ky=—=k,— at x=L, >0 8-85¢
Example 8-8 Yax ax ( )
A two-layer medium illustrated in Fig. 8-7 is composed of region 1,0 <x < I, ‘ . 8-85d
and region 2, x > L, which are in perfect thermal contact. Initially, region 1 is B2, =0 . ® x>0, >0 ( )
at a uniform temperature T, and region 2 is at zero temperature. For times and the initial conditions
t > 0, the boundary surface at x = 0 is kept insulated. Obtain an expression .
for the tethperature distribution in the medium for times 1 > 0 ’ e 0,(xi0=1" for~ t=0 -in- O<x<b-- (8-85¢)—
Solution. We define a dimensionless ( ature f,(x, t [ .
olution. We deline a dimensionless temperature f},(x, 1) as ] 0,(x,0=0 for (=0, in x> L (8-85)
CBix. )= Tifx1) i=1,2 (8-83) The Laplace transform of equations (8-84) is
0 -
, e0,(x,s) 1 - . |
Then, the mathematica]l formulation of the problem in torms of #,(%,1) is, T=a_r30'(x's)_ 1 n 0<x<L {8-86a)
. 1
o d*,(x,5) 1 -
i, h—i(;w*) = —sb,(x,5) in x>L (8-86b)
N r dx L5}
) .
b1 w .. .
_') e The Laplace transform of the boundary conditions gives
“i} _ Tyl 1) " e : 48, ' '
= f — =0 at x="0 {8-87q)
A . ’ X
e Hegioln 1, Region 2,
- initially at initially 2 ' Y a
\]} Insulie-dL temp. ‘f’;: 'z‘;rlt;at:mr:. 91 =0, at xe=L (8-87b)
A . ~ ~
= 0 ¥ i dé, dt, '
- L : ky—=k,— at =L -
- N B — Vax dx x (8-87¢)
7
- Fig. 8-7 A finile region and a semiinfinite region in perfect thermal contact. §2 —0 as  x— oo (8-87d)
M
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The solution of equation (8-§6a) that satislies the boundary wndmon (8- 87d)
is laken in the form :

_ ! '
9‘(.\',3)=;+Acosh (\\/f) in Og<x<L {3-88a)
xy

and the solution of equation (8-86b) satisfying the boundarj condition (8-8§7d)
us

Us{x, 5) = Be ~<ton in x> L ‘ (8-88Db}

The constants A and B are determined by the application of the remaining
boundary conditions (8-87b,c); we find

j e-a!.

— - : W {3-89a)
1 | — ~- 2oL
B= T 70 L (8-89b)

25 1 —ye

where

O'E\/i, pz\/oil- {8-89¢)
o, o5

-1 kil
S, =" - 8-89d
L p P ( )

Introducing equations (8-89) into (8-88) we oblain

_ 1 | _], 8 ~all - x} + e—n[L+\-| .
0 {x,s5}1= — -, in
l( } 5 23 ’ _ }'L’ ZGL

O<x<L (8-90u)

E - +
l+‘}’e ‘mplx — L]__e a{2L + px—~pl}

8,(x,5) = i x> L (8-90b)

—2el.

25 [ )-e
Here we note that |y] < 1. Therefore, the term [1 —yexp(—2¢L)] ' can be
expanded as a binomial series, and equations {(8-90) become

-ﬂ[ﬂ-""‘ I} —x}] e—a|(1n+ 1+ x)
J, e e — e e y
N S5

11—

8y(x,5)= 5

| -

e

in O<x<L (8-91a)
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i-|- e—o[2nL+p(A‘—L|] ewauln+21!.+,ut.\-~£.1]
0,(x, S)——--—— s - h
2 Zo

5 A

in x>L {8-91b)

The inversion of these transforms are available in the Laplace transform
Table 7-1 as cases | and 42. After the inversion, the temperature distribution
in the medium becomes

T(x.0) [ (n -+ 1L -
Ux,ipee -0 =0 ).{.,1 [ J
l To 2 II=ZO Jal

+ erfc[a—”+ DL+ A]} in
2/

_Tx,5) 1+y i et 2nL+u(x— L)
T, 2 ’

f,_.[!%!f + 2L+ px—1)

= - i > L (8-92b)
)

where 3 and je are defined by equations (8-89).

O<x<L  (8-92a)
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PROBLEMS

8-

1 A two-layer solid cylinder contains the inner region, 0<r<a, and the
outer region, a < r < b, which are in perfect thermal contact. [nitially, the
inner region is at temperature F () and the outer region at lemperature
E,(r). For times ¢ > 0, the boundary surface at r = b is kept at zero tem-
perature, Obtain an expression for the temperature distribution in the
medium. Also, express the solution in terms of Green’s function and
determine the Green's function for this problem.

’

8-2

8-6

8-8

8-9
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A two-layer slabconsists of the first layer 0 s x < a and the second layer
a < x < b, which are in perfect thermal contact. Initially, the first region is

-ar temperature: Fy(x) and the second region is at temperature Fx(x). For

times ¢ > 0, the outer boundaries at x =0 and x =b are kept at zero tem-
peratures. Obtain an expression for the temperature distribution in the
medium. Also determine the Green's function for this problem.

A two-laycr hollow cylinder consists of the first layer a <r < b and the
second layer b <r < ¢, which are in perfect thermal contact. Initially the
first region is at temperature F,(r) and the second region at temperature .
F,{r}. For times t > 0, the outer boundaries at r = a and r = ¢ are kept at
zero temperature. Obtain an expression for the temperature distribution
in the medium. Also, determine the Green's function for this problem.

Repeat Problem 8-2 for the case when boundary surface at x =0 is kept
insulated and the boundary surface at x = b dissipates heat by convection
into an environment at zero temperature. Also determine the Green's

function for this problem.

Repeat Problem 8-3 for the case when the boundary surface at r=a is
kept insulated and the boundary surface at r = ¢ dissipates heat by convec-
tion into an environment at zero temperature. Also determine the Green’'s
function for this problem.

A two-layer solid cylinder contains the inner region, 0 <+ <a, and Lhe
outer region, o < r < b, which are in perfect thermal contacl. Juitially the
inner region is at temperature F,(r), the outer region at temperature Fy(r).
For times t > 0, heat is generated in the inner region at a rate of g,(r,1)
W/m? while the boundary surface at r = bis kept at temperature f{¢). By
following an approach discussed in Example 8-5 transform this problem
into a one with homogeneous boundary condition at r =b.

A two-layer slab consists of the first layer 0 <x<a and the second layer
a < x < b, which are in perfect thermal contact. Initially the first region is
at temperature F,(x} and the second region at temperature Fa(x). For
times ¢ > 0, heat is generated in the first region at a rate of g,(x, 1), W/m?,
and in the second region at a rate of g,(x,1), W/m?, while the outer
boundary surfaces at x =0 and x =h are kept at temperatures f4ff) and
£5(1) respectively. Split up this problem into a steady-state problem and a
time-dependent problem with heal generation, subject to homogencous
boundary conditions by following the procedure discussed in Seclion 8-2.

Solve Problem 8-1 with the additional condition that heat is generated
in the inner region, 0<r<a, at a rate of g,(n,1), W/m?. Utilize the
Green's function constructed in Problem 8-1 to solve this nonhomogeneous
problem.

Solve Problem 8-2 with the additional condition that heat is generated in
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the first and second layers at a rate of g,(x,f) and g,(x,t), W/m?> respec-
tively. Utilize the Green's function constructed in Problem §-2 to solve this

problem.

Solve Problem 8-3 with the additional condition that heat is generated in
the first and second regions at a rate of g,(r, t) and g,(r, 1), W/m?, respec-
tivcly. '

9

APPROXIMATE ANALYTIC
METHODS

Analytic solutions, whether exact or approximate, are aiways uselul in engineering
analysis, because they provide a better insight into the physical significance of
various paurameters affecting the problem. When exuact analytic solutions are
impossible or too difficult 1o obtain or the resulting analytic solutions are loo

complicaled for computational purposes, approximate analytic solutions provide

a powerful alternative approach to handle such problems.

There are numerous approximate analytic methods for solving the partial
differential equations governing the engineering problems. In this chapter we
present the integral method, the Galerkin method, and the method of pertial
jntegration, and illusirate their applications with representative examples. The
accuracy of an approximate solution cannot be assessed unless the results are
compared with the exact solution. Therefore, in order to give some idea of the
accuracy of the approximate analysis, simple problems for which exact solutions
are available are first solved with the approximate methods and the results are

compared with the exact solutions. The dpplications to the solution ol more-

complicated, nonlinear problems are then considered.

9-1 THE INTEGRAL METHOD—BASIC CONCEPTS

The usc of integral method for the solution ol partial diflerential equations dates
back to von Karman and Pohlhausen, who applied the method for the approxi-
mate analysis of boundary-layer momentum and energy equations of fluid mecha-
nics [1]. Landahl {2] used it in the field of biophysics to solve the dilfusion
equation in connection with the spread of a concentrate. Merk [3] applied this
approach to solve a two-dimensional steady-state melting problem, and Goodman
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26 APPROXIMATE ANALYTIC METIHHODS

(4. 57 used it for the solution of a one-dimensional transient melting problem.
Since then, this method has been applied in the solution of various types of
one-dimensional transient heat conduction problems [6-16], melting and solidi-
fication problems [ 16-25]. and heat and momentum transfer problems involving
melting of ice in seawater. melting and extrusion of polymers [26-29].

The method is simple, steaightforward, and easily applicable to both lincar
and nonfinear ane-dimensional transient hbonndary-value problems of heat con-
duction lor certain boundary condilions. The results are approximate, bul several
solutions obtained with this method when compared with the exact solutions
have confirmed that the accuracy is generally acceplable for many engineering
applications. In this section we first present the basic concepts involved in the
application of this method by solving a simple transient heat conduction problem
for a semiinfinite medium. The method is then applied to the solution of various
one-dimensional, time-dependent heat conduction problems. The application to
the solution of melting, solidification, and ablation problems is considered in a
later chapler on moving-boundary problems (Chapter 1).

When the differential equation of heat conduction is solved exactly in a given
region subject to specilied boundary and initiul conditions, the resulting solution
is satisfied at each point over the considered region; but with the integral method
the solution is satisfied only on the average over the region. We now summarize
the basic steps in the analysis with the integral method when it is applied to the
solution of ene-dimensional, transient heat-conduction problem in a semiinfinile
medium subject to some prescribed boundary and uniform initial condilions but
no heat generation. '

I, The diflerential equation of heat conduction is integrated over a pheno-
menologic distance 3(t). called the thermal layer in order to remove from the
differential equation the derivative with respect to the space variable. The thermal
layer is defined as the distance beyond which, for practical purposes, there is no
heat flow; hence the initial temperature distribution remains unaffected beyond
51, The resulting equation is called the energy integral equation (i.e. it is also
called the heat-balance integral ).

2. A suitable profile is chosen for the lemperature distribution over the
thermal layer. A polynomial profile is generally preferred for this purposc;
experience has shown that there is no significant improvement in the accuracy
ol the solution to choose @ polynomial greater than the fourth degree. The co-
eflicients in the polynomial are determined in terms of the thermal layer thickness
d(r) by utilizing the actual (if necessary derived) boundary condilions.

3. When the temperature profile thus constructed is introduced into the
energy integral equation and the indicaled operations are performed, an ordinary
dilierential equation is obtained for the thermal-layer thickness 8(1) with time as
the independent variable. The solution of this differential equation subject to the
appropriate initial condition [i.e.. in this case S(1)=0 for 1 =0] gives 3t} as a
function of time.
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4. Once (1) is available from step 3, the temperature distribution T{x, ) is
known as a function of time and position in the medium, and the heat flux at the
surface is determined. Experience has shown that the method is more accurate
for the determination of heat flux than the temperature profile.

9-2 INTEGRAL METHOD—APPLICATION
TO LINEAR TRANSIENT HEAT CONDUCTION
IN A SEMIINFINITE MEDIUM

To illustrate the mathematical details of the basic steps discussed above for the
application of the integral method, in the following example we consider a
problem of transient heat conduction in a semiinfinite medium with no energy
generation.

Example 9-1

A semiinfinite medium x > 0is initially at a uniform temperature T;. For times
t >0 the boundary surface is kept at constant temperature T, as illustrated
in Fig. 9-1. Develop expressions for the temperature distribution and the surface
heat flux with the integral method by using a cubic polynomizl approximation
for the temperalure profile.

Solution. The mathematical formulation of this probiem is given as

T _19T()

a2 L x>0, t>0 (9-1a)
T(x,1)=T, at x=0, t>0 (9-1b})
Tix.)=T, for t=0, in xz0 (9-tc)

We solve this problem with the integrai method by following the basic steps
discussed above.

Initialty
at Tj

Bie)
Thermal layer

Fig. 9-1 Definition of thermal layer for heat conduction in a semiinfinite region.
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1. We integrate equation (9-1a} with respect to the space variable from
x=0tox=4a(t) '

aT

aT B aT
ox

ox

L% oT
=- J ——dx (9-2a)
ot

x =41} x=0 9 )e=0

When the iategral on the right-hand side is performed by the rule of
dilferentiation under te integral sign we oblain

]
)
x=0 o] de x=0

- By the definition of thermal layer as illustrated in Fig. 9-1 we have

dé

ar
d_] (9-2b)

ar aT
ox

ax

x=4d x=8

aT
—| =0 and T =T (9-3a)
Ox =8 x=4
and for convenience in the analysis we define
atr)
f= J. T(x, t)dx {9-3b)
a0 . .
Introducing equations (9-3) into (9-2b) we obtain
aT| d
—o— =—({0-Té 9-4
o 2%, dt( 10 (9-4)

which is called the energy integral equation [or the problem considered
here.
2. We choose a cubic polynomial representation for T{x,{) in the form

T{x, 1) = a + bx + ex? + dx? in 0x<ga(t) - (9-5)

where the coelficients are in general funclions of time. Four conditions

are needed to determine these four coeflicients in terms of #(r). Three of
" hese conditions are ebtained rom the boundiry conditions at v 0
cand al the edge of the thermal [ayer x = 8(1), as

eT

, —| =0 - (96
- (9-6a)

x=4

The fourth condition may be derived by evaluating the dilferential equa-
tion (9-1a) at x = 0 and by making use of the fact that T= T, = constant
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at x=0; then the derivalive of temperature with respect (o the time
vanishes at x =0 and we obtain

aT

o - =0 (9-6h)

Bl
ax* |, _g

Clearly, the fourth condition could also be derived by evalualing the
differentinl equation (9-1a) at x = §(r) and utilizing the fuct that T=T; =
constant, by definition, at x = &. This mutter will be discussed later in
the analysis. The application of the four conditions (9-6) to equation
(9-5) yields the temperature profile in the form

3
Tx0-T_, _§f+1(f) (9-7)

3. When the temperature profile (9-7) is introduced into the energy integral
equation (9-4) and the indicated operations are performed, we obtain
the following ordinary differential equation for &(t)

4o = J— for (>0 (9-8a)
dt
subject to
=0 for t=0 (9-8b})
The solution of equations (9-8) gives

5= Jiai (9-9)

4. Knowing (1), we determine the temperature distribution T(x, r) accord-
ing to equation (9-7) and the heat flux ¢(0, ) at the surface x =0 from
its definition :

0 27 troT 9-10
Lt} = —k— =Ty~ T; -10a
(0, t} P 25( o~ T} ( )
where
= /8at : {9-10)
Other Profiles

_ In the foregoing example we considered a cubic polynomial representation for

T(x, t) that involved four unknown coefficients and required four conditions for

_ their determination. Three of these conditions given by equation (9-6a} are the
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330 APPROXIMATE ANALYTIC METHODS

natural conditions for the problem, and the fourth condition equation (9-6b) is
a derived condition obtained by evaluating the differential equation at x =0. It
is also possible to derive an alternative fourth condition by evaluating the
differential equation al x =4 yielding

NPT

At

=4 {9-6h")

A

Therefore, it is also possible to use the above three natural conditions (9-6a)
together with the aiternative derived condition (9-6b') to obtain an alternative
cithic temperature profile in the form

_ T(x, f)“T-'=(| _f)’ (9-11a)
To—T: 6

where
6= ./2duat {9-11b)

Il a fourth-degree polynomial representation is used lor T{x,t), the resulting
five coellicients are determined by the application of the five conditions given
by equations (9-6a). (9-6b), and (9-6b"), and the following temperature profile is

obtained
—_— . - 3 ¢
Teo-T_, _2(5) +'2(5) —(5) (9-12a)
To—T, 8/ N8/ A\

5= /%Qar (9-12b)

Comparison with Exact Solution. In the foregoing analysis we developed two
different cubic temperature proliles given by equations (9-7) and (9-11) and a
fourth-degree profile given by equation (9-12). One can also develop another
approximate solution by utilizing a second-degree polynomial representation.
The guestion regarding which one of these approximate solutions is more nccurate
cannot be answered until each of these solutions are compared with the exact
solution of the problem given by

where

Tix,t)—T; h
. .(..YJAI_)A._._. =1 —erf X

To— T; \/{a

{9-13a)

Figure 9-2 shows a comparison of these approximate temperature distributions
with the exact solution. The agreement is better for small values of the parameter
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1.0

0.8 .

n.4G - [ i e

‘i‘" = \Thiul egren (Fg, 9-110
" N /
0-4 ] “\\

wi~Second degree

Exact (Eq. 9-13) N > 2
SN

T
\h.

. i e
0.2 Third degree (Eq. 9-1 0%_
~

o
l Fourth degree [Eq. 9-1_2)—*{ L

a 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
xivdat

Fig.9-2 Comparison of exact and approximate solutions for a semiinfinite region.

Ta —

x/\/fiar. The lourth-degree polynomial approximation agrees betler with the
exact solution. The cubic polynomial representation utilizing the condition at
x =0 seems to agree with the exact solution better than the one utilizing the
condition at x = 4.

The heat flux at the boundary surface x = 0 is a quantity of practical interest,
and for the various temperature profiles considered above it may be expressed
in the fotin

q(,)=_k‘;_7 oM7) (9-13b)

X lx=0 \/a—t

Table 9-1 gives the values of the constant C as calculated from the above exact
and approximale solutions. The fourth-degree polynomial approximation re-
presents the heat fux with an error of approximately 3%}, which is acceptable

for most engineering applications.

Cylindrical and Spherical Spmmerry. The use of polynomial represeniation for
temperature, although giving reasonably good results in the rectangular coordi-
nate system, will yield signilicant error in the problems of cylindrical and spherical
symmetry [11]. This is to be expected since the volume into which the heat
diffuses does not remain the same for equal increments of r in the cylindrical and
spherical coordinate systems. This situation may be remedied by modifying the
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TABLE 9-1 Error Involved in the Surface Heat FFlux

C as Defined by Percent Error

Temperature Profile Equation {9-13bj} Involved
Exact (equation 9-13) !.__ ={.565 0
Vi
Cubic approximation [equation 9-7) ={.530 6
28
. L . k)
Cubic approximation {equation 9-11) e o= 0,612 B
. V24
. . . 2
Fourth-degree approximation (cquation 9-12) —— =0.548 3
40
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T=T,. at x=0, (>0 (9-15b)
T=T, for =0, xz20 (9-15¢)
The integration ol equation (9-15a) from x =0 Lo x = d(1) gives

daT T dd

2 do
—a| 4 lge=—-Tf — 9-16)
x| TRIPO=1 l, ar (
where we utilized the condition o T/dx = 0 at x = §, and delined
atr)
= J‘ T{x, t)dx {9-17)
a=0

We note that equation (9-16) is similar to equation (9-2b) except for the

generation term. The term T}, . ; is now determined by evaluating the differen-
(% Y

temperature profiles as

fial equation (9=I5a) at X = o(Iy Wiere 97T/0x = 0; and-tlrerintegrating-the
resulting ordinary differential equation from ¢ = 0 to  subject to the condition
T =T, for t =0. We find

Cylindrical symmetry: T(r,1) = (polynomial in r)(Inr}  (9-14a) « )
. T|x=a=T1+EG(’) {9-18a)
-+~ Sphericalsymmelry: Tiret)= polynumlu] mr (9-14h) . L
r where we delied
Since the problems with spherical symmetry can be transformed into a problem Gt = J ‘ glt') de’ (9-18b)
0

in the rectangular coordinate system as discussed in Chapler 4, one needs to be
concerned with such a modification only for the cylindrical symmetry.

Problems with knergy Generation

The integral method is also applicable for the solution of one-dimensional
transient heat conduction problems with a uniform energy generation that may
be constant or time-dependent over the region. The lollowing example illustrates
the application to a probicm with energy generation in the medium.

Example 9-2

A semiinfinite region, x> 0, is initially at & constant tcmperature T, For

times 12> O heat is generuted within the solid at a rate of g{1) W/m' while the

boundury at x = 0 is kept at o constant tlemperature Ty, Obtain an expression

for the temperature distribution T(x,f) in the medium using he integral
- method.

Solution. ‘The mathematical formulation of this problem is given as

aT ar .
aa,i._ygg(f)l:b— in x>0, >0 {9-13a)

We also note that the term g(t)3(t) on the left-hand side equation (9-16) can
be written-as

d
050 = a‘m% (9-19)

Equations (9-18) and (9-19) are introduced into equation (9-16)

aT dt) a( dd :IG) dd
—as~| == G—+d— |- Tir
OX |jmg dt K\ dt de dt
or
JT o o )
—o=-| = |0—-GE—T0 9-20
e dr|: k J -20)

which is the energy integral equation for the considered problem. Now, we
assume a cubic polynomial representation for T{x, 7) in the form

T(x, ) =a, + a;x + a;x? + azx? (9-21)

.

l
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and choose the four conditions needed to evaluate these four coeflicients as

T
ax*

a_T
ax

T =0, T

x=3

=T+ %G(r) (9-22)

x=0 x=4 x=§

Then, the temperature profile is determined as
. e
T(,\',I)=Tn+[l—(l-—3) JF in () (9-23a)
where .
F=(T— T+ EG (9-23b)
Introducing equation (9-23) into equation {9-20) and performing the indicated
operations, we obtain the following differential equation for é '

d(Fd)
dt

12aF =(F§) for (>0 (9-24)

The solution of equation (9-24) subject to § =0 for t =0 gives

*r
Fdt
5% = 242" ‘ {(9-25)

=

Equation (9-23) together with equation (9-25) gives the temperature distribu-
tion in the medlum as a luuction of time and position. Tor the special
case of no heat generation, equations (9-23) and (9-25), respectively, reduce to

_ ' 3
T~ T _ ( X ) (9-262)

6= /24 (9-26b)
which are exactly the same as c_qunlion.\' {9-11a.h).
9.3 INTEGRAL METHOD—APPLICATION TO NONLINEAR
TRANSIENT HEAT CONDUCTION

Another advantage of the integral method is that it can handle the nonlinear
problems quite readily. In the following two examples we iltustrate the application
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of the integral method to the solution of nonlinear heat conduction problems.
In the first example the nonlinearity is due to the boundary condition, in the
second due to the differential equation.

Example 9-3

A semiinfinite medium is initially at uniform temperature 7T;. For times t > 0,
the boundary surface at x = 0 is subjected 1o a heat flux that is a prescribed
function of time and surface temperature. Obtain an expression for the surfuce
temperature T{¢) for times ¢ > 0. .

Solution. The mathematical formulation of this problem is given as

o'T_107

P Sabur in x>0, for t>0 (8-27a)

x? o« .

- g—T = (T, at x=0, for t>0 (9-27b)
x .

T=T for =0, in x20 9-27¢)

Here the boundary-condition function f(T,,f} is a function of time f and the
boundary-surface temperature T,(t)= T, at x =0.
The integration of the differential equation (9-27a) over the thermal layer

8(1) gives’
P
(o)
x=0 24 dt 4]

aT

oy _ a1
dx

dx

dé
— 9-28
x=4 dt ] ( )

x=4

In view of the conditions

aT aT
=l =0 Tl =T | =Sy 0
(Xic=3s x=4 Ox =0 .
Equation (9-28) becomes
- d
af(T.0)= % 0 —T:5) (9-20a}
where
. \ ‘ .
= J' Tdx (9-30b)
x=0 )

which is the energy integral equation for the considered problem. To solve
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this equation we choose a cubic polynomial representation for T(x, t} as
T(x, t}=a, + a,% + a,x* + a,x> 9-31)

These four coeflicients are determined by utilizing the three conditions (9-29)
together with the derived condition
az

=0 ' : 9-32
Fws (9-32)

The resulting temperatufe profile becomes

3
T(x,1) - T__é_fgg_q( -2 in  0<x<é  (9-33)
3 5
and for x = 0, this relation gives
ORE PRI -39

From equations {(9-33} and (9-34) we write

T — d

Introducing equation (9-35) into equation {9-30), performing the indicated
operations, and ecliminating ¢ from the resulting expression by means of

equation (9-34) we obtain the following first-order ordinary differential equa-

tion for the determination of the surface temperature T;.

(T~ T;)Z:I
— T" fi t>0 9-36)
f( 0= [ ST, 1) o (
with
T,=T, for 1=0 (9-37)

- Equation (9-36} can be integrated numerically if the boundary condition
function f(T,, 1) depends on both the surface temperature and the time. For
the special case of f(T, 1) being a lunction of surface temperature only, namely

ST, 0=f(T} ' (9-38)
equation (9-36) is written as
B (T,—T)* | d
=g G L

T{x 1) — —~—-(l _;_c)’ 9-35)
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or
— . — N . — . . 2
4, o AT~ TATY) ~ [ THT — T dT, for (>0 (9-39)
3 A7) dr
with
T.=T, for =0 (9-39b)

The integration of equation (9-39) establishes the relation between the surfuce
temperature T,(¢) and the time 1 as

Ty 2
4 =J' AT — TYITY = f{T)AT, — T) T, (9-40)

~ o
3 T . /‘3 T}

where f* denotes dilferentiation with respect to T,.

Example 9-4

~ A semiinfinite medium, x > 0, is initially afzero temperature. For times ¢ > 0,

the boundary surface is subjected to a prescribed heat [lux that varies with
time. The thermal properties k(77), Cy(T), and p(T}are all assumed depend on
temperature. Obtain an expression for the temperature distribution in the
medium,

Sofution. The mathematical [ormulation of this problem is given us

ai(h %‘g) = pC.‘r,%—]tr in x> O’, t>10 (9-4ta)

-ka—T=f(r) at x—0, t>0 (2 41b)
ox .

T=90 for t=0, xz20 (9-dic)

where k = K(T),C, = C,(T), and p = p(T). By applying the transformation
V T
‘U :J- pC,dT (9-42)
0

The system (Y-41) is transformed into

i(.xa” U xs0 >0 9.43

ax\"ax )" A = 5-432)
w1

——=—f(1) at x=0, t>0 (9-43b)
Ix o«

-~

~
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U=0 for t=0, xz0 (9-43c)

INTEGRAL METHOD—APPLICATION TO A FINITE REGION 339

with

OOO0000

[

DO

SO00

where ¢ = e{U) and «, refers to the value of @ at the boundary surface x = 0.
Equation (9-43a) is integrated over the thermal layer (f)

[QQQT ;ﬂ[jJUd ul -5
0ox ,‘—wu_l’“ o T ’.1‘ ] ©-44)-

In view of the conditions

au T oAU
=0, U =0, -- = — .
i x=4 x=5 ['x dx :I.r=0 f(ll (9 45)
Equation (9-44) becomes
49 _ fir} ‘ 0-46
dt (0-46a)
where
]
0= j L7 dx {9-46b)
{

w}_lich is the energy integral equation for the considered problem. To solve
this equation we choose a cubic polynomial representation for U{x, t) as

Ulx,t) = a, + ayx + a;x? + a,x? ~(5-47)

The lour coefficients are determined by ulilizing the [ollowing four conditions

au au 1) 82U '
u’ O IR | R 1 R
x=5 EX |e=g ox x=0 o dx x=4d
Then, the corresponding profile becomes
i) AT
Ulx.) =" |~ i - -
{x.1) 2, ( (‘3) in Dgx<éd {9-49)

py 'substituting of equation (9-49) into equations (9-46) and performing the
indicated operations we obtain the following differential equation for the
determination of the thermal-layer thickness (1)

d [57 ®

ail T2m, }:f(r) for t>0 (9-503)

5—=20 for t=0 . (9-50b)..

The solution of equation (9-50) is

12a, [ we
Se=| —=*1 f(rydr . (2-51)
‘ [.rm I’ (") ] -

This equation cannot yet be used to calculate the thermal layer thickness &
directly, because it involves &, the thermal diffusivity evaluated at the surface
temperature, U,, which is still unknown. To circumvent this difficulty an
additional relationship is nceded between o, and Uy such a relationship is
obtained as now described.

For x = [ equation (9-49) gives

y, =0 (9-52)
e,

Eliminating & between cquations (§—51) and {9-52), we obtain

4 ' 12
Uy o= [Tm) J 1) dr'] (9-53)

The computational procedure is as [ollows:

I. 2, is known as a function of T, and hence of U,. Then the left-hand side
of equation (9-53) can be regarded to depend on o, only.

2. Then use Eq. (9-53) to compute «; as a function of time.

3. Knowing «, at each time, use equation (9-51) to calculate 4.

4. Knowing 5, calculate U from (9-45).

5. Knowing U, determine the actual temperature T(x, ) [rom equation
{9-42).

94 INTEGRAL METHOD—APPLICATION
TO A FINITE REGION

In the previous examples we considered the application of the integral method
for the solution of transient heat conduction in a semiinfinite medium in which
the thickness of the thermat layer 8(r) would increase indefinitely. However, for
the problem of a slab,in0<x < L, with the surface x = L insulated, the analysis
is exactly the same as that described for a semiinfinite region so long as the
thickness of the thermal layer remains less than the thickness of the plate; but, as
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soon us the thickness of the thermal layer becomes equal to that of the slab, that
is, 8(t) = L, the thermal layer has no physical significance. A different analysis is
needed for 6(t) > L. This matter is illustrated with the following example.

Lxample 9-5

A slab, 0 < x < L, is initially at a uniform temperature T;. For times ¢ > 0, the
boundiry surfuce st x =0 is kept al a constant temperature Ty, and the
boundary at x = Lis kept insulated. Obtain an cxpression lor the temperature
distribution in the slab for times ¢ > 0 by using the integral method.

Solution. The mathematical formulation of this problem is given as

7T_1or in O<x<L, t>0 (9-54
el x 54,
ox? o ot ’ 4l
T(x,t)=T, at x=0, >0 (9-54b)
aT

——=1 at x=1L, >0 (9-54c)
dx

Tix, 0)=T, for { =10, in 0<xgL {9-54d)

For the reasons discussed above the analysis is now performed in (wo stages:

I. The first stage, during which the thermal-layer thickness is less than the
slab thickness (i.e., 6 < L).
2. The second stage, during which J exéeeds the slub thickness L.

The First Stage. For the ense (1) < L, we integrate cquauon (9-54a) over the
thermal layer thickness and obtain

oT d '
— = (0~T:d -55¢
e o dr( i%) (9-55a)
\;vhere
)
U= J. T(x,0dx {9-55b)
x=0

The energy integral equation thus obtained is exactly the same as that given
by equation {9-4) for the semiinfinite region. We choose a cubic profile for the
temperature as given by equation (9-5), apply the conditions given by equations
(9-6) to determine the coellicients, and utilize equation (9-55) to obtain the
thermal-layer thickness as discussed for the semiinfinite region. The resulting
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temperature profile becomes
. — N . N3
T{\”_ T‘ =1 %(_\) + I(\) {9-561)
To—~T; AN AN

d= 8 . {9-56h)

where

This solution is valid for 0 € x £ 0, so long as d £ L. The time 1, when d = L
is obtained [rom equation {9- 56b] by setting d = L. that is

L.’.

= 9.37
{y, 8x ( )

Clearly, the solution {9-56) is nol applicable for times ¢ >r,.

The Second Stage. For times 1 > t,, the concept of thermal layer has no
physical significance. The analysis {or the second stage may be performed in
the lollowing manner. We integrate the differential cquation (9-34a) [rom x =
to x = L; we (ind

.
S =ty (9-58u1)
OX),-p dt
where
L
()EJ T(x, ) dx ‘ (9-58b)
Q

A comparlson of equation (9-..53) with equatlon (9-55a) reveals that in the
latter, the piate thickness L has replaced (t), hence there is no thermal layer.

The temperature T(x,t) is again expressed by a pelynomial. Suppose we - ... . ...

choose a cubic polynomial representation in the form

Tx.th=a+bx +ox? +dx? in OQ<x<l, 1>t  (9-59)

where the coeflicients are generally function of time. In this case we have ne
thermal layer to be determined from the solution of the differential cquation
(9-58). Therefore, we choose only three conditions

—0 and 1| =0 (9-60abg)
C x=5L 6": x=0

These conditions are applied to the cubic prefile given by equation (9-59} and
all the coeflicients are expressed in terms of one of them, say & = b(r). We find

e — e e — —

RN N AN N N N e N e Tl N o I e B N e N T N N T T T e N N



LA T Y

J ot s

7

P \

I

LA N LN

L)

dodd WAL

PR T B Y

!

!

LIV S B

LA AL

APl

PR REUEAPEUEGEWENWENRWEWENIRSEAI

342 APPROXIMATE ANALYTIC METHODS
the lollowing profile

T(x, 1} =Ty + bLi x_L(xY i 0< '
\ o T3\ in <x<L, for t=z1,  (9:61)

which is expressed in the dimensionless form as

'1‘(x,:)—T,-H1+J“)[x l(nc)J ) o<
o =0 s in  0<x<L  (9-62a)

where

Lb()
yin = ?0_—?1 (9-62b)

When Fhe profile (9-62a1.is introduced into equation {9-58a) and the indicated
c)p'eratlons are performed, the following ordinary differential equation is ob-
tained for the determination of »(t):

i 122

> 5L2n(f)=0 for 121, ©(5-63)

The initial condition needed to solve this differential equation is determined
[rom the requirement thatl the temperalture defined by equation (9-62a) at

1.0
08 . P
\ R S
\ . S
0.6 M
= \
tfl
| . 0.284
a4l - - N~ . ..-.R P R
\\ Tes
\ A
0.2 i \?125
Exact \\ 0.0312 \\___
-—— Integral ‘:hs ~
0 | T~
g 02 0.4 0.6 0.8 1.0
x/1

Fig. 9-3 Comparison of exact and approximate temperature profiles for a slab of thick-
ness L. (From Reynolds and Dolton [71.)
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x = Lat the time = t,, = L?/8a should be equal to the initial condition T=T};
we find

3 17 '
=—-- fo t=1t, == 9.64
i) 5 r L= {9-64)

The solution of the dillerential equation (9-63) subject (o the initind condition

(9-64) gives
: 3 12e 3
i) = —-éexp[—(gLif— ib)]‘ {9-65)

Thus equation (9-62a) with y(1) as given by equation (9-65) represents the
temperature distribution in the slab for times ¢ > t, = L?/8a. Figure 9-3 shows
a compatison of the exact and approximate solutions. .

9.5 APPROXIMATE ANALYTIC METHODS OF RESIDUALS

When the exact solution T cannot be obtained for an ordinary or partial
diffcrential cquation, a trial family of approximate solution Tcontaining 2 finite
number of undetermined coellicients ey,€3,...:¢, €an0 be construcied by the
superposition of some basis functions such as polynomials, trigonometric func-
tions, and similar. The trial solution is so selected that it satisfies the cssential
boundary conditions for the problem; but, when it is introduced into the differen-
tial equation it does not satisfy it and leads to 2 residual R, because it is not the
exact solution. For the true solution the residuals vanish identically. Therefore,
the problem ol constructing an approximale sulution becomes one of determining
the unknown coefficients ¢,,¢5,...,¢, so that the residual stays “close” to zero
throughout the domain of the solution. Depending on the number of terms taken
for the trial solution, the type of base functions used and the way the unknown
coellicients are determined, several different approximate solutions are possible

for a given problem. :
Different schemes have been proposed for the determination of the unknown

© coelficients 0. ¢y ... £, associated with the construction of the trial family of

approximate solution T. To illustrate the basic approaches followed in vurious
approximate methods of solution, we examine the following simple problem
considered in reference 55

dT(t :
I:_) +T{H=0 for t>0 (9-66a)
Tl =1 at =0 (9-66b)
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The exact solulion of this problem is given by
Ti)=e¢""! T {9-67)

We wish to oblain an approximale solution for this problem in the interval
0 <1< 1. To construct a triai solution '"I"(l], we choose the basis fumctions to be
polynomial in t {i.c., t.¢%... ). The trial solution that contains only two undeter-
mined cocllicients ¢ and ¢y, and satisfies the condition (9-66b) for all values of

Ceyand ey iy taken as

Ty =1 +c,0+cd? (9-68)

Here, the first term on the right-hand side is included in order to satisfy the
nonthomogeneous part of the boundary condition (3-66b). '

The irial solution (9-68) satisfies the boundary condition (9-66b) lor all values
of ¢, and ¢,; but, when it is introduced into the differential equation (9-66a) it
yields a residual R(c,, ¢4, 1) as

Ry, ey = | + (1 + t)ey + (20 + ey 19-69)

This residual.vanishes_only with the exact solution for the problem. Now, the
problem of inding an approximale selution lor the problem (9-66) in the interval
0 <( < | becomds one of adjusting the values of ¢, and ¢; so thut the residual
R(cy,¢5.t) stays “close” to zero throughout the interval 0 <t < [,

Various schemes have been proposed for the determination of these unknown
coeflicients; when ¢, and ¢, are known, the trial solution T{(r) given by equation

~ (9-68) becomes the approximate solution for the problem.

We briefly describe below some of the popular schemes lor the determination
of the unknown coelficients.

l. Collocation Method. 1 the trial solution contains 1 undetermined cocfhi-
cients, »# different locations are selected where the residual R(r) is forced to vanish,
thus providing n simuitaneous algebraic equations for the determination of the
coefficients ¢,,¢3,....¢,. The basic assumption is that the residual docs not
deviate much Jrom zero between the collocation locations. For the specific
example considered previously, suppose we select the collocation locations § and
2 Introducing these values into the residual equation (9-69) we obtain’

R[(',.t';.“,]-- I '_:"| P gs 0 (9-70a}
R(('ls"2'§)= P+ 3§, +3e; =0 (9-70b)

Thus we have two algebraic equations for the determination of the two unknown
coefficients ¢, and ¢; or simultaneous solution gives

¢ =—09310. ¢, =0.3103
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Intrdducing these coeflicients into equation (9-68), we obtain the approximate
solution for the problem (9-66) in the interval 0 < ¢ < I, based on the collocation
method as

T() = 1 —0.9310r + 0.3103:* {9-70¢)

2. Least-Squares Method. Referring to the simple example considered above,
the coellicients ¢; and ¢, are determined [rom the requirement that the integral
of the squarre ol the residual Rley . oy 0) given by cquation (9-69) is minimiscd over
the interval O <t < 1. That is, we scl

14 (! ! gR 3 7 9

56-;: . Rz{Cl,Cz,l]d[=J‘o Rgé—ld[=§+gci+zcz =0 (9-71&)
1 1 '

_li Rz(cl,cz,r)dt=J Ra—Rdtzﬂ-I-gc, +§§c2=0 (9-71b)

23cs Jo o e, 3 4 15

and again we have two algebraic equations for the determination of the two
unknown constants ¢; and c,. A simultaneous solution gives
e, = —0.9427, ¢, =03110

Introducing these values into equalion (9-68), we obtain the approximate solution
for the problem (9-66) in the interval 0 <t < 1 as

T() = | — 0.9427¢ + 031102 (9-71c)

3. Rayleigh-Ritz Method. This method requires the variational formulation
of the differential equation so that the boundary conditions for the problem are
incorporated into the variational form. Once the variational form is available,
the trial solution given by equation (9-68) is introduced into the variational
expression J{c,,c,} and this result is minimized as

Jco .o
A CPELE VI (9-72a)
de,
i
e (9-72b}
(7(‘1

Thus, we have two algebraic equations for the determination of the two unknown
coefficients ¢, and c¢,. Generally, the difficulty with this approach is the deter-
mination of the corresponding variational expression. Il the variational form
cannot be [ound, the scheme is not applicable. The principles of variational

. calculus are discussed in several texts [ 32-36], and the application to the solution

—~

1

r C

t

Ry

-

-~

T s

S Y
R

slakalelaYaleololoialataleotakatakatate

(AROEGRS:



346 APPROXIMATE ANALYTIC METHODS

of heat conduction problems can be found in several other references [37-56].
Next, we consider the Galerkin method, which leads to the same approximate
solution as the Rayleigh-Ritz method without requiring the variational form of
the problem. ,

4. Galerkin Method. The method requires that the weighted averages of the
residual Riey. ¢;.1) should vanish over the interval considered. The weight func-
tions w ) and wo{r) are taken as the basis functions used to construet the trial
solution T{r). For the specific problem considered here, 1 and ? are the weight
finctions to be used for the integration of the residual R{c,,ca, 1) over the interval
0 <r < I. Thus, the Galerkin method becomes

1 1
er(cl,cz,r)drz L+ (04 ey + (204 19e, ] de

0 vo

=3+ic,+He,=0 (9-73a)

1 1
J PR, o dt =1 P[4+ (1+ e, + (2 + ¥, ] dt
0

'-..:

0 .
+ 75, 550 =0 (9-73b)

[ C N N
i

Equations (9-73) provide two algebraic equations for the determination of the
unknown coeflicients ¢, and ¢,. A simultaneous solution gives

ey — 00143,

™~

L —=NRC7
FRERR ARy

Introducing these coefficients into equation (9-68), the approximate solution
becomes

T(N=1—09143r+02857¢* . (9-73c)

We also note Lhat, the weight functions w,(t) and w,(r) can be interpreted as

0

(q(',-

w1} = =12 (9-74)
The Galerkin method does not require the variational form of the problem, and
yiclds the same result as the Rayleigh- Ritz method, therefore the problem sectup
is easier and more direct. We now present further applications of the Galerkin
method and discuss the construction of the basis functions.

9-6 THE GALERKIN METHOD

In the previous section, we illustrated with a simple example the basic concepts
in the application of some of the popular approximate analytic methods for the
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solution of differential equations. Here we focus attention on the Galerkin method,
especially on its application to more general problems and the methods of deter-
ini rial functions. _
’rll"lt‘lzlr:st:ll:'ueo:i is perfectly umiversal; it can be applied to t?lliplic. hyperbolic an.d
parabolic equations, nonlinear problems s well as complicated hounldnry c':nm]n—.
tions. The reader should consult references [16, 37, 53—§5| for a dlscus.t:lfm Iof
the theory and application of the Galerkin method and refercnces {58-69} h\sr_u.-:
application in Lhe solution of various types of boundary-value problems.

Application to Steady-State Heat Conduction

We consider a steady-state heat conduction problem given in the form

1 : _
VET(r) + AT(r) + p glr)=0 in R (9-75a)
oT : {9-75b)
ka— +hT=f(r) on boundary S
n

where d/2n denotes derivative along the outward drawn normal to the boundary

surface §. . ‘ .‘ f
Clearly, the problem defined by equations (9-75) covers a wide range o
steady-siate heat conduction problems as special cases.
Let ¢yir)j=1,2,3,..., be a sel of hasis functions. We construct the n-term
trial solution T{r} in the form ' C o

Ty = ol + 3. 1) (9-76)
Jj=1

where the function iro(r) is included to satisfy the nonhom.ogencous part of the
boundary condition (9-75b) and the basis functions ¢,(r} satisfy the hor_nogcneoqs
part. When all the boundary conditions are homogeneous, tht? f.unczlon y’:o(r]. is
not needed. The subseript » in the trial solutionT, (r) denotes that it is an n-term trial

solution. - _ ) . . g .
When the trial solution (9-76) is substituted into the differential equa(.lon
(9-75a), a residual Rle (... ... ear}is lefl, because Ty(r) itis not an exact solution.

We obtain

V2T )+ AT, (0 + ig(r) =R(c,, 095y #0 (9-77)

‘Then the Galerkin method for the determination of the n unknown cqefﬁcienls
£1,€3,---:Cy 18 given by

.[ ¢j(r)[v2i(r) + A:J‘-‘,,(r) + %g(r)] dv=0; ji=12,...,n (9-78a}
R -
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which is written more compactly in the form
J- ;i R{cy, ¢p, . e do =0 j=1,2....n (9-78b)
R

Equations (9-78) provide n algebraic equations for the determination of » un-
known coeflicients ¢,, c,,...,¢,.
If the problem can be solved by the sepiration of variables and the basis

lunclions ¢;(r) arc taken to be the cigenfunctions for the problem, then the

solution generated by the Galerkin method becomes the exuct solution for the
problem as the number of terms » approaches infinity. However, in general, the
eigenfunctions for the problem are not available, hence the question arises
regarding what kind of functions should be chosen as the basis functions to
construct the triai solution.

The lunctions ¢fr), (j = 1,2,...,n) should satisfy the homogeneous par{ of the
boundary conditions and should be linearly independent over the given region
R. The [unctions ¢;(r}, j=1,2,...,n, il possible, should belong to a class of
functions that are complete in the considered region. They should be continuous

in the region and should have continuous first and second derivatives. They may

be polynomials, trigonometric, circular, or spherical functions, but they should
satisly the homogeneous part ol the boundary conditions lor the problem.

Construction of Function ¢;(r) When Boundary Conditions
Are All of the First Kind

In regions having simple geometries, such as a slab, cylinder, sphere, or rectangle,
the functions ¢ ,(r) can be taken as the eigenfunctions obtained by the separation
of variables that are available in tabulated form in Chapters 2—4. Thus, the
functions ¢;(r) can be used as the basis functions to construct the trial solution
T(r){or the problem. However, there are many situations in which the boundaries
of the region are irregular; as a result, it becomes very difficult to find basis
functions ¢,(r) that will satisfy the homogeneous boundary conditions. Here we
present a methodology to construct the basis functions ¢ (r) for such situations
in two-dimensional problems.

Let a function w(x, y) be a continuous function and have continuous derivatives

with fespect to x and y within theregion, and-in addition satisfy the homogeneous- - v

boundary condition of the lirst kind at the boundaries of the region:
w(x, y) >0 in R (9-79a}

wtx. ¥=0 on boundary § . (9-79b)
Once the functions w(x,y) are available, the basis functions ¢;(x, y) cin be
constructed by the producis of (x, y) with various powers of x and y in the form

ds=wxy... (9-80)

¢ = w, ¢, =wx, $3=wy, e = wx?,

——

FHE GALEKKIN M) nuw 7
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The functions ¢Ax. yhj= L2,.... n constructed in this munner satisly the }1omo-
gencous parl of the boundary conditions for the problem. have continuous
derivatives in x and y.and itis proved in reference 53, [p. 276] that they constitute
a complete system of functions. Then, the problem becomes one of dc!grrnhuug
the auxiliary lunctions m(x, y). These functions can be determined by utilizing the
cquations for the contour of the boundary as now described.

1. Region Having o Single Contintous Conrour. 1F the region has a single
continuous contour such as a cirele, the equation of the boundary cim be
expressed in the form

Hx. =0 on boundary § (9-81)

Clearly, the Tunction Fl, y} is continuous, has partinl derivatives with
respect to x and y, and vanishes-at the boundary of the region K. I'hen,
the function «wlx, v} can be chosen as

v r) = + FL.p) (9-82)

For cxample, for a circular region of radius R with center at the origin.
the cquation for the contour satishies the equation

Flx.p) =Ryt 310 (9-83a) -

and the funclion wix. y) is taken as

ey, 1) = RY — x* — 37 {9-83b)

[

. Region Having a Contowr as Convex Polynomial. Consider a region in the
form of a convex polynomial and let the equations for the sides be given
in the form

Fizax+by+d =0 {9-84a)

Fasux+by+d,y=0 (9-84b)
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Fo= s+ by +d,=0 =87
Then, the function w(x, y) chosen in the form
wix, 1) =L Fla o)L F (¥-63)

vanishes at every point on the boundary and satisfies the homogencous
part of the boundary conditions of the first kind for the region.

3. Region Huving a Contour as Nonconvex Polynomial. The construction of
the function wix, 1) for this case is more involved, because Lhe function

o
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D
“\ w(x, ¥) has to be assigned piecewise in dilferent parts of the region. Further
- discussion of this matter can be found in reference 53 [p. 278].
s
DR Example 9-6
D) Construct the functions w{x, v) as discussed above for the four dillerent geo-
ol melries shown in. Fig. 9-4, i
': ‘ Soturion. The equations of the contours for each of the four geometries shown
D in Fig. 9-d4a,b,c,d are given, respeclively, as
- d—x=0 a+x=0 b—y=0 b+y=0 (9-862)
)
D y—ax=0, p+fx=0 L—x= ) (9-86b)
_
D »
B X
d , y—ax=0
:} plpb—y=0
Di atx=0 -a+x=0 L-x=0
___\__L 0 Lo . r-/ .
:J, i " : 0 ! '
D ) Rpby=0
™
‘-/ ’
,H) fn) Rectangular region p+fx=0
- ‘r

L

3
A

AL PR

3
-

4
~

AR

o

f
o

{b} Triangular region

N
N\

te) Triangular region

) A crescent shaped region between
two intersecting circles
Fig. 9-4 Regions having boundary contour in the form of a convex polygon and a region
bounded by two circles: {a) rectangular region; {b) triangular region: (¢) triangular region:
{d} a crescent-shaped region between two intersecting circles.
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x=0, y=0, |-’-‘—§=0 (9-86¢)

RE—x?—y?=0, RI-(x—L)'—y*=0 (9-86d)

Then the corresponding functions w(x, y) for each of these geometries shown in
Fig. 9-da.bed arc given respectively as 7~ -

wlx, y) = {a? — x3)(b* — ) {9-87a)

wix, )= {y—ax)(y 4 f)(L—x) ‘ (9-87b)

wlx,y) = x,v( 1— X {) {9-87¢c)
: a b

wlx, 3} = (R? — x? — p)[R2 — (x — LY — y*] (9-87d)

Construction of Functions ¢;(r) for Boundary Conditions
of the Third Kind

We consider one-dimensional steady-state heat conductiori in a slab of thickness
1. subjected Lo conveetion into a medium at zero (emperture, The houndary

conditions at x =0 and x = Lare

[_, T, T] =0 (9-88a)
dx x=0

["_T ¥ hzT] -0 (9-88b)
dx x=L

If such a heat conduction problem is to be solved by the Galerkin method, the
first two trial functions ¢, (x) and ¢,{x) must be chosen as ’

b \‘( L. b ) {9-891)
=x*|x—-L- - - -84
' 34 hyL '
¢ —(L—r)z(w L (9-89b)
? AT T 244,L
and the remaining ¢4, ¢y, ... can be taken as
$;=x(L—x)  j=34,5.. {9-89¢)
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Then, the trial solution constructed as
Tix)=¢ +¢,+ Y b, in  0<x<L (9-89d)
i=3

satisfies the boundary conditions (9-88a,b) for all values of ¢;,j 2 3.
IFor other combinations of the boundary conditions of the first, sceond, and
third kinds, functions ¢ are constructed with similar consideralions,

Integration Formula

“In peﬂ'urming compulations associated with the application of the Galerkin
method, the following integration formula is useful [53, p. 269]

, L k(L )mdx___fl_'”! _ Lk+m+l (9_90)
I Y

Example 9-7

Consider the following onc-dimensional steady-state heat conduction problem

&°T . .
—= 4 AT+ Bx=0 in O<x<li {9-9ia)
dx?

T=0 at x=0 and x=1 (9-91b)

where A and B are constants. Solve this problem by the Galerkin method
using one and two term trial solutions and compare the approximate results
with the exact solution of the problem for the case A = B =1,

Solution. The application of the Galerkin method gives
AT . .
;l—-—z—-i-AT-f- Bx | (x}dx =0, i=1,2,.... {9-92)
x=0] 0X

where ¢ix) are a set of basis functions and T{x) is the trial solution. The busis
functions are chosen as

$y=x(1-x): $=x"(1-x),... (9-93)

which satisly the homogeneous boundary conditions (3-91b) for the problem.

e8]
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One-Term Trial Solution. We choose the trial selution as

Tl(x]=cl¢1(-\']

353

(9-94a)

where the basis function ¢, (x}), satisfying the homogencous boundary

conditions (9-91b), is taken as

k)

T R R | IR IR

Then we have

(9-94h}

{9-94c}

{9-944)

Introducing equations {9-94c,d} into equation (9-92), the ope-term

Galerkin method of solution gives
1
J. [~2¢c, + A{eyx ~ ¢, 52+ Bx]{x — xY)dx =0
x=0 .
Performing this integration and solving for ¢, we obtain

B

(‘I  — =
Then the one-term trial solution becomes
-~ B .
T = oo = (1 — X)
4[1 —(A4/10)] .

For the case A = B = [, this result reduces [o

T, {x)= :—;é x(l —x)

. Two-Term Trial Solution. The trinl sofution is taken as

ir:2(-\') = (X) + c20,(x)
where the basis [unctions ¢,(x) and ¢,(x) are chosen as

¢ {x) = x(1 —x), $a{x)=x*1 —x)

(9-95a)

(9-95b)

[9-96u)

(9-96b)

{9-97a)

(9-97b)

g

<

T

f 3 h

b
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Then we have

o) =¢,(x — x3) 4 ¢,(x2 — x?) {9-98a)
d2Ty{x) :
T — 2, +2c, - 603x (9-98b)

Introducing cquations {9-98a.b) into equations (9-92) we obtain

g2 ’-1'-2 _ .
y + AT(x}+ Bx {(x —x*)dx=0 for i=1 (9-99a)
0 A

YZ

12 Tz _ - -
4 ATy {x}+ Bx |[(x* —x¥)dx=0  for i=2  (9-99b)

o L dx?

where

d*T: -
2 4 AT, (x) + Bx=(—2¢, + 2c; — 63X)

xl

+ Al x — ey x? +eyxt — e, %) + Bx :
(9-99¢)

When the integrations are performed, equations (9-99a,b) provide two
algebraic equations for the determination of the two unknown co-
elMcients ¢; and ¢;:

(1—fc+1(1 Ay, B 9-99d
U/t 2 10/°7% (-99d)

A 6( A4 3
g —{2=Z)e,== -
( lo)c”Lfs( 7)02 0" - O9%)

Tor the case of 4 = B = I, these coclficients are

then, the two-term trial solution becomes

o) = x(1 —x)(%+4llx) (9-100)
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TABLE 92 A Comparison of Approximate and Exact Solutions of Example 9-7

ford=B=1

T T, % T; Y
x Exact Approx. Error Approx. Error
0.25 0.04400 0.0521 + 184 0.04408 +0.18
0.50 0.06974 0.06%4 — 048 0.06944 ~0.43
0.75 0.06005 0.0521 —132 0.06009 +0.06
0.85 0.04282 0.0354 —113 0.04302 +0.46

3. The Exact Solution. The exact solution of the problem is given by

Bl sin A*2x '
Tix)=—f ———— 3-101a
) A[sinA"" x] (5-1018)

. For A = B =1, the solution becomes

T(x) = 1.1884sin x — X (9-101b)

We present in Table 9-2 a comparison of the one- and two-term approximate
solutions with the exact result. Clearly, the accuracy is significantly improved

using a two-term solution.

Example $-8
Consider the following steady-state heat conduction problem for a solid
cylinder:

li(r“T)Jr(]_lz)T:o in  1<r<2  (9-1023)
.

rdr\ dr
T=4 at r=1 {9-102b)
T=8 . at r=2 {9-102c})

Solve this problem by the Galerkin method using one-term trial solution and
compare this approximate result with the exact solution of the problem.

Solution. The application of the Galerkin method gives

1 T14( dT 1\=
Ll[;d—r(r-d?)Jr(l —F)T]qs,.(r)dr.—_o (9-103)

The one-term trial solution is taken in the form

T = dol) + 24,10 (9-10da)
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where the function g(r) that satisfies the nonhomogencous part of the
boundary conditions (9-102b,c) is taken as

Wolr)=4r (9-104b}

and the first basis function ¢,(r} that satisfies the homogeneous parts of the
boundary conditions is taken as

o) ={r—1Hr—2) (9-104c)
Substituting the trial solution {9-104) into equation (9-103) [or i = 1, perform-

ing the integration and solving the result for ¢, we obtain ¢, = — 3.245. Then,
the.one-term approximate solution becomes

T} =3.2450— D2 — 1) + 4r {9-105)
The exact solution of this problem is
T(r) = 14.43J (1) + 3.008Y, () (9-106)

where J,{r) and Y,{r) are the Bessel functions. A compatison of the approximate

and exiel solutions at the Tocations r=1.2, 1.5, and L8 shows that the

agreement is within 00355, Thercfore, in this example even the une-tlerm
approximalion gives very good result.

Example 9-9

Solve the steady-state heat conduction problem in a rectangular region
(—a,a4; — b,b) with heat generation at a constant rate of g W/m?> and the
houndanf‘s ket at zero temperature using the Galerkin method and compare
the result with the exact selution,

Solution. The mathematical formulation of the problem is

¢PT BT | .
\c‘z+'6yi +}-{g=_0 in —g<x<a, —b<y<h (9-107a}
T=0 at x=+a. and y=+4h {9-107b)

The.solution of this prublcm by the Galerkin method is written as

2 27
j J [a T oo E !g]wx,y)dxd}mo (9-108a)
=—pgJdy=—b a k

We consider one-term trial solution taken as

Ti(x, ) =c;dy(x,¥) (9-108b)
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where the function ¢, is obtained from equation {9-87a) as
¢y, 3 =(a* = xH(b* =) (9-108¢)

Introducing this trial solution into equation {9-108a) and performing the
integrations we obtain

5 gk
ga? 4+ b?

Hence, the one-lerm approximate solution becomes

5
Ti(x,y) = JJ/r bz( a? — x})(b? — y?) {9-109)

The exact solution of this probiem is

N rrcosh(,&’3"2)-cos(ﬁnfc-)
_xz}_zaz z(_i) b a

3 .
2 =0 b cosh([}n?)

1)

T(x,J=)=%|:az (9-110)

where

(2n + Da

b=

To compare these two rcsults we consider the center temperature (i, x =0,
= 0) for the case a = b, and obtain

Approximate: T;(0,0) = 390 o31259% (9-111a)
16 k k
Exact: T(0 0)—9“2[' 2 ¥ i] ~0293%2  0-111p)
: ' k|2 “Soplcoshp, | T &

The error involved with one-term solulion is about 6.7, For a two-term trial
solution, the temperature distribution may be taken in the form

Ta(x, p) = (c; + c;x)(a® — x2)(b% — y?)} {9-112)

and the calculations are performed in a similar manner to determine the
coellicients ¢, and c,.
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9-7 PARTIAL INTEGRATION

In the previous section, the Galerkin method has been applied to the solution of
two-dimensional steady-state heat conduction problems by using a trial solution
T{x,y) in the x and y variables; as a result, the problem has been reduced to the
solution of a set of algebraic equations for the determination of the unknown
cocflicients ¢, ¢;.. . A more accurale .lppmxun.llmn is ablainable il 2 one-
dimensional trial tum,uon is used either in the ¥ variable T(x) or the y vari-
able T(y), and the problem is reduced to the solution of an ordinary differential
equation for the determination of a function Y(y) or X (x}. One advantage of such
an approach is that, in situations when the functional form of the temperature
profile cannot be chosen a priori in one direction, it is lelt to be determined
according to the character of the problem for the solution of the resulting
ordinary differential equation.

The partial integration approach is also applicable for the approximate
solution of transient heat conduction problems.

We illustrate the application of the part:al integration technique with some
representative e\(amples

Example 9-10

Solve the steady-state heat conduction problem considered in Example 99 .

with the Galerkin method using partial inlegration with respect to the p
variable and solving Lhe resulling ordinary dlﬂ'crenllal cquation in the x
variable.

Solution. The Galerkin method when applied to the differential equation
(9-107a) by partial integration with respect to the y variable, gives

b 2 2
J [a_I+aT g]rj;(y}dy 0 in —a<x<a (9-113)
—pLax? o ay?

We consider only a one-term trial solution T,(x, ¥) chosen as
Tix )= $:1(NX(x) . (5-114a)
where |
py=bi—y (5-114b)
This trial solution satisfies the boundary conditions at y = =+ b; the function,

X(x) is yet to be determined. Introducing the trial solution (9-114) into
equalion (9-113) and performing the indicated operations we obtain

X(t)—i (r)—~—59— in - —a<x<a (9-1135a)
2h? © 4% '
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Subject to the boundary conditions

X(x)=0 at x==ta (5-115b}

where the prime shows differentiation with respect to x. The solution of the
problem given by equations (9-115) is

co( /255

X(x)—ﬂ [P T (9-116)
cqsh(ﬁg)

Then the one-term trial solution becomes

cosh(\/ﬁ %)

L o ey (9-117)
cosh(, /2.5 E)
and the temperature at the center {ie., x=y==0)for a=b becomes
~ gﬂ2
Ti(x,9) = 0.3026 - (9-118)

This result involves an error of only approximately 3.6%, whereas the one-
term approximation obtained in the previous example by the application of
the Gaalerkin method for both x and y variables involves an error of approxi-
mately 6.7%. Thus the solution by partial integration improves the accuracy.

Example 9-11

Consider the following steady-state heat conduction problem for a segment
of a cylinder, 0 <r < 1,0 <8< 8,, in which heat is generated at a constant
ratc ol g W/m" and all the boundary surfaces are kept at zero lemperature.

e D2 '
1‘_( ‘T)+—1—‘—T+g=0 in 0gr<l1, O<<i (9-119a)
rér\ or r2og*  k
T=0 at r=1 8=0 0=8, (5-115b)

Solve this problem using the Galerkin method by partial integration with
respect to the 8 variable. Compare the approximate result with the-exact
solution.
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Selution. The Galerkin method is now applied lo the diﬂercntial equation
{(9-119a) by partial integration with respect to the variable 0.

W Fraf aT\ 18T ¢ . ' ‘
B + o |a@de=0 i 0<r<t (9120

emol t OF r-_(; 1 367

we consider a one-term trial solution taken as

Tir, ) = F(r)ep () (9-121a)
where
b (0= sin(ff) (9-121b)
B

The trial solution thus chosen satisfies the boundary conditions at § =0 and
8 = 0,; but the function F(r) is yet to be determined. Introducing the trial
solution {9-121} into (9-120) and performing the integration we obtain

2
ld(rd—-F)—-ﬁ-iF(r)=—iq n O0<r<l  (9-122a)
r km

rdr\ dr
F{irj=40 at | r=1 {9-122b)
where
B Egg_ L (9-122¢)
A partioular solution of equation (9-122a} is
_4g_r
Fonkpr-4
and the complete solution for F(r) is constructed as
PO =e? 4 car 4+ 2 ,;'z‘r-i‘; 129

Here, ¢, =0 [rom the requirement that the solution should remain finite at

PARTIAL INTEGRATION 361
Then the solution for F(r) is oblained as

4 2B
Fin= 291 ,

. 9-124
nk i —4 { )

and the one-term trial solution T{r, 8) becomes

- ! -1 ptritnd ]
T, th = s ', :;in(n() (v-115)
nk{nfly) —4 Uy

The exact solution of the problem (3-119) is

2 _ dnrifu)
Teo=" v 170 sin("“? (9-126)
whpai'ss. n(nnf/8,)t — 4 o

The one-term approximate solution obtained above represents the [irst term
in the series ol the exact solution. ‘

Example 9-12

Solve the steady-state heat conduction problem with constant rate ol heat
generation for a region bounded by x=0,x=a,y =0, and y = f(x) for the
boundary conditions as shown in Fip. 9-5, using the Galerkin mcthod by
partial integration with respect to the y variable. -

Solution. The mathematical [ormulation of this problem is given as

T
TT9 0 i

a2 F ' O<x<a, O<y<f(x} (9-12731

N

r=0; ¢, is determined by the application of the boundary condition at r =t T=0
to give
0 AT a "
4g | o =0
€y =——
1 nkf*—4 Fig-9-5 Region considered in Example 9-12.

N
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T=0 ' at  x=0, x=a, and y=fx) (9-127b)
aT
3 =0 at r=0 (9-127¢)

The Galerkin method is now applied (o the differential equation (9-127a) by

partiol integration with respeet 1o the p variable. We obtain
IR 2T
J [;m; s +g}¢ (mn = (9-128)
pmaLENT )
We consider one-term trial solution taken as
T ) = X(x) ¢, () (9-1290)
where
¢ () =1y = fx)] {9-129b)

Clearly, this (rial solution satisfies the boundary conditions at y=0 and
y = f(x¥ but the funclion X(x) is yet to be determined. Introducing the trial
solution (9-129) into equation (9-128) and performing the indicated opcrations
we obtain the following ordinary dlﬂLanImI equation for the determination
of the [unction X(x).

g

VXA SN = - 5 in O<x<a (9-130)

subject to

X=0 at x=0 and x=a {9-131)_'

Once the lunction f{x) defining the form of the boundary arc is specified. this
equation can be solved and the [unction X (x) can be determined. For example,
the case v = f{x)=h, corresponds to a rectangular region and the equation
(9.130) reduces to

w8 5¢ .
N X =— in O<x<u (9-132)
ah- dh7k

X=0" at x=0 and x=u (9-133)

which is the same as that given by eqguations (9-115) and the one term
approximate solution becomes

Fiix ) = (v — BAX(N) (9-134)

where X{x) is as given by equation {9-116}
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9.8 APPLICATION TO TRANSIENT PROBLEMS

We now illustrate the application of the Galerkin method to the solution of
time dependent problems with the [ollowing two examplcs

Examplc 9-13

A slab in 0 < x € U is initially at a temperature T, )= Ty() - x° ). Var l:!m.s :
>0, the boundary at x =0 is kept insulated and the boundary at x = 1 is
kept at zero temperature. Using the Galerkin method combined with partial
integration, obtain an approximate solution for the temperature distribution
T(_\,r) in the slab and compare it with the exact solution T(x,?).

. Solution. The mathematical formulation of this problem is given as

*T T_! AT, 1)

= - in O<x<t, >0 {9-135a)
ax* oo &t .
E’-ﬂ=0 at x=0, t>0 {9-135b)
ax
T =) at x=1, (=0 {9-135¢)
T=Tyll—x?) for =0, in 0<x<g1l (9-135d)

We apply the Galerkin method Lo equation (9-135a) with partial inlegration
with respect to x and obtain ,

1 27
J [‘”: '5T]4,;(x)dx 0 (9-136)
a2

emn L

and choose a one-term trial solution T,(x, ) as

Tix = Tof(0). () " {9-137a)

where |
P x)=1—x? {9-137b)
fin=1 for =0 (9-137¢)

and the function f(¢) is yet to be determined. Clearly, the trial solution chosen
as above satisfies the initial condition and the two boundary conditions for
the problem. Substituting the trial solution (9-137) into equation (9-136) and
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performing the indicated operations we obtain the differential equation for

f(0) as

T4 F =0 wr >0 (9-1382)

fin=1 for =0 {9-138b) .

The solution for Jiyis
f(f‘)z e—(S:ert (9_139]
and the one-term approximate solution T)(x, ) becomes

T(%!Q (1 — x2)e= (5220 (9-140)

0

The exact solution of the problem (9-135) is obtained as

TOO_ 43 1y L e icos g (9-141a)
Tn n=1{ I(n
where
2+ |
g = (..ﬂfzr_.!ff (9-141b} -

We list in Table 9-3 a comparison of Lhis approximale solution with the exact
solution. Even the one-term approximate solution is in reasonably good
agreement with the exact solution. Improved approximations can be ebtained
by choosing a higher-order trial solution in the form

T(x0=T, Z Ttk (9-142)
=1

where the functions ¢(x) satisfy the boundary conditions for the problem and

TABRLE -3 A Comparison of Approximate and
Exact Solutions of Example Y-13

[(T, - TYT] % 100

X xt =001 20 =0.1 =1
0.2 +1 —i +44
0.6 +2 +55 +3.1

APPLICATION TQ TRANSIENT PROBLEMS 365

the function fi{f) with f;(0)=1 is determined from the resulting ordinary

dilferential equations obtained after the application of the Galerkin method

with partial integration with respect to the x variable.

Example 9-14

The transient heat conduction probiem for a solid cylinder, 0 <r < I, with
heut generation within the medium is given in the dimensionless form as

:‘ ;‘(a((:) + Glr) = 'w;:"” i O<r<l, (>0 (9- 143
T = linite at r=0, >0 (9-143h}
T=0 at r=1, >0 {9-143¢)
T=0 for =0, 0grgl (9-143d)

Solve this problem by the combined application of the Laplace transform and
the Galerkin method.

Selution. The Laplace transform of this problem with respect to the time
variable.is

L(T_"}:.—‘ - (a '“) .srT+ a(:(rlh in O<r<| (9-144da)
cde N dr

Tir.s) = finite at r=40 (9-144b)

T(r,51=0 at r=1 {9-144c)

where T(r,s) is he Luplace transform of T{r, 1) and 5 is the Laplace transform
variable.
The application of the Gulerkin method (o equation (9-144a) is wrilten as

: ) ‘
J L[Ttr, sHdirdr =0 {9-145)

=0

where Tir,s) is the teial solution for Tor ) and .01 are the Tunctions tin
satisfy the boundary conditions for the problem and from which the trial
solution is constructed. In this example we show that il the proper function is
chosen for ¢;(r} and sufficient number of ¢,(r) are included to construct the
trial solution, it is possible to obtain the exact solution for the problem.

We choose ¢,(r) as

$udr)=Jolfiir) (9-146a)

I T e W N _-"\I ™S N

i

TN NS

AN N

e lintolalolalele

NN AN SN
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and the fi; values are the roots of
Jo(B)=0 (9-146b)
Then, each of the [unctions ¢;(r) satisfies the boundary conditions (8- 144b, ¢}

for the problem. We construct thc trial coluuon T(r.5) in terms of the ¢,(r)
funclions as

T= Z cibytr) =3 cidolBr) (9-147)
i A

where the summation is taken over the permissible values of §; as delined by
gquation (9-146b). Introducing equations (9-147) and (9-146a) into equatmn

REFERENCES 367
or

1 )Jo(ﬁ;r) ,,G(,,-)Jo(,;jr'),z,-- (9-151)

- 1
T(,,s)—Zg—g(s s+ TUB)

“The Laplace transform can be inverted by means of the Lapldcc transform

Table 7-1. cases | and &; we oblain

_’;zl)JO(ﬂjr)

T - i ‘G(r Vi (9-152
Tr.0= ; T —e 75 G o )dr  (9-1524)

rr=0

where the summation is over all eigenvalues §,'s whichare the positive roots of

DA A A

“

1

[ SIS AL S RN I S N N N A N N A

)

P

(9-145) we obtain

~1
J L[ZC’J°(ﬁ"r)].1°w"")dr:0’ i=1,2..0  (5-1483)
r=0 j
or
! ]
chj [ (dJo(ﬁ,r)) Jn(ﬁjr)}(,(mr)d”,lj YR fur)dr =0
i re ) dr dr i
(9-148b)
or

i

rJo(ﬂjr)Jo([i,-.r)dr + éj rGir)Joffirydr=0 (9-148c)

r=0

—Zc {8} + G)J

=0
~The first integral is evaluated as

1 ) L,
J "%(ﬁjﬂ%(ﬂs")dr:{Sﬂw) :ij (9-149)

Introducing (9-149) into {9-148¢), the summation draps out and we obtain

2, 1 1
_S[S-I—B_EZEJ%U]")J‘r=orG(P)J0(ﬁjr)dr (9-150)

We introduce equation (9-150) into {9-147) after changing i to j and r to ' to
obtain

- 'j:"(r. )= Z 1 o(ﬁ ")

A S(S-l—ﬂ }J (ﬁ} .[—': 'G(r‘)Jo(ﬁjr')dr' (9-!513)

Jo{f)=0 ~ (9-152b)

We note that, the solution obtained in this manner is in fact the exact solution
of this problem.
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PROBLEMS

9.1 A semiinfinite region x>0 is initially at zero temperature. For limes
{ > 0, the convection boundary condition at the surface x =0 is given as
— k(@T/ex)+ hT = f,, where [, = constant. Obtain an cxpression for the
temperature distribution T(x,) in the medium using the integral method
with a cubic polynomial representation for temperature.

9.2 A semiinfinite medium x > 0 is initiaily at a uniform temperature T, For
times ¢ > 0, the boundary surface at x = 0 is subjected to a prescribed heat
flux, that is, —~k{dT/ax) = f{1) at x = 0, where f(r) varies with time. Obtain
an expression for the temperature distribution 7(x. 1) in the medium using
the integral inethod and a cubic polynomial representation for 7x, 1.

9-3 A rcgion cxterior to a eylindrical hole of radius r=bhtie.r>b)is initially

al zero lemperature, For times ¢ > 0 the boundary surface ut r = b is kep!

——
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at a constanl temperature T, Oblain an expression for the temperalure
distribution in the medium using the integral method with a second-degree
polynomial representation modified by Inr for T(x,1).
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9-4

APPROXIMATE ANALYTIC METHODS

A semiinfinite medium x > 0 is initially at zero temperature. For times ¢ >0

heat is generated in the medium at a constant rate of g W/m?®, while heat
is removed from the boundary surface at x =0 as k(8T/éx) = f = constant.
Obtain an expression for the temperature distribution T(x, 1) in the medium
for times 1 > 0, using the integral method and a cubiic polynomial represen-
‘tation for T(x, 1. ;

Consider a heat conduction problem for a semiinfinite medium x > 0 with
the lourth-power radiative hent transfer at the boundary surface x =0
defined as

2*T 13T
— = in x>0, t>0
Ax ot
P .
k—I og(TH—T2) at x=0, >0
fx :
T=T, for t=0, x=z=0

where T, is the surface temperature, Apply the formal solution given by
equation (9-40) for the solution of this problem. For the case of T, =0, by
performing the resulting integration analytically obtain an expression for

~ the surface temperature 7T, as a function of time.

9-6 Consider the lollowing steady-state heat conduction problem for a rect-

angular region 0 < x<a,0<y<h

a° T PT
e in O<x<a, O<y<d
ax? 33'
- T=0 ’ at y=0, y==5
(ZT_O ‘ at -, x=0
ax

3
T=T, sin(-ug‘}-) at Xx=a

Solve this problem by the Galerkin method using partial integration with
respect to the y variable for a trial function chosen in the form T, p) =
J(x)sin{3ny/b) and compare this result with the exact solution.

9.7 Solve the following steady-state heat conduction problem:

MT P71
+——+-g=0

e R “in the region shown in Fig. 9-4b

T=0

on the boundaries

PROBLEMS

n

using the Galerkin method and a one-term trial solution chosen in the form

Ty (x5 1) = ¢y (y — ax}y + fo)(L— x)

0.8 Solve the following steady-state heat conduction problem

B T 02
t‘y

T=0

!
kg

0

on the boundaries

using the Galerkin method and a one-term trial solution.

inthe region shown in Fig. 9-4c for a=b=1
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MOVING HEAT SOURCE
PROBLEMS

There are numerous engineering applications, such as welding, grinding, metal,

cutting, firing a bullet in a gun barrel, flame or laser hardening of metals, and
miny others in which the cideulation of temperature field in the solid is modeled
s a problen of heal conduction involving a moving heat source, Following the
pioneering works of Rosenthal [1-4] on the determination of temperature
distribution in a solid resulting from arc welding, numerous papers appeared on
the subject of heat transfer in solids with moving heat sources [5-29].

In machining, grinding, cutting, and sliding of surfuces, the ecnergy gencrated
us 4 result of [riction healing can be modeled as a moving heat source. The
determination of temperature field around such heat sources has been studied
by several investigators [14-23]. .

More recently lasers—because ol their ability to produce high-power beams—
have found applications in welding, drilling, cutting, machining of brittle materials,

"and surface hardening. ol metallic alloys. For.example, in surface hardening, a

high-power laser beam scans over the surface and unique metallurgical structures
may be produced by rapid cooling that occurs subsequent to the laser heating.
The determination of temperature field around a moving laser beam has been
studied in several references [24 32,

The abjective of this chapter is to infroduce the nmtheinatical formulation

and the method of solution of heat conduction problems involving 1 moving heat”

source by considering simple, representative examples for which analytic solutions
are obtainable by the method of separation of variables under quasi- statlonary
conditions.

R R L e LT I U

10-1 MATHEMATICAL MODELING OF MOVING
HEAT SOURCE PROBLEMS

A moving heat source, depending on the physical nature ol the problem. can be
modeled as a point, line, surface, or ring heat source that muy release its encrgy
either continuously over the time or spontaneously at specified times. As discussed
in Chapter 6, we use the [ollowing notation to ldenufy various types ol continuous
heat sources:

g, = point source, W
g; =line source, W/m
g° = surface source, W/m?

where the superscript ¢ refers (o o conlinuous source. For an instantaneous
source we change the superscript ¢ to i.and alter the units of the source accordingly
as discussed in Chapter 6.

The spatial distribution of the strength of the heat source depends on the
physical nature of the source, For example, the energy distribution in a laser
beam generally is not uniforin spatially. Tt may have a Gaussian distribution (i.e.,
intensity decreasing exponentially from the center of the beam with the square

of the radial distance) or a doughnut shape or a combination of these two shapes.

Also, il may be a continuous source over the lime or activated as pulses lor short
periods of time,

In this section we presenl the mathematical modeling of the determination of
temperature fields in solids resulting from a moving point, line, and surface heat
sources under the quasi-stationary state conditions.

A Moving Point Heat Source

We consider a point heat source of constant strength g7 watts, releasing its energy
continuously over the time while moving along the x axis in the positive x
direction with a constant velocity u, in a stationary medium that is initially at

zero lcmperature; Figure 10-1a illustrates-the geometry and. the coordinates.. .. ...

The three-dimensional heat conduction equation in the fixed x, y, = coordinate
system, assuming constanl properties, is laken as

L NS ERPLEY A 1T
{3z, 1)

1 - 1 10-1a
RS |1 L o o ( ]

where T = T(x, »,z,1). .

Let the heat source be a point heat source of constant strength g watts,
located at p =0,z =0 and releasing iis energy continuously as it moves along
the x axis in the positive x direction with a constant velocity 1. Such a point heat
source_is_related_to the volumelric source g(x,y. z,t) by the delta [unction
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MATHEMATICAL MODELING OF MOVING HEAT SOURCE PROBLEMS 375

but the partial derivatives with respect to y and z remain unaltered. Then, the
heat conduction equation {10-1a) in the coordinate system £, y,z moving with

# T BT PT |, 1/oT oT

We note that this equation is a special case of the heat conduction cyuition fora
moving solid given by equation (!-56) in Chapter 1. In-equation {10-4), the solid
is moving with a velocity u in the negative ¢ direction with respect to an observer

Jocated al the source; thisis the reason for the negative sign in front of the velogity- - - -

Quasi-Stationary Condition. Experiments have shown that, if the solid is long
enough compared to the penetration depth to heat transfer field, the temperature
distribution around the heat source soon becomes independent of time. That is,
an observer stationed at the moving origin &' of the £, y, z coordinate system fails
to notice any change in the temperature distribution around him/her as the
source moves on. This is identified as the quasi-stationary condition 3] and
mathematically defined by setting 8T/dt=0. Therefore, the guasi-stationary
form of equation {10-4) is obtained by setting 8T/0r =0 as

") 374 MOVING HEAT SOURCE PROBLEMS
b
- re
- -~
oA P
g _ e the source is given by
. 3 g 7
~7 o u
= e oyt
)
2
- z
_/) 1
N fa) () ' !
B Fig. 10-1 A moving point heat source: (a) fixed coordinates x, y, z (b) moving coordinates in equation {10-4).
tu f- . . :
. - |
~ .
N notatien as !
- I
;; gix, y,2,1) = g58(y — 0)5(z — 0)d(x — ut) (10-1b)
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where 8{+) denotes the Dirac delfta function.

Transformation of the Origin. In the solution of moving heat source problems,
it is convenient to let the coordinate system move with the source. This is
achieved by introducing a new coordinate ¢ defined by

E=x—ut (10-2)

Figure 10-1b illustrates the new coordinate system £, y,z that moves with the
source. The heat conduction equation {10-1a) is transformed from the fixed x, y, z
coordinate system with fixed origin 0 to the moving coordinate system £, y, z with
moving origin O’ by the application of the chain rule of differentiation given by

4] 0 1
AT(E y.2.t) 8T 0Td aT 8
(€32 )=___c+__/_ﬁf+ar¢/f‘+ -%=—.’3T+--T (10-3a)

] 2EM Dy iz it ‘}‘E iy
since (8&/8) = — w. The derivatives with respect to x becomes
- 1 1]
aT o8Taf oT aT '
ol A uiiaiiie W NPl 10-3b
dx vilé a % az ( )
PT T 1039
o (10-3¢

MPT NPT AT | udT '
e ot e - g HEW(WE) = — - o= 10-5
st ot g Ts (@) = - - = (10-5)

where &(y} = 6(y — 0). and so forth.
Equation (10-5) can be transformed into a more convenient form by introduc-
ing a new dependent variable (¢, y, z) defined as '

T(E, p.2) = O(&, y, 2)e ™2 (10-6)
Then equation (10-5) takes the form

%9 9% 0%

pzr’ py? ac?

i .
(i) 0.+ L gesB00M6@e ™ =0 (10T
P ke :

Here, the exponential /%% appearing in the source term can be omitled, since
the term vanishes for ¢ # 0 because of the delta function §(¢) and the exponential
becomes unity for £ =0.

A Moving. Linc Heat Source

We now consider a line heat source of constant strength g§ W/m, located at the
x axis and oriented parallel to the z axis as illustrated in Fig. 10-2a. The source
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releases its energy continuously over the time as it moves with a constant velocity
u in the positive x direction. The medium is initially at zero temperature. We
assume (27 /dz) =0 everywhere in the medium. Then the two-dimensional heat
conduction equation in the x, y coordinates is taken as

BZT 6ZT 1 1T
Fw S+ -5+ J(r) f)=- Yy (IO-Ba).

where T = T(x, y,1). The linc hcal source gy W/m is reluted Lo the volumelric

" source g(x, y, t) by the delta function notation as

" g(x, 3 1) = g 8y — 0)6(x — ut) (10-8b)
W w1 1
3 m m m

m

Transformation of the Origin. This heat conduction problem is now transformed
from the x, y fixed coordinates to new £, y coordinates moving with the line-heat
source by the transformation

E=x—ut {10-9)

as illustrated in Fig. (0-2.
By following the procedure described prewously, we transform the heat
conduction equation (10-8) to the moving coordinate system (¢, y) as

32T T | ar  aT
F gt =~ e — sl 10-10
i st 53 oyt 91_ (&) (J’} PRLFT: ( )
gt Bf
g
/
s
~
Ve
Ve
/ ([
’
1 ’
’
¥ [P
0 o

{a) )]

Fig; 10-2 A moving line heat source: {a) fixed coordinates x, y; () moving coordinates

&y
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Quasi-Stationary Condition. As discussed previously, the quasi-stationary lorm
of equation (10-10) is obtained by setting (87/dt) = 0. We find -

é 1
Iz bj AH[_@(':)L’U}”‘—-:; {10-t1)

This equation is transformed into a more convenient form by introducing a new
dependent variable (€, v} defined as

TG ) =0 et (10-12)

Then equation (10-11) takes the [orm

88 g% . uy? 1
i) 84+-G. =0 10-13:
3" oyt (2«) P (10-132)
where
G =g} o(&)d(y) ‘ (£0-13b)

We nole that the term 22 that would have appeared on the right-hand sidc
of equation (10-13b) is omitted for the reason staled previously.

A Moving Plane Surface Heat Source

We now consider a plane surface heat source of constant strength g W/m?,
oriented perpendicular to the x axis, as illustrated in Fig. 10-3. The source
releases its energy continuously over the time as it moves with'a constant velocity
1 in the positive x direction. For the one-dimensional case considered here we
assume (@T/dy) = (8T/8z) = O everywhere, hence the differential equation of heat

£ 8

:
1
!
|
|
I
;
i
¥
1

{at) )]

Fig. 10-3 A moving plane surface heat source: (a) fixed coordinale x: and (b) moving
coordinate £,
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sonduction-reduces to

ONE-DIMENSIONAL QUASI-STATIONARY PLANE HEAT SOURCE PROBLEM 379

10-2 ONE-DIMENSIONAL QUASI-STATIONARY PLANE

F T | 18T
S et =-—

™ o (10-14a)

where T = T{(x. ). The moving continuous surface heat source g is related to the
volumelric source g{x, 1) by

glx, 1) = gid(x — ut) (10-14b)
LA LA
m* m® m

Trausformation of the Origin, The heat conduction equation (10-14} is trans-
formed from the fixed x coordinate to the moving & coordinate by the transfor-
mation

E=x—ut (10-15)

By following the procedure described previously, the heat conduction equation
{10-14} is transformed to the moving & coordinate as

2T 1 C1/eT AT
e =g (E) == — — -
T kg‘ {£) a( o u ag) (10-16)

Quasi-Stationary Condition. Assuming quasi-stationary condition, equation
{10-16) reduces to

1
G 13 Rt (10-17)
k Lo

and with the application of the transformation

T(E) = M E)e ~ 2 {10-18)

“equation (10-17), takes the form

42 - [ u\? 1
O (2N 54 ges(8=0 ’
i (m) £955(8) (10-19)

where the exponential exp[(w/2a)€], which would appear as a multiplier to the
source, is omitted for the reason stated previcusly.

HEAT SOURCE PROBLEM

In the problem of arc welding, the energy generated by the arc causes the
electrode to melt, hence the problem of temperature distribution around the arc
can be modeled as a problem of moving heat source. If the electrode is long
cnough with respect to its diameter, the heat transfer in the first few inches of the
clectrode can be envisioned as being of a quasi-stationary nature. H we assumce
there are no surface losses from the electrode (i.e., electrode is partially insulated),
the corresponding heat transfer problem can be modeled as a one-dimensional
moving heat source problem governed by the heat conduction equation (10-14).
If we further assume that the quasi-stationary condition exists, the governing
differential equation for this problem is taken as

CdrT ‘ udT
g B )= ———, i —w<f<or 10-20
- 795 (&) i in co<f<on ( )

subject to the boundary condition

‘gg—po as Eston (10-21)

Applying the transformation (10-18), equation {10-20) takes the form

2
(i) G+1g§6(f)=0 in —w<é<w (10-22}
2 k

40
d&?

which is the same as that given by equation (10-19). The solution of this equation
for & # 0, where the source term drops out, is taken as

Bg) = Coe W20 4 Coe for  —w<E<o (10:23)

Introducing this result into equation (10-18), we obtain

TE =Cre™ ™4+ C, for —ow<é<o (10-24) -

This solution is now considered separately for the regions £ <0 and £ >0 in the
form

T (&=Cye ™4y for ¢&<0 . (10-25a)
THE=Ce M4 CF for E>0 (10-25b)

and the unknown coeflicients are determined by the application of the following
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boundary conditions:

dT?

dﬁ —rq as E— 4 oo . (10-26u4,b)
T - =T* at E=0 (contipuity of lemperature) . {10-26c)
11 rr ‘
PR S g, at =0 (jumpcondilion} (10-26d)
dé dé

The last condition is obtained by integrating equation (10-20} with respect to &
from £ = — & to ¢ = + ¢ and then letting £ — 0.

The application of the boundary conditions (10-26a,b) and the fact that
T"—0asf— + oo gives C[ =0,C; =0; then

10-27:
T (=C; for &<0 ( @)

ONE-DIMENSIONAL QUASI-STATIONARY PLANE HEAT SOURCE PROBLEM 331

FEt4]

THE)

o

o

—_——— it

Fig. 10-4  Quasi-stationary temperature distribution arownd a moving surfaee heit
source. :

except assume that heat is lost by convection [rom the lateral surlaces of the rod
into an ambient at zero temperaiure with a heat transfer coeflicient h. If the rod

" has a unilform cross section A and perimeter P, then the governing one-dimen-

sional heat conduction equation allowing for convection losses {rom the laieral

THE=Cle ™  Jor >0 (10-27b)

The requirement of continuily of temperature (10-26¢) and the fact that T —0
as & -» 4 o, gives C) == € 22 C The unknown constunt Cis determined by the
application of the boundary condition (10-26d) to give

X
C;,=C=C=—¢° 10-28
2 L - ukgs ( )
Then the solution for the problem becomes
T @)= " g: for ¢<0 {10-29)
uk
THE) = - J cgwEN for  ExQ (10-30)

Figure 10-4 shows a plot of the lemperature profiles given by equations (10-29}
and (10-30). Here, the rate of melting of the electrode is equivalent to the speed
it which the sre moves along the clectrode, The term T *(&) represents the tem-
perature of a point al a distance ¢ [rom the arc, The maximuwm value of tempera-
ture occurs at the moving source: £ = 0. The medium remains at this maximum
temperature alter the source has moved furiher, because no surface losses have
been allowed in the problem.

Effects of Surface Heat Losses. To illustrate the modeling of this problem for
the case allowing for heat losses [rom the surfaces, we consider the same problem

surfaces is given by

'T | 10T
L+_f;(_\-‘;)=_‘__+fﬂ'r

10-31;
axt k! 2ot Ak (10-31a)

where Lthe Just term on the right-hand side represents convection heal losses from

the lateral surfaces of the rod. The surlace- heat source-gf-is-related to.the... .

volumetric source g{x, t) by
glx, ) = gidlx —ur) (10-31b})

The equation is transformed from the [ixed coordinate x to the moving coordinate
£ by the translormation

Em=x—ut (10-32)
Then the heat conduction (10-31} takes the form
T l T i Pl
e g = a_ - ‘—I) =T (0-33)
ag? k dt ¢
and for the quasi-stationary condition we have
d:T 1 udT Ph
— -yl ()= =T 10-34a
P (&= T ( }
dT .
E_»o for E-+4wc (10-34b)
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TWO-DIMENSIONAL QUASI-STATIONARY LINE HEAT SOURCE PROBLEM g3

Applying the transformation i (10-40) to equations {10-39) gives the solutién as
N .
'ﬁ T(E) = = (uf2a)d - o c
3 (&)= ¢{)e (10-35) % T-(8) = 2% plm - (0f2a118 for &<O {10-41a)
B equation (10-34) takes the form E " o
s | <
s 3 _ 9s  —pmemi2ae
o 12 p(E . | THE) = -5 e for E>0 (10-41b)
1 ‘ :f)(:‘") ot (EY i) =0 in —en<E<on  (10-364) 2km .
“ gHE= L’
) e * where e .
) N
; where : = f -"-) w1 (10-41¢)
" , P kA ) ‘
- me| (L) £ 21 (10-36b ;
- T \2a Ak (10-36b) i Clearly, equations (10-41) reduce to equation {10-30) for h = 0.
~ i
- |
~ The solution of equation (10-36a) for & 0 where the source term drops out is
- given by 16-3 TWO-DIMENSIONAL QUASI-STATIONARY LINE HEAT
D) SOURCE PROBLEM '
= DE) = Cpe™™ 4 Cre™mt for —w<é<ow and 0 10-37 : : :
3 l ? ¢ nd c# ( ) ' We now examine a two-dimensional situation in which heat flows in the x and
Y . ' - . . . .
) . . . . . ) ydirections while a line heat source ol constant strength g¢ W/m oriented parallel
g Tntroducing Lhis result into equation {10-33), we obtain to the z axis moves along the x axis in the positive x-direction with a constant
= .- s , . velocily u. We assume (77/z) = 0 everywhere.
: TUEY -y ot terdadle (o) gl AwrZulid for s <o (10-38) i Assuming quasi-stationary conditions, the transformed energy equilion is the
= . two-dimensional version of equation {10-19); that is :
:" It is convenienl {o consider this solution for the regions & < 0 and £ > 0, scparately,
A a8 _ a0 D w1
e o LA A Y (10-424)
) _ ~ . . , cer  ay 2 k .
= T (§)=C;e tmriuiinliy Cplm=tiInl ful {20 (10-39%a) -
-5 ‘ where
5, THE)=C; L,-[rrmurz.:n: + CF gl =2l for E>0  (10-39b) E=x—ut, 0=0E (10-42b)
2 and the boundary conditions for the determination of these four unknown 1 and 6(¢, y) is related to the temperature T{(Z, y) by
-~ coefficients are taken as ‘ )
= T(E, y) = B, y)e ™ W2 (10-42¢)
> AT ‘ ' '
- e =0 s vl . {10-d ) i Sinee 1he houndary conditions for T{E, ) nt infinity are given by
J T-=T" at  ¥=0 (continuity of temperature) {10-40¢) E_T_,() for £&o+o (10-43a)
Y aé B
~ aT" dT* . ) ..
™~ k Tk =g° at =0 (jumpcondition) (10-40d) i T
~ dg € -_}——»U for y—tow (10-43b)
, &y
~ Here, the last condition 15 obtained by integrating equation (10-34a} [rom ¢ =
- —¢lo & = + ¢ and then leiting e — 0. The application of the boundary conditions and equation (10-42a) is symmetric with respect to the £ and y variables; then, the
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function 0(, y) depends only on the distance r [rom the heat source. To solve this
problem, we write the homogeneous portion of the differential equation {10-42a)
in the polar coordinaltes in the r variable as

idf do %
- --(r---)—(~E)U=0 in O<r<x
rdr\ dr 2a

and treat the source term as o boundury effect at v - 0. To obliin a boundary
condition at the origin, a circle of radius r is drawn around the line heat source,
the heat released by the source is equated to the heat conducted away, and then
r is allowed to go lo zero. We find

(10-44a)

do
lim (— 2nrk ) =g as r—1{ {10-44b)
-0 dr '
40 —+0 as r— o {10-44c)
dr

Equation {i0-44a) is a modified Bessel equation of order zero and its solution
satisfying the boundary condition {10-44c) is taken as

o) = CKO(Z—:;X r)

where K, is the modified Bessel function of order zero.
Introducing the solution (10-45) into the boundary condition (10-44b) we find

' o i
—C2rkli —Kgl - =y
s g {5 ) =

|
t C= N
© 2k

(10-45)

(10-462)

(C 2mk)(1) = ¢ (10-46b.c)

since

for smail arguments and
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Hence the solution for !{r) becomes

| u ‘
Nry= - gtKol —r . 10-47
) 2nkgL U(Za') ( ]

and T(r,<) is determined according to cquation (10-42c) as

. p ! N RS . ”’ v 2
T(r, ‘;);‘Tr[k”l"\“('?a" g RN

The two-dimensional temperature field given by equation (10-48) can have
application in the arc welding of thin plates along the edges.

For large values of r, equation {10-48) can be simplificd by using the asymptalic
value of Ky(z) for large arguments: -

Ko(:}:\/;—;e”

10-4 TWO-DIMENSIONAL QUASI-STATIONARY RING HEAT
SOURCE PROBLEM

(10-48)

for large z {10-49)

—There are many enginesring applications_in_which the_moving_hgal_source can

~iL T
L] H

NS

B

7

be modeled as a moving ring heat source. Consider, for example, the turning
operation for a cylindrical workpicce on a lathe in order to reduce its diameter.
The thermal energy refeased from the cutting process will cause the heating of
both the tool and the workpiece. In such turning operations the relative velocity
of the tool with respect to the workpiece is large in the circumferential direction.
Thercfore, the heat generated during the turning operativn vdi be 1sgatded ds «
ring heat source moving along the outer boundary in the negative = direction as
illustrated in Fig. [0-5. We assume azimuthal symmetry and a ring heat source
of constant strength @ walls, releasing its energy continuously as it moves with
of constant velocity u along the outer surface of the cylinder, We allow for
convection from the outer surface of the cylinder into an ambient at zero
temperature and choose the initial temperature of the solid as zero.

o

Fig. 10-5 Maving ring heat source.
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The mathematical formulation of this problem is given as

1a/ aT\ T 100 18T
Sl —= 4+ - = bz ) = -
r E?r(} Br) 2z2  k2nb (r—b)olz +u) o« Ot
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aT
—=0 as I o] {10-53d)

g

This problem is now expressed in the dimensionless form as

IR AR RS RN W T N

-

o

\_/' A

L4

-

3

s AL

ALY

Lo N

DA A,
/

in 0‘<'r<b, —0<z< O {10-50)

subjeet to the boundary conditions

=0 at r="0 ; (10-513a)
or
A
T ohT=0 - at  r=b {10-51b)
ar
a—T—»D as z- koD {10-51¢)
ar
T=0 for  t=0 - (10-51d)

This problem has been solved in reference 23 by using the integral transform
fechnique. Here we describe its solution by the classical separation of variables
technique. In equation {10-50), the deita function 8(r — b) denotes that the source
is located at the outer surface of the cylinder and &(z + ut) shows its position at

time ¢ along the z axis,
The lixed coordinate system r,z is now allowed to move with the source by

introducing the transformation

E=z4ut (10-52)

In the moving ¢ coordinate system assuming quasi-stationary condition, equation
{10-50) reduces to :

2 t
!?—(rg) 5T+__Q_gt5(r_b)5{':)=ﬁa_7" in O<r<b, —w<i<w

ror\. ar r_’EZ k 2nh a0
(10-53a)
subject to the boundary conditions
i
ﬁ‘=0 at r=0 (10-53b)
or
aT
k 1—+}1T=0 at r=h {10-53¢)
ar

1 3 a at P ad
(_R l‘[’)+ "b+5(R-*l)5(Jn= i in OD<R<l. —m<yp<on

RAR\ OR) T o 3 oy
(10-54a}
subject to the boundary conditions |
i 0 t R=0 ' 10-5 b
—_— a = -
R (10-54b)
&y Bi
- — Y = 0 t = -
ar T3 W a R=1 (10-54¢)
a
W0 . as potw (10-54d)
an
where various dimensionless quantities are delined as
§ r T Qo
H=- R =y =" A =
= A K2nb
(10-55)
: -2b .
Pe = 27 = Peclét number, Bi= % = Biot number
o
With the application of the transformation
(R, gy = O(R, p)e~ F=i*hn {10-56)

the differential equation (10-54a) is transformed to

P a ) a0 pe\2 .
- R ! 00 SR S (Teriy *
R «‘R( «"R) My ( 4 ) FaR Dt 0 (10-57)

where e "% appearing in the source term can be omitted because the source
term vanishes for 7 £ 0 and exp [ — {Pe/4)n] becomes unity for n = 0. Therefore
we need lo consider the solution of the homogeneous equation

1 2 oo\ %8 [ Pe? )
RR R— |+——|— ]| 8=0 in 0<R<l, —co<y<om (10-58a)

fR) Mgt 4
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subject (o the boundary conditions

7]

Yy at  R=0 (10-58b)
R

) .

“f’.,.??gzo al R=1 {10-58¢)
drR 2

a0

SN 0 as "— i v “0-58(1)
on :

in the regions y <0 and 4> 0. Let #=0" be the solution for the region y <0
and 0=80" be the solution for the region 4> 0. The unknown coellicients
associated with these solutions are determined from the requirement of continuity
of temperature

- =g al =0 {10-594)
and the jump condition
20 o
007 _ W _ sk y=0 (10-59b)
oy '
This jump condition is obtained by inlegrating equation (10-57) rom 5 = — ¢ to

= + € and then letting ¢ = 0,

Once 8% are determined, the dimensionless lemperature ¥ * is determined
according fo the transformation given by equation (10-56). ‘

Finally, Lhe solution for the dimensionless temperatures i (R, ] are deter-

mined as
exp(EE+F)r;
' & By,  JolB.R) T\ 4T
t - L —_ 10-60¢
(R, y) r-;-(E?)’Mz 7o) - {10-60a)
2 n

where the fi, values are the roots of

Bl () '2'.11,(11,',) -0 (10-60b)

o,
FE\/(Z?) e (10-60¢)

and F is defined by
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Here the Peclét number is a measure of the ratio of convective diffusion (ie..
due to the velocity of the moving source) to the conduction diffusion. Therefore,
for the smaller Peclét number. the temperature field penetrates considerably
farther “upstream™ {rom the source than with the larger Peclét numbers.
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PROBLEMS

10-1  Consider the three-dimensional quasi-stationary temperature field T{E, », 2}
governed by the differential equation (10-5) with the boundary conditions
at infinity taken as

ar T

—=0 for {—- + oo, 53—_»0 for y— 4 o0,
o8 ' dy

AT

E—\— =0 for z—-+oo

éz

and the transformed equation (10-7) for the temperature feld 8(¢,y,2). In

equation {10-7), which is symmetric with respect to the variables £, y, and
z, the function B(£, v, z} depends only on the distance r [rom the point heat
source. Then

1. Equation (10-7) can be written in Lhe polar coordinates with respect to
the r variable only; write this equation without the source term.

2. Develop the boundary condition at r == 0 for this equation by drawing
a sphere of radius r around the point heal source, then equating the
heat released by the source to the heat conducted away and letting r — 0.

3. Bysolving thisequation in the polar coordinates, develop an expression
for the quasi-stationary temperature field T(r,£) around the moving
point heat source,

10-2 Develop equation (10-31a) by writing an energy balance for a bar of
uniform cross section with energy generation in the solid and heat dissipa-
tion from the lateral surfaces by convection with a heat transfer coeflicient
I into an ambient at zero (emperature.

10-3  The temperature distribution in the gun barrel resulting [rom the firing of

a bullet can be regarded as a problem of a point heat source moving with

a constant velocity u along the axis of a solid cylinder of radius b il the

base of the barrel is small enough compared to the outside radius of the
barrel.

Assuming (1) constant speed and the rate of heat release by the point

source, (2) no heat losses from the outer surface of the cylinder, and (3)

cylinder long enough with respect to the diameter so that quasi-stationary

10-4
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stale is established, develop the governing differential equations and the
boundary conditions needed for the solution of the quasi-stationary tem-
perature distribution in the cylinder.

Consider a boring process in order fo increase the inside diameter of a
hollow cylindrical workpiece. Such a problem can be modeled as a moving
ring heat source advancing axially along the interior surface of a hollow
eylinder. Assume a source of constant strength @, watts, releasing ils
energy continuously as it moves with a constant speed # atong he inner
surface of the cylinder and heat loss by convection from the outer surface
of the cylinder with a heat transfer coellicient /i into an ambient at zero
temperature, Initially the solid is also at zero temperature. Give the gover-
ning differential equations and the boundary conditions for the determina-
tion of the quasi-stationary temperature field in the cylinder. Note that
this problem is analogous to that considered in Section 10-4, except the
ring heal source is moving along the inside surface of the cylinder. Assume
negligible heat loss [rom the inner surface of the hollow cylinder.



11

PHASE-CHANGE PROBLEMS

Transient heat transfer problems involving melting or solidification generally
referred to as “phase-change™ or “moving-boundary” problems are important in
many engincering applications such as in the making of ice, the freeving of food,

the solidification.of metals in casting, the cooling of large masses of igneous rack, ..

thermal energy storage, processing of chemicals and plastics, crystal growth,
aerodynamic ablation, casting and welding of metals and alioys, and numerous
others. The solution of such problems is inherently dilficult because the interface
between the solid and liquid phases is moving as the latent heat is absorbed or
released at the interface; as a result, the location of the solid—liquid interface is
not known a priori and must follow as a part of the solution. In the solidification
of pure substances, like water, the solidification takes place at a discrete tempera-
ture, and the solid and liquid phases are separated by a sharp moving interface.
On the other hand, in the solidification of tnixtures, alloys, and impure ma-
terials the solidification takes place over an extended temperature range, and
as a result the solid and liquid phases are separated by a two-phase moving
region. : .

Early analytic work on the solution of phase-change problems include those
by Lam¢ and Clapeyron [171n 1831 and by Stefan [2] in 1891 in relation to the ice
formation. The [undamental feature of this type of problem is that the location of the
boundary is both unknown and moving, and that the parabolic heat conduction
equation is to be solved in a region whose boundary is also to be determined.
Although references 1, 2 are the early published works on this subject, the exact
solution of a more general phase-change problem was discussed by F. Neumann
in his [ectures in the 1860s, but his lecture notes containing these solutions were
not published until 1912. Since then, many phase-change problems have appeared
in the literature, but the exact solutions are limited to a number of idealized

392
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situations involving semiinfinite or infinite regions and subject to simple boundary
and initial conditions [3]. Because of the nonlinearity of such problems, the
superposition principle is not applicable and each case must be treated sepa-
rately. When exact solutions are not available, approximale, semi-analytic, and
numerica) methods can be used to soive the phase-change problems. We now
present a briel' discussion of various methods of solution of phase-change
problems.,

The integral method, which dites back to von Kirmin and Poblliausen, who
used it for the approximate analysis of boundary-layer equations, was applied
by Geodman [5, 6] to solve a one-dimensional transient melting problem, and
subsequently by many other investigators [7-153 to solve various types of
one-dimensional transient phase-change problems. This method provides a rela-
tively straightforward and simple approach for approximate analysis of one-
dimensional transient phase-change problems. The variational formulation derived
by Biot [16] on the basis of an irreversible thermodynamic argument, was used
in the solution of one-dimensional, iransient phase-change problems [17-21].
The moving heat source (or the integral equation) method, originally applied by
Lightfoot {22} to solve Neuman's problem, is based on the cancept of representing
the liberation (or absorption) of latent heat by a moving plane heat source (or
sink) located at the solid—liquid interface. A general formulation of moving heat
source approach is given in reference 23, and various application can be found
in references 24 28. The perturbation method has been used by scveral investi-

... Balors [29- 34]; however, the analysis becomes verycomplicated-if higher-ordes. . ooeee-.

solutions are to be determined; also it is difficult to use this method for problems
invelving more than one dimension. The embedding technique, first introduced

_by Boley [35] to solve the problem of melting of a slab, has been applied to solve

various phase-change problems [36--41]. The method appears to be versatile to
obtain solutions for one, two, or three dimensions and to develop general starting
solutions. A variable eigenvalue approach developed in connection with the
solution of heat conduction problems involving time-dependent boundary con-
dition parameters [42,43] has been applied to solve one-dimensional transient’
phase-change problems [44). The method is applicable to solve similar problems

'in the cylindrical or spherical symmetry. The electrical network analog method

often used in early applications [45-49] has now been replaced by purely

-numerical methods of solution because of the availability of high-speed digi-

tal comiputers. A large number of purely numerical solutions of phase-change
problems has been reported [50 811

Reviews of phase-change problems up to 1965 can be found in references
82-84. Extensive list of references and treatments of the fundamentals of solidifi-
cation can be found in standard texts [85-89].

Experimental investigation of phase-change problems is important in order
to check the validity of various analytic models, but only a limited number of
experimental studies are available in the literature [90-947].
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394 PHASE-CHANGE PROBLEMS

11-1 MATHEMATICAL FORMULATION
OF PHASE-CHANGE PROBLEMS

To illustrate the mathematical formulation of phase-change problems, we consi-
der first a one-dimensional solidification problem and then a melting problem.

Interface Condition for One- and Multidimensiona! Phase Change Problems .

Solidification Problem. A liquid having a single phase-change temperature T
is confined to a semiinfinite region 0 < x < cc. [nitially. the liquid is at a uniform
temperature T; which is higher than the phase-change temperature T,,. At time
'+ = 0. the temperature of the boundary surface x=0 is suddenly lowere_d toa
temperature To, which is less than the melt temperature T,, and is maintained at
that temperature for times ¢ > 0. The solidification starts at the boundary surface
x = 0 and the solid-liquid interface x = 5{t) moves in the positive x di'reﬂiofl.
Figure | 1-1a shows the geometry and coordinates for such a onc-dlmcqs:onal
solidification problem. The temperatures T,(x, ) and T\(x,1) For-.the solid ‘and
liquid phases, respectively, are governed by the standard dilfusion eguations

given by

BT 1 AT
X

.1

in D<x<sfty, >0 {11-1a)
g, M .

Ny 1T

in si<x<w, >0 {I1-1b}
oxt x

where we assumed constant properties for the solid and liquid phases. Here, s(r)

Liquid Solid

i

I

!

. I

A |

|

I

|

N\
2\

Heat supply

bbby

k]
E —-—
2 m
E —~—] T ix, 1)
T Tylx, 1)
r Interface T — |~ —— ===
0
_...9,..
Interface
X ¥
0 <t} D )]
@) b}

Fig. 11-1  Geometry and coordinates for one-dimenstonal (a) solidification and (b) melting
prablems.
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is the location of the solid-liquid interface which is not known a priori, hence
must be determined as a part of the solution. The subscripts s and ! refer,
respectively, to the solid and liquid phases. Therefore, the problem involves three
unknowns, namely, Ti{x, 1), Ti(x,t), and s(t). An additional equation governing
s(r) is determined by considering an interface energy balance at x = s(t), stated as

Conduction, conduction rate of heat
heat flux in heat flux liberated during _
the negative x —1{ inthenegativex |= solidification (11-2a) -
direction through direction through per unitarea of
the solid phase the liquid phase interface
or
T, T, ds(t
ksg_i._klg_j:p]_,ﬂ at x=s), t>0 (11-2b)
© T dx dx dt

where L is the [atent heat per unit mass [i.e., (Ws)/kg] associated with the phase
change. For the time being we neglected the density difference for the solid and
liquid phases and assumed p, = p, = p at the solid—liquid interface.

. The continuity of temperature at the solid liquid interface is given by

Tix.t)=T{x1}=T, at x =) {11-3)

where T,(x, 1) and Ti(x, ) are the solid and liquid phase temperature at x = s(1),
respectively, and T, is the phase-change temperature, )

Summarizing, equations (11 1a}, (11 Ib), and (11 2b) provide three differentinl
equations that govern the temperature distributions in the solid and liquid phases
and the position s{t) of the solid-liquid interface.

Equation (11-3) provides two boundary conditions, Other boundary condi-
tions and the initial conditions are specified depending on the nature of the
physical conditions at the boundary surfaces. This matter will be illustrated later
in this chapler with specific cxamples.

Melting Problem. We now consider a solid having a single phase-change tempe-
rature 7, conflined to a semiinfinite region 0 < x < 0. Initially, the solid is at a
uniform temperature T; that is lower than the phase-change temperature T, At
time ¢ =0, the temperature of the boundary surface x = 0 is suddenly raised to
a temperature To, which is higher than the melting temperature T, and maintained
at that temperature for times ¢ > 0. We assume that the coordinate system for
this melting problem is arranged as illustrated in Fig. 11-1b, so that the solid—
liquid interface moves in the positive x direction as in the case of the solidification
problem. The governing dilferential equations for this problem, assuming
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constant properties for each phase, are given by

P Tx. 1) 137y(x, )
3x2 Ot, 3!

in OD<x<st), >0 (11-4a)

PTx, 0 _ 1 3Tx, 1)
o o ot

in i<x<ee, (>0 (11-4b}

and an encrgy balance at the solid—liquid interfuce x:s(f) shows that the
resulting interface energy balance equation is cxactly the same as given by
equation (11-2b); hence we have

JT, JdT ds(1)
k —s5_, k —_ = L_‘"‘"— i = N -
N ™ p T a x=s(t), t>0 (Li-4c)

Thus, equations (11-4a,b,c) provide three differential equations for the determi-
nation of the three unknowns Ti(x,1), Ti(x,¢), and st} for the melting problem
considered here. Appropriate boundary and initial conditions need to be specilied
for their sofution. '

We note that, in the interface encrgy-balance equation (1 1-2b) or {11-4c), the
lerm ds{i)/di represents the velocity of the interfuce in the positive x direction,
henee we wrile

dsie)

_dTEU'tG) (Ilﬁsa)

Then the interface energy-balance equation can be written as

k, ?5 - k,?}i = pLu,(t} at x = s5{t) (11-5b)
dx dx

Effects of Density Change, The difference in the density of phases at the interface
during phase change gives rise to liquid motion across the interface. Usually
£ > py, except for water, bismuth, and antimony, for which p, < g,. g

To illustrate the elfects of density change, we consider the onc-dimensional
solidification problem illustrated in Fig. 11-1a. Let p, > p, and

v, = velocity of the interface
vy = velocity of the liquid at the interface

H,, H, = enthalpies per unit mass of the material for the solid
and liquid phases al the interface

In the physical situation considered in Fig. 11-1a, the interface velocity v, is in
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the positive x direction, and lor p, > p; the motion of the liquid is in the opposile

direction. Then, the energy balance at the interface allowing for the contributions'

of various diffusive and convective energy transfer becames

Lk D o — gl at x=s) (1)
dx ax

The mass-conservation equation at the interfuce ntay be written as
(01— pos = pyty (1E-Tu}

6= —Ef“—p[v, (11-7b)

2

. Eliminating v; [rom equation (11-6) by means of equation (11-7b) we obtain

aT, aT,
k——k—=p.Lt, 11-8a
] ax la.\' £ ; ( )
since
H,— H, = L = the latent heat {11-8h)

which is similar 1o equation (I1-4c) excepl p is now replaced by p..

Effects of Convection. Consider the solidification problem illustrated in Fig.
I1-1a. If the heat transfer from the liquid phasc to the solid-liquid interface is
controlled by convection, and hence diffusion in the liquid phase is neglected,
the interface energy-balance equation {11-2b) takes the form

R .
k,‘ Ts—h(Tm— Tm)=ﬂLt‘!ﬂQ at x = sit) (11-9)
dx dt

where I is the heat transfer coeflicient for the liquid side, T, is the bulk tempera-

~ ture ol the liquid phase, and T, is the melting-point temperature at the interface.

In the case of the melting problem illustrated in Fig. 11-1#, if convection is

- dominant in the liquid phase, equation (11-9)is applicable if the minus sign before -

h is changed to the plus sign.

Nonlincarity of Interface Condition:-The interface-boundary-conditions given by <= o R

equations (11-2b) and (11-9} are nonlinear. To show the nonlinearity of these
equations, we need to relate ds(t)/ds to the derivative of temperatures. This is
done by taking the total derivative of the interface equation (11-3)

aT, aT, aT, aT,
—dx +=dt =| —dx+-—dt =0 11-10
[a-\- o ot :Ix =5ir} l:a'\ * &t ‘ ]x=s(rl ( !

S

—
P
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or

oT.ds(t) 0T, aTds() 8T, at e () 1110k
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where &/2n denotes the derivative at the interface along the normal direction
vector n at any location P on the interface and pointing toward the liquid region

: ,‘
RN RN AN

I
bt

1) L))

b

ox dt Bt ox dt Bt
which can be rearranged as

LA _om b Ty

11-10
&t AT.fox dt  9T/ox (H-10c)

Introducing these results, for example, into equation (1 {-2b) we obtain

aT, | oT, T,/
T Oh_ 0T, OTi/ot (11-10d)
ax x aT,/ox aT, /ox

The nenlinearity of this equation is now apparent.

Genervalization to Multidimension. The interface energy-balance equation deve-
loped above for the one-dimensional case is now generalized for the multidimen-
sional situations. Figure 11-2 illustrates a solidification in a three-dimensional
region. The solid and liquid phases are separated by a sharp interface defined by
the equation

Flx,p,2,0)=0 (11-11)
The requirement of the continuity of temperatures at the interface becomes |
Tix,yz,)=Tx,nz.)=T, at Flx,p,z,t)=0 (1 1-12=)
The interface energy-balance equation is wrilten as

aT, | oT,
kot k—=pLp, at  F(x,pzt)=0 (11-13)
on on .

Interface
Fly,y.2. 81 =0

Fig. 112 Solidification in three dimensions. Interface is moving in the direction n.

and-p.is-the-velocity of this interface at the location P in the direction n. Here
we assumed that the densities of the solid and liquid phases are the same.

The interface energy-balance equation (11-13) is not in a form suitable for
developments of analytic or numerical solutions of the phase-change problems.
An alternative form of this equation is given by [95]

s\t (os\ aT, |, 4T, 3s : .
P ™ ——k— |=pL— =stx, ) (11-14
BN I ——

_ This form of the interface energy balance equation is analdgous to the form givén

by equation {11-2b} for the one-dimensional case; therefore, it is more suitable
for numerical or analytic purposes. We now cxaminc some specinl cases of
equation (11-14).

For the two-dimensional problem involving (x, z, 1) variables, if the location
of the solid-liquid interface is specified by the relation F(x,z,1) =z — s(x,7) =0,
then equation (11-14) reduces to

| ds\? aT, ,dn] |, 0s _
[H—(p—‘() ][ksawklg}—pLa at - z=six,1) (11-15)

This equation is the same as that used in references 25, 38, and 39 for inter-
face boundary condition in the analysis of two-dimensional phase-change
problems. '

For the one-dimensional problem involving (z, ) variables, if the location of

the solid~-liquid interface is given by F(z, 1) = z — s(t) = 0, equation(1 1-14) reduces
to

ke — kS =plS at z=s(0) (11-16)

which is identical to equation (11-2b) if z is replaced by x.

In the eylindrical coordinate system involving (v, ¢, 1) variables, if the location
of the solid liguid interfuce is given by FOr ¢, 1) = r-- siho 1) = O, then the corres-
ponding form of equation (11-14) becomes

1 35 2 aT aT‘I as .
thsia ) || 5o~k |=0ky & r=sén (117
|: +52(£1d)) ]I: *ar 1 al‘:l p o a r=s(¢ f). { )

In the cylindrical coordinate system involving (r, z, 1) variables, if the location
of the solid-liquid interface is given as F(r,z,t)=z —s{r,)= 0, the interface
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equation takes the form

65' 2 aT. aT, 3s
& k== —h— {=pL— 2= -
[ +(6r) ][ * oz 'az] plo &t sty (11-18)

Dimensionless Variables of Phase-Change Problem

Fhe role of dimensionless variables in phase-change problems is envisioned
better if the interface energy-bulance equation {11-2b) is expressed in the dimen-
sionless form as

3, koo, 1 di)

i J ol P . 1 1i-1
dn k. 8y Ste dt (1i-19)
IT.-(J(, t) - Tm .
B, =—2"T1  i=sorl; y=x/b
Tm - TO
Y S(l}. anf, g C s-(Tm '" Tn)
d(t} = b T=b2’ Ste =" . (11-20)

Here, b is a relerence length, L is the latenl heat, C_, is the specilic heat, T, is the
melting temperature, Ty, is a reference temperature, s{r) is the location of the
solid-liquid interface, and Ste is the Stefan number, named after 1. Stefan. The
above dimensionless variables, other than the Stefan number, are similar to those
frequently used in the standard heat conduction problems; the Stefan number is
associated with the phase-change process. .

The Stefan number signifies the importance of sensible heat relative to the
latent heat. If the Stefan number is smalil, say, less than approximately 0.1, the
heat released or absorbed by the interface during phase change is affected very
little as a result of the variation of the sensible heat content of the material during
the propagalion of heal through the medium. For materials such as aluminum,
copper, iron, lead, nickel, and tin, the Stefan number based on a lemperature
difference belween the melting temperature and the room temperature varies
from | to 3. For melting or solidification processes taking place with much
smaller temperature dilferences, the Stefan number is much smaller. For example,
in phase-change problems associated with thermal energy storage, the tempera-
ture differences are small; as a result the Stefan number is generafly soaller than

0.1,

11-2 EXACT SOLUTION OF PHASE-CHANGE PROBLEMS

The exact solution of phase-change problems is limited 1o [ew idealized situations
for the reasons stated previously. They are mainly for the cases ol one-dimensional
infinite or semiinfinite regions and simple boundary conditions, such as the
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prescribed temperature at the boundary sucface. Exact solutions are obtainable
if the problem admits a similarity solution allowing the two independent variables
x and { merge into a single simiarity variable x/t!'2. Some exact solutions can

be [ound in references 3 and 4. We present below some of the exact solutions of.

phase-change problems.

Example 11.1

Solidification of a Supercooled Liquid in o Half=Space (One-Phase Problem). A
supcrcovled liquid at a uniform temperature 7T; which is lower than the
solidification (or melting) temperature T, of the solid phase is confined to a
half-space x > 0. It is assumed that the solidification starts at the surface x = 0
at time ¢ = 0 and the solid-liquid interface moves in the positive x direction.
Figure 11-3 illustrates the geomietry, the coordinates, and the temperature
profiles. The solid phase being at the uniform temperature T, throughout,
there is no heat transfer through it; the heat released during the solidification
process is transferred into the super-cooled liquid and raises its temperature,

. The temperature distribution is unknown only in the liquid phase; hence the
problem is a one-phase problem, In the lollowing analysis we delermine the
temperature distribution in the liquid phase and the location of the solid -liquid
interlace as a function of time,

Solution. Belore presenting the analysis for the solution of this problem we
discuss the implicatlions of the supercooling of u liquid. If a liquid is cooled
very slowly, the bulk temperature may be lowered below the solidification
temperature and the liquid in such a state is called a supercooled liquid. Alter
supercooling reaches some critical temperature, the solidification starts, and
heat released during [reezing raises the temperature of the supercooled liquid.
Little is known about the actual condition of the solid-liquid interface during
the sohiditication of a supercooled liquid. During the sohidilication of super-
cooled water the interface may grow as a dentritic surface consisting of thin,
plate-like crystals of ice interspersed in water rather than moving as a sharp
interface [96]. As a result, it is a very complicated matter to include in the
analysis the effects of irregular surface conditions. Therefore, in the {ollowing
solution only an idealized situation is considered, Namely, it is assumed that

Sulid Supecanled liguid
T
"o =1,
\ Tylx, 8
Interface T
X
o} Sl

".Fig. 11-3 Solidification of supercooled liquid in a hall-space. One-phase problem.
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the solid—liquid interface is a sharp surface whose motion is similar to that

encountered in the normal solidification process. The mathemaitical [ormula-
tion for the liquid phase is given as

& _ LaTxn

AR in sfi<x<oo, (>0 (1121
d Titx )~ T, as X— 0, >0 (10-220)
Tix.nN=T, for t=0, in x>0 (11-22b)

and for the interface as
Tx.)=T, at x=s(t), t>0 (11-23a)

oTx) _ st

—k
Yooy dr

at x=s, >0 (11-23b)

The interface equation (11-23b) states that the heat liberated af the interface
as a result of solidification is equal to the heat conducted into the supercooled
liquid. No equations are needed for the solid phase because it is at uniform
temperature T, Recalling that erfc[x/2(040)"?] is a solution of the heat-
conduction equation ([ 1-21), we choose a solution for Ti(x, 1} in the form

Tix.1) = T; + Berle [x/2(=, )] (11-24)

where B is an arbitrary constant. This solution satisfies the dilferential equation
(11-21), the boundary condition (11-22a), and the initial condition (11-22b)
since erfc{cc) = 0. Il we require that the solution {11-24) should also satisfy
the interface condition (11-23a), we find

T, =T;+ Berlc{l) {11-25a)
where
s{f)
! = - [1-25b
2(3[”‘ 2 l )

Since equation (11-25a) should be satisfied {or all times, the parameter £ must
be a constant. Equation (11-23a) is solved for the coefficient B

T,

m

-T
e (11-26)
erfc()
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and this result is introduced into equation (11-24). We obtain

ﬂx, t) — T|| - erl‘c'{x/Z(a,t)”z] “ 1_27)
T.— T erfc(4)

Finally, the interface energy-balance equation (1 1-23b) provides the add‘itio!ml
refationship for the determination of the parameter A. MNamely, suhslllut,ng
s(tyand Ty{x, 1) from equations (11-25b) and (11-27), rcspectivcly. into ¢ Llll‘ll.m]
(11-23b) and after performing the indicated operations, we obtain the [ollowing
transcendental equation for the determination of 4

ClTu—T)

L/

At eric () = (11-28)

TABLE 11-1 Tahilation of Equation (11-28)

2 Lt erle () = ClTm—Ti)
LJ/x
0.00 0.00000E + 00
0.10 £96457E — (12
0.20 ‘ 1.61804E 01
0.30 - 2.20380E — 01
0.40 2.68315E — 01
0.50 3.07845E — 01
0.60 3.40683E — 01
0.70 3.68151E 01
0.80 3.51280E - 01
0.50 4.10878E — 01
1.00 4.27584E — 01
1.10 4.41904E — 01
1.20 4.54245E -~ 01
1.30 4.64935E — 01
1.40 . 474241E-0Q1
1.50 4.82378E — 0|
L.60 4. 89525E - 01
1.70 4.95828E — Ot
1.80 5.01408E — 01
1.50 5.06368F — 01
2.00 5.10791E — 01
2.50 5.27016E — 01
1.00 5.37003E — 01
3.50 5.43528E — 01
4,00 5.47998E — 01
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and 4 is the root of this equation. Knowing 4, we can determine the location
of the solid-liquid interface s(¢) from equation (11-25b) and the temperature
distribution Ti(x, t) in the liquid phase from equation {11-27).

In Table [1-1 we present the vatues of de*” erfc (i) against A. Thus, knowing
the Stefan number, A is determined from (his table.

Example §1-2

Melting in a Half-Space (One-Phase Problem). A solid at the solidification {or
melting) temperature T,,, is confined 1o a half-space x > 0. At time 1 =0, the
temperature of the boundary surface at x = 0 is raised to Ty, which is higher
than T, and maintained at that temperature for times t > 0. As a result melting
starts at the surface x = 0 and the solid-liquid interface moves in the positive
x direction. Figure 11-4 shows the coordinates and the temperature profiles,
The solid phase being at a constant temperature T, throughout, the (émpera-
ture is unknown only in the liquid phase, hence the problem is a one-phase
problem. In the following analysis the temperature distribution in the liquid
phase and the Jocation of the solid-liquid interface are determined, as a
function ol time,

Solution. The mathematical formulation for the tiquid-phase is given as

PTy 13T

Ny O<x<sfth t>0  (11-29a)

Tix,0) =T, at  x=0, t>0  (11-29b)

and [or the interface as

Tix,f) =T, at  x=s, (>0  (11-30a)
—k,@=pL@ at x = s(t), >0 (11-30b)
dx ‘ dt

To Liquid Solid

T lx, 8} T, =T

m

Tlﬂ
Interface
0 st)

x

Fig. [1-4 Melting in a half-space. One-phase problem.
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No equations are needed for the solid phase because it is at the melting
temperature T, throughout. If we assume a solution in the form

T{x, 1) = Ty + Berf{x/2(z0)" ] {11-31)

where B is an arbitrary constant, the differential cquatidn (11-29a) and the

boundary condition {11-29b) are satisfied since erf(0) = 0. Il we imposg .the
condition that this solutivn should alse satisly the boundary condition
(11-30a) at x = s{1), we oblain

T, =Ty + Berf{s) {i1-32a)
where

s(t)

s or  s(t)=2ixn"? {11-32b)
ot

Equation (11-32a) implies that 4 should be a constant, Then the coeflicient B
is determined from equation (11-32a) as

_T,.—T,

: {I1-33)
erl ()
Introducing equation {11-33) into (11-31) we obtain
‘ Tfx, 1) = T _erf [x/2(x0)"*] ‘“ 1-34)

Tw— To erf(4)

Finally, we ulilize the interface condition (11-30b) to obtain an additional

relationship for the determination of the parameter A When S{f) and ﬂ(n_:, t)
from equations (11-32b)and (11-34), respectively, are 1{1[roduced mFo equation
{11-30b), the following transcendental equation, similar to equation (11-28),
is obtained for the determination of 2

_CL'[ TE - .TW)
L/

and 4 is the roat of this equation. Knowing 4, s(f} is determined from equation
(11-32b) and Ti{x, 1) from cquation (11-34), i _ o ‘

In Table 11-2 we present the values of A ¢**erl({A) against 2. Thus, knowing
the Stefan number, 2 is determined from this table.

Actterf(d) = {11-35}

Example 11-3

Solidification in a Half-Space (Two-phase Problem). A liquid at a uniforgn
temperature T; that is higher than the melting temperature T, of the solid

vl

S

-\' fd\ ;\'Ar&\}\/\‘
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2 TABLE 11-2 Tabulation of Equation (11-35)

}
3 A 1e¥erl{d) = STy~ Tl
5y L/
Y 0.00 0.00000E + 00
") 0.4 ' 1.13593E - 02
3 0.20 4.6358IE—-02

! 0.30 1.07872E — 01
A 040 2.01089E — 01
+ 0.50 3.34168E — 01
0.60 " 5.9315E-—01
e 0.70 7.74470E — 01
7 0.80 1.12590E -+ 00
1 090 . 1.61224E + 00
D 100 2.29070F + 00.
o 110 3.24693E + 00
=¥ 1.20 4.61059E + 00
P 1.30 ‘ 6.58039E + 00
1 1.40 9.46482E + 00
i 1.50 1.37492E + 01
iN 160 2.02078E + 01
Y 1.70 3.00928E -+ Ot
:) .80 4.54593F + 01
iy £.90 6.97291E + 0!
__{; 2.00 |.0B6B6E + 02
4 2.50 1.29451E + 03
il 3.00 2.43087E + 04
D 3.50 7.31434E + 05
-l 400 3.55444E + 07
iy :
o phase is confined to a half-space x > 0. At time ¢ = 0 the boundary surflace at
'*,\, x=0 is lowered to a temperature T, below T, and maintained at (hat
j;[: temperature for times > 0. As a result, the solidification starts at the sur-
- face x =0 and the solid-liquid interface moves in the positive x direction.
5 Figure 11-5 illustrates the coordinates and the temperatures. This problem is
h a two-phase problem because the temperatures are unknown in both the solid
o and liquid phases. In the lollowing analysis we determine Lhe temperature
»-'). distributions in both phases and the location of the solid- liquid interface. This
~ problem is more general than the ones considered in the previous examples;
D) its solution is known as Neumann's solution. '
'\); Solurion. The mathematical formulation of this problem for the solid phase
: is given as
D) (1 T _LATxn O<x<st), >0 {11-36a)
- &xt o, 8
D
el Tix.=Tp at x=40, >0 {11-36b)

~
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Salid Liquid
Ll

A X —Froo
] Iy [x, 1)
/ Tm .
T, lx, 1)
T

Interface
0 Steh
Fig. 11-5  Solidification in a half-space. Two-phase problem.

X

for the liquid phase as

7T, 1 T 1)

=— e f<x<on, t>0 11-37
axt oy Ot ()< x <o ( a)
Tx.n)—T; as X— o0, t>0 (11-37b}
T, ) =T, for (=0, in x>0 (11-37¢)

and the coupling conditions at the interface x = s{t) as

T =Tix, =T, at x=s(1), t>0 (11-38a)

aT, | 8T, ds(t)
foy—=— k= = pL—" t x= 0 -
Foial bt at x=s{t), > (11_ 38b)

If we choose a solution for T(x,t) in the form
T, ) = Tp + Aerl [x/2a) ] (11-39)

the dillerential equation (11-36a) and the boundary condition (11-36b) are
satished.

" If we choose a solution for Ty(x, #) in the form
Tix,0) = T + Berfc [x/2(e,)"'*] - (11-40)

the diflerential equation {11-37a), the boundary condition (11-37b), and the
initial condition (11-37c¢} are satisfied. The constants A4 and B are yet to be
determined. .
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Equations (11-39) and (1i-40) are introduced into the interface condition
(11-38a); we find

1,2
Ty + Aerf(d) = Berl'cl: (“) ]:Tm (11-41a)
%
where
= "'(:;”2 or  s{0) = 2Ha)" (11-41b}
a!

Equation (11-41a) implicé that A should be a constant. The coefficients A and
B ure determined (rom equations ([1-41) as

T, —T T.—T
A="mTlo g mT A (1142
erf () erfe [Alz, /o)) ( )

Introducing the coeflicients A and B into equations (11-39} and {1 1-40), we
obtain the temperatures for the solid and liquid phases as

T —To_erlly2a)'F]

! 11-43
7.7, erf() (11-43a)

Ti(x, 1) —T; _erfc [x/2(x1)'*]
To—T;  erfe[Aufa)"?]

(11-43b)

The interface energy-balance equation (11-38b) is now used to determine the
relation for the evaluation of the parameter A. That is, when s(t}, T{x, ) and
Ti{x, t) from equations ([ 1-41b); (11-43a), and (11-43b), respectively, are substi-
tuted into equation (11-38b), we oblain the [ollowing transcendental equation
[or the determination of 1:

e k,(nts)”"T —T, e il /L\/n . “144)
() k\ay) T —Tyerfellofoa) 2] Co(Tm— Tg)

Once 1 is known from the solution of this equation, s{t) is determined [rom
cquation (11-41b), T{x, ) from equation (11-43a) and Ti(x,!) from equation
(1-43b).

Example 11-4

Solidification by a Line Heat Sink in an Infinite Medium with Cyclindrical
Symmetry (Two-Phase Problem). A line heat sink of strength @, W/m is located
atr =0in a large body of liquid at a uniform temperature T, higher than the
melting (or solidification) temperature T, of the medium. The heat sink is
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Solid Liguid
T
asr —+ oo

T

m

f

Line
Heat Sink

o

O
—..._
-

interface

r, €}
S(r)

Fig. 11-6  Solidilication by a line heat blﬂk in an infinite mediom with cylindrical sym-
metry. Two-phase problem.

.

activated al time ¢ = {} to absorb heat continuously lor times ¢ > 0. As a result,
the solidification starts al the origin r — 0 and the solid—liquid interface moves
in the positive r direction. Figure 11-6 shows the coordinates and the tempe-
rature profiles. The problem has cylindrical symmetry, and the temperatures
being unknown in both regions, it is a two-phase problem. In this example,
the temperature distributions in the solid and liquid phases, and the location
of the solid - liquid interface as a function of time will be delermined,

Solution. Paterson [97] has shown that the exact solution to. the above
problem is obtainable if the solution of the heat conduction equation is chosen
as an exponential imtegral fimction in the form Ei(— r2/4ar). The function
— Ei(— x)is also denoted by E,(x}[99]. A tabulation of E (x)[unction is given
in Table 11-3 and a brief discussion of its properties is given in the note at the
end of this chapter.

The mathematical formulation of this problem is given for the solid phase
as

r'ir o

- ( o ) = ! QT—Q’—Q in O<r<sit), ¢>0 (11-45)
rar

£

for the liquid phase as

1 & (,ﬁ'[‘l) 1 a1y 1) . ‘ ) <r< 0 11-46
. - =. ..2 in 5 r<as, 1> )

a or a O ’ * ( !
Tiro - T, as.roves, >0 (114Ty)

T =T for t =0, in r>0 (11-47h)
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TABLE 11-3  E,(x) or — Ei{—x) Function®

X E\{x) X E(x) X E, (x) X E (x}

000 oo 77 0357771042826 050  0.5597736 160  0.0863083
0.01 40379296 026  0.0138887 055 05033641 165  0.0802476
0.02 33547078 027 0.9849331

003 29590187 02R 0.057I0RY 060 04543795 170 00746546
ik REG YRR YS (I NUINDIHD 63 DA1LS1T) 1.78 OLOGINRT

005 24678985 030 09056767 0.70 03737688 180  0.0647131
0.06 22953069 03t 0.8815057 075  0.3403408 1.85  0.0602950 -
007 21508382 032  0.8583352

008 20269410 033 08361012 080 03103966 190 0.0562044
0.0% 19187448 034 08147456 085  0.2840193 L95  0.0524144

0.10  1.8228240 035  0.7942154 090 0.2601839 2.0 4.89005(—2)
011 17371067 036  0.7744622 095 02387375 21 426143

012 16595418 037, 07554414

0.13 1.5888993 038  0.7371121 1.00 02193839 2.2 3.71911
0.14 14241457 039  0.7194367 1.05 02018728 23 3.25023

0.15 14644617 040  0.7023801 1.10 01859909 24 2.84403
0.t6 14091867 041 06859103  1I5  0.1715554 26 2.18502
0.17  1.3577806 042 0.6699973 .

0.18  1.3097961 043 0.6546134 120 0.1584084 2.8 1.68553
019 1L264R5K4 044 0.639732R 125 01464134 10 1.30484

0.20 12226305 045 06253313 130 0.1354510 3.5 6.97014{—3)
0.21 1.1826020 046  0.6113865 1.35  0.1254168 4.0 3.77935
022 1.1453801 047 05978774 140 01162193 4.5 2.07340

0.23  1.1098831 048  0.5847843 145 01077774 50 1.14830
024  1.0762334 049  0.5720888 1.50 01000196 = 0

°The igures in pareatheses indicate the power of 10 by which the numbers to the lefl, and those below
in the same column. are to be multiplied.

and for the solid-liquid interface as

T =T 0=T, at r=s(t), >0 (11-48a)

AT, aT, R
k,‘ T -k ' p!.thm al r=s) >0 {11-48b)
or ar dt .

We now choose the solutions for the solid and liquid phases in the forms

Trt)= A — BE:‘( 1’3;’) in  0<r<si) (11-49a)
o

L,

~ ﬂ(;—.r}:T,.—CEi(--i-) in si<r<o,m (11-49b)
4ot
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and the derivatives of these solutions with respect to r are given as

a:rs{r! f) — @ e—r‘Ma.l

(11-49¢)
dr r

aT‘I(r\ f) — . 2C e —ridayr

o '

(11-49d}

The solution {1 1-49a) for T {r, {) satisfies the differential equation (1 1-45), while
the solution {11-49b) for Tir,¢) satisfies the dilferential equation (1(-46),
the boundary condition (11-47a), and the initial condition (11-47b} since
Ei{ — o»} = 0. The remaining conditions are used to determine the coefficients
A. B, and C as now described. The energy balance around the line-heat sink

is written as
2 .
lim[zm-k, E] =Q (11-50a)
-0 o
Introducing equation (11-49c} into (11-50a) we find

B= — QfAnk, {(11-50b)

Equations (11-49a), (11-49b), and (11-50b) are introduced into the interface
condition (11-48a)

12
A2 Ei(~;.2)=T,.—CEf( “‘):Tm (11-51a)
47[k5 ot,
where
s(t)
] = — 11-
) (11-51b)

Since equation (11-51a) should be valid for all values of time, we conclude that '
A must be a constant. The coefficients A and C are solved from equations
(11-51a); we find

A=T,——=Ei(—2? -520) -
Ly i(—4% (11-52n)
Tl_'Tm

e (11-52b)

The derivative of s(t) is obtained [rom equation (11-51b) as

ds(t) _ 20,A°

11-52
dt s ( o)
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lnlro.ducing equations {11-52a) and {1[-52b) into equalions {11:49:i.,b) the
solutions for the temperatures in the solid and liquid phases become

g A 2 r?
I‘ ,.1‘ z—lm = E. . N T . L . } .
MEY) +4ﬂk,l: l( ts Ei(— 4%) in O<r<stt)  (i11-53a)

T.—-T rt
Tir)=T,— - =" ~Eil — - |, i s : -
] T Eil - 2% fe) ( 4%[) in s(ty<r< 2 (11-33b)
Finally, when equations (11-52c) and (11-53) are introduced into the interface

energy-balance equation ({1-48b) the following transcendental equation is
obtained for the determination of 4

Ti—T.) _ .
%e a ﬁl(—(:lfio?;?&)jje Azl — j2y ol (11-54)
and Z is the root of this equation. Once 4 is known, the location of the solid-
liquid interface is determined {rom equation {11-51b); and the temperatures
in the solid and liquid phase, from equations {11-53a) and (11-53b}, res-
pectively.

A scruliny of the foregoing cxact analyses reveals that in the reclangular
courdinaute system exact solutions are obtained for some hall-space problems
when the solution of the heat conduction equation is chosen as a function
of xt~'2, namely, as erf[x/2(xt)*/*] or erfc[x/2(xt)!/*]. In the cylindrical
symmetry the corresponding solutions are in the form

2 —
_ E,-( - _)
4ot
which is again a function of rt~!/2, Paterson [97] has shown that the cor-

responding solution of the heat conduction equation in spherical symmetry
is piven in the form

{an)'t _ r
_L e ridar _ %]’I Lf2 el'rC ______l_i
r 2ot}

11-3 - INTEGRAL METHOD OF SOLUTION
OF PHASE-CHANGE PROBLEMS

The integral method provides a relatively simple and straightforward approach
for the solution ol one-dimensional transient phase-change problems and has
been used [or this purpose by several investigators [5-15]. The basic theory of
this method has already been described in the chapter on approximate solution

“of heat conduction problems: When il is applied Lo the solulion of phase-change

IINLEWU VAL IVIL | IRWALS W8 a3t d A%d 1 nrn & massirams meemn = e

problems, the fundamental steps in the analysis remain essentially the same,
except some modifications are needed in the construction of the temperature
profile. In this section we illustrate the use of the integral method in the solution
of phase-change problems with simple examples. !

Example 11-5

Melting in a Half-Space (One-phase Problem). To give some idea an the
accuracy of the integral method of solution of one-dimensional, time-depen-
dent phase-change problems, we consider the one-phase melting problem for
which exact solution is available in Example 11-2. The problem considered is
the melting of a solid confined to a half-space x > 0, initially at the melting
temperature T,. For times >0 the boundary surface at x = Ois kept at a
constant temperature Ty, which is higher than the melting temperature T, of
the solid. The melting starts at the surface x = 0 and the solid-liquid interface
moves in the positive x direction as illustrated in Fig. 11-4. In the following
analysis we determine the location of the solid-liquid interface as a function

of time.

Solution. The mathematical formulation of this problem is exactly the same
as those given by equations (11-29) and (i1-30). Namely, for the liquid phase
the equations are given as :

2
§_T;=l@‘:£ 0<x<s(t) t>0 (11-55a)
ax* o Ot
Tix, 0 =T, at x=0, t>0 {11-55b)
and for the interface as
Tx,)=T, at x=s5(), t>0 (11-56a)
- kl?nﬁ = pLds(E) at x=4s(1), t>0 {i1-56b)
dx dt

We recall that the first step in the analysis with the integral method is to define -
a thermal layer thickness beyond which the temperature gradient is considered
rero Tor practicil purposes. Referring to Fig. 11-4, we note that the location ‘
of the solid- liquid interface.x.= s{t) is identical 1o the definition of the thermal - o
layer, since the temperature gradient in the solid phase is zero for x > s(f). {
Hence, we choose the region 0 < x < 5(t) as the thermal layer appropriate [or

this problem and integrate the heat conduction equation from x = 0to x = 5(f)

to obtain '
bd =)
=~——|:(J de)~T
x=p Gdl 0

T

T T
dx

ax

s(:)] (11-57)
x = s(n)

x =5l

~
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For simplicity we omitted the subscript “1” and it will be done so in the
following analysis. We note that equation (11-57) is similar to equation (9-2b)
considered in Chapter 9. In view of the boundary conditions (11-56a) and
{11-36b) the equation (! 1-57) reduces to

pLds(ty 0T L d e )
— —_ = i1 — T st 1[-58:
kodt T ax] e am[ wS(1)] { 1)
where
s
f)Ef T{x, 1dx (11-58b)
o

Equation (11-58}is the energ y-integral-equation for this problem. To solve this
equation we choose a second-degree polynomial approximation [or the tem-
perature in the form

T(e 1) =a + b(x —-8) + clx — ) (11-59)

where s = s{7). Three conditions are needed (o determine these three coefficients.
Equations (f1-55b) and (11-56a) provide two conditions; but, the relation
given by equation {11-56b} is not suitable for this purpose. because if it is used,
the resulting temperature profile will involve the ds(rydt term, When such a
profile is substituted into the energy integral equation, a second-order ordinary
differential equation will result for s(¢) instead of the usual first-order equation.
To alleviate this difficulty an alternative relation is now developed [5]. The
boundary condition (1 {-562) is differentiated

é A
- rI’I‘EI:jdx+EEd!] =0 (11-60a)
: ax & le=am :

or

oTds(y aT
R — + r—— =
o e &t

0 {11-60b)

where we omitted the subscript 1 for simplicity. The term ds(r)/dt is eliminated
between equations (1 1-56b) and ([1-60b)

aT\? pLeT
i R st t x =s{t 11-61
(E‘x) koot 2 x=s{0 . ( )
and eliminating 8T/2t between equations (1 [-55a) and (11-61) we obtain .
aT\? opLd'T _
(F:) ﬂ“}(‘*ﬁ , at x=3s(Nn (]l-62)
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This relation, together with the boundary conditions at x =0 and x = s(t)

T=T, at x=0 {11-63a)

T=T, at x=s(t) (11-63b)

provide three independent relations for the determination of three unknown
coellicients in equation (11-59); the resulting temperature profile becomes

T(x, 1) = T, + b(x — 5) + c{x — 5)* {1'1-6431) |

where
b=%[1—(1 + Wi | ' (11-64b)
c=2s+To Tu) Ht‘; = Tl (11-64c)
u-—-;—kL(To—Tmhw%_—m {11-64d)

Substituting the temperature profife (11-64) into the encrgy-integral equation
(11-58) and performing the indicated operations we obtain the following
ordinary differential equation for the determination of the location of the
solid-liquid interface s(f)

ds i:’tl—(1+,u)”2+,u

s pg——— 2 TH 11-
dt 5+ (1+p)'"P+p (11-65)
with
s=0 for =0 © {11-65b)
The solution of equation (11-65)is
s{t) =24, fat (11-66a)
where '
l_ 1+ 11'2+ 142 '
15[3*_(__&)?2__2 (11-66b)
S5+(L+pmi+p

We note that the approximate solution {1 1-66a) for s(t} is of the same form as
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Fig. 11-7 A comparison of exact and approximate solutions of the melting problem in
half-space. (From Goodman [5].)

the exact solution of the same problem given previously by equation {11-32b);
but the parameler A is given by equation (1 [-66b) for Lthe approximate solution,
whereas it is the root of the transcendental equation (11-35}, that is,

Cp(TO - Tm) - i)
LJn 2=

for the exact solution. Therefore, the accuracy of the approximate analysis can
be determined by comparing the exact and approximate values of 1 as a
function of the quantity u. Now, recalling the definition of the Stefan number
given by equation (11-20) we note that the parameter u is actually twice the
Stefan number, Figure 11-7 shows a comparison of the exact and approximate
values of 1 as a function of the parameter y. The agreement between the exact
and approximate analysis is reasonably good for the second-degree profile
used here. If a cubic polynamial approximation were used, the agreement
would be much closer [5].

Ae* erf(d) =

(11-67)

114 VARIABLE-TIME-STEP METHOD FOR SOLVING
PHASE-CHANGE PROBLEMS—’A NUMERICAL SOLUTION

When anaiytic methods of solution are not possible or impractical, numerical
techniques, such as finite differences or finite element is Tsed for solving
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phase-change problems. The numerical methods of solving phase-change problems
can be calegorized as follows:

Fixed-grid methods, in which the space—time domain is subdivided into a finite
number of equal grids Ax, At for all times. Then the moving solid-liquid
interface will in general lic somewhere between two grid points at any given
time. The methods of Crank [101] and Ehrlich [102] are the exampies
for estimating the location of the interfuce by u suitable interpolalion
formula as a purt of the solution.

Variable-yrid methods, in which the space time domain is subdivided into
equal intervals in one direction only and the corresponding grid side in the
other direction is determined so that the moving boundary always remains
at a grid point. For example, Murray and Landis [52] chose equal steps
At in the time domain and kept the number of space intervals fixed which
in turn ailowed the size of the space interval Ax changed (decreased or
increased) as the interface moved. In an alternative approach, the space
domain is subdivided into fixed equal intervals Ax, but time slep is
varied such that the interface moves a distance Ax during the time interval
At, hence always remains at a grid point at the end of each time interval
At. Several variations ol such a variable time step approach have been
reported by [52, 66, 79, 80].

Fronat-fixing method, used in ene-dimensional problems. This is essentially a
coordinale transformation scheme which immobilizes the moving [ront
hence alleviates the need for tracking the moving front at the expense of
solving a more complicated problem by the numerical scheme [77, 101].

Enthalpy method, which has been used by several investigators to solve phase-
change problems in situations in which the material does not have a distinct
solid-liguid inter{ace. Instead, the melting or solidification talkea place over

an extended range of temperatures. The solid and liquid phases are separated -

by a two-phase moving region. In this approach, an enthalpy function,
H(T), whichisthe total heat content of the substance, is used as a dependent
variable along with the temperature. The method is also applicable for
phase-change problems involving a single phase-change lemperature
[73-76].

In this section we present the modified variable-time-step (MVTS) method
described by Gupta and Kumar [79].

We consider the solidificution of a liquid initially at the melting temperature
T*, confined to the region 0 < x < B. For times ¢ > 0, the boundary surface at
x = ( is subjected to convective cooling into an ambient at a constant temperature
T, with a heat transfer coeflicient h, while the boundary sutface at x = B is kept
insulated or satisfies the symmetry condition. The sclidification starts at the
boundary surface x =0, and the solid-liquid interlace moves in the x direction
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_Fig. 11-8 Geometry and coerdinate for single-phase solidification.
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Temperature T(x, t) varies only in the solid phase, since the liquid region is at
the melting temperature T*. We are concerned with the determination of the
temperature distribution T(x,?) in the solid phase and location of the interface
as a function of time. The mathematical formulation of this solidification problem
is given as follows:

2 1aT
Solid region: Q—Ff = in O<x<s{t), t>0 {11-68a)
ax* o dt
—kET-HlT-hT at xe==0, t>0 {11-68b)
&x
Interface: T{x,t}=T* at x =s(t), t>0 (11-68c)
, .
0T pp &0 at  x=s(t), >0 (11-68d)
ax dt

where his the heat transfer coefficient, s(f) is the location ol solid-liquid interface,
p is the density, Lis (he latent heat of solidification (or mclling). k is (he thermal
conductivity, and a is the thermal diffusivity.

To solve the above problem with finite differences, the “x — " domain is
subdivided into small intervals ol constant Ax in space and vanable At in time
as illustrated in Fig, 11-9. The variable time step approach requires that at each
time level t, the time step A, is so chosen that the interface moves cxactly a
distance Ax during the time interval At,, hence always stays on the node. Therefore,
we are concerned with the determination of the time step At, =1,,, —t, such
that, in the time interval from t, to ¢, ,, the interface moves from the position

nAx to the next position (1 + 1)Ax. We describe below first the finite-difference
approximation of this solidification problem, and then the determination of the
time step At,.

The linite-difference approximation of equations (11-68) is described below:

Differential Eqguation (11-68q). This differential cyuation can be approximated

with finite differences by using either the implicit scheme or the combined method.
For simplicity we prefer the implicit methed and write equation (11-68a) in
linite-difference form as

T Tt A T _IT T

ey TS (11-69a)
where the lollowing notation is adopted
T(x,t,) = T{iAx,1,)=T] - I—6§b)
Equation (11-69a) is rearranged as
[—r T (L4 2 )T ey, T Y = T {11-70a)

where the superscript p over the hracket refers to the pth iteration, and the para-
meter r, is delined as '

aldt,

= I=1,2,3,..., At,=t,, —1, (11-70b,c)
X
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Boundary Condition at x = 0. The convection boundary condition (11-68b} is re-
arranged

oT
—=HT-HT, where H=’—] (11-71a)
ox k

and then discretized as

_ nt 1
l- HT"“ HT, (L1-71)
Ax
This result is rearranged in the form
[r*t—q + HA)TEH W = — HAxT,, (11-71c)

where superscript p over the bracket denotes the pth iteration. The finite-dilference
equation {11-71c) is first-order accurate.

Interface Conditions. The condition of continuity of temperature at the interlace,
equation (11-68c), is written as

In|l T:_:=

1= melting temperature - (11-72a)

which is valid for all times. The interface energy balance equation (11-68d) is dis-
cretized as

Tn+! T:+!_pLAX

"HAx = At {11-72b)

which is rearranged in the form !
o 2 e '
[Atn](p+n=ek£'|:T (Ax;m;l] (11-72c)

since 711 = T = melting temperature.

l)t.lu'mumlwn of Tine Steps

We now describe the algorithms for the determination of time step At such that
during this time step, the interface moves exactly a distance Ax.

Starting Time Step At,. An explicit expression can be developed for the calcula-

tion of the first step At as follows. Set n =0 in equations (11-71c) and (11-72c),
and eliminate T1 between the resulting two equations and note that T} = T,

VARIABLE-TIME-STEP METHOD FOI SOLVING PHASE-CHANGE PRUBLEMS a2t

The following explicit expression is obtained [or A1.

Aty = ELAI_(I_if‘f’E‘?] (11-73)
K HTEZT.)

where Atg=t, — 1.

Thme Siep Ary. Weset = 1,1+ 1 in cquation {11-70a} and note that T =Ti=
T*. Then cquation (11-704) becomes

[—r T24 (1 +2r)T31W = (1 + r) T (11-74a)
¥ 1 1 m

and from the boundary condition (11-7l¢) for n = I, we-obtain
[—(l+HAX)T2 + T2]® = — H AxT,, (11-74b)

Tosolve equations (11-74a) and (1 1-74b) for T3 and T2, the value o v} is needed;

but ' defined by equation. (11-70b) depends.on At{™. Therefore, iteration is

needed [or their solution. To start ilerations, we set

O} on
At = Ay

Then, % is determined from equation {11-70b); using this value ol r} 40 equations
(11-74a b) are solved for T2 and T}. Knowing T2, we can compute ArlV from
equation (11-72¢). Iterations are contmucd untii the difference between two
consecutive time steps

tp+1 (p}
|AP 1 — AP
satisfies a specified convergence criteria.

Time Step At,. The above results are now used in the following algorithm to
calculate the time steps At, at each time level t,,n=2,3,....

1. The starting lime step At,, at the time level £, is calculated directly from the
explicit expression (11-73) since all the quantities on the right-hand side of
this equation are known,

2. The time steps At, at the time levels 1, 1= 2, 3, ... arc caleulated by iteration.
A guess value At? is chosen as

Ar}f]]:Atn'—l! H=2,3,... (11-753)

The system of finite-difference equations (11-70), (11-71¢), together with the
condition (11-72a) are solved fori = 1,2,3,...,n by setting p =10 and a first

7=

1

Aﬁa

e e e -
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Ry \,1'_‘\_«5'_'\/:_".

422  PHASE-CHANGT. PROBLEMS

estimate is obtained for the nodal temperatures
[Tr*119, for i=12...,n (11-75b)

We note that the system of equations is tridiagonal, and hence readily
solved.

3. The values of [T771] oblained from equation (11-75b) are introduced
into equation (11-72¢) for p =0 and a first estimate for the time step Ar(Y
is determined. .

4. Ar1 is used as a guess value and steps 2 and 3 are repeated to calculale a
second estimale for the time step Art™. :

S. Thesteps 2, 3, and 4 are repeated until the difference between two consecutive
time steps :

n+1) )
| At — ArlP
satisfies a specilied convergence criteria.

Example 11-6

Consider a single-phase solidification problem for a liquid initially at the
melting temperature T*, confined to the region 0 € x < B. Solidification takes
place as a resull of conveelive cooling at the houndary surface x = 0, while
the boundary surface at x = B is kept insulated. The mathematical formulation

of this problem is given in the dimensionless form as follows:

2T oT .

Solid region: —=—=— in O<x<s(t), t>0
dx* 4t
_QI-I-IOT=O at x=0, t>0

dx
Interface; Tix,1)=1 " at x = s(t), t>0

QT=‘—1€ at x = s{1), >0
ax o dr

Calculate the time step At required for the solid-liquid interface (1) to move
one space interval Ax =0.1 and the-temperature of the boundary surface at
x =0 lor the interface positions s(f}=0.1,02,03,..., 1.0.

Sofution. This problem has been solved [79] by using the variable time step
approach described above, and their results are listed in Table [1-4. For
example, the first time step At,, needed for the interface to move from s{t)=0
to s(f)=0.1. is determined directly [rom equation (11-73). The numerical
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TABLE 11-4 Time Step Ar Required for the Interface Position to
Move by One Space Interval Ax and Temperature of the Boundary
Surface at x=10

Interface Number of
Position s(f) Time Step At T(0,1) Iterations
0.1 0.0200 0.5000 0

0.2 00156 0.1596 4

03 0.0494 0.2770 4

04 0.0627 02242 4

0.5 0.0759 '0.1879 4

0.6 0.0890 0.1616 4

0.7 0.1021 0.1416 4

0.8 0.1152 0.1260 4

09 0.1282 0:1135 4

1.0 0.1413 0.1032 4

values of various paramelers appearing in this equation are determined by
comparing the mathematical formulation of this example with that given by
equations {11-68). We find

=1 n="o10, T, =0, PL_
k k

and the space step is chosen as Ax = 0.1. Introducing these numerical values
into equation {11-73), the starting time step At, is determined as

_pLAX(1+ HAX) 0.1(1+10x0.1)

= =0.020
k HT*—T,)  10x(1—0)

At

The next time step At, needed for the interface to move from the position
s(t} =0.1 to the position s(t)=10.2 is determined by an iterative procedure
described previously. According to Table 11-4, a value ol A¢; =0.0356 is
obtained with a maximum error of 0.05%. The remaining time steps are
determined iteratively and listed in Table 11-4. Also included in this Table is
T, 1), the temperature of the boundary surface at x =0,

11-5 ENTHALPY METHOD FOR SOLUTION
OF PHASE-CHANGE PROBLEMS—A NUMERICAL SOLUTION:

In the solution of phase-change problems considered previously, the température
has been the sole dependent variable. That is, the energy equation has been
written separately for the solid and liquid phases and the temperatures have been
coupled through the interface energy balance condition. Such a formulation gives
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rise to the tracking of the moving interface, and it is a difficult matter if the
problem is to be solved with {inite differences.

An alternalive approach is the use of the enthalpy form of the encrgy equation
along with the temperature. The advantage ol the enthalpy method is that a single
energy equation becomes applicable in both phases; hence there is no need to
consider Jiquid and solid phases separately. Therefore, any numerical scheme
such as the finite-difference ar finite-element method can readily be adopted for
the solution. In addition, the enthalpy method is capable of handling phase

- change problems in which the phise change oecurs over an extended temperature
range rather than at a single phase-change lemperature.

Figure 11-10 shows enthalpy—temperature relations lor (u) pure crystalline
substances and eutectics and {b) glassy substances and alloys. For pure substances
the phase change takes place at a discrele temperature, and hence is associated
wilh the latent heat L. Therefore, in Fig. (11-10a) a jump discontinuity accurs at
the melting temperaturc T*; hence H/9T becomes infinile and the cnergy equation
apparently is not meaningful at this point. However, it has been shown that [73]
the enthalpy form of the energy equation given by
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Figure 11-10b shows that for alloys and glassy substances there is no single
melling-point temperature T* because the phase change takes place over an
extended temperature range from T, to T;, and a mushy zone exists between the
all solid and all liquid regions.

To illustrate the physical signilicance ol the enthalpy function H(T), J/kg
(joules per kilogram), in relation to the case of pure substances having a single
melting-point temperature T*, we refer to the plot of H(T) as a function of
temperiture as illustrated in Fig, 11-10a. When the substance is in solid form al
temperature T, the substance contains a sensible heat per unit omss C,00 10
where the melting-point temperature 7#* is taken as the reference lemperature.
In the liquid form, it contains latent heat L per unit mass in addition to the
sensible heat, that is, C (T — T*) 4 L. For the specific case considered here, the
enthalpy is related to temperature by

H{CP(T—T,"‘,J Tor T<T? (11-77a)
TCAT—-TH+L for  T>T% (11-77b)

Conversely, given the enthalpy of the substance, the corresponding temperature

NS AN AT N Y N

V-(kVT)=paH(T-! (11:76) is determined from
ot . o -

o T +— for H<0 {11-78a)
is coquivalent Lo the usual temperature form in which the heat conduction equation Co
is writlen separately for the liquid and solid regions and coupled with the energy
balance equation at the solid~liquid interface. Therelore, the enthalpy method T={T, for  OsH<L (11-78b)
js applicable for the solution of phase-change problems involving both a distincl
phase change at a discrete temperature as well as phase change taking place over T + f‘*’ =L lar H>L . (11-73¢)
an extended range ol temperatures. " C,

HIT)

(o} (6)

Fig. 11-10  Enthalpy—temperature relationship for (a) pure crystalline substances and

In the case of glassy substances and alloys, there is no discrete melting-point
temperature, because the phase change takes place over an extended range of
temperatures as illustrated in Fig. 11-10b. Such relationship between H(T) and
T is obtained ftom either experimental data or standard physical tables. In
general, enthalpy is a nonlinear function of temperature. Therefore an enthalpy
versus temperature variation need lo be available. Assuming linear release of
latent heat over the mushy region, the variation of H(T) with temperature can
be taken as

T for T T, solid region (1T}
T-T, ' .
H=, C,T+ =T L for T, £ T<T, mushyregion (11-79b)
17 s
C,T+L for T>T liquid region (11-79¢)

where L is the latent heat, and T, and T, are the solid- and liquid-phase tempera-
tures, respectively.

eutectics and (b) glassy substances and all5¥s.
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To soive the phase-change problem with the enthalpy methed, an explicit or
an implicit finite-difference scheme can be used. The implicit scheme is generally
preferred because of its ability to accommodate a wide range of time steps
without the restriction of the stability criteria. We present below, the implicit
enthalpy method for solving one-dimensional, two-phase solidification problem
for a substance having a single phase-change temperature TF,

m

Tmplicit Enthalpy Method for Selidification
at a Single Phase-Change Temperature

We consider one-dimensional solidification of a liquid having a single melting-
pom[ temperature T* and confined to the region 0 £ x < B. Initially, the liquid
is at a uniform temperature T, that is higher than the melting temperature T},
of the liquid. For times > (, the boundary surface at x = 0 is kept at a temperature
1 that is lower than the melting temperature T of the substance. The boundary
condition at x = B satislies the symmetry n.qmrcment For simplicity, the pro-
perties are assumed to be constant.
The enthalpy formulation of this phase-change problem is given by

po—=k—, in D<x<B, =0 (11-80a)
ot £x®

T=f at x=0, t>0 {11-30b)

EI:O at x=5, t>0 (11-80c)

itx :

T = Tylor H=Hg) for 1=0, 0<x<B (11-80d)

To approximate this problem with finite differences, the region 0 < x < B is
subdivided into M equal parts each of width Ax = B/M.

The finite-difference approximation of the differential equation (11-80a) using
the implicit scheme is given by

HI* - HY  TPR Tt 4 TR

po! t=k 11-81
At (Ax)? (-8

where the subscripti=1.2,.... Af — 1 denotes the spatial discretization and the

superseript n=1.2,... denotes the time discretization. The solution of equation

(11-81) for the enthalpy H7*! gives
kAt
HYY = Hy o S [P = 2P ()
plaxy

+ FHHIT i=1,23,.. M-I {11-82)
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where the notation
T = F*(H) (11-83)

denotes that the temperature T is related to the enthalpy H. The system of
equations (11-82) can be written more compactly in the vector form as

=1 AR ' (11-Rdu)
where H is a vector whose components are the nodal enthalples H;and Fis a

function with ith component given by

M) = [P¥(H,_ )~ 2FYH)+ FYH,, )] (11-84b)

p(Ax)?

For a substance having a single phase-change temperaturc T%*, the temperature
is related to the enthalpy by

kil H<C,T {11-85a)
CP
T={T* C,TE<H<(C,TH+L) (11-85b)
H—
c L H>(C, T+ 1) (11-85c)
P

Equivalently, equation (11-85) can be written as

T*
H(T)= {C"T T<Ta (11-86)
C,T+L T>T*

The dilference between these equations and that given by equations (11-78) is
that in the latter temperature T* is used as the reference temperaturc. The
finite-difference equations (11-84), together with the appropriate boundary and
initial conditions for (the problem and the “temperature enthalpy™ relations
given by cquaiions (1 1-85), constitute a sel of equations for the delermination of
nodal enthalpies H? " ! at the time level n + 1, from the knowledge of the enthalpies
H? in the previous time level. These equations being nonlinear, an iterative
scheme is needed to solve for H**!, Furthermore, if it is required that the
solid-liquid interface move one and only one spatial step Ax during each conse-
cutive time step A, iteration becomes necessary to establish the magnitude of
each time step accordingly. Voller and Cross [74] used enthalpy formulation for
a one-dimensional solidification problem with a single phase-change temperature
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which led to very accurate solutions. We present below, the equations needed to
perform such iterations.
Equation (11-84) is written in the form

GH™ Y= H" + A(FH" ) —H"*' =0 (11-87)
To calculate H"*!, the modification of Newton’s method is applied

}'nllkll Hﬂ'llk UG{EIFIFIR)

G (Hn+ [N k)
where o is the relaxation parameter, the superscript k denotes the number of
iterations, and n is the number- of discretization steps on time, The derivative
G” with respect to H™" 1 is determined as

aF Hn+ 1.k
G‘(Hlﬂ- l'k) = AE'—a‘%l-mI-)-"“ (l l-88b)
=J—1 ' (11-88c)

where I is the identity matrix and J is the Jacobian matrix whose components
are given by  _ e

J, ,-AtaF‘ (11-89)
BH, = Hnt Lk .

where F,(H) is as defined by equation {11-84b).
Then the equation for the determination of the ith component of enthalpy
H* 1+ hecomes

H?.k - H';+ L.k + AIF,—(H”"' l.k}

Hn+lk+1 Hn+1k+
1—Jq

(11-90a)

where

aF,
Ju=Ahi- {11-90b)
‘ aHl 1w Hrtb
The Algorithm
To start the iterations on H, an initial estimate on the components of emhalpy
is chosen as

H{HY0 = HY 4+ AcF((H) (11-91)

(11-88a) ~
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where F,{H"}is as delined by equation (1 1-84b). [terations are carried out by using
equations (11-90) until a specified convergence criterion is achieved.

Also we need Lo perform iteralions on the size of the time step Aty such that
the interface will move one and only one grid point over the duration of this time
step. This requirement can be satisfied by noting that at each time step one and
only one nodal enthalpy takes the value (CT* + 1 L).

Suppose the calculations are carried out up 1o the time level nr and that the
nodal enthalpies HY are determined for ail nodal peints i at time ¢, namely, the
time level n. Let, Af; denote the time step during which the inferface moves by
ane spatial step Ax, from the node i (o the node 7 + 1. Then

A=t -1

Then the iterations on the size ol'th time step At is performed in ihe [ollowing
manner:

1. The initial guess for the size of the time step At} is taken as
Af? = A[l'_ 1

2. The enthalpy distribution H'* %%, where the superscript m on At refers to
the mth iteration on the time step, is determined from the solution of
equations (11-90)and (1 [-91}. Here the mth time step Atftis.computed using
an iterative scheme given by

L+ A

Al m+l = A" w* AL (_“‘_1____.." [) {11-92}
CTA +(L/2)

where w* is the relaxation parameter associated with the time step iterations.

3. When the value of H!*%%" converges to [CT* +(L/2)], the corresponding
enthalpy values at al[ nodcs are considered to be the solution for the time
[+ A

4. Once the enthalpy values are availabie at the nodes, the corresponding
values of node temperatures T; are determined [rom the temperature-

enthalpy relation given by equations (11-85).

Emplicit Enthalpy Method for Solidilieation Over un Extended
Temperature Range

If the phase change takes place over an extended temperature range, there is a
mushy zone between the solidus and liquidus regions. In such a case, the enthalpy
H(T)is a smooth continuous lunction or piecewise continuous function. Assuming
a linear variation of latent heat over the mushy region, the variation of H(T) with

'
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temperature can be taken as that given by equations (11-79):

c.T for T<T, solid region (11-93a)
T-T, .
H=:C,T+ 7 FL for T.<sT<T mushy region (11-93h)
11— 1 '
C,r+L . lor T > liguid region {11-91¢)

and the corresponding relations for temperature as a function of enthalpy
becomes

H ‘ for H<C,T, (11-94a)
¢,
ro [HO-T)+LT for  C,T,<H<(C,T,+L) (11-94b)
ClTi—T)+L ’
- .’igf.* — for  H>(C,T,+L) (11-94¢)
»

Then the algorithm described previously is applicable if equation (11-84b) is used .

together with equations (11-94).

Readers should consult reference 74 for a comparison of explicit enthalpy 2nd
implicit enthalpy methods of solution for phase change at a single temperature
and constant properties with the exact analytic solution of a one-dimensional
solidification problem.
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PROBLEMS

Verify that the interface energy-balance equation (11-2c} is also applicabie
for the melting problem illustrated in Fig. 11-1b.

112 In the melting problem illustrated in Fig. 11-1b, if the heat transfer on

the liquid side is by convection and on the solid phase is by pure
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H-3

11-4

11-6

11-7

11-8

PHASE-CHANGE PROBLEMS

conduction, derive the interface energy-balance equation. Take the bulk
temperature of the liquid side as T, and the heat transfer coeflicient as h.

Solve exactly the phase-change problem considered in Example 11-2
for the case of solidification in a half-space x > 0. That is, a liquid at
the melting temperature T# is conlined to a hall-space x > 0. At time

={ the boundary at x =0 is lowered to a tcmperature T, below T*

 and maintained at that temperature for times ¢ > 0. Determine (he tempe-

rature distribution in the solid phase and the location of the solid-liquid
interface as a function of time.

Solve exactly the problem considered in Example [1-3 for the case of
melting. That is, a solid in x > 0 is initially at a uniform temperature T;
lower than the melting lemperature T*. For times ¢ > 0 the boundary
surface al x =0 is kept al a conslant temperature Ty, which is higher
than the melting temperature T}, Determine the temperature distribution
in the liquid and solid phases, and the location of the solid-liquid
interface as a function of time.

Solve exactly the problem considered in Example 11-4 for the case of
melting. That is, a line heat source of strength @, W/m is situated at
r=201n an infinite medium that is at a unilorm temperature T; lower
than the melting temperature T,,. The melting will start at r—0, and
the solid Tiguid interface wili move in the positive r direction. Determine
the temperature distribution in the solid and liquid phases, and the
location of the solid-liquid interface as a function of lime.

Using the integral method of solution, solve the solidification Problem
11-3 and obtain an expression for the location of the solid-liquid interface.
Compare this result with that obtained in Example t1-5 for the case of
meltling.

A solid confined in a hal{-space x > O is initially at the melting temperature
T, For times t > 0 the boundary surface al x =0 is subjected to a heat
Mlux in the form

— k== = H = constant
‘n-\- x=0
Using the integeal method of solution and a second-degree polynomial
approximation for the temperature, obtain an expression for the location
of the solid-tiquid interface as a function of time.

Consider one-dimensional solidification of a liquid having a single mel-
ting-point temperature T%, confined to the region 0 < x < B. Initially
the liquid is at a uniform temperature T, that is higher than the melting
temperature T* of the liquid. For times ¢ > 0, the boundary surface at

x=0is kept at a temperature T = [ that is lower than the melting

NOTE 435

temperature T* of the substance. The boundary at x=B satisfics
the symmetry requirement. The properties are assumed to be constant.
Develop the finite-difference formulation of this problem by using the
explicit enthalpy method; that is, use the explicit {inite difference scheme
to discretize the differential equations.

11-9  Repeat Problem 11-8 for the case of a malterial having phase change
over an extended (emperalure range. B

11-10 A liquid having a single phase-change temperature T, is confined to a
semiinfinite region 0 < x < oo. Initially, the liquid is at a temperature
Ti(> T*). At time t = 0, the temperature of the boundary surface atx =0
is suddenly lowered to a temperature To{ < T¥) and maintained at that
temperature [or times ¢ > 0. Determine the location of the solid-liquid
interface and the temperature at a position x = xg as a function of time
by using {a) exact analytic solution, (b} explicit enthalpy method, _apd
(c) implicit enthalpy method. Numerical values for various quantities
are given as

T.=0°C, Ti=2C, Te=—10°C

L =100 MJ/kg, (pCHh=25MJ[kg:°C), (pC);=1.5 M)f(kg-°C)

K= LTS5 W meC), k,=225W{m-"C), Xy = S0em

(See Figures 3 and 7 of reference 74 to compare your results)

NOTE

The exponential-integral function — Ei{ — x) or E,(x) is defined as

’ o e"u o e"'xl
—Ei(—x)sE,(x):I rw-du=f et for x>0 (1)

= u | t .
The function — Ei{— x), which is also denoted by E,(x), decreases monotonically from
the value E,(0)=co to E,{0)=0 as x is varied from x=0 to x— o0 as shown in
Table 11-1. The derivative of — Ei{ — x) with respect to x is given as

i[_ Ei(-x)J:—d—!'J\me— uduJ:— _.l.'._. [2]
dx dx| ), u x

The notation E,{x) has been used for — Ei(— x) function in reference 99 [p. 228}, and
its polynomial approximations are given for 0<x <1 and 1 €£x <o [99,p.231]. A
tabulation of E,(x) function is given in references 99 [p. 239] and 100 [p. 515].
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FINITE-DIFFERENCE METHODS

Numerical methods are usefui for solving fluid dynamics, heat und mass transfer
problems, and other partiai-differential equations of mathematical physics when
such problems cannot be handled by the exact analysis because of nonlinearities,
complex geometries, and complicated boundury conditions. The development of
the high-speed digital computers significantly enhanced the use of numerical
melhiods in various branches of science and engineering. Many complicated
problems can.now be solved at a very little cost and in a very short time with
the available computing power.

Presently, two major approaches used in the numerical solution of partial-
differential equations of heat, mass, and momentum transport include the finite-
difference method (FDM) and the finite-element method (FEM). Extensive amount
ofl literature exist on the application of FDMs [1-27] and FEMs [28-35). Each
method has its advantages depending on the nature of the physical problem to

- be solved. Finite-dilference methods are simple to formulate, can be readily

extended to two or three-dimensional problems, and are very easy to learn and
apply to the solution of partial-differential equations encountcred in Lhe modeling
of engineering problems. More recently, with the advent of numerical grid gene-
ration [36-41] approach, the FDM have become comparable to FEM in dealing
with irrcgular geometries, while still maintaining the simplicity of the standard
"DMs. Here we consider the application of FIDMs 1o the solution of heat
conduction problems. Despite the simplicity of the finite-difference representation
of governing partial-differential equations, it requires considerable experience
and knowledge to select appropriate [linite-differencing scheme for a specific
problem in hand. The type of partial differential equations, the number of
physical dimensions, the type of coordinate system involved, whether the govern-
ing equations and boundary conditions are linear or noniinear, and whether the
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problem is steady-slate or transient are among the factors that affect the type of
the numerical scheme to be chosen from a large number of available metheds.
The 1ailoring of a numerical method for a specific problem in hand is an
important first step in numerical solution with a'finite-difference method. There-
fore, we also present a classification ol partial-differential equations encountered
in the mathematical formulation ol heat, mass, and momentum transfer problems
and discuss the physical significance of such a ciassification in relation to the
numerical solution of the problem.

12-1 CLASSIFICATION OF SECOND-ORDER
PARTIAL-DIFFERENTIAL EQUATIONS

In the solution of partial-differential equations with [inite differences, the choice
of a particular finite-dillerencing scheme also depends on the type of the partial-
differential equation considered. Generally, the partial-dillerential equations are
classified into three categories, called elliptic, parabolic, and hyperbolic. To illus-
trate this matter we consider the following most general second-order partial-
differential equation in two independent variables x, y given by Forsythe and
Wasow [6]:

2 2 2 a
A28, 28 O p% kY kG =0 (2
Ax? dx dy dy dx fy

Here we assume a lincar equation (this restriction is not essential), that is, the
coefficients 4, B, C, D, E, and F are functions of the two independent variables
x, ¥, but not of the dependent variabie ¢.

The classification is made on the basis ol the coeflicients A, B, and C of the
highest derivatives in equation (12-1), according to whether the determinant

A B
B C

is negative, zero, or positive. The dilferential equation is called

Elliptic il B*—44C <0 (12-2ua)
Puarubolic il B —4AC=0 _ {12-2b)
Hyperbolic i B*—44C>0 {12-2¢)

For example, the steady-state heat conduction equation with no energy generation

2 2 :
%ngZTTZ":o (12-3a)
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is elliptic. The steady-state heat conduction equation with energy generation

9T 2T
ax? o gyt

1
+ Eg(x, =0 (12-3b)

is also elliptic. The characteristic of the elliptic equation is that it requires the
specification of appropriale boundary cenditions at all boundaries.
The one-dimensional time-dependent heat conduction equation

er_ter {12-3
FRAE )
is parabolic.
The second-order wave equation
o* 1 8%
e 12-3d
axt e? et ( )

where ¢ is the time, x is the space variable, and ¢ is the wave propagation speed,
is hyperbolic.
The non-Fourier heat conduction equation

PFr 1 o*T 10T

e T (12-3¢)

which is a second-order damped wave equation, is hyperbolic.

Physical Significance of Parabolic, Elliptic, and Hyperbolic Systems

In the foregoing discussion we considered a purely mathematical criterion given
by equations (12-2) to classify the second-order partial-dilferential equation
([2-1} into categories called parabolic, elliptic, and hyperbolic. We now discuss
the physical significance of such a classification in computational domain.

Consider, for example, the steady-state heat conduction equation (12-3a) or
(12-3b), which has second-degree partial derivatives in both x and y variables.
The conditions at any piven location are influenced by changes in conditions at
both sides of that location, whether the changes are in the x variable or the y
variable. Thus, the steady-state heat conduction equation is élliptic in both x and
¥ space coordinates, and simply called elliptic.

Now let us consider the one-dimensional time-dependent heat conduction
equition (12-4), which has a second-degree partial derivative in the x variable
and a first-degree partial derivative in the time variable. The conditions at any
given location x are influenced by changes in conditions at both sides of that
location; hence the equation is regarded elfiptic in the x variable. However, in
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the time variable ¢, the conditions at any instant are influenced only by chariges
taking place in conditions at times earlier than that time; hence the equation is
parabolic in time and called parabolic.

The computational advantage of the parabolic system lies in the [act that
significant reduction in computer time and computer storage can be realized. For
example, in finite-difference solution of two-dimensional time-dependent heat
conduction equation, which is parabolic in time, onc needs (o consider only a

" two-dimensional network for the temperature field. As the temperature field at

any time is not affected by temperature field at later times, one starts with & given
initial temperature field and marches forward to compute the temperature fields
al successive time steps. _ ,

In the case of hyperbolic equation, however, it does not seem to be possible
to relate it to be some distinct computational advantages in finite-diflercnce
solutions as in the case of parabolic systems. As it will be apparent later, the
solution of hyperbolic heat conduction equation exhibits a wave-like propagation
of the teniperature field with a finite speed in contrast to the infinite speed of
propagation associated with the parabolic heat conduction equation. Therefore,
the solution of hyperbolic equations with finite differences requires special con-
siderations and special schemes.

12-2 FINITE-DIFFERENCE APPROXIMATION OF
DERIVATIVES THROUGH TAYLOR’'S SERIES

The idea of finite-difference representation of a derivative can be introduced by
recalling the definition of the derivative of the function F(x, ) at x=Xg, ) = o
with respect fo x:

oF = Hm Flxg + AJf.Yo) — Flxo. ¥o)

0x Ax=D Ax

(12-4)

Clearly, if the function F(x, y) is continuous, the right-hand side of equation (12-4)
can be a reasonable approximation to 8F/8x for a sufficient!y small but finite Ax,

‘We consider the Taylor series expansion of the functions f{x + k) and f{x — h)
about the point x, as illustrated in Fig. 12-1, given by

2 3
Tl +hy = f(x)+hf 00 + j‘zfi' 100 + 21 f7x) (12-50)

n? h? :
Slx=hy=[f)—-hf(x)+ —2~If x)— yf "(x) (12-5b)

where primes denote derivatives with respect to x. The {irst- and second-order
derivatives f°(x)and f“{x)can be represented in the finite difference form in many
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- /

—] fixh [fisa)

h h

fix Sry]

X h X xth *

Fig. 12-1 Nomenclature for a Taylor series representation.

different ways by utilizing Taylor series expansions given by equations (12-5) as
now described. -

First Derivatives

The forward and backward [frst-order derivatives of f(x) are obtained by solving
equations (12-5a) and {12-5b) for f'(x):

. e s _
Sx)= fix+ h) fx ,—If"{x) - E--f'"(x) (forward) {12-6a)
: h 2 6

J(x)= J'w+ f”( )— f'"(x) + -+ (backward) (12-6b}

2

Subtracting equations (12-5a) and (12-5b), the [irst-order central-difference
approximation is determined as

Sx+h)~fix=h) i (12-6c)

Sx)= o Ef'”(x) — -+ (central)

These three results are written more compactly as

fx+ M —f(x)

Jx)=" i + O {forward) (12-7a}
]

F(x) =w +0(h) (backward) (12-7b)
1 .

1) St —fx—h O(h?)  (central) (12-7¢)

2h
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i) Iy

f;—z f,'1 f, fEn fiva|

/] h h

-

i~2 i3 i ikl i+2

Fig. 12-2 Nomenclature for finiie-difference representation of f{x).

Here the notation O(h) is used to show that the error involved is of the order
of h; similarly, O(h?) is for the error of the order of %
If we now introduce the notation

x=1ih, x4+ h=(+ i x~h=(i—1)h, elc. (12-8a)

f=fn  fx+h=/i . [—h=/f ,, ce (128
as illustrated in Fig, 12-2, then the finite-dillerence represeatation ol the first
derivative of lunclion f{x) about x, given by equations (12-7a,b,c}, are wrillen,
respectively, as )

f h f‘ + O (for\;vard} (12-9)

fi=
[i= fiz f'" + O {backward) = . (12-10)
r fl +1 7 . . 2
Ji=mmee il L+ o) {central) (12-11}
2h
Second Derivatives
We now proceed Lo the finite-difference representation of the second derivative

J7(x) ol a function f(x) about the point x. To obtain such results we consider a

Taylor series expansion of lunctions f(x + 2[1) and S{x =2 about x as
S+ 20 = f(x) + 2R (x) + 2R3 (x) + 3037 (x) + {12-12a)

Sx—2h) = f(x) = 20f'(x) + 203" (x) — 311 ™(x) + (12-125)

= /"‘\ f-\' -
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Eliminating f*(x) between equations {12-5a) and (12-12a) we obtain

JX)+Slx+2h=2f(x+ 1)

h?

Fx) =

— It (x) {12-13}

similarly, eliminating /“{x) belween equations (12-5h) and (12-12b) we find

‘ ‘-'—21 ._'_ '__}
- S S A2 +jlfl\) 2f(x—1h)

+ hf"(x) (12-14)

Eliminating f*{x) between equations (12-54) and (12-5b) we obtain

f(x—h)+f(x+h)—2f(x)_ 1

Fx) = % 5 ) {12-15)

The results given by equations {12-13)-(12-15) are written more compactly as

fi= 21+ Siaa

Ji== P + O forward diﬂ'erenc.é | (12-16)
= fiam i{' ot + Oh) backward difference (12-17
Ii= fi-i _%i'—i—f' oy O(h")  centraldifference - (12-18)
where
=2

We note that the central-difference representation is accurate to O(h?) whereas
the forward and backward differences to O(h).

In the loregoing finite-difference expressions. two-point formulas are used for
the first derivatives und three-point formulas for the second derivalives. 1t is
possible to use more points in order to obtain more accurate finite-difference
expressions.

Summary of First Derivatives

In the following formulas, the symbols B, C, and F denote backward, central,
and forward, respectively.
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Two-Point Formulas

p=fini=hiy on) F
! h

= _f{ __iﬁ,:”.l + O(h) B
i

,_f:‘+|_fl—1 O(h? C
fi= 2h +00r)

T hree-Point Formulas

f:-=517(—3f,-+4f.-+, e+ O0R)
1

Four-Point Formulas

fim (= 14 1810y =903+ 22 + O0P)
1

fi= = 2oms =ik bfinr = Fin ) +O0P)
1

Fim iz = 6 + 314 210 )+ O0)
1

Summary of Second Derivatives
v o . 2
fi= i 2= 500 H4fiea = fivad + O
2

S (= Fies e 4fima = Sfima + 260+ 0O0)

f;'=[1_1(fi—l —2fi+ fir) + O
)

v

f"=2_1]'-(fi—2_4fi~l+3fl']~{;o(hz) B
1

fim = fi- b+ O0) c
2h

O

i12-19a)
(12-195)

(12-19¢)

(12-20a)
(12-20b)

(12-20c)

{12-21a)
(12-21b)

(12-21¢c)

(£2-220)

(12-22b)

(12-22¢)
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Mixed Derivatives

Often it may be necessary lo represent mixed partial derivatives, such as
@2 1dx 8y, in fnite dilferences. The finite-difference approximation can be deve-
loped by successive application of finite-differencing of the {irst derivative in the
x and y variables,

For itlustration purposes, we consider finite-dilference approximation of the
mixed partial derivative 82f/dx &y and use the central difference formula
cyuation (12-11) 1o discretize the first derivative for both the v and y variubles,

i(f’_f)__'_(ﬂ
dx\ay,/ 2Ax\ay

TABLE 12-1 [inite-Difference Approximation of Mixed Partial Derivative 3{{]0.\' ay

‘We write

‘af

t+1.f 5}":'—1.;'

(12-23)

) + 0(Ax)?

Diflerencing
Scheme®
i — Order of the
Case No. x ¥ Finite-Difference Approximation Error
| FF R EITANT Sl TN lY O[Ax.A)]
Ax Ay Ay
3 % B | (.f:u o g _ fy fug OlAx. A1)
Ax Ay Ay ) .
3 F ¢ L TSV el IR R VISRt 3] O[Ax.(A5T']
Ax 248y . Ay
4 B F L fr.)n"‘fr.j__fl—u.nl_fi-n.} O[Ax. Av]
Ax Ay ay i
5 B B _]_(IF.J"IE.J-I_fl—l.,l—fl—l.l—l OE.A.V,A\']
' Ax Ay Ay )
6 B C ) L(fl.jft_ff.j-l_fl—l.]+l —f.'-l.j—t 0[6:\'.(6}']1]
Ax 24y 24y
: . . {1 -1 fi- ~ 1
_ i ¢ . L I S N Rt Ty W A B NN Rt E N Ol A
. 2&.\'( Ay Ay ) (1Al
h C B . !.- (‘I.Lf!.l F‘[J MEL L ‘l_.'.'.'!.'! - '{.f:.},:l_' ! oL1ax)tAr]
2Ax Ay Ay . ’
9 C C L fnl.;ﬂ—ffH.J-l_LqJn_fi-i.,-l OI(A-TI':.(AVJZ]
2Ax 24y 2Ay ’

*F = lorward difference, B = backward difference, C = central diflerence,
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where the subscripts i and j denote the grid points associated with the discretiza-
tion in the x and y variables, respectively. Applying the central difference formula
once more o discretize the partial derivatives with respect to the y variable on
the right-hund side of equation (12-23) we obtain

éfef Vo fierger— ferig-n fi—l.j+:|_'fi-—lj—1) 5 | s

—| == ]|=-- S R A AR e R D Ak L 4 O[Ax) . (Ay)

(1.\'((1'1') :,-A.\‘( 2A_]' . 26.,! + [( \) ( }}]
(12-24)

which is the finile-dilference approximation of the mixed purtial derivative
82 f/dx dy using central dilferences for both x and y variables. The order of
differentiation is immaterial il the derivalives are continuous; that is &*f/é@x éy
and 923y éx are equal.

In the above iilustration we applied central differences for both derivatives in
xand y. Ifall possible combinations of forward, backward, and central differences
are considered, nine different cases arise for finite dillerence approximation of
8% f/9x &y. Table 12-1 lists the finite-difference approximations for each of these
nine diflferent cases.

12-3 ERRORS INVOLVED IN NUMERICAL SOLUTIONS

[ the numerical solution of partial-differentind equations with linite dilferences,
errors are involved in the discretization process as well as during the solution of
the resulting algebraic equations with a computer. These errors can be classified
as the truncation, discretization, and round-gff errors.

The round-off error, as the name impiies, is caused by rounding off of the .

numbers by the computer during the solution process. The discretization error
is caused by replacing the continuous problem satisfied by the PDE by a discrete
problem satisfied by the finite-difference approximation, including the contribu-
tions of the differential equation and boundary conditions, bul without the
round-off errors.

Consider, for example, the steady-state heat conduction equation

*r 0*T
Ln= 32 + i = (12-25a)
and its Ninite-dillerence approximation given by
T . —2T i+ Tiwrs Tiooi—2T 4T
Lyp{T)= =i td 20H T iy + .Ti__‘____,ﬁu.ff:y_f L (12-25b)

(Bx)* (ayy

to be sclved over a domain subject to some specified boundary conditions,

=

lam)
g

i

L
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IT the heat conduction problem is solved over the domain exactly by using the
PDE and by using the finite-difference equations without any round-ofl error,
the results will not be equal. The difference is called the discretization error caused
by the truncation errors associated with finite-difference approximation of the
differential equation and the boundary conditions lor the problem,

The terminology, truncation error is used to identily the errar resulting from

" the discretization of the PDE only:
solution of finite-
Exact solution dilference equation truncation
ol PDE - without = error (12-26)
: round-offerror
— nl : —_— ——
L(T) Lep(T) TE"

Clearly, the truncation error is the diflerence between the exact solution of PDE
and its finite-difference solution without the round-ofl error, and hence is a
measure of the accuracy ol representing the partial differential equation in the
finite-difference form.

Table 12-2 lists truncated leading error terms in the inite differencing of the
first and second derivatives using forward, backward, and central differencing
schemes. Clearly, the leading error is of the order O(Ax) for the forward and
backward differences, while of the order O[({Ax)?] {or central difference.

The total error involved in [nite-difference calcuiations consists of the dis-
cretization error plus the round-off error. The discretization error increases with
increasing mesh size. while the round-off error decreases with increasing mesh

TABLE 12-2 Various Differencing Schemes and the Corresponding Truncated
Leading Error Terms

Truncated Leading

Derivative Finite-Difference Form Error Terms®
S . a2
I Y (CT v Ty PR _bx, 8
dx Ax 2 6 |
] Y e i A . 42
dfixy Sy — [lx f\.\)(“”ckwm,l“ . Ax o (Ax) -~
da Ax 2 [
4ft fleedy—fle=ay o
dx 2Ax 6
d* f{x) Jix—Ax) =2 f(x)+ flx + Ax) (Axy¥? .,
R -l {central) - = f
= _ (Ax)* 12

*Primes denole differentiation with respect to x.
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size. Therefore, the total error is expected to exhibit a minimum as the mesh size
is decreased.

Example 12-1
The following numerical representation of f(x) is given at equally spaced
intervals Axsh=1. ‘ .
x| 0 t 2 34 5
fto|15 18 12 101 =6

Using finite dilferences, determine Sosfx=0)/5= fix=35) and fy=
f"(x = 0) accurate to the order h?. ‘

Solution. The first-order derivatives accurate to O(h)* are given by.equati(ms
{12-20a) and (12-20b). The forward dilference formula (]2—203? is Ejsed to
determine [, because no points are available in the backw_ard direction and
ihe backward-difference formula (12-20b) is used to determine f’ because no
points are available in the forward direction. Hence we have

[=H=3fg+4fi~ =545+ 12-12)=T5 o(1y  (12-27a)

Fom Wy ALY =0 4- 1= 6 0P (12:27h

4

Formula (12-234) is used to determine fg; we find

0 1(2fo— 5y +4f;— 1) =430 — 90+ 48— 10)= — 11 O(1}* (12-27c)

12-4 CHANGING THE MESH SIZE

In most engineering applications, one will often have some idea ol"'lhe gepqra]
shape of the solution, especially of the locations where the profile will extglbll-a
sudden change in the first derivative. Therefore, to obtain higher resolution in
the region where the gradients are expected to vary rapidly, it is desirable to use
a finer mesh over that particular region rather than refining the mesh over the
entire domain, To illustrate this matter we consider the simplest situation involy-
ing a change in mesh spacing only in one direction al some point in the region.
Figure 12-3 shows a change of the mesh size from Ax, to Ax; at some nqde
i. A Taylor serics expansion about the node i can be used to dcvclgp finite
i Axy [ Axy |
1 j . 1
i-1 i i+l

Fig. 12-3 Change of mesh size from Ax, to Ax; at node i.
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diiference approximation. That is, the function f(x) is expanded about the node
iin forward and backward Taylor series, respectively, as

!r A\'p (e A 3 {
Jirr= i+ 3,5 |+Lil-?m‘3;4 anr ‘dﬁ FO[Ax,)] (12280
. o d Ax 2 d2f Ax S

- f . r . - r

To obtain a difference approximation for the second derivative at the node

‘i, equation (12-28b) is multiplied by (Ax,/Ax,)* and the resulting expression is

added 1o equation {12-28a) to give

fion S fies = (1 + 1= 0, | + gLl
l 2 3f 4
+E(Ax2 Ax|) (sz) +0[(Ax) T (12-29a)
where
g D% (12-29b)
Ax, ‘

and O[(Ax)*] means the largest of O[(Ax,)*] or O[(Ax,)*]. The finite-difference
approximation for the second derivative is obtained by solving equation (12-29a)
for (d?f /dx?)|, to yield :

dz_f =.f1+1”’“(1—82)f}+52fr—|_ Gdf
dx*|; (Ax,)? Ax, dx|;

[}

+O0[(Ax, — Ax,)]  (12-30)

This expression is accurate to first order at i il [ —&=0[(Ax,)?]. The above

finite-difference approximations imply that, uniess the mesh spacing is changed
stowly, the truncation ervor deteriorates rather than improves.

12-5 CONTROL-VOLUME APPROACH

In the previous section it was assumed that the given partial-differential equation
was the correct and appropriate form of the physical conservation law governing
the problem and Taylor-series approach was used as a purely mathematical
procedure to develop the finite difference approximation to the derivatives.

In the alternative control-velume approach, the finite-difference equations are
developed by constraining the partial-differential equation to a finite control-

volume and conserving the specific physical quantity such as mass, momentum,
or energy over the control volume. The basic concept is analogous to heat

balance over a small volume surrounding a grid point commonly used by -

elementary textbooks on heat transler to derive the finite-dilference form of the
heat conduction equation.

To develop the control-volume statement for a small finite region, it is
instructive to work backward from the partial-differential equation governing
the specific physical quantity. For illustration purpeses we consider the transicnt
heat conduction equation with coergy penerution given in the form

aT
PC == Vatg (12-31a)

where the heat flux vector q is related to the temperature T(r, t) by the Fourier [aw

q=—kVT (12-31b)
and ¢ is the volumetric energy generation rate.
We integrate equation (12-31a) over a small fixed volume V
aT
) pC -dl =~ | VqdV+| gdV (12-31c}
Vv ¥

The integral on the left-hand side can be removed by means of the mean value
theorem lor integrals. Similarly, the integral over g is also removed. The volume
integral over ihe divergence of the heat flux vector is transformed to a suiface
integral by means of the divergence theorem. Then equation (12-31¢) becomes

-\T )
Vpcp%?= —J gndS+ Vg (12-32)
] s _

where § is the surface area of the control volume, Introducing the heat flux vector

q [rom equation (12-31b) into equation {12-32) we {ind

T ar -
¥pC, ‘—--_j kS dS + Vi (12-33a)
t s on ‘
since
vT: n_a_T (12-33b)
an

Here Vis a small control volume; n and (d/dn) are, respectively, the outward-drawn
normal unit vector and derivative along the outward-drawn normal to the

NN N AN N S S S
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surface of the control volume; T and § are suitable averages over the control
volume of temperature and the energy generalion rate, respectively.
We have developed above a control-volume energy conservation equation [or

‘\_)n(\_) \\.,j k-‘)‘ (\_’l \._,' &‘_) ]\‘_jr L__,) I‘J '\__}3 (\J} Ry

P

A

Pt

4

IR ENPANPANS i D

DaUaUnUat

physical phenomena involving transient heat conduction, Similar conservation”

expressions can be developed for the conservation of mass or momentum and
include situalions involving convective transport.

Once the control-volume conservation equition is available, the corresponding
finite-difference equation over the control volume is readily obtained by discre-
tizing the derivative terms in this conservation equation.

The control-volume approach [or the development of finite-difference equa-
lions has distinet advantages for being readily applicable to multidimensional
problems, complicated boundary conditions and to situations involving variable
mesh and physical properties. On the other hand, the accuracy estimates with
the control-volume approach are difficult compared to that with the Taylor series
expansion method which provides information on the order of the truncation
error involved.

When applying the control-volume approach to develop the finite-difference
equations, the fnite difference nodes must be established first and then the

control volumes must be identified.

Example 12-2

Consider the following one-dimensional steady-state heat conduction problem
with variable thermal conductivity:

T
—df(l\'d—)-l-y{x)"—*O in 0<x<l {12-34a)
dx\ dx : )
—k di-z+ o T=hoTwo at x=0 (12-34b)
dx

T . .
k%—+h,_T=hLT®L at x=1L (12-34c)

dx

Using the control volume appronch write the finite-differcnce form of this

prablem,

Solution, Figure 12-4 shows the finite-difference nodes constructed over the
region. The integration of equation {12-34a) over the control volume about
)
T T W
i

1o T j‘/'? 7. Ty Doty T
= g % % 'V// % #l _.\{% 1 V%'/i\i 1.
hg .\':04}' %/%‘l %L hy

Fig. 12-4 Control volumes for one-dimensional case.

- e+ ——
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an internal node i gives

d
(k—T) ——(kd—z)_ +Axg, =0 (12-35)
dx Jiv 2 dx Ji-112

and expressing the derivatives in (he discrete form we oblain

- —T T,—T;- .
Tisa T!—k,ﬂm‘ T '} Ax g, =0, i=12..,M—1

ko, — Bk ¥
i+1/2 Ax Ax
(12-36)

where §; is a suitable average value of g over the control volume about i. The
integration of equation (12-34a) over the control volumes associated with the
boundary nodes at x=0and x =L, respectively, gives

(kﬂf) _.(k"_f_r) + Y Axg, =0 (12-37a)
dx /i dx J, 2
IT d
(k‘_) _k(_T) +laxge=0 . (23m)
dx M dx M-1]2 2

Utilizing the boundary conditions {12-34b,c), the finite-difference representa-
tion of the boundary conditions at x = 0 and x = Lis obtained from equations

(12-37a) and (12-37b), respectively, as

nL—-T

1
kuz +ho(Tm0—T0)+iAng=0 (12“383)

TM - TM—]

1
B(Toor — Tag) = kpg—1p2 +-Axg,=0 {12-38b)
Ax 2 :

Thus equations (12-36) together with the boundary-condition cquations
{12-38a4.0) provide M -1 1 algebraic cquations for the determination of M 4 1
unknown node lemperatures, T3, (i =0, 1,..., M). For constant thermal con-
ductivity, this system of equations reduces to

2T, — 28, To = — (20 + Go), i=0 (12-392)
To1— 2T+ Tiey= -Gy, i=1,2,....,M~—1 (12-35b)
2Ty - =28, Tyy= — 2y + Gy i=M {12-39¢)
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where
Ax hy AxhyT, o )
=1+ sy YoE———-=

Bo i Yo i
Axh Axh, T,

P+ =5 y= ""“!;'{ ok (12-40)
G_=(AI)2§s

' k

This system of equalions can be expressed in the matrix form as

SULYLING JITULIANDUUD ALULCDRALL CUUATIVINS I

T.a a (A 4 T Ty Ty

x=0 . r=1L

Fig. 12-5 Fictitious nodes — | and M + | at fictitious temperatures T, and Ty, , ,.

Figure 12-5 shows that the region 0 € x £ Lis extended outward by a distance
Ax to the left and to the right giving rise to twe [ictitious nodes —1 and M + 1

at fictitious temperatures T, and Ty, ,, respectively. Then the application of -

the second-order accurate central-difference formula (12-19¢) to discretize the
first derivatives in the boundary conditions {(12-34b,c), respectively, yields

- T.
i Tt heTo=hoT, o (12-43a)
Ax
B T
RaLing NURE. e ‘+h,TM_h,T (12-43b}

ZA.\

The [inite-dillerence equanon (12-39b) is cvalualed for i=0and i = M to pive,
respectively

Ax)?
T —2To+ T, (——‘;-EE =0 (12-4da)
. A Z
Ty-s — 2Ty + Tag s +Lli-—@=o (12-44b)

The elimination of T_, and Ty, , between equations (12-43} and (12-44) resulls
inr the following two finite-difference equations

[A] {T}={B} (12-41})
where
-2, 2 O 0 0 O |
1 -2 i 0 0 0 ‘
nown
[A]= 0 =210 0 0 = coeflicient (12-42a)
) matrix
0 | =2 |
|0 0 - - 0 2 -28, ]
—(Cr + 2
To ( 4] ;u]
T —G
1
unknown L __known
{T}=y - = vector, {B} = . = yector \242b:)
B — Gy
T, PR
1M —(Gir+2vD)

It is to be noted that the system of algebraic equations (12-39) or (12-42) are
sccond-order accurate, namely O[{Ax)*]. Il the boundary conditions (12-34b,c}
were discretized by using first-order accurate, two-peint forward and backward
differencing, the resulting equations would be first-order accurate, specifically,
0 Ax].

12-6 FICTITIOUS NODE CONCEPT FOR DISCRETIZING
BOUNDARY CONDITIONS

An alternative approach for developing second-order accurate finite-dillerence
form of the convection boundary conditions (12-34b,c) is through the use of
fictitious node concept.

2T, — 2B To+ {230+ Gg)=0 . at  x=0 (i=0) (12-45a)

ATy — 2B Ty + (27,4 Gy)=0  at  x=L (i=M) (12-45b}
where the coelficients f;, fo.. 70,71, are as delined by equations (12-40). We nole
that equations (12-45a,b) are the same as equations (12-3%9a.x).

12-7 METHODS OF SOLVING SIMULTANEOUS
ALGEBRAIC EQUATIONS

So far we illustrated the basic steps in the translormation of a partial-differential
equation and its boundary conditions into a system of algebraic equations. The
methods of solving such a system of algebraic equations can be put into one ol the

IO IATARAI IS Fata el STt T IO RaNaEa ke ke
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N .

- two-categories: AN t]}ejnw rrmetho.ds m.whlch a_ﬁmte‘num!:er of operations is | a3, Ty + 32 To + @23 T3 =d3 (12-46b)

involved in the solution and (2) the irerarive techniques in which answers Become

D progressively more accurate as the number of iterations is increased provided a3, Ty + a3 Ta +asa Ty =1t (12-46c)

- that the convergence criteria related to the diagonal dominance ol the coeflicient .

J matrix is satisfied. ] o ) We choose Uhe first equation as the “pivot” equation and use it to climinate T,

7 The reader should consult reference 42 for detailed description ol various from the second and third equations. That is, the first equation is multiplied by

:\ methods for solving systems of algebraic equations and the FORTRAN programs ay, Ja,, and subtracted (rom the second equation to eliminate T, from that

o and the subroutines associated with them. ) equation. Then, the first equation is multiplicd by a3 /u,, and subtracled [rom

) We present here brielly some of the direet and iterative methods of solving the third equation to eliminate T, rom that equation. We obtain

= systems of algebraic equations. i

B ay, Ty +a,;Ta+ a3 Ty=dy (12-47a)

D Direct Methods : .
. R 0 + G:ITZ + ﬂ:3T3 = d; {|2'47b)

:) Generally, the direct methods are preferred for systems having banded matrix )

- coellicients and for problems involving relatively simple geometries and boundary 0+ ak, Ty +at, Ty =4d} (12-47c)

D conditions. They are very efficient, but require large computer storage and give )

) rise 10 the accumulation of round-ofl error if the number of equali_ons is large. To eliminate T, from the third equation, the second equation is used as the

- There is a wealth of literature on the subject of solving systems of simultaneous “pivot” equation. That is, the second equation is multiplied by a%, Ja%, and

- algebraic equations because of the importance of this subject in scientific compu- cubtracted from the third equation. Then the system (12-47) takes the diagonal

™ ting. Here we present a briel discussion of some of these direct methods, form

» Cramer’s Rule. One of the most elementar methods of solving a set of algebraic a T +a,, T +a;3Ta= ‘ -

N ersf them . ry ‘ ; nTi+apTh+aTi=4, (12-48a}

) equations is by employing Cramers rule. The method is not practical 1o use for ,

~ large number of equations because it'involves large number of operations, To dyy Ty +tyy Ty = d (12-481y)

r’) solve a set of N equations, the number of basic operations needed is to the order

D of O(N*. Tt implies that doubling the number of equations to be solved would Ty = d} (12-48c)

L\ increase the computer time on the order of 24 or 16 times. Even if the computer

= time were available, the accuracy would be destroyed by round-off errors. There- The unknowns T, are immediately determined from this system‘by starting from

fore, in comparison to other methods discussed below, this method is completely the last equalion and the back substitution. We obtain

L. impractical and should not be used in the solution of finite difference equations;

~_> it is mentioned here in order to bring into attention its such a shortcoming. .

FJ . . TS = ~—'—:“— “2—4951)

L Gauss Flimination Method. This is a commonly used direct method for solving y;

) simultaneous algebraic equations. In this method, the coeflicient matrix is trans- :

t g q . . . ’ 4

i formed into an upper trianguiar matrix by systematic application of some algeb- T, = dy — a3, 75 ’ (12-49b)

iy raic operations under which the solution to the system of equations remains @y, :

3 invariant. Two principal operations apptied include (1) multiplication or division

D of any equation by u constant and (2) replacement of any equation by the sum T dy—a;3Ty—ay:T; (12-49¢)

- = L N 2_40¢

T ay

r
L

(O

N
s

3
i
_

4
L
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{or difference)} of that equation with any other gquation. Once the system is
transformed into upper diagonal form, the solution starts from the last equation

and proceeds upward by back substitutions.

= rilliistridte the procedure we consider the following simple exampie involving

three unknowns, T,, T, and T3:

an Ty +anT, +a,3Ta=d; {12-46a)

The above procedure is readily generalized to a system of N simultaneous
equations. '

Thomas Algorithm. In the case ol a tridiagonal system of algebraic equations,
such as the one encountered in the solution of one-dimensional heat conduction
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probiems, the Gauss elimination method can be further simplified by taking
advantage of the zeros of the tridiagonal coefficient matrix. This modified pro-
cedure, generally referred to Thomas algorithm, is an extremely elficient method
for solving tridiagonal system of equations.

In Appendix ¥I we present a computer program written in FORTRAN for
solving tridiagonal systems by Thomas algorithm.

_ lterative Methods

When the number of equations is very large, the coellicient matrix is sparse but
pot banded-and the computer storage is critical, an iterative method is preferred
to the direct method of solution. Il the iterative process is convergent, the solution
is obtained within a specified accuracy of the exact answer in a finite but not
predeterminable number of operations. The method is certain to converge lor
system having diagonal dominance and a discussion of diagonal dominance will
be given later in this section.

Iterative methods have rather simple algorithm, are éasy to apply and are not
restricted for use with simple geometries and boundary conditions. They are also
preferred when the number of operations in the calculations is so large that the
direct methods may prove inadequate because of the accumulation of round-off

Crrors.

Gauss—Seidel Iteration. This is a very simple, eflicient point-iterative procedure
for solving large systems of algebraic equations. The Gauss—Seidel iteration is
based on the idea of successive approximations, but it difiers [rom the standard
iteration in that the most recently determined values are used in each round of
iterations. Basic steps are as follows:

1. Solve each equalion [or the main diagonal unknown.

2. Make an initial guess for all the unknowns. .

3. Computations begin with the use of the guess values to compute a first
approximation for each of the main diagonal unknowns solved successively
in step 1. In each computation, whenever possible, the most recently
determined values are used and the first round of iterations are compieted.

4. The values determined from the first round of iterations and, whenever

. possible, the most recently computed values are used o complele the
second round of iterations.

5. The procedure is continued until a specified convergence criterion is satisfied
for all the unknowns.

To illustrate the procedure we consider the following three equations

an Ty +aaTataTy=d; {12-50a)
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-

l~ o~

These guess values are used together with the most recently computed valucs to *

complete the first round of iterations as

" i ' :
T = 0 (d) = T a3 1Y)

(12-53a
Uy !

i
T(z” =—{d; - aZIT‘llJ - “:JT[30~’) (12-53b)
33 ;

1
Tg]:“‘ (‘{J_uJIT‘l”_aJIT[Z“) (12-53¢)

tsy

These [irst approximations are used together with the most recently compu‘ted

-w---— ¥alues.to.complete the second round of iterations as

i .
T[f’:'a_(dl“ﬂjo‘z”—asaTtan) (12-54a)
11 '
I
Ty = _;"uz —ay T —ay3 T (12-54b}
z.
1
T‘:azJ =— [d3—ay, T(lz, - aazT(zz,]

(12-54¢)

d33

The iteration procedure is continued in a similar maanner,

N NN N TN

el

\ /'\ )

r

T

a, Ty +a,,T+a,:Ty=d; (12-500) (
a3, Ty + a3y Ty + azy Ty = d (12-50¢) o
where a;; # 0 for i = 1-3. v (; |
Equations are successively solved for the main diagonal unknowns: ( I
o] o
= = T—a, Ty (12-51a) i
ty L
| ' ¢
Ty=—(d; = ay T, —az3T5) (12-51b) .
22 L
L
1 ¢ 1“
Ty=-—{dy—a3; Ty — a3, T3} (12-51c) v
33 ( ‘
- Initial guess values are chosen as ( : :-'
T, T, TP (12-52) ("' :

i

TN
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A general expression for the (n -+ 1)th round of iterations of the above system
is written as

!
T D = [d, —a,, T — a,, T4 (12-55a)
ayy
PO Ly, 1 g, T (12-55b)
- 32
e = ! [d_,‘—;;317"["'“'-HMT‘2"+”] (12-35¢)
' 33

In the general case of M equations, the (n + 1)th round ol iterations can be written
as

b
Qi

j=

1 i-1 M 1 ] .
T!””':—-{d;— a Ty — % a,-J-T‘.’”J for  i=1to M (12-56)
'

=i+

The criterion for convergence can be specilied either as the absolute convergence
crierion in the form

IT::JI 1) T < e (12-57)

or as relative convergence criterion in the form

(n+ 1} _ in)
)?_".- Tl <o (12-58)

Trn
which should be satisfied for all T:.

Sueeessive Overvelaxation. The Gauss -Seidel method described previously,
generally does not converge sulliciently fast. The successive overrelaxation is a
method that can accelerate the convergence.

In this method, the iterstion procedure is wrillen as

RHS {right-hand side) of Gauss-Seidel

7'(_r| + 1) =
! iteration given by equation (12-56)

}+(| — )T
for i=1ltoM (12-39

Here w is the relaxation parameter.

Clearly, the case w =1 corresponds to Gauss--Seidel iteration. The choice of
the relaxation parameter effects the speed of convergence, but the determination
ol the optimal value of w is a difficult matter. Some numerical experimentation is
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necessary for selecting proper value of w for a given problem. With the proper
choice of w, it may be possible to reduce the computation time by an order of
magnitude; therefore, when the number of equations is large and reduction of
the computation time is important, some experimentation with diflerent values
of w is worthwhile,

The physical significance of the relaxation parameter o is as follows. For
w =1, the Gauss Seidel conputed value of the unknowan is stored as the cureent
value. For underrelaxation, 0 < w < 1, a weighted average of the Gauss—Seidel
value and the value from the previous iteration are stored as the current value.
For overrelaxation, 1 < e < 2, the current stored value is essentially extrapolated
beyond the Gauss- Seidel value, For o > 2, the caiculations diverge.

Iterative techniques are used to solve very large systems ol equations, because
round-off error is much smaller with iterative techniques than with direct solution
techniques. With direct techniques, round-off errors occur with each mathemati-
cal operation and accumulate until final answers are obtained. With iterative
techniques, for all practical purposes, the round-off error in the final converged
solution is due to that accumulated in the final iteration.

12-8  ONE-DIMENSIONAL, STEADY-STATE HEAT CONDUCTION
IN CYLINDRICAL AND SPHERICAL SYMMETRY

We now examine the finite-difference representation of one-dimensianal, constant-
property, steady-state heat conduction equation with cylindrical and spherical
symmetry. The governing heat conduction equation is given by

14d dT 1

el B Lol B DR RO .

v dr(r dr)+kg(r) 0 r#0 _ (12-60a)
or

d*T pdT | .

02 +;E;'+J—cg(r')—0 r#0 (12-60b)
where

0 rectangular
p={1 cylindrical
1 spherical

and the term g(r) represents the volumetric energy generation rate (i.e., W}’m’).
Solid Cylinder and Sphere. For a solid cylinder and sphere, equation (12-60b)

has an apparent singularity at the origin r=0. However, an examination of
equation (12-60b) reveals that both r and dT/dr becomes zero for r = 0: hence we
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have 2 ratio at the origin. By the application of L'Hospital’s rule it can be shown
that this ratio has the lollowing determinate form:

dT
{jdr)| —
(mr,) | r)(dr) _&T (12-61)
rdr r=0 (d/dr](r) r=0 - d’.Z r=0
Then, cqualion (I2-6UB). il r =1, becomes
d2T() o '
(1 +p)md;§—+§g(r)=0, r=90 {12-62)

To approximate this equation in finite differences, a network of mesh size 9, as
illustrated in Fig. 12-6, is constructed over the region. Then by using the second-
order accurate finite-difference formula, the first and the second derivatives are
directly discretized. The resulting finite-difference approximation to equation
{12-60b) becomes

Ty =254+ Ty | P T —Ticy | |
+'_' + - ;=U
5 5 26 P

for P 1,20 1, 0h {12-63)

This system provides M — 1 algebraic equations {or the M + 1 unknown node
temperatures Ty, T, ..., Ty -1, Ty TW0 more relations are needed.

An additional relationship is obtained by discretizing equation (12-62)atr = 0.
In order to use a second-order accurate central-difference formula at r=0, a
node is needed to the left of the origin + = 0. This is achicved by considering a
fictitious node “— 1™ at a fictitious temperature T_, located at a distance é 1o
the left of the r axis. The resuiting finite-difference approximation of equation

i-1 i+l M1 N

Fig. 12-6 Nomenclature for finile-dilference representation lor cylindrical and spherical
symmetry.

HEAT CONDUCTION IN CYLINUDRICAL AN SPHEKICAL 31 MMEC R LT
{12-62) at r = 0 becomes

(i ;:TE thy i go=0, =0 (12-64a)

where the fictitious temperature T, is determined by ulilizing the symmetry
condition at the node i = 0;

1 ={‘!TT'=0. giving T_,=T, (12-64b)
dr |, -0 20 : .

Introducing equation (12-64h} into (12-64a), the additional finite difference equa-

tion is determined as

T,

i
T°+—Ju=0 for i=0 (12-65)

2l +p) 5_2 p

Equations (12-65) und (12-63) are now rearranged, respectively, as

3go .
21+ p)(T, = T+ e =0, for i=0 (12-66)

P\ P 8%y .
ERLAT L O R AT I L S 1.2, M1
( 2:’) it '+( 2:‘) TR or !

(12-67)

‘where

_j1 cylinder
"~ |2 sphere

One more equation is needed to make the number of equations equal to the

number of unknowns. It is obtained by considering the boundary condition al
the node i = M (i.e., r = b). The foliowing possibilities can be considered at the

node M:
[. The temperature Ty, is specified at the boundary r= . Then we have

Ty = T,=known {12-68)

and the system of equations {12-66), (12-67) and (12-68) provide M - | relations

* for the determination of (M + 1} unknown node temperatures.

2, The boundary condition at r = b is convection into an ambient at & constant
temperature T, , with a heat transfer coefficient hy,, The boundary condition is

A Y R N N B I N S R A NG
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¥

Fig. 12-7 Fictitious node M + 1 at lictitious temperature Ty, .

given by

[
\-,1\

)

L W L

il

{
f—

CUULUOOD

H
R

UEUAVAVEWAWREWE

k —% + T =T, ,=known at r=hb {12-69)

To discretize this equation about the boundary node M with a second-order
central-difference formula, an additional node is needed to the right of the node
M. This is obtained by considering an extension of the region by a distance § to
the right of the node M, giving rise to a [ictitious node M + I at a fictitious
temperature Ty, as illustrated in Fig, 12-7, Then the discretization of equation
{12-69) ahout the node M with the central dilference formula gives

Ty =T,
f-RE MLy Ty =1yTe (12-70)

28

An additional relationship needed to eliminaie Ty, . ; is determined by evaluating
equation {12-67) for i = M. We obtain

‘ 82
(IME%)TMﬂ—ZTM_I—(I+_£_)Thf+1+_gﬂ=0 (12-71)

The elimination of Ty, ., belween equations (12-70) and (12-71) gives

2Ty — uToe + 2y +Goy=0  for  i=M (12-72a)

where
St
By=1+ ( 4 EEJ) k"’ (12-72b)
s
Tm= (1 + 2'—1;2);!'[:7-1\.1‘: {12-72¢)
52
Gy =224 (12-72d)
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which is accurate 0(5%). Equations (12-66), (12-67), and (12-72) provide M + 1
relations for the determination of M + [ unknown node temperatures for convec-
tion boundary conditions at r = b.

3 Bound:;ry condition afr = b is a prescribed heat flux boundary condition,
For this case, the steady-state solution does not exist unless the energy generated
in the medium equals to the total heat removal rate from the boundaries. Even
for such a case, the steady-state solution for a solid cylinder or sphere is not
unique; such a situation will not be considered. :

Example 12-3

A 10-em-diameter solid steel bar of thermal conductivity k =40 W/(m-"C)
is heated electrically by the passage of electric current which generates
energy within the rod at a rate of g=4'x 10° W/m> Heat is dissipated
from the surface of the rod by convection with a heat transfer. coeflicient
I =400 W/(m?-°C) into an ambient at temperature T, = 20°C. By dividing
the radius into Five equal parts, develop the finite-diflerence equations for this
heat conduction problem. Compare the finite-dillerence sotution with the
exact analytic solution for the cases when the firsi-order and the second-order
accurate differencing are used for the convection boundary condition.

Solution. The problem involves six unknown node temperatures, T;, i=
0. 1,..., 5, since the region 0 < r < b is divided into live equal parts. The six
linite-difference equations needed for their determination arc obtained as

4T, — T)+10=0, . -i=0 (12-73)

(l—%)7‘,—_1—27}+(1+2l,)7;,+,+10=0. i=1,2,3,4 (12-74)
! i 1 .

For the boundary condition at i = M = 5, one can use either the first-order
accurate [ormula

1 .
T5=-["T(T4+2), i=5 (12-75a)
or the second-order accurate formuldn (¢)

T, — 11T, +72=0, i=5 (12-75b)

The exact solution of this problem is given by

LI B AAS
Try=T, +2f+4kl:l (b):l (12-76a)
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TABLE 12-3 Comparison of Results with Exact Solution for Example 12-3

M=35 M=10

;—; 1st-Order 2nd-Order 1st-Order

Exact Accurate Accurate Accurate
00" - 33250 307.50 332.50 120.00
02 330.00 305.00 330.00 N7.50
04 322,50 297.50 32250 3000
06 310.00 285.00 31000 297.00
- 0.8 292,50 ‘ 267.50 292,50 280.00
L0 270.00 245.00 270.00 257.50

or
r\2
T(r) =20+ 250 + 62.5[ I — (5) ] (12-76b)

Table 12-3 shows a comparison of finite-difference solutions with the exact
results for the cases when the first-order and second-order accurate formulas
are used for the convection boundary condition. Gauss elimination method
is used Lo solve the resulting algebraic cquations. The numerical resulls
obtained with the second-order accurate [ormula arc in excellent agreement
with the exact solution; but the solution with the first-order formula is not so
good; it underpredicts temperature [rom about 7 to 9%, Increasing the number
of subdivisions from M =5 to M = 10 improves the accuracy of the results
with the first-order formula to about 47,

Hollow Cylinder and Sphere. We now consider heat conduction in a hollow
cylinder and sphere of inner radius r = g, outer radius r = b. To solve this problem

_ with finite dilferences, a finite-difference network is constructed over the region

i-14§i+1 M-1 M
r=b

Fig. 12-8 Nomenclature for finite-dilference representation for holiow sphere ar cylinder.
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as illustrated in Fig. 12-8. The governing heat conduction equation is given by

f’j?.;. I_HIT_;. 1 g =0 in a<r<h {12-71)
dr*  ordr  k :

For finite-dilference representation of this equalion; the region a < r < b is divided

into M subregions each of thickness & given by

soPd ' (12-78)
M

The differential equation is discretized by using the second-order accurate central-
difference formula for both the second and the first derivatives. We obtain
n"l_2n+T_iil - P EPI_II:—l I X O (12_79}

52 at+id 28 k

which is rearranged in the form

— b | Ty = 2T, m——— P0_o (1250
['- 2[(a/61+i1]r'?' ”‘"{”zuazanu] =0

lor i=12... M-1

where

_Jt cylinder
b= 2 sphere

Equations (12-80) provide M —1 algebraic equations, but involve (M +1)
unknown node temperatures T;, i =0, 1,2,..., M. The additional two relationships
are obtained from the boundary conditions at r=a and r = b. The following
possibilities are considered [or the boundary conditions:

|. Temperatures T, and T, are prescribed at the boundaries r =« and r=b.
Then the system of equations (12-80) provide M —1 relations for the
determination of M — 1 internal node temperatures, since Ty =T, and
Ty = T, are known,

f

AT

2. The boundary conditions at r = a and r = b are conveclion mio AmiEns
at temperatures T, and T, with heat transfer cocfficients &, and Ity
respectively:

—kj—T+ h,T=h7T,.=known, r=a {12-81a)
r

kédr_'- hyT = h, T, ,=known, r==5b (12-810)
r
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These houndary conditions are discretized with the second-order accurate central-
difference formula by using the fictitious node concept. The resulting [inite-
dilference form of equations (12-81) becomes

2T, ~ 2By Te+ g+ Gy =0, for  i=0 {12-82a)
Iy Tl 2 ) Gy =0 for P A (12-821)
where
p |6h, P Shy,
=1 - 28 =14 1e—2 T 12-83
Ao [ E(GﬁSJ k & +[ +2[(a/5)+M]:l k ( 2
p |é p 8
o=| l——"— 2T pu=|1t+ — |5(h, T, £2-83b
Yo |: 2([?/5):"(( ) Yar [ 2[((1/5)+M]:|k“b ») ( )
2 2
Go=29 g, = (12-84)
k k
and a > d.

Summarizing, gquations (12-80} and (12-82) provide M + 1 algebraic equations

for the determination of M + | unknown node temperatures T,,i =0, 1,2,..., M.

12-9 MULTIDIMENSIONAL STEADY-STATE HEAT
CONDUCTION

The extension of one-dimensional finite-differencing scheme for the discretization
of multidimensional steady-state heat conduction equation is a straightforward
matter which is now illustrated with examples.

Example 12-4

Consider the lollowing steady-state heat conduction problem.

*T T .1 . '
5.-;i+5.-r2-+'(—\_g[.\',_5')=0 in 0<x=<a OLyr<h (12-85a)
T=f{v) at  x=0 (12-85b)
aT '
k—=4+hT=M1T,, at X=u {(12-85¢)
x
aT .
—k—+h,T=1,T,, at =0 (12-85d) .
&y
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T=0 at y=b (12-85¢)

Write the finite-difference form of this problem using second-order accurate
differencing scheme.

Solution. Figure 12-9 shows the finite-difference net drawn over the region.
We let

Tix,y) = TUAX, jAY = T, (12-86)
where i=0,1,2,....M and j=0,1,2,...,N. We assume Ax = Ay = L

The finite-difference equations for various grid points are determined as
follows:

1. Internal Nodes, | Si<M —t;1<jsN—1 The differential equation
is discretized to yield the following [inite-dilference equations:

Tjoyy—2Ti;+ T‘;+1.j+T.-.j—1—2Ts.12+ T;.;+1+1gu=0 (12-87a)
(Ax)? {Ay) k

For lﬁe case Ax = Ay = |, these equations reduce to

’2
(Tih”.|.T‘.HJ+T“_l+TUH—4T,.J)+IQI.J=O (12-87b)
o.N ' iN MN
Ar=1
ay sl /

; — O M1}
o ij M.j o
0.1 ALl

. l
L0 Mo om0
0.0 1.0 M-10 )
s . lr| ‘rl
4 4
R | . M~

Fig. 12-9 Finite-difference network for Example 12-4.
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Boundary Nodes 0,f for j=01t0o N — I and i, N for i =0 to M. Because
temperatures are prescribed at these boundaries, no equations are needed.

. Boundary Nodes M.j for j=| to N — 1, This boundary is subjected

to convection. The finite-dilference equations ure developed either by
writing an energy-balance equation for a control volume aboul the node
M, j or by considering a fictitious node M +- 1, at a distance ! outside
the region at a fictitious temperature T,, v.; @5 illustrated in Fig. 2-9.
We prefer the Tatter, and diseretize the boundury condition (12-85¢)
using central differences as

kT"”E: TM—I_.j

5 + Ty =hT,, (12-88a)

To eliminate Ty, ., ;, an additional relationship is obtained by evaluating
equation (12-87b) for i = M:

2

— !
TM—IJ+ TM+1.J+ TM.]—I + TM.;H ‘“4T.u.;+ 'R!J‘:u.j=0 {I2-88b)

Eliminating Ty, , , , between equations {12-88a) and (12-88b), the finite-
difference equations for the nodes on this boundury becomes

A k 2,1 _EyM.j

for_ J=ltoN—I (12-88c)

2,1 2h 2
2T _ l.J+ATM’.j— 1t Thf.j1‘1 - (4 + “*I') TM.j =-=2T

. Boundary Nodes i,0 for i=1,2,...,M — 1. By lollowing a procedure

similar Lo that jn case 3, the finile-difference equatlons for nodes on this
boundary are determined as

' 20,1
ZTi.l+Ti—l.o+Tr+1.0“(4+_;ci)ﬂ'o=—_.__9‘- (12-89)

. Nede MO at Intersection of Two Convection Boundaries., The finite-

difference cquation (12-87b) is evaluated for i = M, j = 0. The resulling
equation contains fictitious temperatures T,, _, and T,,,, ,, o al the ficti-
lious nodes M, —1 and (M + 1),0. Two additional relution needed to
climinate these fictitious temperatures are obtained by discretizing the
boundary conditions (12-85c) and (12-85d) at the node M, 0 by central
differences, using these fictitious nodes. Alter the fictitious temperatures
are eliminated, the resulting finite-difference equation for the node M,0

MMULLILIMEINIIUINAL JIEAL T " 1Ml 11LA S S taruw nasas ——

becomes

, 2y | Ahs\
3T.u-:.u*‘~ﬂ..1“ 4+ k + I M

kT k

it ks, I? .
= _(:’ﬁ!. T, + 2hs - L+ g.\m) (12-90)

k

Example 12-5
Consider the following two-dimensional steady-state heat conduction for a
solid cylinder of radius & in the r, ¢ variables

W ] 2

‘ r+I‘T+IlﬂE+,!(t}(r',f}))=O in Ogr<h, 0<hp<2n

Ay . a a v ] .

i rar rti¢ 1291)

kgz-i-hTr-hTm : at.. r=.b. . .. (12-91b)
or :

and T is periodic in ¢ with a period 2n {12-91c)

Fig. 12-10. An {r,¢) retwork in cylindrical coordinale system and the ficlitious node
“M 4 1j"
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Figure 12-10 shows the finite-dilference network in Ar, A¢. Write the [inite-
difference form of this problem using second-order accurate differencing
scheme:

Solution. Temperature T(r, $) at a grid point (i,j} is denoted by
Tlid)  TUARAD T, {12-92q)
for i=012..,M j=012..N {12-92b)

Various derivatives in this problem are discretized by using second-order
accurate central difference formula. The resulting finite-difference equations
for various grid points are determined as [ollows:

1. Internal Nodes, | i< M —1; 0<j< N. Discretization of equation
{12-91a) gives

Ty = 2T+ Ty L Tiay=Tiony

(Ary? iAr 2Ar
V(T =27+ Tigedd | :
+ ( st liged 1o o (12.93
AP (Agy "o (1293

Alter rearranging we find

! 1 1
e L= =T 2T Zo\T.
(Ar)Z[( 2:')T‘*“ N“(”%)T'“"]

1

+—— (T,
PlarAg)

ij—1!

1
— 2T Ty +70,,=0  (12:930)

and the condition that temperature is periodic in ¢ with a period 2n
reguires

To=Tim (12:930)

=]

. Phe Center Node, 1! = Ty, Equation {12-91a}appears (o have singularity
at the origin r=40. To deal with this situation, cquation (12-91a) is
replaced by its Cartesian equivalent:

arr 8T 1 ‘

o — 4 —g =0 as ro0 12-94a

ottty g ( )

We construct a circle of radius, Ar, center at r=0. Let Ty be the
temperalure at r =0 and T, T, T3, T, be the temperatures at the four
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nodes this circle intersects the x and y axes. Then the finite diflerence
form of this equation about r = 0 becomes :

T1+T2+T3+T4—4Tﬁ+lgo=0 (12-94]))

(Ar)? k

wilh 1 {runcition error of the order of (A2 The rotntion of the Oy ad
Oy axes about r = 0 also leads to a similar dilference equation. If we now
denote T, as the arithmetic mean of the temperatures around the circle’
of radius Ar,, then equation (12-94b} becomes

T =Ty 1 ‘ '
41 %4 _4,=0 at r=0 (12-94c)
Ak

where T, is the arithmetic mean of the values of T, ; around the circle
of radins Ar with center at r =0, Tg is the value of temperature at r =0.
Thus, equation (12-94c) is the finite-diflerence form of equation {12-91a)
for the central node at r =0,

. Boundary Nodes {M.}), for j= 0 to N. The {inite-difference cqualion

(12-93b) is evaluated for i = M:

LY., t l .
(15 e (5 e~ s o

1 1 (ArYga _

+ (MA(!)]z T;"J_ 1 + I—M(Agﬁjz TM.}+ 1 + k 0 (|2~95d)
An additionnl relation needed to climinate the firtitious temperature
Tim+ 1y, I8 Obtained by discretizing the boundary condition (12-91b)
about the node (M, j) with central differences using the fictitious node

{M + 1).j. We obtain

T(M-i-l].j _ TM—l.'
(MM 4 T, = BT,

or solving for the fictitious temperature Ty | It

2h Ar 2hAr
Tm+1:.j=Tm—n.j_TTM.j'*"—k-T‘, {12-95b)

Equation {12-95a), together with equation (12-95b), provides a second-order
accurate [inite-difference equations for the nodes M,j for j= 0,1,....,N on the
convection boundary.
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12-10  ONE-DIMENSIONAL TIME-DEPENDENT
HEAT CONDUCTION

In this scclion we present the finite-difference representation of one-dimensional
transient heat conduction equation. There are several schemes available to
express the time-dependent heat conduction equation in finite-dilference form;
for example, 13 different schemes are listed in reference 5. Each of these schemes
has its advantages and limitations, We shall discuss some of these schemes with
particular emphasis (o the finite-difference approximaltion in the rectungular
coordinates. Applications for the cylindrical and spherical symmetry will be

- presented afterward.

Explicit Method

We consider the one-dimensicnal, time-dependent heat conduction prdblem for
a linite region 0 € x < L givenas '

ar  o*T
——— = E

=ez3 n 0<x<L (>0 L (12:96)

Subject to the boundary and initial conditions

T(e)=T,=known  at  x=0, (>0 {12970
T{x,t) = T, = known at x=L >0 - (12-97b)
T(x,t) = F(x) = known for i=0 (12-97¢)

The differential equation (12-96) is represented in finite-dillerence form by using
central differences 1o discretize ¢2T/dx? and forward differences to discretize

- @T/dt. We obtain

T —Tr T -2T+ T :
_.LAt. N o | (Ar;’ IX1 4 QLA (A7) (12-98a)

whore
T(x, t) = T(iAx,nAl) = T} {12-98b}
Equation (12-98a) is rearranged as

T = T (1= 20T0+ T8, (12-992)

UINE-LIVIC I A L § L0 0 hr eyttt ¢ o mmeme — o -

where

_ b {12-99b)

r=
(Ax)
n=012,... and i=12....M—1

with a truncation error of order O[Af, (Ax)*].

The finite-dilfercnce representation given by equalions (12-99) is called the
explicit form because the unknown temperature T7¥ " at lime step (1 + 1} can be
explicitly determined from the knowledge of the temperatures T, T{and TY,,
at the previous time step n according to equation {12-99a). The only disadvantage
of this method is that, once & and Ax are fixed, there is a maximum permissible

time-step size At which should not exceed the value imposed on by the following
stability criterion: )

O<r=— <- (12-100)

That s, for given values of « and Ax, if the time step Ar exceeds the limit imposed
on by the above criteria, the numerical calculations become unstable resulting
from the amplification of errors. Figure 12-11 illustrates what happens to the
pumerical caleulations when the above stability eriterion is viokated. In this
figure, the numerical calculations performed. with a tlime step sulisfying the
condition r = < 1 is in good agreement with the exact solution; whereas the
numerical solution of the same problem with slightly larger time step which
violates the above stability criterion (i.e., r =3 > §), resulls inan unstable solution.

Tix 11 -
——
Finite diflerence
solution with ¢ = g
A~
- Y
< ~
- “cExat sofution
, hY
~ A .
. Duts show linile dilleence
4 _—_AT——‘ . . 5
~. solutiop withr .« ¢
~ 1
~
~
~
~
v Az
¥y 1 1

Fig. 12-11 Effects of parameter r = xArf(Ax)? on the stability ol finite-difference solution
of the one-dimensional time-dependent heat conduction equation.
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'
it + 1
T linknown
values
A
Known
v ' values
T 7 .,
A
ARy A

Fig. 12-12  The finite-difference molecules for the simple explicil scheme.

When the boundary conditions are prescribed temperatures at both boun-
daries, as is the case of the problem defined by equations (12-96) an (12-97), then
the number of finite-difference equations (12-98) become equal to the number of
unknown node lemperatures. Figure [2-12 schematically illustrates the finite-
difference molecuitles associated with the explicit scheme.

The computational procedure is as follows:

I Start the caleulations with a = 0. Compute the T}, i=:1,2,...,M - |, at
the end of the first time step from equation (12-9%a), since the right-hand
side of this equation is known [rom the initial condition.

2. Setn=1and calculate T2, i=1,2,...,M — 1, at the end of the second time
step from equation (12-99a), because the right-hand side of this equation is
known from the previous time step.

3. Repeat the procedure for each subsequent time step and continue calcula-

tions until a specified time or some specified value of the temperature is
reached.

Convection Boundary Conditions. Consider the boundary surfaces at x = 0 and
x = L are subjected to convection with heat transfer coefficients h, and I, into
ambients at temperatures T, o and T, ,, respectively. We have

oT T .
-k Ay +hT =0T, ,=known, al x=0 {12-101a)
& _ ;
arTr
;'c—_\;+h,_T_=h,._T_,,._I_=known. at x=L {12-101b)
X

where the temperatures at the boundary nodes i =0 and i = M are unknown.

Two additional relations are obtained by discretizing these two boundary condi-
tions. . :
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™ T T T Tae  Tares
o + — —— —0)

o0—— —#

-1 0 1 i M- M M+

Fig. 12-13 Fictitious nodes —1 and M - L.

A very simple approach to discretize hese boundary conditions is lo use
forward differencing for equation (12-101a) and backward differencing for equa-

_.tion.{12-101b); but the results are only first-order accurate, O{Ax).

A second-order accurate, that is, O[{Ax)?], differencing of these bound.zujy
condilions is possible il central differencing is used to discretize the first deriva-

" tives in these boundary conditions. To apply the central differencing, we consider

a fictitious node * — 1™ at a fictitious temperature T and a fictitious node M + 1
at a fictitious temperature T%, . obtained by extending the region by Ax to the
left and right, respectively, as illustrated in Fig. 12-13. ) -
Equation (12-99a) is evaluated for i=0 and i=M, the resuf.tmg ﬁcut.lous
temperatures T and T4}, , are eliminated by utilizing the equations obtained
by discretizing the boundary conditions (12-101a) and (12-101b) with ccn.tral
differences about the nodes 0 and M + 1, respectively. Then the following,
second-order finite-difference equations are obtained for the convection boundary

conditions

T4 U= (1 — 2rPo) T’y + 2r T -+ 2o, for i=0  (12-1020)
Tt =2 (L = 2P )Ty + 2y, for  i=M  (12-102b)
where

B =1+ 2%M gz Xhor (12-103a)

k koo
PRI L LY (12-103b)

k koo
pm 2O (12-1030)

(Ax)?

Thus, the finite-difference equations (12-99) together with equations (12-102)
provide M -+ 1 expressions for the determination of M + 1 unknown node tem-
peratures at each time step. ,

For the second-order accurate finite-differencing of the convection boundary
conditions considered here the stability criteria (12-100) should be modified as
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{ollows

1 1
28, 2+ 2[(Ax ho)/k]

1—2rfez20 or 0<rg (12-104a}

for the boundary condition at x =0, and

1

!
= _)“ )
26, 24 2[{Ax hy )YE] (12-104b}

1=2rfl, 20 or U<rg

for the boundary condition atx=L.

Clearly, the stability criterion imposed on by equations (12-104a,b) is more
restrictive than that based on r<1. The smaller value of r obtained from
equations (12-104a,b) should be used as the stability criteria for the solution of
the problem.

Heuristic Argument of Stability. Computers cannol perform calculations to
infinite accuracy. Therefore, in the numerical solution of {inite-difference equa-
{ions with a digital computer, round-oll errors are introduced during calculations.
The mathematical analysis of stability is concerned with the examination of the
growth of errors while the computations are being performed. For an unstable

system the error grows larger without bound, but for a stable system it should

not grow withoul o bound.

Belore presenting a rigorous analysis of the slability ol the solution of linife-
difference equations, it is instructive to give a heuristic discussion of lhc stability
requirements.

We consider the explicit finite-difference equations (12-99a)

TOH LT (L 29T 1T, (12 105a)

Suppose al any time level n, the temperature T, and T7, | al the nodes i — |

and i + 1 are equal. Equation (12-105a) is arranged as
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equation (12-99a) the coeflicient (1 — 2r) should satisly the following criterion

At 1
=230 or r= 2= < (12-107a)
(Ax)* 2
which is the same as given previously by equations (12-100). Such a restriction on
the maximum value of r imposes the following limitation to the maximum size
of the time step

2
Ar B
2a

(12-107b)

A similar physical argument can be applied to examine the stability conditions
for the solution of f{inite-difference equations (12-102a). Consider equation
(12-102a) for 7, =0, which corresponds to convection into an ambient al zero
temperature, We obtain

CT =T (1 = 20B0) T

Suppose at any time level, the temperatures of the nodes 0 and 1 be, respeclively,
T% = 100°C and T = 0°C. Equation (5-108a), to be used for predicting the tem-
perature 74" of the node 0 at the next time level a -+ |, becomes

To = 2r x 0+ (1 — 203 H00 = (1 — 2rfi)100. (12-108b)
The physically meaningful situation for the problem requires that the temperature
T"“ can assume values between 0°C and 100°C, but cannot go beiow the 0°C

temperaturc of the neighboring node and of the ambient. An examination of .

equation (12-108b) reveals thal a negative value of the paiaeter (1—21 )
violates this requirement. Therelore, Lo obtain physically meaningful results [rom
the solution of the finite-dilference equation (12-108) the lollowing criteria should
be satisfied

(12-108a)

T =T (I —2KT—T"_,) (12-105b)
For illustration purposes, let T/, =T%,, =0°C and T} =100°C. Equation
(12-105b} is now used to calculate the temperature T7* ! of the node i at the next
time level n 4 [ as :

T =0+ (1 —2r)(100--0)=(1 —2r}I100 {12-106)
The physical situation requires that the temperature T; "' cannot go below the
temperature of the two neighboring nodes, 0°C. An examination of equation
(12-106) revels that a negative value of (1 — 2r) violates such a requirement.
Therefore, to obtain meaningful results from the solution of the fi nite-difference

1= 2rflg =0 (12-109}

which is the same as that given by equation (12-104a).

Fourier Method of Stability Analysis, We now presenl rather straightforward
but more rigorous analysis of the stability of [inite-difference equations by using
the Fourier (or Neumann) method of stability analysis.

In the Fourier method, the errors are expressed in a finite Fourier series, and
then the propagation of growth of errors with lime are examined. The method
does not accommodate the eflects of boundary conditions; but it is simple,
straightforward and can readily be extended to multidimensional problenis.

"\ﬁ_f'\f\.f\ﬁf\,r\h,m(\/\,,ﬁm(‘\imr\.m(‘\,ﬁr\._h../\'/*\f\ﬁr\r\,/—\/-\‘r\./-\m,r\ -
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_ Consider the one-dimensional transient heat conduction equation (12-96)
expressed in finite-difference form by using the explicil method

T;{‘Fl.,_Tf;:aT}'..leT;‘r"'T}'.'.l

~ )’ (12-110}

where the subscript jis the discretization index for the space variable (i.c.x=jAx)
and the superscript a [or the time variable (i.c., t = nAt). The numerical solution,
Tw, of the problem can be written as the sum of the exact solution, Tg, of the
problem and an error term ¢ in the form

Tu=Te+e€ (12-111)

where the numerical solution must satisfy the dilference equation (12-110). Sub-
stitulion of equation (12-111) into the difference equation (12-110) and noting
that T} should also satisfy the difference equation, we obtain
Ml B ol S Bl (12-112)
At {Ax)

Machine compulations introduce error almost at every stage of the calculations.
Assume that the errors introduced at pivotal points atong the initial {i.c., t = 0)
line could be expressed in a finite Fourier series in terms of sine-cosine or
complex exponentials. Here we preler to use the latter. To-examine the propaga-
lion of crrors as time increascs, one needs to consider only a single term in the
series, because the finite-diflerence equations are linear. With these considerations
one needs to examine the propagation ol error due to a single term expressed in
the form

e(jAx,nAr}=¢]= g pifinx (12-113)

where | = \/:_l.ﬁ,,, are the Fourier modes, y is in general a complex quantity,
nAt =t, and jAx = x. This equation is expressed in the form

PDAWANPRNE RN EN

\F‘L 3 r
) B

€7 = Erpibnids {12-1i4a)
Similarly, we wrile
€1y, = Lrgifmli s ax © (12-114b)
e;* 1= gt lgifmiss (12-114c)
wlle;'e
f=e™ (12-1135)
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For this definition of &, the error term &} will not increase without a bound as (
increases if

el< - (12-116)
We substitute the error lerms given by equations (12-114)into equation (12-112)

oAt

e eiFnltxgn(gifmdx _ ) 4 o~ ifmdxy  (12-117a)
X

eiammx(éu+ 1. f") —

and after cancellation and some rearrangement we abtain .

(XA[ eiﬁmdx + e—iﬂ...A.r .
=2 -1 12-117b
g mx)l( 2 ) (12-1170)

Noling that

- eiﬂmAx __I_'e ~ifimdx

cos(f,,Ax) = 5 (12-118)
Equation (12-117) is written as
E=1-2r(l —cos §,Ax) {12-119a)
where
LU 12-119b
(Ax)? (12~ )

Here the parameter ¢ is called the amplification factor. Recalling its definition by
equation {12-115), the initial errors will not be amplified and the finite-diflerence
calculations remain stable if the condition |¢] < 1 is satisfied for all values of §,.
Applying this restriction to equation (12-11%a) we obtain

[1—2r(l —cosf Ax}|<1 {12-120a)
or

— 1€ {1 —2r(1 —cos f,Ax)} < ! (12-120b)

which must be satisfied for all possible Fourier modes f,,. The right-hand side
of this inequality is satisfied for all possible values of f,,. To satisfy the left-hand




480 FIMITE-DIFFERENCE METHODS

side under most strict conditions we must have 1 — cos §,,Ax = 2. Then we have
—Ilg{l—4r) or r=—_ %<: (12-121a,b}

which is the criteria for stable solution of the explicit finite-difference equation
{12-99a)

Implici't Method

The explicit method discussed previously is simple computationally, but the
maximum size of the time step is restricted by stability considerations, If calcula-
tions arc to be performed over a large period of time, the number of steps, hence
the number of calculations needed may become prohibitively large. To alleviate
this dificulty, finite-difference schemes that are not restrictive to the size of the
time step At have been developed. One such method is the implicit method. We
consider Lhe one-dimensional diffusion equation

aT _ &'T

X

T'he finite-dilference representation of this equation with the imp[iuil_ scheme is
given by
T:ﬁl-l-l___rr:r“a 2Tn+l +T:l-:1[
At (Ax]2

{12-123)

which is accurate to O[{Ax)?, At} and uncondmonally stable, This is an implicit
scheme, because at cach time level algebraic equations are to be solved simul-
taneously in order to determine the nodal temperatures at the next time level.

wel mt l ask
Ti- Ti Tivi Unknown
o values
R
]
7 . Kruwit
- values
At
Ax Ax

Fig. 12-14 The finite-difference molecules for the simple implicit scheme.
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Figure 12-14 illustrates the expansion point (in+ 1) and the surrounding
- finite-difference molecules. If the problem involves M unknown node tempera-
tures, a simultaneous solution of M equations is required at each time step. Such
a solution procedure is more involved computationaily than that of the explicit
scheme; but the method is advantageous in that there is no restriction on the size
of the time step At by the stability considerations.

Stability Analysis. Weapply the Fourier method of stability analysis to demons-
trate that the simple implicit scheme is unconditionally stable,

As discussed previously, the numerical solution Ty is the sum of the exuct
solution, Ty, of the problem, plus an error term ¢, given in the form

Ty=Te+e€ (12-124)

We introduce equation (12-124) into (12-123) and note that T should also satisly
the difference equation. We obtain
f:"_ti_:fiq: EJ ‘ 25"2-1”.551 (12-125)
At (Ax)? .

where we replaced the space variable index i by j. The error terms €] are re-
presented.as given by equations (12-114). Introducing the values ¢, from u[u.llmn
(12-114)into (12-125) and after cancellations and some rearrangement, we obtain

za At fﬁ.,.dx‘+ e—l'ﬂ,,...ix
—l= —1 12-126
3 B 5 ( 3 ) ( )
where { = ./ — 1. Noting that
|,!JmAx iffmdx
cos(fnAx) = —--—+2—e— (12-127)
equation (12-126) is written as
E—=2ré(cos f,Ax — 1) (12-128)
or
Eml= —4:-{sinz(ﬁﬂzéi) C(12-129a)
where
ot
= e (12-129b)
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Equation (12-129a) is solved for ¢

-1
;=[1 +4rsin2(@%‘fﬂ (12-130)

For stability we nced || < 1 and this condition is satisfied for all positive values
of . Therelore, the simple implicit finite-differcnee approximation is stable for
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all values of the time step Ar. However, the time step At must be kept reasonably
small to obtain results sufficiently close to the exact solution of the partial-
differential equation.

Combined Method

A combination of the explicit method given by equation (12-110) and the implicit
method given by equation ([2-123) is written as

it
(Ax)? Hi-8) (Ax)?

T Ty [ T 2T 4 T T?-.—2T?+T?+;]
T,
At

{12-131}

where the constant #(0 < 0 € 1) is the weight factor which represents the degree
of implicitness. That is, cquation (12-131) reduces to the simple explicit form [or
0 =0, to the Crank Nicolson method for /= § and to the simple implicit form

forf=1
The order of accuracy of various difference schemes cotresponding to specific

values of & are given by:

i. 0 =0, the explicit method: O[AL {Ax)]
9. 0 =1, the implicit method: O[AL (Ax)’]
3. 0 =1, the Crank—Nicolson method: O[(AN (Ax)E]

1 (Ax)
4 0=~ — ——mmm: QLIANE (AX)*
o 2 12xAs Ean?(ax]

Clearly, finile-dilference schemes of various degree of accuracy are obtainable
from the combined method by proper choice of the value of the weight factor 0.
The stability criterion for the combined method depends on the value of the

weight factor 0§ as given below:

< 0 < 1: unconditionally stable for all values ofr (12-132a)

rad|—

0<0<i: stableonlyifO<r< {12-132b)

2-48

f+l i+l UR |
Ti-y Ti Tisn Unknown
8 values
At
- Known
- o] W values
I T o
Y
1-0
Ax Ax

Fig. 12-15 The finite-difference molecules for the combined scheme.

where r = (aAn/(Ax)%. Figure 12-15 shows the finite-difference molecules for the
combined method.

To solve equation (12-131), all the unknown temperatures T"** are moved
on one side and all the known temperatures T" on the other side. We obtain

— 0T+ (L + 200) T2 — BT
(=BT [ = 2( =T (1 =T, (12-133)

where r = (xAtj(Ax)%. The resulting system of equations (12-1 33) have a tridiago-
nal linear coeflicient matrix, hence can be solved with any one of the algorithms
discussed previously.

When temperalures are prescribed at all boundaries, the system (12-133)
provides complete set of algebraic equations for the determination of all the
unksown intetnd! node temperatures. With oonvection or prescribed heat Mix
boundary conditions, the temperatures at the boundary nodes are not known.
Additional equations are obtained by either discretizing the boundary condition
directly about the boundary node or the application of conservation principle
for a control volume about the boundary node. : g

12-11 MULTI[)IMENSIONALTIME-DEPENDENT
HEAT CONDUCTION

The fnite-dilference schemes such as the explicit, impliciz, Crank-Nicolson, and
combined methods presented previously with applications for the solution of
one-dimensional transient heat conduction problems can readily be generalized
for the solution of multidimensional transient heat conduction problems.
Consider, for example, that a three-dimensional transient heat conduction problem
is to be solved with an implicit method in order to alleviate the restriction
imposed on the size of the permissible time step and suppose that there are N
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interior nodes in each direction. Then the N* x N? matrix must be solved for
each time level and the procedure becomes impractical for large N. To alleviate

~ such difficulties various alternative approaches have been proposed for Lhe

solution of muitidimensional transient heat conduction problems. They include,
among others, alternating-direction-implicit {AD1) methods advanced by
Peaceman and Rachford [4], Douglas and Gun [43], Douglas {44].and a closely
related method described by Yanenko [45].

Alternating-direeiion-explicit (ADE) methods have been pmpmu.l by Saul'yev
[47], Barakul and Clark [46], Larkin [12], and Allada and Quon [13]. Several

. alternalive schemes have also been proposed [48-50].

In this section we first illustrate the generalization of the explicit and combined
methods for the solution of multidimensional transient heat conduction, and
then present the ART method applicd for the solution of two-dimensionil lransicnt

heat conduction.

Explicit Method Applied to Two-Dimensional Heat Conduction

Consider two-dimensional transient heat conduction equation with energy
gencration in the rectanguiar coordinate system taken as

aT 3*T T |1 )
P (A G 12-134)
b a(f}xz ay? x? _ (

where T= T(x,y,t) and g =(x,), 1), subject to some specified boundary and
initial conditions. To discretize this differential equation we introduce the notation

T{x,y,t} = T(iAx, jAy, nAt) = T{; o (12-135)

‘Then, the [inite-difference approximation ol the differential equation (12-134) at
a grid point (x, y) by the simple explicit method using forward-time—central-space

(FTCS) discretization gives

A+l _ I | a L T7 ]
Ty~ Ty af A7k 2T,,;+ T,+,,,+ Tij-1 - 2Ti 1"'__1‘1_1 +- !-’i-J]
. At ) (Ax) (Ay) k
(12-136)
This expression is rearranged in the form
| 1 rn b & 1 " ’ GAI n
l" ‘l"_.,lf\“; i 211,;4’lf+|,j)+rtlu , — 2T i ’1141)'!' k!ff.;
(12-137a)
where
At At
. =X (12-137b)

S " w
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For a square mesh Ax = Ay = 4§, equation (12-137a) reduces o

T"“'—r(Tf vyt T T+ T )+ — 4Ty, +rGy (12-138a)
where
alt Ol
re=—p-, GL= {12-138b)
¢ 4 k

Equation (12-137) or {12-138) provides explicit expression for the determination
of T;]* at the time level n + | from the know]edgc of grid-point temperatures
at thc previous time level #. I temperature is prescribed al all boundaries, the
number of cquduons are equal to the number of unknown grid temperatures;
hence the problem is soluble.

e L W N

For derivative boundary conditions, such as convection. or—prescribed heal
Mux, the temperatures at the boundary nodes are not known. For such cases,
additional relations are developed by discretizing the boundary conditions. The
discretization of the derivative term in the boundary condilion can be made
eilther by one-sided differences by using a backward or forward formula that is
only first-order aceurate. A second-order accurate discretization of the boundary
condition is possible by introducing a fictitious node and using a central-difference
formula. Alternatively, the control volume approach and conservation principle
can be used (o develop finite-dilference approximation for the boundary
conditions.

Stabifity. To obtain meaningf{ul results from the solution of the diflerence

equations (12-137a), the stability criterion associated with them should be estab-

lished. We rewrite equation (12-137a) in the form
T =Tt rd T = 2T+ Ty )+ (T"k 1 2T+ Ty dd
(12-139a}

where

A
bt SAL (12-139b)

Fx= (A-;)'Z * ',_\' (AJ,)z

Here the generation term is neglected beeause it does not influcnee the growth
and propagation of errors, and the subscript ¢ is replaced by j in order to
distinguish the subscript [rom i = \/—_l', which will appear in the analysis.

The Fourier stability analysis described previously is now generalized [or the
two-dimensional case considered here by choosing the error term in the form

Bl = Elgifmidagiinkdy  where F =g (12-140}

TN T x—/'\_f'\._/'\_.p'_f“\_
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and i=./—1, B, and 5, are the Fourier modes. In view of the definition
of &, the error term &}, will not increase without bound as ¢ increases, pro-
vided that

fl<t 7070 (12-141}
The error term should also salisfy the finite defference equation (12-139a). There-
fore, equation {12-140) is substiluted into equation (12-13%a) and after cancella-
tions we obtain
‘;; =1+ rx(e—iﬂ-..Ax + el‘ﬂ....‘.\x _ 2) + I.y(e—iq..dy + eirpu&y - 2) (12_ 142)
which can be written as
E=1-2r(1~cosf,Ax)—2r(l —cosn,Ay) {12-143)
since cos z = e 7" + &), .
The application of the stability criterion equation (12-141} to equation
(12-143) vields
— 1 <[l —2r{l —cos §,,Ax) — 2r{l —cosn,Ay)] <1
which must be satisficd for all values of A, andk g, The right-hand side is sutisfied

always. To satisfy the left-hand side under most strict conditions we must have
1 —cosf, Ax=2and | —cosi, Ay =2, yielding

— 1 [ —dr - dr,] (12-1442)
or
{re+r)<i (12-144h)
or |
[(ii;’ + :\?;] < ; (12-144¢)

For the case Ax = Ay = &, the stability criterion becomes

ou_\t<l

"5

r (12-145)

which is as twice restrictive as the one-dimensional constraint r < 1.
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Example 12-6

Develop the stability criterion for the finite-difference approximation by the
simple explicit method of the three-dimensional [inear diffusion equation in
the x, y, z rectangular coordinates.

Solution. The finite-difference equation (12-139) and the corresponding error
term cquation (12-140) are readily gencralized to the three-dimensional case.
The error term is substituted into the finite-dilference equation and a procedure
similar to that described previously is applied. The stability criterion -

(re+r,+r)<is ~ : (12-146a)
or
‘adt ait adt 1
+ + <= 12-146b
[(Ax)z (Ay)? (AZ)Z] 2 { )

results. For the case Ax = Ay = Az = §, the stability critericn becomes

At 1 '
r=20t 2 o ~ (12-146¢)

which is thrice as restrictive as the one-dimensional constraint r < 4.

Combined Method Applied to Three-Dimensional Diffusion

We consider a three-dimensional linear diffusion problem in an isotropic solid
governed by the partial-differential cquation

W07, 0T, 0T (12147
M\ oz? 4

with appropriate boundary and initial conditions. To discretize this equation we
introduce the notation

Tl yon )= TUAx jAV. KAz nAN= T (12-148)

Then, the finite-difference approximation of the differential equation (12-147)
with the combined method, by using FTCS, becomes

a1

hix —

E‘J-k 7t n ot
s BLA Ti5) + A, T + AT,

(1 = O[AG T+ Ay Tl + AT, (12-149)
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where the weight factor 8 assumes values 0 £ @< 1, and the finite-difference
operators A, ., Ay, and A, are defined as

A“T?”H(A )ZI:T""‘J'-" 2T,Jk+T” l_j_,‘] (12-150a)
e l N Fht Al 7

Ay T = (Ay) (T a— 2T+ T, il (12-150D)

AT = |:']i'":'_f,(+l 2T’i"j‘,‘ + T3 - N (12-150c)

(A (Azy?

Clearly, dcbending_ on the value chosen lor the weight factor 0, the simple explicit,
the simple implicit, and the Crank—Nicolson methods are readily obtained as
special cases: :

f) =0: The simple explicit scheme. The truncation error is 0{At, {(Ax)%, {Ay)?,
(Az)*] and the stability constraint on the time step At is

At wb abt] 1
|‘°f-«-+95--f+°-'--f]s,~, ©12-151)

(Axy  (Ap? (Az

=1 The Crank--Nicolson scheme. The truncation error is O[(A0)%, (Ax)?,
(Ap)?,(Az)*] and the finite-difference equations are unconditionally
stable.

= t: Thesimple implicit scheme. The truncation error is O[At, (Ax)?,{Ay)?,
(Az)?] and the finite-diflerence equa[ions are unconditionally stable.

For values of 0.5 £ @ £ 1, the scheme is unconditionally stable,

ADI Method Applied to Two-Dimensional Heat Conduction

We now present the alternaling-direction-implicit (AD1) method for the solution
of two-dimensicnal transient heat conduction in the rectangular coordinates.
The principal advantage of the method lies in the fact that, the size of the matrix to
be solved in each time level is reduced at the expense of solving a reduced matrix
many limes.
© W¢ consider the followmg transicnl heat conduction cquation
- 19T al'r T

1
;_é?_ax % 2-{- gix, 10 (12-152)

subject to appropriate boundary and initial conditions, and introduce the notation

T(x, y. ) = T(idx, jhy,nA) =T} {12-153)

IVELS L D LLAREVILL I Vb Il IV AN £ R0V 1070 b e} VAL Gal T & S HRel & & A YA L a R - .

The finite-dillerence approximation of the differential equation (12-152) with the
ADI method is based on the following concepts.

Suppose the computations are {o be advanced [rom the (n)th time level to the
{(n + 1)th time level. The simple implicit methed is used for one of the directions,
say, x, and the simple explicit method is used for the other direction, p. Then, the
advancement [rom the (n 4+ 13th level to the (n -+ 2)th level is done by reversing
the directions of the implicit and explicit methods. The.computational procedure
is continued by .l|lLI‘I1.lI1VL|y changing the dircetions of the explicit and implicit
methods. :

We now illustrate the applicalion of the AD1 method for the discretization of
equation (12-152). Suppose the implicit scheme is used in the x direction and the
explicit scheme in the y direction to advance from the nth to the {n + 1)th time
level. The fnite-dilference approximation of equation (12-152) is given by

Tij ' — Ti _ PR 2ATII + TIE;  THo = 2T+ T +£ _
wht (Bx)? (&) P
(12-154a)

where 3, ; is the average of g, ; for the current and next rime steps.

For the next time level, an explicit formulation is used for the x direction and
an imiplicit formulation for the y direction. Then, the finite-difference approxi-
mition{orequation (12-152) from the (u -+ 1t to lllu[n 1 2)nel time step becomes

i
Tif2—Tif' T -2 T TR 2T R T + l_
= -~ { 3
oAt (Ax)? (Ay)? P
(12-154D)

This equation utilizes the results {rom the previous time level 14 [ to calculaie
the temperatures at the time level n + 2,

For computational purposes, it is convenient to renrrange cquations (12-154a)
and (12-154b) such that at each time level, the unknown quantities appear on
one side of the equality, say, on the left and the known quantities on the other
side, on the right. Equations (12-154a) and (12-154b), respectively, become

-, Tn+i +“+2!’x)T"+1—f T:::IIJHJ Trr 1.1*(1.‘”2;.)')?‘?.;

=1
i, alr _
CAnT (12-1554)
for the time level n + 1 and
—r. T"+zl +(1+42r )]"n+z —_ T:.}-jl =r T:,+l1J . 2?‘_..]7”;';'
ale
+r T7E f,j+—k-£?;.; (12-155b)
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for the time level i + 2, where

_ ol adt

oA d  r= 12-156
"o Y Ty (121560

When solving the problem. equations (12-155a) and {12-155b} are repeated
allernatively.

The advantage of this approach over the fully implicit or Crank-Nicolson
methods is that, each equation, although implicit, is only tridiagonal. That is,
equation (12-155a) contains implicit unknowns Ty} ", Ti2[ . and Tj[};, while
equation (12-155b) contains implicit unknowns Tj."}‘z, T232,,and T7;2,. There-
fore. the coelficient matrix is tridiagonal for each equation; hence the computation
scheme is more efficient than those that are not tridiagonal.

If temperatures are prescribed at all boundaries, equations (12-155a.b) are
sulficient to determine the unknown internal node temperatures.

For convection, prescribed heat flux boundary conditions, temperatures at
the boundary nodes are unknown. For such cases, additional relations are
obtained by applying the conservation principle to a control volume about each
boundary node at which the node temperature is not known.

12-127 NONLINEAR HEAT CONDUCTION

In principle, there is no difficulty in applying finite-dilference methods to non-
linear parabolic systems; but the resulting finite-difference equations become
nonlinear and difficult to solve. The diffusion-type problems become nonlinear
due to the nonlinearity of the governing differential equation, or the boundary
condition or both. Consider, for example, the heal eonduction equation

V-{k(TWT]—&-g(T):pCAT)%? inregion R, >0 (12-157)

which is nonlinear because the thermal properties and the energy-generation
term depend on temperature. Consider the bouttdary condition given in the form

or :
= {{T.} on boondary {12-158)
an

where &0 is the derivative along the outward-drawn normal to the boundary
surface and T, is the boundary surface temperature. This boundary condition

becomes nonlinear if the function f(T,) involves a power of T,, as in the case of
radiation boundary condition

JC?I=EO'(T4-—T;) (12-159)
n
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or the natural-convection boundary condition

k%;?:c(]T— T HHT —T,) T (12-160)

where € is the emissivity, ¢ is the Stefan—Boltzmann constant, and T, is the
ambicnt temperature with which radiation or free convection takes place.
Various schemes are available for linite-dilference approximution of nop-
linear diffusion problems as a system of linear algebraic equations. They include,
among others, the lagging of temperature-dependent properties by one time step,
the use of three-time-level finite-differencing, and the linearization procedures.
H