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ABSTRACT
In this paper, we propose a Bayesian Pursuit algorithm for

sparse representation. It uses both the simplicity of the pur-

suit algorithms and optimal Bayesian framework to determine

active atoms in sparse representation of a signal. We show

that using Bayesian Hypothesis testing to determine the active

atoms from the correlations leads to an efficient activity mea-

sure. Simulation results show that our suggested algorithm

has better performance among the algorithms which have

been implemented in our simulations in most of the cases.

Index Terms— Sparse representation, Sparse Compo-

nent Analysis (SCA), Compressed Sensing (CS), Pursuit

algorithms.

1. INTRODUCTION

Finding (sufficiently) sparse solutions of underdetermined

systems of linear equations (possibly in the noisy case) has

been used extensively in signal processing community. This

problem has been found applications in a wide range of di-

verse fields. Some applications are Blind Source Separation

(BSS) and Sparse Component Analysis (SCA) [1], decoding

[2] and Compressive Sensing (CS) [3], [4].

The problem can be defined in various contexts such as

sparse representation, SCA or Compressed Sensing (CS).

Here, we use the notation of the sparse representations of

signals. Let the model be:

x = Φy + e (1)

where x is an n× 1 signal vector, y is an m× 1 sparse coeffi-

cient vector, Φ is an n×m matrix called dictionary and e is a

n×1 error vector. It is assumed that n < m which means that

the signal length is smaller than the number of columns of the

dictionary (which are called atoms). The main assumption is

that the signal has a sparse representation in the dictionary.

The main goal is to find the sparse coefficient vector y based

on the signal x and knowing the dictionary Φ.
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In different applications, the interpretations of vectors are

different, but in all of them the model is as (1). For exam-

ple, in the context of CS, Φ is the measurement matrix, x is

the very few measurements of the signal and y is the sparse

representation of the true signal in a probable domain. In the

context of SCA, Φ is the mixing matrix, x is the mixture vec-

tor and y is the source vector.

Finding the sparsest solution, that is, the solution with the

minimum number of nonzero elements, is an NP-hard combi-

natorial problem. So, different methods have been proposed

to solve the problem in a tractable way. Most of them are

divided in two main categories: 1) Optimization approaches

and 2) Greedy approaches. The first category converts the

problem to an optimization problem and then use different

methods to solve that. But, the second category tries to find

active coefficients (with nonzero elements) directly by an al-

gorithm.

In the first category, the most successful approach which

is Basis Pursuit (BP) [5], suggests a convexification of the

problem by replacing the �0-norm with the �1-norm. It can

then be implemented by Linear Programming (LP) methods.

Another method is FOCUSS algorithm which uses �p-norm

with p ≤ 1 as a replacement for the �0-norm [6]. Recently,

a novel Expectation-Maximization (EM) algorithm [7] and a

Bayesian Compressive Sensing (BCS) algorithm [8] are pro-

posed to solve the problem in a Bayesian framework. There

is also a new method for minimizing a smoothed version of

the �0-norm which is called SL0 method [9].

The methods of the other category choose active coeffi-

cients by iterative algorithms. Generally, they use the corre-

lation between the signal (or residual signal) and the atoms of

the dictionary as an informative measure for deciding which

coefficients are actually active (or nonzero). These algorithms

are Matching Pursuit (MP) [10], Orthogonal Matching Pur-

suit (OMP) [11], Stage-wise OMP (StOMP) [12] and Gradi-

ent Pursuit (GP) [13].

Our proposed method, which can be seen as a modifi-

cation in the Iterative Detection-Estimation (IDE) algorithm

[14], uses the simplicity of the greedy pursuit algorithms

while simultaneously uses Bayesian tools for optimal selec-

tion of active atoms.
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2. SYSTEM MODEL

The noise vector in the model (1) is assumed to be zero-mean

Gaussian with covariance matrix σ2
eI. We model the sparse

coefficients as follows. In our model the coefficients are inac-

tive with probability p, and are active with probability 1 − p
(sparsity of s implies that p should be near 1). In the inactive

case, the values of the coefficients are zero and in the active

case the values are obtained from a Gaussian distribution. We

call this model the ‘spiky model’ which is a special case of

the Bernoulli-Gaussian model with the variance of the inac-

tive samples being zero. This model has been also used in [7].

It is suitable for sparse representation of a signal where we

want to decompose a signal as a combination of only a few

atoms of the dictionary and the coefficients of the other atoms

are zero. So, the probability density of the coefficients in our

problem is:

p(yi) = pδ(yi) + (1 − p)N(0, σ2
r) (2)

In this model, each coefficient can be written as yi = qiri

where qi is a binary variable (with binomial distribution) and

ri is the amplitude of the i’th coefficient with Gaussian distri-

bution. Each element qi shows the activity of the correspond-

ing coefficient (or corresponding atom). That is:

qi =
{

1 if yi is active (with probability 1 − p)

0 if yi is inactive (with probability p)
(3)

Consequently, the probability p(q) of activity vector q �
(q1, q2, ..., qm)T is equal to:

p(q) = (1 − p)na(p)m−na (4)

where na is the number of active coefficients, i.e., the number

of 1’s in q. So, the coefficient vector can be written as:

y = Qr, Q = diag(q) (5)

where q and r � (r1, r2, ..., rm)T are the ‘activity vector’ and

‘amplitude vector’, respectively.

3. BAYESIAN PURSUIT ALGORITHM

The main task in sparse recovery algorithms is to determine

which atoms are active in the sparse representation of the sig-

nal. In some pursuit algorithms (e.g., MP), it is determined by

correlation maximization. In some other pursuit algorithms

(e.g., StOMP), it is done by comparing the correlations with

a threshold. But, here we want to determine it by a Bayesian

hypothesis testing from the correlations. We will see that the

same activity measure as the IDE algorithm [14] is obtained

with the difference that the threshold is obtained mathemati-

cally. To develop the hypothesis testing in our Bayesian Pur-

suit Algorithm (BPA), we write (1) as:

x =
m∑

i=1

ϕiyi + e (6)

where ϕi is the columns of the dictionary or atoms. So, the

correlations between the original signal and the atoms are:

zj �< x, ϕj >= yj +
∑
i �=j

yibij + vj (7)

where bij �< ϕi,ϕj > and vj �< e,ϕj > and the atoms

are assumed to have unit norm.

To do a Bayesian hypothesis testing based on correlations

for determining the activity of the j’th atom, we should com-

pute the posteriors p(H1|z) and p(H2|z), where the hypoth-

esis H1 is the hypothesis that the j’th atom is active and H2

is the hypothesis that the j’th atom is inactive. To obtain a

simple algorithm like pursuit algorithms, we assume that we

know the previous estimations of other coefficients (except

the j’th coefficient). And now, we want to know the activ-

ity of only the j’th atom and then update just only the j’th

coefficient.

Since we assume that we know the previous estimations

of other coefficients, (7) can be written as:

zj −
∑
i �=j

ŷibij = yj +
∑
i �=j

(yi − ŷi)bij + vj (8)

where ŷi is the estimation of the i’th coefficient up to the cur-

rent iteration. With the following definitions:

mj �
∑
i �=j

ŷibij

γj �
∑
i �=j

(yi − ŷi)bij + vj (9)

The two hypothesis H1 and H2 are:

Hypotheses :
{

H1 : zj − mj = rj + γj

H2 : zj − mj = γj
(10)

where mj is known and γj has a flavour of noise and error.

(10) resembles a classical detection problem. The optimal hy-

pothesis testing involves the computation of the overall pos-

teriors p(H1|z) and p(H2|z). But, with the previous assump-

tions and formulations, we reach a relatively simple detection

problem as in (10). So, for the simplicity of the algorithm like

the pursuit algorithms, we rely only on the simpler posteriors

as p(H1|zj) and p(H2|zj). So, the hypothesis H1 is assumed

to be true when p(H1|zj) > p(H2|zj). Based on the Bayes

rule, the above posteriors are proportional to p(H1)p(zj |H1)
and p(H2)p(zj |H2) respectively. The prior probabilities for

the hypotheses are p(H1) = 1 − p and p(H1) = p where

p is defined in Section 2. We assume that the coefficient er-

rors (yi− ŷi) have a Gaussian distribution with variance σ2
i,ey

.

Hence, by assuming that the error (yi − ŷi) is Gaussian, the

term γj is Gaussian and we assume its variance is σ2
γj

. There-

fore, we have:

(1 − p)√
2π(σ2

γj
+ σ2

r)
exp(

−(zj − mj)2

2(σ2
γj

+ σ2
r)

) >
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p√
2πσ2

γj

exp(
−(zj − mj)2

2σ2
γj

) (11)

Simplifying (11) with the assumption that the unknown

parameters (p, σr and σγj
) are known, leads to the following

decision rule for the hypothesis testing:

Activity(yj) � |zj − mj | > Thj (12)

where Thj is defined as:

Thj �
σγj

σr

√√√√
2(σ2

r + σ2
γj

) ln(
p

1 − p

√
σ2

r + σ2
γj

σγj

) (13)

Although (13) determines the optimum threshold, it de-

pends on unknown parameters (p, σr and σγ) which should

be estimated from the original signal (x). To estimate the pa-

rameters p, σr and σe, we can use similar formulas as in [7]

which are:

p̂ =
||q||0
m

, σ̂e =
||x − Φŷ||2√

n
, σ̂r =

||r||2√
m

(14)

The problem here is to estimate the parameter σγj which

is the standard deviation of γj in (9). We assume the inde-

pendence between vj and coefficient error (yi − ŷi). Another

assumption is the independence between distinct coefficient

errors yi − ŷi and yj − ŷj for i �= j. It is also known that vj

is a Gaussian random variable with the similar variance as ej

which is uniformly σ2
e . So, we have the following formula for

the parameter estimation:

σ2
γj

= σ2
e +

∑
i �=j

b2
ijσ

2
i,ey

(15)

where σ2
i,ey

is the variance of the coefficient error yi − ŷi.

If our algorithm converges, we expect that σi,ey
decreases.

So, we force that this error variance decreases linearly with

a coefficient α which is less but near one. So, we select this

decreasing sequence as:

σ
(n+1)
i,ey

= ασ
(n)
i,ey

(16)

where parameter α determines the rate of convergence.

As we can see from (13), the optimum threshold is

changed from an initial large value to a small final value.

The initial and final values of the threshold are:

Th(0)
j = Th|

σ
(0)
γj

Th(∞)
j = Th|σγ=σe ≈ Kσe (17)

where K =
√

2 ln( p
1−p

σr

σe
). As we can see from (17), the

initial thresholds are different from one coefficient to another.

But, all the thresholds have converged to the same threshold

which does not depend on the coefficient.

As the value of threshold changes from a large value to a

small value, the algorithm can detect more and more atoms.

At first iterations, the optimal thresholding strategy in (13)

changes the thresholds very fast and then after some itera-

tions, the thresholds converge to the final small value.

After updating the activity vector based on BPA decision

rule in (12), the estimation of amplitude vector r which was

defined in Section 2, based on this estimated activity vector

can be done with a Linear Least Square (LLS) estimation [7]

as:

r̂ = σ2
rQ̂ΦT (σ2

rΦQ̂ΦT + σ2
eI)−1x (18)

where Q̂ = diag(q̂) and q̂ is the updated activity vector.

4. EXPERIMENTS

The performance of the proposed BPA algorithm is investi-

gated in this section. The comparison of our BPA algorithm

is done with some other algorithms in the literature in both

estimation accuracy and complexity viewpoints. The estima-

tion accuracy of the algorithms are compared with the Signal

to Noise Ratio between the true coefficients and the recovered

coefficients, which is defined as:

SNRo � 10 log(
||y||22

||y − ŷ||22
) (19)

where the index indicates that it is an output SNR. We define

another measure which determines the noise level. We refer

to it as input SNR and is defined as:

SNRi � 20 log(
σr

σe
) (20)

We use the CPU time as a measure of complexity. Our

simulations were performed in MATLAB7.0 environment us-

ing an AMD Athlon Dual core 4600 with 896 MB of RAM

and under Windows Xp operating system.

In our experiment, we used a random dictionary matrix

with uniform distributed elements from [−1, 1], and then nor-

malized its columns. The dimension of our problem was se-

lected as m = 512 for the number of atoms and n = 256
for the signal length. For generating the sparse coefficients,

we used the model in (2) with the probability p = 0.9 and

unit variance for the active coefficients (σr = 1). So, ap-

proximately 51 atoms are active in the sparse representation

of the signal. The noise level or error is considered to have

a Gaussian distribution with different variances. The mea-

sure of performance which is the output SNR in (19) is aver-

aged over 100 different random realizations of the dictionary,

sparse coefficients and noise vector.

For initializing the unknown statistical parameters (p, σr

and σe), we use p̂(0) = 0.8, σ̂
(0)
r = ||x||2√

m(1−p̂(0))
and σ̂

(0)
e =

σ̂(0)
r

5 which are similar to those used in [7]. The important note

is to use an overestimate of noise variance (σe) in the initial
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Fig. 1. The output SNR versus input SNR for various algorithms. The

parameters are m = 512, n = 256, p = 0.9, σr = 1, α = 0.9 and 20

iterations are used for BPA.

iteration. We also used 20 iterations for BPA algorithm and

the simulation parameter α was selected as 0.9.

In this experiment, we compared the suggested BPA algo-

rithm with BP, MP, OMP, StOMP, SL0, EM and GP. For MP

and OMP, we used 100 and 50 iterations, respectively (We

used codes from Sparse Lab toolbox http://sparselab.stanford

.edu/). For StOMP, we used 20 iterations and the sensitivity

parameter for threshold selection was selected 0.5 (refer to

Sparse Lab toolbox http://sparselab.stanford.edu/). For SL0,

we used the minimum sigma equal to 0.04 and the decreasing

factor equal to 0.9 (refer to http://ee.sharif.edu/ SLzero/sl0.m).

For the EM algorithm, we used both 5 iterations for the over-

all EM algorithm and 4 iterations for the M-step [7]. Figure 1

shows the estimation accuracy of various algorithms versus

the noise level. It shows that our BPA algorithm outperforms

the others in most of the cases.

We computed the average simulation time for various al-

gorithms. These are 0.0083, 0.0922, 0.0049, .0800, 0.4737,

0.0172, 0.6412, 0.6313 and 0.0207 seconds for MP, SL0, GP,

BCS, BP, StOMP, BPA, EM and OMP respectively. So, the

BPA algorithm is the most complex algorithm.

5. CONCLUSION

In this paper, we suggested the BPA algorithm which deter-

mines the active atoms based on a Bayesian hypothesis test-

ing from the correlations of the signal with the atoms of the

dictionary. Simulations show the advantage of the proposed

method over some of the state-of-the-art algorithms in terms

of estimation accuracy in most of the cases.
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