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Abstract—In this paper, we propose a new algorithm for recov-
ery of low-rank matrices from compressed linear measurements.
The underlying idea of this algorithm is to closely approximate
the rank function with a smooth function of singular values, and
then minimize the resulting approximation subject to the linear
constraints. The accuracy of the approximation is controlled via
a scaling parameter δ, where a smaller δ corresponds to a more
accurate fitting. The consequent optimization problem for any
finite δ is nonconvex. Therefore, in order to decrease the risk of
ending up in local minima, a series of optimizations is performed,
starting with optimizing a rough approximation (a large δ)
and followed by successively optimizing finer approximations of
the rank with smaller δ’s. To solve the optimization problem
for any δ > 0, it is converted to a new program in which
the cost is a function of two auxiliary positive semidefinete
variables. The paper shows that this new program is concave
and applies a majorize-minimize technique to solve it which,
in turn, leads to a few convex optimization iterations. This
optimization scheme is also equivalent to a reweighted Nuclear
Norm Minimization (NNM), where weighting update depends
on the used approximating function. For any δ > 0, we derive
a necessary and sufficient condition for the exact recovery
which are weaker than those corresponding to NNM. On the
numerical side, the proposed algorithm is compared to NNM
and a reweighted NNM in solving affine rank minimization
and matrix completion problems showing its considerable and
consistent superiority in terms of success rate, especially, when
the number of measurements decreases toward the lower-bound
for the unique representation.

Index Terms—Affine Rank Minimization (ARM), Matrix Com-
pletion (MC), Nuclear Norm Minimization (NNM), Rank Ap-
proximation, Null-Space Property (NSP).

I. INTRODUCTION

RECOVERY of low-rank matrices from underdetermined
linear measurements, generalization of the recovery of

sparse vectors from incomplete measurements, has become
a topic of high interest within the past few years in signal
processing, control theory, and mathematics. This problem
has many applications in various areas of engineering. For
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example, collaborative filtering [1], ultrasonic tomography [2],
direction-of-arrival estimation [3], and machine learning [4]
are some of these applications. For more comprehensive lists
of applications, we refer the reader to [1], [5], [6].

Mathematically speaking, the rank minimization (RM) prob-
lem under affine equality constraints (linear measurements),
which we refer to as ARM, is described by

min
X

rank(X) subject to A(X) = b, (1)

in which X ∈ Rn1×n2 is the optimization variable, A :
Rn1×n2 → Rm is a linear measurement operator, and b ∈ Rm
is the vector of available measurements. The constraints are
underdetermined meaning that m < n1n2 or more often
m � n1n2. The above formulation has the so-called matrix
completion (MC) problem as an important instant correspond-
ing to

min
X

rank(X) subject to [X]ij = [M]ij , ∀(i, j) ∈ Ω, (2)

where M ∈ Rn1×n2 is the matrix whose elements are partially
known, Ω ⊂ {1, 2, ..., n1} × {1, 2, ..., n2} is the set of the
indexes of known entries of M, and [X]ij designates the
(i, j)th entry of X. When rank(X∗) is sufficiently low and
A has some favorable properties, X∗ is a unique solution to
(1) [5], [7].

Nevertheless, (1) is in general NP-hard and very challenging
to solve [8]. A well-known replacement is nuclear norm
minimization (NNM) approach [5] formulated as

min
X
‖X‖∗ subject to A(X) = b, (3)

where ‖X‖∗ denotes the nuclear norm of X equal to the sum
of singular values of X. It has been shown that, under more
restrictive assumptions on the rank of X∗ or properties of A,
(1) and (3) share the same unique solution X∗ [5].

When measurements are contaminated by additive noise,
one way to robustly find a solution, is to update (1) to

min
X

rank(X) subject to ‖A(X)− b‖2 ≤ ε, (4)

where ‖ · ‖2 denotes the `2 norm and ε is some constant not
less than noise power. Accordingly, (3) is also converted to

min
X
‖X‖∗ subject to ‖A(X)− b‖2 ≤ ε. (5)

Again, under some mild conditions on rank(X∗) and proper-
ties of A, the solution of (5) is close to the solution of (4) in
terms of their distance measured by the Frobenius norm [9].
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There are some other approaches to solve the ARM prob-
lem. Some of them are efficient implementations of NNM such
as FPCA [10], APG [11], and SVT [12]. Some others are based
on generalization of the methods already proposed for sparse
recovery in the framework of compressive sampling (CS) [13]
like ADMiRA [14] and SRF [15] which extend CoSaMP [16]
and SL0 [17] to the matrix case, respectively.

Despite the convexity of the NNM program, there is a
large gap between the sufficient conditions for the exact and
robust recovery of low-rank matrices using (1) and (3) [18].
To narrow this gap, we introduce a novel algorithm based on
successive and iterative minimization of a series of nonconvex
replacements for (1). Although our theoretical analysis shows
that global minimization of each replacement in the series
recovers solutions at least as good as NNM approach does,
our numerical simulations demonstrate that the proposed chain
of minimizations results in considerable reduction in the
number of samples required to recover low-rank matrices. This
improvement is achieved at the cost of higher computational
complexity. Nevertheless, in some applications of MC and
ARM, like magnetic resonance imaging [19], [20], quantum
state tomography [21], and system identification and low-order
realization of linear systems [5], reduction in the number of
samples can be very beneficial, whereas complexity is not a
big concern.

We improve over the method of SRF in [15], [22] which
uses a class of nonconvex functions to approximate the rank
function and iteratively minimizes the resulting approximation.
In [15], the nonconvex cost function scales with a parameter δ
which reflects the accuracy. The smaller δ, the more accurate
approximation of the rank. SRF starts with a large δ and
decreases it gradually to gain more accurate approximations
of (1) and successively optimizes the series of approximations.
Numerical simulations show superiority of SRF to NNM
and some other sate-of-the-art algorithms in both MC and
ARM problems[15]; however, since the collection of exploited
functions lack the subadditivity property, there is no guarantee
that globally minimizing the proposed replacement of (1) for
any δ > 0 leads to the exact recovery of the minimum-rank
solution except for the asymptotic case of δ → 0.

In this paper, we use a class of subadditive approximating
functions instead. As a result, a necessary and sufficient
condition for the exact recovery is derived for any δ > 0
which is weaker than that of NNM. In addition, we show
that, under the same conditions, all matrices of rank equal
or higher than what is guaranteed by (3) can be uniquely
recovered by globally minimizing the cost function for any
nonzero δ. Another interesting result shows that as δ → ∞,
the proposed optimization coincides with NNM.

To solve the resulting optimization problems, similar to
[23], we convert them to other programs in which the domain
of the approximating functions is limited to the cone of
Positive SemiDefinite (PSD) matrices. In this fashion, the rank
approximating functions are concave and differentiable, so we
use a Majorize-Minimize (MM) technique consisted of a few
SemiDefinite Programs (SDP) to optimize them. Hence, we
term our method ICRA standing for Iterative Concave Rank
Approximation. It is further shown that the employed MM

approach finds at least a local minimum of the original concave
program.

The rest of this paper is organized as follows. After pre-
senting the notations used throughout the paper, in Section
II, the main idea and details of the proposed algorithm are
described. Section III gives some theoretical guarantees for the
ICRA method as well as a theorem proving the convergence of
the exploited optimization scheme. In Section IV, the proofs
of theorems and lemmas are presented. In Section V, some
empirical results from the ICRA method are presented, and it
is compared against SRF [15], NNM, and reweighted NNM
[23]. Section VI concludes the paper.

Notations: For any X ∈ Rn1×n2 , n = min(n1, n2),
σi(X) denotes the ith largest singular value, σ(X) =
(σ1(X), . . . , σn(X))T , and ‖X‖∗ ,

∑n
i=1 σi(X) is the nu-

clear norm. Besides, it is always assumed that singular values
of matrices are sorted in descending order. vec(X) denotes the
vector in Rn1n2 with the columns of X stacked on top of one
another. Sn and Sn+ are used to denote the sets of symmetric
and positive semidefinite n×n real matrices, respectively. For
any Y ∈ Sn, λi(Y) designates the ith largest eigenvalue in
magnitude, λ(Y) = λ↓(Y) = (λ1(Y), . . . , λn(Y))T is the
vector of eigenvalues of Y, and trace(Y) =

∑n
i=1 λi(Y).

Also, λ↑(Y) = (λn(Y), . . . , λ1(Y))T denotes the vector
of eigenvalues of Y in ascending order. For Y,Z ∈ Sn,
Y � Z and Y � Z means Y − Z is positive semidefinite
and positive definite, respectively. Let 〈X,Y〉 , trace(XTY)
and 〈x,y〉 , xTy be the inner products on matrix and
vector spaces, respectively. As a result, ‖X‖F , 〈X,X〉 12 =√∑n

i=1 σ
2
i (X) denotes the Frobenius norm, and ‖x‖2 ,

〈x,x〉 12 stands for the Euclidean norm. Moreover, ‖x‖∞ ,
maxi |xi| designates the maximum norm. dxe denotes the
smallest integer greater than or equal to x. In is the identity
matrix of order n. For a linear operator A : Rn1×n2 → Rm,
let N (A) , {X ∈ Rn1×n2 |A(X) = 0}.

II. THE ICRA ALGORITHM

A. Introduction

Let

u(x) =

{
1 if x > 0,
0 if x = 0.

denote the unit step function for x ≥ 0 so that the rank of a
matrix X equals to

∑n
i=1 u(σi(X)). As u(x) is discontinuous

and nondifferentiable, direct minimization of rank is very hard,
and all available exact optimizers have doubly exponential
complexity [8]. Consequently, one approach to solve (1) is to
approximate the unit step function with a suitable one-variable
function f(x) and minimize F (X) =

∑n
i=1 f(σi(X)) as an

approximation of the rank function. Herein, for the sake of
brevity, we refer to the one- and matrix-variable functions
f(x) and F (X) as unit step approximating (UA) and rank
approximating (RA) functions, respectively.

Implicitly or explicitly, different one-variable functions have
been used to approximate u(x) in some of the existing
rank minimization methods. Figure 1 illustrates some of the
available options for approximating the unit step as well
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Fig. 1. It is known that rank(X) =
∑n
i=1 u(σi(X)). Therefore, approxi-

mation of the rank function can be converted to the problem of approximating
u(x). Different functions used in the literature of rank minimization to
approximate the unit step and some of them are plotted in this figure. Among
them, f(x) = 1− e−x/δ closely matches u(x).

as one of the functions used in this work. In this plot,
f(x) = x has the worst fitting, though, it leads to nuclear
norm minimization, which is the tightest convex relaxation
of (1) [5]. f(x) = xp, 0 < p < 1, which is closer to
u(x) yields Schatten-p quasi-norm minimization [24]. In [24],
theoretically, it is shown that finding the global solution of
constrained Schatten-p quasi-norm minimization outperforms
NNM. Moreover, experimental observations show superiority
of this method to NNM [25], [26]. f(x) = log(x+α), in which
α is some small constant to ensure positivity of the argument
of log(·), also, results in better performance in recovering low-
rank matrices in numerical simulations [23].

Having the above theoretical and experimental results in
mind, we expect that finer approximations will give rise to
higher performance in recovery of low-rank matrices. Ac-
cordingly, we propose using other UA functions like f(x) =
1 − e−x/δ that closely match u(x) for small values of δ.
Obviously, f(x) = 1 − e−x/δ is the best approximation
among the functions depicted in Figure 1 in the sense that∫∞
0
|f(t) − u(t)|2dt = δ/2, for every δ > 0, is finite.

Furthermore, by this choice, one can control the merit of the
approximation by adjusting the parameter δ.

B. The main idea

Let Fδ(X) = hδ(σ(X)) =
∑n
i=1 fδ(σi(X)) denote the

rank approximating function. We replace the original ARM
problem with

min
X

(
Fδ(X) =

n∑
i=1

fδ(σi(X)
)

s.t. A(X) = b. (6)

When δ is small, u(x) is well approximated by fδ(x).
However, in this case, Fδ(X) has many local minima. In
contrast, while a larger δ causes smoother Fδ(X) with poor
approximation quality, Fδ(X) has smaller number of local
minima. In fact, it will be shown in Theorem 1 that when

δ → ∞, δFδ converts to a convex function. Consequently,
to decrease the chance of getting trapped in local minima
while minimizing Fδ(X), instead of initially minimizing it
with a small δ, the ICRA algorithm starts with a large value
of δ (δ → ∞). Next, the value of δ is decreased gradually
and the solution of the previous iteration is used as an initial
point for minimizing Fδ(X) at the current iteration with a
new δ. Furthermore, we impose the class of functions {fδ}
to be continuous with respect to δ. From this continuity, we
expect that the minimizers of (6) for successive iterations, let
say for δ = δi and δi+1, are close to each other as δ decreases
gradually and δi+1 is in the vicinity of δi. Thus, it is more
likely that a global minimizer of Fδ is found. This technique
which is known as Graduated NonConvexity (GNC) [27] is
used in [15] to solve the affine rank minimization problem.

C. Properties of fδ(·)
To efficiently solve (6), we are interested in differentiable

RA functions. The following proposition, which is originally
from [28, Cor. 2.5], characterizes the gradient of Fδ(X) in
terms of the derivative of fδ(·).

Proposition 1: Assume that F : Rn1×n2 → R is repre-
sented as F (X) = h

(
σ(X)

)
. Let X = Udiag(σ(X))VT

denote the Singular Value Decomposition (SVD) of X. If h
is absolutely symmetric1, then the subdifferential of F (X) at
X is

∂F (X) = {U diag(θ)VT |θ ∈ ∂h(σ(X))},

where ∂h(σ(X)) denotes the subdifferential of h at σ(X).

Clearly, under assumptions of Proposition 1, fδ(·) must be
an even function. This requirement as well as other proper-
ties of UA functions cause fδ(·) to be nondifferentiable at
the origin. Therefore, Fδ(X) becomes nondifferentiable too.
This can be seen in another way. Assuming n1 ≤ n2 and
XXT = U diag(λ1, · · · , λn1

)UT denoting the EigenValue
Decomposition (EVD) of XXT , fδ(x) = 1− e−x/δ induces

Fδ(X) = trace(In1 − e−(XXT )1/2/δ),

in which (XXT )1/2 = U diag(λ
1/2
1 , · · · , λ1/2n1 )UT . This

reveals that Fδ(X) is not differentiable at any non full-rank
matrix. Nevertheless, if the domain of Fδ(·) is restricted to
the cone of positive semidefinite matrices, we can ignore the
requirement that fδ(·) is symmetric and find concave and
differentiable approximations for the rank using the following
propositions.2

Proposition 2: Assume that F : Sn+ → R is represented as
F (Y) = h

(
λ(Y)

)
= h ◦ λ(Y). If h : Rn → R is symmetric

and concave, then F (Y) is concave.
Proof: The proof follows from [29, Cor. 2.7].

Proposition 3: Suppose that F : Sn+ → R is represented
as F (Y) = h

(
λ(Y)

)
=
∑n
i=1 f(λi(Y)), where Y ∈ Sn+

1h(x) is absolutely symmetric if it is invariant under arbitrary permutations
and sign changes of the components of x.

2Propositions 2 and 3 can be restated under the milder condition of
Y ∈ Sn. However, as our approximation for symmetric matrices relies on
the magnitude of eigenvalues, this less restrictive assumption imposes the UA
function to be even, making it again nondifferentiable at the origin.
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with the EVD Y = Q diag(λ(Y))QT , h : Rn → R and
f : R → R is differentiable and concave. Then the gradient
of F (Y) at Y is

∂F (Y)

∂Y
= Qdiag(θ)QT , (7)

where θ = ∇h(λ(Y)) denotes the gradient of h at λ(Y).
Proof: In [29, Thm. 3.2], it is shown that if a function h

is symmetric and the matrix Y ∈ Sn+ has λ(Y) in the domain
of h, then the subdifferential of F is given by

∂
(
h ◦ λ(Y)

)
= {Qdiag(θ)QT |θ ∈ ∂h

(
λ(Y)

)
}. (8)

Since h
(
λ(Y)

)
=
∑n
i=1 f

(
λi(Y)

)
is differentiable at λ(Y),

∂h
(
λ(X)

)
is a singleton and consequently ∂

(
h ◦ λ(Y)

)
becomes a singleton. For a convex (concave) function, the
subdifferential is singleton if and only if the function is
differentiable [30]. This implies that F (Y) is differentiable
at Y with the above gradient.

Proposition 3 relaxes the differentiability conditions of
Proposition 1 by restricting the domain of Fδ(·). However, we
will show in the following subsection that problem (6) can be
converted to another problem in which the argument of Fδ(·)
is positive semidefinite. Putting all the required properties of
fδ(·) together, we are interested in a certain family of UA
functions possessing the following property.

Property 1: Let f : R→ R and define fδ(x) , f(x/δ) for
any δ > 0. The class {fδ} is said to possess Property 1, if

(a) f is real analytic on (x0,∞) for some x0 < 0,
(b) f is strictly concave for x ≥ 03 and concave on R,
(c) f(x) = 0⇔ x = 0,
(d) for x ≥ 0, f(x) is nondecreasing,
(e) limx→+∞ f(x) = 1.
It follows immediately from Property 1 that, for x ≥ 0, {fδ}

converges pointwise to the unit step function as δ → 0+; i.e.,

lim
δ→0+

fδ(x) =

{
1 if x > 0,

0 if x = 0.
(9)

In addition to UA function f(x) = 1 − e−x which is
mainly used in this paper, there are other functions that satisfy
conditions of Property 1. For example,

f(x) =

{ x

x+ 1
x ≥ x0,

−∞ otherwise,

for some −1 < x0 < 0.

D. Optimization of Fδ(·) for a specific δ

The following lemma from [23] shows that the original
ARM problem is equivalent to

min
(X,Y,Z)

rank(Y) + rank(Z) s.t. A(X) = b,

[
Y X

XT Z

]
� 0,

(10)
where Y ∈ Sn1 and Z ∈ Sn2 .

3For the most of analysis presented in this paper, concavity of f(·)
is sufficient, and strict concavity is merely needed to show that the used
optimization algorithm converges to a local minimum.

Lemma 1 ([23, Lem. 1]): Let X ∈ Rn1×n2 be any arbitrary
matrix. Then rank(X) ≤ r if and only if there exist matrices
Y ∈ Sn1 and Z ∈ Sn2 such that

rank(Y) + rank(Z) ≤ 2r,

[
Y X

XT Z

]
� 0.

(
Y X
XT Z

)
� 0 implies that Y � 0,Z � 0 [31]. Therefore,

if rank(Y) + rank(Z) is approximated by

Fδ(Y) + Fδ(Z) =

n1∑
i=1

fδ(λi(Y)) +

n2∑
i=1

fδ(λi(Z)),

then, according to Propositions 2 and 3, Fδ(Y) and Fδ(Z)
have the desirable concavity and differentiability properties.

As a result, to extend (6) to arbitrary matrices with a
differentiable and concave RA function,

min
(X,Y,Z)

Fδ(Y) + Fδ(Z)

subject to A(X) = b,
(

Y X
XT Z

)
� 0,

(11)

is solved to find a solution to (6). A similar approach has been
exploited in [23] to convert (6) for fδ(x) = log(x+ α) to4

min
(X,Y,Z)

log(det(Y + αIn1)) + log(det(Z + αIn2))

subject to A(X) = b,
(

Y X
XT Z

)
� 0.

(12)
To solve (11), we use a Majorize-Minimize (MM) technique

[32]. In MM approach, the original cost function is replaced
with a surrogate function having the following properties. For
a vector function h(x) : Rn → R, H(x, x̃) : Rn × Rn → R
is a surrogate function at x̃ if H(x, x̃) satisfies

H(x̃, x̃) = h(x̃),

H(x, x̃) ≥ h(x), for all x.

H(x, x̃) is also known as tangent-majorant, as the surface
x 7→ H(x, x̃) is tangent to the surface h(x) at x̃ and
lies above it at other points. The underlying idea of MM
is to iteratively minimize the surrogate function instead of
minimizing the original cost function. More precisely, let xk
denote the solution at the kth iteration, then xk+1 is obtained
by minimizing the surrogate function at xk; that is,

xk+1 ∈ argmin
x∈F

H(x,xk),

where F denotes the feasible set of the optimization problem.
It can be easily shown that h(xk+1) ≤ h(xk) proving that the
original cost function is continuously decreasing. Naturally, a
good choice for a surrogate function is a convex one which can
be easily optimized. In our problem, since Fδ(Y) is concave,
the first-order concavity condition implies that

Fδ(Y) ≤ Fδ(Ỹ) + 〈Y − Ỹ,∇Fδ(Ỹ)〉,

for some Ỹ in the feasible set. As a result, Hδ(Y,Yk) ,
Fδ(Yk) + 〈Y − Yk,∇Fδ(Yk)〉 is chosen as a surrogate
function for Fδ(Y). With a tiny abuse of notation, let, likewise,
Hδ(Z,Zk) , Fδ(Zk) + 〈Z − Zk,∇Fδ(Zk)〉 denote the
surrogate function for Fδ(Z). Applying the MM approach,

4For this case, fδ(·) does not scale with δ.
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problem (11), for a fixed δ, can be optimized by iteratively
solving

(Xk+1,Yk+1,Zk+1) =

argmin
(X,Y,Z)

〈∇Fδ(Yk),Y〉+ 〈∇Fδ(Zk),Z〉

subject to A(X) = b,
(

Y X
XT Z

)
� 0,

(13)

until convergence. It is easy to verify that the above program
is SDP, and it is shown in Section III-C that it converges to a
local minimum of (11).

E. Initialization

As pointed out earlier, in the GNC procedure, we initially
solve (6) or (11) for δ tending to ∞. In this case, as shown in
the following theorem, whose proof is given in Section IV-A,
(6) and (11) can be optimized by solving (3).

Theorem 1: For any class of functions {fδ} possessing
Property 1 and any X ∈ Rn1×n2 ,Y ∈ Sn1 ,Z ∈ Sn2 ,

lim
δ→∞

δ

γ
Fδ(X) = ‖X‖∗,

lim
δ→∞

δ

γ

(
Fδ(Y) + Fδ(Z)

)
= trace(Y) + trace(Z),

where γ = f ′(0) 6= 0. Furthermore,

lim
δ→∞

argmin
X
{Fδ(X)|A(X) = b}

= argmin
X
{‖X‖∗|A(X) = b},

provided that NNM has a unique solution.

A solution to (3) can be obtained by optimizing the follow-
ing equivalent problem [5]

min
(X,Y,Z)

trace(Y) + trace(Z)

subject to A(X) = b,
(

Y X
XT Z

)
� 0.

(14)

Accordingly, X0,Y0,Z0 are initialized by solving (14).

F. The final algorithm

Applying all the introduced stages of the algorithm to the
UA function fδ(x) = 1 − e−x/δ , the ICRA algorithm is
summarized in Figure 2. In addition, the following remarks
give complementary comments about implementation details
by describing algorithm parameters and their selection rules.

Remark 1. As depicted in Figure 2, δ is updated as
δi = cδi−1 for i ≥ 1. We will examine how to choose a
suitable decreasing factor c in Section V in more details, yet
c ∈ (0.1, 0.5) is a good choice in general. Furthermore, δ0 is
set to 8σ1(X0) because it is easy to verify that 1−e−σi(X0)/δ0

is closely approximated by σi(X0)/δ0 with this choice of δ0.
Hence, this δ0 acts as if it tends to ∞.

Remark 2. d1 = ‖Xi+1−Xi‖F /‖Xi‖F and d2 = ‖X̂j+1−
X̂j‖F /‖X̂j‖F , as measures of distances between results of
successive iterations, are used to stop execution of the external
and internal loops, respectively. Moreover, ε1 and ε2 are
usually set to 10−2 to settle down Xi+1 and X̂j+1 to vicinity
of 1% distance of the previous solutions Xi and X̂j .

Input: A(·),b, fδ(·)
Initialization:
1: X0 = argminX{‖X‖∗|A(X) = b}.
2: δ0 = 8σ1(X0).
3: c: decreasing factor for δ.
4: ε1, ε2: stopping thresholds for main and internal loops.

Body:
1: i = 0, δ = δi.
2: while d1 > ε1 do
3: j = 0, X̂0 = Xi.
4: while d2 > ε2 do
5: (X̂j+1, Ŷj+1, Ẑj+1) =

argmin
(X,Y,Z)

〈∇Fδ(Ŷj),Y〉+ 〈∇Fδ(Ẑj),Z〉

subject to A(X) = b,
(

Y X
XT Z

)
� 0.

6: d2 = ‖X̂j+1 − X̂j‖F /‖X̂j‖F .
7: j = j + 1.
8: end while
9: Xi+1 = X̂j .

10: d1 = ‖Xi+1 −Xi‖F /‖Xi‖F .
11: i = i+ 1, δ = cδ.
12: end while
Output: Xi

Fig. 2. The ICRA Algorithm.

Remark 3. For fδ(x) = 1− e−x/δ , the gradient of Fδ(Ŷj)

and Fδ(Ẑj) are given by

Fδ(Ŷj) =
1

δ
P diag(e−λ1(Ŷj)/δ, · · · , e−λn1

(Ŷj)/δ)PT ,

Fδ(Ẑj) =
1

δ
Q diag(e−λ1(Ẑj)/δ, · · · , e−λn2

(Ẑj)/δ)QT ,

where P diag(λ(Ŷj))P
T and Q diag(λ(Ẑj))Q

T denote the
EVD of Ŷj and Ẑj , respectively.

Remark 4. Following the same argument as in [33], problem
(13) can be cast as a re weighted nuclear norm minimization;
i.e.,

Xk+1 = argmin ‖Wl
kXWr

k‖∗ s.t. A(X) = b.

If UΣVT denotes the SVD of Wl
kXk+1W

r
k, then weighting

matrices as well as Yk+1,Zk+1 are updated by

Yk+1 =
(
Wl

k

)−1
UΣUT

(
Wl

k

)−1
,

Zk+1 =
(
Wr

k

)−1
VΣVT

(
Wr

k

)−1
,

Wl
k+1 =

(
∇Fδ(Yk+1)

) 1
2

,Wr
k+1 =

(
∇Fδ(Zk+1)

) 1
2

.

There are efficient solvers for the NNM like FPCA [10] and
APG [11]. As a result, one can exploit these algorithm to solve
(13) more efficiently than SDP.

Remark 5. (6) can be generalized to the following setting
for taking into account the noise in measurements

min
X

Fδ(X) subject to ‖A(X)− b‖2 ≤ ε. (15)
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Consequently, the following program can be solved instead of
(13)

(Xk+1,Yk+1,Zk+1) =

argmin
(X,Y,Z)

〈∇Fδ(Yk),Y〉+ 〈∇Fδ(Zk),Z〉

subject to ‖A(X)− b‖2 ≤ ε,
(

Y X
XT Z

)
� 0.

(16)

III. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the ICRA
algorithm in recovery of low-rank matrices. First, in Section
III-A, a necessary and sufficient condition for exact recovery
of (6) is presented. The sufficient condition is based on null-
space properties of the measurement operator. Next, exploiting
results established in [15], in Section III-B, we prove that the
sequence of minimizers of (6), for a decreasing sequence of δ,
converges to the minimum rank solution. We will not discuss
the issue of global convergence; instead, it is shown that if the
MM approach is applied, program (13) converges, at least, to
a local minimizer of (11).

A. Uniqueness

One simple way to characterize the conditions under which
a method can successfully find the exact solution in both sparse
vector and low-rank matrix recovery from underdetermined
linear measurements is to use null-space properties of the
measurement operator. In the vector case, for a general func-
tion inducing a ‘sparsity measure’, a necessary and sufficient
condition for exact recovery is derived in [34]. Here, we gen-
eralize some results of [34] to low-rank matrix recovery and
introduce a necessary and sufficient condition for the success
of (6). Furthermore, it is shown that global optimization of (6)
uniquely recovers matrices of higher or equal ranks than those
of uniquely recoverable by NNM. The proof of the following
lemmas and theorem are given in Section IV-B.

The results of the next two lemmas are valid for not only
fδ(x) = f(x/δ) in (6) but also any f : R→ R which is used
in

min
X

(
F (X) =

n∑
i=1

f(σi(X)
)

subject to A(X) = b

to recover a low-rank matrix.
Lemma 2: Every matrix X ∈ Rn1×n2 of rank at most r can

be uniquely recovered using (6) for any f possessing Property
1-(b) to 1-(d), if, ∀W ∈ N (A) \ {0},

r∑
i=1

f
(
σi(W)

)
<

n∑
i=r+1

f
(
σi(W)

)
.

In general, extending Lemma 2 to the noisy rank minimiza-
tion is not straight-forward. In fact, even in the vector case,
robust recovery conditions (RRC)5 for a sparsity measure have
been derived only for the `p quasi-norm [35]. Nevertheless, a
recent work [35] proves that, under some mild assumptions,
the sets of measurement matrices satisfying exact recovery

5The so-called RRC guarantees stable recovery of sparse vectors from noisy
measurements using minimization of a sparsity measure inducing function.

conditions and RRC differ by a set of measure zero. Ac-
cordingly, recalling the strong parallels between RM and `0-
minimization [5], roughly speaking, we expect that under the
same conditions as in Lemma 2, (15) can recover matrices
close to the solutions of (4) in the Frobenius-norm sense.

Lemma 3: Under the same assumptions on f as in Lemma
2, if, for some W ∈ N (A) \ {0},

r∑
i=1

f
(
σi(W)

)
≥

n∑
i=r+1

f
(
σi(W)

)
, (17)

then there exist X and X′ such that rank(X) ≤ r,A(X) =
A(X′) and F (X′) ≤ F (X).

The sufficient condition in Lemma 2 can be also described
by the following inequality

2

r∑
i=1

f
(
σi(W)

)
<

n∑
i=1

f
(
σi(W)

)
.

As a result, if we define

θf (r,A) , sup
W∈N (A)\{0}

∑r
i=1 f(σi(W))∑n
i=1 f(σi(W))

,

the uniqueness can be characterized as: All matrices of rank
at most r are uniquely recovered by (6) if θf (r,A) < 1/2.
In fact, θf extends a similar parameter defined in [34] for
`0-norm minimization.

Let r∗fδ(A) denote the maximum rank such that all matrices
X with rank(X) ≤ r∗fδ(A) can be uniquely recovered by
(6). In particular, r∗arm(A) and r∗nnm(A) are the corresponding
values for fδ(x) = u(x) and fδ(x) = x; that is, original rank
minimization problem, (1), and nuclear norm minimization,
(3). Then we have the following result.

Theorem 2: For any fδ(·) possessing Property 1,

r∗nnm(A) ≤ r∗fδ(A) ≤ r∗arm(A).

B. Convergence to the rank function

The following definition, which like θf (r,A) depends on
the null space of A, is used to show that when δ → 0, the
solution of (6) tends toward the minimum rank solution of (1).
In other words, in order to get arbitrarily close to the minimum
rank solution, it is sufficient to solve (6) for a properly chosen
δ which depends on the employed UA function.

Definition 1 (Spherical Section Property [18], [36]): The
linear operator A possesses ∆-spherical section property if,
for all W ∈ N (A) \ {0}, ‖W‖2∗/‖W‖2F ≥ ∆(A). In other
words, spherical section constant of the linear operator A is
defined as

∆(A) , min
W∈N (A)\{0}

‖W‖2∗
‖W‖2F

.

The following proposition is originally from [15, Thm. 4].
Although different assumptions were imposed on the UA
functions in the proof of [15], the authors merely used
properties that are common to our assumptions, making the
result applicable also to our analysis.
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Proposition 4: Assume A has ∆-spherical property and
{fδ} possesses Property 1. Let X0 be the unique solution to
(1) and let Xδ denote a solution to (6). Then

‖Xδ −X0‖F ≤
nαδ√

∆−
√
d∆− 1e

,

where αδ =
∣∣f−1δ (1− 1

n )
∣∣, and, consequently,

lim
δ→0+

Xδ = X0.

This result is of particular interest since the best result
available for NNM shows that if rank(X) < ∆/4, then X
can be uniquely recovered [18] which is more restrictive than
rank(X) < ∆/2, a sufficient condition for the uniqueness of
the solution of (1). However, the above proposition proves that
we can find accurate estimate of the original solution whether
it is recoverable by NNM or not.

C. Convergence Analysis

The next theorem whose proof is left to Section IV-C proves
that the MM approach proposed in (13) to solve (11) will find
a local minimizer of (11).

Theorem 3: The sequence of {(Xk,Yk,Zk)} is convergent
to a local minimizer of (11).

IV. PROOFS

A. Proof of Theorem 1

Proof: Using the Taylor expansion, f(·) can be formu-
lated as

f(s) = γs+ g(s),

where γ = f ′(0) and

lim
s→0

g(s)

s
= 0. (18)

γ cannot be 0 because the first-order concavity condition
implies that, for any x > 0,

f(x) ≤ f(0) + xf ′(0) = γx,

and γ = 0 converts the above inequality to f(x) ≤ 0 which
contradicts Property 1. Now, Fδ(·) can be represented as

Fδ(X) =

n∑
i=1

fδ
(
σi(X)

)
=
γ

δ
‖X‖∗ +

n∑
i=1

g(σi(X)/δ). (19)

(19) can be reformulated as

δ

γ
Fδ(X) = ‖X‖∗ +

1

γ

n∑
i=1

σi(X)
g(σi(X)/δ)

σi(X)/δ
. (20)

By virtue of (18), it follows that

lim
δ→∞

δ

γ
Fδ(X) = ‖X‖∗.

Following the same line of argument, it can be easily verified

lim
δ→∞

δ

γ

(
Fδ(Y) + Fδ(Z)

)
= trace(Y) + trace(Z).

To prove the second part, let

X̂ = argmin
X
{‖X‖∗|A(X) = b},

Xδ = argmin
X
{Fδ(X)|A(X) = b}.

From (20) and the inequality∣∣∣ n∑
i=1

xiyi

∣∣∣ ≤ ( n∑
i=1

∣∣xi∣∣)( n∑
i=1

∣∣yi∣∣),
we have

δFδ(X) ≤ ‖X‖∗
(
γ +

n∑
i=1

|g(σi(X)/δ)|
σi(X)/δ

)
,

δFδ(X) ≥ ‖X‖∗
(
γ −

n∑
i=1

|g(σi(X)/δ)|
σi(X)/δ

)
.

The above inequalities as well as (18) imply that ∀ε > 0,∃δ0,
such that ∀δ > δ0

γ − ε ≤ δFδ(X)

‖X‖∗
≤ γ + ε.

Xδ is a solution to (6), so δFδ(Xδ) ≤ δFδ(X̂). Furthermore,
we have ‖X̂‖∗ ≤ ‖Xδ‖∗ since X̂ is the unique solutio of (3).
Therefore, for ε < γ, we obtain

(γ−ε)‖X̂‖∗≤(γ−ε)‖Xδ‖∗≤δFδ(Xδ)≤δFδ(X̂)≤(γ+ε)‖X̂‖∗

which proves that limδ→∞ ‖Xδ‖∗ = ‖X̂‖∗. As X̂ is the
unique solution to (3) (under the same equality constraints), it
can be concluded that limδ→∞Xδ = X̂.

B. Proofs of Propositions 2 and 3 and Theorem 2

Before proofs, we need the following definition, corollary,
and lemmas.

Definition 2 ([37]): A function Φ(x) : Rn → R is called
symmetric gauge if it is a norm on Rn and absolutely
symmetric.

Lemma 4 ([38, Cor. 2.3]): Let Φ be a symmetric gauge
function and f : [0,∞)→ [0,∞) be a concave function with
f(0) = 0. Then for A,B ∈ Rn1×n2 ,

Φ
(
f
(
σ(A)

)
− f

(
σ(B)

))
≤ Φ

(
f
(
σ(A−B)

))
,

where f
(
x) = (f(x1), . . . , f(xn))T .

Lemma 5: For any function possessing Property 1, f(x)/x
is nonincreasing for x > 0.

Proof: Let g(x) = f(x)/x. It is sufficient to show that
g′(x) =

(
xf ′(x) − f(x)

)
/x2 is nonpositive for x > 0. f(x)

is concave, so we can write

f(0) ≤ f(x) + (0− x)f ′(x)

for any x > 0 which proves that g′(x) ≤ 0.
Corollary 1: Let A,B ∈ Rn1×n2 . For any f possessing

Property 1-(b) to 1-(d),
n∑
i=1

f
(
σi(A−B)

)
≥

n∑
i=1

∣∣f(σi(A)
)
− f

(
σi(B)

)∣∣. (21)
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Proof: Φ(x) =
∑n
i=1 |xi| and f(·) satisfy conditions of

Lemma 4; thus, (21) immediately follows.
Proof of Lemma 2: The proof is similar to [7, Lem. 6]

and extends uniqueness condition from NNM to a larger class
of functions possessing Property 1-(b) to 1-(d). Assuming
A(X) = b, all feasible solutions to (6) can be formulated
as X+W for some W ∈ N (A). To show that X is a unique
solution to (6), it is sufficient to prove that, ∀W ∈ N (A)\{0},
F (X +W) > F (X). Starting from Corollary 1, we can write
that

F (X + W)=

n∑
i=1

f
(
σi(X + W)

)
≥

n∑
i=1

∣∣f(σi(X))−f(σi(W))
∣∣

=

r∑
i=1

∣∣f(σi(X))−f(σi(W))
∣∣+ n∑
i=r+1

f(σi(W))

≥
r∑
i=1

f(σi(X))−f(σi(W))+

n∑
i=r+1

f(σi(W))

>

r∑
i=1

f(σi(X)) = F (X),

which completes the proof.
Proof of Lemma 3: Let

W = U diag(σ1, . . . , σn)VT

denote the SVD of W. Choose

X = −Udiag(σ1, . . . , σr, 0, . . . , 0) VT

X′ = Udiag(0, . . . , 0, σr+1, . . . , σn)VT .

Obviously, W = X′−X, A(X) = A(X′), and rank(X) ≤ r.
On the other hand, (17) implies that

F (X′) =

n∑
i=r+1

f(σi(W)) ≤
r∑
i=1

f(σi(W)) = F (X).

Proof of Theorem 2: Lemma 5 implies that, for x > 0,
fδ(x)/x is nonincreasing. Hence, following a similar argument
as in [34, Thm. 5], one can easily verify that, for any W 6= 0,∑r
i=1 σi(W)/

∑r
i=1 fδ(σi(W)) is a nonincreasing sequence

in r. Consequently,∑n
i=1 σi(W)∑n

i=1 fδ(σi(W))
≤

∑r
i=1 σi(W)∑r

i=1 fδ(σi(W))
,

or, ∑r
i=1 fδ(σi(W))∑n
i=1 fδ(σi(W))

≤
∑r
i=1 σi(W)∑n
i=1 σi(W)

,

which shows θfδ(r,A) ≤ θnnm(r,A) for any r ≤ n.
θfδ(r,A), θnnm(r,A) are increasing in r, so it can be con-
cluded that r∗fδ(A) ≥ r∗nnm(A). Similarly, it can be shown
that

∑r
i=1 u(σi(W))/

∑r
i=1 fδ(σi(W)) is a nondecreasing

sequence, and∑r
i=1 u(σi(W))∑n
i=1 u(σi(W))

≤
∑r
i=1 fδ(σi(W))∑n
i=1 fδ(σi(W))

,

confirming that r∗arm(A) ≥ r∗fδ(A).

C. Proof of Theorem 3

We start with the following lemmas. The first lemma is
originally from [39, Lem. II.1].

Lemma 6 ([39, Lem. II.1]): Let A,B ∈ Sn; then
n∑
i=1

λn−i+1(A)λi(B) ≤ trace(AB) ≤
n∑
i=1

λi(A)λi(B).

Lemma 7: Assume that F : Sn → R is represented as
F (X) = h

(
λ(X)

)
=
∑n
i=1 f(λ(X)) in which f : R→ R. If

f(·) is twice differentiable and strictly concave, then F (X) is
strictly concave, and there is some m > 0 such that, for any
bounded X,Y ∈ Sn, X 6= Y,

F (Y)− F (X) ≤ 〈Y −X,∇F (X)〉 − m

2
‖Y −X‖2F . (22)

Proof: First, it is shown that F (·) is strictly concave, then
(22) follows as a result. To this end, notice that strict concavity
of f(·) implies that h(·) is strictly concave too. From the first-
order concavity condition, it is known that h is strictly concave
if and only if, for any x 6= y,

h(y) < h(x) + 〈y − x,∇h(x)〉.

Propositions 2 and 3 together imply that F (·) is differentiable.
Thus, substituting x,y with λ↓(X),λ↓(Y) in the above
inequality gives

F (Y) < F (X) + 〈λ↓(Y)− λ↓(X),∇h(λ↓(X))〉. (23)

Let X = U diag(λ↓(X))UT denote the EVD of X. Applying
Proposition 3 on F (·) yields

∇F (X) = U diag(f ′(λ1(X)), · · · , f ′(λn(X)))UT

= U diag(∇h(λ↓(X)))UT .

Therefore,

〈X,∇F (X)〉 = trace(diag(λ↓(X)) diag(∇h(λ↓(X))))

= 〈λ↓(X),∇h(λ↓(X))〉. (24)

Also,

〈Y,∇F (X)〉 = trace(Y∇F (X))
a
≥ 〈λ↓(Y),λ↑(∇F (X))〉,

where (a) follows from Lemma 6. Since f(·) is strictly
concave, f ′(·) is decreasing and f ′(λi(X)) ≥ f ′(λj(X)) for
i ≥ j. Therefore, λ↑(∇F (X)) = ∇h(λ↓(X)), and the above
inequality becomes

〈Y,∇F (X)〉 ≥ 〈λ↓(Y),∇h(λ↓(X)). (25)

Substituting (24) and (25) in (23), we obtain

F (Y) < F (X) + 〈Y −X,∇F (X)〉, (26)

which shows that F (·) is strictly concave.
The Hessian of h(x) is given by

∇2h(x) = diag(f ′′(x1), · · · , f ′′(xn)).

As f(·) is strictly concave, for any bounded U > 0, there
is a m′ > 0 such that f ′′(x) ≤ −m′ for any |x| ≤ U , and
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it follows that ∇2h(x) � −m′I for all x with ‖x‖∞ ≤ U .
Further, assuming ‖x‖∞, ‖y‖∞ ≤ U , we have

h(y) = h(x) + 〈y − x,∇h(x)〉+
1

2
(y − x)T∇2h(z)(y − x)

for some z in the line segment connecting x and y. Using
∇2h(z) � −m′I, we get

h(y) ≤ h(x) + 〈y − x,∇h(x)〉 − m′

2
‖y − x‖22.

Similarly, for the function F (·) which is strictly concave, there
is some m > 0 such that for any bounded X,Y ∈ Sn,X 6= Y,

F (Y)− F (X) ≤ 〈Y −X,∇F (X)〉 − m

2
‖Y −X‖2F ,

which completes the proof.
Proof of Theorem 3: First, we show that the sequence

{(Xk,Yk,Zk)} is bounded and convergent. Since Fδ(Y) and
Fδ(Z) are concave, we can write that, for every Y ∈ Sn1

+ , Z ∈
Sn2
+ ,

Fδ(Y) ≤ Fδ(Yk) + 〈Y −Yk,∇Fδ(Yk)〉 = Hδ(Y,Yk),

Fδ(Z) ≤ Fδ(Zk) + 〈Z− Zk,∇Fδ(Zk)〉 = Hδ(Z,Zk).

In the MM step, the next point is updated by

(Xk+1,Yk+1,Zk+1) =
argmin
(X,Y,Z)

Hδ(Y,Yk) +Hδ(Z,Zk)

subject to (X,Y,Z) ∈ F ,
where

F = {(X,Y,Z)|A(X) = b,

[
Y X

XT Z

]
� 0}

denotes the feasible set. Clearly,

Hδ(Yk+1,Yk) +Hδ(Zk+1,Zk) ≤ Hδ(Y,Yk) +Hδ(Z,Zk).

Therefore, for all k,

Fδ(Yk+1) + Fδ(Zk+1) ≤ Hδ(Yk+1,Yk) +Hδ(Zk+1,Zk)

≤ Hδ(Yk,Yk) +Hδ(Zk,Zk)

= Fδ(Yk) + Fδ(Zk). (27)

From (27) and Fδ(Yk), Fδ(Zk) ≥ 0, we can conclude that
the sequence {Fδ(Yk) +Fδ(Zk)} is convergent. Assume that
(13) is initialized with (X0,Y0). We have

Fδ(Yk) + Fδ(Zk) ≤ Fδ(Y0) + Fδ(Z0), ∀k ≥ 1,

showing {Yk} and {Zk} are bounded. Moreover, from the
constraints [

Yk Xk

XT
k Zk

]
� 0,

[31, Lem. 3.5.12] implies that there is a matrix C with
σ1(C) ≤ 1 such that Xk = Y

1
2

k CZ
1
2

k proving that {Xk}
is also bounded. To show that these sequences are convergent
too, we start by applying Lemma 7 on Fδ(Y) and Fδ(Z) to
get

m

2
‖Yk+1 −Yk‖2F ≤ Fδ(Yk)− Fδ(Yk+1)

+ 〈Yk+1 −Yk,∇Fδ(Yk)〉, (28)
m

2
‖Zk+1 − Zk‖2F ≤ Fδ(Zk)− Fδ(Zk+1)

+ 〈Zk+1 − Zk,∇Fδ(Zk)〉. (29)

From (13), we have

(Xk+1,Yk+1,Zk+1) =

argmin
(X,Y,Z)

〈∇Fδ(Yk),Y〉+ 〈∇Fδ(Zk),Z〉

subject to (X,Y,Z) ∈ F ,
As a consequence,

〈∇Fδ(Yk),Yk+1〉+ 〈∇Fδ(Zk),Zk+1〉 ≤ 〈∇Fδ(Yk),Yk〉
+ 〈∇Fδ(Zk),Zk〉,

or,

〈Yk+1 −Yk,∇Fδ(Yk)〉+ 〈Zk+1 − Zk,∇Fδ(Zk)〉 ≤ 0.

Combining (28) and (29) and knowing that 〈Yk+1 −
Yk,∇Fδ(Yk)〉 + 〈Zk+1 − Zk,∇Fδ(Zk)〉 is nonpositive, it
can be obtained that
m

2
‖Yk+1 −Yk‖2F +

m

2
‖Zk+1 − Zk‖2F

≤ Fδ(Yk)− Fδ(Yk+1) + Fδ(Zk)− Fδ(Zk+1),

and, consequently,
m

2
‖Yk+1 −Yk‖2F ≤ Fδ(Yk)− Fδ(Yk+1)

+ Fδ(Zk)− Fδ(Zk+1), (30)
m

2
‖Zk+1 − Zk‖2F ≤ Fδ(Yk)− Fδ(Yk+1)

+ Fδ(Zk)− Fδ(Zk+1). (31)

Summing over k, it follows from (30) and (31) that

m

2

N∑
k=0

‖Yk+1 −Yk‖2F ≤ Fδ(Y0) + Fδ(Z0),

m

2

N∑
k=0

‖Zk+1 − Zk‖2F ≤ Fδ(Y0) + Fδ(Z0).

This shows that m
2

∑N
k=0 ‖Yk+1 − Yk‖2F and

m
2

∑N
k=0 ‖Zk+1 − Zk‖2F converge when N → ∞, which,

in turn, proves that {Yk} and {Zk} are convergent.
Following the same line of argument made to show that
{Xk} is bounded, convergence of {Xk} follows from(

Yk Xk

XT
k Zk

)
� 0 and convergence of {Yk}, {Zk}. To show

that {(Xk,Yk,Zk)} converges to a local minimum of (11),
we cast (13) as a standard SDP. First, note that

A(X) = b⇔ 〈Ai,X〉 = bi, i = 1, · · · ,m,

for some Ai ∈ Rn1×n2 . By introducing

A′i ,

[
0 1

2Ai

1
2AT

i 0

]
,C ,

[
∇Fδ(Yk) 0

0 ∇Fδ(Zk)

]
,

W ,

[
Y X

XT Z

]
,

(13) converts to

min
W

trace(CW)

subject to trace(A′iW) = bi, i = 1, · · · ,m,
W � 0.

(32)
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Let {Xk,Yk,Zk} → {X∗,Y∗,Z∗} as k →∞. The Karush-
Kuhn-Tucker (KKT) conditions for (32) [40] implies that,
∃y∗ ∈ Rm,S∗ ∈ Sn1+n2 such that

•
∑m
i=1 y

∗
i A
′
i + S∗ =

[
∇Fδ(Y∗) 0

0 ∇Fδ(Z∗)

]
,

• trace(A′iW) = bi, i = 1, · · · ,m,
• S∗W∗ = 0,
• S∗ � 0,W∗ � 0,

where W∗ =

[
Y∗ X∗

X∗T Z∗

]
. It can be easily verified that

the above conditions are the KKT conditions for the original
problem

min
W

Fδ(Y) + Fδ(Z)

subject to trace(A′iW) = bi, i = 1, · · · ,m,
W � 0,

which together with (27) and concavity of the cost function
confirms that (X∗,Y∗,Z∗) is a local minimizer of (11).

V. NUMERICAL EXPERIMENTS

In this section, we present a numerical evaluation of the
performance of the ICRA algorithm. First, the effect of pa-
rameter c in the accuracy of recovering low-rank matrices is
analyzed. Next, after proposing a suitable choice for c, the
evolution of the phase transitions of the ICRA algorithm in
solving MC and ARM problems when δ decreases from ∞
is illustrated. Finally, superiority of the proposed algorithm
in MC and ARM problems is demonstrated via simulations.
Toward this end, ICRA is compared to NNM, the method of
[23], and SRF which already outperforms some of the state-
of-the-art algorithms in the MC problem [15]. As mentioned
earlier, in [23], Fazel et al proposed to replace (1) with (12).
To solve (12), they proposed to use a Majorize-Minimize
technique which leads to solving the following SDP iteratively,

(Xk+1,Yk+1,Zk+1) =

argmin
(X,Y,Z)

trace((Yk + αIn1)−1Y) + trace((Zk + αIn2)−1Z)

s.t.
(

Y X
XT Z

)
� 0, A(X) = b.

Although appears to constitute an instance of (11), for this
replacement of the ARM, f(x) = log(x+α) does not satisfy
some of the requirements in Property 1. This algorithm is
referred as LGD (LoG-Determinant) in the sequel.

We use random matrices as solutions to (1) and (2) and
random linear operators in our simulations. In particular, to
generate a random matrix X ∈ Rn1×n2 of rank r, Xl ∈ Rn1×r

and Xr ∈ Rr×n1 , whose entries are identically and inde-
pendently distributed (iid) from a zero-mean, unit-variance
Gaussian distribution N(0, 1), are generated. Then we set
X = XlXr. The constraints A(X) = b are converted
to A vec(X) = b, where A ∈ Rm×n1n2 is the matrix
representation of A, and every elements of A is iid from
N(0, 1). Furthermore, in MC scenarios, revealed entries are
selected uniformly at random from all the elements of X.
Let X̂ designate the output of one of the above algorithms
to recover X. For measuring the accuracy of reconstruction,
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Fig. 3. Averaged SNRrec’s of the ICRA algorithm in solving ARM and
MC problems are plotted versus c for 6 different number of measurements.
Matrix dimensions are set to 30×30, and r is fixed to 6 in all simulations. To
obtain accurate estimates of the SNRrec, in each problem, 100 Monte-Carlo
simulations are run, and results are averaged.

we define SNRrec , 20 log10(‖X‖F /‖X− X̂‖F ) in dB as the
reconstruction SNR. Furthermore, dr = r(n1+n2−r) denotes
the number of degrees of freedom for a real-valued matrix of
dimensions n1 × n2 with rank r [6].

In all simulations, square matrices are considered, and
n1 = n2 = n is always set to 30. Moreover, always, ε1 and
ε2 are fixed to 10−2 to stop both internal and external loops
when the current solution changes only 1% from the previous
one. f(x) = 1 − e−x is the UA function in all the following
experiments. All simulations are performed in MATLAB 7.14
environment, and CVX [41] is used to solve (13).

Experiment 1. The parameter c is used to control the decay
rate of δ in refining the rank approximation. More specifically,
at the ith iteration of the external loop, δi is set to cδi−1.
The optimal choice of c is a function of the aspects of the
problem under consideration. However, roughly speaking, as
the number of measurements decreases toward the degrees of
freedom of the solution, larger values of c should be chosen.
In contrast, in problems with larger ratio of the number of
measurements to the degrees of freedom, smaller values of c
lead to less number of iterations while SNRrec does not degrade
considerably.

In this experiment, the above rule is numerically verified.
For 30×30 randomly generated matrices of rank 6, six differ-
ent ARM and MC problems are solved to cover cases where
m/dr is small or large. c is changed from 0.1 to 0.5. Trials
are repeated, for each value of m, 100 times, and SNRrec’s
are averaged over these trials. Figure 3 shows SNRrec as a
function of c. Clearly, when there is sufficiently large number
of measurements, SNRrec is approximately independent of c.
Thus, since increasing c gives rise to more number of itera-
tions, it should be chosen as small as possible. On the other
hand, for smaller number of measurements, reconstruction
SNR depends on c. However, after passing a critical value,
SNRrec remains approximately unchanged. Therefor, to have
the lowest computational complexity, c should be selected a
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Fig. 4. Phase transition plots for the ICRA algorithm in solving the
MC problem as it proceeds with finer approximations of the rank function.
(a) corresponds to the NNM which is used to initialize ICRA, and (b)-
(d) correspond to the next three consecutive iterations of the external loop.
Simulations are performed 50 times. Gray-scale color of each cell indicates
the rate of perfect recovery. White denotes 100% recovery rate, and black
denotes 0% recovery rate. A recovery is perfect if the SNRrec is greater than
60 dB.

bit above that critical value. Applying the above rule, in the
rest of experiments, c is chosen to be 0.2.

Experiment 2. This experiment is devoted to analyze the
performance of the proposed algorithms as it proceeds with
finer approximations of the rank function. To that end, the
phase transition graph, which similar to the CS framework
indicates the region of perfect recovery and failure in solving
rank minimization problems [5], [7], is utilized. To empirically
generate the phase transition graphs, r is changed from 1 to
n, and, for a fixed r, m is swept from dr to n2. For every
pair (r,m), 50 random realizations of X are generated and
empirical recovery rates according to the solutions obtained in
the initialization step and the next three consecutive iterations
of the external loop are calculated. This procedure is run for
both ARM and MC settings, and a solution is declared to be
recovered if reconstruction SNR is greater than 60 dB.

Figures 4 and 5 show the results of this experiment for ARM
and MC problems. The gray color of each cell indicates the
empirical recovery rate. White denotes perfect recovery in all
trials, and black shows unsuccessful recovery for all trials. As
clearly illustrated in these plots, when δ decreases the region
of perfect recovery extends. Particularly, at two first iterations,
the gain in the extension is more significant. Furthermore, our
experiments shows that decreasing δ for more than four steps
does not boost the performance meaningfully.

Experiment 3. In this experiment, the ICRA algorithm is
compared to NNM, LGD, and SRF methods in solving ARM
and MC problems defined in (1) and (2), respectively. Two
criteria are used to this end: success rate and computational
complexity. We declare an algorithm to be successful in
recovery of the solution if SNRrec is greater than or equal to 60
dB. Consequently, the success rate of an algorithm denotes the
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Fig. 5. Phase transition plots for the ICRA algorithm in solving the ARM
problem as it proceeds with finer approximations of the rank function. (a)
corresponds to the NNM which is used to initialize ICRA, and (b)-(d)
correspond to the next three consecutive iterations of the external loop. Other
conditions are as in Figure 4.

number of times it successfully recovered the solution divided
by the total number of trials, which is equal to 100 herein.
Furthermore, the number of SDPs each algorithm, except SRF,
needs to converge to a solution is reported as a measure of
complexity. Although a rough estimate of complexity, this
measure is independent of simulation hardware specifications
and can give insight to the order of computational loads of
the algorithms, as order of computation is fully understood
for SDP solvers, see e.g. [42]. We exclude SRF from this
complexity comparison because it has an efficient implementa-
tion, whereas ICRA is realized by CVX as a proof-of-concept
version. In addition, other competitors are also implementable
by SDP, while SRF is not.

No stopping rule is specified in [23] for the LGD method,
and we use the distance between two consecutive iterations to
terminate it. To be precise, if d = ‖X̂i−X̂i−1‖F /‖X̂i−1‖F ≤
tol, where X̂i is the solution at the ith iteration, then the final
solution is X̂i. In all the comparisons, tol is set to 10−4 since
we observed empirically that decreasing tol to smaller values
only increases the number of LGD iterations, whereas SNRrec
does not boost meaningfully. The SRF algorithm is executed
with c = 0.85, µ = 1, L = 8, and ε = 10−5.

Figure 6(a)-6(c) plots the success rate for ICRA, SRF, LGD,
and NNM as well as number of SDP iterations for ICRA and
LGD as a function of m/dr in solving MC problems with
r = 2, 5, and 10, respectively. In these plots, the left-hand
side vertical axis shows the average number of SDPs used to
obtain the final solution, and the right-hand side vertical axis
displays the success rate. Furthermore, a solid trace depicts the
success rate of an algorithm, while the same color dashed trace
shows the number of SDP iterations of the same algorithm. For
instance, the black solid trace shows the success rate for the
ICRA algorithm, and the dashed black one displays its total
number of iterations. NNM method always gives a solution
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(a) MC, r = 2.
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(b) MC, r = 5.
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(c) MC, r = 10.
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(d) ARM, r = 2.
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(e) ARM, r = 5.
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(f) ARM, r = 10.
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(g) ARM, r = 15.
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(h) ARM, r = 20.

Fig. 6. Comparison of the ICRA algorithm to the SRF [15], LGD [23], and NNM methods in terms of success rate and complexity. In these plots, the
left-hand side vertical axis denotes the number of iterations each algorithm, except for SRF and NNM, needs to converge. In addition, the right-hand side
vertical axis display the so-called success rate. A solid trace represents the success rate of an algorithm, and a dashed trace shows the number of SDPs the
same algorithm used to find the solutions. Trials are repeated 100 times, and results are averaged over them.
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after execution of an SDP, so, to have more organized plots,
this result is not shown.

It is clear from these results that, for the MC problems,
ICRA can recover the solutions with considerably smaller
number of measurements, and SRF stands in the second place
of this comparison. Particularly, when r equals to 10 with
number of measurements less than 1.2 times of the matrix
degrees of the freedom, solutions can be recovered by ICRA
with a recovery rate close to 1. So far as the complexity of
ICRA is concerned, while average number of iterations can
exceed 17, when m increases toward values in which success
rate is about 1, number of iterations continuously decreases
and becomes equal to 2 when LGD starts to recover solutions
with success rate of 100%. Also, when LGD starts to recover
the solutions, its number of iterations suddenly increases up
to 21 for r = 2, whereas 5 iterations in average suffice for
ICRA to converge.

The strength of ICRA in ARM is also shown in Figure 6(d)-
6(h). Under the same conditions as explained before, (1) is
solved for r = 2, 5, 10, 15, and 20. To sum up the results, LGD
and NNM have very close success rate in all simulations, and
ICRA consistently outperforms both of them. As r increases,
the minimum m/dr in which ICRA can perfectly recover
solutions decreases and, in particular, it needs measurements
just 5% more than the solution degrees of freedom to recover
with rate 1 when r is equal to 20. Similar to the MC case, the
average number of ICRA iterations is a declining function
of m and decreases to 2 when NNM and LGD starts to
recover the solutions. In fact, since ICRA is initialized with
the minimum nuclear-norm solution, when the global solution
is attainable by nuclear norm minimization, ICRA maintains
this solution and terminates after two iterations. This may be
justified as follows. From Theorem 2, we expect that if (3)
and (1) share the same global solution, (6) also share the same
minimizer. Moreover, Theorem 3 guarantees the convergence
since ICRA is initialized by the global solution and the cost
function does not increase at any iteration.

These experiments demonstrate that even though our perfor-
mance analysis predicts that, in comparison to NNM, ICRA
requires less or equal number of measurements to uniquely
recover the solutions, strictly smaller number of measurements
suffice for its success. Furthermore, it seems that the proposed
approach for minimizing (11) can find a global minimum in
a wide range of m’s at the presented numerical examples.

VI. CONCLUSION

The problem of approximation of rank(X) in ARM and
MC settings was considered by formulating it as rank(X) =∑n
i=1 u(σi(X)). To simplify this task, we focused on the

approximation of the unit step function and proposed a class
of subadditive functions which are closely match the unit
step. The concavity and differentiability of the resulting matrix
functions were characterized, proving that they are concave
and differentiable for PSD matrices. Using a lemma from
[23], we generalized the concave approximation to arbitrary
nonsquare matrices. To handle the nonconvexity of the opti-
mization problem, we used a series of optimizations, where

the quality of the approximation is successively increased.
Furthermore, to theoretically support the proposed algorithm,
we presented a theorem proving the superiority of the pro-
posed approximation to NNM. Then we examined the per-
formance of the ICRA algorithm via numerical examples in
both ARM and MC problems. These examples showed that
though the computational complexity is high in comparison to
NNM, LGD, and SRF, ICRA can recover low-rank matrices
with number of measurements close to the intrinsic unique
representation lower-bound. The decrease in the number of
measurements, in comparison to NNM, was up to 50% in the
performed numerical simulations.
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