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This research concerns the calculation of the effective transport properties of multi-phase
composite materials. The composite materials under investigation are composed of a periodic
array of inclusions embedded in a matrix. The geometry of the inclusions taken into account
are circular cylindrical, éliptical cylindrical and spherical. The inclusions can be solid or
multiply coated. The method used for these studies is Rayleigh’s method. Highly accurate
values for the lattice sums have been obtained using recently developed algorithms. A series
of explicit formulations used to facilitate the calculation of the effective transport property of
the systems under study are reported here.

The behavior of the systems as a function of the transport properties of the phases is
inspected. For multi-phase composites with cylindrical inclusions highly an-isotropic
behavior is observed.

The procedure for finding the equivalent systems of multi-coated systems with circular
cylindrical inclusions, when the sum of the transport property of the layersis equal to zero, is
studied. It is found that to construct the equivalent system in multi-coated systems, many
layers should be modified. Furthermore, multi-coated systems with elliptical cylindrical and
spherical inclusions do not have similar equivalent systems. The results are verified using a
numerical simulation method.

The effect of interfacial resistance on the effective conductivity of multi-phase systems with
circular cylindrical and spherical inclusions is studied, assuming that the interfacial resistance
Is concentrated on the surface of the inclusions. It is found that there is a specific condition in
which the effect of one phase on multi-phase systems in the direction of calculation of the
effective conductivity can be neglected. This condition may be estimated by R£ k - 1, where
R and k are the non-dimensional interfacial resistance and the relative conductivity of the
neglected cylinders, respectively. The case R=k - 1 applies when the same relation exists
between the interfacial resistance and conductivity of all types of cylinders

Two resistor models are used for deriving the upper and lower bounds of the effective
transport property. It isfound that the physical behavior of these bounds can be different from
the natural behavior of the systems.

Keywor ds: transport property, multi-phase, composite materials.
UDC 536.2: 620.18 : 517.927
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NOMENCLATURE

Arabic letters

a radius of the cylindrical or spherical inclusions

distance between the inclusions in the x-direction

o distance between the inclusionsin the y-direction for 3-D structures
C, -+ ,Cs constants

D electric flux density

f volume fraction

Eex magnitude of external field

F total volume fraction

F heat flux vector

k thermal conductivity

H electrostatic potential

unit vector in the direction x

unit vector in the direction y

[S—

J! Bessel function of kind i and order n

M number of theinclusionsin the unit cell

N number of the layersin coated systems

n normal outward unit vector

O order

q a parameter encountered in calculating the lattice sums
R interfacial resistance

r radial distance

S lattice sum

Sp extra heat flux resulting from the inclusions
S extra heat flux resulting from the interface
T temperature

\ volume

X,Y,Z cartesian coordinates

Y,m(q f ) spherical harmonics of order (I, m)
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Greek letters

d, Kronicker delta (1 if n =1 otherwise zero)
e dielectric constant

f azimuthal angle

g, multipolar polarizability

k wave number

n eliptic cylindrical coordinate
q polar angle

S surface area of the inclusions or boundary
y potential function
Superscripts

d dynamic

+ upper bound

- lower bound

* complex conjugation

¢ perpendicular direction
Subscripts

e effective

ext external

I interface

P particle

Acronyms

SC simple cubic

BCC body-centred cubic

FCC

face-centred cubic
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1. INTRODUCTION

1.1 Composite materials: definition, classification and importance

There is no unique definition for composite materials [Schwartz, 1984], and different
definitions are available; however, for our purposes, the term composite material refers to a
system that consists of two or more distinct phases that are separated from each other by an
interface. The phases are insoluble in each other. Composites usually have three parts;
namely, a matrix (background), structural constituents and an interface. The matrix is a
homogeneous material which surrounds the other phases and the interface is the boundary or
surface between the phases. One way of classifying composites is according to the
specification of the structural constituents. The structural constituent can take many forms

such as particles, fibers, laminates, fillers, flakes or combinations of the above.

The above definition brings to mind many systems that are of clear and essentia
technological importance. Examples are wood, foam, oil-filled porous rocks, colloidal
suspensions, emulsions, solid rocket propellant, concrete, reinforced materials, to name just a
few. Therefore the study of the behaviour and property of composites has a lot of potential
and for years has attracted researchers in different fields including physics, biology,

engineering, mathematics, materials science, geophysics and hydrology.

1.2 The subject of thisstudy

In this research, the purpose is to determine the effective property of multiphase composite
materials that are made up of periodic structures [Moosavi and Sarkomaa, 2002a; Moosavi et
al., 2002b; Moosavi and Sarkomaa, 2003a; Moosavi and Sarkomaa, 2003b; Moosavi and
Sarkomaa, 2003c]. For the sake of greater familiarity, the formulations will be given mainly
in the context of thermal conductivity, but the studied properties can be considered to be all
those listed by Batchelor [1974] that are mathematically equivalent (recently Torguato [2002]
has provided a similar table with more details). These properties include thermal and
electrical conductivity, dielectric permittivity, magnetic permeability, mobility, the

permeability of a porous medium, the modulus of torsion in a cylindrical geometry and the
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effective mass in bubbly flow. The inclusions studied in this thesis are in the shape of circular
cylinders or spheres; but also composites with periodic arrays of elliptical cylinders are
examined. The basic formulations and results can be used for any purpose, although here the
focus is applications in which the effect of one or more of the phases is neglected. For coated
composites, the interesting behaviour reported for singly coated circular cylinders is
considered. A further generalisation of this phenomenon is provided and extended to
multicoated systems. For multiphase non-coated composites, cases in which the effects of

phases with perfect and imperfect interfaces can be neglected, will be explained.

1.3 Motivation for selecting the casesfor the study

1.3.1 Periodic composites with ideal inclusions

Only afew composites can be considered periodic and as having ideal inclusions. However, it
should be noted that accurate calculation of the effective properties of real structures can be
very difficult if not prohibitive. Idea structures are under consideration here, since the
mathematics involved in these systems is manageable and the effective property may be
calculated to a high degree of accuracy. The results can be useful for understanding the
interplay between microstructures and the effective property of real structures, and
specifically those which can be approximated with the use of periodic structures. Also, the
results provide away of testing well-known classical numerical methods such as the boundary
element method, finite difference method or finite element method [Baltz et al., 1997].

1.3.2 Coating composites

In many cases it is necessary to coat the inclusions;, one such case is for the purpose of
increasing the wettability and adhesion of the inclusions and the matrix. When the enhancing
effect of the inclusions is not sufficient, a coating layer may modify the behaviour of the
system. For protection from chemical reactions, a suitable coating layer can also be applied.
In some cases, the coating layer is unwanted but occurs because of many problems in the
production processes. For instance, due to a mismatch in thermal expansion, a coating layer

with a third material may appear between the inclusions and the matrix. In some cases,
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modelling a system as a coated one may provide reasonable results, even though the system is
not exactly coated. Thisis the case for wet wood for which the moisture is considered to be a
coating layer. Therefore, extending the formulations to coated systems may have many

implications.

1.3.3 Composites with interfacial resistance

Most of the research has been performed assuming an ideal interface, but interfacial resistance
may occur because of a variety of phenomena, such as physical irregularities at the
boundaries, the presence of impurities, reaction on the surface of inclusions, acoustic
mismatch at cryogenic temperature, or the presence of a gap between the inclusions and the
matrix [Shai, 1982; Sanokawa, 1968; Eardley, 1973; Bhatt, 1992; Little, 1959; Torquato,
1995]. It is very important to take this effect into account, as the effective conductivity of the
system may be significantly changed and a system with conducting inclusions may behave
like a system that has non-conducting inclusions. In a more general case, the effect of
interfacial resistance can be modelled assuming that there is a coating layer around the
inclusions. However, in some cases, interfacial resistance can be characterised by introducing
a non-dimensional parameter assuming that the interface has no thickness and that interfacial
resistance is concentrated on the surface of the inclusions. This is the case, for example, with
Kapitza resistance [Little, 1959; Torquato, 1995] or when the Knudsen number in the gap is

considerable.

1.3.4 Multiphase composites

The behavior demonstrated by multi-phase systems can be completely different from that
understood on the basis of two-phase systems. Also, extending the discussion to multi-phase

cases introduces further generalisations into the formulations and relations.

1.4 Earlier studies

Contrary to general belief, the knowledge required for producing composite materials is not
new. For example, archaeological studies show that the inhabitants of Finland were able to

produce fibre-reinforced ceramics 4000 years ago [Lukkassen, 2002]. The scientific
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investigation for deriving the effective property of composites is also old and begins from the
work done by Maxwell [1873], Rayleigh [1892] and Einstein[1906].

In his treatise, Maxwell [1873] outlined the procedure for calculating the effective
conductivity of composite materials that have a very small volume fraction of randomly
arranged sphere-shaped inclusions, and derived a first-order relation of the volume fraction
for the effective conductivity of these materials. A considerable improvement was made to
Maxwell’s relation by Jeffrey [1973] who considered the interactions between the spheres
using a methodology put forward by Batchelor [1972] and was successfully able to obtain a
second-order relation. Chiew and Glandt [1983] later presented a modified version of
Jeffrey’s formulation. Other research calculating the transport properties of composites with
random arrangements can be found in reports by Sangani and Yao [1988], Bush and
Soukoulis[1995], Kirchner et a. [1998] and others.

The research into periodic structures was initiated by Lord Rayleigh [1892]. Rayleigh took
into account composites made up of periodic arrays of circular cylinder- and sphere-shaped
inclusions. By describing the polarisation of each sphere in an external field using an infinite
set of multipole moments, Rayleigh derived a relation for calculating the effective
conductivity (electrical or thermal) of these materials of O(f1°/3), where f is the volume
fraction. Rayleigh’s methodology turned out to be problematic. Rayleigh decided to use an
arbitrary method for calculating one parameter (lattice sum S, ) included in his methodology,

without explaining the reason; therefore, his method has been questioned by several
researchers [Jeffrey, 1973]. Mckenzie and McPhedran [1978] modified the Rayleigh method
and explained the physics and mathematics in the problematic section of Rayleigh's
procedure (see also Poulton et al. [1999]). Rayleigh’s methodology has since been validated
by many researchers. It is powerful and can be extended to electromagnetic [Nicorovici et al.,
1994], elastostatic [McPhedran et al., 1994] and elastodynamic [Movchan et al., 1997]

problems.

Runge [1925] studied the effective property of composites with periodic arrays of coated
circular cylinders, but the core of the system considered by Runge had a property equal to that
of a matrix. The discussion was generalised by Israelachvili et al. [1976] and Ninham and
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Sammut [1976]. Mentuaful and Todreas [1994] derived a more developed explicit relation for
the effective property of these composites. Nicrovici et a. [1993a] studied the case in more
detail in the context of dielectric permittivity and reported strange behaviour for these
composites. The same authors later extended the results to composites made up of randomly
arranged coated circular cylinders and as well as to composites made up of periodic and
random arrays of coated-spherical inclusions [Nicorovici et al., 1993b; Nicorovici et al.,
1995]. Lu and Lin [1995; 1997] used the coating procedure for the purpose of modelling
interfacial resistance in composite materials. Lu et a. [1996; 1997] have also presented the
necessary changes needed to extend the Maxwell methodology to coated systems. For non-
coated multi-phase composite materials, the work of McPhedran [1984] can be indicated who
considered calculating the effective transport properties of three-phase composite materials
having two different types of spherical inclusions arranged in the CsCl lattice (i.e., two
intermeshed simple cubic lattices). More recently, Whites [2000] and Wu and Whites [2001]
have developed a formulation for calculating efficiently numerically the effective property of
multi-phase materials made up of periodic structures composed of spheres or cylinders, within

the context of permittivity.

In addition to composites made up of inclusions in the shape of spheres or circular cylinders,
composites made up of inclusions of other shapes have also been investigated, for example
composites made up of inclusions in the shape of elliptical cylinders [Obdam et al., 1987,
Nicorovici et al., 1996] or spheroids [Lu, 1998]. Schulgasser [1992] and Fel et a [2000] have
provided some examples of structures whose the effective property can be easily found by
using the Keller reciprocal relation [Keller, 1964]. A simple example could be a square
checkerboard, which has been widely studied [Craster et al., 2001]. The case of a rectangular
checkerboard, however, requires a considerable effort [Obnosov, 1999]. The effective
conductivity of materials with square cylinders has been studied by Andrianov et al. [1999],
who have applied the Padé approximation. More generaly, Obnosov et a. [1999] have
considered rectangular and triangular inclusions using complex variables.

Instead of considering a composite material and then calculating the effective property, it is
possible to design composites with a specific property. Recently, Torquato et al. [2001] and
Hyun et al. [2001, 2002] have adopted optimisation techniques for this purpose (the so-called
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Target-Optimisation method). In this method, the unit cell is divided into many cells, each of
which contains the material of the matrix or the other phases. Using numerical procedures, the
cells are gradually moved until they yield a final structure that has the effective target
property.
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2. COMPOSITE MATERIALS WITH PERIODIC ARRAYS OF
CIRCULAR CYLINDERS

In this chapter the problem of calculating the effective transport property of composite
materials with circular cylindrical inclusions is discussed. First, the simplest case will be
considered, i.e. one in which the cylinders are uniform and solid and the interface has no
resistance, and the solution given by Rayleigh [1892] is explained. After that multiphase cases
will be considered. Multiphase cases can occur as a result of the coating of the inclusions
[Moosavi and Sarkomaa, 2002a] or the presence of different types of inclusions in the system
[Moosavi and Sarkomaa, 2003a]. Both these cases will be taken into account separately and
the behaviour of these systems explained. The effect of interfacia resistance will also be
discussed [Moosavi and Sarkomaa, 2003b].

2.1 Two-phase composites with arrays of uniform and solid circular

cylinders

Let us consider composite materials that are made up of uniform and solid inclusions of a
circular cylindrical shape and arranged in a rectangular array with periodicities equal to a
unity in the y-direction and b in the x-direction and immersed in a matrix with unit
conductivity, as depicted in Fig. 2.1(a). The radius and the reduced conductivity of the
inclusions will be titled by a and k, respectively. This way, the unit cell of the system would

be a rectangular cylinder with sides equal to band c, in the x- and y-directions, respectively,
having a circular cylindrical inclusion with conductivity k and volume fraction f =p a?/b in

the middle, as shown in Fig. 2.1(b).

The problem under study is deriving the effective conductivity of the system in the x- and y-
directions. The effective conductivity can be simply obtained along the axis of the cylinders

by using the arithmetic average technique, i.e., 1- f +kf .
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OO OO0

(@) (b)
Figure 2.1 A composite material composed of a matrix and dispersed phases shaped like
circular cylinders arranged in a periodic arrangement (a), and the unit cell of the system (b).

Suppose that a uniform field of magnitudeE,,, is applied externally along the x-axis of the

system in the negative direction. Thereby, the temperature inside the cylinder and the matrix

in the polar coordinates (r ,q) where g is measured from the x -axis can be expressed as:

T1=CO+5 r'(C,coslg +Cosinlq) re£a (2.1)
é | -1 | -1 :
,=A+tA [(Ar +Br )coslq +(A¢ +B¢ )smlq] r>a (2.2

1=1

The periodicity of the system impliesthat C, and A, differ from one cell to another, but the

other coefficients are essentially the same for al cells. Because of the symmetry of the

temperature around g =0, C(,At and B¢ will be neglected. Also, the temperature is anti-

symmetric around q =p/2, and therefore, | can only be an odd number. As a result, the

temperature functions can be reduced to the following:

¥
T,=C,+ é C,.,F 2" tcos(2n- 1)q r£a (2.3)

n=1

T,=A+ g [AZn_lr R BZn_lr‘z"*l]cos(Zn - 1)q r>a (2.4)
=1
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Next, the unknown coefficients will be derived. In the interface, the temperature and heat flux

are continuous. Thus, we have

T, =T,, kYT, /9r =97, /9r r=a (2.5)

Applying the above-mentioned boundary conditions, the coefficients of the temperature

functions can be related to each other, i.e.,

B,..
Py =20 (2.6)
an-la
B
Copy = — 20—, 2.7
2n-1 c - la4n_ 2 ( )
where
1-k 1-k
Oon1 = m Con1 = T (2-8)

As can be seen, g, ;, which we can be referred to as multipolar polarisability, and ¢, , are

not n-dependent, but since they are, in general (for the case of coated cylinders or in the

presence of resistance), functions of n, they will be kept in thisform.

The temperature functions cannot still be determined since the relations given in (2.6) and
(2.7) are relations between the coefficients only and do not provide suitable equations in terms
of the unknowns; a further series of relations between the coefficients is required. Many
methods known nowadays, such as the Rayleigh method [1892], Zuzovski-Brenner method
[1977], collocation scheme [Lu and Lin, 1994], inclusion model [Lu, 1998], and others have

been considered for this purpose.

Here, the Rayleigh method is used, asit is the oldest and has received alot of attention in the
literature [Meredith and Tobias, 1960; Mcphedran and Mckenzie, 1978; Perrins et al., 1979;
Cheng and Torquato, 1997]. It is based on the fact that the temperature around the origin,
when origin not included, can be considered due to terms originating at infinity and at the

other lattice sites. The reason is as follows: the temperature function given in Eq. (2.4)
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consists of two types of terms. The terms that contain r ™" are clearly due to the sources

Situated at the origin, since by increasing the distance from the origin these terms diminish.

The terms that contain r*"* cannot be due to the sources at the origin because they increase

when r increases; therefore they originate from other existing sources in the system. The
external field for any point placed in (x, y) leads to a temperature increase equal to E_, x . For
this point, sources situated on the axis of the jth cylinder will also lead to a temperature

3
increase equal to A BZn_lcos(Zn- 1)q j / rf“‘l where (rj q j) is polar coordinate of the point

n=1
when measured from the jth cylinder center. With this explanation the following relation can

be written:

3 N o 8 B,
Ata A, r? lcos(2n- 1)q =E.X+d a ﬁcos(Zn- 1)qj (2.9

n=1 jt0 n=1

The left-hand side of Eq. (2.9) can be considered as the real part of the relation

é - \2n-1
A+ Q Awa(x+iy) (2.10)

n=1

The right-hand side can also be written as the real part of the following:

E.. (x+iy)+é 5 BZn-l[X_ a, +i(y- hj)]'2n+1 (2.11)

j*0 n=1

where a ;and h; are coordinates of the center of the jth cylinder measured from the origin.

Now successive differentiation with respect to x on both sides of the above is performed and
the results at the origin evaluated (this can be done at any other point [McKenzie et d.,

1978]). In this manner the following equations are obtained:
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3 G

A1+8182+EBSSA+"':EE>¢ i

5 1
IATIBS A BS =0y (2.12)

| y

5 A +5 8156+%Bsss+---:0:-

_ 'r

' p

o)
where S, = (a ; Hih, )'” are the lattice sums. For more details on calculating the lattice
iro

sums, the reader can refer to chapter 6. The above set of equations can be rewritten as

8 a@n+2m- 3¢
it @ pnq FSmenzBons=Faln, (N=1..¥) (213)

m=1

where d, represents the Kronecker delta (1 for n=1, otherwise 0). Using relation (2.6), the

following expression is finally obtained:

B,,, .S an+2m- 3%
n + =S, om. Bm— =E dn 2.14
o i T g S sBams = Eudy (214)

m=1
All the unknown coefficients can be derived by solving the above set of equations and using
(2.6) and (2.7). By examination of this linear system, it isfound that thisis a system of linear
algebraic equations with infinite unknowns. The aim here is not to try to solve the system of
equations totally, but to concentrate, instead, on deriving only a few values of B. This is

because considering B, , for a sufficiently large n has no significant effect on the

temperature values. The set of equations can be solved using different well-established
methods such as lower-upper decomposition (LU) and singular value decomposition (SVD)
methods. When the volume fraction or conductivity of the inclusions increases, more terms
should be considered. To give the reader an estimation on the number of terms for
consideration, some of the results of Perrins et al. [1979] for the square array (b=1) are
reported in Table 2.1. As can be seen in this table the most difficult cases happen for perfectly

conducting cylinders near to contact.
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Table 2.1. The number of terms that should be considered to obtain an accuracy of 5 decimal
digits (a maximum percent relative error of 0.01) for the effective conductivity of composites
with periodic cylindersin a square array.

fA\k 2 10 50 ¥
0.1 1 1 1 1
0.3 2 2 2 2
05 2 4 4 4
0.7 4 10 12 8
0.75 6 18 24 36
0.78 8 36 48 100

This makes it possible to obtain the temperature functions, but there is still have no relation
for calculating the effective conductivity of the system. This can be done using different
methods. Rayleigh [1892] used Green’s theorem which will be explained below for uniform
solid cylinders. For the case of three-phase non-coated cylinders, however, a volume
averaging method [Lu and Lin, 1995; Cheng and Torquato, 1997], which can be more

confidently applied to a case involving an imperfect interface, will be explained.

2.1.1 Green’stheorem and the effective conductivity

Based on Green's theorem for functions | and y with continuous second derivatives, the

following relation, which is Green's second identity, can be written [Spiegel, 1968]:

&sz - Ry )dv=©§ WY 0, (2.15)

e Tn Mg

where V and s are the total volume and surface area, respectively. If bothy and | satisfy

the Laplace equation through the volume, the following can be written:
OF o) W 9%s =0 (2.16)
e

Now, let ussupposethaty =x,j =T and that the medium being investigated is the unit cell

of the composite material under study. As aresult on can obtain
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@@E-Tﬂgds =0 S, =S,+S,+S,+S +S, (2.17)
@ © fin ﬂnﬂ
Here, s, ,s,,S,,S, referto the left, right, bottom and top surface boundaries of the unit cell,

respectively. s . is the surface of the cylinder inside the unit cell. The integral on surfaces

s,and s, iszerobecause Tx/n =T/In=0. Also, we have

S T N T LT
1 = - 2 dv= ~ _dy= 2.1
Q.. X ® = Q- X) Gy =bQ ¥ =bC (218)
~ T%ds =(T -T)=-bE,, (2.19)
. 2] 2
O ?% - T%gds = (‘)p(Aia2 + Bl)coszq dq - (‘?p(Aia2 - Bl) cos’q dq = 2pB, (2.20)

In (2.18), G isthe average gradient. From the above

bG- bE,, +2pB, =0 (2.21)

can be obtained and, as aresult, the effective conductivity of the systemis

ke = G :1_ 2pBl :1_ 2fglAi
= bE_, E..

(2.22)
As can be seen, knowing B, is enough for obtaining the effective conductivity of the system.
The relative conductivity of the medium without inclusions is clearly equal to a unity;
thereby, the term 2pB,/ (bEext) IS produced as a result of the presence of inclusions in the
matrix. Thisterm can be positive (an impairing case), negative (an enhancing case) or equal to
zero.
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2.1.2 The effective conductivity for the perpendicular direction and Keller theorem

In general, the effective conductivity is atensor of rank two (see Torquato [2002] for details).
For the case b ! 1, the effective conductivity in the y-direction is not equal to that in the x-
direction and should be calculated. For this purpose, the same method as explained for the
parallel direction may be applied. If the system isrotated by an angle of a =p/2, we get

BE, S a@n+2m- 39
— T =S om 2B%n1 = Eaelin,s (2.23)
an-la4 2 %g 2n-1 1] o ' =

where S( are the lattice sums over the cylinders in this new position. It can be proven that

S¢ = ( 1)n S,, for n>1 and aso that S§{ =2p/b- S, [Nicorovic and McPhedran, 1996].

The effective conductivity now is

( (
kg=1- PBLo; 2104 (2.24)
bE., Eee

The effective conductivities in the parallel and perpendicular directions have been linked to
each other through the well-known Keller reciprocal relation [Keller, 1964; Milton, 1988; Fel
eta., 2000],i.e,

ko(kD)" ke(Wk)=1 (2.25)

This fact can be easily proven. By considering that reversing the conductivity of the phases

only makes the sign of g negative and applying the above-mentioned property of the lattice
sums (see also Perrins et ., [1979]) from relation (2.23), it is found that

& 2pBLo

(-1'Bg.. , & a@n+2m- 30 .
ext —-nl
bE..

= 7)™ - E
g2n-la4n_2 %g 2n-1 552n+2m.2( 1) B .

(2.26)

By using Eq. (2.24) and comparing the above relation with (2.14), it isfound
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Bén—l —(_ n
m—( 1)"B,., (2.27)

Writing the above relation for n =1 and using Eq. (2.24) again gives

key/k 1) =1+ % (2.28)

By applying Eq. (2.22), the following relation is finally obtained
ke(k, 1) keWk, 1) =1 (2.29)
2.1.3 Explicit formsfor the effective conductivity

As can be seen in Table (2.1), for low volume fractions or when the conductivity of the
cylinders is small, considering a few values of B,, ; may yield reasonable results. It is more
useful to derive an explicit relation for the effective conductivity of the system within these
boundaries. On the basis of the method used for truncating (for example square or triangular
manner) and the number of the unknowns taken into account, different expressions may be
obtained [Manteufel and Todreas, 1994]. Using triangular truncation of the second order

gives
Bl —_
> +S,B, +35,B; = E, (2.30)
g,a
B3
s +5,B, =0, (2.31)
g,;a
whence
k, =1- 21 , (2.32)

i+(:1f - c,g,f*
1

where ¢, =bS, /p and ¢, =3S; (b/p )4 . In Table 2.2 the constants for some of the values of b
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have been reported by calculating highly accurate values for the lattice sums [Movchan, 1997;
Huang, 1999; Huang, 2001].

Table 2.2 The numerical constants of the explicit relation (2.32) for the paradlel and
perpendicular directions

Parallel Perpendicular

b G C, G C,

1 1.000000000 | 0.305828278 | 1.000000000 | 0.305828278
J3 0.187018134 | 1.310523128 | 1.812981866 | 1.310523128
2 -0.09421981 | 2.312822989 | 2.094219807 | 2.312822989
3 -1.14159216 | 11.68912746 | 3.141592162 | 11.68912746
5 -3.23598776 | 90.19360281 | 5.235987756 | 90.19360281
10 -8.47197551 | 1443.097645 10.47197551 1443.097645

2.2 Multiphase composites with arrays of uniform and coated circular

cylinders

The theory for coated cylinders (see Moosavi and Sarkomaa [2002a]) can be formulated in the
same manner as that discussed in the case of solid cylinders. To start with, the solid cylinders
given in Fig. 2.1 are replaced by the multi-coated ones shown in Fig. 2.2. As can be seen in
Fig. 2.2, the multi-coated cylinders under study are made up of a core of radius a, and N-2
coating layers placed in the regions a_, £r £a, (i =2,...,N- 1), respectively. With these
considerations, the volume fractions occupied by the core and coating layers can be obtained

from f, :p(a12 - af_l)/b, where a, =0 and the total volume fraction can be expressed

N-1
asF = é f, . The conductivity of phasei isdenoted by k; . For the composite, the temperature
i=1

profilesinside the core, coating layers and the matrix can be expressed as.

T,=C,+ 5 C,.,F 2" tcos(2n- 1)q (2.33)
n=1
¥
T=A+ é [A‘z,w_lrz"'1 + B;n_lr'2”+1]cos(2n -1)q (i=2,-.N) (2.34)

n=1
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Figure 2.2 The multicoated circular cylinder under study.

Following the same discussion as that given for solid cylinders, the following equation can be

derived for the system:
N é N 2n-1 — Q g Banl
A+ @ Anieos2n- 1)g =E,rcog+ Qg v cos(2n - 1)q, (2.35)
n=1 jt0 n=1 ']

After performing the required steps explained in section 2.1, the governing equations of the

system can be derived as

By 3 a2n+2m- 3¢
. 41n-2 + a on-1 ESZH+2m-ZBZNm-1 = Egod g, (2.36)

N
g 2n- laN -1 m=1

where g}, can be obtained by successively applying the following procedure

4n- 2

i (k' +k‘-1)a~i-2 +(k' B k'-l)giz-%lai‘fnl-z i
= P 2 2.37
k)t vk Jakiatt -
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which is the result of implementing the boundary conditions between the phases, i.e.

T, =T, and kM= T r=a (i

— =k =1...,N-1 2.
=T bl P wsN-1) (2.39)

The effective conductivity of the system can be derived again using Green's theorem. In
applying Green’s theorem, only the surface of the boundaries of the unit cell and that of the
outermost coated cylinder, which isin contact with the matrix, are considered. Therefore, it is

not surprising that the same formulais derived as that for solid cylinders, i.e.,

N N N
k,=1- ipEBl =1- ZF% A (2.39)
ext ext

2.2.1 Phaseabandonment in multicoated composites

The behaviour of singly coated cylinders has been studied by Nicorovici et al. [1993a; 1993b;
1995]. The coating sequence effect has also been investigated by Lu [1997a]. Here the
attention is mainly focused on the results reported by Nicorovici et a. The property selected
by these authors was the dielectric constant, and therefore they were able to choose the
property of the layers from - ¥ to +¥ . The dielectric constant expresses the ability of a
dielectric to store electrostatic energy under the influence of an electric field. In electrostatic
the equation N.(eNH ) =0 needs to be solved, where e is the dielectric constant and H the
electric potential. There is dso D =-eNH where D denotes electric flux density. These
equations are mathematically equivalent to N.(kNT)=0 and F =- kNT, respectively, in heat
conduction. For some transport properties, such as dielectric constant, negative values are of
physical significance and are realisable. Materials can be designed to exhibit negative values
of certain transport properties, such as magnetic permeability (a constant of proportionality
that exists between magnetic induction and magnetic field intensity), even though they do not
normally exhibit negative values for these properties [Vessalago, 1968]. It is also possible to
go further and design materials with two negative transport properties [Smith et al., 2000].
These materials may exhibit strange behaviour. For example, materials where both the
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dielectric permittivity and magnetic permeability are negative (so-called left-handed
materials) demonstrate a negative refractive index [Pendry et al., 2001].

Next, the discussion is extended to a multicoated case (see Moosavi and Sarkomaa [20024a]).

The transport property is here denoted by e. As can be seen in Eq. (2.36), the term
Xy =1 (g o 1aﬁ,‘]‘12) plays an important role in the response of the system to the applied field,
asthisisthe only part of the set of equations which contains information on the property and
volume fraction of the layers. Therefore, if acompletely different set of coating cylinders with
N" phases satisfies the condition x,. , =x.' , it can be applied instead of the original coated
cylinders, and the effective transport property of the system in both states will be the same.

i+1
n

For example, for the case of coating layer i, for which e, =0, g, =1 is derived. As can be
seen, g™ does not contain any information on the property and radius of the layers under
layer i; therefore, they can be arbitrarily chosen. The same occurs when e, = +¥ , which

yidlds g/ =- 1.

Now, a more interesting case is considered in which e, +e,; =0. Nicorovici et a. [1993a)
showed that for a singly coated system, cases e, =-¢e, and e, =e, surprisingly demonstrate
the same response to the applied field. In other words, coated cylinders can be replaced by
solid ones that have a property equal to that of the core and a radius equal to that of the

coating layer. The reason is clear. Let us derive x5, ,:

+tlestey)e, +e)a™? . 1

(eS + e2 )(eZ - el) ai "2 + (e3 - e2 )(e2 + el) a;m_ ? a;m_ ?

3 —
X2n—l -

(2.40)

Whene, =e, or e, =-¢,, x, , reducesto (e, +e,)/|(e, - e,)a!"2|. Since all the parameters
remain unchanged, the responses of the systems are exactly the same. It can aso be shown
that the cases e, = - e, and e, = e, conditionally produce the same response. The condition is
that for the two-phase case, the radius of the dispersed phase must be equal to aZ/a, , where
a, and a, are the radii of the core and shell, respectively, for the three-phase system. This
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result is important, since this way when a, and a, are both small but the ratio of a,/a, is
large, the three-phase system will give the response of a two-phase system with the radius of
the inclusions equal to aZ/a,, which can be completely considerable. As a result, the

response of a concentrated system can be produced with a system that has a very small total

volume fraction.

In the following, a multicoated system when the sum of the dielectric constant of two
dispersed layers, i-1 and i, is equal to zero, is considered. For this case

i 4n- 2
Xi+1 — €. - € + (ei+1 +ei )X2n-1a'i . 1
2n-1 i 4n-2 4n- 2
€ + € + (ei+1 - § )Xén-la'i &

is1 (2.41)

i+l

This relation would yield the same x,*, and, as aresult, the same x, , if layer i had the same
property as layer i-1 and al the layers under layer i-1 were magnified by a factor of
(@ / ai_1)4. Layer i-1 undergoes two changes, magnification by occupying the place of layer i
and reduction due to the extension of layer i-2. Thus, this case can be materialised only if
a_,>./aa_,. This means that for the case where the property of the layers is equal to

(e1 e - re ,e2) , the following can always be written:

. 1 _
ee(el’el"“ ’el’eZ) e (el,iel,--- ,J_rel,ez) =1 (2-42)

e

The system satisfies the Keller reciprocal relation (see chapter 4); and thus we have

e.(e,.....e ) elve,,... /e, )=1 (2.43)
By applying (2.42) and (2.43), we obtain
ee(el’el"” ’el’eZ), eé( € ’i]/el e ’i]/el !]/ez) =1 (244)

In addition to inspecting x,**,, let us now also study x,_, when e, +e,_, =0, i.e,
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(e‘ - e'-1)+(e' +e‘_1)x;'?1a.‘f’1'2 .1 3
| | | | _n 1 l 2.45
(ei +ei—l)+(ei - ei-l)xé_rﬁlaﬂ_z il | (&4)

An inspection of the above relation shows that when e, =-e, ,, another equivalent system
can be obtained differently. In this system, the layers 1,...,i-3 have been extended by a factor

of (31-1/31-2)4- The layer i-1 now has the property equal to that of layer i-2 and its outer

radiusis a_, " (a_,/a_,). Thissystem can be materiadized if a_, < /aa, , .

The results of the present study have been verified using the finite element method. Consider,
for instance, the following simple example. Based on the above formulations for a triply
coated system, cases e, =-e, =e, and e, =e, =e, should give the same response to the
applied field. The results for both systems are given in Figures 2.3(a, b). As can be seen in

both systems, the fields through the matrix are exactly equal, which means that both systems
have exactly the same effective property.

|III I.- # :I II| Fd e | | .III X_\\‘_k&!
II I" I."I.II' II. I'Il:,u' III \ | | I'I "‘:\ ! I' | |
QLD )
| I: II'. !||I | II'. I\Ij{ |I I. | || I| IF’I{I .III I| |II -'II II I
I| I".‘_ ke .'II -\J\-‘:\ IlI [ II § I"HII ""':l 3 I'. ."I/"-II .l'.l |I
I'-I |1__ II.'I ; ’J\-..,_l .IIJ_ ').:’V /,r [
I\\\H'-l‘- IlI:I.:'?!l ,?(x""h-. 'r_-l" Y -|..~|II" --'/. _I."Illl
/ | | R S,
bl T I:: | IJ._:I_-"-!{\_\_\_‘_/

Figure 2.3 The equipotential contours inside a unit cell. The origina system (a) and the
equivalent system (b).
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2.3 Three-phase composites with arrays of solid circular cylinders

In this section, the problem of calculating the effective conductivity of composites made up
of two types of cylindrical inclusion arranged in a periodic array and embedded in a
continuous phase is discussed [see Moosavi and Sarkomaa, 2003b], as depicted in Fig. 2.4.
The configuration of the geometry selected for the study makes it possible to construct many
periodic structures that can be extensively found in literature. First, the Rayleigh method will
be developed for a three-phase composite system. Then, the algorithm is verified, comparing
the results with some existing numerical results. Finally, the behaviour of the system is
inspected. Only the mathematical algorithms for the x-direction will be explained. As outlined
in section (2.1.2), the same mathematical formulation can be extended for the y-direction.
Furthermore, the effective conductivities can be related to each other using the Keller

theorem.

Figure 2.4 The structure of the three-phase materials under study

2.3.1 Governing equations

Suppose that the origin of cartesian coordinates has been placed at the centre of a cylinder of
type one in a unit cell of the system in which the x- and y-axes are parallel to the sides of the
unit cell (see Fig. 2.4). Furthermore, assume that the matrix of the composite under study has

unit conductivity, and the periodicity of the system in the y-direction is equal to a unity for
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greater generality. Also the periodicity of the system in the x-direction is denoted by b.
Applying these conditions, the conductivity of the cylinders is denoted by k, and k,, the
radiusesby a and a, and the volume fractions by f, and f, for the cylinders of type one and
two, respectively. Let us assume that a uniform field of magnitude E_, has been applied
along the x-axis of the system in the negative direction. By taking the center of one of the
cylinders of typei (i :1,2)asthe origin of polar coordinates (r ,q), the temperature within the

cylinder can be given as
-
T (r ,q) =Co+ A Conil ™ cos(2n -1)q (2.46)
=1
and for the temperature outside the cylinder the following may be written

.9 ] ]
Tm,i (r ’q) = A(I) + a (A2n—1,i r 2 + B2n—1,i r 2n+l)cos (2n - 1)q (247)

n=1

where m stands for the matrix. Note that as in the previous cases in (2.48) and (2.49), the
terms of even degree are not present because of the anti-symmetry of the temperature profiles

around g =p/2. At the surface of each type of cylinder, we have

LIS LF}

T=T,, k
3i |1-[r ﬂr

r=a (2.48)

By applying the above boundary conditions, the following relations can be obtained:

i Bin—
Ao = (2.49)

g2n-la'i

i Bin-
Copy = —220—, (2.50)

CZn—lai

where
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[EEN
1
~
|_\
=~

giZn-l = : Ci2n 1= 4 (251)

=
+
~
N

In the same manner as explained for the two-phase case, the termsin (2.47) can be analyzed.
By separating the effect of sources situated on the axes of the cylinders of type one and two

the following can be written:

-
A+ @ Al eos(2n- 1)g = Egox+
n=1

o & B2 diz

aa 2““1 —2rlcog(2m- 1)q;; +a a 2"” cos(2m- 1)q; .4, (2.52)

j10 m=1 J' j m=1 12d|2

where r;; and q;; are measured from the center of the jth cylinder situated in the array of

cylinders of typei. If the above equation is written in complex form [Moosavi and Sarkomaa,
2003a] and successive differentiation is performed with respect to x on both sides of the above
equation, and the results evaluated at the origin of cylinder of type i, the final result after
using (2.49) would appear as

B,, S a@n+2m- 39
—+

s JT: mzlg n-1 4

(S:2Ln+2m ZBIZm 1 + S22n+2m ZBZZmdlll) Eextdnl’ (253)

-
Here, S, = (aj,i +ih; )'“ are the lattice sums over the cylinders of typei, where a ;; and

Il
j*o

h .. arethe coordinates of center of the cylinder j of typei in the current polar coordinates.

Jl

2.3.2 Volumeaveraging technique for deter mining the effective conductivity of the

system

Based on Fourier’s law, the effective conductivity of the system can be derived using the

following formula:
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(F)=-k(NT) (2.54)

where(F ) = (V. ) O:dv and (NT) =YV, )Cj:ITdV are the average heat flux and

cell

temperature gradient over the unit cell, respectively. The average heat flux can be considered
because of the matrix and cylinders of type one and two, i.e.,

dv + (‘) Fdv+ (‘)c dVS (2.55)
2 u

> (D
Vo

-1
>_Vcell e

or

(F)=- 12( (‘) N,V + (k -1(‘)N dV+®JTqu, (2.56)
é

where V,, V, and V, are the volumes of cylinders of type one and two and the matrix placed

in the unit cell, respectively. The average temperature gradient can also be written as follows:

- 1 é u
NT) = aNTAV ¢, (2.57)
< > cell 8@1 H

From Egs. (2.56) and (2.57), we can obtain

(F)=(Se), *(Se), - (NT), (258)

where

— 1- ki
cell

@QTi dv (2.59)

or equivalently, using Green’ sfirst identity [Spiegel, 1968], we have

(s.), =15 ¥ nds (2.60)

cell i
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Here, s, isthe surface of inclusion of typei and n expresses the unit outward normal vector

to the surface. After using the orthogonality properties of trigonometric functions, the

following can be obtained:

- 2 . -2 - " i !
s.) =K ecicostq ag i =PA L K)o - 2B (2:61)
< P>. 1 !

Vcell cell cell

By substituting the resultants in Eq. (2.58) and taking into account (NT) = E,i and V =b,

the final result for the effective conductivity can be given as

1 2 11 2 A2
ke :1_ 2p(Bl + Bl ) :1_ 2flglAi +2f2gl Ai (262)
bE., E..

or more generaly, for a case in which M cylinders are placed in the unit cell, the effective

conductivity of the system can be obtained using

g
ke=1- 20 Q Bi/(Vea Ecr) (2.63)

i=1
2.3.3 The effective conductivity in explicit forms

To assist calculating the conductivity of the system under study, some relations are here
derived in explicit forms. Based upon the triangular truncation of second order, the following

can be obtained:

21, 2f,

T, x ), - %) (- %)/ (1, - %) (2.64)

with

I :ii+cl fi - ng; - ngs%diz fi fzs-‘di2 (2.65)

i
1
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X; =¢,f; - (93 f,* +92 dlzf f23d|2) (2.66)

c, =3(b/p)*st’, ¢, =3(b/p)* S, ¢, =S/p and c, =3S:S2(b/p)".

The higher orders may be ignored to obtain asimpler relation

where ¢, = Sib/p ,

2f,  2f,

wiu, wi,’ (2:67)

where
:(]/gll"'clfl)(]/glz +C1f2)' Cf f.f, (2.68)
u, =Yg; +(c, - c,)f, (2.69)

The constants for cases b=1 and b =+/3 (the parallel and perpendicular directions) are listed
in Table 2.3.

Table 2.3 The numerical constants of the analytical formula (2.64)

b® 1 V3 (Pardlel) | +/3 (Perpendicular)
, 1000000000 0.187018134 1.812981866
c, 0.305827837 1.310523128 1310523128
c, 7.645605831 1310523128 1.310523128
c, 1000000000 1.812981866 0.187018134
c. | -1529139176 -1.310523128 -1.310523128

2.3.4 Behaviour of the system and phase abandonment

Before starting the discussion on the results of the three-phase system, it is helpful to verify
the validity of the extension to the three-phase system. A series of calculations for two-phase

composites with uniform cylinders arranged either in square (b:1) or hexagonal
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orders(b = \/5) will be performed and the results then compared with those reported by
Perrinset a. [1979].

60

Hexagonal array
—— Perrins et al. [1979]
Present

50

40

Square array I

30

20

10

¢ i -7/ |
0.2 0.4 0.6 0.8 1
F

Figure 2.3 A comparison between the present results and those reported by Perrins et al.
[1979].

The two-phase cases can be constructed from the three-phase one ssimply by applying f, = f,
and k, =k,. For this purpose highly accurate values for lattice sums over cylinders of type
one and two were derived and Eq. (2.53) (i=1,2) was solved numericaly using LU
decomposition method [Press et a., 1986]. Taking into account 100 unknowns of B, ., and

B,.1, dives us a measure of obtaining accurate results for all the volume fractions and

conductivities considered [Perrins et al., 1979]. In Fig. 2.3 the results are compared for both
the square and hexagona arrays for the most challenging case, i.e., the case of perfectly
conducting cylinders. As can be seen for all the values of volume fractions, the results of the
two studies are in excellent agreement.

Figure 2.4 shows a typica result for the effective conductivity of the system for both the

parallel and perpendicular directions. The volume fractionsare f, =0.4 and f, = 0.4, and the

periodicity in the x-direction was supposed to be b = V3.
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Figure 2.4 The contours of the effective conductivity for the perfect interface case.
f,=04and f, =04

For deriving the conductivity of the system in the perpendicular direction either Eq. (2.53) can
be solved and Eq. (2.62) applied or, aternatively, the Keller theorem can be used for this
purpose. Through a careful examination of thisfigure, it appears that increasing or decreasing
the conductivity of both types of cylinders may enhance or diminish the conductivity of the
system, respectively, which is obvious and remains correct for both directions. Furthermore,
the system demonstrates higher effective conductivity in the perpendicular direction. This
behavior is a consequence of the rectangular shape of the unit cell which provides a more
(less) important role for the cylinders with lower conductivity in the paralel (perpendicular)

direction. Interestingly, for the case of mono-sized cylinders with k, =¥ and k, =0,

increasing the volume fraction of the cylinders causes the conductivity of the system to
approach zero in the paralel direction and approach infinity in the perpendicular direction
(see Table 2.4). When perfectly insulating cylinders touch each other, they form a barrier
which prevents heat flow in the parallel direction. This behavior can also be observed for all
systems for which b >1. For the case b =1, however, the system is isotropic and the same
results can be expected for both directions. For this case, the same type cylinders are not able

to touch each other and a limited value for the effective conductivity of the system can be
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expected. Surprisingly, it was found that the effective conductivity of the system is simply a
unity.

Table 2.4 The effective conductivity of three-phase materials made up of mono-sized
cylindersfor which k; =0 and k, =¥ .

F K, k¢
0.1 0.983871 1.01639
0.2 0.937008 1.06723
0.3 0.863599 1.15794
0.4 0.769417 1.29969
0.5 0.660207 1.51468
0.6 0.539863 1.85232
0.7 0.408730 2.44660
0.8 0.261159 3.82908
0.9 3E-7 19.253

p / (2\/1—3) 0 )

This result can be confirmed using the Keller theorem as follows:. since the system is isotropic
and interchange between the materia of the cylinders keeps the system unchanged, using Eq.
(2.43) it is possible to get

k. (k,J/k 1) k§(/k k1) =k, (k, k1) k (kYk1)=1 (2.70)

Considering k =0 proves our case. Sculgasser [1992] has shown that in a three-phase system
with interchangeabl e phases (see Fig. 2.5), when one of the phases has conductivity equal to k
and the two remaining phases are perfectly conducting and non-conducting, the effective
conductivity of the system is k. From the above results, it is clear that it is not necessary for
the first phase to be interchangeable, and it can ssimply be a matrix.

For the case b =1 with non-equal sized cylinders, if f, £ pz(\/ﬁ - 1)2, f, 4, Can beincreased

freely to the touching value limit, and the effective conductivity of the system can approach
infinity or zero, depending on the conductivity of the touching cylinders.
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Figure 2.5 The structure investigated by Schulgasser et al. [1992]

Figure 2.6 shows the results of the effective conductivity for a system with a lower total
volume fraction, i.e,, f, =0.4 and f, =0.2. b as before is equal to /3. A comparison with
Fig. 2.4 reveals that the case k; =k, =1 is the only situation in which both systems for the
given conductivities present the same effective conductivity. In this situation g, =g, =0,

which leadsto B; = B> =0, and asaresult, k, =1.
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Figure 2.6 The contours of the effective conductivity for the perfect interface case. f, =0.4
and f, =0.2.



Figures 2.4 and 2.6 also show that having cylinders with conductivities equal to the
conductivity of the matrix is not the only condition for the effective conductivity to be equal
to the conductivity of the matrix. In fact, this case is a specia state of the following general

situation:
B +B} = f,g, A+ f,g,A’=0 (2.71)

The importance of the situation k, =k, =1 (B; =B? =0) is that it is independent of the
valuesof f,, f, and b, and for al theses situations, it would be found that k, =1, which is

physically obvious. This behavior does not hold for the other values of the conductivities.

2.3.5 Heat transfer with interfacial resistance

If the dimensionless interfacial resistances [Torquato and Rintoul, 1995] are denoted by R
(i :1,2), the boundary conditions given in (2.48) will change to the following shape
[Moosavi and Sarkomaa, 2003b]:

L(Ti_Tgi):_k_E:_&

Ra I o ona (i=12) (2.72)

Therefore, for the coefficients of the temperature profiles, we obtain

[ Bin-
A, = D1 (2.73)
an—lai
[ Bin-
Cont =7 gz (2.74)
CZn-la'i
where
. _1-k +R(2n-1) . _1-k+R(2n-1) (2.75)

921 = 1+k +R(2n- 1) Cona = 2
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When the interface is imperfect, the volume averaged heat flux may be formulated using the
same formula as for a perfect case, but the volume-averaged temperature will contain extra

terms because of the temperature jump in the interfaces, i.e.,

~

(NT) =

N\

> (D

1 - N . 0
V€ NT dv + Q (T, - T,)ndS+ d;l’sz - T,)n dSH, (2.76)

(0)

cell

Therefore, the volumes averaged of the temperature and flux can be related to each other by

(F)=(Se), +(Sp), *+(S), +(S1), - (NT), @2.77)

where
(Se), = 1\;: QT'TidV (2.79)
(S)), :\éd@ - T,)ndS (2.79)

By performing the integrals, we can derive

— 2pBlI % -k .

(Sp). = V. RALK i (2.80)
_%B R

(S), = v, Rk i (2.81)

By substituting the resultants in Eq. (2.77), the same formulais interestingly obtained as for a

perfect interface

1 2 1AL 2 p2
ke =1- 2p Bl +Bl =1- 2flglA1E+2fzglA1 (282)

ext ext
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Chiew [1987], in studying the effect of resistance on the conductivity of two-phase
dispersions made up of a random array of spheres, showed that there may be a critical
situation in which the system does not sense the presence of the inclusions and behaves like a
uniform matrix. A study into the behaviour of composites consisting of periodic and random
arrays of uniform cylinders [Lu and Lin, 1995 and Lu and Song, 1996] and periodic arrays of
spheres [Lu, 1997b and Cheng and Torquato, 1997] revealed that for all these cases, a critical
situation occurs if R=k- 1. Here, the discussion will be extended to three-phase systems.
Again, the extension is validated by comparing the results with those of two-phase systems
[Luand Lin, 1995] as shown in Table 2.5.

Table 2.5 A comparison between the present results and those reported by Lu and Lin [1995]
for the square array of the uniform cylinders.

LuandLin | Present LuandLin Present LuandLin Present
[1995] [1995] [1995]

f\(UR) ¥ 0.1 0.0001
0.2 149906 | 1.49906 | 1.48676 1.48676 0.718703 | 0.718703
0.5 3.07141 | 3.07141 | 2.98364 2.98364 0.413291 | 0.413291
0.6 432252 | 4.32252 | 4.12547 4.12547 0.327454 | 0.327454
0.7 7.36828 | 7.36828 | 6.68414 6.68414 0.241682 | 0.241682
0.74 10.8513 | 10.8513 | 9.18034 9.18033 0.204152 | 0.204152
0.76 15.1110 | 15.1110 | 11.6103 11.6103 0.182844 | 0.182844
0.78 33.79 33.79 16.8449 16.8449 0.15565 0.15565
0.785398 - - 19.7137 19.7136 0.15 0.14

As can be seen, the results of the two studies agree very well except for the case

f =0.785398,1/R =0.0001. In the present study the number of terms included in the process
of calculation was increased to more than 100 to see if the difference might be due to the
number of terms. The obtained result was again about 0.14. Since the other values are greatly
in agreement with those of Lu and Lin [1995], the suggested value for this case in this study is
0.14.

Figures 2.7 and 2.8 show the contours of the effective conductivity of the system for given

conductivities. k, and k, were supposed to be 101 (this way, the logarithm of

R, =R, =100 would be an integer number) and volume fractions f, = f, =0.4 in Fig. 2.7
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and f, =04, f, =0.2 inFig. 2.8. As can be seen, the contours of the effective conductivity
are similar to those in Figs. 2.4 and 2.6, and the effective conductivity of the materials can be
highly affected because of the presence of interfacial resistance, and based upon the values of
R, and R,, the materials may exhibit a conductivity more, equal or even less than that of the
matrix alone. Among the points rendering the presence of inclusions irrelevant, the case

R =k - 1(i=1,2) is of particular interest. In this situation, based on Eq. (2.75), the dipole

polarisabilities are zero, which leads to B} = B} =0, and the state of the system resembles

that of a system of perfect interfaces made up of inclusions the conductivity of which is equal
to aunity. Therefore, it can be expected that changing the volume fractions, b, does not alter

the conductivity of the material from that of the matrix, which is correct.
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Figure 2.7 Contours of the effective conductivity for the imperfect interface case. f, =0.4,
f,=0.4, k, =101 and k, =101.

Examination of Figs. 2.7 and 2.8 also shows that for any given values of R, maximum there
isavalueof R, , atwhich the system yields a conductivity equal to aunity in the parallel or
perpendicular directions. If, for agiven R and R, , , the system gives k, =1 in the paralel
direction, it will not yield the same results for the perpendicular direction unless R =k; - 1

(i =1,2). Furthermore, in some cases, the value of R in the parallel direction is so large that
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even when R,, =0, the enhancing effect is not enough to increase the effective

conductivity to the point at which the effect of the inclusions can be neglected. Inversely, in

some cases, even when R, , tends to infinity in the perpendicular direction, this does not

reduce the conductivity of the system to that of the matrix.
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Figure 2.8 Contours of the effective conductivity for the imperfect interface case. f, =0.4,
f, =0.2, k; =101 and k, =101.

While the effect of both types of inclusion can be exactly neglected when R =k - 1(i=1,2),
in general, the effect of cylinders of typei cannot be neglected when only R =k, - 1. In other
words, systems with k =1, R =0 and k, R =k -1 ae not equivaent if
R,q, * Koq, - 1. Nevertheless, in this condition we find that g; =0 and B; =0 but the
terms B, , (n > 1) are not zero and are present in the procedure of the calculation of B> %2,
as is evident from Eq. (2.53). For a perfect contact case, all the terms B}, , (n >1) are zero

and do not affect the value of B “z. The amount of discrepancy can only be numerically
determined and depends on geometric considerations, resistance and the conductivity of the

inclusions. A wide range of cases was tested in which R, , increased from O to¥,
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conductivities from 1 to 10000 and volume fractions from 0O to 0.45. The two-phase system
can be simulated causing the conductivity of one of the phases to approach a unity. Figure 2.9
shows a sample of the calculations.
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Figure 2.9 The effective conductivity of the two- and three-phase systems. For the three-
phase system, k, =101, k, =101, R =10and R, =k, -1=100. The two-phase system
consists of a matrix and cylinders of type one with the same properties as those given in the
three-phase case.

As can been seen, the results underestimate the conductivity of the two-phase system;

however, for low volume fractions, the phase for which R =k; - 1 can be easily replaced by
the material of the matrix. Thisis also evident from relation (2.67), as it can be seen that when
g, =0, k, =1- 2f2_di2/(1+ clgf“‘iZ) is obtained. When f, is increased, the error increases
since the terms of higher orders play an important role in the response of the system; however,
for all the cases studied, the relative error remains less than five percent in the parallel and
seven percent in the perpendicular direction. Based on the results for cases b > V3, smaller

errors might be expected since the maximum values of f, and f, decrease.

Since the conductivity of the system is a continuous function of the parameters under study,

for R <k, - 1 asituation can be found in which a three-phase system gives exactly the same



50

conductivity as a two-phase system. This is aways possible, since inclusions with
conductivity greater than that of the matrix, boost the conductivity of the system. Figure 2.10

shows that a discrepancy from R, =1- k; causes a certain amount of error if the cylinders of
the second type, for which R, =1- k,, are replaced with the material of the matrix; therefore

thevalue of R, has been reduced to obtain the conductivity of a two-phase system.
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Figure 2.10 Error encountered by replacing cylinders of type two, for which R, =k, - 1,
with the material of the matrix and the calculated value for the resistance of the cylinders, in
which the system gives exactly the conductivity of the two-phase system. f, =0.45,
f, =0.45, k, =1001, k, =101.
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3. COMPOSITE MATERIALS WITH PERIODIC ARRAYS OF
ELLIPTICAL CYLINDERS

The studies pertaining to the determination of the effective transport properties of composites
made up of elliptical cylinders are fewer in number and more recent than those for composites
made up of circular cylinders. Zimmerman [1996] has studied the case of eliptical cylinders
in the dilute limit using both the Maxwell and differential method and derived an expression
for the effective conductivity of a material that has a very low volume fraction but a random
orientation of éliptical cylinders. The case of periodic arrays has been considered by Lu
[1994] who has applied the collocation scheme. The case of periodic arrangement has also
been differently investigated by Nicorovici and McPhedran [1996] using Rayleigh’s method
and in the context of dielectric permittivity. These authors had first formulated the lattice
sums in polar coordinates which showed to be problematic and, therefore, later revised the
formulation [Yardley et a., 1999] by calculating the lattice sums in éliptical cylinder
coordinates. In this section Rayleigh’s method is developed to cover multi-coated elliptical
cylinders (see aso Moosavi and Sarkomaa [2003c]). It is tested whether the behaviour
observed in circular cylinders can also be applied here. Clearly, the formulations can be used
for any inspection related to the transport properties of composites with periodic arrays of
coated elliptical cylinders.

The structure of the composites under study in this section is the same as that explained for
the multiply coated circular cylinders in section 2.2. The only difference made here is to
replace the circular cylinders with elliptical cylinders shown in Fig. 3.1. As can be seen, the

distance between the two foci of the elliptical cylindersisequal to 2r .

The most suitable coordinates for the presentation are elliptic cylindrical coordinates, which

implies that

X =r coshir cosg (3.1
y =r sinhimsing , (3.2
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Figure 3.1 The multicoated elliptical cylinder under study.

where g is measured from the x-axis. As is customary in the anaysis, an external field of

magnitude E_, along the x-axis is applied in the negative direction. The temperature

distribution [Nicorovici et a., 1996] inside the core, coating layers and matrix can be given in

theform

T,=C, + 5 ﬂCl (r /2) coshl m] coslq + [C,G(r /2) sinhl m]sinlq} (3.3)
T=A+ 5 {[Ai (r /2) coshim+ B/ (2/r ) e"”‘]coslq + [A¢(r /2) sinim+B¢(2/r ) e"m]sinlq}

(i=2--,N) (34

In the above temperature functions, the terms C(,At and B¢ cannot appear since the
temperature is symmetric around g = 0. Also, the terms of even degree are excluded since the
temperature is anti-symmetric around q =p/2; thus, | =2n-1 (n =1 ,¥). Therefore, we

have

T,=C, + 5 [CZn_l(r / 2)2”'1cosh(2n-1)m] cos(2n- 1)q (3.5)

n=1

T =A+ 5 [A‘zn_l(r /2" cosh(2n- )m+ B, ,(2/r )" e (2”‘1)m]cos(2n- 1)q

n=1

(i=2---,N) (36)
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At the surface of the layers the following boundary conditions can be written:
T, =T, and kTT,/fm=k,IT../Im m=m (=1 ,N-1) (37)

In this manner, A} ,,B) ,andC} ,can be related to each other. If Rayleigh’'s method is

performed, as explained in the previous chapter (see also Nicorovici et al. [1996]), the

governing equations for the system can be given by the following equation:

3
Xon.1Bon1 + a Szn-l,mBr’r\1l = Eglry (3.8)

m=1

wherex," (I =2n- 1) can be derived by imposing the boundary conditions (3.7) as follows:

@™k k) + 2 /2) [keosh(im. )+ sinh(im )] . 1
2e"[ksinh(im.,)+ k.,cosh(im_, )] + 2¢"*(r /2" sinh(2im_ )k, - k.,) (r/2)" €™

X|

(3.9)
S,, aredlipticlatticesums[Yardley et a., 1999] defined as:

S,. =%(2/r)'*’“é bl +ih,)/r] (3.10)

j*o

where a ;and h; are coordinates of the center of the jth cylinder measured from the origin.

h ., represents the Neumann symbol (1 for m= 0, 2 otherwise) and blm(z ) is:

(2h+| +m- 1)
Lh+m) (1 - 1)

’ exp[- (m+2h+1)cosh’z ]

bne)= 11,8 j

,Fi[2h+m+1,2h+m;1 +1; exp(- 2coshz (3.12)

Here, , F, represents Gauss's hypergeometric function and is given by
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9
It 2t +12) +'"_§) k), n

Applying Green’ s theorem will give the effective conductivity of the system as the following:

N
K, =1- ipEi (3.13)
ext

L et us test the correctness of the extension to a multiply coated case. Since as compared to the
non-coated case [Yardley et al., 1999], only x, has been changed, only this term is inspected

here. One such inspection is to see whether (3.9) can be reduced to the corresponding relation

of circular cylindrica inclusons in the Ilimit, i.ee r ® Qandnm® ¥ . Usng

coshx = (€ +€*)/2 and sinhx = (e* - €*)/2, we get

( - ko) +x2(r 2 [k (2™ +1)+ k., (2 - 1] .1
ki (1_ e 2lm.1)+ ki_l(1+e' Zlm'1)+X|i'l(r /2)2| (eznq_1 e 2|m_1)(ki _ ki—l) (r /2)2| e2m-1

X, =

(3.14)

At the limit, we have I!@ry r " /2=a, [Meixner and Schifke, 1954]; therefore, the following
me ¥

relation can be obtained:

ki -k +(ki +ki—l)xl-- a, . 1 (3.15)

which is exactly the relation derived for the case of multiply coated circular cylinders. Also,

for the cases in which the coating layer i-1 is perfectly insulating or conducting, we derive

X, = !
! (r /2)2| (eznn_1 ] 1)

(k., =0) (3.16)
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o 1 _
S T ) (k.. =¥) (317)

As can be seen, there is no information on the layers below the layer i-1, which means that the

layer i-1 intersects the relation between the layer | and the layers below the layer i-1. Note that
at the limit, (3.16) and (3.17) are reduced to x, =1/a” and x, =-1/a”, , respectively. The
above tests give the measures of the correctness of the extension in the x-direction. Similar to
the discussion outlined in chapter 2, an extension in the perpendicular direction can also be

readily performed.

Next, let us see whether the behaviour explained for multiply coated circular cylinders in the
case e +e_, =0 can aso be applied here. This can be done again by inspecting x, . By
comparing (3.14) and (3.15), it is found that the inverse of (3.15),e, +e,_,, is not explicit in
(3.14) and, thereby, considering that e, =-e, ; will not lead to any specific result. Therefore,

the above-mentioned behaviour for circular cylinders cannot be applied to an arbitrary coated
cylindrical system. Figure 3.1(a, b) shows that for this case, changing the dielectric constant

of the coating layer from e, =e, to e, = - e, altersthefield through the matrix.
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Figure 3.1 The equipotential contours inside the unit cell of a system composed of singly
coated elliptical cylinders. A potential gradient of unit magnitude was applied externaly
along the x-axis and the other external boundaries were insulated. (a) e, =e, (b) e, =-€,.
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4. KELLER’'STHEOREM

The Kéller reciprocal relation [Keller, 1964] has shown its usefulness in many studies and is
worth being examined here. Keller showed that for a composite material consisting of a
matrix and cylinder-shaped inclusions arranged in a regular array, the following relation is
obtained:

kaky ko) ke(k, k) = ik, (4.1)

where k, and k¢ represent the conductivity of the system in the symmetry axes x and vy,

respectively. Keller further clamed that the above-mentioned relation will work for
composites made up of randomly arranged cylindrical inclusions. Mendelson [1974] later
showed that this is indeed valid, considering that x and y are now the principal axes of the
system. If the medium is statistically isotropic, relation (4.1) can be rewritten as

kel k,)" ke k) =Kok, (42)
Furthermore, if the phases are statistically equivalent (interchangeable), we obtain

oKy ko) = ko (ky k) = ko, (43)

The above relation is of interest since it is geometry-independent and gives in a very simple
form the exact effective conductivity of systems for which deriving the effective transport
properties requires a considerable mathematical effort (for example, the square checkerboard).
More recently, Lu [1999] has considered composites with regular arrays of multicoated

cylinders and derived the following:
K, (K; ... ky ) k@K, ... Ik ) =1 (4.4)

For multiphase non-coated composites, Fel et al. [2000] have also obtained the same relation.
Here, extending Mendelson’s methodology, the elegant strategy behind the relations will be
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shown. The technique is simple and uses the fact that any two-dimensiona divergence-free
field, when rotated locally at each point by 90°, produces a curl-free field and vice versa
[Milton, 1988]. Composites made up of coated cylindrical inclusions are considered here,
although with slight changes the discussion can be extended to multiphase composites made

up of non-coated inclusions.

Consider a composite material consisting of a matrix and a series of cylinder-shaped
inclusions that are placed in a random arrangement inside the matrix. The inclusions are
uniform and multicoated with the property of the dispersed layers and the matrix being equal
to k,,...,ky.; and k, (we can consider k, =1), respectively. Suppose that the system is
statistically homogeneous, x and y are the principal axes and the potential functions,
T/,...,T., are the solutions of the Laplace equation (NZT = O)in the system. Here, j refers to
jth cylinder. Therefore, on the surface between the layers, we have T, /¢ =1T! /q¢
(' =T)), where ¢ is the distance measured aong the interfaces and
k 1T /In=k.,, 1T..,/Tn, where n is the normal outward direction to the interfaces. If a
series of functions y / (i =1....,N) is defined, in which K" {y /k)=-k" Ry | =kNT’, we
have Ty /My =k 1T, /Ix and Ty /Tx=-k 1T’ /fy; therefore, y | satisfies the Laplace
equation in the layersi of cylinder j. The first boundary condition for T.! will lead to finding
Wk )y /in=Wk., )Ty \,/In and the second one will give Ty //T¢="y /1
(y J =y ij+1)' As aresult we have afunction , y , which is the solution of the Laplace equation
in the same composite but with the properties of the phases equal to 1k, ,...,1/k, . Based on

definition of the effective conductivity, we obtain

QNTdv éﬁly dv
K, (K, ... ky ) QYK ..., 2k, ) = ‘ (4.5)

ledv O:Iy dv
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Here, V isthe volume containing a sufficient number of inclusions. The analysisis started by
deriving @Tdv and GNTdv. Getting help from Green's first identity [Spiegel, 1968] it is

found that

Q’JTdv = @ds = @’ds = i@Tnxds+ j @'nyds = i@’nxds (4.6)

where s is the boundary surface of the volume V . Here @' n,ds has been ignored because

of the selection of the principal axes. Furthermore, we have [Spiegel, 1968]:
Oﬁ' (yk)dv:@s' k) (4.7)

Using this property, we obtain

ANTdv = (N~ k)dv=igyn,ds- jgyn.ds=igyn,ds (4.8)
Qv = Q" bkldv=igyn,ds- iggns=igyn,

Here again, the selection of the principal axes hasimplied that @ nds=0.
Now, @ydv and (‘)(Nydv are studied. Using Green's first identity and applying

@ n.ds=0, weobtan
O”uydv =i@ynxds+j@ nydszj@ n,ds (4.9)

since Ny =-k” (kNT) and @'nydszo, also the following can be obtained:

Gﬁlydv: G NTdv =- Q’J (T k)dv:-i@T nyds+j©T nxds:j@' nds (4.10)
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Here, the property given in (4.7) has been used. Substituting (4.6), (4.8), (4.9) and (4.10) in
(4.5), we can derive

K, (Ky oo ky ) KSQ/K, ... Ak, ) =1 (4.12)
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5. COMPOSITE MATERIALS WITH PERIODIC ARRAYS OF
SPHERES

The first composites studied by researchers to derive the effective transport properties were
composites with spherical inclusions, as is Maxwell’s case studies [1873] (see Moosavi €t al.
[2002b] for a review). In this chapter, these composites are studied in cases where the
inclusions are placed in a periodic arrangement. The terminology used for the presentation is
the same as that given by Cheng and Torquat [1997] who considered cases in which the unit
cell of the system was a cube. In this chapter a more general state will be considered in which
the unit cell of the system is a rectangular prism. In specific cases, the discussion can be
reduced to those considered by the above authors. Also formulations for the case of
multiphase systems (coated and non-coated) will be developed below. It should be noted that
the case of composites with periodic spheres in a rectangular order was first investigated by
Rayleigh [1892].

5.1 The case of atwo-phase composite with uniform and solid spheres

Let us consider a composite material with a unit cell in the shape of a rectangular prism in
which a sphere is placed at the centre and possibly at each corner or face of the unit cell. For
greater generality, the sides of the unit cell will be considered b, ¢ and a unity in the x-, y- and
z-directions of the cartesian coordinates which has been placed at the centre of a sphere
situated at the centre of the unit cell. Also, the continuous medium is supposed to have a unit
conductivity. The radius of the spheres is denoted by a and the conductivity by k. Assuming
that b=c=1, the unit cell of the system would be a cube, and simple cubic, body-centred and

face-centred structures can be constructed.

Asisclear, in general, the system is anisotropic; therefore, three different conductivities may
be expected for the system in the x-, y- and z-directions. Since deriving the conductivity of the
system in these directions is similar, the conductivity of the system is only derived in one

direction, namely the x-direction. To perform this, a uniform field of magnitudeE_ is applied

externally along the x-axis of the system in the negative direction. If a spherical coordinate
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(r.g.f) isset at theorigin, in which q ismeasured from the x-axisand f from the xy plane,
the temperature inside the sphere and the matrix in terms of spherical harmonics can be given

by

& 4
T=a a Cn''Yml f) (5.1)
g d | -1-1

T,=a aQ (A +Bur )¥.a.f), (5.2)

whereC ., A, and B, are unknowns to be determined and Y,m(q f ) isaspherical harmonics

of the order (I, m) defined as:

Yoo )=1/(—y(:;m )P (cosq) " 63

On the surface of the spheres, we can write down the following continuity relations can be

written:
T,=T,, kIT/%r=1T,/1r r=a, (5.4)
which lead to
A, = g,j;” =x,B, (5.5)
Cin = CIBalranl ’ (5.6)
where
g = X 57)
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1-k

M T

(5.8)

The temperature around the origin, when the origin is not included, can be considered due to
terms originating at infinity and at the other lattice sites (see section 2.1); therefore we can

write

(5.9)

where (rh A f h) is the spherical coordinate of a point measured from the lattice point h.
Using Eg. (5.5) and considering that x =rcosg =Y,, (q f ) the above equation can be written

in the following form:

(5.10)

As can be seen, the left-hand side and the first part of the right-hand side are given on the
basis of the coordinate situated at the origin, but the second part on the right-hand side has
been expressed on the basis of the coordinates placed at the centre of the other spheres. To
proceed, all the terms have to presented on the basis of the coordinates situated at the origin.
For this purpose, the general form of a theorem on spherical harmonics can be used, well
known as the addition theorem [McKenzie et al, 1978; Greengard, 1988]. On the basis of this

theorem, we have

vy
Tl (r!lif ). aatyunine 'Y'”’“;"l(i?l‘f foly o) (5.11)
h 120 m=-| ho

where
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min mHJ\ . . _
}( 1) if mx; >0’ hi = adaﬂg (5.12)
i1 otherwise Vg I &

Here, (fny.0n0.f o) EXPresses the centre of the hth sphere measured from the origin. By

substituting the above relation in (5.10), we can obtain

$ d $ d |
aa g i @)= @ Eecliol Yl f )+
1=0 m=-1 9! =0 m=-1

d 8 o 8 ol( )J' h|1h|+]YI+i,j-m( hO’th)BY( f) 513
ama:'aaa:- N m rI+i+1 ij im\d ( )

1=0 -1 ht0 i=0 i ho

If the lattice sums for an array of spherical inclusions are defined as

S.=a —Y'”‘(q‘:‘i;f ) (5.14)
hio rhO
Eq. (5.13) can be given as
¥ | Y |
0 o 6 9 |
aa g i @)= @ Eeclior il f )+
=0 m=-1 I 1=0 m=-1|
d 38 e
a, a, a a ( ) J r hl+mhl m +i,j+mBinIm(q ’f) (515)

=0 -1

3
Ti
1l

o

Since the above equation is valid for arbitrary values of r,q and f and spherical harmonics

are linearly independent, the terms of the left- and right-hand sides of the above equation can

be equated for a specific value of | and m, i.e.,

B, 3 o e
g 2I+1 = E dlld +a a ( ) ‘] h|+mhl mS+i,j+mBij (516)
| i=0 :
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Now, let us reconsider the structure under study and also the temperature functions given in
(5.1) and (5.2). An examination revealsthat | (i) has to be an odd number because of the skew

symmetry of the temperature around g =p /2. Also, m must be considered as an even number
because the temperature is symmetric around f =p/2. Furthermore, in the case c=1, m (j)
should be considered a multiple of 4; therefore, (- 1) =-1 and J) =1. After performing the

necessary changes to bring the summation from negative j to positive values, Eg. (5.10) can

be rewritten as follows:

-1
B S S'h (L o
2n-1,m J 2i-1- j |y 2i-1+] 2i-1+j |4 2i-1- —
a4n_1 + a a ?ﬁ]zn-1+mh2n-1-mszn+2i.2,j.m +h2n-1+mh2n-l-m82n+2i-2,j+m)B2i-l,j - Eextdnldmo
an—l i=0 ]:O

(5.17)

Here 7 ; isthe Neumann symbol (1 for j=0, 2 otherwise). This symbol was added because for
j =0, the results of the summation is twice the one derived from Eg. (5.16). Since
\ﬁ,_m(q f ):Ylfn (q f ) where the asterisk stands for a complex conjugation, the sign of min

S, islimited to positive values.

As explained in chapter 2, considering a sufficient number of unknowns will lead to the
required result. Based on reports given by McPhedran and Mckenzie [1978] and McKenzie et
al. [1978] with 50 zonal unknowns together with azimuthal terms, the results are reasonable
for volume fractions up to 0.523 (SC), 0.677 (BCC) and 0.733 (FCC) for any values of the

conductivity of theinclusions.
5.1.1 Deter mining the effective conductivity of the system

In the same terminology used for the solid cylinder, for the average heat flux and temperature

gradient we can write
(F)=M(sp)- (NT) (5.18)

where M is the number of spheresin the unit cell and
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Sp) = 1K @Tdv (5.19)

cell

(NT)= v, (5.20)

where V, is the volume of the sphere. Taking into consideration the temperature profiles

given in Egs. (5.1) and (5.2) and using orthogonality properties of spherical harmonics, we

obtain

1- k . 4pB,, .
(j' nds ve Q chlocos q sing dq df | —%le :ﬁl

(5.21)

Here, s, represents the surface of the sphere. By substituting (5.21) in (5.18) and considering

that (NT) = E_,i and V,y, =bc, thefinal result for the effective conductivity can be given as

(5.22)

5.1.2 Explicit formsfor the effective conductivity

Applying the truncation order 4 allows the solution of Eq. (5.17) to be expressed as follows:

3f
keff =1- B, (523)
where
1- c,0.f°
D=1g,+f-cg,fo 93l g 4 g, 15 cg, f2?+0(f %) (5.24)

1+c,g,f"°

The numerical constants, for the case in which the unit cell is a cube, are given in [Sangani
and Acrivos, 1983] and are shown below in Table 5.1.



66

Table 5.1 The numerical constants in the explicit expression (5.24).

sc BCC FCC
C, 1.3047 1.29" 10" 7.529" 102
c, 4.054" 10" 7.642° 10" - 7.410° 10!
C, 7.231° 10°2 2569 10°* 4195 102
c, 2.305" 10! - 4129° 10" 6.966" 10"
Cs 1.526" 10" 1.13" 102 2.31" 102
Cq 1.05" 102 562" 10°° 9.14" 107

5.2 Thecase of a periodic array of coated spheres

The present author has recently reported a study performed on composites with cubic arrays
of multi-coated spheres [Moosavi et a., 2002b]. For these composites, the changes required to
develop the above procedures for two-phase systems in the case of multi-coated systems will
be discussed below. The conductivity and radii of the core and coating layers are denoted by

K,...,Ky.; and a,---,a,_,, respectively. The temperature functions inside the layers can be

given by
3 8!
L=a Coniml 2n-lY2n-1,m (q f ) (5.29)
n=0 m=0
é 28-1 i 2n-1 i -2n H
Ti = a a (A2n-1,mr + BZn-l,mr )YZn-l,m (q !f ) (I = 2’ ’ N) (526)
n=0 m=0

At the surface of the core and coating layers, the boundary conditions

T =T,, kI/r=k,M../Tr r=a (i=1...,N-2) (5.27)

are applied, whence we can be related the coefficients, i.e.,

i _ Bi2n—1,m — i i
A2n-1,m -7 _an1 X2n-1BZn-1,m ’ (528)

4n-1

Uon180)

where
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: onle - e, )+xih[(2n- 1)e_, +2ne]atrt . 1
| I- n- 1- 5.29
i fone, +n- Je [ o fn- )6 e At A
An equation of type (5.9) can be written for this system, i.e,,
§ B & B4 . Yl
a A A " Vain@f)=Ex+Q @ A Bilu # (5.30)
n=0 m=0 i=0 j=0 h0 h

¥ -1
3 o h&} )
-1, J 2i-1- j |y 2i-1+] 2i-1+j |4 2i-1- N —
N 4n-1 + a, a, 2 2n- 1+mh2n 1- mSZn+2| 2\j-m\ +h2n l+mh2n 1- mSZn+2| 2,j+m BZl 1,j Eextdnldmo

(5.31)

By applying the same method used for the case of solid spheres, the effective conductivity of
the system again can again be given by

4MBN
© bcE,,

(5.32)

5.2.1 Comparison between the behaviour of coated spheresand circular cylinders

In this chapter the focus is shifted back to the genera state, assuming that the transport
property can be negative or positive. If one layer (2£i £ N- 1) is perfectly conducting
(e, =¥ ) or non-conducting (e, =0), the layers under this layer will not contribute to the

effective property of the system. These results can also be easily seen in Eq. (5.29), where the
multipolar polarisability for the cases in question would be -1 and 1, respectively.
Furthermore, two spheres with the same property can be unified and considered as being a

unit layer, which is obvious and can be confirmed from Eq. (5.29).
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In the section on cylindrical inclusions, the strange behaviour of coated cylinders when
e +e_, =0 was studied. Here, the aim is to find out whether the same behaviour can be
observed for the case of multicoated spheres. Nicorovici et al. [1995] found that the case of
singly coated spheres did not exhibit the same behaviour as that of coated cylinders. The
reason is clear when it is kept in mind that all the behaviour was based on the mathematical

expression for multipolar polarisability. Here, g3, isafunction of n and because of this, the

results are not the same. A careful examination of this case, however, shows that by the first
order, the casese, = - 0.5e, and e, = e, yield the same effective transport property; however,
the inspection of (5.29) shows that even this result cannot be extended to the case of
multicoated spheres. This makes sense physically, since the successive application of

e, =-0.5e_, toinfinitely coated layers causes the property of the outermost coating layer to
approach zero, and this case exhibits the behaviour of non-conducting spheres of radius a,

(N ® ¥ ) and not of spheresthat have a property equal to e, with aradiusof a, .

5.3 Three-phase non-coated spheres

In accordance with the three-phase case explained for circular cylinders, here a composite is
considered in which the unit cell of the system is a rectangular prism with a sphere of type
one at the center and a sphere of type two at each corner. The formulations can be readily
developed for other structures. It should be noted that when b=c=1, the structure is CsCl that
has been studied by McPhedran [1983]. For this case, the temperature of the phases and the
matrix can be expressed as

64 2n-1
Ti = a CIZn 1,mr 2n_1Y2n-l,m (r 1q ) (533)
n=1 m=0
§ B _
T3,i = a a (AIZn 1,mr et + BIZn 1,mr _ 2r1+1)Y2n.1,m (r ;q ) ’ (534)
n=1 m=0

wherei can be either 1 or 2 showing the sphere type. As can be seen, the non-symmetry of the

temperature around q =p/2 has been taken into account. Because of the symmetry of the
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temperature around, also m will be considered to be an even number in general and for the

case c=1, amultiple of 4. The boundary conditions are of the following shape:

1 _ 1T,

T =Ty, ki — =
’ 1Ir 1Ir

on r=a (5.35)

Therefore, for the coefficient of the temperature functions, we obtain

i Bin-
A = s (5.36)
an—la'i
i Bin—
CZn—l = ﬁ , (537)
CZn-la'i
where
_ 1- k
i : 5.38
9z k +2n/(2n- 1) (5:38)
4 1- k
on.1 = ' 5.39
“a1 = an-1)(2n- 1) (5:39)
By separating the effect of the inclusions of type one and two, we get
g B
a AiZn-l,mr 2n_1Y2n-1,m (q ’f ): EOrCOSq +
n=0 m=0
s 8'd
a a a 2n lm 2n lm( h’ )+a a a BZn 1m 2n 1m( h’f ) (540)
n=0 m=0 ht'0 n=0 m=0

By following the same methodology as given for solid spheres we obtain the following linear
system is obtained:

+S?

Zdlz)
2n-21- 2 j- m‘BZI 1,

By, O &'7,
A [h

2l-1- ]hZI 1+]j (Sl
an 1a1 1=0 j=

2n-1+m ' 2n-1-m \*"2n- 2I- 2 j- m| 2I1]

20- 1+ 2|11(1 2 2d2)J_
h2n 1+mh2n 1- m\~2n+21- 2,j+m 2I 1,j + S2n+2| 2]+mBZI llj - Eextdnldmo (541)
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where S are the lattice sums over the spheres of typei. For athree-phase case, the volume

averaged flux and temperature are related to each other by

(F)=(Se), +(Ss), - (NT) (5.42)
(Sp). = 1\/ k Qimdv (5.43)

After performing the integrals in the same manner as that explained for uniform spheres, we
obtain

1 2
k =1- (8} +87) (5.44)
bcE,,

For the case of circular cylindrical inclusions, it was shown that the composite can be
perfectly conducting in one direction and non-conducting in the other. However, for the case
of spherical inclusions, this behavior does not hold true and these composites cannot be non-
conducting since heat can pass through the gaps between the spheres. Furthermore, the Keller
theorem is not valid here, and thus, for the case of mono-sized spherical inclusions, when

k, =1/k, , the effective conductivity of the system is not equal to that of the matrix.

5.3.1 Thecaseof an imperfect interface

The boundary conditions, including the effect of interfacial resistance, are of the following

shape:
. ‘ T..
LI S PR LII L R (5.45)
Ra qr qr
with
i Bin-
A2n-l = i 2 41n—2 (546)
an—la'i
i Bin-
Cor=— 0> 2 jn_z , (5.47)
C2n—la'i

where
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_ 1-k +R(2n-1) o Lk +R(2n-1)
S = o0 on- ) +k +20R " (an-1)/(2n- 1)

(5.48)

For this case, the relation between the volume averaged flux and temperature would be

(F)=(Sp), +(Se), +(S), +(S/), - (NT), (5.49)
where
(Sp). = 1\/— (\)\IT dv (5.50)
<SI >i =Vi(\§r3i - Ti)ndsa (5.51)
from which we obtain
(S,), = f/pBl Val+-1k-i ~ (552)
_»B R
(S), = V. Rk i (5.53)

By substituting the resultantsin Eqg. (5.48), we obtain arelation that resembles relation (5.44).

As is clear from (5.48), the critical resistance in the case of composites with mono-sized
uniform spherical inclusions can be derived using the same formula as the cylindrica
inclusions, i.e, R=k - 1. Furthermore, because of the mathematical similarity between (5.41)
and (2.54), similar results can be expected as in the case of three-phase composites made up
of cylindrical inclusions. Therefore, the effect of spherical inclusions of typei in any direction
of the calculation of the effective conductivity can be neglected by adjusting the interfacial

resstanceintherange R £k, - 1.
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6. LATTICE SUMS

The problem of calculating lattice sums arises when studying a variety of phenomena in
various branches of science including materials science. These sums have the following form

for fiber composites:

S = = (6.1)
aw
where L, ={1,b+il, |I,,1,T Z,L,b+il, * 0}. In three-dimensions, we also have
o Y. Q:.f.
a (nil ) (6.2)
L

where L, ={(b,1,cl)[1,T Z,(1,.1,.1,)* (000)}. Here,(r, ., f ;) expresses the position of a
point in spherical coordinates. In the thesis the main interest is in calculating S, and S, for

n3 2 and m3 0. For this purpose, the direct summation method can be used, although the
results will converge very slowly. For this reason, many agorithms have been developed for
the rapid and highly accurate calculation of lattice sums [Greengard and Rokhlin, 1997;
Helsing, 1994; Movchan et al., 1997 and Huang, 1999] some of these algorithms will be

explained in this section.

6.1 Integral representation of thelattice sums

Huang [1999] has shown that the problem of calculating lattice sums can be reduced to the
one of calculating integrals. The mathematical basis for this method is the plane-wave
representation of each pole and analytically summing up the resulting geometric series. Here,
the method for arectangular array of cylinders with periodicity equal to b and a unity in the x-
and y-directions, respectively, is explained. For an arbitrary point in the complex

plane(z = x +iy), depending on the region in which the point is situated, we can write
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zi: .Q &'l (x>0) (6:3)
Z_ln = o _11)! (5 "™ (x<0) (6.4)
= g _11)! (j )itz (y>0) (65)
Z_ln ¢ _11)! 5n| mgitgl (y<0), (6.6)

where n=1,...,¥ . The reason for the case n=1 is clear, as a simple analytical integration of
the right-hand side yields the left-hand expression. For the other values of n, it is possible to
differentiate both sides of the case n=1 with respect to z, n times, in order to obtain the above
relations. To calculate the lattice sums given in Eq. (6.1), the lattice is divided into four
regions, as depicted in Fig. (6.1).

oo o O o O O

oo 0 0 o O O

Figure 6.1 The methodology used for calculating the lattice sums

As can be seen for regions 1 to 4, we have x>0, y>0, x<0 and y<O, respectively; therefore, the

lattice sums in the regions can be derived in the following manner:

Q¥| n- 13 e I (bk+ij) (67)
|
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'n \¥ nl bl (ibk-
S.(2)= 'Q| ae i) (6.9)

=1 k=-j+1

¥

50

n-1

g bk+
a g (Bkri) (6.9)

1 -k

QJOK

=~
1

S,(4)= (E]'_i)ln)! (‘;l i é a (k1) (6.10)

The expressions inside the integrals can be anaytically summed up. In fact, we have
[Dienstfrey and Huang, 2001]

3 d @l ol gl ghl 2l
t. = e—l (bk+ij) — 6.11
1 % ék (ebl - g )(eu Hl 1) ( )
¥ ol o
t,= é é o (ibk- 1) — i (1+e ) (6.12)

(e| - " )(e(|b+1)l _ 1)

If the expressions given in (6.7)-(6.10) are summed up, the required lattice sums are obtained.
For odd values of n, expressions (6.7)-(6.10) cancel each other out and, as a result, the lattice

sums would be zero. For even numbers, theresult is

S :ﬁ&"'151+i“‘t Jd (6.13)

When calculating the above-mentioned integrals to a sufficient accuracy, the lattice sums can
be obtained to a desired accuracy. Note that Eq. (6.13) cannot be used for calculating S, . In
fact, this case is conditionally convergent, and completely different values can be obtained for
this sum. Rayleigh calculated this sum arbitrarily in the direction of the applied field and his
method was questioned because of this. Poulton et al. [1999] have summarized a vast
selection of literature pertaining to this subject. Recently, Dienstfrey and Huang [2001] have

performed an attempt to include the case S, in the integral representation.
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Similar formulations can be developed for particulate composites. For example, Huang has

derived the following integral representation for a simple cubic arrangement of inclusions:

S, =Cl (‘5“‘36' ‘zp{[tud (I ,a)cos(ma)+i"(cosa +1)"(sina )" ™ (I ,a)] ol ,a)}da dl

(6.14)

C:]/(p\/(n- m)! (n+m)!) (6.15)

t 4 =1 {1+ 2cos(l cosa )+ 2cos(| sina )+ 4cos(l cosa ) cos(l sina)
+e"' |1- 2c0s(l cosa )- 2cos(| sina )- 4cos?(l cosa )- 4cos?(l sina )

+e? [- 1+4cos(l cosa ) cos(| sina)]- e® } (6.16)

t oo =2 *{L+ cos(l cosa )+ 2e™" |cos{| cosa )+ cos?(l cosa )|

- 2 [1+cos(l cosa )+ 2cos(| sina )+ 2cos{l cosa ) cos{| sina )]} (6.17)
h(l a)={1- 2¢" codl (cosa -sina )| +e? Hi- 2" codl (cosa +sina)]+e? | (6.18)

Note that for a ssimple cubic arrangement, non-zero cases happen when n is an even number

and mamultiple of 4. Also, as explained, the above relation cannot be used for the case n=2.
6.2 Calculating lattice sums over reciprocal arrays

Consider the same rectangular array as studied in section (6.1). To calculate the propagation
of electromagnetic waves through this medium, the following equation, which is well known
as the Helmholtz equation, needs to be solved:

(N2 +k2)A (r)=0, (6.19)

where Kk isthe wave number, r the position vector and A can be an electric or magnetic field.
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Such an investigation can be successfully performed using the Rayleigh method as outlined
by many researchers [Poulton et al., 1999]. The final equation, similarly to the discussion in
chapter 2, is, again, a linear algebraic system; however, it contains sums of the form

o] .
Si(k)=g I2kr,)e™ over the cylinders, where J2 is the Bessel function of the second
j

kind and order n. Since these lattice sums are frequency—dependent, they are here called them
dynamic lattice sums. To obtain an absolutely convergent series and also accelerate the
convergence, Chin et a. [1994] have proposed a method to calculate these lattice sums in
terms of Bessel functions over the reciprocal array. The reciprocal array is a set of imaginary

points constructed for the lattice under study by

r, =(r,.g,)=h 2pi/b+h,2pj h=(h,h,)i Z2 (6.20)
The methodology involves a considerable mathematical effort which relies on finding Green’'s
function of Eq. (6.19) in the direct lattice and in the reciprocal array. Green's function is the
solution of Eq. (6.19) when there is a Dirac function on the right—-hand side. It can be shown
that Green’s function in the direct array involves dynamic lattice sums, and in the reciprocal
array it consists of a convergent summation in terms of Bessel functions. Furthermore,
Green’ s function in the direct lattice and the reciprocal array are related to each other [Chin et
al., 1994; Nicorovici et al. 1995]; thus, relating these two functions, the dynamic lattice sums
can be obtained in an absolutely convergent series over areciprocal array. The final result for

the rectangular array is as follows:

o )
(" &= e ns3i (6.21)

where g > 0 is an arbitrary integer parameter. By increasing the value of g, the lattice sums
converge more rapidly, but excessively large values of g may lead to instability in the
numerical algorithm. At the long-wavelength limit (k ® O), Eq. (6.19) will be reduced to the

Laplace equation. In this limit, the lattice sums would be static, i.e. those that are the interest
of thisthesis. A smplification of (6.21) for thislimit [Movchan, 1997] gives
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n (2n+CI)I €o ‘] ( ) -12n 1 - 2i(qo+p/2) g
S, =(-1 e e R dlals T 6.22
SRR T Y8 N T g o

whereq, is the direction of the incident field. All the required lattice sums for the rectangular

array can be calculated in thisway.
Equally well, the same methodology can be developed for particulate composites. The

reciprocal array for a lattice with periodicity equal to b, ¢ and a unity in the x-, y- and z

directions takes the following form:
=(r,.a,.f,)=h 2pi/b+h, 2pj/c+h,2ok, h=(h,h,,h)T 23 (6.23)

Nicorovici et al. [1995] have shown that the static lattice sums for this system can be derived

from the following formula:

1 . u
+qTS)!Y2,m(qo’fo)dnzg’ n*2,m30

&

_(n+2q+1) 4 80 Jn(n), v i)
™ (-1 be g o R

h

(6.24)

where the asterisk stands for a complex conjugation and g, and f , are the directions of the

applied field.

6.3 Results

Table (6.1) shows a sample of the results of the present study for the three-phase fiber
composites, which has been obtained using the above methodologies. Although the integra
representation requires more computer programming, it is faster than the second method,;
therefore, al the cases except n =1 have been calculated using this method. For cylinders of

type two, applying the integral representation technique yields the following:
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1 1 N

2
S2n_u7+(2n-1)!q

2”'1[(e'“ +e"“)tl+i2“(e“u +e'““)t 2]dl : (6.25)

where u =b/2+i/2. For calculating integrals (6.13) and (6.25), well-established methods
such as Gauss-L aguerre integration, can be used for this purpose [Press et al., 1986].

Table 6.1 The calculated lattice sums for the case of a three-phase composite of a periodic

array of cylinderswhen b = NED

N S, S? S +S?

2 0.3392133718630 3.2883853566054 3.6275987284684
4 2.1744038488973 | -2.1744038488973 0.0

6 | -2.0154171446150 | -3.8476145488104 -5.8630316934253
8 2.0262994706141 | -2.0262994706141 0.0
10 | -1.9919685438111 1.9919685438111 0.0
12 | 2.0041914554050 4.0054485162926 6.0096399716977
14 | -1.9990818777902 1.9990818777902 0.0
16 | 2.0003051627592 -2.0003051627592 0.0
18 | -1.9999213768630 | -3.9997969795075 -5.9997183563705
20 | 2.0000338688335 -2.0000338688335 0.0
22 | -1.9999887079801 1.9999887079801 0.0
24 | 2.0000041209456 4.0000075266341 6.0000116475798
26 | -1.9999987455894 1.9999987455894 0.0
28 | 2.0000004181529 -2.0000004181529 0.0
30 | -1.9999998662038 | -3.9999997212317 -5.9999995874356
32 | 2.0000000464611 -2.0000000464611 0.0

34 | -1.9999999845130 1.9999999845130 0.0
36 | 2.0000000052497 4.0000000103247 6.0000000155744
38 | -1.9999999982792 1.9999999982792 0.0
40 | 2.0000000005736 -2.0000000005736 0.0

In this thesis, these integrals have been calculated using the Mathematica 3 software
application, which offers the possibility to check the accuracy of the results. For the case S},
Eq. (6.22) has been used. q was selected to be 12, and the computation was performed over a
200" 200 reciprocal array. Calculating S;, S7 can be found simply by using
S2=2p//3- S. Note that for n>>1, the direct summation method can quickly yield

accurate results.
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7. RESISTOR MODELS FOR DERIVING THE BOUNDS FOR THE
EFFECTIVE CONDUCTIVITY

From one perspective, two main approaches for calculating the effective transport properties
of composite materials can be identified. According to the first strategy, the efforts are
concentrated on directly solving the governing equations of the system [Rayleigh, 1892;
Cheng and Torquato, 1997; Lu, 1994]. The second method differs from the first one in that
there the aim is to develop bounds (upper-lower) for the effective transport properties of the
system [Hashin and Shtrikman, 1962; Torquato et al., 1986; Helsing, 1993]. In general, fewer
details of the system are required for the second method; however, using more specifications,
tighter bounds may be derived. The best-known bounds are those proposed by Hashin and
Shtrikman. Hashin and Shtrikman have shown that the bounds they obtained can be realised
for some particular microstructures. The upper bounds can be attained using an assemblage of
coated spheres in which the core is filled with a material of higher conductivity; the upper
bound is attained using the same structure that changes the material of the core and shell.
Since these structures introduce more disconnected-connected microstructures of the phases,
Hashin-Shtrikman bounds can be considered to be optimal .

In this section, two simple resistor models are used (see Moosavi et a. [2002b]) for obtaining
the bounds on the effective conductivity of systems consisting of simple cubic arrays of multi-
coated spheres (or square arrays of cylinders). Figures 7.1 and 7.2 outline the methods for
finding two bounds for the effective conductivity of a system. For the lower bound, the
methodology given in Fig. 7.1 is used. In this method, the unit cell is divided into infinite

layersin the direction of the heat flow. The effective conductivity can be derived as

Nt
P=q pla?- al)A +1-pad (7.1)

i=1

where
2 \p/2 ;
a sinZqdq (7.2)

A = R
2_g2 Y !
ST PO Fey TR
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;

parallel regioni

12

Figure 7.1 Quarter unit cell considered in the derivation of the effective conductivity by using

thefirst resistor model

For deriving the upper bound, the strategy outlined in Fig. 7.2 is used. In this method, the unit
cell is divided into infinite sices norma to the direction of the heat flow. The effective

conductivity of the system can be given by

serial regioni

/

IRV

Figure 7.2 Quarter unit cell under inspection in the second resistor model
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k. = , (7.3)
* ¥'2a-a
a 2(al a1—1)+1_ 2aN-1
i=1 [
where
B - 1-8./a (7.4
N sinqdqg

I N1
p! k (asina)? +Q k,(a2- a2,)-[az., - (aicosq)zlgﬂ
1 j=i+l b

Following the same strategy as discussed above for spheres, it can be shown for the case of a

square array of cylinders that

ke+ - 5 Z[a'i B ai-l]A +1- 2a,,, (7.5)

i=1

where

_a e cosq dg
A = - (7.6)
“a.Q _ :
R Q 6_[ 2a, \/1' (qan/aj) (]/kj - ]/k;+1)+1

and for the lower bound

1
k(; = , (77)
%1 2(a1 - i—l)+1_ 2
a ay.1
i=1 1
where
Bi = 1- a11/a1
qu sinq dq
N N \ -
z: kasing +Q k §/a’ - (@cosa) - a7, - (acos) I ai, - (aicosquu
j=i+l

(7.8)
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Figure 7.3 shows a typica comparison between the results of the bounds and exact results.
The total volume fraction (F) was selected to be 0.2 (f, =0.1and f, =0.1). It is perhaps
interesting that in some cases the second resistor model yields better results. This is contrary
to the natural thinking that since the case is coated and heat goes from one layer to another,
considering the resistor in the series should yield better results. Also, it can been seen that the
upper bound does not conform to the behaviour of the exact solution when the coating layer is

perfectly conducting. The same can be observed when the coating layer is perfectly insulating.

Figure 7.3 Logarithmic plot of the effective conductivity for the ssmple cubic array of coating
spheres as a function of conductivity of the core and shell. Despite of the accuracy, the first
resistor model is unable to show the same behaviour as the exact solution when the shell is
perfectly conducting. The same condition applies for the second resistor model when the shell
is perfectly insulating.
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8. Conclusion

This thesis studied the effective transport properties of multiphase composite materials made
up of periodic arrays of circular cylinders, eliptical cylinders and spheres using a
methodology indebted to Rayleigh [1892]. For each section, a series of explicit relations for
easy calculating of the effective property were reported.

Composites containing inclusions in the shape of coated circular cylinders were considered,
the behaviour of singly coated systems, when the sum of the transport property of the layersis
zero, was extended to multicoated ones, and a generalisation of this phenomenon was
provided. This thesis showed that the procedure for neglecting phases can occur in different
methods and that these procedures can affect severa layers and also explained the details of
these procedures. Furthermore, aformulation for deriving the effective property of composites
with a periodic array of confocally multicoated elliptical cylinders was presented and it was
shown that, in general, the behaviour observed in composites made up of circular cylindrical
inclusions does not hold for these coated composites. However, further study is required to
determine whether the coating layers of other shapes (uniform coating, for example) can
demonstrate this behaviour. This thesis also explained that contrary to the case of coated
circular cylinders, the generalisation behaviour for composites containing singly coated
spheres cannot be developed for composites with multicoated spheres. Whenever necessary,

the results were verified using classical numerical techniques.

For the case of three-phase composites with inclusions in the shape of circular cylinders, this
thesis showed that these materials can exhibit interesting behaviour. By having mono-sized
inclusionsin a position of contact when the unit cell is arectangular cylinder and one phase is
perfectly conducting and the other insulating, a composite material can be obtained that is
super-conducting in one direction and non-conducting in another. If the rectangular array is
changed to a sguare one in the mentioned case, surprisingly, the effect of all the dispersed

phases can be neglected.

The effect of interfacial resistance on effective conductivity was studied by characterising

interfacial resistance using a non-dimensional parameter. It was shown that this effect is very
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important, and on the basis of the value of interfacia resistance, even the effective
conductivity of the system can fall outside the range of the property of the phases. The
number of situations in which the effect of both phases can be neglected is infinite; however,
these situations are usually valid for one direction only. There is only one state that is
common and if it occurs, the effect of the inclusions can be neglected despite the direction in
which the effective property is calculated. This situation occurs when both phases have an
interfacial resistance equal to their conductivity minus one. It was further demonstrated that

thereis an interfacial resistance, which can be estimated by R £ k; - 1, in which the effect of

the inclusions of typei for one direction can be neglected. These results can be applied for the

cases of inclusionsin the shape of circular cylinders or spheres.

Two resistor models were used for deriving the bounds. The results of the bounds were
compared for coated composites, and it was shown that having the resistor in a series does not
guarantee that better results will be obtained in all cases. By combining these bounds in a
specific manner, better results may be obtained than by using one of them aone. For instance,
when an inclusion has a property close to that of the matrix, it is advisable to use a simple

average value.

Although the formulation and results of this thesis on multi-phase composite materials have
been verified in some cases by relevant theorems and numerical results, comparing them with
experimental results can be a crucial task. Unfortunately, the experimental results found in
subjects relevant to the study belong mostly to two-phase systems and, in some cases, to
three-phase ones. These results have been used by many authors to validate the theoretical
formulations and results [Meredith and Tobias, 1960; McPhedran and McKenzie, 1978;
Perrins et a., 1979; Nicorovici et al., 1995; Yardley et al.,1999]. Since the formulations and
results given in this thesis are in complete agreement with those of the mentioned authors,
they have, therefore, already been compared to the experimental results in two- and three-
phase systems. However, for the new formulations and results obtained on multi-phase
systems in this thesis, the validation of the results with experimental results can be helpful and

Is suggested as atopic for further study in thisfield.
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We study the resonant behavior of a system consisting of a square array of multi-coated
cylinders by calculating the effective dielectric constant of the system. The results were
examined numerically using the finite element method.
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1. Introduction

Finding the response of a system consisting of a periodic array of solid cylinders
embedded in a homogenous matrix has a long history dating back to Lord Rayleigh.!
Runge? extended Rayleigh’s method to coated elements where the geometry was
composed of an array of tubes and the core of the tubes was filled with the same
material as the matrix. Israelachvili et al® reported the solution of the problem
when the materials of core and matrix were different.

The inspection of the behavior of the solution as a function of the property
of the core and shell divulged a new feature of the system. Nicorovici et al.4~®
discovered that the procedure of coating the cylinders with a material that has a
dielectric constant, which is the negative of that of the cylinders (€sheni = —Ecore)
or matrix (Eshell = —Ematrix) can yield the response of a system with magnified
cylinders. This means that a system with diminutive concentration may condition-
ally give the response of a concentrated system. These authors termed the system
in these situations “partially-resonant” and the conditions that put the system in
these particular states the “partial resonances” of the system. The term “resonance”
may be misleading here. In fact, the above-mentioned features are a generalization
of what happens in two-phase composites when €core = —Ematrix, Which is not a
resonance.”® Therefore, one needs to consider that the term “partial resonance”

*Corresponding author.
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only refers to a specific condition. The term “partial” was applied due to the fact
that the response of the system in these situations is still limited.

In this report, we elucidate how the above-described behavior occurs in a system
consisting of arrays of multi-coated cylinders. The motivation for this research stems
from the further need to inspect the behavior of systems with components, which
have a negative permittivity (¢) or negative permeability (1) or systems having
both ¢ and p negative (the so-called left-handed medium®). These systems have
shown interesting and unexpected results,* 69711 which may also be of practical
interest.!?

Note that, although periodic arrays are idealized microstructures they may be
realizable experimentally. One reason for studying these structures is that their
properties can many times be easily computed. Also, the results of periodic systems
can be useful for grasping the interplay between the microstructure and macroscopic
properties of composites. We numerically show that a disordered structure can also
be partially resonant.

The structure of this report is explained here. The following section describes
the geometry under study. In Sec. 3, we briefly explain the procedure of deriving the
response of the system. Section 4 predicts some results from the theoretical study
of the system when it is in resonant states. Section 5 verifies the results of the
previous section and finally, in Sec. 6, we summarize the key findings of this study.

2. Geometric Description

Consider a homogenous matrix with a unit dielectric constant surrounding an array
of composite cylinders, which have a topology based upon the well-known square
lattice. Each lattice point of the square array can be described by a lattice vector,
T, defined as:

T'n = h(nleml + n2ex2)7 (1)

where h is the characteristic length that expresses all the dimensionless distances
n1 and no are arbitrary integers and the two basic vectors, e, and e,,, form the
orthonormal basis of the plane. Let # be an angle measured from the z;-axis. Thus,
one can write

z1 =rcosf, zo=rsind. (2)

The radiuses of the core and coating layers are determined by a,...,an—-1, respec-
tively, as is shown Fig. 1. With these considerations, one can show that the volume
fractions occupied by the core and coating layers can be obtained from

fi:ﬂ'(azz_azz—l) (i=1,...,N-1) (3)

and the total volume fraction can be expressed as:

N-1
F=Yf. (4)
=1
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Fig. 1. The multi-coated cylinder under study.

ag = 0 has been included here and in the following relations in order to reduce
the number of mathematical notations. We also use the term “layer” for the core,
coating layers and matrix, and the dielectric constant ratio between layers ¢ —1 and
i is represented by €;_1 4.

3. Mathematical Modeling

Considering the problem symmetrical allows it to be solved independent of the
direction of the applied field, and without compromising generality, we assume a
potential gradient of unit magnitude to be applied along the z;-axis. For the unit
cell located at the origin, considering the general solution of the Laplace equation
in polar coordinates (r,6) and following Ref. 1, the potential (V) inside the layers
may be given as:

oo
vi= Z Elr?=1 cos(2n — 1)6 r<ai, (5a)
n=1
. e . .
Vi= Y (B 4 Firm ™ eos(2n - 1)0 a1 Sr<a(i=2,...,N-1),
n=1
(5b)
o0
v = Z[Eflvrzn_l + FNp=2t ] cos(2n — 1) 7> an_1, (5¢)
n=1

where EY and FY are unknown coefficients that are to be determined.
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At all the surfaces between the layers, the potential and normal component of
the electric displacement are continuous, i.e.,

Vl _ V2
6V1 6V2 r=ai, (68.)
81— — =&2—(—
0 or
Vz‘—l =V
ovi-1 9V r=a,.100=2,...,N—1), (6b)
sl ar & or
VN—l — VN
avN—l avN r =anN-i. (60)
EN-1—5— = EN 3
r or

By applying Egs. (6) E and F can be related to each other as:
Fo+Lya"7°E, =0 (i22) (7)

i—1

where

_ Eili— 1+ (Eim10 + DL Yai—2/ai—1)*" 2

Lt )
icti+ 14 (€ic10 = VLY Hai—2/ai—1)4n=2

n

(8)
To derive EN and FY, one may follow the method of Zuzovski and Brenner.!3
These authors derived another relation for the potential through the matrix in one
unknown A,. Comparing the resultant relation with Eq. (5¢c), allows two linear
equations to be found relating EYN and F¥ to A,. These two equations yield a set
of linear equations in the unknowns A, with the help of Eq. (7)

A, ad (2n+2J—-1)
—_— = S Aj_1+6n0, 9
G%lezL,]:[_*_l ; on + 1 2n+2J 1 J—-1 n0 ( )

where 6,0 represents the Kronecker delta (1 for n = 0 otherwise 0) and S, are
constants characteristic of the array. After finding EY and FV, other coefficients
can be found by using Egs. (6).

The effective dielectric constant can be calculated using the following formula

o = 1 + 27 Ag, (10)

where Ag can be derived by solving the systemn of linear algebraic equations obtained
from Eq. (9). As a solution in an explicit form, we present the following simple
formula, which gives reasonable results in very low volume fractions

2F

C C1/LN+F° (1)

5eﬁ':1

In order to obtain a more accurate expression one can use the methods outlined by
Manteufel and Todreas.!4
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4. Theoretical Prediction

As can be seen from Eq. (9), ay_1 and LY play important roles in the response
of the system to the applied field. Due to the form of the mathematical expression
of LY [i.e., Eq. (8)], for some cases, there may exist a different number and series of
dispersed layers that provide following relation

4n+2 L 4n+2Ln+1 (12)

antA Ly =a
and, as a result, the response of the system in these situations would be the same.
For example, when the coating layer i is perfectly conducting or insulating, Lixt
would be 1 and —1, respectively. This means that the layers under the layer ¢ will
have no effect on the calculation of LY. Thus, there are infinite selections for the
number and property of the layers under the layer 1.
The particular cases occur when

cii1t+e=0 (2<i<N). (13)
From Eq. (8) we find the following

; P+Q :

Litl=—=< (1<i<N-1 14

H=TE (<IN (14

where

4

P = (€z‘,z‘+1 - 1) €i—15+1+ (512—1,1' - L 1

i Qo 4n—27 a1 4n—2
Q= (gii+1+1) |€it1,s — 1+ (61,6 + 1)L,
a;—1 a;

[ 4n—27]
a;
R = (Ei,z’+1 + 1) €i—1,i + 1+ (81'_1,1' — L -1 az f
11—
i G2 4n—27 a1 In—2
S = (eiit1 — 1) |€im1,s — L+ (gi—1,4 + 1LY ( e ( — )
\ i Qi—1 | a;
(15)
Substituting condition (13) into Eq. (14) gives the following statement
i1 Eim1i41 — 1+ (8i—141 + 1)L (ai—2/a:)*2(ai/ai_1)*“*" 2
L = (16)

Eictis1 + 1+ (8i1,i1 — 1) L5 (ai2/a)*2(ai/ai—1)2(4n=2)
If two layers, ¢ — 1 and 7, have the same dielectric constant, which is equal to €;_1,
one may derive the following
pitl _ Gimlit1l = 1+ (€i—1,641 + 1)L;‘1(ai_z/ai)4”‘2
Cictip1 + 1+ (8im1i01 — 1) Lo (ai—2/a;) 2
A comparison of Egs. (16) and (17) shows that the field through the continuous
phase would be the same if layer ¢ had the same property as layer 7 — 1 and all

(17)
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the layers under layer i — 1 were magnified by a factor of (a;/a;_1)*. Layer i —
1 experiences two changes. Magnification by occupying the place of layer ¢ and
reduction due to the extension of layer ¢ — 2. Thus, this case can be materialized
only if

Ai—1 > /A;Q;—2 . (18)

The inspection of L! in condition (13) revealed part of the results. Let us now
derive an expression for L¢,. From Eq. (8) after substituting Eq. (13) and developing
a relation for L%~ analogous to Eq. (8), the following equation can be derived

i _ Gim2i— 14 (gi—2i+ 1)L 2(a;—3/ai—1)*""%(ai-1/a;—2)*" 2

L 4
" giait+ 1+ (gi2i — 1)L§L_2(ai—a/ai—l)4”_2(ai—1/ai—2)4"_2
as 4n—-2
x( "1) (2<i<N). (19)
a;—2

When two layers, ¢ — 1 and 7 — 2, have the same dielectric constant equal to ;_2,
the result for LY, would be

i - Gim2i T 1+ (gi—2; + 1)L 2(a;-3/a;—1)*" 2
" eiai+ 14 (ciiai — 1)LE %(ai_3/ai_1)n2

(20)

A comparing of Egs. (19) and (20) indicates that there is another equivalent sys-
tem in which all the layers (i = 1,...,7 — 3) have been extended by a factor of
(ai—1/a;—2)*. The layer i — 1 now has the property equal to that of layer i — 2 and
its outer radius is a;—1 X (a;—1/a;—2). This system can be materialized if

a;—1 < /a;a;,—2. (21)

Some conclusions can be drawn on the basis of the above relations. When 7 = 2
in Eq. (13), the second equivalent system cannot occur, but there is always an equiv-
alent system. When 3 < i < N — 1, both equivalent systems can occur, although
not simultaneously because of the limitations dictated in Egs. (18) and (21), which
contravene each other. Therefore, finding the equivalent system in this situation
has been warranted except when a;,—1 = /a@;a;—3. If 2« = N, the first equivalent
system has no meaning and the second one can occur if a;—1 < y/a;—2/2.

Since Eq. (13) expresses resonance between two successive layers, one may con-
sider different cases in which several pair layers satisfy relation (13), i.e.,

gi-1+¢€ =0 (iZj,k,l,...). (22)

The behavior of the system in these states can be readily detected by successively
applying the methods declared above. For example, we consider the following case

€i-1+€ =0 (i=2,...,N—1). (23)

Successively employing the methods ultimately indicates that the field inside the
matrix would not change if the multi-coated cylinders were replace by solid cylinders
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of radius ay—_1 and dielectric constant ;. Therefore it can be shown that L,’:’ can
be simplified into the following form

€1 — 1
LY = —— 24
" e1+1 ( )
and as a result, the potential inside the matrix would be
s 14+¢&
vN=N"FVN p2n=l =20t cos(2n — 1)6. 25

From the above result, it can be understood that in this situation, the sign of ¢ for
the layers between layers 1 and N (1 < ¢ < N) can be arbitrarily chosen and all the
cases yield the same response.

When all the layers (i = 2, ..., N) fulfil condition (13) and N is an odd number,
the system behaves like a solid medium with the dielectric constant of the matrix.

5. Numerical Verification

Numerical simulation is nowadays a well-developed tool for inspecting the response
of systems. Although the unit cell of the periodic structures has been largely
simulated,’® they are mostly in two-phase with positive transport properties.

For given geometry and solid volume fractions, the Matlab PDE toolbox was
utilized and the Laplace equation solved for a unit cell of the system using the
finite element method. The unit cell consists of matrix and dispersed layers (core
and coating layers). A potential gradient of unit magnitude was applied externally
along the zj-axis and other external boundaries were insulated. At the surfaces
between the layers, continuity conditions (6) were implemented. By using solution-
adaptive refinement, one can add cells where they are needed in the mesh, thus
enabling the features of the potential field to be better resolved. Based on the
theoretical findings, the three considerable cases were studied numerically.

e Figure 2(a) shows a unit cell of a system consisting of three-coated cylinders.
The dielectric constants of the core and coating layers were selected to be +2.5,
+5, +2 and —2 and the radiuses 0.15, 0.2, 0.275 and 0.33, respectively. In order
to construct the equivalent system [Fig. 2(b)], second and third coating layers
were joined together and considered as one unit layer with a dielectric constant
equal to +2. Also, the core and first coating layers are magnified by the factor
(0.33/0.275)%. Therefore, the radiuses of the layers are a7 = 0.216, a3 = 0.288 and
a} = 0.33. The distributions of the induced fields are given in the figures show
that although the fields inside the dispersed layers of the systems are completely
different, they are exactly the same through the matrix.

e Now we consider the system of Fig. 2(a) with one alteration. In order to satisfy
condition (21), the radius of the third coating layer has been extended to the
value 0.4 as is shown in Fig. 3(a). Based on the predicted scheme for the second
equivalent system, we assemble a two-coated cylinder [Fig. 3(b)] with radiuses
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(b)

Fig. 2. Equipotential contours inside the unit cell of the first case. The original system (a) and
equivalent system (b).
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(b)

Fig. 3. Equipotential contours inside the unit cell of the second case. The original system (a)
and equivalent system (b).
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(b)

Fig. 4. Induced potential field inside the layers of the unit cell in third case. The original (a) and
equivalent system (b).
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No-Fluy

(b)

Fig. 5. Induced potential fields inside the layers of a simple system composed of a two-coated
cylinder and arbitrary boundaries. The original (a) and equivalent system (b). Note that the
potential fields outside the first coating layers are equal. This is also correct for the third case.
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of a} = 0.28359375, a3 = 0.378125 and a3 = 0.4. The dielectric constants of the
layers are +2.5 for the core, +5 for the first coating layer and —2 for the second
coating layer. It is clear from the figures that the potential fields outside a3 are
equal.

e In third case, a two-coated cylinder has been considered as depicted in Fig. 4(a).
The dielectric constants of the core and coating layers are —2, +2 and —2, re-
spectively. In the next system [Fig. 4(b)], the two-coated cylinder is replaced by
a solid cylinder with the same dielectric constants as the core of the original
system. Both systems have the same total volume fraction. Again, by applying
the same boundary conditions, the fields through the matrix of both systems are
the same.

To further investigate this subject, we consider a simple system consisting of
a two-coated cylinder (with details explained in the third case above) covered by
another material of unit dielectric constant. Arbitrary boundary and boundary con-
ditions were selected and implemented on the system as is represented in Fig. 5(a).
Figure 5(b) shows that changing the dielectric constant of the first coating layer
to —2 causes no disturbance in the field through the matrix. Therefore, disordered
structures can also be partially resonant. This fact had been predicted by Nicorovici
et al.%% and the numerical investigation shows the same result.

6. Summary

Inspection of the resonant behavior of the multi-coated structures exposed new
results in this field. When the sum of the dielectric constants of two successive
layers is equal to zero, a series of layers can be magnified and the magnification
is not limited to one layer. The ratio of magnification for the layers detailed. We
also explained that, for every resonant state, there may be two types of equivalent
system, although only one of them may be of any physical significance. All the
numerical investigations were in accordance with the theoretical predictions.
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ABSTRACT Two premeditated resistor models have been de-
veloped and tested for the prediction of the effective thermal
conductivity of a periodic array of multi-coated spheres embed-
ded in a homogeneous matrix of unit conductivity. The results
have been compared and evaluated with the exact solution, as
obtained by extending a method originally devised by Zuzovski
and Brenner. The results for the two models were found to yield
bounds for the exact solution. For some situations, the model
results match well with the exact solution, but in other cases
the results for one of the models could deviate from the exact
solution.

PACS 41.20.Cv; 44.10.+1; 72.80.Tm

1 Introduction

Many studies have been conducted on calculating
the effective thermal conductivity of a composite medium
consisting of a periodic array of spheres embedded in an
isotropic matrix. The basic work for the solid spheres has
been outlined by Maxwell [1], who inspected the effective
conductivity of a dilute spherical dispersion. Rayleigh [2] de-
scribed the polarization of each sphere in an external field
by an infinite set of multipole moments and gave a relation
of low order for a simple array of spheres. His solution was
corrected later by Runge [3] and improved by Meredith and
Tobias [4]. Maxwell’s theory was extended by Jeffrey [5] to
higher particle concentrations. McPhedran et al. [6] modified
Rayleigh’s method to overcome a non-absolutely convergent
series involved in the solution. Zuzovski and Brenner [7] pre-
sented another method that avoids the problems encountered
in Rayleigh’s original method. Sangani and Acrivos [8] modi-
fied the Zuzovski—Brenner method to circumvent the tedious
algebra encountered in the calculations.

Runge [4] developed Rayleigh’s method to coated elem-
ents where the geometry was composed of an array of tubes
having the same core material as the matrix. Lurie and
Cherkaev [9] showed that the bounds on the effective conduc-
tivity derived by Hashin and Shtrikman [10] for three-phase

b Fax: +358-5/6212799; E-mail: Ali.Moosavi@]ut.fi

composites are realizable for coated sphere assemblages. Yu
et al. [11] derived a relation for the effective properties of
coated spheres in the dilute limit. Nicorovici et al. [12] ex-
tended Rayleigh’s method for a simple cubic array of coated
spheres and inspected the behaviour of the solution as a func-
tion of the properties of the core and shell of the sphere. Lu
and Song [13] and Lu [14] developed a boundary colloca-
tion scheme to compute the effective conductivity of a simple
array of multi-coated spheres and derived a relation for the
effective conductivity of the random array of coated and
multi-coated spheres which is correct to O(F?) where F is the
total volume fraction.

In this report, we extend the Zuzovski—Brenner method
to multi-coated spheres. We also present a scheme for deriv-
ing the effective conductivity of the system using two resistor
models and compare the results with the exact solution. It
should be noted that the formulation and the results for the
thermal conductivity could be applied exactly to the seven
other associated transport properties listed by Batchelor [15].
(These properties include electrical conductivity, dielectric
permittivity, magnetic permeability, mobility, permeability of
a porous medium, modulus of torsion in a cylindrical geom-
etry and effective mass in bubbly flow.)

This paper is organized as follows. The next section de-
scribes the geometry under study. Section 3 reports the details
of one approach [7] for calculating the effective conductivity
of a cubic array of multi-coated spheres embedded in a homo-
geneous matrix of unit conductivity, and presents the exact so-
lution for this system. Section 4 develops two resistor models
for deriving the conductivity of the system. In Sect. 5, the re-
sults of the two resistor models are compared and evaluated
with the exact solution. Finally, Sect. 6 summarizes the key
findings of the study.

2 Geometric description

Consider a homogenous matrix with unit conduc-
tivity surrounding an array of composite spheres with a top-
ology based upon the well-known cubic lattices, i.e. the sim-
ple cubic (SC) lattice, the body-centered cubic (BCC) lattice
and the face-centered cubic (FCC) lattice. Each lattice point of
acubic array can be described by a lattice vector r,, defined as:

1, =h (ni1a; +nsa +nsaz) (D
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a) as as
SC ey ey e
BCC 1/2(ex+ey—e;) 1/2(—ex+ey+e;) 1/2(ex—ey+e;)
FCC 1/2(ex+ey) 1/2(ey+e;) 1/2(ex+e;)
TABLE 1 The basic vectors a;, ap and a3 for three cubic lattices. The

vectors ey, ey and e, form an orthonormal basis in space

where h is the characteristic length to express all the distances
in dimensionless form and n 1, n, and n3 are arbitrary integers.
The three basic vectors ay, a; and a3 belonging to a SC, BCC
and FCC lattice are given in Table 1.

The radius of the core is determined by a; and the other
coating layers of the multi-coated sphere are ay, . .. , ay_; re-
spectively, as shown in Fig. 1. The conductivity ratio between
the phase i — 1 and i is assigned as k;_; ;. With this consider-
ation, the volume fraction occupied by the core and coating
layers can take the following values:

ﬁ:in(a?—ail) i=1,...,

3‘[()

N—1) 2

F=Y1 3)

where 19 = a; - [a> x a3] refers to the non-dimensional vol-
ume of the unit cell, and has values of 1, 1/2 and 1/4 for SC,
BCC and FCC lattices respectively. Note that ay = 0 is used
here and in the subsequent relations in order to reduce the
number of mathematical notations. If ¢ is an azimuthal angle
measured from the plane of x;x; and 6 is a polar angle meas-
ured from the x-axis, then the following relations apply:

Xy =rcosh, x,=rsinfcosep, x3=rsinfsing @)

3 The exact solution

The symmetry of the geometry makes the solution
of the problem independent of the applied external gradient
temperature, which is assumed to occur along the x;-axis.
Since the arrays are periodic, we just study a unit cell of the
systems. For the unit cell located at the origin, considering
the general solution of the Laplace equation in spherical co-
ordinates (r, 8, ¢) and following Rayleigh [2], the temperature
inside the layers may be given by:

o m<i SN
Z Z EL PP | (cos6) cosme )
n=1 m=0

oo M= %

Z (E! PV FL 2" Py | (cos 6) cos me
n=1 m=0

(i=2,...,N) (6)

where P} (cos0) represents the associated Legendre poly-
nomial of degree L and order M. Zuzovski and Brenner [7]

*

FIGURE 1 The multi-coated sphere under study

proposed another suitable expression for the temperature in-
side the continuous phase:

TNZ)C1—|-GH (7)

where G is the differential operator, whose preferred form for
a cubic array of spheres later was derived by Sangani and
Acrivos [8] as:

6=y

M=0

<Ly
2 24m 1 aZI’H—l

Xz: QCn+1) Anm ax%n+l
9 4m 9 4m
(5) +<3_77) } (M =n+2m) ®)

E=xy+ix3, n=xy—ix3 )

where

and

2n—4
%Snmrzn Py (cos ) cos me
(10)

where ¢, represents the Neumann symbol (1 for m = 0 and 2
otherwise). The calculated values of constant array o for the
three cubic arrays [16] are 2.837297, 3.639233 and 4.584862
for SC, BCC and FCC respectively. The lattice sums have the
following form:

o0
Sim = Z 1] ~HD P (cos 6,) cos mg, (11)

n=1
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where their values may be calculated by direct summation or
in some region of / and m by approximate correlation [6, 17].
Note that 6, and ¢, are polar and azimuthal angles measured
from the lattice point n.

The unknown coefficients A in (8) can be determined by
implementing boundary conditions at the surface of the core
and coating layers:

T =T k0T Jon =0T /on r=a;_, . (12)

Using these conditions, the following result is obtained:

Fl +Lia" "El, =0 i>2 (13)

where

L=

Q@n—1) (kic1.i—1) +[2n (kicri+1) = 1] L7 (@2 /ai- )™

[@n—1) (ki +1)+ 1] +2n (ki — 1) L7 (@2 /@)™
(14)

Calculating TV by using the above expressions for H and G
and comparing the resulting relation with (5), two linear equa-
tions can be found relating EY and FY to A,,. These two
equations combined with (13) yield a set of linear equations in

the unknowns A,,,:

AM+3
Anm= LN N—1
ML QM+ 4m + 1))
© =2 e 2p— 41! Jotg, 2p—4q)!
1 - 1)- 2 —aqr):
XZ Z - . Spa1 + 2 . Spas
oL Qi-4j+D QJ—4j+1)
4
X Aj_aj i+l ay_, <1 + —A()o) (15)
3‘[()
where
p=M+J+1, qg=m+j, q=|m—j| (16)
2 =X, =0.25 if j#£0,m=0
=05 i=1 |if m=j#0 (17)
M=l =05 otherwise

The effective thermal conductivity can be calculated using
the following formula:

kest = 1 +4mwA00/ 70 (18)

3.1 The explicit expression

As outlined by Manteufel and Todreas [18] differ-
ent methods can be used to derive an explicit expression. By
using linear truncation, Nicorovici et al. [12] have developed
a relation of low order for the simple cubic lattice of coated
spheres. For the truncation order L = 4, the solution of (15) is
given as follows:

3F
ket =1——

D 19)

where
14c4 LY F1/3
+csLY FO +c6 LY F?/° + 0 (FPP) .

D=—1/LY+F+cLYF'8 +csLy FP

(20)

The numerical constants are given in [8] and have been repre-
sented here in Table 2. These constants were verified as part
of the current work. In (19), if the terms containing ¢4 — c¢
are neglected, the formula of truncation order L = 3 can be
obtained. By taking ¢; to ¢g equal to zero, the expression of
the second-order approximation (L = 2), analogous to that of
Lord Rayleigh [2] for the simple cubic lattice of solid spheres,
will be obtained:

3F
—1/LY 4+ F+c LY F1053

kegr =1— 21

To test the correctness of (19) for multi-coated spheres,
the effective thermal conductivity of coated and doubly coated
spheres in the dilute limit was derived. Examination of (19)
shows that it can be reduced to the following relation when
F— 0.

ket = 1+3FLY 4+ 0 (F?) . (22)

Extending (22) for coated spheres gives the following result:

kett = 1+3FL{ =1+3F
(ka — 1)+ (14 2ka) [(ky —ka) / (k1 +2k2)] (a1 /az)?

Tt D12k —1) [k —k2) / k1 +2k)] (a1 fa2)
23)

Likewise, the expression for doubly coated spheres is as fol-
lows:
P+0Q

ket =14+3FL}=1+3F——

R+S @

where

P = (ks — 1) {(ka + 2k3) +2 (ko — k3) [(k1 — k2)
/ (k1 +2k2)] (a1 /a2)*}

Q = (1+2k3) {(ka — k3) (az/a3)’ + (ks +2k>) [(k1 — k2)
/ (k1 +2k2)] (a1 /a3)*}

R = (k3 +2) {(ka 4+ 2k3) + 2 (ko — k3) [(k1 — k2)
/ (ki +2ky)] (a1/az)’ }

S=2 (ks — 1) {(ka — k3) (a2/a3)’ + (ks + 2k) [(k1 — k2)

3
/ (ki+2k2)] (ar/az)’} . (25)
Ne BCC FCC
1 1.3047 1.29x10°! 7.529x 1072
e 4.054x107! 7.642x107! —7.410x107!
c3 7.231x1072 2.569x 107! 4.195x1072
c4 2.305x107! —4.129x 107! 6.966x10~!
cs 1.526x 107! 1.13x1072 2.31x1072
co 1.05x1072 5.62x1073 9.14x1077

TABLE 2  Numerical constants in explicit expression
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a b

AN

FIGURE 2  Part of the resistor network. Original (a) and simplified arrangements (b, ¢)

Setting a3 = 1 in (25) will reduce (23) and (24) to the same
equations given by Yu et al. [11, 19] for the effective prop-
erties of coated and doubly coated spheres in the dilute
limit.
32 The effect of azimuthal terms for a simple cubic
array

The simple cubic array is of interest since it permits
spheres to come closer to touching for low-volume-fraction
systems as compared to any other arrangement. McPhedran et
al. [6] have inspected the effect of azimuthal terms for a sim-
ple array of solid spheres. Due to the very small differences
between the results, it was not clear whether considering azi-
muthal terms causes these differences or whether they are just
numerical artifacts. This problem was again studied by San-
gani and Acrivos [8], but due to the lack of convergence these
authors were not able to obtain reliable results. Table 3 com-
pares the calculated values of effective thermal conductivity
for the most sensitive case of perfectly conducting spheres
(meaning that the core and all coating layers are perfectly con-
ducting) with the resulting values without azimuthal terms
and with those obtained by McPhedran et al. [6]. For this cal-
culation, the effective conductivity without azimuthal terms
can be obtained by reducing (14) to the following expres-
sion:

An,O > 2I’l +2J
N > ( o1 ) Smr2r04s-10+80.  (20)
N—1 “n+l J=1

Mathematica 3.0 was used to solve the set of linear al-
gebraic equations obtained from (15) and (26). 50 zonal
unknowns and 50 azimuthal unknowns were considered in
solving (15) and (26). All elements of the right-hand-side
column vector have values of zero except for the first pos-
ition, which has a value of unity. Multiplying the matrix of
coefficients in the column vector of the results and compar-
ing with the right-hand-side vector tests the correctness of
the solution. The effective conductivity may be directly cal-
culated from (18). It is clear from the results that there is
a real (although small) effect associated with the azimuthal
terms.

4 Resistor modeling

The unit cell can be considered to consist of an
infinite series of resistors (Fig. 2a). Hsu et al. [20,21] as-
sumed for two-phase composite materials that all the resis-
tors in the direction normal to the applied heat flow have
infinite resistance. Thus they suggested a simplified config-
uration as shown in Fig. 2b. Another simplified configura-
tion can be considered in which the resistors in the direc-
tion normal to the applied heat flow are perfectly conduct-
ing resistors, as shown in Fig. 2c. In the discussion that fol-
lows, the effective heat conductivity of the system will be
derived using both methods, and the accuracy of the results
and behaviour of the solutions will be compared with the
exact solution. Since similar results could be expected for
three cubic arrays, here only the simple cubic array is investi-
gated.

4.1 First resistor model

Suppose that the unit cell is divided to N paral-
lel regions, each composed of infinite infinitesimal parallel
elementary volumes in annular cylinder geometry. Due to
the symmetry of the problem and for the sake of simpli-
city, only a quarter of the unit cell needs to be considered,
as depicted in Fig. 3a,b. An expression for the thermal con-
ductivity of each element in these parallel regions («x) can be

F ket Kege ke

0.30 2.3329 2.3326 2.333

0.40 3.2626 3.2612 3.262

0.50 5.8913 5.8875 5.891

0.510 6.7664 6.7623 -

0.520 8.8688 8.8044 -

0.523 11.671 11.666 -

TABLE 3  Effective thermal conductivity for a simple cubic array of per-

fectly conducting solid spheres. kg corresponds to the solution without

considering azimuthal terms and kgH are results of McPhedran et al. [6]
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derived:

N—l 1—(a sin@/aj)z—aj,l\/l—(ai sin@/aj,l)2

12 Y%
_7;___253 kj

j=i

1
+ - —an— 1\/1 — (a; sinf/ap_ 1)2

2

3 1a,,/l— (ai sin6/a;)’ (l—i>+1

= Kk ki) 2
G=1,....N—1). @7

Clearly, for the last region, the thermal conductivity is equal
to the unit value. The next step is to determine the relation
for the equivalent thermal conductivity of each region (K;).
Using (27) and remembering that all elements are in parallel,
the following result is obtained:

1
K;=
aiz_aiz 1
/2
/‘ ai2 sin 20d6
X
o YNt 201~ (s sin6/ay) (1/k; —1/kj1) +1
(i=1,...,N—1) (28)
where
6; = sin~! <“i‘1) . (29)
ai

With the above procedures, the effective conductivity of the
unit cell can be derived to be:

N-—
Z a’—a JKi+1-— nay_, (30)

4.2 Second resistor model

As shown in Fig. 4a,b, in the second method the
unit cell is divided into infinite slices normal to the applied
field. As for the first method, an infinite number of cells in N
serial regions (i =1, ..., N) are considered. For each slice,
the equivalent conductivity may be specified as:

N
k=Y Kisi/S (i=1,...,N—1) (31)
where
si=7% {a]z [1 - (a, cos G/a])z]
a2, [1=(arcosb/a; 1)’} it j=i,... N =1
sj=1/4— n[al (a,cos@)] ifj=N
(32)

and S = 1/4is the non-dimensional cross-sectional area of the
slice. It is then straightforward to derive the equivalent ther-

T X
i N !

x,

Q

i /

parallel region i
I

a *; b )
FIGURE 3 Quarter unit cell considered in the derivation of the effective conductivity by using first resistor model: a 3-d view; and b 2-d view
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serial region i

/

a X, b x

FIGURE 4 Quarter unit cell under inspection in second resistor model: a 3-d view; and b 2-d view

mal conductivity of each region as:

ai —ai-|
Ki= fe,- a; sin 0d
O wlkitasino?+ 2001 k(- )~ — (@ cos0)?] 41
G=1,....N—1) 33)
where

(34)

1 [ Gi-1
6; = cos ==
ai

Consequently, the effective conductivity of the system is
given as follows:

1
ketr = — (35)
l’,\’:—ll W +1—2ay_,
5 Results and discussion

Figure 5 compares the resulting effective thermal
conductivity values from the exact solution for the simple
array of coated spheres with those obtained from resistor
models. The total volume fraction (F) was selected to be
0.2 (fi =0.1 and f> =0.1) and the exact solution was ob-
tained using (19), which should yield reasonable results in this
limit [6]. All integrals in (28) and (33) were calculated using
the Gauss—Legendre integration technique [22]. The results
show that the first method always underestimates the exact
solution except when the conductivity of the core and shell
is equal to the matrix conductivity. This result is consistent
with the finding of Hsu et al. [21] in their comparison of re-
sults for the effective thermal conductivity of non-touching
solid circular cylinders. In reality, the infinite resistance as-
sumption of the resistors in the normal direction to the applied
field introduces a lower bound for the effective conductivity

of the system. The accuracy of the solution depends on the
conductivity and volume fraction of the phases and geometry
under consideration. In contrast to the first approach, the sec-
ond method overestimates the solution except in the situation
mentioned for the first resistor model. Thus, another bound is
introduced for the conductivity of the system.

Of particular interest are the situations where the core and
shell tend to their limiting conductivity values (0, 400). The
errors for other cases cannot be much higher than the error for
the limiting cases, as is evident from Fig. 5. Thus, the follow-

¥ dog

NI

FIGURE 5 Logarithmic plot of the effective conductivity for the simple
cubic array of coating spheres as a function of the conductivity of the core
and shell. Despite of the accuracy, the first resistor model is unable to show
the same behaviour as the exact solution when the shell is perfectly conduct-
ing. The same condition applies for the second resistor model when the shell
is perfectly insulating
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ing section discusses the ability of the models to predict these
limiting cases.

Relatively good results can be expected from the first
model for the case when both the core and shell have a large
conductivity value. Here the accuracy of the solution is tested
for a perfectly conducting core and coating layer. Since this
case is equal to an array of perfectly conducting solid spheres
of radius a;+ = ay, itis easier to investigate the solution for the
alternative system. For this case the effective thermal conduc-
tivity can be derived as follows:

/2
sin (20) 11
Kp=|] —————=————1In(1—-2ap) do 36
! /I—Zazcose a 243 n( @) (36)
0
il 2
keffz —Eln (1 —2612)— (naz +ma; — 1) . (37)

As was predicted by Batchelor and O’Brien [23], for nearly
touching perfectly conducting spheres, the effective thermal
conductivity satisfies the following relation:

keff = —C11In (1 —2a3) — C; (a2 —> 1/2) (38)
where C; and C, are two positive constants. The constant
C, was derived by Batchelor and O’Brien [23] to be /2,
and the second constant has been calculated by Sangani and
Acrivos [8] to be about 0.69. The first resistor model gives
the same value for C; but the suggested value for C, is equal
to 1.356, which is almost twice the value given by Sangani
and Acrivos [8]. For this situation, the second resistor model
provides the following simple expression:

1/2

Tha (39)

keft =

Figure 6 compares the results of the two-resistor model with
the data obtained by exact solution and the results of the lower
bound given by Hashin and Shtrikman [10].

Since dispersed phases have small conductivity values,
a second limiting case can be presented for such dispersed
systems. The results of this system have been calculated for
the condition where the core and shell are perfectly insulating
(an array of perfectly insulating solid sphere of radius placed
in a matrix of unit conductivity). It can be seen from Fig. 5
that the second model predicts more accurate results in this
situation. From (33) and (35), the following relations for the
second model can be derived:

/2 2
ino a1/ —a5d60
Ky = / sin _ 2 40)

—ra2ein2f
I-ma;sin®6  ctan (az/ 1/n—a§>

n‘/l/n—a%

2 arctan <a2/ 1/m —a%) +(1—2a) 7,/1/7 — a3
(41)

keft =

Also, for the first model one may find:
ket = 1 —ma; . (42)

A comparison between the exact solution with the predicted
results based on the two resistor model and two bounds given
in [10] for the case of perfectly insulating spheres is shown
in Fig. 7.

The results of the resistor models for two rested positions
(ki = +00,k; =0 and k; =0, k, = 400) are examined in
a different way. As can be seen from (15) LY plays an import-
ant role in the response of the system to the applied field. Due
to the shape of mathematical expression (14), for some cases
a different series of dispersed phases may exist that gives the
same value for L,’;’ . Nicorovici et al. [12] have studied the be-
haviors of coated spheres. The following discussion considers

the case of multi-coated spheres for three scenarios.
1) ks = k= (2§Z*§N—1) . 43)

After two successive applications of (13) fori* and i* 4 1, the
resulting expression for Li ! is:

2n —1) (kis—1,i041—1) 4
+[2n (k1o +1) = 1] L (@i o /i)™ !

[@n—1) (kpe—p,e1 + 1)+ 1]
+2n (ki*fl,i*+l — 1) Lil*il (ai*,z/ai*)“”_l

1
LI+ =

(44)

Therefore LY will not change if these two phases are uni-
fied and considered as a unique phase with volume fraction
47 (aj. — aj._,) /37. If the core and all coating layers have
the same conductivity, the problem can be reduced to the sim-
ple array of solid spheres of radius ay_; immersed in a matrix
of unit conductivity.

N ky— 1

b = T an-n @

12
11

10

B
~
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FIGURE 6 Comparison between the results of the first and second resis-
tor models with the exact solution and the results of the lower bound given
in [10] for perfectly conducting phases
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FIGURE 7 Comparison between the predictions of the first and second re-
sistor models with the exact solution and the results of two bounds given
in [10] for perfectly insulating spheres

It can be shown from (27) and (31) that both resistor models
also demonstrate the same behaviour.

2) ki, =0, where in. is the largest coating layer which
has conductivity equal to zero. For this case (44) reduces to
a simplified expression:

2n—1
2n

This result implies that the phases under iy,x have no effect
in calculating the and in fact layer i, cuts the relation be-
tween the phases i > iy and i < ip,x. The first resistor model
also shows the same behaviour. For this case, (28) yields the
following result:

imax+1 —_—
Ly =

(46)

K;=0 (i <imax) - 47
Thus, these phases play the same role as for the exact solution.
In contrast, it can be seen from (33) that the second model does
not demonstrate equal behaviour and the results of this model
have more errors in this situation.

3) ki, = 400, where inm,y is the largest coating layer which

is perfectly conducting. Consequently,

Limxtl — 1 (48)
Thus, this phase makes the phases under the phase i,y ir-
relevant in the response of the system to the applied field. In
this situation, the second resistor model illustrates similar be-
haviour. All the region conductivities become infinite:

(l S imax) .

Therefore, they do not have any effect on the calculation of the
effective thermal conductivity (i.e. (35)). However, the first re-
sistor model is unable to predict this behaviour and the error
tends to increase for this condition.

6 Concluding remarks

The method devised by Zuzovski and Brenner [7]
has been extended to enable the calculation of the effective
conductivity of systems of multi-coated spheres consisting of
SC, BCC and FCC unit cells. An explicit expression for the
effective thermal conductivity to O(F?) has been presented.
Two resistor models have been developed to obtain alternative
solutions to the problem. By inspection of the results of the
resistor model and comparison with the results of the exact so-
lution, it was found that the results of these models constitute
two bounds for the exact solution. Some scenarios were inves-
tigated to identify and discuss situations in which one of these
models predicts better results.

The use of a more complex method of analysis, such as
combinational theory, should help to improve the accuracy
of the calculations and provide a more thorough explanation
of the physical behaviors of the system. The development of
a method based on combinational theory and its application to
the system studied in this work will be the focus of a future
investigation in this area.
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Abstract

We extend the Rayleigh method for the calculation of the effective conductivity to three-
phase composite materials. The materials under study consist of two types of circular
cylinders in a periodic arrangement embedded in a matrix. Highly accurate values for lattice
sums were obtained using algorithms which have been recently developed. A series of explicit
formulations, which are used to facilitate the calculation of the effective conductivity of the
composites under study, are reported. We aso perform a series of numerical calculations to
study the behavior of these composites.
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1. Introduction

Multi-phase heterogeneous systems can be found in a wide range of practical processes
and are of considerable technological importance. Colloidal dispersions, emulsions, solid
rocket propellant, oil-filled porous rocks, concrete, reinforced materials are a few examples of
such systems. To handle these systems optimally one needs to know how they behave at the
macroscopic level; therefore a great deal of interest has been focused on relating the
microstructural and macroscopic properties of these systems, such as the effective thermal, or
electrical, conductivity [1,2], dielectric permittivity [3,4] and permeability of a porous
medium [5].

One common type of these systems consists of a matrix and a series of dispersed phases.
Of these systems those with circular cylinders were among the first to be studied by
researchers for deriving the effective conductivity, as is the case in Rayleigh’s studies [1].
Rayleigh took into account a rectangular array of circular cylinders and showed that to
completely relate the microstructural and macroscopic properties, the effect of interaction
between the cylinders should be taken into account. This fact was later extensively used for
obtaining more accurate analytical relations for calculating the effective conductivity of these
composite systems [6,7]. Recently, some attempts have been made to generalize the study by
developing formulations for multi-phase cases [8]. Clearly, this is an important task since the
behavior demonstrated by multi-phase systems can be completely different from that
understood on the basis of two-phase systems and further investigation is necessary.

In this research, we are concerned with the problem of calculating the effective
conductivity of three-phase periodic structures composed of two types of circular cylinders.
The unit cell of the composites under study is a rectangular cylinder with a circular cylinder
of type one at the center and a circular cylinder of type two at each corner, as depicted in
figure 1. The phases can be solid or stagnant fluid. The configuration of the geometry selected
for study makes it possible to construct many periodic structures, which can be widely found
in literature. In what follows, we first develop the Rayleigh method to the three-phase
composites. Then, we verify the algorithm, comparing our results with some existing results.
Finally, we inspect the behavior of the systems. We shall use terms and notations appropriate
to the case of thermal conduction for convenience. It is worth noting that the results of this
study can be applied to many transport properties besides thermal or electrical conductivity

=
)
N
b

Figure 1. The unit cell of the three-phase composites under study. Cylinders of the same type
have a distance equal to a unity in the x-direction and b in the y-direction.

S =
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2. Governing equations

Suppose that the origin of cartesian coordinates has been placed at the centre of a cylinder
of type onein a unit cell of the system in which the x- and y-axes are parallél to the sides of
the unit cell (see figure 1). Furthermore, assume that the matrix of the composite under study
has unit conductivity and the periodicity of the system in the y-direction is equal to a unity for
greater generality. Applying these conditions, we denote the conductivity of the cylinders by
k, and k,, the radiuses a,and a, and the volume fractions f, and f, for the cylinders of

type one and two, respectively. Also the periodicity of the system in the x-direction will be
denoted by b.

For the case bt 1, the effective conductivity of the system in the x-direction (paralel)
would be different from that of the y-direction (perpendicular) and one should calculate both
these conductivities. In order to simplify the presentation without loss of generality herein, we
only consider the parallel direction. The necessary comments for the perpendicular direction
shall be outlined in a separate section.

Let us apply a uniform temperature gradient of unit magnitude externally to the system along
the x-axis in the negative direction. By taking the center of any cylinder of type i (i =lor 2)

as the origin of polar coordinates (r ,q), the temperature within that cylinder and outside it
through the matrix can be given as

T(ra)=Cy + é Cypr;T 2" *c0s(2n-1)q )
n=1
Y
T (10) = Ay, + @ (A + By a1 ™) cos(2n- 1)q, ®)

n=1

where the set of coefficients C,,;, A,,.;; and B, ,; are unknowns to be determined. The

periodicity of the system implies that these coefficient be exactly the same for al cylinders of
the same type. C,; and A;; express the average of the temperature within the cylinder and

outside it, respectively. Thus, they are exactly the same only for cylinders of the same type
placed in a column normal to the applied field. In equations (1) and (2), also note that the
cosines of the even multiples have been ignored. This is because of anti-symmetric behavior
of the temperature around q =p/2, where g is measured from the parallel direction.

At the surface of the cylinders, the temperature and the normal component of heat flux are
continuous, i.e.,

T=T,, k—-= r=a ©)
fir fir
By applying the above-mentioned boundary conditions, we can obtain
B n-1,
Posi =iz (4)

9i&
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Copsj = —2, (5)
where

c.=—— (6)

For the case of non-conducting cylinders, k; =0, we have g, =1 and c, =0.5. Also,
applying perfectly conducting cylinders, k; =¥ , implies that g, =-1 and ¢, =-¥. The
unknown coefficients still cannot be determined since the relations given in equations (4) and
(5) do not provide a complete set of equations in terms of the unknowns; we require a further
series of relations between the coefficients. For this purpose, we employ Rayleigh’s strategy
which is based on the fact that at any point the temperature may be regarded due to external
sources and multiple sources placed at the center of the cylinders. By examination of
temperature function (2) written for a cylinder, we find that terms with radius raised to a
positive power cannot be due to sources placed at the center of that cylinder since they
increase when r increases; therefore they stem from the external field and sources originated
from the center of other cylinders. Asaresult, we can write

¥
A t é_ Azn-l,irzn_lcos(zn' 1)q =

a a 2n 1 COS(Zn 1)q], +a a 2“2nlid'2 Cos(zn- 1)qj’2_di2, (7)

jt0 n=1 i,i i n=1 JZd.z

where r;; and q,; are measured from the center of cylinder j situated in the array of cylinders

of type i. As is specified in equation (7), in the sum over the cylinders of type i, al the
cylinders, except the cylinder under study (j=0), should be taken into account but in the sum
over the cylinders of the other type, al the cylinders are to be considered without any
exception. The above expression can be considered as the real part of the following relation:

é 2n-1
At A Aony [X' Xoj +i(Y‘ ho, )] =

n=1

x+|y+a a 2n_lvi[x- Xoi = Xj; +i(y- hy, - h”)]-znu_‘_

jt0 n=1

é é BZn—l,Z—diz[X_ Xoj - Xj,z-di2 +i(y' ho,i - l“j,z-diz)]_zml ’ (8)
j n=1

where x;; and h; are the coordinates of cylinder j of type i in the coordinate system (X, ).

Now we perform successive differentiation with respect to x on both sides of the above
equation and evaluate the results at the center of the cylinder under study(xO,i h O’i). After
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applying equation (4), the process yields the following set of linear algebraic equations in the
unknowns B, ,; (i =12):

B, ,, S a@n+2m-3
— +
ga"’ m g 2n-1

=1

gSanLZm- 21 BZm- 1 + S2n+2m- 2,2 BZm- 1.2-d;, ) = d nl? (9)
(4]

o]
where S, ; = a (Xj,i +ih; )'2' are lattice sums over cylinders of type i. Solving equation (9)
j*o
and using equations (4) and (5) we can obtain all the unknown coefficients and as result the
temperature functions. Since considering B, ;; (i :1,2) for a sufficiently large n has no
significant effect on the values of the temperature functions, in practice, the system of
equations (9) is truncated.

3. Determining the effective conductivity of the system

Based on Fourier's law, the effective conductivity of the system can be derived using the
following formula[11]:

(F)=-k,(NT) (10)

where(F ) = (/V,,, )(jdv and (NT) =1V, )O?ITdV are the average heat flux and

cell

temperature gradient over the unit cell, respectively. To proceed, let us decompose the
average heat flux as the following:

1 é\ N\ N\ U
F)=—eay dV F dv dv 11
< > Vcell gq ' Qz ' drn H ( )
whence
1- K xo 1- K, g 1
F)=—=N\T,dV 2 T,dV - — ANTdV 12
< > Voell Q\l ' * Vcell 2 ? Voell Qci ( )

where V,, V, and V,_ are the volumes of cylinders of type one and two and the matrix placed

in the unit cell, respectively. After performing the integrals (see appendix A), from equation
(12) we may find

(Fy= PP, PR ) (13

Taking into account that <NT> =i and V, =D, thefina result for the effective conductivity
from equations (13) and (10) can be given as

k., =1- 2p (Bl;L +B, )/b =1- 2f,9,A; +21,9,A, (14)
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As can be seen from equation (14), knowing B, and B,, is enough for obtaining the
effective conductivity of the system. The term 2p (B11 +B,, )/ b was produced because of the

presence of the inclusions in the matrix. It can be positive (impairing case), negative
(enhancing case) or equal to zero. For the case in which N types of cylinders are placed in the
unit cell, the effective conductivity of the system can be obtained using

K, =1- ZPg_ B, /Voell (15)

4. The effective conductivity for the perpendicular direction

For deriving the effective conductivity in this direction in order to make it similar with the
foregone relations, we rotate the system through an angle of a =p/2. If we follow the above-
mentioned procedures for the parallel direction, we get

B$,, S a@n+2m-3
— +
ga"’ m g 2n-1

=1

%Sngm- 21B% 1 + S$om 2B 10 dis ) =d,, (16)

where S ; are lattice sums over cylinders of type i in this new position. It can be proved that

S,,=(-1'S,, for I>1 and dlso S§, =2p/b- S,, (see Refs. [6] and [12]). The effective
conductivity of the system may be obtained using the similar formulaas (14), i.e.,

ke =1- 2p (B, +BG,)/b (17)

Since the composite under study is a 2-D structure, through a methodology (see appendix
B) we can show that the effective conductivity in the perpendicular direction has been linked
to that in the parallel direction using the well-know reciprocal theorem of Keller [13-15], i.e,,

Ko(ky K, 1) k@K, Vk, 1) =1 (18)

5. Explicit solutions

For low-volume fractions or when the conductivity of the cylinders is small, considering a
few numbers of B, ., and B, ,, in the process of solving (9) may yield reasonable results

forB,, and B, and as aresult, based on equation (14), for the effective conductivity. It is

more useful that, within these boundaries, we manage to derive an explicit relation for the
effective conductivity of the system. Based on the method used for truncating (for example
square or triangular manner) and on the number of the unknowns taken into account, one may
obtain different expressions. If we truncate equation (9) in a triangular manner and keep only
the coefficient B,; and B;; (i :1,2), we find
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B

i
l12 + 5,181, +S,,B,, +35,,B5, +35,,B;, =14
9,8 !
P4 45, B, +S,,B, =0 :
g af 41 P11 42012 T
; y (19)
g 221222 +S5,1B1, + 5,81, +35,,B5, +35,,B;, = 1':'
: i
326 +5,,B,,+S,,B,;, =0 ¢
9,a, b

Deriving B,, and B, , from the above equation and using equation (14), we can obtain the
effective conductivity of the system in an explicit relation, i.e.,

2f, 2f,

k, =1- i | (20)
(l 1| 2" XlXZ)/(I 2" Xz) (l 1| 2" XlXZ)/(I 1 Xl)
with
1
I = = +c f - cg,f* - Cls.4, fi fzs-'di2 (21)
X; =¢,f; - Cs(gi f +0,.4, f fzs-diz)’ (22)
where ¢, =S,.b/p, G, = 3(b/p )4 Sf;v G = 3(b/p )4 Sf,zi C, =S,,b/p and
¢; =3S,,S,,(b/p)*. One may leave the higher orders and obtain asimpler relation
K =1- 2. 2f (23)
Wi, WU
where
w =g, +c.f) g, +of,)- cifif, (24)
u; =Yg, +(C1' C4)fi (25)

For the case of uniform cylinders (fl =f,=f",0,=0, :g*) from equation (20), we obtain
the following formula:

2F

k=1' * * H
° " Yg'+F-dg'F*

(26)

where F = f, +f, =2f" is the total volume fraction and d, =3(b/p)*(S,, +S,,)*/16. We

have listed c,,...,c; for the case b= V3 in table 1, calculating highly accurate values for

lattice sums using integral representation technique [16]. For this case, d =0 as we expected
[6]. Note that equation (20) can also be applied for the perpendicular direction if we calculate
the coefficients for this direction. In table 1 we have a so reported these values.
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Table 1. The calculated values for c,,...,c. used in the analytical formula (20) for
determining the effective conductivity in the parallel and perpendicular directions for the case

b=43.

Parallel Perpendicular
o) 0.187018134 1.812981866
C, 1.310523128 1.310523128
C, 1.310523128 1.310523128
C, 1.812981866 0.187018134
Cs -1.310523128 -1.310523128

6. Resultsand discussions

Before starting the discussion on the results of the three-phase system, it is helpful to verify

the validity of the extension to the three-phase system.

Table 2. The calculated lattice sums over cylinders of type one (Sn l) and two (Sn,z) for the
case b =+/3 for n £ 40. The fourth column shows that the sum of these two lattice sums is

zeroforcases nt 2 and nt 6m(m=1,-- ¥).

n Sn,l Sn,2 Sn = Sn,l + Sn,z
2 0.3392133718630 3.2883853566054 3.6275987284684
4 2.1744038488973 | -2.1744038488973 0.0

6 | -2.0154171446150 -3.8476145488104 -5.8630316934253
8 | 2.0262994706141 -2.0262994706141 0.0

10 | -1.9919685438111 1.9919685438111 0.0

12 | 2.0041914554050 4.0054485162926 6.0096399716977
14 | -1.9990818777902 1.9990818777902 0.0

16 | 2.0003051627592 -2.0003051627592 0.0

18 | -1.9999213768630 | -3.9997969795075 -5.9997183563705
20 | 2.0000338688335 -2.0000338688335 0.0

22 | -1.9999887079801 1.9999887079801 0.0

24 | 2.0000041209456 4.0000075266341 6.0000116475798
26 | -1.9999987455894 1.9999987455894 0.0

28 | 2.0000004181529 -2.0000004181529 0.0

30 | -1.9999998662038 | -3.9999997212317 -5.9999995874356
32 | 2.0000000464611 -2.0000000464611 0.0

34 | -1.9999999845130 1.9999999845130 0.0

36 | 2.0000000052497 4.0000000103247 6.0000000155744
38 | -1.9999999982792 1.9999999982792 0.0

40 | 2.0000000005736 -2.0000000005736 0.0
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We perform a series of calculations for two-phase composites with uniform cylinders
arranged either in square (b :1) or hexagonal orders(b = \/1_3) and then compare the results
with those reported by Perrins et a. [6]. The two-phase cases can be constructed from the
three-phase one simply by applying f, = f, and k, =k,. For this purpose highly accurate
values for lattice sums over cylinders of type one and two were derived and equation (9)
(i=1,2) was solved numerically using LU decomposition method [17]. Taking into account
100 unknowns of B, ,, and B, ,, gives us a measure of obtaining accurate results for all
the volume fractions and conductivities considered (see Ref. [6]). Table 2 shows a part of the
calculated lattice sums used in the procedure of the solutions. In figure 2 the results are
compared for both the square and hexagonal arrays for the most challenging case, i.e., the
case of perfectly conducting cylinders. As can be seen for al the values of volume fractions,
the results of two studies are in excellent agreement.

60

Hexagonal array

Perrins et al. [6]
o Present

50

40

Square array

30

20

10

0.2 0.4 0.6 0.8 1

Figure 2. The effective conductivity of two-phase composites with mono-sized perfectly
conducting circular cylinders arranged in square and hexagonal orders. F shows the volume
fraction of the cylinders. The solid lines are the results of Perrins et al. [6] and the dotted lines
are those obtained by solving the governing equations of the three-phase composites.

Figure 3 shows a typical result for the effective conductivity of the system for both the
parallel and perpendicular directions. The volume fractionsare f, =0.4 and f, = 0.4, and the

periodicity in the x-direction was supposed to be b = /3 . For derivi ng the conductivity of the
system in the perpendicular direction we can either solve equation (16) and apply equation
(17) or, aternatively, use the Keller theorem for this purpose. Through a careful examination
of this figure, it appears that increasing or decreasing the conductivity of the both types of
cylinders may enhance or diminish the conductivity of the system, respectively, which is
obvious and remains correct for both directions. Furthermore, the system demonstrates higher
effective conductivity in the perpendicular direction. This behavior is a consequence of the



10 To be published in Journal of Physics D: Applied Physics

rectangular shape of the unit cell which provides a more (less) important role for the cylinders
with lower conductivity in the parallel (perpendicular) direction.

Parallel
- Perpendicular

[EnY

o
3

Iog10 K,
o

)
o1

'
[y

=
ul

’\)\\\\'\\\\'\\\\'\\V\|\\\\|\\\\|\

'
N

Figure 3. The contours of the effective conductivity in the parallel and perpendicular
directions for the case of equal sized cylinders. f, =0.4, f, =0.4 and b= J3.

Interestingly, for the case of mono-sized cylinders with k, =¥ and k, =0, increasing the
volume fraction of the cylinders causes the conductivity of the system to approach zero in the
paralel direction and approach infinity in the perpendicular direction (see table 3). When
perfectly insulating cylinders touch each other, they form a barrier which prevents heat flow
in the parallel direction (Note that for the case of spherical inclusions this behavior does not
hold true since heat can pass through the gaps between spheres). This behavior can also be
observed for all systems for which b >1. For the case b =1, however, the system is isotropic
and the same results can be expected for both directions. For this case, the same type
cylinders are not able to touch each other and a limited value for the effective conductivity of
the system can be expected. Surprisingly, we found that the effective conductivity of the
system is simply a unity. This result can be confirmed using the Keller theorem as follows:
Since the system is isotropic and interchange between the materia of the cylinders keeps the
system unchanged, using equation (18) we can get

ko (k VK 1) ke(k kD) =k (k ykD) k. (kVk 1) =1 (27)
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Table 3. The effective conductivity in the parallel and perpendicular directions, with respect
to the total volume fraction (F). The cylinders are mono-sized, k; =0, k, =¥ and b= V3
(b>1).

F K, k¢
0.1 0.983871 1.01639
0.2 0.937008 1.06723
0.3 0.863599 1.15794
0.4 0.769417 1.29969
0.5 0.660207 1.51468
0.6 0.539863 1.85232
0.7 0.408730 2.44660
0.8 0.261159 3.82908
0.9 3E-7 19.253

p / (2\/1—3) 0 )

Considering k =0 proves our case. Sculgasser [18] has shown that in a three-phase system
with interchangeabl e phases (see figure 4), when one of the phases has conductivity equal to k
and the two remaining phases are perfectly conducting and non-conducting, the effective
conductivity of the system is k. From the above results, it is clear that it is not necessary for
the first phase to be interchangeable, and it can simply be a matrix.

Figure 4. The three-phase structure investigated by Schulgasser et al. [18]. All the phases are
interchangeable.

For the case b=1 with non-equal sized cylinders, if f, E%(\/E 1)2, f,q can be

i2

increased freely to the touching value limit and the effective conductivity of the system can
approach infinity or zero, depending on the conductivity of the touching cylinders.
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Figure 5 shows the results of the effective conductivity for a system with a lower total
volume fraction, i.e.,, f,=0.4 andf, =0.2. b as before is equa to V3. Comparing with
figure 4 we can see that the case k, =k, =1 is the only situation in which both systems for
the given conductivities present the same effective conductivity. In this situation g, =g, =0,
which leadsto B, =B,, =0, and asaresult, k, =1. Figures 3 and 5 also show that having

cylinders with conductivities equal to the conductivity of the matrix is not the only condition
for the effective conductivity to be equal to the conductivity of the matrix. In fact, this case is
aspecia state of the following general situation:

Bl,l + Bl,2 = flglAi,l + f292Ai,2 = O (28)

The importance of the situation k, =k, =1 (B;; =B, =0) is that it is independent of the
values of f,, f, and b, and for all theses situations, we would find that k, =1, which is
physically obvious. This behavior does not hold for the other values of the conductivities.

N

- ‘\ Parallel
r )| --- Perpendicular
15 ‘
r 1.0
1
05F
XN :
8 of
- 04
05 ST
1 :_
15F
2 [ !
2

Figure 5. The contours of the effective conductivity in the parallel and perpendicular
directions for the case of unequal sized cylinders. f, =0.4, f, =0.2 and b= J3.

7. Conclusion

The effective conductivity of three-phase composites with circular cylindrical inclusionsin a
periodic arrangement was derived by extending a method put forwarded by Lord Rayleigh
[1]. Considering the recent development in the fast and accurate calculation of lattice sums
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[16,19], such an extension can be used efficiently for calculating the conductivity of the
system. A study of the bahvior of the composites revealed that they may exhibit unexpected
results in particular states. The structure considered in this study was an idea one, but the
results can be useful for understanding the interplay between microstructures and the effective
property of real multi-phase fiber composites and specificaly those which can be
approximated with the use of periodic structures and circular cylindrical inclusions. Also, the
results provide a helpful resource in the process of testing and developing well-known
classica numerica methods such as the boundary element method [20] or other proposed
schemes in calculating the effective conductivity of multi-phase composite materials.
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Appendix A

We would like to calculate the following term:

(S), =—— (‘)imdv (A-1)

cell

<

By using Green’sfirst identity [21], the above relation becomes

(s) =25 X nds, (A-2)

cell

where s, is the surface of the cylinder of type i in the unit cell and n expresses the unit

outward normal vector to the surface. Taking into account the temperature function given in
equation (1) and after using the orthogonality properties of trigonometric functions, we can
obtain

kW  pai-k). 2B,
<S>| = ﬁ '2C1,i C032q dq i :M Cl,i | = ﬁ| (A_3)
Vcell Vcell Vcell

Appendix B

Here extending the procedure given by Perrins et al. [6] we prove Keller’'s theorem for the
system under study as follows: Considering that reversing the conductivity of the phases only

makes the sign of G (i =1,2) negative and applying the mentioned property of lattice sumsin
section 4, from equation (16), we may write

(- 1)”85%_1I 3 aéZn+2m 32(
MT on-1 2n+2m21

m=1

Bg:m 1 (' 1)m Soneam 2.2 Bgn-l,Z-diz):
- 20(BG +BG.y, )bldy (B

Using equation (17) and comparing the above relation with equation (9), we find that

B§n_ - = (' 1)n B2n-li (B'Z)
kg(Vk, Yk, 1) |

Writing the above relation for n =1 and using again equation (17) we have

k¢ (]/ki ’]/kz ’1) =1+2p (Bl,l + Bl,2) k¢ (]/kl ’]/kz J-)/b (B-3)
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Applying equation (14) gives

ko(ki k; 1) kg(1/k, Yk, 1) =1

(B-4)
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Multi-phase systems, which consist of inclusions of Since the problem of calculating dielectric constant igo
different shapes and properties embedded in a matrix, mathematically identical to that of calculating thermak:
can be found in a wide range of practical processes andor electrical conductivity§,7], similar results can be s2
are of considerable technological importance. Start- expected. 83
ing with the work of Maxwell [[] and Rayleigh 2], Most studies have assumed that the interface ®B
who considered the problem of calculating the effec- ideal, but the interfacial resistance may occur dues
tive conductivity of two-phase systems composed of to a variety of phenomena], such as the presencess
spheres and cylinders, McPhedran later extended theof a thin gap with a third material between thes?
discussion to three-phase composites having the CsClinclusions and the matrix9] and disparity in the ss
structures 3]. More recently, Whites et al.4[5], in physical properties1[0] (Kapitza resistance). Taking so
the context of the dielectric constant, have developed this effect into account is very important, since theo
a formulation for the efficient numerical calculation effective conductivity may change significantly, ande1
of the effective property of multi-phase composites. a system with conducting inclusions may behave likez
one that has non-conducting inclusions. 93

Chiew [8] showed that for composite materials withoa

~* Corresponding author. a random array of uniform spherical inclusions, theres
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Fig. 1. The structure of the three-phase composite under study.

not sense the presence of the inclusions. Studies into

the behavior of composites that consist of periodic
arrays of uniform spheresl],1] and random and
periodic arrays of uniform cylinderd B,14 revealed
that for all these cases a critical situation arises if
the non-dimensional interfacial resistance between the
inclusions and the matrix is equal to the relative
conductivity of the inclusions minus one.

Here, we extend the discussion to multi-phase com-
posite materials. In order to simplify the presenta-
tion, let us consider a three-phase system that con-
sists of a matrix and two types of circular cylindri-
cal inclusions that are arranged in rectangular order
with periodicities equal to a unity in the-direction
and b in the x-direction, as depicted ifrig. 1 Let
us assume that a uniform field of magnituklg: has
been applied along the-axis in the negative direc-
tion. At the surface of any cylinder of typei = 1, 2),
we may consider a dimensionless interfacial resis-
tance [L5], R;, and express the boundary conditions
as follows:

(T; — T,n) g 2T
;i — = —K,— = — . }":a',
Riai ! " ’Br '

@

wherea and k represent the radius and the relative
conductivity of cylinders, respectively’ shows the
temperature function ana refers to the matrix. Us-
ing the Rayleigh method for the purpose of solving the
Laplace equation through the system provides a sys-
tem of algebraic equations in which théh equation

(n=1,...,00) of the setreads 49
50
B, 1 N (2n+2m — 3 51

i 4n—-2 + Z 2 1
Yon—1%i m=1 n = 52
sk B! 52 B2 %2) = >
X ( 2n2m—2Bom—_11t 32 1om—2 2m—1) =Eextbn1, 54
(2) s

whereBéﬂi1 are unknownsSén are the lattice sums ¢
[1] over cylinders of type, §;; represents the Kro-
necker delta (1 foi = j, otherwise 0) and/} ,, %
which can be referred to as multipolar polarizabilities®®

are of the form &0
61

; 1-k+Ri(2n—-1
yi_i= f+ f( n-1) @) e
1+ki+Ri(2n—1) 63
By applying the Fourier law, the effective conduc-64
tivity of the system can be derived as follows: 65
27 (B} + B? >
ko=1— M 4
b Eext 68

or more generally, for the case Mtypes of cylinders ©°
in the unit cell ask, =1 — 2n Z 1 1/(bEex0 The 7
values of B} and 32 can be obtained numerically by "
solving the algebralc system of equations give(dy "2
however, coarsely truncatin@), we may explicitly
derive these values. If we perform a triangular trunf*
cation of the second order @) and use the resultants 7
Bl andB? in (4), we can obtain an analytical relation ”®
for the effectlve conductivity, which can be applied to”’
low-volume fractions, i.e.,

73

78
79

2
2f 80
=13 . .
= (Mido—s;, = §i2-51) (A2-5,2 — E2-5;)
1= 82
(5) 83
with
84
1 . 5
M= tafi —cavhft—cavs P fifd s, (6)
yl 86
[ 2—5,‘ 87
G=cafi—cs(3f+vs 2ifss,) M)

where f; denotes the volume fraction of cylindersse
of type i. The constants for the cage= /3 for 9%
deriving the effective conductivity in the-(parallel) o1
and y-(perpendicular) directions are listedTable 1, 92
calculating highly accurate values for the lattice sums3
using integral representation techniq@é][ 94

Fig. 2 shows the results for the effective conduc<s
tivity in the presence of the interfacial resistance. Thes
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Table 1
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The calculated values forq, ..., cg used in the analytical for-

mula (5) for determining the effective conductivity in the parallel

and perpendicular directions for the cdse +/3

Parallel Perpendicular
c1 0.187018134 B12981866
c2 1.310523128 1B10523128
c3 1.310523128 B10523128
ca 1.812981866 (87018134
c5 —1.310523128 —1.310523128

0 1
C 0.4 | Parallel
r | - Perpendicular
-0.5 - 1.0 !
4k ) N
<150
& 2
C o4 |
25F T T \
-3 \
- | |
35 \ : :
C ! | : 25
4 L. | I R . [ ll L1
-4 3 -2 1 0
log ,, (I/R))

Fig. 2. The contours of the effective conductivity with respect to the

interfacial resistance of the cylinderg, = 0.4, fo =0.2,k1 = 101,

kp = 101 andb = /3. As can be seen for the cases in which the
interfacial resistances are very large, the effective conductivity of
the system is less than the conductivity of the phasesk(sed).4).

= 0, the system is subject to situations in whichs
the effect of the inclusions can be neglectéd£1 5o
in Fig. 2). Of these states, the cagé = B2 =0is of st
particular interest. This case occurswhgn=k; —1 52
(i =1,2), and as a result based &iw). (3)the dipole s3
polarizabilities(yll, yf) are zero. Obtaining a value of 54
zero for the dipole polarizabilities means that the state
of the system resembles that of a system of perfect ims
terfaces which is made up of cylinders the conductivity?
of which is equal to a unity. Therefore, we may expects
that the effective conductivity would be independente
of the volume fractions and the direction of the calcuso
lation of the effective conductivity. 61

While the effect of both types of cylinders can bes2
exactly neglected whe®; = k; — 1 (i =1,2), in 63
general the effect of the inclusions of typgi =1 &4
or 2) cannot be neglected when onkf = k; — 1. 65
In other words, systems with; = 1, R; =0 (two- 66
phase system) and, R; = k; — 1 (three-phase sys- 67
tem) are not equivalent wheRo_s, # ko5, — 1. 68
Although for both casesB! is zero and the effec- 62
tive conductivity can be calculated simply by usingro
ke=1-— Zan_‘S"z/(bEext) but for the imperfect in- 7
terface case, the termg, , (n > 1) are not zero "
and are present in the procedure of the calculation é?
BZ72, as is evident irEq. (2) For the perfect inter- "
face case, all the terms @"énfl (n > 1) are zero and ;Z

do not affect the value oBf"S"z. This means that the .,
field distributions inside the matrix for the two- andg
three-phase systems may be dissimilar. The degree gf
discrepancy can only be numerically determined ang}
depends on the geometrical considerations, resistange
and conductivity of the inclusionBig. 3shows a com- ¢,

This is because under these conditions the cylinders act as cylinders parison between the effective conductivity of the twaq,

the conductivity of which is less than that of the matrix.

volume fractions aref; = 0.4 and f> = 0.2, the con-
ductivities of the cylinders were assumed toihe=
101, k2 = 101, and the periodicity in the parallel di-
rection isb = +/3. The effective conductivity was de-
rived numerically by solvingeq. (2)and then applying
Eq. (4) 100 unknowns oB} | (i = 1,2) were con-

systems for a series of given data. As can been segp,
the results for the three-phase system underestimate
the conductivity of the two-phase system. The reasof
can be understood when considering that for the threg;
phase casgzz"n_1 > 0 (n > 1), while for the two-phase g
one they are zero. Increasinf increases the error, g
since the higher-order terms play an important rolg,
in the response of the system. In the dilute limit, thg,

sidered in the process of the solution. As can be seen,SYStems can be used equivalently. This is also evidegt

the effective conductivity of the system can be highly
affected, and based on the valuesmif and R, the
system may yield a conductivity outside the limit of
the conductivity of the phases. Providing tlﬁ% +

'from Eq. (5) as ignoring the higher orders for the case,
Vl =0givesk, =1—-2f>_ 512/(1+61y %2y which o4
is the conductivity of the system, which neglects thes
effect of the type-inclusions. 96



© 00 N oo g B W N P

A B A A B B A D D WOW W W W W WWWWNNRNDNNRNDNDNNRNDNERERPR B P B o
® N O 00 R W N B O © ©® N o 008 ®N P O © © N 0 0 5 ®WN P O © ® N O 00~ W KN B O

4 A. Moosavi, P. Sarkomaa / Physics Letters A eee (e0ee) soo—eee

E . 100

f — ™/ —— . jl - 49

2 — L
L ~— 045 L 50
T " oa 95 - 51
1.8 B 52
[ i 53
k 16 —_ . 0.3 90 54
¢ L Three-phase [ 55
L Two-phase R, . 56

B 0.2 .
145 851 57
: - 5
(b o1 sl 59
L r 60
I 0.025 B 61
r 75— 62

L [ T S N B S RN SR B T I L | | | | |
O 0.1 0.2 0.3 0.4 0.5 L1 Il I Il I Il I Il Ll Il Il I 63
f 0 1 2 3 4 5 6

2 lng R 64

65

Fig. 3. The effective conductivity of the two- and three-phase Fig. 4. The calculated value foRy, in which the effect of g

systems. For the three-phase systéjms 101,k = 101, Ry = 10, the type-two cylinders can be neglectefi. = 0.45, f> = 0.45,
Ry = kp — 1 =100 andb = +/3. The two-phase system consists of

. v ; ) k1 =101,ky = 101 andb = /3.
the matrix and type-one cylinders with the same properties as those 68
given in the three-phase case.

67

69

considered in this study was composed of circulay,
By reducingR; from the valuek; — 1, we may cylinders in a periodic arrangement, but when the,
obtain a situation in which the three-phase system results givenin Refsl[l-14are considered, a similar ,,

exactly gives the effective conductivity of the two- ©Outcome can be expected for the case of randor
phase one. The expectation of finding such a situation arrangements as well as for that of spherical inclusiong

stems from the fact that cylinders the conductivity (randomand periodic). 75
of which is greater than that of the matrix, boost 76
the conductivity of the systentig. 4 reports such 77
an interfacial resistance for type-two cylinders as Acknowledgements 78
a function of the interfacial resistance of type-one 79
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cylinders for another series of given data. As can be
seen, only whemy = k3 — 1, we getRo = ko — 1.
For the case ofV types of cylinders in the unit

cell, by extending=gs. (2) and (4)it can be shown  Publication. 83
that whenR; =k — 1 (i =1,...,N), the effect 84
of all types of cylinders can be neglected and the 85
system simply behaves like a homogeneous systemReferences 86
with the conductivity of the matrix. In other cases, the 87

resistance, in which the effect of typeylindersin the
direction of the calculation the effective conductivity
can be neglected, may be estimatedy k; — 1.

In summary, the effective conductivity of a multi-
phase composite material that is made up of a periodic
structure in the presence of the interfacial resistance
was studied. The situations in which the effect of one
or all types of cylinders can be neglected due to the
interfacial resistance were explained. The structure
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Abstract

This paper reports a series of investigations into the effective transport properties of
composite materials with coated inclusions. The geometry of the inclusions under
study are circular cylindrical, eliptical cylindrical and spherical. The method we use
for this study extends the theorems or exact solutions given for two-phase systems. It
is shown that only in afew cases coated composites exhibit the same behavior.
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1. Introduction

Determining the response of composite systems to an imposed field has long been
of interest from both the theoretical and applied standpoints. The problem arises when
studying a variety of phenomena in physics [1-3], mathematics [4,5], biology [6] and
engineering [7]. In many cases it is necessary to coat the inclusions; one such case is
for the purpose of increasing the wettability and adhesion of the inclusions and the
matrix. When the enhancing effect of the inclusions is not sufficient, a coating layer
may modify the behaviour of the system. For protection from chemical reactions, a
suitable coating layer can aso be applied. In some cases, the coating layer is
unwanted but occurs because of many problems in the production processes. For
instance, due to a mismatch in thermal expansion, a coating layer with athird material
may appear between the inclusions and the matrix. In some cases, modelling a system
as a coated one may provide reasonable results, even though the system is not exactly
coated. This is the case for wet wood for which the moisture is considered to be a
coating layer. Therefore, extending the formulations to coated systems and inspecting
behavior of these systems may have many implications.

In this research, we consider coated composite systems and inspect some of the
behaviour of these systems. The formulations have been given in the context of
dielectric constant for greater generality [8].

2. Analysis

Consider a statistically homogeneous composite material that consists of a random
array of cylinders with arbitrary cross-sections embedded in a host medium. The
dielectric constants of the layers are e, (i = 1,2) where i =1 stands for the core and i=2

for the matrix. Mendelson [9] has shown that Keller’s reciprocal theorem [10] isvalid
for the system. Therefore we can write the following :

el (e1.e,) e (Ve 1/e,) =1 (1)

whereey and e} are the effective dielectric constants in the direction of the

principal axes x and y, respectively. The mathematical basis for the proof of this
behaviour is the observation that any two-dimensional divergence-free field, when
rotated locally at each point by 90°, produces a curl-free field and vice versa [11]. If
we develop this result to multiply coated systems we obtain

ee)z(ff(el""’eN), ee);f(]/el""’]/eN):l @)

where N stands for the matrix(see also Lu [12] and Fel et a. [13]). Considering the
following general rule

e (alel,...,aleI ,...,aNeN):aleeyff (alllel,...,eI ,...,aN’,eN) (3)

where a, ; =a, /a; , we may aso derive



€ (el"" En ), Cer (ezes"’eN €183 8y .., 818, "'eN-l) =€, €y (4)
If the medium is statistically isotropic, relation (2) can be rewritten as

eeff(el""’eN), eeff(]/el""’]/eN)zl (5

The behaviour expressed in Eq. (2) and the resultant relations adhere to the
following general facts that can be applied to any coated composites. When one layer
is perfectly insulating or conducting, the layers under this layer will have no affect in
the transport property of the system. Secondly, if two layers have the same dielectric
constant, they can be considered to be a unit layer.

For composites consisting of a random array of singly coated circular cylinders,
Nicorovici et al. [14] proved that, by coating the cores with the material of the core or
its negative, the same effective dielectric constant may be achieved. This behaviour
can be formulated as

x , 1 _
ek (e e..e,) m =1 (6)

, 1
e (e..e.e,) m =1 (7)

Our attempt [15] to extend the results to multiply coated cylinders showed that
coating the cores with a series of layers, which have the same property as the core or
its negative, may yield the same response to the applied field. For example, the
following doubly coated systems al have exactly the same dielectric constant:

€,,6,,6,,6,
€,-6,.,6,6 (8)
€66,
€,,-6,6,8
This means that
ee)z(ff (el’el"“’el’eZ), ! =1 9)
Eai (el A€, ’ieliez)
e;f (el’el"” ’el’eZ), ! =1 (10)
ee);f (el Ee ’ieliez)
Using relation (2) we may also find that
egﬁ (el’el’”' ’el!ez), e;f (]/el ’i]/el e ’i]/el ’]/ez) =1 (11)

The proof of the behaviour outlined in Egs. (9) and (10) is different from that
given for Egs. (1) and (2) and is based on deriving the effective dielectric constant of



the system. Herein, we briefly explain the method for the composites with square
array of multiply coated circular cylinders. The effective dielectric constant of the

system can be calculated using e, =1- 2pB/" which isthe result of Green's theorem

[16]. B, is an unknown that can be obtained by solving the following set of linear
equations [17]:

(2n+2m- 3): _
Xn.1Bon1 + 2_1 (2m- 2)! (2n i 1)! Spneom 2Bom1 =y (12)

where d , represents the Kronecker delta (1 for n=1, otherwise 0), S, are the lattice

sums [16,17] and a istheradius of layer i. The coefficients x,' , can be obtained by

successively applying the following procedure which is the result of implementing the
boundary conditions between the layers.

(ei B e'—l)+(ei +ei—l é_n:—LlalzTL_z 4 1

|
i-1 44n-2 4n- 2
(ei +ei—1)+(ei - € Xon @iy &,

(13)

i
X2n—l

For al the cases given in (8), reation (13) can be reduced to

x 1 =(e, +e,)/|(e, - &)a"?| which is exactly equal to that given for solid

cylinders of radius a,. Since the other parameters remain unchanged, al the cases

yield the same B, and, as a result, the same dielectric constant can be expected for all

of them. We have numericaly verified the above theorems. Our numerical
investigations show that it is not necessary for the system to be composed only of
coated cylinders. Other geometries, which do not interrupt coated cylinders, can also
be included in the system.

The above bring up the question as to whether one can expect the same behaviour
for al composites with cylindrical inclusions. Among a few potential geometries for
analytical inspection, we rather consider elliptical inhomogenities [18] since the
solution is given based on the Rayleigh method. Because of the anisotropy, we are
concerned with two series of relationsfor x , i.e.

X2 = 92C0§1(nn1)+elsinh(nnl), 1 (14)
" (ez } el)Si nh(znm) (C/Z)2n e
)2 = e,cosh(nm ) +e,sinh(nm ). 1 )

e, - e)snh(2om)  (¢/2)"e™

where (mgq) are eliptic cylindrical coordinates and c is the distance between the two

foci. Here we develop the solution to a multiply coated system. The results can be
expressed as



w_ €"Mle - )+ 2¢(c/2)" [ecosh(nm., ) + e sinh(nm., )

T 2e nn“[eiSinh(”m.l)+ei.1003h(”m.1)]+ 3‘#?5(0/2)2”9”“(2”“1)(% - ei—l)
1
(16)
o el - )+ 2202 fesnh(m.,) e, cosh(rm )
X" = -
" 26 ™ e cosh(m.) +e,sinh{om,, ]+ 2,1 (e/2) sn(zm . - e,.)
1
(17)

Using the relations lim ce” /2=a and lim ce ™ /2=0, one can show that in the
m® ¥ m® ¥

limit, both x*' and x ' will be reduced exactly to the corresponding relation given

for circular cylinders (i.ee Eg. (13)). But substituting the relations

e =-e_,(i=2,--,N- 1) for an arbitrary c and n does not reduce x*' and x' to

the shape of the formulations given for a two-phase system (i.e. Egs. (14) and (15)).
Therefore, the above-mentioned behaviour for circular cylinders cannot be applied
for al coated composites with cylindrical inclusions. In figures 1 (a, b) this fact has
been verified. As can be seen, changing the dielectric constant of the coating layer
from e, =e, to e, =-¢, dters the field through the matrix. The equivalent system

for the case e, = - e, can only be numerically determined.

|||||||||||||||||

0.22 - 1011 0.89
L

|||||||||||||||||

0.11
I

Fig. 1. The equipotential contours inside the unit cell of a system composed of singly
coated elliptical cylinders. A potential gradient of unit magnitude was applied
externally along the x-axis and other external boundaries were insulated. (a) e, = e,

(b) e, =-¢e,.



Now we consider composites with coated spherical inclusions. The behavior given
in Eq. (2) isnot valid for these composites [19]. Also, it has been shown that relations
(6) and (7) are not applicable for composites with spherical inclusions [14]. The
equivalent system again can only be numerically determined. However, in the dilute
limit, where we can assume that there is no interaction between the spheres,
casese, =-0.5e;, and e, =e, give the same response to the applied field. If we
develop the solution given for the solid spheres [20] to multiply coated spheres, the
corresponding x| can be obtained as

xioo= 2n(ei - ei-1)+X;j1[(2n' 1)ei-1 +2nei]aﬁnl-1 .1
" [Znei-l +(2n' 1)ei]+xé;w%1(2n' 1)(ei B ei-l)aﬂ_l aﬁnl_l

(19)

By substituting e, =-0.5e,, (i =3,--,N- 1) for n=1in Eq. (19) one can show that
the above-mentioned behaviour for composites with singly coated spherical inclusions
cannot be extended to multiply coated spheres. We also argue that applying the above
conditions for multiply coated systems means that, for infinitely coated layers, the
property of the outermost coating layer tends to be zero. As mentioned before, this
layer has the property of impeding the effects of the other coating layers in the
dielectric constant of the system. Therefore, the dielectric constant of the system
cannot be equal to that of a system consisting of spheres with the property of the core.

3. Conclusion

The behaviour of coated composites in a viewpoint can be divided into two main
groups of which one is applicable to every coated system and the other to those which
are valid just for one or a series of coated systems. The restrictions in the behaviour
outlined in this research were the dimension, concentration and geometry.
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