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Abstract—Data representation plays an important role in
performance of machine learning algorithms. Since data usually
lacks the desired quality, many efforts have been made to provide
a more desirable representation of data. Among many different
approaches, sparse data representation has gained popularity in
recent years. In this paper, we propose a new sparse autoencoder
by imposing the power two of smoothed L0 norm of data
representation on the hidden layer of regular autoencoder. The
square of smoothed L0 norm increases the tendency that each
data representation is “individually” sparse. Moreover, by using
the proposed sparse autoencoder, once the model parameters are
learned, the sparse representation of any new data is obtained
simply by a matrix-vector multiplication without performing
any optimization. When applied to the MNIST, CIFAR-10, and
OPTDIGITS datasets, the results show that the proposed model
guarantees a sparse representation for each input data which
leads to better classification results.

I. INTRODUCTION

The performance of many machine learning algorithms
(e.g. classification and clustering) is heavily influenced by
the quality of their input data. They show their best perfor-
mance and highest efficiency only when they are provided
with suitable inputs [1]. In this purpose, many efforts have
been made to achieve the desirable representation of data in
different machine learning applications.

In general, unknown complex statistical relationships may
exist between elements of raw data [2]. Therefore, many
different representation approaches can be utilized to process
the raw data. Good representations are those which extract
the causal factors of statistical variations that generate the
data [1]. Currently, there are two main approaches to obtain
representations from raw data, namely feature engineering and
representation learning [1], [3], [4].

In feature engineering, which is a traditional approach,
transformations are designed based on the domain of input data
[5], to map data from the input space into the feature space for
obtaining a new representation [1]. For example, algorithms
such as SIFT [6], RIFT [7], HOG [8], GHOG [9], and SURF
[10] have been proposed to extract features from images.
Although these methods have carefully been designed, they are
usually very time-consuming, labor-intensive, and dependent
on human ingenuity and prior knowledge to decide which
features should be extracted for a suitable data representation
[1], [3].
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In representation learning [1], researchers are looking for
methods to automatically learn a representation from data
to be used in higher-order tasks (e.g. classification). These
methods try to eliminate the complicated algorithms used for
feature extraction. As a result, these algorithms are extensible
to different domains of input data [5], [11].

More recently, a large number of researchers have focused
on development of new sparse techniques for data repre-
sentation [12], [13], [14], [15], [16]. Sparse representation
encodes a large number of data by using a small number
of components, which leads to easier interpretation of the
representation, robustness to variations in input, and easier
classification [12].

In many applications, available data is unlabeled, and hence
unsupervised algorithms are preferred [17]. The main objective
of unsupervised learning methods is to learn a representation
from unlabeled data by detecting and removing redundancies
in the data, and keeping only the features essential for the
higher-order tasks [18]. There are two unsupervised learning
approaches to obtain a sparse representation; sparse coding
and sparse autoencoder.

The goal of sparse coding [15] is to learn a dictionary
for the input dataset such that it is possible to reconstruct
each input data from a sparse weighted linear combination
of basis vectors (i.e, the columns of the dictionary matrix)
[19]. The coefficients of this linear combination provide the
data representation. As stated in [20], [21], sparse coding
does not have any explicit encoder, and hence optimization
algorithms should be run two times on the objective function
(once for calculating the representation assuming a constant
dictionary, and once for learning the dictionary given a fixed
representation). Moreover, a new run of the optimization
algorithm is required for each new item in the test data.
Therefore, this method is not suitable for real-time applications
and has limited scalability.

In [22], [3] by imposing a sparsity penalty to learned
features of autoencoders [23] that are unsupervised encoder-
decoder neural networks, the authors have tried to tackle
the aforementioned problem of sparse coding methods. The
encoder part transforms data from the input space to feature
space which results in sparse features, and the decoder part
transforms the extracted sparse features from feature space
into the input space. When the parameters of the encoder
are learned, it will encode new data without utilizing an
optimization algorithm, and the decoder reconstructs the input



from the representation obtained from the encoder [12]. The
main issue with the sparse autoencoders is that there is no
guarantee to obtain sparse representations for new data or
even the training data, because in the training phase, the
autoencoder is not trained to produce a sparse representation
for each input data.

In this paper, a sparse autoencoder is proposed to overcome
the limitations of existing sparse autoencoders, by introducing
a new distributed sparse representation algorithm. In general,
although the sparsity of a vector is usually defined by its L0
norm, the L0 norm is not a convenient measure of sparsity
[24] because it is a discontinuous and non-smooth function.
Hence, a smooth approximation of the L0 norm by using
smooth Gaussian kernels [24] have been adopted in our work.
To obtain a representation with relatively equal sparsity for
each data vector, the square of the smooth approximation of
the L0 norm [25] has been used to solve the problem of sparse
autoencoders. It also guarantees the existence of a sparse
representation for the training and test datasets. By using the
proposed sparse autoencoder, once the network parameters are
learned, the sparse representation of any new data vector is
obtained simply by a matrix-vector multiplication without uti-
lizing any additional optimization algorithm that is necessary
in typical sparse coding algorithms.

In summary, the proposed method has the following features
and advantages:
• An approximation of the L0 norm has been used in

autoencoder which is smooth and differentiable and there-
fore is not too sensitive to noise.

• Obtaining the sparse representation of a vector using
smoothed L0 norm is highly faster than L1 norm [24].

• The square of the smooth approximation of the L0 norm
has been used to create the tendency that the representa-
tion of each data vector is “individually” sparse.

• Contrary to sparse coding algorithms that need to repeat
the optimization algorithm for obtaining a sparse repre-
sentation of each new data in the test phase, after training,
our method computes the sparse representation of new
data by a simple matrix-vector multiplication.

The rest of this paper is organized as follows. In section
II autoencoder and prior works on sparse autoencoder will be
explained. Section III and IV are devoted to presenting the
proposed sparse autoencoder and results of experiments, re-
spectively. Finally, concluding remarks are provided in section
V.

II. AUTOENCODER RELATED WORKS

In this section, after a brief introduction to autoencoders,
various models of sparse autoencoders are discussed.

A. Autoencoder

An autoencoder [23] (Fig. 1) is an unsupervised artificial
neural network with three layers, namely, the input (visible),
intermediate (hidden), and output layers. Autoencoders can
reconstruct the input data in the output layer by using the
representation obtained in the hidden layer. In its general form,
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Fig. 1. A typical Autoencoder.

an autoencoder consists of two components called encoder
and decoder. In the encoder part, each input x ∈ RD is
mapped onto a hidden-layer representation h ∈ RM by
applying a typical nonlinear function to a linear combination
of elements of the input vector. Similarly, in the decoder
part, the network tries to reconstruct the input, by applying
a typical nonlinear function to a linear combination of the
elements of the obtained representation. Thus, the parameters
of autoencoder will be learned by minimizing the difference
between the input and output of the network.

B. Sparse Autoencoder

The idea of sparse autoencoders is to impose a constraint
on the network such that the representation has the required
sparsity characteristics while reconstructing the input at the
output layer. In [22], [3], an autoencoder is trained such
that the distribution function of each neuron is close to the
Bernoulli distribution with a small mean, in order to learn
sparse data representation.

In addition to the aforementioned methods, in [3] another
sparse autoencoder has been proposed that exploits the L1
norm for data representations.

III. PROPOSED METHOD

In this section, we propose a new sparsity-generating term
in the cost function for training autoencoders. For this purpose,
in III-A, the rationale for using the L0 norm will be explained
and then the idea of using its continuous approximation will
be proposed. In III-B, the idea of using the square of the
L0 norm will be proposed. In III-C, the sparsity-generating
term is introduced and the equations required for learning the
autoencoder parameters are calculated.

A. Continuous approximation of L0 norm

Among infinitely many representations of the data, we are
looking for a representation that has the characteristic of being
sparse, which results in the following optimization problem:

min ‖h‖PP s.t x = y, (1)

where:

y = g(W(2)h + b(2)), h = f(W(1)x + b(1)), (2)

variables x and y stand for a single input and output of the
proposed autoencoder and h is the representation of the data.
W(1) ∈ RM×D is the coefficient matrix between the input and



the intermediate layer, b(1) ∈ RM is the input layer bias, f is
the activation function of the hidden layer neurons, W(2) ∈
RD×M is the coefficient matrix between the hidden and the
output layer, b(2) ∈ RD is the hidden layer bias, and g is the
activation function of the neurons in the output layer.

Next, we look into the characteristics of various norms and
select a norm that leads to a better sparse representations. In
general, the smaller values of P results in greater probability
that the contours of ‖h‖PP , and the plane x = y coincide
on the coordinate axes. Therefore, the solution with greatest
sparsity corresponds to the L0 norm.

The L0 norm indicates the number of the non-zero elements
of h, therefore the L0 norm of a vector is a discontinuous
function, and minimizing the L0 norm is an NP-hard problem
[26]. In [24], the L0 norm has been approximated by using a
smoothed L0 norm. In the proposed method, we have utilized
the same method at the output of neurons in the hidden layer
and the L0 norm of h (outputs of the encoder neurons) is:

‖h‖0 ≈M − lim
σ→0

M∑
i=1

exp(
−h2i
2σ2

). (3)

B. Sparseness of all data
For learning the parameters of the autoencoder, the network

is trained with a training dataset for solving the optimizaion
problem:

min
∑
j

‖h(j)‖0 s.t X = Y, (4)

where the matrix X = [x(1),x(2), ...,x(N)] collects all the
data, and:

H = f(W(1)X + B(1)), Y = g(W(2)H + B(2)). (5)

However, the above sparse autoencoder does not sparsely
represent all the data. As an example, assume that the training
set includes 5 data points, and we are trying to obtain a sparse
representation of size 4 by optimizing the cost function of the
sparse autoencoder in (4). The matrix of representation H, that
is obtained for the data between H1 and H2 by optimizing
(4) is H1. This result shows that for the data items 3, 4, and
5, the representation is over sparse, while for the data items 1
and 2 the representation is not sparse.
This is not the desired answer, which should provide an equal
degree of sparsity for each of the data items.

H1 =




0 1 1 0 0
1 1 0 0 0
1 0 0 1 0
1 1 0 0 1


H2 =




1 0 1 0 0
0 1 1 0 1
1 1 0 1 0
0 0 0 1 1




To alleviate this problem, as proposed in [25], we increase
the power of L0 norm from 1 to 2. This will cause the non-
zero elements to be penalized more, and therefore creating a
tendency to distribute the sparsity among all data points. In
the above example, the cost function:

min
∑
j

‖h(j)‖20 s.t X = g(W(2)H + B(2)), (6)

will prefer H2 over H1.

C. Proposed sparse autoencoder
The proposed sparsity term of data representation in autoen-

coders, which uses the square of the continuous approximation
of the L0 norm, is given by cost Cs (s for sparse):

Cs(h) =

N∑
j=1

(
M − lim

σ→0

M∑
i=1

exp
(−(h

(j)
i )2

2σ2

))2
, (7)

where h
(j)
i is output of the i-th neuron of hidden layer in

response to the j-th input data item and is defined as:

h
(j)
i = f(W

(1)
(i)x

(j) + b
(1)
(i) ). (8)

Finally, the proposed cost function of the sparse autoen-
coder, Ct (t for total), is obtained by adding the constraint of
equation (6) as a penalty term, and is given by:

Ct(h) =
1

2N
Cs(h) +

λ

2N
Cr(x,y), (9)

where the reconstruction cost Cr is:

Cr(x,y) =

N∑
j=1

||x(j) − y(j)||22, (10)

where N denotes the total size of the training data set, and λ
is the hyper-parameter that controls the trade-off between the
reconstruction error and sparsity.

For learning the network parameters, it is necessary to
minimize Ct(h) with respect to the parameters. To utilize
gradient based optimization algorithms, the gradient of the
Ct(h) with respect to the network parameters should be
calculated. For updating the parameters of the decoder part
(W(2),b(2)) only the Cr(x,y) plays a role in the modification
of the parameters of the decoder part, and Cs(h) has no effect
on updating these parameters, because the sparsity-generating
term is defined for the hidden layer and is independent of the
parameters pertaining to the interaction between the hidden
layer and the output layer. However, it is clear that both terms
of Cr(x,y), and Cs(h) affect the updating of the encoder
parameters.

The gradient of the Cs(h) with respect to W(1) is a matrix
in which the (i, j)-th element is the derivative of Cs(h) with
respect to the (i, j)-th element of the matrix W(1), and the
i-th row of the gradient of Cs(h) can be calculated from:

N∑
j=1

((
M −

M∑
l=1

exp
(−(h

(j)
l )2

2σ2

)) (h
(j)
i )2

2σ2

exp
(−(h

(j)
i )2

2σ2

)
h́
(j)
i (x(j))T

)
. (11)

In addition, ∇b(1)Cs(h) is a vector whose i-th element is the
derivative of Cs(h) with respect to the i-th element of the
vector b(1) and is calculated from:

N∑
j=1

((
M−

M∑
l=1

exp
(−(h

(j)
l )2

2σ2

)) (h
(j)
i )2h́

(j)
i

2σ2
exp

(−(h
(j)
i )2

2σ2

))
.

(12)



MNIST CIFAR-10 OPTDIGITS

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

·10−2

RAE SAE+BerL SAE+L1 PSAE

(a) Reconstruction Error

MNIST CIFAR-10 OPTDIGITS

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

RAE SAE+Ber SAE+L1 PSAE

(b) Sparseness

MNIST CIFAR-10 OPTDIGITS

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

RAE SAE+Ber SAE+L1 PSAE

(c) Sparsity Standard Deviation

MNIST CIFAR-10 OPTDIGITS

0

20

40

60

80

100

RAE SAE+Ber SAE+L1 PSAE

(d) Classification Accuracy

Fig. 2. Compare the Regular Autoencoder (RAE), Sparse Autoencoder with L1 penalty on the data representation (SAE+L1) [3], Sparse Autoenocer with
Bernoulli distribution for data representation (SAE+Ber) [3], and Proposed Sparse Autoencoder (PSAE)

IV. EXPERIMENTS

In this section, first the datasets and the criteria for assessing
the performance of the proposed method are described. Then,
the structural characteristics of the implemented models are
explained. Finally, the results are presented and analyzed.

A. Datasets and Evaluation Criteria

To measure the performance of the proposed algorithm, the
MNIST [27], CIFAR-10 [28] and OPTDIGITS image datasets
are used.

To evaluate the learned representations, we consider the
following four criteria.

1) Reconstruction Error: Reconstruction error (RE) for
data x(j) reconstructed as y(j), is given by [29]:

RE =
1

D

D∑
i=1

‖x(j)i − y
(j)
i ‖

2 (13)

where D is the dimension of the input and output data.
2) Sparseness: Sparseness (S) is defined as [30]:

S(h) =

√
M −

∑M
i=1|hi|√

(
∑M

i=1|hi|2)√
M − 1

, (14)

where for vector h, a real number between zero and one is
obtained as its sparseness. Closer values to one correspond to
more sparsness.

3) Sparsity Standard Deviation: We introduce a new cri-
terion, called Sparsity Standard Deviation (SSD), to evaluate
the performance of an algorithm in sparse representation for
each individual vector. The SSD is defined as:

SSD(H) =

√√√√ 1

N

N∑
j=1

(
S(h(j))−

( 1

N

N∑
j=1

S(h(j))
))

. (15)

Lower values of this criterion indicates that the sparseness of
the individual data items are closer to each other.

4) Classsification Accuracy: More accurate classification
based on the representation of the data is an indicator of more
distinguishing features from the input data in the representa-
tion.

B. Structure of The Proposed Model

For learning the representations of data with autoencoder,
we utilized a structure that consists of three stages as explained
in the following.

Before feeding the data into the representation learning
model, it should go through a normalization process. The
normalization results in better convergence rates of the repre-
sentation learning algorithm [3]. In the normalization process,
first the mean and standard deviation of each dimension of
the data is normalized to zero and one, respectively. Then,
the pixel values are mapped into the (0,1) interval. Then, to
obtain the data representation, the parameters of the model are
learned by using the normalized training dataset as both input
and desired output of the autoencoder. More precisely:
• The normalized training dataset is given to the autoen-

coder as both the input and the desired output, and the
proposed autoencoder cost function is optimized accord-
ing to (9) to learn the parameters of the model.

• To escape local minima as in [24], we use a Graduate
Non-Convexity (GNC) approach, that is, a proper de-
creasing sequence is selected as the parameter σ for the
sparsity term proposed in (7) in the form {σ1, σ2, ..., σK}.

For σ1, the model parameters are initialized randomly. For
other terms of the sequence, the model is trained using the
optimization algorithm in a few iterations. The initial value
of the parameters of the model, σi, is obtained from the final
value of the parameters according to σi−1. The representations
of the test data items are obtained by using the encoder
parameters learned at the learning stage.
Finally, the representation learned by using the autoencoder
is fed into the classifier as input. The classifier (a one-layer
neural network with the softmax activation function) is trained
using the representations of the data. The implementation
strategies are the same as strategies in [3]. The results of the
models based on these criteria are shown in Fig. 2.

C. Analysis of Experiments

The small values obtained for RE in all four methods,
which is shown in Fig. 2a, demonstrates the capability of
autoencoders in reducing RE. As one might expect, the RE



of the regular autoencoder is smaller than the other methods
in most experiments. The reason for this is that in a regular
autoencoder, no constraint is imposed on the representation of
the data and as a result, the data items can be reconstructed
from their representation with less error. After the regular
autoencoder, the least RE belongs to the proposed autoen-
coder. This shows that the representation preserves significant
information from the data, which results in the reconstruction
of the data with the least amount of error.
Another point about the results of this experiment is the
sparseness of the learned representation which is shown in
Fig. 2b. As expected, in the proposed method learning a sparse
representation of the data is made possible without much
loss of classification accuracy or increase in RE. Considering
the results pertaining to the SSD (Fig. 2c) of the learned
representations reveals that the proposed method results in
representations with almost equal S for all of the data items.
The results presented in the Fig. 2d indicate that the sparse
representation of the data has resulted in an improved effi-
ciency in classification. Hence, a sparse autoencoder result
in higher CA than regular autoencoders. In addition, the
greatest CA using the representations of the data belongs to the
proposed algorithm. This means that the proposed algorithm
for representation learning has the capability of extracting
more distinguishing features from the input data as a result
of distributing the number of zero elements evenly across all
of the data representations.

V. CONCLUSION

In this paper, we proposed a new sparse autoencoder which
promotes sparse representation for each data, individually. In
addition, a new criteria for evaluating the ability of models
in learning sparse representation for each data was presented.
While the proposed method results in sparser representations
for all the data, with almost equal numbers of non-zero
elements, it also improves the classification accuracy.
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