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An Iterative Bayesian Algorithm for Sparse
Component Analysis (SCA) in Presence of Noise
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Abstract—We present a Bayesian approach for Sparse Compo-
nent Analysis (SCA) in the noisy case. The algorithm is essentially
a method for obtaining sufficiently sparse solutions of under-
determined systems of linear equations with additive Gaussian
noise. In general, an under-determined system of linear equations
has infinitely many solutions. However, it has been shown that
sufficiently sparse solutions can be uniquely identified. Our main
objective is to find this unique solution. Our method is based on a
novel estimation of source parameters and Maximum A Posteriori
(MAP) estimation of sources. To tackle the great complexity of
the MAP algorithm (when the number of sources and mixtures
become large), we propose an Iterative Bayesian Algorithm
(IBA). This IBA algorithm is based on the MAP estimation of
sources, too, but optimized with a steepest-ascent method. The
convergence analysis of the IBA algorithm and its convergence to
true global maximum are also proved. Simulation results show
that the performance achieved by the IBA algorithm is among
the best, while its complexity is rather high in comparison to
other algorithms. Simulation results also show the low sensitivity
of the IBA algorithm to its simulation parameters.

Index Terms-Sparse component analysis, sparse decomposition,
atomic decomposition, sparse source separation, blind source
separation.

I. INTRODUCTION

Finding (sufficiently) sparse solutions of under-determined
systems of linear equations (possibly in the noisy case) has
been studied extensively in recent years [1], [2], [3], [4], [5],
[6], [7]. The problem has a growing range of applications
in signal processing. To introduce the problem in more de-
tails, we will use the context of Sparse Component Analysis
(SCA) [8]. The discussions, however, may be easily followed
in other contexts of application, for example, in finding
a ‘sparse decomposition’ of a signal on an overcomplete
dictionary, which is the goal of the so-called overcomplete
‘atomic decomposition’ [9]. Sparse representations are well
suited for content analysis, i.e., extracting structure or meaning
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of a signal [10]. They may also be applied to signal com-
pression applications to facilitate the storage, processing and
communication of signals [11]. Another application of sparse
decomposition is related to its denoising capability [12], [13].
Recently, interesting applications in decoding of real error
correcting codes have been reported [14], [15], [16]. Also,
some applications in the sampling theory have been initiated
which can be regarded as unifying the sampling and the coding
theories [17], [18].

SCA can be viewed as a method to achieve separation
of sparse sources [3], [6], [7], [8], [19], [20]. The Blind
Source Separation (BSS) problem is to recover m unknown
sources from n observed mixtures of them, where little or
no information is available about the sources (except their
statistical independence) and about the mixing system. In this
paper, we consider the noisy linear instantaneous model at
each instant:

x = As + n (1)

where x, s and n are n × 1, m × 1 and n × 1 vectors of
sources, mixtures and white Gaussian noises, respectively, and
A is the n×m mixing matrix. In the under-determined case
(m > n), estimating the mixing matrix is not sufficient to
recover the sources, since the mixing matrix is not invertible.
Then it appears that the estimation of sources requires other
prior information on the sources. One prior information that
can result in source recovery in under-determined case is the
sparsity of sources. The sparsity of a source vector means that
almost all its entries are zero (or near zero) and only a few en-
tries are nonzero. If we restrict ourselves to sufficiently sparse
solutions of the under-determined system of linear equations,
it has been shown that the solution is unique [1], [2], [21].

SCA can be solved in two steps: first estimating the mixing
matrix, and then estimating the sources. The first step may be
accomplished by means of clustering [3], [22] or other meth-
ods [6], [7]. The second step requires finding the sparse solu-
tion of (1) assuming A to be known [23], [24], [25], [26], [27].
Finally, some methods estimate the mixing matrix and sources
simultaneously [5], [20]. In this paper, we focus on the source
estimation, assuming A is already known.

Atomic decomposition [9] is another viewpoint to the same
mathematical problem as above. In this viewpoint, we have
just ‘one’ signal whose samples are collected in the m × 1
signal vector x and the objective is to express it as a linear
combination of a set of predetermined signals where their
samples are collected in vectors {ai}m

i=1. After [28], the ai’s
are called atoms and they collectively form a dictionary over
which the signal is to be decomposed. In this paper, we also
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consider an additive noise term in the decomposition. So we
can write x = As+n, where A is the n×m dictionary (matrix)
with the columns being the atoms and s is the m × 1 vector
of coefficients. The vector n can be interpreted either as the
noisy term of the original signal that we intend to decompose
(the term that is not in the span of our dictionary) or as
the allowed error for the decomposition process. A dictionary
with m > n atoms is called overcomplete. It is clear that the
representation of a signal on an overcomplete dictionary is not
unique. However, as above, if a signal has a sufficiently sparse
representation over such a dictionary, it would be unique under
some mild conditions on the dictionary [4].

To obtain the sparse solution of (1), an approach is to search
for solutions having minimum `0-norm, i.e. minimum number
of nonzero components. This method is computationally in-
tractable when the dimension increases (due to the need for a
combinatorial search), and it is too sensitive to noise (because
any small amount of noise completely change the `0-norm
of a vector). Then, one of the most successful approaches of
finding the sparse solution is Basis Pursuit (BP) [9], which
achieves a convexification of the problem by replacing the
`0-norm with an `1-norm. In other words, BP proposes to
find the solution of (1) for which

∑m
i=1 |si| is minimized.

The minimum `1-norm solution is also the MAP source
estimation under Laplacian source prior for the noiseless case
[29]. As a main benefit, it can be easily implemented by
Linear Programming (LP) methods (especially fast interior-
point LP solvers). Recently, a fast method called smoothed-
`0 method was proposed to minimize a smoothed approxima-
tion of the `0-norm [25], [26]. The FOCal Underdetermined
System Solver (FOCUSS) uses `p-norm as a replacement
for the `0-norm and a Lagrange multiplier method for the
optimization [21]. Other simple approaches are Matching-
Pursuit (MP) [28], [30] and Orthogonal Matching Pursuit
(OMP) [31] algorithms. Another refined algorithm is the stage-
wise Orthogonal Matching Pursuit (stOMP) [32]. Recently, a
fast iterative detection-estimation algorithm was used to solve
this problem [23]. Moreover, Bayesian approaches have been
proposed: Sparse Bayesian Learning (SBL) [33] and recently,
Bayesian Compressive Sensing (BCS) [34]. Finally, sparse
reconstruction are possible using some new gradient methods
like Gradient Pursuits [35] and Gradient Projection [36].

Among available methods for sparse decomposition, the
fast methods (e.g. MP) usually don’t produce accurate results,
while BP which is guaranteed to asymptotically obtain the
exact minimum `0-norm solution will become computationally
demanding for large dimensions. With regard to the new
applications of this area in decoding [14] or de-noising [12] in
which the performance of the algorithm in presence of noise is
very important, finding a new algorithm with a better accuracy
is a necessity. In this paper, our main concern is in this way.

In our algorithm, we first proposed a 3-step (sub-)optimum
(in the MAP sense) method for SCA in the noisy under-
determined case for Bernoulli-Gaussian (BG) sources. It has
the drawback of large complexity which is not tractable when
there are many sources and mixtures. To tackle the great
complexity, an iterative method for MAP estimation of sources
is presented. This leads to a more efficient algorithm, which

is again a 3-step iterative Bayesian algorithm, among which
two steps are expectation and maximization steps. These
steps resemble the classical EM algorithm [37] which is also
successfully used in [38].

BG sources is a usual model in the field of deconvolution,
which is reviewed by Mendel in [39], and it was used
especially in seismic deconvolution [39], [40], [41], [42], [43].
Using `1-norm to find sparse solutions of linear systems of
equations can also be traced back to Taylor et al. [40] in this
field. The relaxation of the discrete nature of BG processes
by using a Gaussian mixture model has been considered in
[43], based on a cost function with a weighting parameter. The
authors used an EM algorithm for estimating their parameters,
with a heuristic method for choosing the weighting parameter.
In contrast, our work is originated from a MAP algorithm
and the treatment is totally Bayesian and the cost function
is dependent on the statistical parameters. We also used
iterative Bayesian techniques to estimate all the unknowns in a
rather unified way. So, the global algorithm resembles an EM
algorithm, while we used some other Bayesian techniques for
parameter estimation.

Our approach can be categorized as a Bayesian method for
SCA [5], [20], [45] which is efficient for large number of
sources and mixtures.

The paper starts with the statement of the system model
in Section II. Then, a MAP solution is proposed in Section
III. Based on this algorithm, we develop the new Iterative
Bayesian Algorithm (IBA) in Section IV. Section V provides
proof of convergence of the proposed IBA algorithm. Finally,
we present some simulation results in Section VI.

II. SYSTEM MODEL

The noise vector in the model (1) is assumed zero-mean
Gaussian with a covariance matrix σ2

nI. For modeling the
sparse sources, we assumed the sources are inactive with
probability p, and are active with probability 1 − p (sparsity
of sources implies that p is near 1). In the inactive case, the
value of sources is zero and in the active case the value
is obtained from a Gaussian distribution. This is called a
Bernoulli-Gaussian model. The BG model is a realistic model
in the sparse deconvolution applications and it has been
extensively used in this literature [39], [40], [41], [42], [43].
This model has also been used in [16] for simultaneously
modeling the impulse and background noise in a real-field
channel coding system. It is also used to model the impulse
noise in a communication channel [46], or the sparse vector
in an application of regression [47]. This model is also
suitable for sparse decomposition applications where we want
to decompose a signal as a combination of only a few atoms
of the dictionary, while the coefficients of the other atoms are
zero. So, the probability density of the sources in SCA (or
coefficients in sparse decomposition) is:

p(si) = pδ(si) + (1− p)N(0, σ2
r) (2)

In this model, any sample of the sources can be written
as si = qiri where qi is a binary variable (with binomial
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Fig. 1. The block diagram of our MAP algorithm

distribution) and ri is the amplitude of the i’th source with
Gaussian distribution. So the source vector can be written as:

s = Qr, Q = diag(q) (3)

where q , (q1, q2, ..., qm)T and r , (r1, r2, ..., rm)T are the
‘source activity vector’ and ‘amplitude vector’, respectively.
Each element of the source activity vector shows the activity
of the corresponding source. That is:

qi =
{

1 if si is active (with probability 1− p)
0 if si is inactive (with probability p) (4)

Consequently, the probability p(q) of source activity vector q
is equal to:

p(q) = (1− p)na(p)m−na (5)

where na is the number of active sources i.e. the number of
1’s in q. Note that, in this paper, we use the same notation p(.)
for both the probability and for Probability Density Function
(PDF).

III. MAP ALGORITHM

In [24], we proposed a three step MAP algorithm for
the noisy sparse component analysis. Here, we explain it in
details, because it is the basis of our IBA algorithm. Its block
diagram is shown in Fig. 1, and consists of 3 steps. The first
step is the estimation of the source parameters (p, σr) and
noise parameter (σn). If we define the parameter vector as
θ = (p, σr, σn)T , the objective of this step is to obtain an
estimation of θ. The second step is the estimation of the source
activity vector (q) which is defined in (4). The last step is the
source estimation.

A. Parameter Estimation

The parameter estimation step is done by a novel method
based on second and fourth order moments (for p and σr)
and by a special application of EM algorithm [48](for σn).
For estimating p and σr, let one of the mixtures, be x =∑m

i=1 aisi+n = y+n. Then, neglecting the noise contribution
(i.e. assuming σn ¿ σr), and taking into account that the
sources are independent and zero-mean, then the relationship
between the moments of the mixture and the moments of the
sources are:

E(x2) ≈ E(y2) = (
∑

i

a2
i )E(s2

i ) (6)

E(x4) ≈ E(y4) = (
∑

i

a4
i )E(s4

i ) + (6
∑

i,j,i6=j

a2
i a

2
j )E

2(s2
i )

(7)
In (6) and (7), we have assumed that the noise term is small
and so the moments of the mixture without noise (y) are

approximately the same as the moment of the true mixture (x).
From the above equations and by assuming that all the sources
have equal moments (due to identical parameters) and the ai’s
are known, the source moments can be computed. Especially,
concerning the second and fourth order moments of the
sources, one can obtain the following relations:

m2 = E(s2
i ) = (1− p)σ2

r (8)

m4 = E(s4
i ) = 3(1− p)σ4

r (9)

From (8) and (9), we can compute the two source parameters:

σ̂r =
√

m̂4

3m̂2
(10)

p̂ = 1− 3m̂2
2

m̂4
(11)

where m̂2 and m̂4 are estimated by equations (6) and (7).
Moreover, E(x2) and E(x4) are estimated from empirical
expectation (weighted sum) of the corresponding mixture. To
estimate the observation noise variance (σn), we use a special
application of EM algorithm introduced in [48] which gives a
maximum likelihood estimation of parameters of a Mixture of
Gaussian (MoG) (centers, probabilities and variances) distri-
bution from its samples. Since each si can be either active or
inactive, a mixture x =

∑m
i=1 aisi + n can be modeled by a

mixture of 2m Gaussian components. Since p is close to one
(p ≈ 1), one can neglect powers of (1− p) greater than one,
which leads to the following approximation of noisy sparse
MoG:

p(x) ≈ (p)mN(0, σ2
n)+(p)(m−1)(1−p)

m∑

i=1

N(0, a2
i σ

2
r +σ2

n)

(12)
This equation shows that each mixture has a MoG distribution
and the smallest variance of these Gaussians is the variance
of the noise (σn). Consequently, for estimating σn, the EM
algorithm in [48] is applied to one of the mixture signals.

B. Estimation of the source activity vector

To estimate the source activity vector (q), we use the MAP
detector which maximizes the posterior probability p(q|x).
Using the Bayes rule:

p(q|x) =
p(q)p(x|q)

p(x)
(13)

the MAP detector should maximize p(q)p(x|q). The prior
source activity probability (p(q)) is given by (5). The likeli-
hood (p(x|q)) has a Gaussian distribution with the following
conditional covariance:

Qq = E(xxT |q) = AVqAT + σ2
nI (14)

where the matrix Vq is the conditional covariance of the
sources and can be stated as:

Vq = σ2
rQ (15)



4 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 11, NOVEMBER 2009 (*VERY CLOSE* TO THE OFFICIAL VERSION)

where Q was defined in (3). Consequently, the prior probabil-
ity p(x|q) has the following Gaussian form:

p(x|q) =
1√

det(2πQq)
exp(

−1
2

xT Q−1
q x) (16)

and the MAP detector maximizes the p(q)p(x|q) over all 2m

cases for all source activity vectors:

qMAP = argmax
q

p(q)√
det(2πQq)

exp(
−1
2

xT Q−1
q x) (17)

C. Estimation of sources

After estimating the source activity vector, the estimation of
sources is achieved with the estimation of amplitudes (ri’s),
i.e. of amplitude vector (r). The vector r has a Gaussian
distribution and hence its MAP estimation is equal to its Linear
Least Square (LLS) estimation [49]. The LLS estimation of r
by knowing the source activity vector and the mixture vector
has the following form [49]:

r̂LLS = E(rxT |q)E(xxT |q)−1x (18)

The calculation of the two terms E(rxT |q) and E(xxT |q)
results in the following equations:

E(rxT |q) = σ2
rQAT (19)

E(xxT |q) = σ2
rAQAT + σ2

nI (20)

Then, the source amplitudes are estimated as:

r̂ = σ2
rQAT (σ2

rAQAT + σ2
nI)−1x (21)

The maximization of p(q)p(x|q) may be done by exhaus-
tive search over the discrete space of vectors q with 2m

discrete elements. This method can solve the SCA problem
only for a small number of sources (for example m < 12).
However, the complexity of this algorithm, based on an
exhaustive search, can be alleviated with the IBA algorithm
described in the next section.

IV. ITERATIVE BAYESIAN ALGORITHM (IBA)
A. Basic Idea

In the MAP algorithm, the maximization of the poste-
rior probability given by (17) is done by a combinatorial
search over the discrete space. In this section, we propose a
maximization method based on first converting the problem
to a continuous maximization and then using a steepest-
ascent algorithm. In this purpose, we use a mixture of two
Gaussian model centered around 0 and 1 with sufficiently
small variances. Thus, the discrete binomial variable qi is
converted to a variable with the following form:

qi ∼ pN(0, σ2
0) + (1− p)N(1, σ2

0) (22)

To avoid local maxima of (17) a gradually decreasing variance
is used in the different iterations (this is similar to what is
done in simulated annealing algorithms, and to Graduated
NonConvexity [50]). However, (17), as a cost function with
respect to q, is very complex to work with.

The main idea of our algorithm is that the source estimation
is equivalent to estimation of vectors q and r (as observed from

(3)) and can be done iteratively. First, an estimated vector q̂
is assumed and then the MAP estimate of the vector r based
on the known q̂ and the observation vector x is obtained (we
refer to it as r̂). Secondly, the MAP estimate of vector q is
obtained based on estimated vector r̂ and observation vector
x (we refer to it as vector q̂). Therefore, the MAP estimation
of sources is achieved through two other elementary MAP
estimation steps.

In the first step, a source activity vector q̂ is assumed and
the estimation of r will be computed. Because the vector r is
Gaussian, its MAP estimate is equal to the Linear Least Square
(LLS) estimation [49] and can be computed as follows:

r̂MAP = r̂LLS = E(r|x, q̂) = E(rxT |q̂)E(xxT |q̂)−1x (23)

This step can be called Expectation step or Estimation step
(E-step). Computation and simplification of (23) (similar to
what done in [24]) leads to the following equation which is
similar to (21):

r̂ = σ2
rQ̂AT (σ2

rAQ̂AT + σ2
nI)−1x (24)

In the second step which can be called Maximization step
(M-step), we estimate q based on known r̂ and observed x.
The MAP estimation is:

q̂MAP = argmax
q

p(q|x, r̂) ≡ argmax
q

p(q|r̂)p(x|q, r̂) ≡

argmax
q

p(q)p(x|q, r̂) ≡ argmax
q

(log p(q) + log p(x|q, r̂))

(25)
Equation (22) implies that, in (25) p(q) can be computed

as a continuous variable:

p(q) =
m∏

i=1

p(qi) =
m∏

i=1

[
p exp(

−q2
i

2σ2
0

)+(1−p) exp(
−(qi − 1)2

2σ2
0

)
]

(26)
In addition, the term p(x|q, r̂) in (25) can be computed as:

p(x|q, r̂) = pn(x− AQr̂) =

(2πσ2
n)

−m
2 exp

( −1
2σ2

n

(x−AQr̂)T (x−AQr̂)
)

(27)

Consequently, (25) writes as:

M-step : q̂ = argmax
q

L(q) (28)

where

L(q) =
m∑

i=1

log(p(qi))− 1
2σ2

n

(x−AQr̂)T (x−AQr̂) (29)

Maximization of L(q) in the M-step can be done by the
steepest-ascent method. The main steepest-ascent iteration is:

qk+1 = qk + µ
∂L(q)

∂q
(30)

where µ is the step-size in the steepest-ascent method. After
calculating the gradient (see Appendix A), the steepest-ascent
algorithm for the M-step is:

qk+1 = qk +
µ

σ2
0

g(q) +
µ

σ2
n

diag(AT (AQr̂− x)).r̂ (31)
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where g(q), given in Appendix A by (58), depends on σ0. In
successive iterations of our simulations, we gradually decrease
the variance σ0 according to the series σ

(i)
0 = ασ

(i−1)
0 where α

is selected between 0.6 and 1. In Section V, a suitable range on
values of µ for the convergence of the proposed IBA algorithm
is calculated. This suitable interval means that if the step size
µ is selected in this interval, with a probability close to one,
the convergence is insured. Assuming the columns of A are
normalized to have unit norms, the suitable interval is:

0 < µ <
2

1
σ2
0

+ mM∗2
σ2

n

(32)

where M∗ = σrQ
−1( 1− m√0.99

2 ). As we see from (31)
the second summand is responsible for increasing the prior
probability p(q) while the third summand is responsible for
decreasing the noise power ||x − As||2. When σ0 is much
larger than σn, the second term is weaker than the third term
and as a result the exactness of x = As is more relevant than
the sparsity of s. When σ0 is comparable to σn, both terms
are effective to yield the equilibrium point between sparsity
and noise.

In summary, the overall algorithm is a 3-step iterative
algorithm the first two steps of which are E-step and M-step
in (24) and (31), while the last step, explained in the next
section, is the parameter estimation step.

B. Parameter estimation

So far the parameters (p, σr and σn) are assumed to be
known. The parameter estimation is necessary and can also
be done iteratively. We also assume that the columns of the
matrix have unit norms. In other words, the basis atoms of
our dictionary are normalized to have unit norm. With these
assumptions and by assuming the ergodicity of sources (i.e. the
mixtures can be considered as samples of a random variable
xj =

∑m
i=1 ajisi+ej where aji = bji�

√
b2
1i + b2

2i + ... + b2
ni

and bji is a random variable with uniform distribution on [-
1,1] and si and ej are random variables), and by neglecting the
noise power, we have E(x2

j ) = mE(a2
ji)E(s2

i ). In addition,
we know that

∑n
j=1 a2

ji = 1 and hence we deduce E(a2
ji) =

1
n . Finally, from (8), we have E(s2

i ) = (1−p)σ2
r , and therefore

we can write:

σ̂r =

√
nE(x2

j )
m(1− p̂)

(33)

With the initialization of p̂ with p̂(0), we will have σ̂r =√
nE(x2

j )

m(1−bp(0))
. For the starting noise variance, we choose

σ̂n
(0) = σ̂r/10. In [27], we used the algorithm with a

simple non iterative parameter estimation step that was stated
above. But, here these simple non iterative estimates are just
used as the initial estimation of the parameters. Along the
iterations, we update the estimation of these parameters using
the following simple equations:

p̂ =
||q||0
m

(34)

• Initialization:
1) Let θ0 equal to the initial parameter estimation:

p̂(0): arbitrary value in [0.5 1],

σ̂
(0)
r =

r
nE(x2

j )

m(1−bp(0))
, σ̂

(0)
n = σ̂

(0)
r
10

.
2) Let s0, q0 and r0 equal to the initial solution from

minimum `2-norm:
s0 = AT (AAT )−1x,
q0 = (s0 > Th), r0 = s0.(s0 > Th).

• Until Convergence do:
1) E-step: solution obtained in (24).
2) M-step:

– for j = 1, . . . , niteration:
∗ Update q with (31)

∗ Update σ
(j)
0 = ασ

(j−1)
0

3) Parameter Estimation Step: using (33), (34), (35) and
(36).

• Final answer is ŝ = qfinalrfinal.

Fig. 2. The final overall IBA algorithm. estimation.

σ̂n =
||x− Aŝ||2√

n
(35)

σ̂r =
||r||2√

m
(36)

where it is assumed that the number of sources m is known
in advance. In addition to (36), we can use (33) to update the
estimation of σr in the iterations.

It is shown in Appendix B that the formulas (34), (35) and
(36) are the MAP estimates of the corresponding parameters
based on knowing all the other unknowns.

Finally, the complete IBA algorithm, including the param-
eter estimation step, is summarized in Fig. 2. Since the active
sources are Gaussian with a variance σ2

r , we choose the
threshold parameter Th as a fraction of σr. The exact value of
Th determines the number of active sources in the first step.
We will discuss about this parameter in the simulation results
section.

V. CONVERGENCE ANALYSIS

In this section, we first prove that the log posterior prob-
ability L(s) , log p(s|x) is concave. Therefore, the unique
maximum of this function is the global maximum. Then, we
prove the convergence of the steepest-ascent algorithm in the
M-step and find the suitable interval for the step-size (µ) for
the convergence of the steepest-ascent algorithm. Finally, the
convergence of the overall IBA algorithm will be proved.

A. Convexity of the posterior probability

The log posterior probability function L(s) can be written
as L(s) ∝ log p(s) + log p(x|s), that we can decompose as:

L(s) =
m∑

i=1

log(p(si))− 1
2σ2

n

(x− As)T (x− As) (37)

To prove the concavity of L(s), we prove the concavity of each
log(p(si)) and the convexity of c(s) , (x − As)T (x − As).
Then, since the sum of concave functions is also concave,
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the proof is completed. As before, the probability distribution
of sources in (2) is assumed to be a BG distribution p(si) =

p

σ1
√

2π
exp(−s2

i

2σ2
1
)+ 1−p

σ2
√

2π
exp(−s2

i

2σ2
2
) with sufficiently small σ1.

To prove the concavity of log(p(si)), we need to prove that
its second derivative is negative. It is equivalent to prove that
h(si) , p(si)p′′(si)−p′(si)2 < 0. Calculation of this function
leads to the following formula:

1
2π

h(si) = − p2

σ4
1

exp(
−s2

i

σ2
1

)− (1− p)2

σ4
2

exp(
−s2

i

σ2
2

)

+
p(1− p)

σ1σ2

[
(
si

σ2
1

− si

σ2
2

)2− 1
σ2

1

− 1
σ2

2

]
exp(

−s2
i

2σ2
1

− −s2
i

2σ2
2

) (38)

Let si = 0. Then 1
2π h(0) = − p2

σ4
1
− p(p−1)

σ1σ2
( 1

σ2
1
+ 1

σ2
2
) < 0. Now

assume that si 6= 0. If we denote t , s2
i

σ2
1

, then some terms in
(38) are in the form of tn exp(−t). If σ1 → 0 or equivalently
t →∞ then tn exp(−t) → 0. Using these results, the limit of
the function h(si) is equal to:

lim
σ1→0

h(si) = − (1− p)2

σ4
2

exp(
−s2

i

σ2
2

) < 0 (39)

which proves the concavity of log(p(si)). The convexity of
c(s) = (x− As)T (x− As) = ||x−As||2 is obvious due to its
parabolic shape.

B. Convergence of the steepest-ascent

From (29) and by defining sk+1 , Qk+1rk, sk , Qkrk,
H , AT A and b = 2xAT , we have:

L(qk+1)− L(qk) =
m∑

i=1

log
p(qk+1,i)
p(qk,i)

− 1
2σ2

n

[sT
k+1HsT

k+1− sT
k HsT

k −b(sk+1− sk)]

(40)
If the above expression is positive, then the sequence L(qk)

is an increasing sequence and since L(q) is upper bounded
by the value m log(p), then the sequence has a limit and the
convergence of the M-step (steepest-ascent) will be proved.
To derive the positivity condition of (40), we write the M-
step iteration as qk+1 = qk + µck where ck = ∂L(q)

∂q

∣∣∣
q=qk

.

Therefore, we have sk+1−sk = µCkrk where Ck = diag(ck).
Substituting in (40) results in:

L(qk+1)− L(qk) =
m∑

i=1

log
p(qk+1,i)
p(qk,i)

− µ

2σ2
n

[µrT
k CkHCkrk + (2sT

k H− b)Ckrk]

(41)
After some algebra detailed in Appendix C, one obtains the
following inequality:

1
µ

[L(qk+1)− L(qk)] > cT
k [I− µR− µ

2σ2
n

R1HR1]ck (42)

where R1 = diag(ri) and R is defined in Appendix C. If
the symmetric matrix D , I − µR − µ

2σ2
n

R1HR1 is Positive
Definite (PD) then the sequence L(qk) will be increasing,
and, as mentioned above, the convergence of the M-step is

guaranteed. For D being PD, all its eigenvalues should be
positive. If we define E , R + 1

2σ2
n

R1HR1 then D = I− µE.
The PD property of D results in the following equation:

µ <
1

λmax(E)
(43)

where λmax(E) stands for the maximum eigenvalue of E.
Since R is diagonal, λi(E) = λi(R) + 1

2σ2
n
λi(R1HR1).

Again since R is diagonal, its eigenvalues are λi(R) =∑2
j=1

rj(qk,i)

2σ2
0

= 1
2σ2

0
, then we have:

λmax(E) <
1

2σ2
0

+
1

2σ2
n

λmax(R1HR1) (44)

To obtain an upper bound for the maximum eigenvalue of E,
we should find the upper bound for the maximum eigenvalue
of R1HR1. Since R1HR1 = (AR1)T (AR1), it is PD and
hence all of its eigenvalues are positive. Therefore we can
write:

λmax(R1HR1) 6
m∑

i=1

λi = trace(R1HR1) = trace(R2
1H)

(45)
Since R1 , diag(ri), the elements of R1 and hence
λmax(R1HR1) can theoretically be infinitely large. However,
noting that p(|ri| < M) = 1 − 2Q(M

σr
), we can determine

a suitable interval for the maximum value of λmax(R1HR1).
For the cases which |ri| < M , trace(R2

1H) =
∑m

i=1 r2
i hii <

M2
∑m

i=1 hii with probability γ = (1 − 2Q(M
σr

))m which
we want to be very close to 1 (for example γ = 0.99).
Hence, we must choose the value as M∗ = σrQ

−1( 1− m
√

γ

2 ).
Consequently, to be sure that with a probability γ close to
1 the convergence is guaranteed, µ should be selected in the
interval:

0 < µ <
2

1
σ2
0

+ M∗2
σ2

n
trace(AT A)

(46)

By imposing the condition of normalized column to A, the
diagonal elements of AT A is equal to one and hence we
have trace(AT A) = m. Therefore, the suitable interval can
be simplified as:

0 < µ <
2

1
σ2
0

+ mM∗2
σ2

n

(47)

C. Convergence of the IBA algorithm

So far, we show the convergence of the M-step which
is implemented with steepest-ascent method. To prove the
convergence of the proposed IBA algorithm which is like an
EM algorithm, we should prove that the sequence L(sk) is
increasing, where L(sk) is the log posterior probability defined
in (37). Increasing of this sequence is evident throughout the
M-step because the L(s) is equivalent to L(q) throughout the
M-step. In the E-step the LLS estimation of r is computed
by (24). This estimation is also a MAP estimation. So, it
maximizes our measure which is the posterior probability in
the MAP sense. Since the logarithm function is monotonically
increasing, MAP estimation is equivalent to maximizing the
log posterior L(s). So, the log posterior probability L(s)
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increases in each E-step and M-step, inside any k-th iteration.
So, in each iteration we can write:

L(s(k+1)
M−step) > L(s(k+1)

E−step) > L(s(k)
M−step) > L(s(k)

E−step) (48)

where the sequences of sources are:

s(k)
E−step = Qk−1rk (49)

s(k)
M−step = Qkrk (50)

s(k+1)
E−step = Qkrk+1 (51)

s(k+1)
M−step = Qk+1rk+1 (52)

Therefore, the sequence of L(sk) is converging to a local
maximum s∗. The concavity of the L(s) guarantee that this
local maximum is equal to the global maximum which is the
MAP solution of sparse sources.

VI. EXPERIMENTAL RESULTS

In this section, the performance of the MAP algorithm and
IBA algorithm is examined with concentrating on the IBA
algorithm. The results of our algorithms are compared to the
BP which is practically implemented by `1-magic [44] and
some other algorithms which are in the literature. This will
be done by discussing the results of five experiments detailing
different aspects of our algorithms, especially the effects of
the parameters, of noise and of sparsity.

The sparse sources are artificially generated using the BG
model in (2). In all simulations, we used p = 0.9, σn = 0.01
and σr = 1 for the parameters of the BG model. A different
source model will be used in the fourth experiment for which
the number of active sources is fixed and the locations of
the active sources are chosen randomly. The noise vector is
an additive white Gaussian noise with covariance matrix σ2

nI.
For investigating the noise effect, we define an input Signal
to Noise Ratio as:

Input-SNR , 20 log
( σr

σn

)
(53)

The mixing matrix entries are chosen randomly from a uniform
distribution in [-1,1] and then the columns of the mixing matrix
are normalized to unity. To evaluate the performance of our
algorithms, we use two definitions. In sparse decomposition
experiments (single realization of x = As + n), the Output
Signal-to-Noise Ratio defined as:

Output-SNR = 20 log(||s− ŝ||2/||s||2) (54)

is used as the performance measure. But in sparse com-
ponent analysis experiments (many realizations of {x(t) =
As(t) + n(t)}N

t=1 ), we usually average over time to obtain
the Individual SNR for each source, defined by:

SNRi = 10 log
( ΣN

t=1s
2
i (t)

ΣN
t=1(si(t)− ŝi(t))2

)
(55)

and the final performance index (SNR) is the average of these
SNR’s.

For each experiment, the performance indices are computed
by averaging over 400 different realizations with new ran-
domly chosen mixing matrix and sparse sources.
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Fig. 3. The result of parameter estimation of the MAP algorithm in the case
where m = 8, n = 4, p = .9, σr = 1 and σn = .01. The results are
averaged on 400 simulations.

We use the CPU time as a measure of complexity. Although,
the CPU time is not an exact measure, it can give us a rough
estimation of the complexity for comparing our algorithm
with other algorithms. Our simulations were performed in
MATLAB7.0 environment using an Intel 2.80 GHz processor
with 1024 MB of RAM and under Linux operating system.

A. Experiment 1 - Performance evaluation of the MAP algo-
rithm

1) Parameter estimation: In this experiment, the main
goal is to investigate the parameter estimation techniques
described in subsection III-A. Eight sources (m = 8) are
selected with source parameters p = .9, σr = 1 and the
noise parameter σn = .01. Then, the mixture signals are
obtained by the model (1). This experiment estimates the three
unknown parameters from only N observations (or samples)
of mixtures. Furthermore, 100 iterations are used for the EM
algorithm for estimating σn. To measure the performance
of estimating these parameters, we computed the normalized
mean square error, defined as follows. Let (param) be the true
parameter and (p̂arami) be the estimated parameter in the i’th
experiment, then the normalized mean square error (over the
400 realizations) is defined as:

en =
1

400

∑400
i=1(param− p̂arami)2

param2
(56)

The normalized mean square errors (in percent) versus the
observation number are depicted in Fig. 3. As it can be
seen, even for small number of samples (due to sparsity, the
significant samples are then very few) the estimates for p,
σr are acceptable. By increasing the number of observations,
better estimates of parameters are obtained and the errors
decrease.

2) Overall source estimation: In this experiment, the MAP
algorithm is compared to BP. Moreover, to investigate the
effect of parameter estimation error, the MAP algorithm was
simulated in two cases: one with the actual parameters and the
other with estimated parameters.

As before, the simulation parameters are m = 8, p = .9,
σr = 1 and σn = .01. The number of samples is N = 1000
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Fig. 4. The performance of MAP algorithm (with actual parameters and with
estimated parameters) in comparison to LP method in the presence of noise,
where m = 8, N = 1000, p = .9, σr = 1 and σn = .01. The results are
averaged on 400 simulations.

and the number of mixtures (n) varies between 3 to 7. The
results of three algorithms, namely BP, MAP with actual
parameters and MAP with estimated parameters (all of them
averaged on 400 simulations) are shown in Fig. 4. The results
show that the average SNR (Temporal SNR) of the MAP al-
gorithm is about 10dB better than BP. Moreover, the averaged
SNR of the MAP algorithm with estimated parameters is close
to the averaged SNR with actual parameters. Consequently, the
MAP algorithm is robust to the parameter errors: in fact, for
N = 1000, although the relative estimation errors of p and
σr achieve about 10% and 5% (Fig. 3), the SNR loss with
estimated parameters is less than 1dB (Fig. 4).

B. Experiment 2- Performance evaluation of the IBA algo-
rithm

In this section, the performance of the IBA algorithm is in-
vestigated, and compared with different algorithms for various
noise levels i.e. input SNR’s. In this experiment, the simulation
parameters are m = 1024, n = 512, p = .9, σn = 0.01 and
σr = 1. In the M-step the value of α can be chosen between
0.6 and 0.9 (see the third experiment which investigates the
parameter selection). In this experiment, we select α = 0.8.
The initial value of σ0 is equal to 1. In this special case the
suitable interval of µ in (32) is 0 < µ < 2.1466 × 10−7. So,
we chose µ = 10−7. For the initial value of the parameter p,
we selected the value p̂(0) = 0.8 because it is a good trade-off,
and the initial value must imply a sufficient number of active
sources. The practical value of Th in Fig. 2, is selected as σ̂(0)

r

4
because it provides slightly better results (refer to experiment
3). The simulations show that, for these parameters, only 4 or
5 iterations are sufficient to maximize the expression L(q) in
the M-step. IBA algorithm usually converges at the third and
fourth iterations in our simulations. Therefore, 5 iterations are
used for the M-step and for the overall IBA algorithm, we
stop the algorithm when the condition ||s(k)−s(k−1)||2

||s(k)||2 < 0.001
is satisfied.

Table I shows the progress of iterative parameter estimation
to actual parameters. The results of output SNR versus input

TABLE I
PROGRESS OF THE ITERATIVE PARAMETER ESTIMATION TO ACTUAL

PARAMETERS IN THE CASE OF m = 1024, n = 512 AND p = 0.9 σr = 1
σn = .01.

itr. # p σr σn

1 0.8000 0.7412 0.0782
2 0.8400 0.8310 0.0524
3 0.9070 1.0412 0.0082
4 0.9119 1.1206 0.0048
5 0.9119 1.1206 0.0055

SNR are shown in Fig. 5 for our IBA algorithms and some
other algorithms.

For comparison, we selected 4 representative algorithms.
The first algorithm is OMP which is a pursuit algorithm
which uses correlations between the signal and the atoms for
selecting the current active atom. It also projects the residual
signal to the surface of active atoms to update the coefficients
at the end of each iteration. The second algorithm is BP which
replaces `0-norm by `1-norm for the sparsity measure and uses
LP methods. The third algorithm is smoothed-`0 (SL0) which
replaces the `0-norm by a smoothed approximation of `0-norm
and then uses a steepest-descent method to find the sparse co-
efficient. Finally, the fourth algorithm is BCS algorithm which
is a Bayesian algorithm which uses a hierarchical sparsness
prior and a type-II Maximum Likelihood (ML) procedure like
the RVM method to estimate the unknown variables.

The number of iterations are 100 for OMP. For smoothed-`0,
we used a sequence of σ as σ(k) = 0.9σ(k−1) from the initial
estimated value to the final value 0.04 and L = 3 and µ = 2
[25]. For BCS and BP, we used the author recommendations
for choosing the parameters. As we can see from the figure,
our performance is somewhat better than other methods like
BP, OMP and SL0. Only, BCS provides better performance
specially for low SNR’s.

We ran another experiment for sources, different of the BG
model. In this experiment, the sources are fixed and equal
to 1 from index 1 to 20 and also are fixed and equal to
0 for other indexes (from 21 to 1024). The results for this
special case are shown in Fig. 6. In this special case, the
IBA algorithm achieves the second best performance, just after
BCS algorithm.

C. Experiment 3- Dependence on the parameters

In this experiment, the effect of the simulation parameters
(α and Th in Fig. 2) is investigated.

1) Effect of α: In this experiment, we consider the effect
of the parameter α, which is the scale factor controlling the
decreasing rate of σ0 (σ(i)

0 = ασ
(i−1)
0 ). The experiment results

are shown in Fig. 7, which represents the averaged output-
SNR versus α, for different values of σn (Fig. 7(a)) and
k = m(1− p) (Fig. 7(b)). The value σn determines the noise
standard deviation. The value k = m(1−p), which represents
the average number of active sources, determines the degree
of sparsity of the sources.

It is clear from Fig. 7(a) that the value of α can be selected
properly between a lower bound (0.6) and an upper bound
(0.9). In this experiment the values of other parameters are
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Fig. 5. Output-SNR vs Input-SNR. Results of the IBA algorithm compared
with other algorithms. The simulation parameters are m = 1024, n = 512,
p = .9, σr = 1, α = .8, and µ = 10−7. Five iterations are used for the
M-step (steepest-ascent). Results are averaged on 400 simulations.
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Fig. 6. Results of the IBA algorithm compared with other algorithms, for non
BG sources. The simulation parameters are m = 1024, n = 512, p = .9,
σr = 1, α = .8, and µ = 10−7. Five iterations are used for the M-step
(steepest-ascent). Results are averaged on 400 simulations.

µ = 10−7, k = m(1 − p) = 100. The performance decreases
when α is too close to one (in this case .95). However, our
experiments show the low sensitivity of our algorithm to this
parameter. A good choice of this parameter is around 0.8.

From [1] and [2], we know that k ≤ n/2 is a theoretical
limit for uniqueness of the sparsest solution. In Fig. 7(b), the
results of the SNR versus α in various sparsity conditions
(20 ≤ k ≤ 120) are shown. Again, our experiments show the
IBA algorithm is not too sensitive to the parameter α: α = 0.8
is still a good choice.

2) Effect of Th: In this experiment, the effect of the
threshold Th in Fig 2 is investigated. We define a threshold
factor as:

Threshold-factor , σ̂r

Th
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Fig. 7. Performance of the IBA algorithm vs parameter α for m = 1024,
n = 512 and σr = 1. In (a) k (number of active sources) is fixed to 100 and
the effect of noise is investigated. In (b) σn is fixed to 0.01 and the effect
of sparsity factor is analyzed. Values of k are 20, 40, 80, 120. Results are
averaged on 400 simulations.

We ran the IBA algorithm with various values of this threshold
factor. The results are shown in Fig 8 which represents
the output-SNR versus the threshold factor. Although the
algorithm has a low sensitivity to this threshold, but the value
for the threshold factor should be less than 5. Arbitrarily, we
chose a threshold factor equal to 4, and Th = σ̂r

4 in the IBA
algorithm.

D. Experiment 4 - Effect of sparsity on the performance

Here, we experimentally consider the question: How much
sparse a source should be to make the decomposition possible?
As mentioned before, we have the theoretical limit of n/2
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Fig. 8. The effect of the threshold in the IBA algorithm. The simulation
parameters are m = 1024,n = 512, p = .9, σr = 1 and µ = 10−7. Results
are averaged on 400 simulations.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

30

35

40

Sparsity level (Ratio of nonzero elements with respect to n)

O
ut

pu
t S

N
R

 (
dB

)

 

 
BCS
IBA
SL0
OMP
BP

Fig. 9. Output-SNR as a function of sparsity level (active sources/n) for
various algorithms. Simulation parameters are m = 1024, n = 512, σr = 1
and σn = 0.01. Results are averaged on 400 simulations.

on the maximum number of active sources at each sample
(column) of source matrix to insure the uniqueness of the
sparsest solution. But most of SCA methods are unable to
practically achieve this limit [1].

To be able to measure the effect of sparsity, instead of
generating the sources according to BG model (2), at each
time t, we activate exactly k entries out of m components of
s(t), (the column t of the source matrix). The locations and the
values of these k elements are chosen randomly. k is related
to the sparsity level of the sources, defined as:

Sparsity-level , k

n

where k is the number of active sources.
Figure 9 shows the output SNR (averaged on 400 simula-

tions), as a function of sparsity level, for several values of α
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Fig. 10. Average CPU time in seconds versus problem dimension (m). For
all dimensions n = 0.5m. The parameters are p = .9, σr = 1 and σn = .01.
The results are averaged on 400 simulations.

and compares the results with other algorithms. It can be seen
that the IBA algorithm achieves a good performance especially
when the sparsity level is low.

E. Experiment 5 - Complexity

In this last experiment, the relative complexity (or speed)
of the IBA algorithm is compared to other algorithms. The
measure to be used is the ‘average CPU time’ required by each
algorithm. More specifically, we plot ‘average time’ versus m,
where m is the number of sources. The number of mixtures
is n = 0.5m. The various values of m are 128, 256, 512 and
1024. Figure. 10 summarizes the results of average simulation
times (on 400 simulation) for recovering the sources at one
time step. As we can see, the IBA algorithm has relatively a
high complexity, a price paid for its good performance.

VII. CONCLUSIONS

In this article, we have presented a new IBA algorithm for
finding sparse solutions of underdetermined system of linear
equations in the context of SCA. This IBA algorithm is based
on iterative MAP estimation of the sources. In this paper,
the high complexity of Bayesian methods is reduced by an
iterative algorithm which resembles the EM algorithm. The M-
step is done by a steepest-ascent method. Its step size should
be chosen properly for insuring convergence of the steepest-
ascent and of the global IBA algorithm. Moreover, the paper
includes the convergence analysis of the algorithm and the
convergence proof to the true optimum solution. Experimental
results show the IBA algorithm has a low sensitivity to the
simulation parameters, and achieves good performance, al-
though not the best, compared with other algorithms especially
BCS, which is currently the best algorithm, both for accuracy
and speed. Future works includes improvement of Bayesian
algorithms, by explicitely taking into account the noise for
achieving performance as optimum as possible.
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APPENDIX A
DERIVATION OF THE STEEPEST-ASCENT

From (28), we have:

∂L(q)
∂q

=
∂

∂q

m∑

i=1

log(p(qi))− 1
2σ2

n

∂

∂q
(x−AQr̂)T (x−AQr̂)

(57)
We define g(q) , −σ2

0
∂

∂q

∑m
i=1 log(p(qi)) and n(q) , (x−

AQr̂)T (x−AQr̂). With these definitions the scalar function
g(qi) and the n(q) (with omitting the constant terms) can be
computed as:

g(qi) =
pqi exp(−q2

i

2σ2
0
) + (1− p)(qi − 1) exp(−(qi−1)2

2σ2
0

)

p exp(−q2
i

2σ2
0
) + (1− p) exp(−(qi−1)2

2σ2
0

)
(58)

n(q) = −2xT AQr̂ + r̂T QAT AQr̂ (59)

With the definitions C , AT A, n1(q) , −2xT AQr̂ and
n2(q) , r̂T QCQr̂, we can write:

∂n1(q)
∂q

= diag(−2xT A).r̂ (60)

If we define W , Qr̂ (m×1 vector) then n2(q) = WT CW
and so we have:

∂n2(q)
∂qi

=
m∑

j=1

∂n2(q)
∂Wj

∂Wj

∂qi
(61)

From the vector derivatives, we have ∂n2(q)
∂W = 2CW , d.

And from the definition of W we get ∂Wj

∂qi
= r̂iδij . So (61)

is converted to ∂n2(q)
∂qi

=
∑m

j=1 dj r̂iδij = r̂idi. So the vector
form of (61) is equal to:

∂n2(q)
∂q

= diag(d).r̂ (62)

From (60), (62), n(q) = n1(q) + n2(q) and definitions of
vectors d and C, we can write:

∂n(q)
∂q

= 2diag(AT AQr̂−AT x).r̂ (63)

Finally, (63), (57), (30) with the definitions of n(q) and g(q)
yields the steepest-ascent iteration (31).

APPENDIX B
MAP ESTIMATION OF PARAMETERS

To compute the MAP estimate of σr, assuming the other
parameters are known, we should maximize the posterior prob-
ability p(σr|r̂, q̂, σ̂n, p̂, x) ≡ p(σr)p(r̂|σr). We do not impose
any prior information about σr. So, the MAP estimation of σr

should maximize p(r̂|σr). This distribution is equal to:

p(r̂|σr) = (2πσ2
r)−

m
2 exp(

−1
2σ2

r

r̂T r̂) (64)

Differentiating the above equation with respect to σr, the MAP
estimate of σr is :

σ̂2
r,MAP =

1
m
||r||22 (65)

To compute the MAP estimate of σn, assuming the other
parameters are known, we must maximize the posterior proba-
bility p(σn|q̂, r̂, σ̂r, p̂, x) ≡ p(x|σn, r̂, q̂) = pn(x−AQ̂r̂). This
probability distribution is equal to:

pn(x− AQ̂r̂) = (2πσ2
n)−

n
2 exp(

−1
2σ2

n

(x− AQ̂r̂)T (x− AQ̂r̂))
(66)

Differentiating the above equation with respect to σn yields
to the following equation:

σ̂2
n,MAP =

||x− Aŝ||22
n

(67)

Finally, to calculate the MAP estimate of p, assuming
the other parameters are known, the posterior probability
p(p|q̂, r̂, σ̂r, σ̂n, x) should be maximized. This probability is
equivalent to p(q̂|p)p(x|q̂, r̂, σ̂n) in which only the term p(q̂|p)
depends on p. Differentiating p(q̂|p) = p(m−na)(1−p)na with
respect to p and setting it to zero, results in the following
estimate of p:

p̂MAP =
m− na

m
=
||q||0
m

(68)

APPENDIX C
DERIVING INEQUALITY

For calculating the first term of (41) B ,∑m
i=1 log p(qk+1,i)

p(qk,i)
, we define p(qi) ,

∑2
j=1 πjgj(qi) where

π1 , p and π2 , 1− p and gj(qi) = 1
σ0
√

2π
exp(−(qi−mj)

2

2σ2
0

).
Based on (22), we selected the two variances equal to σ0 and
m1 = 0 and m2 = 1. Then we will have:

B =
m∑

i=1

log
{∑

j πjgj(qk,i + µck,i)∑
j πjgj(qk,i)

}

B =
m∑

i=1

log
{∑

j πjgj(qk,i) exp(−µ2c2
k,i−2µck,i(qk,i−mj)

2σ2
0

)
∑

j πjgj(qk,i)

}

(69)
where ck,i is i’th element of ck. By defining rj(qk,i) ,

πjgj(qk,i)P
j πjgj(qk,i)

(note that 0 < rj(qk,i) < 1) and by considering
the convexity of the logarithm function, we can write:

B =
∑m

i=1 log{∑2
j=1 rj(qk,i) exp(−µ2c2

k,i−2µck,i(qk,i−mj)

2σ2
0

)}

>
m∑

i=1

2∑

j=1

rj(qk,i)
2σ2

0

[−µ2c2
k,i − 2µck,i(qk,i −mj)] (70)

After some simplifications, the lower bound of B in (70)
becomes:

C ,
m∑

i=1

−µ2c2
k,i

γk,i

2qk,i
+

m∑

i=1

−µck,iγk,i +
m∑

i=1

µck,i
r2(qk,i)

σ2
0

(71)
where γk,i , qk,i

∑2
j=1

rj(qk,i)

σ2
0

. We know that c = ∂L(q)
∂q . So

we have:

ci =
−1
2σ2

n

∂

∂qi
(x−As)T (x−As) +

∂

∂qi
(

m∑

i=1

log
2∑

j=1

Πjpj(qi))

(72)
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where ci is the i’th element of c. If we define N , (x −
As)T (x − As) and M =

∑m
i=1 log

∑2
j=1 πjgj(qi), then we

can write ∂N
∂qi

= ∂N
∂si

∂si

∂qi
= [2AT (As − x)]iri. Moreover, we

have:

∂M

∂qi
=

π1
d

dqi
g1(qi) + π2

d
dqi

g2(qi)∑2
j=1 πjgj(qi)

(73)

After some simplifications, we have:

∂M

∂qi
= −qi

2∑

j=1

rj(qi)
σ2

0

+
r2(qi)

σ2
0

(74)

Therefore, we have:

ck = −zk − γk +
r2(qk)

σ2
0

(75)

where r2(q) = [r2(q1), r2(q2), ..., r2(qm)]T and r2(qi) ,
π2g2(qi)P
j π2g2(qi)

and zi , 1
2σ2

n
[2AT (As − x)]iri and γi ,

qi

∑2
j=1

rj(qi)

σ2
0

. Finally, the lower bound C in (71) can be
simplified as:

C = −µ2cT
k Rck − µcT

k γk +
µ

σ2
0

cT
k r2(qk) (76)

where R , diag(
∑2

j=1
rj(qk,i)

2σ2
0

) = diag( γk,i

2qk,i
). From (41),

(69), (70), (71) and (76), we have:

L(qk+1)− L(qk) > −µ2cT
k Rck − µcT

k γk

+
µ

σ2
0

cT
k r2(qk)− µ2

2σ2
n

rT CkHCkr− µ

2σ2
n

(2sT
k H−b)Ckr (77)

Because of the definition of zi and H and with some manipu-
lation the last term in the above equation µ

2σ2
n
(2sT

k H− b)Ckr
is simplified as µzT

k ck. Replacement γk = −ck − zk + r2(qk)

σ2
0

from (75) into (77), results in (42).
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