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Differential of the mutual information
Massoud Babaie-Zadeh1,2, Christian Jutten1 and Kambiz Nayebi2

Abstract— In this letter, we compute the variation of the mutual
information, resulting from a small variation in its argument.
Although the result can be applied in many problems, we consider
only one example: the result is used for deriving a new method
for blind source separation in linear mixtures. The experimental
results emphasize on the performance of the resulting algorithm.

Index Terms— Mutual Information, Independent Component
Analysis (ICA), Blind Source Separation (BSS).

I. I NTRODUCTION

BLIND Source Separation (BSS) and Independent Com-
ponent Analysis (ICA) are basic problems in signal

processing which have been studied intensively in the last
fifteen years. For linear instantaneous mixtures, the problem
is stated as follows: lets(n) = (s1(n), . . . , sN (n))T be
the vector of some statistically independent source signals
which are mixed by a regular mixing matrixA and generate
the observed signalsx(n) = (x1(n), . . . , xN (n))T , that is,
x(n) = As(n) (in this paper, the number of sources and the
number of observations are assumed to be equal). The goal of
BSS is to retrieve the source signalssi only by observingxi’s:
there is neither information about the source signals (but their
statistical independence) nor about the mixing matrixA. For
separating the mixture, we estimate the separating matrixB

such that the components of the output vectory = Bx become
statistically independent. It has been proven [1] that if there is
no more than one Gaussian source, and if the components of
y are independent, they will be a copy of the source signals
up to a scaling and a permutation indeterminacy.

The degree of independence between random variablesy1,
y2, . . . , yN , can be measured by their mutual information:

I(y) =

∫

y

py(y) ln
py(y)

∏

i pyi
(yi)

dy =
∑

iH(yi) − H(y) (1)

where y = (y1, . . . , yN )T , py and pyi
are the Probability

Density Functions (PDFs) ofy and yi, respectively, andH
denotes Shannon’s entropy. The mutual information is always
non-negative, and vanishes if and only if the random vari-
ablesy1, . . . , yN are independent. Therefore, the estimation
algorithm of the separating matrixB can be designed based
on minimizing the mutual information of the outputsI(y),
and for this minimization, the steepest descent algorithm can
be used. This technique has already been applied successfully
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for separating linear instantaneous mixtures [2], [3] as well as
nonlinear mixtures [4].

Usually,I(y) =
∑

i H(yi)−H(y) is modified by using the
multiplicative relation:

py(y) =
px(x)

|detB|
(2)

which leads toH(y) = H(x) + ln |detB|, and consequently:

I(y) =
∑

i

H(yi) − H(x) − ln |detB| (3)

The gradient ofI(y) with respect toB is then easily obtained,
and only requires estimation of marginal PDF’s or more ex-
actly of their log-derivatives. Similar relations, and thegradient
of I(y), can be derived for particular nonlinear mixtures [4].

However, for more complicated mixtures, such as convolu-
tive mixtures (where the mixing matrix is composed of filters,
instead of simple scalars), or convolutive-nonlinear mixtures,
a simple multiplicative relation like (2) does not exist. Inthese
cases, if we know the variation of the mutual information
resulting from a small variation of its argument (thedifferential
of mutual information), then we can easily design gradient
based algorithms. The main purpose of this letter is to calculate
this differential. In this paper, we only apply it to source
separation, but the result is very general and could be used
in many domains where the mutual information gradient is
required. The paper is organized as follows. In section II,
we introduce a few definitions. Section III is devoted to the
computation of the differential of the mutual information.
In section IV, this result is applied for deriving estimation
equations for linear instantaneous and convolutive mixtures.
In section V, we illustrate the algorithm efficacy by a simple
experiment.

II. JSFS, MSFS AND SFDS

In this section, we introduce the definition of the Joint Score
Function (JSF), the Marginal Score Function (MSF) and the
Score Function Difference (SFD). First, recall the definition of
the score function of a scalar random variable from statistics
literature:

Definition 1: The score function of the scalar random vari-
ablex, is the opposite of the log-derivative of its density,i.e.:

ψ(x) = −
d

dx
ln px(x) = −

p′x(x)

px(x)
(4)

Now, let x = (x1, . . . , xN )T be anN -dimensional random
vector. We then define two different forms of score functions.
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Definition 2: The Marginal Score Function (MSF) ofx, is
the vector of score functions of its components,i.e., ψx(x) =
(ψ1(x1), . . . , ψN (xN ))

T , where:

ψi(x) = −
d

dxi

ln pxi
(xi) = −

p′xi
(xi)

pxi
(xi)

(5)

andpxi
(xi) is the marginal PDF ofxi.

Definition 3: The Joint Score Function (JSF) of the
random vector x, is the vector function ϕx(x) =
(ϕ1(x), . . . , ϕN (x))

T , where:

ϕi(x) = −
∂

∂xi

ln px(x) = −
∂

∂xi
px(x)

px(x)
(6)

andpx(x) is the joint PDF of the random vectorx.

Definition 4: The Score Function Difference (SFD)
of x, is the difference between its MSF and JSF,i.e.,
βx(x) = ψx(x) − ϕx(x).

The following theorem can be easily proved [5]:
Theorem 1:The components of a random vector are inde-

pendent if, and only if, its SFD is zero.

III. D IFFERENTIAL OF THEMUTUAL INFORMATION

The main theorem of the paper can now be stated:
Theorem 2:(Differential of mutual information) Letx be a

bounded random vector, and let∆ be a ‘small’ random vector
with the same dimension, then:

I(x + ∆) − I(x) = E
{

∆T βx(x)
}

+ o(∆) (7)

whereβx is the SFD ofx, and o(∆) denotes higher order
terms in∆.

Remark 1. Equation (7) may be stated in the following form
(which is similar to what is done in [6]):

I(x + Ey) − I(x) = E
{

(Ey)T βx(x)
}

+ o(E) (8)

wherex and y are bounded random vectors,E is a matrix
with small entries, ando(E) stands for a term that converges
to zero faster than‖E‖. This equation is mathematically
more sophisticated, because in (7) the term ‘small random
vector’ is somewhat ad-hoc. Conversely, (7) is simpler, and
easier to be used in developing gradient based algorithms for
optimizing a mutual information.

Remark 2. Recall that for any multivariate differentiable
function f(x), we have:

f(x + ∆) − f(x) = ∆T∇f(x) + o(∆) (9)

A comparison between (7) and (9) shows that SFD can be
called the ‘stochastic gradient’of the mutual information
(although, it must be noted that in (7),x and∆ are random
vectors, but in (9) they are deterministic vectors).

To prove the theorem, we first have to prove two lemmas.
The scalar versions of these lemmas have been already pro-
posed [7].

Lemma 1:Let x = (x1, . . . , xN )
T be a bounded random

vector and∆ = (∆1, . . . ,∆N )
T be a ‘small’ random vector,

then

px+∆(t)−px(t) = −

N
∑

i=1

∂

∂ti

{

E∆i
{∆i | x = t} px(t)

}

+o(∆)

(10)
Proof: For any differentiable functionh(t):

h(x + ∆) − h(x) =
∑

i

∆i

∂h

∂ti
(x) + o(∆) (11)

Thus:

E {h(x + ∆) − h(x)} =
∑

i

E

{

∆i

∂h

∂ti
(x)

}

+ o(∆) (12)

From the well-known [8] relation E {g(x,y)} =
Ex {Ey {g(x,y)|x}}, the term under summation in the
above equation can be written as follows:

E

{

∆i

∂h

∂ti
(x)

}

= Ex

{

E∆i

{

∆i

∂h

∂ti
(x) | x

}}

= Ex

{

∂h

∂ti
(x)E∆i

{∆i | x}

}

=

∫

t

∂h

∂ti
(t)E∆i

{∆i | x = t} px(t)dt

= −

∫

t

h(t)
∂

∂ti

{

E∆i
{∆i | x = t} px(t)

}

dt

(13)

The last equality is written by using integration by parts. On
the other hand, we have:

E {h(x + ∆) − h(x)} =

∫

t

h(t) (px+∆(t) − px(t)) dt

(14)
Now, by combining equations (12), (13) and (14), we con-
clude:
∫

t

h(t) (px+∆(t) − px(t)) dt = −

∫

t

h(t)

N
∑

i=1

∂

∂ti

{

E∆i
{∆i | x = t}

(15)

Equation (10) can be deducted from the fact that the above
equality holds for any functionh.

Lemma 2:Let x and∆ be as defined in Lemma 1, then:

H(x + ∆) − H(x) = −E
{

∆T ϕx(x)
}

+ o(∆) (16)

whereH denotes Shannon’s entropy, andpx(·) andϕx(·) are
the PDF and the JSF ofx, respectively.

Proof: We write:

H(x + ∆) − H(x) = −E {ln px+∆(x + ∆)} + E {ln px(x)}

= E

{

ln
px(x + ∆)

px+∆(x + ∆)

}

− E

{

ln
px(x + ∆)

px(x)

}

(17)
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In the neighborhood of 1,lnx = (x − 1) − 1
2 (x − 1)2 + · · · ,

and hence by definingz , x + ∆, the first term of (17) can
be written as:

E

{

ln
px(z)

pz(z)

}

= E

{

px(z)

pz(z)
− 1

}

+ o(∆)

=

∫

t

(

px(t)

pz(t)
− 1

)

pz(t)dt + o(∆)

= o(∆)

(18)

The second right term of (17) is simplified as follows:

−E

{

ln
px(x + ∆)

px(x)

}

= E {ln px(x)} − E {ln px(x + ∆)}

=

∫

t

ln px(t)px(t)dt −

∫

t

ln px(t)px+∆(t)dt

=

∫

t

ln px(t) (px(t) − px+∆(t)) dt

=
∑

i

∫

t

ln px(t)
∂

∂ti

{

E∆i
{∆i | x = t} px(t)

}

dt + o(∆)

(using Lemma 1)

= −
∑

i

∫

t

E∆i
{∆i | x = t}ϕi(t)px(t)dt + o(∆)

(integration by parts)

= −
∑

i

Ex

{

E∆i
{∆i | x}ϕi(x)

}

+ o(∆)

= −
∑

i

E {∆iϕi(x)} + o(∆)

= −E
{

∆T ϕx(x)
}

+ o(∆)

(19)

The lemma is proved by combining equations (17), (18) and
(19) .

Corollary 1: For scalar random variablesxi and ∆i, we
have:

H(xi + ∆i) − H(xi) = −E {∆i · ψxi
(xi)} + o(∆i) (20)

Proof of Theorem 2:Combining the usual expression
I(x) =

∑

i H(xi)−H(x) with equations (16) and (20) proves
the theorem.

IV. A PPLICATION IN BSS

In this section, we use the results of the previous section for
deriving estimation equations for source separation in linear
mixtures.

A. Linear instantaneous mixtures

We first calculate the gradient ofI(y) with respect to the
separating matrixB.

Let B̂ = B+E , whereE = [ǫij ] is a ‘small’ matrix. The new
output vector iŝy = y + Ex. From Theorem 2, the variation
of I will be (up to first order terms):

I(ŷ)− I(y) = E
{

βT
y (y)Ex

}

=
∑

i,j

ǫijE {βy,i(y)xj} (21)

where βy denotes the SFD ofy. This equation shows that
∂I

∂bij
= E {βy,i(y)xj}, and hence:

∂I

∂B
= E

{

βy(y)xT
}

(22)

Finally, the steepest descent algorithm for estimating the
matrix B is:

B ← B − µE
{

βy(y)xT
}

(23)

B. Linear convolutive mixtures

In this section, we show how the theorem can be used
in separating convolutive mixtures, that is, when the mixing
matrix is composed of linear time invariant filters instead
of scalars. Suppose that the separating filters are FIR with
maximum degreeM . Then, the separating matrix is in the
form B(z) =

∑M
k=0 Bkz−k, and the output vector is:

y(n) = B0x(n) + B1x(n − 1) + · · · + BMx(n − M) (24)

For separating the sources,B0, . . . ,BM must be determined
to produce independent outputs. Here, a simple multiplicative
relation like (2) does not exist, and the traditional methodfails
in calculating the gradient ofI(y(n)) with respect toBk. But,
by using Theorem 2, this gradient can be easily computed.
First, we writeB̂k = Bk + E and then:

I
(

ŷ(n)
)

− I
(

y(n)
)

= E
{

βT
y

(

y(n)
)

Ex(n − k)
}

(25)

and from there:

∂I
(

y(n)
)

∂Bk

= E
{

βy

(

y(n)
)

x(n − k)T
}

(26)

However, in convolutive mixtures, instantaneous indepen-
dence is not sufficient for separating the sources, and usingthe
above gradient needs some more considerations, detailed for
instance in [5]. As shown in [5], the whole criterion requires
a few terms which can be computed with equations similar to
(26), and leads to an efficient algorithm.

V. EXPERIMENTAL RESULTS

Here, we present separation results for linear instantaneous
mixtures. Sources are a sine wave and a uniform random
signal, both with zero mean and unit variance. The mixing
matrix is:

A =

(

1 0.6
0.6 1

)

For using the algorithm (23), we need to estimate the SFD
of y. For this estimation, we have used a simple histogram
estimation method (but other estimators could be used). In
this method,y1 and y2 are first splitted into some bins. Let
N and Card(n1, n2) denote, respectively, the total number
of output samples and the number of samples in the bin
(n1, n2). Then p(n1, n2) = Card(n1,n2)

N
is the joint proba-

bility estimation in (n1, n2), and p(n2|n1) = p(n1,n2)
P

n2
p(n1,n2)

is the conditional probability estimation. Finally, noting that

β1(y) = ∂
∂y1

ln p(y2|y1) =
∂

∂y1
p(y2|y1)

p(y2|y1)
, we can estimate

β1(n1) as:

β1(n1) =
p(n2|n1) − p(n2|n1 − 1)

p(n2|n1)
(27)
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Fig. 1. Output SNRs in separating the mixture of two sources.

β2(n2) will be estimated in a similar way.
We usedN = 500 andµ = 0.1. For estimating the SFD,y1

andy2 are splitted into 10 bins each (i.e. a 10 by 10 histogram
is used). The initial value ofB is the identity matrix, and the
expectation in (23) is estimated by the empirical average on
the data block.

For measuring the quality of separation, the output Signal
to Noise Ratio (SNR) is used, which is defined by (in dB):

SNR= 10 log10

E
{

s2
}

E {(s − y)2}
(28)

Figure 1 shows the averaged output SNR’s versus iteration,
taken over 100 runs of the algorithm. As it can be seen in
the figure, a good separation quality is obtained: 37dB and
31dB. If the same experiment is repeated using the method
of [3], with a 10 bins histogram estimation for marginal
score functions, the averaged output SNR’s will be 29dB
and 17dB. Moreover, if in the method of [3], the optimal
estimation of marginal score functions using a 3rd order
polynomial is used, then the averaged output SNR’s will be
44dB and 35dB. It is then clear that this new approach based
on SFD is much more efficient than approaches based only on
marginal score functions, in the sense that it performs much
better despite crude density (and score function) estimations.
Finally, it must be emphasized that the main advantage of
the new method is its generality: it can be easily extended to
more general mixing models,e.g. convolutive mixtures [5]
and Convolutive Post Non-Linear (CPNL) mixtures [9].

The good quality of the approach based on SFD can be
explained as follows. First note that in [3], the authors usethe
natural gradient [10]:

∇BI =
∂I

∂B
· BT

= E
{

βy(y)yT
}

= E
{

ψy(y)yT
}

− E
{

ϕy(y)yT
}

(29)

However, integration by parts shows thatE{ϕy(y)yT } = I,
and hence:

∇BI = E
{

ψy(y)yT
}

− I (30)

Practically, this equation is simpler than (29), since it only
requires estimation of marginal score functions. However,the
separation information is contained in the averaged SFD, as
the gradient of the mutual information. Moreover, SFD is the
difference of two termsψy(y) andϕy(y), and consequently
∇BI will be the difference of the two termsE

{

ψy(y)yT
}

and E
{

ψy(y)yT
}

. In (30), one of these terms is exactly
computed. Therefore, a good estimation of the other term
is required for separating the sources, because the difference
of these terms must vanish for achieving the convergence in
a gradient based algorithm (note also that from Theorem 1,
the separation achieves when the SFD of outputs vanishes).
However, in the method presented in this paper, we directly
estimate the SFD, and hence a good separation can be achieved
even with a simple histogram approximation.

VI. CONCLUSION

In this paper, the variation of the mutual information result-
ing from a small variation in its argument (the ‘differential’
of the mutual information), has been calculated. It can be
used for developing gradient based algorithms in any mutual
information optimization problem. As an example, we used it
for developing a new algorithm for blind source separation.
Experimental results, for linear instantaneous mixtures,show
the good performance of the resulting algorithm. The appli-
cation of the method for separating more general mixtures is
currently under study.
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mélanges post non lińeaires, DEA de l’INP de Grenoble, June 2000,
(in French).

[8] A. Papoulis, Probability, Random Variables, and Stochastic Processes,
McGraw-Hill, 1991.

[9] M. Babaie-Zadeh, C. Jutten, and K. Nayebi, “Blind separating Con-
volutive Post-Nonlinear mixtures,” inICA2001, San Diego, California,
December 2001, pp. 138–143.

[10] J.-F. Cardoso and B. Laheld, “Equivariant adaptive source separation,”
IEEE Trans. on SP, vol. 44, no. 12, pp. 3017–3030, December 1996.


