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Abstract The current double JPEG compression de-

tection techniques identify whether or not an JPEG im-

age file has undergone the compression twice, by know-

ing its embedded quantization table. This paper ad-

dresses another forensic scenario in which the quan-

tization table of a JPEG file is not explicitly or re-

liably known, which may compel the forensic analyst

to blindly reveal the recompression clues. To do this,

we first statistically analyze the theory behind quan-

tized Alternating Current (AC) modes in JPEG com-

pression and show that the number of quantized AC

modes required to detect double compression is a func-

tion of both the image’s block texture and the com-

pression’s quality level in a fresh formulation. Conse-

quently, a new double compression detection algorithm

is proposed that exploits footprints introduced by all
non-zero and zero AC modes based on Benford’s law in

a low-dimensional representation via PCA. Then, some

evaluation frameworks are constructed to assess the ro-

bustness and generalization of the proposed method on
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various textured images belonging to three standard

databases as well as different compression quality level

settings. The average F1-measure score on all tested

databases in the proposed method is about 74% much

better than the state-of-the-art performance of 67.7%.

The proposed algorithm is also applicable to detect dou-

ble compression from a JPEG file and localize tampered

regions in actual image forgery scenarios. An implemen-

tation of our algorithms and used databases are avail-

able upon request to fellow researchers.

Keywords Double JPEG compression � image forgery

detection � quality level � quantized AC modes � sparse

signal � texture.

1 Introduction

In digital forensics community, the identification of im-

age recompression history can be regarded as a clue to

discover image manipulations in many forgeries [15, 37].

Among developed industrialized image compression ap-

proaches, most of digital cameras today deliver images

in Joint Photographic Experts Group (JPEG) compres-

sion standard directly [42]. Hence, to manipulate an im-

age, a photographic forger may tamper a JPEG image

in one photo-editing software package and compress it

again in the same well-known default format, which re-

sults in a double compressed image. Due to information

loss in the lossy JPEG compression technique, double

JPEG compression introduces some statistical artifacts

which may be exploited in a forensic analyzer system

to be able to discriminate an original single compressed

JPEG image from a double compressed one or localize

tampered regions in a forged JPEG image. This paper

focuses on these two problems.
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1.1 Related Work

In order to predict the condition whether a query JPEG

image is double compressed or not, different methods

have been developed [7, 10, 11, 19, 25, 28, 31, 32, 36, 38].

The ideas behind double compression detection tech-

niques can potentially facilitate the localization of al-

tered regions in images [8, 14, 26, 27, 43]. We catego-

rize double compression detection methods into three

groups according to footprints that are exploited for

feature extraction purposes. In the first category, some

of the studies are based on the assumption of non-

aligned blocking artifacts during double compression

creation [7, 8]. As the second category, due to the nature

of non-overlapping block-based processing in JPEG en-

coder, there are double compression detection methods

that leverage inconsistencies introduced in the bound-

aries of image’s blocks or the lack of correlation between

neighboring blocks [10, 11, 28]. In the third category,

the statistical distributions of quantized Discrete Co-

sine Transform (DCT) coefficients in the compressed

domain are investigated [10, 11, 25, 32, 32, 38].

Because of proper matching between Benford [6]

and 2-D DCT coefficients distributions [35, 41], some

double compression detection techniques have been an-

alyzed the cue of Quantized DCT (QDCT) coefficients

statistics of doubly compressed JPEG images [11, 25,

32]. In [25], Li et al. proposed a feature extraction ap-

proach based on the first digit attributes of individ-

ual Alternating Current (AC) modes from quantized

2-D DCT coefficients in a zig-zag order. In this sem-

inal work, they trained a Linear Discriminant Analy-

sis (LDA) classifier to distinguish double compression

from single compression. In another study, Milani et al.

suggested a learning-based multiple compression detec-

tion method [32] which is able to identify recompression

stages up to four times. To do this, they analyzed the

effect of decimal digits on the Most Significant Digit

(MSD) distribution from low-frequency quantized AC

coefficients in order to improve the accuracy of [25]. The

employed coefficients of the mentioned study had been

already proposed in [36] for steganogrphy purposes. In

[38], Popescu and Farid detected double compressed im-

ages via a specific peak pattern which is obtained from

the magnitude of Discrete Fourier Transform (DFT)

of QDCT modes. To localize tampered regions in the

presence of double compression, X. H. Li et al. pro-

posed a sliding-window image forgery detector [26] for

improving the performance of the saliency map-based

tampering detector of [27]. Contrary to the approaches

like [25, 32, 38] which are exploited the first order statis-

tics, by using a Markov transition probability matrix,

two methods [10, 11] utilized the second-order statis-

tics of QDCT coefficients to enhance the performance

of double compression detection algorithms by leverag-

ing the inter-block correlation of coefficients.

In [19], Huang et al. developed an approach to merely

deal with double compression detection in the special

case that both primary and secondary Quantization Ta-

bles (QTs) are the same. Their algorithm is based on

random perturbation strategy and demonstrates promis-

ing results especially in high identical compression’s

quality levels. In [23], Lai and Böhme revealed a char-

acteristic called the block convergence property in re-

peated JPEG compressed images with the highest pos-

sible compression’s quality level, denoted by l � 100

in [22, 30], which can be employed to solely estimate

the number of recompression stages for such a setting.

Therefore, the methods [19, 23] are limited to a special

case of the double compression detection problem.

1.2 Motivating Forensic Scenario

In the classic forensic scenario of double JPEG com-

pression detection, if the image under investigation is

given in JPEG format, image forensics analyzer is aware

of the last QT. It is achievable by reading the embed-

ded encoding/decoding information in JPEG header

file. Provided that the utilized methodology in JPEG

compression scheme is explicitly known, the secondary

quality level, l2, is also uniquely identifiable. In such a

scenario for which analyzer is aware of the secondary

quality level, but unaware of the primary quality level,

l1, several semi-aware techniques have been developed

to distinguish single compressed images from double

compressed ones [10, 11, 25, 31].

This paper takes another case into account in which

both the primary and secondary quality levels are not

explicitly or reliably known and may compel the foren-

sic analyst to blindly reveal recompression clues. We

call the problem in such a case as the “quantization-

unaware double JPEG compression detection”. As a

real-world application, in some forensic investigation

scenarios, only a bitmap (BMP) image version of a pre-

viously double compressed JPEG image may be avail-

able. In this scenario, the forger may deliberately mis-

lead the forensic analyst about the forensically useful

information of compressed file such as the embedded

QT and/or may provide the image on digital media for

further manipulation in a photo-editing software tool

like Adobe Camera Raw to, for instance, a photojour-

nalist applies raw image processing techniques on the

image. It is also likely to the QT of a JPEG metadata

be noisy in a communication channel or be missing of

the JPEG header file [40], so that is not reliably iden-

tifiable.
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In addition to the above practical use-cases of the

quantization-unaware identification, the major advan-

tageous characteristics of quantization-unaware double

JPEG compression detection are two-fold. First, the

semi-aware learning-based methods of [10, 11, 25, 31]

require an individual trained model for each l2 to at-

tain high classification performance. A motivating ex-

ample is to design a real-life double JPEG compression

detection system to consider, for the standard JPEG

scheme [22, 30], all possible compression’s quality levels

in the set Q:�tl | l P N1, 1 ¤ l ¤ 100u, where the sym-

bol N1 denotes the set of all positive integer numbers.

It is needed a long time, in addition to a great memory

requirement, to train 100 individual classifiers which

are only responsible for one JPEG encoder scheme. In-

stead, in the quantization-unaware case, only one global

learned model is exploited. Second, the idea behind

quantization-unaware double compression identification

corresponds approximately to the scenario in which the

image under investigation is available in spatial do-

main, e.g. the decoded double compressed JPEG image

that has been resaved in an uncompressed form like the

bitmap file. In this case, the secondary compression his-

tory is unavailable. To be aware of quantization history,

one way is to design a preprocessor stage for estimating

the secondary quality level and then behave with the

problem as a quantization-semi-aware case. However,

a new challenge arises in such a methodology, i.e. the

estimation error of the secondary quality level, which

its effect will propagate in a forensic analyzer system.

To the best of the authors’ knowledge, the available

identifiers only act successfully over a previously sin-

gle JPEG compressed bitmap image [12, 24, 30, 33].

In another solution, the forensic examiner may blindly

identify the bitmap recompression history. Due to un-

awareness of the secondary quality level and/or corre-

sponding QT, the complexity of the problem to distin-

guish single compression from double compression will

increase. Actually, in this blind approach, the identifica-

tion of recompression history is more sophisticated than

the semi-blind case. Unfortunately, from the feature ex-

traction perspective, the classification performance and

generality of previously published semi-aware methods

will be degraded in such a scenario, especially in the

high-quality or well-textured compressed images.

1.3 Paper Contributions

In order to find a proper global model for the quanti-

zation unaware identification, we statistically analyze

the basic theory behind quantized AC modes in JPEG

compression scheme by using a fresh formulation. To

the best of our knowledge, none of the previous stud-

ies have analyzed the effect of the image texture on the

behavior of quantized AC modes in the JPEG compres-

sion standard and have gained it to detect double com-

pression. Only, the work [28, 31] referred to the effect

of image content on the double compression detection.

In this paper, we rationalize the underlying statistical

behavior of the quantized AC modes to be a basis for

detecting the JPEG recompression. In order to grasp

an optimal performance, we show that the number of

quantized AC modes required to detect double com-

pression is related to both the image’s block texture and

the compression’s quality level. That is, based on the

amount of the last quality level and image texture com-

plexity, especially in the high-quality or well-textured

compressed images, we demonstrate that the QDCT

matrix is not highly sparse, and consequently almost

all of the attributes are informative. This result is what

has been neglected by the related work. The approaches

[11, 25, 32, 36, 38] employed only low-frequency coeffi-

cients in their feature extraction mechanisms. However,

as will be mathematically shown in this paper, consid-

ering the low-frequency AC modes in the process of

a given feature extraction approach is caused to miss

discriminative information of single compression from

double compression. If only the textureness or compres-

sion’s quality level of the image under investigation is

low enough, this hypothesis may be true. But, the tex-

ture of image blocks has a random nature and may be

different from one block to another. And, forgers usu-

ally target images with the high compression’s quality

levels in cyberspace to create forged images [24].

Due to these facts, we suggest a Double Compres-

sion Detection (DCD) algorithm that leverage the foot-

prints introduced by all AC frequency modes to achieve

an outstanding classification performance. Our low di-

mensional features are extracted by using Benford’s law

[6, 41] and Principal Component Analysis (PCA) [21].

We also represent the application of the proposed al-

gorithm for detecting double compression in the quan-

tization semi-aware scenario and localizing forged re-

gions in manipulated JPEG images. For reproducibil-

ity of the results, an implementation of our algorithms

and used databases are available upon request to fellow

researchers.

The remainder of this paper is organized as follows.

Section 2 statistically investigates the behavior of quan-

tized AC modes in the JPEG compression standard. In

Section 3, we analytically study the process of double

compression. Starting from these analyses, Section 4 de-

scribes the proposed double compression detection algo-

rithm. In Section 5, we empirically assess the suggested

method. Finally, in Section 6, the paper is concluded.
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(a) (b) (c)

Fig. 1: Three various partitions of the mode space: (a)

a partitioning based on DC (the subset D) and AC

modes (the subsets A1 to A63) in a zig-zag order, (b) a

partitioning based on the notion of frequency bands of

B1 to B14, and (c) a partitioning based on the definition

presented in [17], which subsets S1 to S5 respectively

correspond to low, horizontal and vertical frequencies,

diagonal textures, and high frequencies information.

2 Analysis of Quantized AC Modes Behavior

To statistically analyze the characteristics of QDCT co-

efficients, the basic elements of the JPEG coder are

investigated [19, 30] focusing on those that have foren-

sically telltale footprints, i.e. the transform and quanti-

zation stages. For describing the characteristics of these

parts, we present the definition of frequency bands for

partitioning the mode space illustrated in Fig. 1 (b).

Definition 1 (frequency bands) Let the matrix F �

rfijsb�b:�rf1, � � � , fbs, @fij P t0, 1, � � � , 2pb� 1qu, where

fn�1 � fn�1 p1 ¤ n   bq and f1 � r0, 1, � � � , b� 1s
T

(chosen psycho-visually as b � 8). The vector 1 is the

vector of all ones. The set Bk:�tpi, jq|fij � k, 1 ¤ i, j ¤

bu, 0 ¤ k ¤ 2pb�1q, is defined as the elements of the kth

frequency band. In fact, each frequency band index is

constructed from one of all possible anti-diagonals of F.

The mode space set, M, contains all frequency bands.

Fig. 1 (a) also redefines the Direct Current (DC)

and AC modes in a zig-zag order employed in the base-

line JPEG coder [42] as another partition of the mode

space (M � D
�

A). The DC mode, D, includes only

a coefficient in the frequency f1,1 and AC modes, A,

consist of all the others, i.e. |D| � 1 and |A| � b2 � 1.

2.1 Block-Wise DCT Characteristics

Let the matrices T�rtijs P Rb�b and Rp � rrpijsb�b
are the transformation kernel of DCT and the pth im-

age block of an image, respectively. The matrix Rc
p ��

rc,pij
�
P Rb�b represents the pth block in the frequency

domain as Rc
p � F

c
tRpu � TRpT

T, which the lin-

ear operator Fc denotes the direct Fourier-related 2-D

DCT. As a characteristic of Rc
p, the mean of absolute

(a) (b) (c)

Fig. 2: (a), (b) Quantization Table (QT) characteris-

tics: (a) the integral of QT vs. the quality level, (b) the

sample mean of quantization steps vs. frequency bands

for all quality levels, and (c) the number of zero entries

of the QDCT matrix vs. the quality level for 200000

uniformly Gaussian distributed synthetic image blocks.

values of spatial frequencies for all bands has almost a

decreasing envelope. Also, the basis vectors of T are

constant and independent of statistical properties of

the image block. Consequently, the energy compaction

property of DCT to place the signal’s energy into the

low frequency bands and result in a sparse signal is not

necessarily optimal. And, the zig-zag sort of AC modes

does not represent the optimal orientation of their spar-

sity. As evidence of this matter, see Fig. 1 (c) presented

in [17] which groups similar frequency contents.

2.2 Quantization Table Characteristics

Let the matrix Ql�
�
qlij
�
b�b

, @qlij P N1, l P Q, is the

QT corresponding to the lth quality level. To character-

ize the behavior of the QTs proposed by Independent

JPEG Group (IJG), consider the function aplq as the

integral of Ql. As an characteristic of the luminance

QT, the function aplq is certainly a decreasing curve,

which Fig. 2 (a) plots it. As another attribute, the sam-

ple mean of quantization steps (i.e. the entries of Ql) of

each frequency band has a specific curve, where, for all l,

Fig. 2 (b) shows its curves. And again, all of the higher-

quality level curve places below the lower-quality level

one. There is an almost ascending behavior in the curves

versus the frequency band number, although some ex-

ceptions exist in the starting and ending bands.

2.3 Quantized DCT Coefficients Characteristics

The QDCT matrix rRp�rr̃
p
ijs P Zb�b is determined asrRp � tRc

p c Qls, where the notations c and t�s stand

for the entry-by-entry right division and the nearest in-

teger, respectively. On the low-pass natural scenes such

as a clear sky image, the matrix rRp is generally sparse.

Almost, the amount of sparsity is inversely proportional

to both l and the image texture. To show the first phe-

nomenon, i.e. the relation between the information of
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rRp and l, let Nz�b
2�

��� rRp

���
0

denotes the number of zero

entries of rRp, which the l0-norm, }�}0, represents the

number of non-zero elements of a vector/matrix. If the

quality level in JPEG encoder increases then its corre-

sponding quantization steps will decrease (See Figs. 2

(a) and (b).). In this case, the number of non-zero co-

efficients will increase, and consequently, Nz will de-

crease. This characteristic implies that Nz � Nz plq,

which Fig. 2 (c) empirically illustrates such a function-

ality for 200000 uniformly Gaussian distributed syn-

thetic image blocks. For all l, about 99.7% of the zero

entries fall in the plotted intervals. The variations of Nz
at the middle quality levels are larger than other levels.

In the second phenomenon, increasing the texture

is behaviorally proportional to an increase in l. That is,

if the coarseness of an image’s block texture increases,

Nz will decrease. We use Shannon’s joint entropy which

is determined from Haralick’s co-occurrence matrix [16,

20] as a quantitative metric to measure the texture of

a block. Hence, the normalized local texture of the pth

block, Rp, belonging to the λth image is calculated as

Tλp �
1

Hmax

B̧

i�1

B̧

j�1

p̂ij log2

�
1

p̂ij



, (1)

where Tλp P r0, 1s , @p, λ. The gray level co-occurrence

matrix pP � rp̂ijsB�B is the joint Probability Mass

Function (PMF) which is obtained by the quantized or

scaled version of the input block, namely Gs �
�
gsij
�
b�b

,

so that p̂ij � P
�
gsr,c � i, gsr,c�1 � j

�
, where 1 ¤ i, j ¤

B, 1 ¤ r ¤ b and 1 ¤ c ¤ b � 1. We set the num-

ber of distinct gray levels in Gs as B � 8, so that

gsij P r1, Bs , 1 ¤ i, j ¤ b. In (1), Hmax denotes the

maximum entropy of pP, which B � 8 ñ Hmax � 6.

To qualitatively evaluate textural information of a

database, we divide its images into three groups based

on their measured texture content. To do this, let mλ
T ,

@λ P r1, NRs, denotes the sample mean of local tex-

ture over all blocks of the λth image, Rλ, belonging

to a given database, in which NR represents the total

number of images. So, the number of images with low,

moderate and high textures of the given database are

defined as NLT :� |tRλ | 0 ¤ mλ
T   tL, 1 ¤ λ ¤ NRu|,

NMT :� |tRλ | tL ¤ mλ
T   tH , 1 ¤ λ ¤ NRu| and

NHT :� |tRλ | tH ¤ mλ
T ¤ 1, 1 ¤ λ ¤ NRu|, respec-

tively. We set the thresholds tL �
1
3 and tH � 2

3 .

Now, to empirically show Nz � Nz
�
Tλp

�
, suppose

the vector rrk includes the coefficients corresponding to

the kth frequency band. Then, the probability that the

event of zero occurs in the kth frequency band is

P prrk � 0q � 1�
}rrk}0
|Bk|

, 0 ¤ k ¤ 2 pb� 1q . (2)

Fig. 3: Random nature of block’s texture in the three

magnified blocks, highlighted on the 341th image of

UCID database in white, green and cyan colors which

have low, moderate and high textures, respectively.

(a) (b)

Fig. 4: (a) The probability of zero for the low, moderate

and high texture blocks of Fig. 3, (b) the probabilities

of zero in the image block with the moderate texture in

Fig. 3 for both single and double compressions.

Example 1 (random nature of block’s texture) As a real

example, see Fig. 3 that represents random nature of

texture in three image blocks of the 341th ensemble

of Uncompressed Colour Image Database (UCID) [39],

for which T 341
2891 � 0.1626, T 341

1866 � 0.5141 and T 341
1970 �

0.8280, having the low pNz � 40q, moderate pNz � 37q

and high pNz � 33q textures, respectively. For l � 70,

Fig. 4 (a) plots (2) in these blocks. The sample mean

m341
T is the maximum value in UCID database.

As a conclusion, depending on the amount of the

last quality level and image texture, especially in the

high-quality or well-textured compressed images, the

matrix rRp is not necessarily sparse, i.e.Nz � Nzpl, T
λ
p q,

and almost all of the frequency attributes are informa-

tive to find global features for solving the problem in

the quantization-unaware case. These intuitions notify

us that the required number of quantized AC modes to

identify double compression is a function of l and Tλp .

3 Analytical Study of Double Compression

The quantization stage in the coding process of JPEG

compression is the main source of lossiness [13] that

propagates the quantization error, due to rounding in
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frequency domain. Hence, we statistically analyzed dou-

ble compression regardless of other negligible sources of

error [19, 30]. Based on the basic building elements of

JPEG scheme [30], for all t in N0 (in which the symbol

N0 denotes the set of all nonnegative integer numbers),

we recursively model the recompression process as

pRpt�1q
p � T ptF�1

c tptFcrpRptq
p s cQlt�1

sq dQlt�1
usq, (3)

where pRpt�1q
p represents the pth reconstructed image

blocks in spatial domain after pt� 1q
th

compression,

for which pRp0q
p :�Rp. The symbols d, F�1

c and T stand

for Hadamard product, the inverse Fourier-related 2-D

DCT and the truncation function, respectively. For sin-

gle and double compressions in pixel domain, we have

pRp1q
p � F�1

c

!rRp dQl1

)
, and, (4)

pRp2q
p � F�1

c

!Y
Fc

�
F�1
c

�rRp dQl1

	�
cQl2

U
dQl2

)
� F�1

c

!Y rRp dQl1 cQl2

U
dQl2

)
. (5)

In the following lemma, we study the behavior of the

quantization error as well as the effect of AC modes se-

lection as individual distinguishable features on the de-

tection error of double compression (positive class, C2)

as single compression (negative class, C1) regardless of

other factors in machine learning systems. Generally,

from a forensic analyzer viewpoint, to identify image

recompression history, the cost of the misclassification

of the class C2 as C1, producing the type II error or

False Negative (FN), is more expensive than the class

C1 as C2, producing the type I error or False Positive

(FP). This is because a predicted double compressed

image may be investigated in further forensic tools for

localizing its probable tampered regions, whereas a de-

tected single compressed image may be known as an

authentic signal. Therefore, our emphasis is on FN.

Lemma 1 (AC modes effect on detection error)

Let the set M � tD,Au be as the mode space in which

the sets D and A denote the single-element DC mode

and all AC modes, respectively. If the set A is parti-

tioned into n subsets so that Ai

�
Aj � H, @i � j,

then, the misclassification error probability of double

compressed images as single compressed ones satisfies

Pe pC1|C2,Aq ¤ Pe pC1|C2,Akq ,@k � 1, � � � , n. (6)

Proof In (5), we first define the matrix Φ:�Ql1 cQl2 ,

@φij P R�. It can be observed that A �
�n
k�1 Ak

, hence,

P pxΦy � O|Aq �
ņ

k�1

P pxΦy � O|Akq, (7)

where the matrix O is the zero matrix and P pxΦy �

O|Akq:�
1
|A| |tpi, jq P Ak|xφijy � 0u|, @k. The symbols

x�y and t�u denote the fractional part and the floor func-

tion, respectively. To prove, three possible cases exist

for l2 in a doubly compressed JPEG image as follows.

 Case I: If l1 � l2, then, ql1ij � ql2ij , @i, j, and Φ�J,

which the matrix J is the all-ones matrix. We con-

clude pRp2q
p � pRp1q

p . Hence, for all k, P pxΦy � O|Aq �
P pxΦy � O|Akq � 0 and all doubly compressed im-

ages classify as singly compressed ones (Pe pC1|C2,Aq �
Pe pC1|C2,Akq � 1). As a result, because the trace of

quantization error does not exist in the second compres-

sion, there is no meaningful discriminative information

for learning to classify the class C1 from C2 correctly.

So, for a double compressed block, the number of zeros

in rRp is equal to its single compressed counterpart.

 Case II: If l1  l2, then, ql1ij ¥ ql2ij and 1 ¤ φij   8,

@i, j. Now, consider the worst situation occurs, i.e. all

quantization steps in the primary compression are inte-

ger multiples of the secondary compression counterpart.

In other words, Dα P N1 so that Ql1 � αQl2 . By sub-

stituting Ql1 in Φ, this situation yields Φ�αJ. There-

fore, pRp2q
p � pRp1q

p and identical results with the case I

will happen. Consequently, for all k, P pxΦy � O|Aq ¥
P pxΦy � O|Akq and Pe pC1|C2,Aq ¤ Pe pC1|C2,Akq.

Thus, exploiting more AC modes information result in

more non-integer multiples to help the learning system

to alleviate the misclassification error of the class C2 as

C1. Also, the value Nz of a double compressed block is

less than or equal to its single compressed counterpart.

 Case III: If l1¡ l2, then, ql1ij ¤ ql2ij and 0   φij ¤ 1,

@i, j. Here again, suppose the worst circumstance oc-

curs, i.e. all quantization steps in the secondary com-

pression are integer multiples of the primary compres-

sion counterpart. In other words, Dβ P N1 so that Ql1 �
1
βQ

l2
. Such a situation yields Φ� 1

βJ, and then, pRp2q
p �

F�1
c

!Y
1
β
rRp

U
d βQl1

)
� pRp1q

p . Consequently, for all k,

P pxΦy � O|Aq ¡ P pxΦy � O|Akq and PepC1|C2,Aq  
PepC1|C2,Akq. We observe that even for the worst sit-

uation, the information loss yet exists. As a general re-

sult, for feature extraction approaches that leverage all

AC frequency modes, we expect to attain a stronger im-

provement in the performance of the case III than other

two cases. Additionally, the value Nz of a doubly com-

pressed block is more than or equal to its singly com-

pressed counterpart. To observe this difference, Fig. 4

(b) plots P prrk � 0q ,@k in the block with the moder-

ate texture of Example 1 for single compression with

l1 � 80 and double compression with pl1 � 80, l2 �

55q. These curves show the discrimination between the

classes C1 and C2 especially in middle and high fre-

quencies. [\
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4 Double Compression Detection Algorithm

Based on the analyses of Sections 2 and 3 as well as the

following intuitions, we have defined the feature space

in the proposed DCD algorithm.

a) JPEG compression performs the identical pro-

cess on dense and sparse image blocks, and does not

consider their frequency contents. On the other hand,

different camera manufacturers as well as image editing

software packages do not define the QT by the standard

[1]. Therefore, it is required to attributes of double com-

pression detection be as independent as possible from

such variations. Independent of which definition for the

QT is used, Lemma 1 denotes that attributes may be

spread in different partitions of the mode space.

b) To consider statistics of the non-zero QDCT co-

efficients, we firstly suggest to exploit the effect of all

single-frequency modes to grasp spread attributes. Then,

a compact representation of these attributes are pre-

sented by Benford’s law. To this intent, we determine

the FSD distribution coefficients of the individual quan-

tized AC mode as the first set of features to detect dou-

ble compression. These features cope with dense blocks

and reduce dependency to the employed QT.

c) In the sparse blocks, the zero entries of QDCT

coefficients for a double compressed image block may

be different from a single compressed version. To take

into account the number of zero QDCT coefficients, Nz,

we employ the Second Significant Digit (SSD) to be

able to capture discriminative information laid in the

zero coefficients as the second set of features. This work

has the benefit that not only the zero entries of QDCT

coefficients are counted, but also the zero values in the

SSD of non-zero coefficients are considered.

4.1 Extracting Features

By the above explanations, to extract features, at first,

we construct the quantized AC modes as individual vec-

tors. If the vector mn
a � rmn,a

1 , � � � ,mn,a
Np
s
T

integrates

the ath quantized AC mode, for all blocks of the nth

image of a given database, then

mn
a � tr̃pij |pi, jq P A, i � ia, j � jau

Np

p�1
, 1 ¤ a   |A|.

In the next step, we estimate the real distributions of

the FSD and the digit zero from the SSD based on Ben-

ford’s law. For this purpose, let the function DL pXq

represents the Lth signifcant decimal digit of the ran-

dom variable X P R, then DL pXq � BL, where BL
is the Lth digit Benford distribution. Benford’s law de-

Fig. 5: The probability curves of the first and the second

significant digits.

scribes the behavior of PMF as

P pDL pXq � dq �#
log10

�
1� 1

d

�
, L � 1^ d P D1°10L�1�1

k�10L�2 log10

�
1� 1

10k�d

	
, L ¡ 1^ d P D0

,
(8)

for which D0 :� t0, 1, � � � , 9u and D1 :� t1, 2, � � � , 9u.

The significant decimal digit function can be explicitly

calculated [6] as follows

DLpXq:�"
0, X � 0, L ¡ 1X

10L�1SpXq
\
� 10

X
10L�2SpXq

\
, X � 0,@L

,
(9)

where S pXq represents the decimal significand function

S pXq :�

"
0, X � 0

10log10|X|�tlog10|X| u , X � 0
. (10)

Please note that based on the definition presented in

(9), D1pXq, is only counted for the non-zero real num-

ber X. But, in D2pXq, both SSD of zero and non-

zero numbers are considered, so that, we take into ac-

count D2p0q :� 0 for convenience [6]. For example,

D2p0q � 0, D2p105q � 0, D2p0.000702q � 0, D2p68q �

8, D2p�94q � 4. Fig. 5 plots probability curves of the

first and the second significant digits.

Benford’s law has four basic properties that help us

to find whether significant digits of the random variable

X follow Benford distribution [6, 41]. These proper-

ties are known as uniform distribution, scale-invariance,

base-invariance and sum-invariance characterizations.

Here, we define mn,a
i :�X, where mn,a

i P Z, @i and uti-

lize the histogram estimator to determine the empirical

PMF of the vector mn
a as

ppmn
a
�rp̂

mn
a

1 , � � � , p̂
mn

a

Nd�1, p̂
mn

a

Nd
s
T
P RNd , 1 ¤ a ¤ |A|,

in which the p̂
mn

a
1 to p̂

mn
a

Nd�1 entries denote the probabil-

ity distribution of the FSD, the p̂
mn

a

Nd
entry is the prob-

ability distribution of the digit zero from the SSD and

the variable Nd � NF
d �NS

d represents the total num-

ber of utilized significant digits in the proposed feature

extraction method. The parameters NF
d and NS

d are the
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number of digits employed from the FSD and the SSD,

respectively, which NF
d � 9 and NS

d � 1. Ultimately,

the feature vector of the nth image is constructed as

xn � vecprppmn
1
, � � � , ppmn

|A|
sq P RK , where the function

vecp�q denotes the vector operator and K � Nd�|A| is

the initial feature dimensions, i.e. K � 630.

4.2 PCA Dimensionality Reduction

As a benefit of our initial features, it exploit existing

information into total space of AC modes. However,

its dimensions may cause the curse of dimensionality,

especially in small data (e.g. for forgery localization

purposes). To solve this problem, it is needed to sup-

press redundant information of sparse blocks by an ap-

propriate dimensionality reduction technique. Hence, in

the proposed method, we suggest the venerable data-

driven PCA which is a variant of the optimal KLT

transform [21], to appropriately encode information of

different frequency bands into a lower-dimensional rep-

resentation. If the matrix V P RK�dr represents the

PCA transformation kernel of a given model, then the

nth training/testing dimensionality reduced feature is

yn�VTxn, so that dr ¤ K. We calculated the mapping

models of the unsupervised PCA dimensionality reduc-

tion technique from learning instances without their la-

bels. After applying PCA, the dimensionality reduced

features are renormalized in the range r0, 1s by dividing

DC-free features to their standard deviations, i.e. for

the nth training/testing low-dimensional sample, yn,

ryn�pyn�µq c σ, (11)

in which µ and σ denote the sample mean and stan-

dard deviation vectors, respectively, determined by all

learning low-dimensional ensembles.

In the proposed DCD algorithm, feature vectors of

single and double compressed images have fed to a clas-

sifier to determine the learned model. To do this, var-

ious classifiers may be used. Here, the baseline linear

Support Vector Machines (SVMs) model is utilized. Con-

sidering both quantization- unaware and semi-aware

scenarios, the learning phase of the proposed DCD algo-

rithm is summarized in Algorithm 1. Fig. 6 also shows

the block diagram of the suggested DCD approach in

the testing phase.

4.3 Image Forgery Detection

By using the proposed method, we can localize tam-

pered regions in manipulated JPEG images. To do this,

at first, we scan the whole blocks of the questionable

Algorithm 1 The learning process of the proposed

double JPEG compression detection algorithm

1: Input: Learning images set of a given database.
2: Dump QDCT coefficients of an image.
3: Integrate each quantized AC mode pertaining to all

blocks of an image into an individual vector.
4: Estimate PMF of the FSD (digits 1 to 9) for each vector.
5: Estimate PMF of the digit 0 from the SSD for each vector.
6: Create feature vector by unifying distributions obtained

from Steps 4 and 5.
7: Apply PCA for the low-dimensional model and then,

renormalize the dimensionally reduced features.
8: Feed feature vectors of all training images to a binary

SVMs classifier to determine the learned model.
9: Output: The learned model.

Fig. 6: The block diagram of the proposed DCD ap-

proach in the testing phase.

Algorithm 2 The pseudo-code of the proposed image

forgery detection algorithm

1: Input: The questionable image I in JPEG format.
2: Read coder information and then, dump the QDCT co-

efficients matrix, Ql, of the image I.
3: for p Ð 1, Np do
4: Put the center of a ω � ω mask on the pth block of

Ql.
5: Extract features.
6: Feed the feature vector to the SVMs classifier with

the related coder quality level.
7: if ô is double compression then
8: Set Wtpu with the b � b zero matrix.
9: else

10: Set Wtpu with the b � b all-ones matrix.
11: end if
12: end for
13: Apply the post-processing stage to the binary image W

for creating the ultimate segmented image S.
14: Output: The segmented image S.

JPEG image I, with the height of h and the width of

w, by using a sliding square mask with the length of ω

blocks. Afterwards, for each mask, the proposed feature

vector is extracted. Then, we predict the class label of

the central block, ô, via the SVMs classifier. For the

image I, the procedure repeats Np times, where Np �P
h
b

T
�
P
w
b

T
denotes the total number of its partitions

in which r�s represents the ceiling function. Ultimately,

a post-processing stage is applied to connect breaks,

remove noisy segments and fill holes. Algorithm 2 de-

scribes the pseudo-code of the proposed image forgery

detection algorithm.
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5 Experiments

Although this paper does not provide a complete math-

ematical proof for each part, we evaluate the proposed

approach in this section with extensive experiments to

support our findings. To empirically assess the robust-

ness and generalization capabilities of the proposed dou-

ble JPEG compression detection method on various

textured images belonging to three standard databases

as well as different compression’s quality levels, a com-

mon train/test benchmark framework is constructed.

Considering both quantization- unaware and semi-aware

scenarios, in this framework, we have fairly compared

our DCD method to a set of competing state-of-the-

art approaches. To compare the proposed feature ex-

traction part with other related methods, we have im-

plemented the feature extraction method of [25], the

feature selection algorithm of [32], and Dong’s features

[11] and then applied them to the same datasets and

the baseline linear SVMs classifier for a fair compari-

son. To localize tampered regions, we have also com-

pared the proposed forgery detector with the algorithm

[26]. In experiments, we employed three standard real-

world raw image databases in order to train and test

the described classification system as follows.

– Database I: UCID database containing raw images

that were captured by a Minolta Dimage 5 digital

color camera from natural scenes with Tagged Image

File Format (TIFF) extension [2].

– Database II: Never-compressed Color Image Data

base (hereafter, in the paper, called as NCID) [28,

29] was created by cropping 5000 original raw RGB

images with TIFF extension, image dimensions of

maxph,wq � minph,wq � 670 � 480 and 8-bit per

each color channel. Among cropped images, high

complexity patches were intentionally selected and

resaved with BMP extension and patch dimensions

of 256� 256 by Liu et al. [3].

– Database III: McGill Calibrated Colour Image Data

base (CCID) [34] encompasses color images in 9 dif-

ferent categories taken with two Nikon Coolpix 5700

digital cameras from natural scenes with both TIFF

and JPEG extensions [4].

Fig. 7 shows representative sample images of UCID,

NCID and CCID databases. In Table 1, the important

statistics of the utilized various image databases are

summarized. As is obvious, among databases, NCID has

the most textural information and UCID has the least

textural information.

(a) (b) (c)

Fig. 7: Representative sample images of the utilized

databases: (a) UCID, (b) NCID, and (c) CCID.

Table 1: The statistics of the utilized image databases

Database
Textural information

NR Image dimensions
NLT NMT NHT

UCID 1076 262 0 1338 512 � 384

NCID 2412 2455 283 5150 256 � 256

CCID 792 303 1 1096� 768 � 576

� The total number of raw images in 9 categories are 1152 for
which 56 images are the same. In experiments, we removed
these repeated images.

5.1 Original and Altered Image Data Collection

To provide single and double compressed JPEG image

patches, we firstly compressed each raw image of an

individual aforementioned database with quality levels

belonging to the predefined set

Lt�1 � tlt�1 | lt�1 � lmin � sl � ku
9
k�0,@t P N0.

In experiments, we chose the lowest quality levels, lmin �

50, and the step size sl � 5. This process itself produced

|L1| single compressed JPEG image databases. Then,

each single compressed JPEG images database was re-

compressed with the same already quality level settings

that created |L1| � |L2| double compressed JPEG im-

ages databases. In other words, in this case, C1 and C2

classes have 10 and 100 types, respectively. Based on the

holdout cross-validation approach, the number of learn-

ing data for each type of individual class is selected as

NL � tαL�NRs where αL P p0, 1s determines the ratio

of learning data utilized in the training phase. In our

experiments, we set αL � 3
4 . Hence, the total number

of learning images were 110 � NL. The corresponding

remainder data contained the testing set.

Fig. 8 illustrates the process of data gathering de-

scribed above. Due to such a skewed class distribution,

in the training phase, we encountered with a two-class

imbalanced learning problem with between-class imbal-

ance ratio 10:1. Different mechanisms may be consid-

ered to deal with this problem [18]. Here, we utilized a

cost-sensitive linear SVMs classifier to grasp a robust

and stable classification performance. For this purpose,

we used LIBSVM toolbox [5, 9]. Therefore, in the learn-

ing process of different double compression detection
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methods for the quantization-unaware scenario, we fig-

ured out the weight of classes as wC1
� 0.9091 and

wC2
� 0.0909, with the unit cost.

5.2 Detection Efficiency on Different Quality Levels

As the first experiment, we used the well-known CCID

database to train and test the aforementioned bench-

mark classification system. Table 2 shows the accuracy

results of the proposed feature extraction method for

detecting both singly compressed images, @l1 P L1, and

doubly compressed images, @l1 P L1,@l2 P L2, in terms

of percentage. In the table, AC1
and AC2

denote the

accuracy for the C1 and C2 classes, respectively. Also,

the parameters l1 and l2 represent ground truth labels

of the first and the second compression’s quality lev-

els, respectively. Based on the discussed train and test

sets, the confusion matrix is simply determinable from

such a table, where in Section 5.4, we have referred to

its important criteria. Tables 3, 4 and 5 tabulate the

detection results of the methods [11, 25, 32] on CCID

database, respectively. For ease of comparison, among

the compered methods listed in Tables 2, 3, 4 and 5, the

highlighted values in the bold type represent the best

performance for each l1 and pl1, l2q in single and dou-

ble compressions, respectively. The results demonstrate

the suggested features act better than the competitors,

especially in the challenging case l1¡ l2.

To examine the effectiveness of various methods in

the high compression’s quality levels, consider the sub-

table for which l1, l2 P t75, � � � , 95u, in Tables 2, 3,

4 and 5, i.e. the lightweight compression which are uti-

lized frequently in JPEG images. In this situation, we

determined the arithmetic mean accuracy in terms of

percentage for the class C2 to explore detection effi-

ciency. Fig. 9 plots this criterion for all databases. The

chart demonstrates that the proposed approach outper-

forms its competitors for all databases. It can be con-

cluded that, to detect double compressed JPEG images

with the high compression’s quality levels, the proposed

footprints are more robust than the features introduced

in the competing methods.

5.3 Detection Efficiency on Different Textures

In order to investigate the performance of different meth-

ods on various textured images, we calculated the prob-

ability of the type II error normalized over all testing

instances, Pe pC1|C2q :� FN
TP�FN�FP�TN , for databases

I, II and III as shown in Fig. 10 in terms of percentage.

TP and TN stand for True Positive and True Negative,

respectively. Obviously, for all databases, the proposed

Fig. 8: The process of creating single and double com-

pressed JPEG images.

Table 2: The accuracy results of the proposed method

on CCID database in terms of percentage

X
AC2

T l1

50 55 60 65 70 75 80 85 90 95

l2

50 7 9 3 42 11 89 96 28 30 24

55 26 7 28 7 5 2 3 2 80 4

60 63 9 11 45 56 16 95 54 43 64

65 80 43 40 11 92 27 16 54 15 5

70 81 84 85 56 11 60 16 99 88 64

75 93 97 93 96 24 5 90 3 91 14

80 99 96 88 88 97 76 4 83 55 67

85 98 98 97 95 97 96 96 3 78 86

90 96 99 99 96 96 94 98 94 1 78

95 97 97 98 93 97 96 97 93 99 4
X
AC1

T
94 93 89 89 89 95 96 97 99 97

Table 3: The accuracy results of Li’s approach [25] on

CCID database in terms of percentage

X
AC2

T l1

50 55 60 65 70 75 80 85 90 95

l2

50 9 7 3 27 6 96 97 21 18 8

55 31 8 32 3 2 1 7 3 70 8

60 44 18 7 85 46 9 84 60 11 18

65 84 13 34 9 85 1 2 54 3 5

70 91 90 95 15 6 35 0 99 74 7

75 97 99 95 99 16 2 85 0 23 1

80 99 97 92 95 98 74 1 79 0 3

85 99 100 99 98 97 96 93 0 56 8

90 97 97 99 95 98 97 100 93 0 0

95 96 97 99 93 100 95 95 97 99 0
X
AC1

T
91 92 93 91 93 98 99 100 100 100

Table 4: The accuracy results of Milani’s method [32]

on CCID database in terms of percentage

X
AC2

T l1

50 55 60 65 70 75 80 85 90 95

l2

50 20 11 13 27 85 14 84 23 24 21

55 24 19 15 9 19 16 9 11 23 19

60 11 42 15 29 22 45 24 55 11 16

65 83 8 45 13 27 10 22 14 12 14

70 5 78 58 8 11 54 5 24 13 11

75 8 32 45 66 7 10 94 6 19 9

80 93 84 66 15 60 0 10 46 13 11

85 95 99 99 39 1 16 23 7 9 6

90 26 86 78 97 10 99 3 100 9 19

95 17 89 84 69 88 89 73 100 79 3
X
AC1

T
80 81 85 87 89 89 90 93 92 97

method is superior to the competitors. In the test on

NCID database having the most textural information,

for each l1 in singly compressed images and pl1, l2q in

doubly compressed images, the number of images with

low, moderate and high textures were as NLT � 647,
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Table 5: The accuracy results of Dong’s method [11] on

CCID database in terms of percentage

X
AC2

T l1

50 55 60 65 70 75 80 85 90 95

l2

50 15 14 4 40 16 95 96 22 32 12

55 33 12 35 1 3 1 8 4 62 12

60 50 24 12 76 49 19 82 63 17 27

65 84 14 45 11 86 1 2 55 2 4

70 89 88 93 23 8 38 0 98 81 8

75 98 99 93 99 16 2 86 0 23 2

80 99 97 92 95 99 74 1 81 0 2

85 99 99 99 99 95 95 96 0 56 11

90 97 98 100 96 99 97 99 94 0 0

95 97 99 99 95 99 94 95 97 99 0
X
AC1

T
85 88 88 89 92 98 99 100 100 100

Fig. 9: The arithmetic mean accuracy for the class C2 in

terms of percentage in lightweight image compressions

for different methods on databases I, II and III.

Fig. 10: The probability of the type II error in % for

different methods on databases I, II and III.

NMT � 564 and NHT � 76, respectively. Please note

that, in NCID database, the type II error has grown

in the methods [25], [32] and [11], whereas for the pro-

posed method this has decreased. Moreover, the error

difference between the proposed approach with the best

one of the competitors reveals that, for NCID database,

this divergence rate is maximum and equal to 12.3%.

These results demonstrate that the superiority of the

proposed method is more important than the competi-

tors on high textured images. In fact, those are empir-

ical evidences of Lemma 1.

5.4 Overall Performance Measurement on Databases

Similar to the reported detailed experiment for different

compression’s quality level settings on CCID database

Table 6: The overall performance metrics of different

methods for quantization-unaware double compression

detecting on databases I, II and III in percentage

Method Database

Performance metrics

Recall
Precision F1-measure

l1  l2 l1 � l2 l1¡ l2 Total

Li’s method [25]

UCID 85.71 3.92 26.43 50.85 99.22 67.24

NCID 83.97 8.17 24.98 49.85 98.40 66.17

CCID 84.54 4.23 29.78 51.87 99.18 68.12

Milani’s method [32]

UCID 55.18 17.57 29.61 39.91 95.73 56.33

NCID 50.47 14.89 23.40 34.73 95.82 50.98

CCID 53.24 11.61 23.64 35.76 96.87 52.23

Dong’s method [11]

UCID 86.05 5.63 28.22 51.99 98.94 68.16

NCID 83.81 8.32 24.25 49.46 98.35 65.82

CCID 85.28 6.17 31.70 53.26 98.86 69.23

Proposed approach

UCID 86.89 8.86 44.48 60.00 98.56 74.59

NCID 87.03 9.94 40.46 58.37 98.34 73.25

CCID 85.13 6.39 44.86 59.13 98.96 74.03

in Section 5.2, we also assessed the proposed and com-

peting methods on two other databases. Here, to save

space in the paper, three criteria employed as stan-

dard performance metrics, including Recall � TP
TP�FN ,

Precision � TP
TP�FP and F1-measure � 2�Precision�Recall

Precision�Recall

to appropriately investigate the performance of differ-

ent methods. The higher value of each metrics means

the better performance. In Table 6, the performance

metrics pertaining to the proposed and competing meth-

ods are expressed as percentages for databases I, II and

III. About the recall criterion which represents the per-

formance of the double compression class, in addition

to the calculation of the total recall rate, this metrics

has independently been measured for cases I, II and

III presented in Lemma 1. In the table, the highlighted

values in the bold type indicate the best score. Experi-

ments on three image databases demonstrated that the

results of the proposed algorithm which were utilized

for the problem of quantization-unaware double JPEG

compression detection are promising and statistically

superior, even, to its nearest competitor, i.e. Dong’s

feature extraction method in almost all cases. The av-

erage F1-measure on three databases is about 74% in

the proposed approach which is much better than the

performance of 67.7% in the method [11]. Although,

due to uncertainty, the F1-measure score of the pro-

posed approach has degraded a bit by increasing textu-

ral information of databases, this degradation is more

for the competitors, especially for NCID database. This

fact shows that the proposed method is more robust

against textured images, too.

5.5 Effect of Dimensionality Reduction

Because the proposed features take into account the ef-

fects of block’s texture and compression’s quality level,

we experimentally demonstrate here that a low dimen-
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sional representation of our features is yet more efficient

than the competitors. In order to evaluate the proposed

low-dimensional model of the DCD algorithm, we inten-

tionally set the ultimate feature dimensions for PCA di-

mensionality reduction equal to dr � 200 for comparing

to the best competitor with the feature dimensions of

200 [11]. Table 7 presents the performance of the pro-

posed low-dimensional features on CCID database in

comparison with other methods. The results show that,

by using PCA dimensionality reduction technique, the

performance in the suggested low-dimensional model is

yet more than the compared methods. It also demon-

strates that dimensionality reduction after exploiting

initial attributes of all single-frequency modes donates

the superior performance than the competitors.

5.6 Influence of SSD-Related Features

In this experiment, we omitted the SSD-related features

as the second set of attributes from the 630-element

feature vector. This results in a 567-dimensional vector

containing the FSD distributions of all AC frequency

modes. Fig. 11 compares the performance of our 567-

dimensional features against the proposed features with

K � 630 for two different databases. Here, in addi-

tion to UCID database, we employed another database

called Raw Color Image Database (RCID) including

NR � 208 sparse images. The authors have captured

this database by a Canon Eos 550D digital color cam-

era from natural scenes with TIFF extension and full

capacity of resolution, i.e. the dimensions 5184�3456 or

vice versa1. For RCID database, NLT � 205, NMT � 3

and NHT � 0, which is sparser than UCID database.

The results show the features with K � 630 slightly

outperform the first set of attributes. The improvement

values on UCID and RCID databases are 0.11% and

0.15%, respectively. As a result, the features pertaining

to the digit 0 from SSD for sparse images with ample

zeros in the frequency domain create better discrimi-

nation in double compression detection. The little per-

formance degradation of our 567-element feature vector

in comparison to all attributes is due to the fact that

the number of zero coefficients for the class C2 differs

among cases I, II and III in Lemma 1; whereas our

considered global model does not gain such intra-class

variations and groups all kinds in one class. It seems

that taking into account these kinds of the class C2 as

independently as possible will further strengthen the

discrimination role of the SSD-related features.

1 RCID database is publicly available to fellow academic
researchers. To access it, please contact behrad@shahed.ac.ir.

Fig. 11: The performance of the proposed features with

(K � 630) and without (K � 567) SSD-related at-

tributes in terms of percentage for two databases.

5.7 Test in Quantization-Semi-Aware Scenario

In the aforementioned experiments, we completely eval-

uated different double compression detection algorithms

in the quantization-unaware forensic scenario. In this

experiment, we have also assessed the effectiveness of

the proposed DCD algorithm in the quantization-semi-

aware scenario. It is important to note that, for each

l2, we determined an individual learned model. Table 8

reports the performance of different methods on UCID

database. Generally speaking, the overall performance

on the quantization-semi-aware case is better than the

quantization-unaware scenario. Obviously, the perfor-

mance of the proposed algorithm has improved on the

methods [11, 25, 32] in the quantization-semi-aware dou-

ble compression detection scenario, too.

5.8 Image Forgery Detection Tests

We also examined the application of the proposed al-

gorithm to actual forensic investigations. In this exper-

iment, we firstly trained the individual dimensionality

reduced models by all possible single and double com-

pressed images of NCID database. Then, we provided

a test-set of forged JPEG images via CCID database,

each of which was consisted of both authentic and tam-

pered regions to evaluate the performance. For instance,

Figs. 12 (a), (b) and (c) portray six original JPEG im-

ages, their forged versions and detection results of tam-

pered regions, respectively. The figure shows that the

results of forgery detection are promising. In experi-

ments, we set the parameters as ω � 9, l1 � 50 and

l2 � 85. Here, we also compared the proposed tamper-

ing detection results with those of the algorithm [26].

Based on the ground truth labels of forged images, Ta-

ble 9 summarize the performance of these methods in

terms of the confusion matrix and F1-measure for 10

tampered images. As is obvious in this table, the pro-

posed approach outperforms the algorithm [26] for de-

tecting the tampered regions.
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(a) (b) (c)

Fig. 12: The application of our method to actual foren-

sic investigations: (a) original JPEG images, (b) tam-

pered images in which the inserted objects have under-

gone single compression and other regions have borne

double compression, and (c) forgery detection results.

Table 7: The performance of the proposed low-

dimensional features on CCID database in comparison

with other methods in terms of percentage

Method Recall Precision F1-measure

Li’s method [25] 51.87 99.18 68.12

Milani’s method [32] 35.76 96.87 52.23

Dong’s method [11] 53.26 98.86 69.23

Proposed approach 56.76 99.08 72.18

Table 8: The performance of various methods in the

quantization-semi-aware case on UCID database in %

Method Recall Precision F1-measure

Li’s method [25] 84.78 99.80 91.68

Milani’s method [32] 42.04 99.50 59.11

Dong’s method [11] 84.50 99.82 91.52

Proposed approach 86.44 99.67 92.58

Table 9: The performance of the proposed forgery detec-

tion approach against the algorithm [26] in percentage

Confusion matrix

Ground truth

Algorithm [26] Our approach

C2 C1 C2 C1

Predicted result
C2 97.80 45.89 95.58 13.41

C1 2.20 54.11 4.42 86.59

F1-measure 93.44 96.08

6 Conclusions and Perspectives

In this paper, we developed a quantization unaware

method for double JPEG compression detection. In the

quantization unaware approach, only a global learned

model is employed to detect double compression. Ex-

periments demonstrated that not only the proposed al-

gorithm have outstanding performance in the quantiza-

tion unaware scenario, but also outperformed its com-

petitors in the quantization-semi-aware case. It points

out that the proposed model is able to better find out

the global structure of single and double compressed

images. We also examined the effectiveness of the pro-

posed approach to actual image forgery detection.

Our theoretical study as well as empirical evaluation

demonstrate that the approaches like [25, 32, 36, 38]

have scarified the telltale footprints lied in the parti-

tions of quantized AC modes. Whereas, the number of

quantized AC modes required to double JPEG com-

pression detection is related to the image’s block tex-

ture and the compression’s quality level and all at-

tributes may be informative. Accordingly, a double com-

pression detection algorithm is proposed to leverage the

footprints introduced by all AC frequency modes in

a low-dimensional representation for achieving an out-

standing classification performance. From the proposed

statistical investigation, we conclude that, for homoge-

nous image blocks or low compression’s quality levels,

the low and middle frequency contents are sufficient to

detect double compression. But, for textured patches

or the high compression’s quality levels, all frequency

components are important especially the middle and

high frequency bands. As a conclusion, instead of the

sparsity in AC modes selection, we suggested the uti-

lization of dimensionality reduction techniques on all

single-frequency attributes to, if needed in classification

tasks, prevent redundant information and the curse of

dimensionality for robust double compression detection.

In another work, we are pursuing the idea of com-

bining the proposed global model with some local infor-

mation (e.g. a rough estimation of the secondary qual-

ity level) of images to improve the performance of our

double compression detector.
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