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ABSTRACT

A frequently used approach for denoising is the shrinkage
of coefficients of the noisy signal representation in a trans-
form domain. Although the use of shrinkage is optimal
for Gaussian white noise with complete and unitary trans-
forms, it has already been shown that shrinkage has promis-
ing results even with redundant transforms. In this paper,
we propose using adaptive thresholding of redundant rep-
resentations of the noisy image for image denoising. In
the proposed thresholding scheme, a different threshold is
used for each representation coefficient of the noisy image
in an overcomplete transform. In this method, each thresh-
old is automatically set based on statistical properties of the
noise in the redundant transform domain. In our algorithm,
adaptive thresholding is applied to redundant representa-
tions of noisy image blocks. Simulation results show that
our method achieves the state-of-the-art denoising perfor-
mance.

Index Terms- Image denoising, redundant representa-
tion, adaptive thresholding.

1. INTRODUCTION

In this paper, we address the image denoising problem, where
an ideal image is measured or stored in presence of the
noise. Consider the following model:

y = x+ ν (1)

where the noise free image is vectorized to form the vec-
tor x, ν denotes the noise assumed to be zero mean white
Gaussian, and y is the measured image. The goal of image
denoising is to remove noise from y to recover the original
image, x.

∗This work has been partially funded by Iran NSF (INSF) under con-
tract number 86/994, by Iran Telecom Research Center (ITRC), and also
by center for International Research and Collaboration (ISMO) and French
embassy in Tehran in the framework of a GundiShapour collaboration pro-
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Many different approaches such as spatial adaptive fil-
ters, morphological analysis, transform domain methods and
more have been already studied for image denoising [1].
Here we focus on transform domain methods. These meth-
ods consist of three main steps: first applying the forward
transform on the noisy image to represent the image in a
transform domain, then applying the shrinkage operator on
representation coefficients to attenuate the noise, finally ap-
plying the inverse transform on thresholded coefficients to
obtain the denoised image. In 1995, Donoho et al. [2] pro-
posed applying the shrinkage to noisy wavelet coefficients
for signal denoising. The wavelet transform which has been
used in [2] is complete and unitary, however it has been
first experimentally [3], [4], [5] and then theoretically [6]
shown that coefficient shrinkage has promising results in
signal denoising even with redundant transforms. In recent
years there are many research interests towards overcom-
plete transforms for image processing tasks (see [7] and the
references therein). The problem of representing a signal
x over an overcomplete transform can be expressed as fol-
lows:

xn×1 = Dn×m.sm×1 m > n (2)

where the matrix D is usually called dictionary, s is the
vector of transform coefficients and the superscripts denote
the dimension. As was said, Elad in [6] has theoretically
shown why coefficient shrinkage works with redundant trans-
forms, however in [6], he has not mentioned the problem
of setting the threshold automatically. Similarly in some
other papers who have used coefficient shrinkage in the re-
dundant transform, the automatic selection of the threshold
has not been addressed (see [6] and the references therein).
In fact up to our best knowledge, among these papers this
problem has been addressed only in [7]. Authors of [7] as-
sumed that representation coefficients of the noisy image in
the redundant transform domain are independent Laplacian
variables, and set the threshold based on this assumption.
As choosing a proper threshold is an important issue in the
shrinkage, in this paper we consider the problem of setting
a suitable threshold automatically where the transform is re-
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dundant. Indeed, we propose an algorithm which adaptively
thresholds representation coefficients of the noisy image in
a redundant transform domain. In the proposed threshold-
ing scheme different thresholds are used for each transform
coefficient of the noisy image and these thresholds are cal-
culated automatically. As was said, it has been also pro-
posed in [7] to set thresholds automatically in the redundant
transform domain, but we use a different approach to set
thresholds and simulation results show that our algorithm
outperforms the denoising algorithm which has been pro-
posed in [7]. Moreover it should be noted that authors of [7]
have proposed an iterative method for signal denoising by
imposing the sparsity constraint on the signal representa-
tion. To find a sparse representation of a signal, one needs
to minimize the `0 norm of a signal representation. The `0

norm of a vector is the number of its nonzero components. It
has already been proved [8], that minimizing the `0 norm of
a vector is equivalent to minimization of its `1 norm when
a highly sparse representation exists, so a family of algo-
rithms called Basis Pursuit (BP) [9] tries to find the sparse
representation by minimizing the `1 norm. The algorithm
which has been proposed in [7] solves the Basis Pursuit De-
Noising (BPDN) problem [9]. Solving the BPDN problem,
denoises a signal by finding a sparse representation of the
noisy image over a redundant transform. However, con-
trary to [7], our algorithm is not based on sparse represen-
tation over a redundant transform. It is simply based on the
minimum `2 norm representation of the noisy image block.
Since calculation the minimum `2 norm representation can
be done highly faster than finding the sparse representation,
our algorithm is a faster denoising algorithm.

In this paper we set thresholds based on statistical prop-
erties of the noise in the redundant transfrom domain. Donoho
et al. in [2] have also proposed to set thresholds for shrink-
age based on statistical properties of the noise in the wavelet
domain. The main difference between our work and the al-
gorithm proposed in [2] is that they used complete trans-
forms while, we are using overcomplete transforms. In ef-
fect, the authors of [2] have derived statistical properties of
the noise in the complete and unitary wavelet domain and
their results cannot be used when the used transform for
denoising is overcomplete. In this paper, we derive math-
ematical expressions which relate statistical properties of
the noise in the redundant transform domain to correspond-
ing properties of the noise in the spatial domain. It should
be emphasized that we assume zero mean white Gaussian
noise with known variance is added to the image as assumed
in [7], [10], [11].

To summarize, our algorithm like any other redundant
transform domain method consists of three main steps: find-
ing transform coefficients of the noisy image block in the re-
dundant transform, thresholding transform coefficients and
applying the inverse transform on thresholded coefficients

to obtain the denoised image. The novelty of this paper is
using adaptive thresholding which uses a different threshold
for each representation coefficient of the noisy image. The
used thresholds are automatically set based on statistical pa-
rameters of the noise in the redundant transform domain.

This paper is organized as follows. In Section 2, we
state statistical properties of the noise in a redundant trans-
form domain based on corresponding properties in the spa-
tial domain. The proposed algorithm for image denoising is
developed in Section 3. In Section 4, we show some simula-
tion results to demonstrate the effectiveness of the proposed
algorithm.

2. STATISTICAL PROPERTIES OF NOISE IN
REDUNDANT TRANSFORM DOMAIN

In this section, we derive statistical parameters of the noise
in the redundant transform domain based on corresponding
properties of the noise in the spatial domain. To this aim,
consider the following equation:

νn×1 = Dn×m.αm×1 m > n (3)

Here ν represents noise in the spatial domain. ν is a vector
of zero mean white Gaussian random variables with vari-
ance σ2 andα is its representation in the transform domain.
Among the infinite number of solutions of (3), we consider
the minimum `2 norm solution, so:

α̃ = D†.ν

= B.ν
(4)

whereD† is the Moore-Penrose pseudo inverse ofD,B ,
D† and α̃ is the minimum `2 norm solution of (3). Let bT

i

be a column vector which denotes the ith row of B, the ith

entry of α̃ can be written as:

α̃i = bT
i .ν (5)

Now we can state the following expressions about the sta-
tistical properties of α̃.

1. Gaussianity: Clearly α̃i is a linear combination of en-
tries of ν, which are assumed to be Gaussian random vari-
ables, so α̃i is a Gaussian random variable.

2. Expected value of α̃i: The elements of ν had been as-
sumed to be zero mean variables. So applying the mathe-
matical expectation on both sides of (5) yields:

E{α̃i} = E{bT
i .ν}

= bT
i .E{ν} = 0

(6)

3. Expected value of α̃2
i : The entries of ν had been as-

sumed to be independent random variables with variance
σ2, so:

E{ννT } = σ2I (7)



Combining (5) and (7) yields:

E{α̃2
i } = E{(bT

i .ν)(νT .bi)} = bT
i E{ννT }bi

= bT
i σ

2Ibi = σ2‖bi‖22
(8)

4. Covariance of the entries of α̃: Based on (5) the co-
variance of the entries of α̃ can be written as:

E{α̃iα̃j} = E{(bT
i .ν)(νT .bj)}

= bT
i σ

2Ibj = σ2bT
i .bj

(9)

So the covariance of the elements of α̃ depends on correla-
tion between the rows of matrix B. Matrix D is overcom-
plete therefore it cannot be orthogonal, as a consequence
rows of B are not orthogonal to each other. It means that
the elements of α̃ are dependent.

We can summarize all of the above results to say: ele-
ments of α̃ are zero mean colored Gaussian variables. The
variance of the ith element of α̃ is σ2‖bi‖22, where bT

i is
the ith row of the pseudo inverse matrix of D. In the next
section, we use these results to set thresholds for adaptive
thresholding.

3. ADAPTIVE THRESHOLDING FOR IMAGE
DENOISING

In this section, we first explain the whole denoising pro-
cess for a noisy image block, then we describe the details of
the proposed algorithm. Denoising each image block con-
sists of three main steps: finding transform coefficients of
the noisy image block, coefficient shrinkage to attenuate the
noise and applying the inverse transform on thresholded co-
efficients to obtain the denoised image block. Let y be a
block of size

√
n×
√
n in the noisy image and x be the cor-

responding block in the noise free image. If we represent y
and x in vector form, we have:

yn×1 = xn×1 + νn×1, (10)

where ν is the zero mean white Gaussian noise with vari-
ance σ2. Consider the following equation:

yn×1 = Dn×m.sm×1
1 m > n (11)

where D is the dictionary of the redundant transform and
s1 is the noisy image block representation in the transform
domain. Among the infinite number of solutions of (12), we
choose the minimum `2 norm solution, so:

s1 = D†.y (12)

In the next step, to attenuate noise, shrinkage operator
is applied to transform coefficients. We use hard thresh-
olding for shrinkage because it faithfully preserves the fine

Fig. 1. A block diagram of the transform domain method
used in this paper for image denoising

details of the image. We propose to use adaptive threshold-
ing which uses different threshold for each representation
coefficient of y. Let s1i be the ith entry of s1 and ti be its
corresponding threshold, the thresholded coefficient ŝ1i , is
then expressed as follows:

ŝ1i
=
{
s1i
, if |s1i

| > ti
0, if |s1i

| < ti
(13)

We will explain later, how the thresholds for adaptive thresh-
olding are set. Finally the corresponding block of the de-
noised image is obtained by applying the inverse transform
on ŝ1:

x̂ = D.ŝ1 (14)

Figure 1 illustrates the described denoising algorithm.
In the following we explain how adaptive thresholds for

coefficient shrinkage are set to remove the noise effectively.
To set the proper threshold for signal denoising, Donoho et
al. in [2] used the following theorem.

Theorem 1. : If {zi} is a sequence of m zero mean white
Gaussian random variables with variance σ2 then:

Prob{max|zi| > σ
√

2 logm} → 0, as m→∞.

It means that with a high confidence all zi’s are lower
than σ

√
2 logm. So if a signal of length m is contaminated

by white Gaussian noise with variance σ2, hard thresholding
with threshold σ

√
2 logm highly attenuates the noise.

Since in our algorithm hard thresholding is applied to
representation coefficients, knowing statistical properties of
the noise in the transform domain is necessary to choose a
proper threshold using Theorem 1. Combining (4), (10) and
(12) yields:

s1 = D†.y = D†.(x+ ν)

= D†.x+ α̃
(15)

So if we use the minimum `2 norm representation of the
noisy image block, the noise representation in the transform
domain is α̃, which its statistical properties are stated in
Section 2. As stated in Section 2, elements of the repre-
sentation vector of zero mean white Gaussian noise in a re-
dundant transform domain are zero mean colored Gaussian
variables. It has been shown that variances of different com-
ponents of the noise representation are different, so a fixed



threshold for all of representation coefficients of the noisy
image cannot be used. Therefore, we propose using adap-
tive thresholding of (13) where ti depends on the variance
of the ith coefficient of the noise in the transform domain.
Using Theorem 1, we propose to choose ti as follows:

ti = σi

√
2 logm (16)

where m is the length of representation vector of the noisy
image block in a transform domain and σi is the standard
deviation of ith representation coefficient of the noise. Com-
bining (8) and (16) yields:

ti = ‖bi‖2σ
√

2 logm (17)

where bT
i is the ith row of the pseudo inverse matrix of D.

It seems necessary to explain that, components of the noise
in the redundant transform domain satisfy all of conditions
of Theorem 1 except that they are dependent as stated in
Section 2. However we experimentally find it useful to set
thresholds as (17) even if noise coefficients in the transform
domain are not independent.

It should be noted that, in this paper we do not mention
the problem of choosing the optimal dictionary for image
denoising, and simply use the redundant DCT dictionary
which we find it experimentally useful for denoising nat-
ural images. The redundant DCT dictionary of size n × k,
(where k > n) is formed simply by n first rows of the com-
plete DCT dictionary of size k× k. The pseudo code of the
proposed algorithm is shown in Fig. 2.

4. SIMULATION RESULTS

In this section we present some simulation results to demon-
strate the performance of our algorithm. In all of the exper-
iments zero mean white Gaussian noise is added to test im-
ages unless in experiments in which the effect of the noise
type is investigated. Every result of our algorithm is an av-
erage over 20 experiments, having different realizations of
the noise.

First, we compare the performance of our algorithm with
the algorithm presented in [7]. We do not repeat the simu-
lation for this algorithm and only mention the results which
have been reported in [7]. As was said, authors of [7] have
used shrinkage for image denoising. They have set a proper
threshold for shrinkage by assuming a Laplacian model for
representation coefficients of the noisy image. We use the
overcomplete DCT matrix of size 64×256 as the dictionary
of the redundant transform in our algorithm. This dictionary
is used for denoising an image block of size 8 × 8 pixels.
Table 1 reports denoising results of the algorithm proposed
in [7] and our algorithm in terms of Peak Signal to Noise
Ratio (PSNR) which is defined as follows:

PSNR = 10 log
2552

1
N

∑N
i=1 |xi − x̂i|2

• Given parameters:

1. σ is the standard deviation of the noise in the
spatial domain (assumed to be known).

2. D ∈ Rn×m is an overcomplete dictionary (as-
sumed to be given).

• Initialization:

1. Compute the pseudo inverse of D and call it
B.

2. Compute the adaptive threshold as the follow-
ing: ti = ‖bi‖2σ

√
2 logm, here bT

i is the ith

row of B.

• Repeat the following steps until all of noisy image
blocks are denoised:

1. Consider a noisy image block of size
√
n×
√
n

and vectorize it to form y.

2. Find the representation vector of y, s1 in the
transform domain as the following:

s1 = D†.y

3. Threshold each element of s1 as follows:

ŝ1i =

{
s1i |s1i | > ti
0 |s1i | < ti

4. Obtain the denoised block as follows:

x̂ = D.ŝ1

5. Consider the next block and go to step 1.

Fig. 2. The adaptive thresholding algorithm for image de-
noising

where x is the ideal image of size
√
N ×

√
N and x̂ is the

denoised image. As can be seen in Table 1 our algorithm
outperforms the BPDN algorithm which is presented in [7]
for all test images. Our algorithm outperforms about 1 dB
in the cases of “Peppers” and “Lena” images and it outper-
forms about 0.8 dB in the case of “Barbara” image.

We also compare our algorithm with the OMP algo-
rithm. Using OMP algorithm for image denoising is ex-
plained in [10]. Note that this algorithm does not explicitly
use shrinkage for image denoising. To simulate the OMP al-
gorithm we used MATLAB codes available at http://www.

cs.technion.ac.il/~elad/Various/KSVD Matlab ToolBox.

zip. In both of proposed and OMP algorithms we use the
redundant DCT dictionary of size 64× 256. The simulation
results are reported in Table 2 in terms of PSNR. As can be
seen in Table 2 the average output PSNR of two algorithms
are close to each other. In the case of high noise power,



Table 1. Denoising PSNR results in decibels of the algo-
rithm proposed in [7] (BPDN) and our algorithm (adaptive
thresholding). Noise variance = 20

algorithm Peppers Lena Barbara
BPDN 29.21 31.49 29.61

Adaptive thresholding 30.18 32.50 30.43

Table 2. Denoising PSNR results in decibels. For each
noise level two results are presented. The top result is the
output PSNR of the proposed algorithm and the bottom one
is the result of the denoising algorithm proposed in [10].
σ/PSNR Lena Barb House Peppers Average
2/42.11 44.25 43.67 44.44 43.36 43.93

44.25 43.61 44.40 43.33 43.90
5/34.16 38.84 37.15 39.09 37.66 38.18

38.86 37.93 39.05 37.70 38.38
10/28.11 35.57 33.52 35.47 33.89 34.61

35.61 33.96 35.36 33.89 34.70
15/24.62 33.75 31.51 33.69 31.74 32.67

33.75 31.59 33.52 31.76 32.65
20/22.11 32.50 30.43 32.20 30.10 31.23

32.38 29.93 32.07 30.23 31.15
25/20.16 31.45 28.97 31.22 28.91 30.13

31.32 28.63 30.97 29.02 29.98
50/14.15 28.19 25.64 27.81 24.97 26.65

28.66 24.77 27.49 25.33 26.56
100/8.12 24.95 22.78 23.99 21.55 23.31

24.94 21.85 23.70 21.48 22.99

our algorithm slightly outperforms the algorithm proposed
in [10].

We compare the computational complexity of our al-
gorithm and OMP algorithm using the CPU run time. Al-
though CPU time is not an exact measure, it gives a rough
estimation of complexity. The execution time of both algo-
rithms for “Barbara” image of size 512× 512 and different
noise levels is presented in Fig. 3. All the experiments were
done with an Intel Core 2 Duo processor 2.4GHz with 2GB
of memory, using MATLAB R2006a environment and un-
der Microsoft Windows Vista operating system. The CPU
run time of our algorithm for an image of size 512× 512 is
about 14 seconds. As can be seen, the proposed algorithm
is highly faster than OMP.

As was stated, the proposed algorithm is based on the
assumption that the image is corrupted by zero mean white
Gaussian noise. We conduct an experiment to investigate
the denoising performance of the proposed algorithm if the
noise is not Gaussian. Table 3 summarizes the denoising re-
sults when the image is corrupted by a zero mean uniform

Fig. 3. CPU run time for denoising of “Barbara” image
(image size: 512× 512)

Table 3. Denoising PSNR results in decibels of the algo-
rithm proposed in [10] (OMP) and our algorithm (adaptive
thresholding) in the presence of the uniform noise. Test im-
age:“Barbara” image.

σ/PSNR Our algorithm OMP
2/42.11 43.57 43.61
5/34.16 37.87 37.94
10/28.13 33.91 34.01
15/24.61 31.65 31.69
20/22.11 30.01 30.04
25/20.18 28.77 28.73
50/14.15 25.03 24.86
100/8.13 21.62 21.90

noise. The test image in this experiment is “Barbara” im-
age. As can be seen, the proposed algorithm works fairly
well, if the noise is uniform and not longer Gaussian. An-
other simulation is done to investigate the performance of
our algorithm in presence of an exponential noise. Again
the test image is “Barbara”. The denoising results are listed
in Table 4 in terms of PSNR. It is clear that denoising re-
sults of our algorithm are not satisfactory in this case. We
can conclude that our algorithm has not promising denois-
ing results if the noise is not Gaussian. It should be noted
that denoising results of the OMP algorithm when the noise
is exponential are also not satisfactory.

Figure 4-(a) and (b) shows a part of the noisy image of
“Barbara” and the clean image which is denoised by our
algorithm and Fig. 4-(c) shows the difference between the
original and denoised images. In this experiment the vari-
ance of noise is 20. It can be seen that the proposed al-
gorithm preserves the details of the image effectively while
removing the noise.



Table 4. Denoising PSNR results in decibels of the algo-
rithm proposed in [10] (OMP) and our algorithm (adaptive
thresholding) in the presence of the exponential noise. Test
image: “Barbara” image.

σ/PSNR Our algorithm OMP
2/39.11 39.76 39.77
5/31.14 32.58 32.57
10/25.12 27.07 27.05
15/21.61 23.79 23.75
20/19.09 21.41 21.36
25/17.16 19.56 19.51
50/11.14 13.77 13.71
100/5.13 7.90 7.91

5. CONCLUSION

In this paper we proposed an algorithm for image denoising
based on redundant representations and adaptive threshold-
ing for coefficient shrinkage. We mentioned that the proper
threshold depends on statistical parameters of the noise, so
we derived the statistical properties of the noise in the re-
dundant transform domain. Simulation results showed that
the proposed algorithm achieves the state-of-the-art denois-
ing performance while it is computationally more efficient.
This efficiency is mainly due to the fact that our algorithm
needs only to calculate the minimum `2 norm representa-
tion under the redundant dictionary which can be done faster
than finding the sparse representation of a signal.
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