New Dictionary Learning Methods for Two-Dimensional Signals

Firooz Shahriari-Mehr*, Javad Parsa*, Massoud Babaie-Zadeh* Christian Jutten**

*Electrical Engineering Dep., Sharif University of Technology, Tehran, Iran. **GIPSA-Lab, University of Grenoble Alpes, Grenoble, France.

January 2021

Introduction	Proposed Methods	Experimental Results
0000	o	00000
00	ooooo	0

Outline

Introduction

- Sparse Representation and Dictionary Learning for One-Dimensional Signals
- Sparse Representation and Dictionary Learning for Two-Dimensional Signals

Proposed Methods

- 2D-MOD
- 2D-CMOD

3 Experimental Results

- Recovery of Known Dictionary
- Image Denoising

Introduction	Proposed Methods	Experimental Results
●ooo	o	00000
○○	ooooo	0

One-Dimensional Sparse Representation

$$\min_{\mathbf{x}} \|\mathbf{x}\|_0 \quad s.t. \quad \mathbf{y} = \mathbf{D}\mathbf{x}$$

- $\blacktriangleright \ \mathbf{y} \in \mathbb{R}^n \rightarrow \mathsf{One-Dimensional Signal}$
- $\blacktriangleright \ \mathbf{D} = [\mathbf{d}_i], \ \mathbf{D} \in \mathbb{R}^{n \times m} \rightarrow \mathsf{Dictionary}, \ \mathbf{d}_i \in \mathbb{R}^n \rightarrow \mathsf{atom}$
- $\blacktriangleright \ \mathbf{x} \in \mathbb{R}^m \rightarrow \mathsf{Sparse Signal Representation}$
- $\blacktriangleright \ m > n \rightarrow$ Underdetermind Linear System of Equations

Introduction	Proposed Methods	Experimental Results
0000		00000 0

One-Dimensional Dictionary Learning

$$(\mathbf{D}^*, \mathbf{X}^*) = \operatorname*{argmin}_{\mathbf{D} \in \mathcal{D}, \mathbf{X} \in \mathcal{X}} \|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_F^2$$

$$\mathcal{D} \triangleq \left\{ \mathbf{D} : \forall i, \|\mathbf{d}_i\|_2^2 = 1 \right\}$$
$$\mathcal{X} \triangleq \left\{ \mathbf{X} : \forall i, \|\mathbf{x}_i\|_0 \le \tau \right\}$$

- $\blacktriangleright \ \mathbf{X} \in \mathcal{X} \to \mathsf{Impose Sparsity}$
- $\blacktriangleright \ \mathbf{D} \in \mathcal{D} \rightarrow \mathsf{Avoid scaling ambiguity}$
- ▶ General approach: Alternating Minimization \rightarrow MOD (Engan et al., 1999) KSVD (Aharon et al., 2006)

Introduction	Proposed Methods	Experimental Results
OO∎O	o	00000
⊖⊖	ooooo	0

Vectorizing and its consequent problems

Two-Dimemsional Signals?

vectorize each signal and use usual 1D methods

$$\blacktriangleright \ \mathbf{Y}_i \in \mathbb{R}^{20 \times 20} \longrightarrow \mathbf{y}_i \in \mathbb{R}^{400}$$

 $\blacktriangleright \mathbf{D} \in \mathbb{R}^{400 \times 1600}$

Problems:

- Memory Consumption
- Computational Cost

Introduction	Proposed Methods	Experimental Results
000● 00		00000 0

Two-Dimensional Signal Representation

$$\mathbf{Y} = \sum_{i=1}^{m_1} \sum_{j=1}^{m_2} x_{ij} \boldsymbol{\Phi}_{ij}$$

 \blacktriangleright $\mathbf{Y} \in \mathbb{R}^{n_1 \times n_2}$

$$\blacktriangleright$$
 $\mathbf{X} \in \mathbb{R}^{m_1 \times m_2}$

$$\blacktriangleright \Phi_{ij} \in \mathbb{R}^{n_1 \times n_2}$$

Separable Structure of 2D atoms in DIP¹

$$\mathbf{\Phi}_{ij} = \mathbf{a}_i \mathbf{b}_j^T \longrightarrow \mathbf{Y} = \mathbf{A} \mathbf{X} \mathbf{B}^T \Longleftrightarrow \mathbf{y} = \mathbf{D} \mathbf{x}$$

$$\mathbf{A} = [\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_{m_1}] \in \mathbb{R}^{n_1 \times m_1}$$

$$\mathbf{B} = [\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_{m_2}] \in \mathbb{R}^{n_2 \times m_2}$$

$$\mathbf{D} = \mathbf{B} \otimes \mathbf{A} \in \mathbb{R}^{n_1 n_2 \times m_1 m_2}, \ \mathbf{y} \in \mathbb{R}^{n_1 n_2}, \ \mathbf{x} \in \mathbb{R}^{m_1 m_2}$$

¹Ghaffari, Babaie-Zadeh and Jutten, "Sparse decomposition of two dimensional signals", ICASSP, 2009

Introduction 0000 •0	Proposed Methods o ooooo	Experimental Results 00000

Two-Dimensional Sparse Representation

Find the sparse representation of signal ${\bf Y}$ in separable dictionaries ${\bf A}$ and ${\bf B}^2$

$$\min_{\mathbf{X}} \|\mathbf{X}\|_0 \quad s.t. \quad \mathbf{Y} = \mathbf{A}\mathbf{X}\mathbf{B}^T$$

Methods:

- 2D-SL0²
- 2D-OMP³

²Ghaffari, Babaie-Zadeh and Jutten, "Sparse decomposition of two dimensional signals", ICASSP, 2009

³Fang, Wu and Huang, "2D sparse signal recovery via 2D orthogonal matching pursuit", SCIS, 2012

Introduction	Proposed Methods	Experimental Results
0000 0●		00000 0

Two-Dimensional Dictionary Learning

$$\blacktriangleright \mathcal{Y} = (\mathbf{Y}_1, \mathbf{Y}_2, ..., \mathbf{Y}_L) \qquad \qquad \blacktriangleright \mathcal{X} = (\mathbf{X}_1, \mathbf{X}_2, ..., \mathbf{X}_L)$$

$$(\mathbf{A}^*, \mathbf{X}^*, \mathbf{B}^*) = \operatorname*{argmin}_{\mathbf{X}_i \in \mathcal{X}_i, \mathbf{A} \in \mathcal{A}, \mathbf{B} \in \mathcal{B}} \sum_{i=1}^L \|\mathbf{Y}_i - \mathbf{A}\mathbf{X}_i \mathbf{B}^T\|_F^2$$

(1)

$$\mathcal{A} \triangleq \left\{ \mathbf{A} : \forall i, \|\mathbf{a}_i\|_2^2 = 1 \right\}$$

$$\mathcal{B} \triangleq \left\{ \mathbf{B} : \forall i, \|\mathbf{b}_i\|_2^2 = 1 \right\}$$

$$\mathcal{X}_i \triangleq \left\{ \mathbf{X}_i : \|\mathbf{X}_i\|_0 \le \tau \right\}$$

- o The first two constraints avoid scaling ambiguity
- o The last constraint impose the sparsity of representations
- * SeDiL Algorith⁴

⁴Hawe, Seibert and Kleinsteuber, "Separable Dictionary Learning", CVPR, 2013

Using Alternating Minimization:

Update X_i 's: Use usual 2D sparse Rep. methods

$$\mathbf{X}_{i}^{(k+1)} = \operatorname*{argmin}_{\mathbf{X}_{i} \in \mathcal{X}_{i}} \sum_{i=1}^{L} \left\| \mathbf{Y}_{i} - \mathbf{A} \mathbf{X}_{i} \mathbf{B}^{T} \right\|_{F}^{2}$$

Opdate A: Use Gradient Projection

normalize
$$\left\{ \left(\sum_{i=1}^{L} \mathbf{Y}_{i} \mathbf{B} \mathbf{X}_{i}^{T} \right) \left(\sum_{i=1}^{L} \mathbf{X}_{i} \mathbf{B}^{T} \mathbf{B} \mathbf{X}_{i}^{T} \right)^{-1} \right\}$$
 (2)

Update B: Use Gradient Projection

normalize
$$\left\{ \left(\sum_{i=1}^{L} \mathbf{Y}_{i}^{T} \mathbf{A} \mathbf{X}_{i} \right) \left(\sum_{i=1}^{L} \mathbf{X}_{i}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{X}_{i} \right)^{-1} \right\}$$
 (3)

	Proposed Methods	Experimental Results
0000 00	o ●0000	00000 0

2D-CMOD Idea

Convexification Idea⁵

$$\begin{aligned} \mathbf{A} &= \mathbf{A}_a + \mathbf{A} - \mathbf{A}_a \\ \mathbf{B} &= \mathbf{B}_a + \mathbf{B} - \mathbf{B}_a \\ \mathbf{X} &= \mathbf{X}_a + \mathbf{X} - \mathbf{X}_a \end{aligned}$$

$$\begin{aligned} \mathbf{A}\mathbf{X}\mathbf{B}^T &= \mathbf{A}_a\mathbf{X}_a\mathbf{B}^T + \mathbf{A}\mathbf{X}_a\mathbf{B}_a^T + \mathbf{A}_a\mathbf{X}\mathbf{B}_a^T - 2\mathbf{A}_a\mathbf{X}_a\mathbf{B}_a^T + \\ \mathbf{A}_a(\mathbf{X} - \mathbf{X}_a)(\mathbf{B} - \mathbf{B}_a)^T + (\mathbf{A} - \mathbf{A}_a)\mathbf{X}_a(\mathbf{B} - \mathbf{B}_a)^T + \\ (\mathbf{A} - \mathbf{A}_a)(\mathbf{X} - \mathbf{X}_a)\mathbf{B}_a^T + (\mathbf{A} - \mathbf{A}_a)(\mathbf{X} - \mathbf{X}_a)(\mathbf{B} - \mathbf{B}_a)^T \end{aligned}$$

$$\mathbf{A}\mathbf{X}\mathbf{B}^T \approx \mathbf{A}_a\mathbf{X}_a\mathbf{B}^T + \mathbf{A}\mathbf{X}_a\mathbf{B}_a^T + \mathbf{A}_a\mathbf{X}\mathbf{B}_a^T - 2\mathbf{A}_a\mathbf{X}_a\mathbf{B}_a^T$$

 $^5 Sadeghi, Babaie-Zadeh and Jutten, "Dictionary learning for sparse representation: A novel approach", SPL, 2013$

	Proposed Methods	Experimental Results
0000 00	o o●ooo	<u>00</u> 000 0

2D-CMOD Problem

- **b** Jointly Convex over A, B and X_i 's
- A_a, B_a and $X_{a,i}$ are parameters (previous values of variables)
- Different approaches exist to choose these parameters⁶

⁶Parsa, Sadeghi, Babaie-Zadeh and Jutten, "A new algorithm for dictionary learning based on convex approximation", EUSIPCO, 2019

2D-CMOD Algorithm (cntd.)

Using Alternating Minimization:

Update X_i 's: Use usual 2D sparse representation methods for each Z_i

$$\begin{cases} \mathbf{A}_{a} = \mathbf{A}^{(k-1)}, \mathbf{A} = \mathbf{A}^{(k)} \\ \mathbf{B}_{a} = \mathbf{B}^{(k-1)}, \mathbf{B} = \mathbf{B}^{(k)} \\ \mathbf{X}_{a} = \mathbf{X}^{(k)} \\ \mathbf{Z}_{i} = \mathbf{Y}_{i} - (\mathbf{A}^{(k)} - \mathbf{A}^{(k-1)})\mathbf{X}_{i}^{(k)}(\mathbf{B}^{(k-1)})^{T} \\ - \mathbf{A}^{(k-1)}\mathbf{X}_{i}^{(k)}(\mathbf{B}^{(k)} - \mathbf{B}^{(k-1)})^{T} \end{cases}$$

$$\mathbf{X}_{i}^{(k+1)} = \underset{\mathbf{X}_{i} \in \mathcal{X}}{\operatorname{argmin}} \sum_{i=1}^{L} \|\mathbf{Z}_{i} - \mathbf{A}^{(k-1)} \mathbf{X}_{i} (\mathbf{B}^{(k-1)})^{T}\|_{F}^{2}$$

	Proposed Methods	Experimental Results
0000 00	0 000●0	00000 0

2D-CMOD Algorithm

Using Alternating Minimization: **Output** Output Ou

$$\left\{ \begin{array}{l} \mathbf{X}_a = \mathbf{X} = \mathbf{X}^{(k+1)} \\ \mathbf{B}_a = \mathbf{B} = \mathbf{B}^{(k)} \end{array} \right.$$

The same problem as 2D-MOD for updating A, use (2)
Update B

$$\begin{cases} \mathbf{X}_a = \mathbf{X} = \mathbf{X}^{(k+1)} \\ \mathbf{A}_a = \mathbf{A} = \mathbf{A}^{(k+1)} \end{cases}$$

▶ The same problem as 2D-MOD for updating B, use (3)

2D-CMOD Pseudo-Code

Algorithm 1: 2D-CMOD

Input: Signal set: \mathcal{Y} , Sparsity level: s, Number of training signals: *num_train*, Algorithm iterations: *iter*. **Output:** Sparse representations: X_i 's, Dictionaries: A and B. 1: Initialize dictionaries A and B. 2: Set: $\mathbf{A}^{(0)} = \mathbf{A}^{(-1)} = \mathbf{A}$, $\mathbf{B}^{(0)} = \mathbf{B}^{(-1)} = \mathbf{B}$. 3: for k = 0 to iter - 1 do for i = 1 to num_train do $4 \cdot$ $\mathbf{Z}_i = \mathbf{Y}_i - (\mathbf{A}^{(k)} - \mathbf{A}^{(k-1)})\mathbf{X}_i(\mathbf{B}^{(k-1)})^T -$ 5. $\mathbf{A}^{(k-1)}\mathbf{X}_{i}(\mathbf{B}^{(k)} - \mathbf{B}^{(k-1)})^{T}$ $\mathbf{X}_i = \text{Sparse Coding}(\mathbf{Z}_i, \mathbf{A}^{(k)}, \mathbf{B}^{(k)}, s)$ 6: end for 7. $\mathbf{A}^{(k+1)} =$ Update dictionary \mathbf{A} as in (2). 8: $\mathbf{B}^{(k+1)}$ = Update dictionary **B** as in (3). 9: 10: end for

Introduction 0000 00	Proposed Methods o ooooo	Experimental Results

Recovery of Known Dictionary

Generating synthetic data

* Assume $\mathbf{Y} \in \mathbb{R}^{n imes n}$

$$\mathbf{0} \ \mathbf{A} \in \mathbb{R}^{n \times 2n}, \mathbf{B} \in \mathbb{R}^{n \times 2n} \longrightarrow \mathcal{N}(0, 1)$$

② \mathbf{X}_i 's are generated randomly with s non-zero elements

$$\mathbf{O} \ \mathbf{Y}_i = \mathbf{A}\mathbf{X}_i\mathbf{B}^T + \mathbf{N}_i$$

Metrics

 Successful Recovery Percentage of the Kronecker Dictionary. $\max(\mathbf{d}_i^T\mathbf{D}_t(:,j)>0.99$

Root Mean Square Error defined as:

$$\mathsf{RMSE} = \sqrt{\sum_{i=1}^{L} \|\mathbf{Y}_i - \mathbf{A}\mathbf{X}_i\mathbf{B}^T\|_F^2 / n^2L}$$

Introduction	Proposed Methods	Experimental Results
0000	o	00000
00	ooooo	0
Some Details		

- For all algorithms, Orthogonal Matching Pursuit (OMP)⁷ has been used as the sparse coding algorithm
- All the simulations were performed in MATLAB 2018b environment on a system with 4.0 GHz CPU, and 16 GB RAM, under Microsoft Windows 10 64-bit operating system

⁷Troop and Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit", TIT, 2007

Proposed Methods 0 00000

Recovery of Known Dictionary

Figure 1: Successful Recovery Percentage and RMSE.

Introduction	Proposed Methods	Experimental Results
0000	o	00000
00	ocooo	0

Recovery of Known Dictionary

Figure 2: Average time each algorithm's iteration. s = n, L = 1000n.

Introduction 0000 00	Proposed Methods o ooooo	Experimental Results

Recovery of Known Dictionary

Table 1: Average Number of iterations and required times to achieve 80 percent recovery(times in seconds, reported between braces). sparsity level s = n, and L = 1000n.

Signals size	n = 10	n = 15	n = 20	n = 25
1D-MOD	62(90)	59(584)	70(5110)	
1D-KSVD	52(527)	48(3339)	65(18720)	—
2D-MOD	59(47)	36(72)	34(146)	40(352)
2D-CMOD	24(20)	23(49)	28(129)	25(235)

Introduction 0000 00	Proposed Methods o ooooo	Experimental Results

Image Denoising⁸

▶ 40000 patches, size 12×12

•
$$\mathbf{A} \in \mathbb{R}^{12 \times 24}$$
, $\mathbf{B} \in \mathbb{R}^{12 \times 24}$, $\mathbf{D} \in \mathbb{R}^{144 \times 576}$

Images	boat			house				Total Time	
σ_{noise} (PSNR(dB))	10(28.12)	20(22.12)	30(18.61)	50(14.13)	10(28.18)	20(22.12)	30(18.60)	50(14.15)	Total Time
ODCT (Not Trained)	33.24	29.47	27.33	24.92	35.19	31.86	29.43	27.13	13
2D-MOD	33.33	29.70	27.60	25.19	35.22	32.16	29.76	27.47	524
2D-CMOD	33.26	29.59	27.57	25.17	35.03	31.98	29.69	27.44	636
SeDiL	31.14	27.20	25.20	23.47	32.91	29.00	26.39	24.32	573
KSVD	33.47	30.04	27.93	25.47	35.98	33.36	31.33	28.60	3130

 $^{^8\}mathsf{Elad}$ and Aharon, "Image denoising via sparse and redundant representations over learned dictionaries", TIP, 2006

Introduction	Proposed Methods	Experimental Results		
0000	o	●0000		
00	ooooo	0		
Conclusion				

- A new jointly convex objective function was introduced for 2D DL problem.
- Two new algorithms were proposed to solve the 2D DL problem.
- Experimental results show that the proposed methods have much less computational complexity than 1D methods. Moreover, they need fewer training signals and fewer iterations to converge.

Thank you for Your Attention!

Any Questions?