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ABSTRACT

During the last decade, there has been a growing interest toward the
problem of sparse decomposition. A very important task in this field
is dictionary learning, which is designing a suitable dictionary that
can sparsely represent a group of training signals. In most dictionary
learning algorithms, the cost function to determine the the optimum
dictionary is the `0 norm of the matrix of decomposition coefficients
of the training signals. However, we believe that this cost function
fails to fully express the goal of dictionary learning, because it only
sparsifies the whole set of coefficients for all training signals, rather
than the coefficients for each training signal individually. Thus, in
this paper we present a new criterion for dictionary learning. We then
propose a new dictionary learning algorithm that solves our proposed
optimization problem for the case of complete dictionaries. The pro-
posed algorithm follows the idea of smoothed `0 (SL0) algorithm for
sparse recovery. Simulation results emphasize the efficiency of the
proposed cost function and algorithm.

Index Terms- Sparse Decomposition, Dictionary learning, Com-
pressed Sensing.

1. INTRODUCTION

Consider the following signal decomposition:

xn×1 = Dn×m.sm×1 m ≥ n (1)

in which, the signal x is being expressed as a linear combination
of the columns of D, the vector s collects the coefficients of this
decomposition and the superscripts denote dimensions. After [1],
the matrix D is usually called the dictionary and its columns are
called atoms. The dictionary can be complete (m = n) or overcom-
plete (m > n). For complete dictionaries the above decomposition
is unique. For overcomplete dictionaries the decomposition is not
unique, but one usually looks for the sparsest possible decomposi-
tion, that is, the decomposition that uses the minimum number of
atoms to express the signal [2].

In the above problem, it has been assumed that the dictionary,
D, is known. However, having a suitable dictionary for a class of
signals is crucial for having sparser representations, which is desired
in many applications like image denoising and compression [2].
Such dictionaries are either chosen predetermined [e.g. complete or
overcomplete Discrete Cosine Transform (DCT) for image signals],
or they are learned for a given set of signals (the ‘training’ signals)
coming from the desired class [3]. The ‘dictionary learning’ problem
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is important for both complete and over-complete dictionaries. For
example, instead of using the complete DCT dictionary to denoise
or compress a family of image signals (say facial pictures), one may
be interested to use a dictionary learned from a set of given facial
pictures. In this paper, we mainly address the problem of learning
complete dictionaries. More precisely, although the discussion of
Section 2 is general, the algorithm and simulations of Sections 3
and 4 are for the complete case only.

It is usually stated in the literature [3, 4] that the optimum dic-
tionary for sparse decomposition can be designed by solving:

{D∗,S∗} = argmin
D,S

‖S‖0 subject to Xn×N = Dn×m.Sm×N ,

(2)
where ‖.‖0 denotes the `0 quasi-norm of a vector or a matrix (i.e.
the number of its non-zero entries), each column of X is a training
signal, each column of S is the representation of the corresponding
column of X based on the dictionary D, and N is the number of
training signals. The number of training signals is usually much
more than the number of atoms, that is,N � m (in fact, forN = m,
the trivial solution is D = X , in which each signal is represented by
exactly one non-zero coefficient; a similar thing is true when N <
m).

In this paper, we discuss that (2) is not well suited for dictionary
learning, and needs to be modified. The reason is that the goal of
dictionary learning is to design a dictionary that can represent each
training signal sparsely, whereas solving (2) only ensures that the
whole matrix S is sparse and it does not imply that each column
of S is individually sparse. Actually, previous dictionary learning
algorithms (e.g. [4, 5, 6, 7]) have not encountered a problem with
the above cost function, because they do not solve (2) directly, in-
stead they use a two-step alternating minimization approach to learn
the dictionary: In the first step, sparse representations of the train-
ing signals with a fixed dictionary are found, and in the second step
the dictionary is updated to better fit the representations found in
the previous phase. This process continues until convergence. This
approach automatically avoids a representation matrix with all non-
zero elements concentrated in a few columns, because in the first
step the representation of each training signal is computed indepen-
dently, and this adds a tendency to the algorithm to produce indi-
vidually sparse representations. However, such a tendency does not
exist in the original cost function (2), and if we have a non-convex
algorithm to directly solve it, then (2) is not a good criterion for dic-
tionary learning and needs to be corrected. The algorithm that will
be presented in Section 3 is such a direct minimization algorithm,
and hence this correction to the criterion (2) will be crucial.

In this paper, we firstly modify the optimization problem (2) to
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create the tendency to distribute non-zeros entries over all columns
of S. Secondly, for the complete case, we present an algorithm for
solving the resulting optimization problem. This algorithm is in-
spired by the idea of Smoothed `0 (SL0) approach for sparse recov-
ery [8].

The rest of the paper is organized as follows. In Section 2, we
present the proposed criterion and discuss why this criterion is more
appropriate than (2) for dictionary learning. Section 3 is devoted to
describe the algorithm for solving the new optimization problem for
the complete case. Finally, Section 4 studies the resulting algorithm
numerically.

2. THE NEW CRITERION FOR DICTIONARY LEARNING

Firstly, let us show by using a toy example that solving (2) may re-
sult in a solution that is intuitively less desired. Assume that (2) is
solved with respect to S for two fixed dictionaries D1 and D2, and
the optimum solutions for these dictionaries are S∗1 and S∗2, respec-
tively. Suppose that in the case of m = 4 and N = 5, S∗1 and S∗2
are as the following:

S∗1 =

 0 1 1 0 0
1 1 0 0 0
1 0 0 1 0
1 1 0 0 1



S∗2 =

 1 0 1 0 0
0 1 1 0 1
1 1 0 1 0
0 0 0 1 1


The `0 norm of S∗1 is smaller than that of S∗2. Hence, between
(D1,S

∗
1) and (D2,S

∗
2) pairs, the optimization process of prob-

lem (2) would choose the (D1,S
∗
1) pair as the dictionary that is

better for sparse representation of X . However, D∗1 results in highly
sparse representations for three signals, while two other signals (first
and second columns of S∗1) are not sparse in the dictionary domain.
So intuitively, (D2,S

∗
2) is a better solution for the problem of dic-

tionary learning because all training signals have fairly sparse repre-
sentations using this pair.

To cope with this deficiency of (2), we propose using the follow-
ing optimization problem to learn the optimum dictionary:

{D∗,S∗} = argmin
D,S

N∑
j=1

‖sj‖20 subject to Xn×N = Dn×m.Sm×N

(3)
where sj is the j th column of S. Note that the previous cost function
in (2) can be written as ‖S‖0 =

∑N
j=1 ‖sj‖0. By adding the power

two to the `0 norms of individual columns in our cost function, we
have created a tendency to not produce too different ‖sj‖0’s. The
value of our cost function in the above example for S∗1 is 21 and for
S∗2 it is 20, so (3) does not choose S∗1 that contains columns with
too different `0 norms.

To justify the efficiency of (3) in dictionary learning from a dif-
ferent point of view, consider the following lemma.

Lemma 1. Consider a matrix S with a constant `0 norm. The cost
function of (3) is minimum if and only if the `0 norms of all of its
columns are equal.

Proof. Cauchy inequality states that for numbers xi and yi, i =
1, . . . , N , we have (

∑N
j=1 xjyj)

2 6 (
∑N
j=1 x

2
j )(

∑N
j=1 y

2
j ), and

the equality holds if and only if ∃α∀i : xi = αyi. Hence for xi ,
‖sj‖0 and yi = 1 we have:

N∑
j=1

‖sj‖20 >
1

N
(

N∑
j=1

‖sj‖0)2 =
‖S‖20
N

(4)

where sj is the j th column of S, and the equality holds if and
only if all ‖sj‖0’s are equal. Consequently, for a constant ‖S‖0,∑N
j=1 ‖sj‖

2
0 is minimum if and only if the `0 norms of all columns

are equal.

It was also possible to propose other optimization problems that
ensure homogeneous sparsity over the columns of S, by applying
other functions on the `0 norms of the columns of S. For instance,
instead of the power two, we could apply power 4. In fact, the key
point in defining an adequate optimization problem for dictionary
learning is to impose a strictly convex and increasing function on
[0,+∞] on the `0 norms of the columns of S, to create a tendency
of producing a kind of homogeneous sparsity over the representa-
tions of different training signals. Of course this tendency should
not be too much, which is probably the case for power 4 or larger.
However, among all possible optimization problems, we prefer to
use (3), because the resulting nonlinear function is quadratic and
easier to optimize. In this paper, we continue the discussion with
the cost function proposed in (3), and studying the choice of an opti-
mal convex nonlinearity that could be applied on the `0 norms of the
columns is not the subject of this paper.

3. AN ALGORITHM FOR SOLVING THE PROPOSED
OPTIMIZATION PROBLEM

In this paper, we propose an algorithm to solve (3) in the case of
complete (square) dictionaries1. This case is simpler, because D
uniquely determines S through S = D−1X , and hence we have no
optimization to do with respect to S. Thus, (3) is simplified as:

D∗ = argmin
D

N∑
j=1

‖(D−1X)j‖20 (5)

where (D−1X)j is the j th column of D−1X .
The `0 norm of a vector is discontinuous, so the problem (5) is

probably NP-hard. Thus, to minimize the cost function of (5), we
use the idea of smoothed `0 norm (SL0) [8].

In [8], Mohimani et al. proposed to approximate the `0 norm
of a vector with a smooth function, and then minimize the smooth
function to find the sparsest solution of an underdetermined system
of linear equations. They proposed to use the following equality to
approximate the `0 norm:

‖s‖0 = lim
σ→0

n∑
i=1

(1− fσ(si)) (6)

1One may argue that in this case the optimal sparsifying dictionary is the
Karhunen-Loève Transform (KLT) given by Principal Component Analysis
(PCA). Note however that firstly, contrary to PCA, (3) is not limited to pro-
duce unitary dictionaries. Secondly, PCA does not maximize the ‘sparsity’ of
the representation, it maximizes the ‘energy compaction’ of the representa-
tion. In this point of view, even by forgetting the unitary constraint, the use of
KLT as the sparsifying transform is somehow like using the idea of Matching
Pursuit (MP) [1] instead of minimizing the `0 norm in sparse recovery.
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where fσ(si) , exp(− s2i
σ2 ) in which si is the ith element of s and n

is its length. Thus, the `0 norm of a vector can be approximated by
the following continuous function:

‖s‖0 ∼= n−
n∑
i=1

exp(− s
2
i

σ2
) (7)

In fσ(si), σ determines the accuracy of approximation. The larger
σ, the smoother

∑n
i=1 (1− fσ(si)) but worse approximation of the

`0 norm; and the smaller σ, the better approximation of the `0 norm
but the less smooth

∑n
i=1 (1− fσ(si)). The approximation tends

to equality for σ → 0. Moreover, for σ → ∞,
∑n
i=1 (1− fσ(si))

tends to a very smooth and convex function (contrary to the `0 norm
itself) [8]. The goal is then to minimize

∑n
i=1 (1− fσ(si)) for a

very small value of σ. However, this is difficult, because for small
values of σ,

∑n
i=1 (1− fσ(si)) is highly non-smooth with lots of

local minima. To escape from these local minima the “Graduated
Non-Convexity (GNC)” procedure can be used [9]: The algorithm
starts with a very large σ (for which there is no local minima), and
decreases σ gradually to zero. The minimizer of

∑n
i=1 (1− fσ(si))

is used as the starting point to locate the minimum of this function
for the next (smaller) σ, using a steepest descent approach. Since the
value of σ is just slightly decreased, it is likely that the minimizer of∑n
i=1 (1− fσ(si)) for the new σ is not too far from the minimizer

of the function for the previous (larger) σ, and hence it is likely that
the algorithm escapes from getting trapped into a local minimum (for
more details about this algorithm refer to [8]).

To solve (5), we use a similar smooth approximation for the `0

norm and a GNC approach. By defining B = D−1 and using the
approximation in (7), (5) can be rewritten as follows:

B∗ = argmin
B

N∑
j=1

[
n−

n∑
i=1

exp(− (bTi .xj)
2

σ2
)

]2

, (8)

where bTi denotes the ith row of B and xj is the j th training signal.
Using the steepest descent approach, the update rule of the algorithm
is:

Bk+1 = Bk − µσ∇BF (X,Bk), (9)
where Bk stands for the approximation of inverse dictionary at the
kth iteration of the algorithm, and F (X,B) is the cost function of
(8), that is:

F (X,B) ,
N∑
j=1

[
n−

n∑
i=1

exp(− (bTi .xj)
2

σ2
)

]2

. (10)

In (9),∇BF (X,B) is a matrix whose (i, j)th element is the deriva-
tive of F (X,B) with respect to the (i, j)th element of B. By
simple mathematical calculations, we can show that the ith row of
∇BF (X,B) is equal to:

N∑
j=1

[
n−

n∑
l=1

exp(−
s2lj
σ2

)

]
2sij
σ2

exp(−
s2ij
σ2

)xTj , (11)

where sij is the (i, j)th element of the matrix S.
Note that without any constraints on B, the minimizer of (5)

tends to decrease the values of matrix B, to decrease the values of
sij and hence to decrease the cost function of (3). In order to avoid
this situation, we normalize the rows of B in each iteration of the
algorithm.

Finally, as stated in [8], µσ should be decreased proportional
to σ2, and hence we put µσ = µσ2. The pseudo-code of the final
algorithm is shown in Fig. 1.

• User sets the following parameters:

1. c is the factor by which σ is decreased.

2. σmin is the minimum σ.

3. L is the number of iterations of the inner loop
as in SL0 [8].

4. µ is the step size in the updating equation.

• Initialization:

1. Generate a random matrix with normalized
rows as B0.

2. Set S = B0.X .

3. Set σ = 2max(abs(S)) as suggested in [8].

• Repeat the following steps until σ > σmin.

1. Repeat the following steps L times.

(a) Calculate∇BF (X,B) using (11).
(b) Update B as the following:

B ← B − (µσ2)∇BF (X,B)

(c) Normalize each row of B.

2. Change σ to σ = c× σ and go to step 1.

Fig. 1. The proposed dictionary learning algorithm.

4. SIMULATION RESULTS

In this section, we first study the effectiveness of the proposed opti-
mization problem (3) for dictionary learning and compare it with (2).
To this end, we implemented the SL0-based dictionary learning al-
gorithm proposed in Section 3 for both optimization problems (3)
and (2). Note that the only change required in Fig. 1 to solve (2) is
the gradient. We refer to the algorithm that solves (3) as `0`2 and
call the other one `0`1.

All experiments were done on synthetic data. A dictionary of
size 20 × 20 is generated with zero mean Gaussian random ele-
ments with unit variance. We generate matrix S such that each of its
columns has exactly k non-zero elements (k is changed in different
experiments). Locations of non-zero elements are uniformly random
and their values are zero mean Gaussian random variables with unit
variance. The matrix of training signals is generated as X = D.S.
The number of training signals is 1000.

Parameters used for both algorithms are σmin = 10−2, c =
0.8, L = 2000, and µ = 0.01. In each experiment, we used the same
initial point for both `0`1 and `0`2 algorithms. The estimated dic-
tionary was compared against the original dictionary. To determine
how many columns of the dictionary are estimated correctly, we use
the success rate proposed in [4]. The success rate is the number of
correctly estimated columns divided by the number of all dictionary
columns.

Each reported result is an average over 20 trials (with different
dictionaries and different training signals).

Figure 2 summarizes the success rate of both algorithms for dif-
ferent numbers of non-zero coefficients (k). It can be immediately
seen in this figure that by directly minimizing (2) the initial dictio-
nary almost never converges to the original one, while solving our
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Fig. 2. The success rate of the algorithm that uses our optimization
problem (`0`2) and the one that minimizes the conventional dictio-
nary learning cost function (`0`1).
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Fig. 3. The success rate of our algorithm and the K-SVD dictionary
learning method in estimating a synthetic dictionary.

proposed optimization problem performs fairly satisfactory.
Next we compare the performance of our algorithm in solv-

ing the proposed optimization problem with the well-known K-
SVD algorithm [4] for dictionary learning. To simulate the K-
SVD algorithm, we have used the MATLAB toolbox available at
http://www.cs.technion.ac.il/~elad/Various/KSVD
Matlab ToolBox.zip. The experimental setup and the parameters
of our algorithm are the same as the first experiment.

Figure 3 shows the results of our algorithm and K-SVD for dif-
ferent values of k. This figure shows the success rate of both algo-
rithms. Figure 3 shows the performance of the K-SVD algorithm in
two cases. First, when k (the number of non-zero elements of each
column of S) is known as a prior information and used as an input
to the algorithm, second when only an underestimated value of k
(k = 3) is available as the input. Note that our algorithm does not
need to know the value of k and it is not one of the input parameters
of the algorithm.

As can be seen in Fig. 3, the K-SVD algorithm when the value
of k is assumed to be known in advance outperforms our algorithm.
However, if only an estimation of k is accessible, our algorithm can
perform the same or even better than K-SVD.

We observed that if a good estimation of the dictionary is avail-
able as the initial point, our algorithm would converge to the optimal
dictionary. Figure 4 shows the estimation results of our algorithm
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Fig. 4. The success rate of our method and the K-SVD algorithm.
The initial point for our algorithm is B0 = B + 0.1Λ and k = 3 is
used as the input parameter of K-SVD.

when the initial inverse matrix (B0) is close to the original one, i.e.,:

B0 = B + 0.1Λ, (12)

where B is the inverse matrix of the original dictionary, Λ is a matrix
with zero mean Gaussian entries with unit variance. Note that the
rows of B in (12) have unit `2 norm. Figure 4 also shows the results
of the K-SVD algorithm in two cases (when k is known, and when
only an underestimation of k is available to the algorithm). As can
be seen in this figure, our algorithm when the initial point is close to
the original dictionary outperforms K-SVD when a good estimation
of the number of non-zero elements in the representation matrix (k)
does not exist. It can also be seen that even if the K-SVD algorithm
knows the exact value of k, in most cases, our method (starting from
a good initial point) performs the same or even better than the state-
of-the-art.

In summary, in comparison to K-SVD, the problem of local min-
ima is more severe in our algorithm, but it results in a better estima-
tion near the true answer. Consequently, one may start with K-SVD
and then refines the quality of estimation by our algorithm. More-
over, it has to be noted that K-SVD has been developed to design
complete or over-complete dictionaries, whereas our algorithm is
only for designing complete dictionaries.

5. CONCLUSION

In this paper, we presented a new cost function for dictionary learn-
ing. We showed that the proposed cost function is more suitable
than the traditional one, because contrary to the traditional one, it
has the tendency of producing individual sparse representations for
all training data. Simulation results by using an algorithm for min-
imizing our proposed cost function showed that having such a ten-
dency is crucial, and without it the algorithm fails to retrieve the
correct dictionary. Actually, it seems that previous dictionary learn-
ing algorithms have not encountered such a problem, because of the
alternating-minimization approach that they use to minimize the tra-
ditional cost function, which creates the mentioned tendency as a
side-effect.
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